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Abstract

The value of a finite-state two-player zero-sum stochastic game with limit-average payoff can
be approximated to within ¢ in time exponential in polynomial in the size of the game times
polynomial in logarithmic in %, for all e > 0.
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1 Introduction

A zero-sum stochastic game [14] is a repeated game over a finite state space, played by two-players.
Each player has a non-empty set of actions available at every state, and at each round each player
chooses an action from the set of available actions at the current state simultaneously with and
independent from the other player. The transition function is probabilistic, and the next state is
given by a probability distribution depending on the current state and the actions chosen by the
players. At each round, player 1 gets (and player 2 loses) a reward depending on the current state
and the actions chosen by the players, and the players are informed of the history of the play
consisting of the sequence of states visited and the actions of the players played so far in the play.
A strategy for a player is a recipe to extend the play: given a finite sequence of states and pairs
of actions representing the history of the play, a strategy specifies a probability distribution over
the set of available actions at the last state of the history. The limiting average reward of a pair of
strategies o and 7 and a starting state s is defined as

n—oo [ n 4
=1

n
Ul(S, o, 7T) = Eg,w lim inf |:l Z ’I”(XZ‘, @i,h @i,Q):| )
where X; is the random variable for the state reached at round i of the game and ©; ; is the random
variable for the action played by player j at round ¢ of the game, under strategies o and 7, and
r(s,a,b) gives the reward at state s for actions a and b. The form of the objective explains the
term limit average. First, the average is taken with respect to the expected rewards in the first n
rounds of the game. Then the objective is defined as the liminf of these averages. A stochastic
game with a limit-average objective is called a limit-average game. The fundamental question in

stochastic games is the existence of a value, that is, whether

supinf vy (s,0,7) = inf sup vy (s, o, 7)
o T T o



Stochastic games were introduced by Shapley [14], where he showed the existence of value in
discounted games, where the game stops at each round with probability § for some 0 < § <
1. Limit-average games were introduced by Gillette [7], who studied the special cases of perfect
information (at each round, at most one player has a choice of moves) and irreducible stochastic
games. Existence of value for the perfect information case was proved in [9]. Gillette’s paper
also introduced a limit-average game called the Big Match, which was solved in [4]. Bewley and
Kohlberg [3] then showed how Pusieux series expansions could be used for asymptotic analysis of
discounted games. This, and the winning strategy in the Big Match, was used by Mertens and
Neyman'’s result [10] to show the existence of value in limit-average games.

While the ezistence of a value in general limit-average stochastic games has been extensively
studied, the computation of values has received less attention. In general, it may happen that a
game with rational rewards and rational transition probabilities still has an irrational value. Hence,
we can only hope to get approximation algorithms that compute the value of a game up to a given
approximation ¢, for € > 0. Even the approximation of values is not simple, because in general the
games only admit e-optimal strategies, and strategies may require infinite memory. This precludes,
for example, common techniques that enumerate over all (finite) strategies and (having fixed a
strategy) solve the resulting Markov decision process using linear programming techniques. Most
research has therefore characterized particular subclasses of games for which memoryless optimal
strategies exist (a memoryless strategy is independent of the history of the play and depends only
on the current state) [12, 8] (see [6] for a survey), and the main algorithmic tool has been value or
policy iteration, which can be shown to terminate in exponential number of steps (but much better
in practice) for many of these particular classes.

Our main technique is the characterization of values as semi-algebraic quantities [3, 10]. We
show that the value of stochastic limit-average games can be expressed as a sentence in the theory of
real-closed fields that is polynomial in the size of the game and has a constant number of quantifier
alternations. The theory of real-closed fields is decidable in time exponential in the size of the
formula and doubly exponential in the quantifier alternation depth [1]; this, together with binary
search on the range of values gives an algorithm exponential in polynomial in the size of the game
graph to approximate the value to any given € > 0. Our techniques are simple and combine known
results to provide the first complexity bound on the general problem of approximating the value of
stochastic games with limit-average objectives. Further, the complexity of this algorithm lie in the
same complexity class (EXPTIME) as the best known deterministic algorithm for the special case
of perfect information games.

2 Definitions

Probability distributions. For a finite set A, a probability distribution on A is a function
6: A — [0,1] such that ) . ,0(a) = 1. We denote the set of probability distributions on A by
D(A). Given a distribution § € D(A), we denote by Supp(d) = {x € A | §(x) > 0} the support of
J.

Definition 1 (Stochastic games) A  (two-player zero-sum) stochastic game G =
(S,A,T'1,T9,6,r) consists of:

e A finite state space S.



A finite set A of moves or actions.

o Two move assignments I'1,Ty: S — 22\ (). Fori ¢ {1,2}, assignment I'; associates with each
state s € S the non-empty set I';(s) C A of moves available to player i at state s.

e A probabilistic transition function § : SXAxXA — D(S), that gives the probability d(s, a1, as)(t)
of a transition from s to t when player 1 plays move a1 and player 2 plays move ag, for all
s,t €8 and a1 € T'1(s), as € Ty(s).

o A reward functionr: S X Ax A — R that maps every state and pair of moves to a real valued
reward. 1

Size of a stochastic game. Given a stochastic game G we use the following notations:
1. n =S| is the number of states;
2. [0] = > eqIT1(s)] - [T'2(s)| is the number of entries of the transition function;

3. size(d) = X 1eg Doaer (s) 2ubers(s) 108, @, b) ()|, where [0(s,a,b)(t)| denotes the space to ex-
press (s, a,b)(t) in binary bits;

4. size(G) = |G| = n+size(5) + Do Daery (s) 2obers(s) |T(5: @, b)|, where [r(s, a,b)| denotes the
space to express r(s,a,b) in binary bits. The specification of a game structure G requires at
least O(size(G))-bits.

At every state s € S, player 1 chooses a move a1 € I'1(s), and simultaneously and independently
player 2 chooses a move ay € I'2(s). The game then proceeds to the successor state ¢ with probability
d(s,a1,a2)(t), for all t € S. At the state ¢, for moves a for player 1 and b for player 2, player 1 wins
and player 2 loses a reward of value r(¢,a,b). Each player wishes to maximize her own reward. A
state s is called an absorbing state if for all a1 € I'1(s) and ag € I'a(s) we have 0(s,a1,a2)(s) = 1.
In other words, at s for all choice of moves of the players the next state is always s. For all states
s € S and moves a1 € T'1(s) and ay € T's(s), we indicate by Dest(s, a1, as) = Supp(d(s,a1,asz)) the
set of possible successors of s when moves a1, ag are selected.

A path or a play w of G is an infinite sequence w = (s, (ag, bo), 1, (a1, b1), 2, (az, b2),...) of
states and pairs of moves such that (a;,b;) € T'1(s;) X I'a(s;) and s;41 € Dest(s;, a;, b;), for all 4 > 0.
We denote by €2 the set of all paths and by €2, the set of all paths starting from state s.

Randomized strategies. A strategy for player 1 is a function o : (S x A x A)*- S — D(A) that
associates with every prefix of a play, representing the history of the play so far, and the current
state a probability distribution from D(A) such that for all w € (S x A x A)* and all s € S we have
Supp(o(w - s)) C I'1(s). Similarly we define strategies 7 for player 2. We denote by ¥ and II the
set of all strategies for player 1 and player 2, respectively.

Once the starting state s and the strategies o and « for the two players have been chosen, the
game is reduced to an ordinary stochastic process. Hence, the probabilities of events are uniquely
defined, where an event A C ()4 is a measurable set of paths. For an event A C ), we denote by
Pr?7(A) the probability that a path belongs to A when the game starts from s and the players
follows the strategies ¢ and w. For ¢ > 0, we also denote by X; : Q — S the random variable
denoting the i-th state along a path, and for j € { 1,2 } we denote by ©;; : 2, — A the random



variable denoting the move of player j in the i-th round of a play. A waluation is a mapping
v:S — R, associating a real number v(s) with each state s.

Limit-average payoff. Let ¢ and 7 be strategies of player 1 and player 2 respectively. The
limit-average payoff vi(s,o, ) for player 1 at a state s, for the strategies o and 7 is defined as

1 n
vi(s,0,m) = EZ™ lim inf [— Z (X, 041, @i,g)] ;

n—oo [ n 4
=1

Similarly, for player 2, the payoff va(s, o, ) is defined as

1 n
vo(s,0,m) = EZ™ lim sup [5 Z —r(X;, 0,1, @i’g):| .

n—o00 :
=1

In other words, player 1 wins and player 2 looses the “long-run” average of the rewards of the play.
A stochastic game G with limit-average payoff is called a limit-average game.

Given a state s € S and we are interested in finding the maximal payoff that player 1 can
ensure against all strategy for player 2, and the maximal payoff that player 2 can ensure against
all strategies for player 1. We call such payoff the value of the game G at s for player i € { 1,2 }.
The value for player 1 and player 2 are given by the function v; : S — R and v9 : S — R, defined
for all s € S by

v1(s) = supgyex infremvi(s,0,m) and  va(s) = supreq infyex va2(s, o, 7).
Mertens and Neyman [10] establish the determinacy of stochastic limit-average games.

Theorem 1 ([10]) For all stochastic limit-average games, for all state s, we have v1(s)+wva(s) = 0.

Stronger notion of existence of values [10]. The value for stochastic games exists in a strong
sense [10]: Ve > 0, Jo* € X, 3n* € II such that Vo € ¥ and Vr € II the following conditions hold:

1.

. 1< . 1 &
—e+EJ™ lim sup [ﬁzr(xi,@i,l,@i,g)] < B Tlim inf_ [EZT(Xi,@i71,@i72)} +¢& (1)
n i=1 i=1

2. for all ;1 > 0, there exists ng = n(e1) such that for all o and 7, for all n > ng we have

e FEIT =Y (X0, 041, 012) | <ETT| =Y r(X0,041, 0 : 2
€1+ kg [n r( )1 2)] s [ ZT( o1 2)} tel @)

: n -
=1 =1

Let v1(s,0,7) = Eg" limsup,,_, [l Yo (X5, 05, @i72):|, then (1) is equivalent to the following

n
equality

sup inf v1(s,0,7) = inf supvi(s, o, 7).
cex mell w€ll e



3 Theory of Real-closed Fields and Quantifier Elimination

Our main technique is to represent the value of a game as a formula in the theory of real-closed
fields. An ordered field H is real-closed if no proper algebraic extension of H is ordered. We
denote by R the real-closed field (R, +,-,0,1, <) of the reals with addition and multiplication. An
atomic formula is an expression of the form p > 0 or p = 0 where p is a (possibly) multi-variate
polynomial with integer coefficients. An elementary formula is constructed from atomic formulas
by the grammar
pu=al-pleAeleVe|Ire| Ve,

where a is an atomic formula, A denotes conjunction, V denotes disjunction, — denotes comple-
mentation, and 3 and V denote existential and universal quantification respectively. From this
basic syntax, we derive additional defined expressions p > 0 (for p > 0V p = 0), p < 0 (for
=(p>0)V-(p=0)),p <0 (for =(p >0)), and p ~ g (for p — g ~ 0) for polynomials p and gq,
and ~€ { =,> } in the usual way. The semantics of elementary formulas are given in a standard
way [5]. A variable x is free in the formula ¢ if it is not in the scope of a quantifier 3z or Vz. An
elementary sentence is a formula with no free variables. A famous theorem of Tarski states that
the theory of real-closed fields is decidable.

Theorem 2 ([15]) The theory of real-closed fields in the language of ordered fields is decidable.

Complexity of quantifier elimination. For a formula ' we denote by len(F) the length of F.
We also denote by size of F, denoted as size(F'), the length of F' plus the space required to specify
the coefficients of the formula in binary. We state a result of Basu [1] (Theorem 1 of [1]; also see
Theorem 14.16 of [2]) on the complexity of quantifier elimination over the real-closed fields.

Theorem 3 ([1]) Let P ={ P, Pa,...,Ps} be a set of s polynomials each of degree at most d and
in k 4+ £ variables with coefficients in real-closed fields. Let

(V) = QX"Q, 1 XU QX F(P, Py, )

be a first-order formula with r alternating quantifiers Q; € { 3,V } (i.e., Qiv1 # Qi), ¥ =
(Y1,Ys,...,Ys) is a block of € free variables, X' is a block of k; variables with S ki =k,
and F(Py, Py, ..., Ps) is a quantifier free boolean formula with atomic predicates of the form
P;(Y, X[r],X[r_l],...X[l}) <1 0, where € { <,>,=}. Let D denote the ring generated by the
coefficients of the polynomials in P. If every polynomial depends on at most T variables of Y;’s,
then the following assertions hold.

1. There exists an equivalent quantifer free formula V(Y') of ®(Y) with
len(W(Y)) = slLitkt D). g Il O(ki) . jen(F),
where ¢/ = min{ £,7 - [[,(k; + 1) }.
2. The degree of the polynomials in V(YY) are bounded by dlLiO®i) and there is an algorithm to
compute ¥(Y') using
SHi(ki+1) . dz/ HzO(k’b) . |en(F)

arithmetic operations (multiplication, addition and sign determinations) in D.



3. If D =7 (the set of integers) and the bitsizes of the coefficients of the polynomials is bounded
by 7y, then the bitsize of integers appearing in the intermediate computations and the output

1s bounded by
~ - dOWOIL O,

Remark 1 The result of part 3 of Theorem 3 follows from the results of [1] though not explicitly
stated as a theorem; for an explicit statement as a theorem see Theorem 14.16 of [2]. Given two
integers a and b, let |a| and |b| denote the space to express a and b in binary, respectively. Then
the following assertions hold:

1. given signs of a and b the sign determination of a + b can be done in O(|a| + |b|) time, i.e.,
i linear time, and sign determination of a-b can be done in constant time;

2. addition of a and b can be done in O(|a| + |b]) time, i.e., in linear time; and
3. multiplication of a and b can be done in O(|al - |b]) time, i.e., in quadratic time.

It follows from the above observations, along with part 2 and part 3 of Theorem 3 that if D = 7
and ¢ =0, then the truth of ®(Y) can be determined in time

Sni O(ki+1) | deO(kl) . Ien(F) : 727 (3)

i.e., there is an algorithm to determine the truth of ®(Y) in time sl Okit1) . gl Ok . len(F) - 42;
(also see remark 14.17 of [2]).

4 Computation of Values in Stochastic Games

The values in stochastic limit-average games can be irrational even if the rewards and the transition
probability function only take rational values [13]. Hence, we can algorithmically only approximate
the value to within an €. To approximate the values of stochastic games with limit-average objec-
tives we restrict our attention to stochastic positive limit-average games. Since there is a simple
reduction from all stochastic limit-average games to stochastic positive limit-average games, this is
sufficient.

Normalized positive limit-average games. A stochastic limit-average game G is a normalized
positive limit-average game if the reward function r maps every state to a non-negative reward

between 0 and 1, i.e., 7 : § — [0, 1]. Given a stochastic limit-average game G, let cpin = minges 7(s)
— 7’(5)+|Cmin\+7l 3

" Cmaxt|emin|+n’ with
n > 0. Consider the normalized positive limit-average game G derived from G where the reward

function r is replaced by r*. Let v; and ’Uf’ be the value functions in the game G and G™,

and cpax = maxseg [r(s)|. Consider the reward function r* such that r*(s)

respectively. It follows easily that v; (s) = %, for all state s. Hence without loss
of generality we consider only normalized positive limit-average games to compute the values.
Observe that the value function v only takes values in the interval [0, 1] for normalized positive

limit-average games.

Discounted version of a game. Let G be a normalized positive limit-average game with reward
function r. Let 0 < 8 < 1. A (3-discounted version of the game G, denoted G, is a game that halts
with probability 8 at each round, and proceeds as game G with probability 1 — G. The process



of halting can be interpreted as going to an absorbing state halt, such that r(halt,a,b) = 0, for
all @ € T'y(halt) and for all b € I's(halt). We denote by vf() the value function of a S-discounted
game. It may be noted that for normalized positive limit-average games G, the value function of
the corresponding (-discounted game vf is monotonic with respect to 8 in a neighborhood of 0,
i.e., there exists § > 0 such that for all 81, 52 € (0, 5) if B1 < (B2, then v{" > ’U??.

We assume without loss of generality that the state space of the stochastic game structure is
enumerated as natural numbers, S = {1,2,...,n }, i.e., the states are numbered from 1 to n.

4.1 Quantifier free sentence for value of stochastic games

We first show how the values of S-discounted stochastic games can be expressed as a quantifier free
formula over the theory of real-closed fields. We then extend the result to all stochastic games.

Formula for value of g-discounted games. We first present a formula in the theory of real-
closed fields to characterize the values of a 3-discounted stochastic game, with 0 < 8 < 1. Given a
valuation v € R", for every pure strategy of player 2, for every state in S, we write a polynomial
for player 1 expressing the §-discounted value as a function of a randomized strategy x for player 1
and the value subtracted from the valuation. For a state ¢ € S, b € I's(7), z € D(I'1(7)), v € R
and 0 < 8 < 1, we have

u b (€0, 8) = 3 Z r(i,ab)+(1=8) D> w(a) > 86, a,b)(@ (i) —v(),

a€l (1 a€Tl1(7) i'eS

is a polynomial indexed by (i,b,1) (a state ¢ € S, and move b € I'y(i) and by player 1). The
polynomial u; 1y consists of variables 3, z(a) for a € I'; (i), v(i) for i € S. Observe that given the
B-discounted stochastic game, r(i,a,b) for a € T'1(i) and §(i,a,b)(i’) for i’ € S and a € T'1(4) are
specified constants and not variables. The coefficients of the polynomials are 7 (i, a, b) for a € I'; ()
and 0(4,a,b) for a € I'1 (7). Hence the polynomial has degree 3 and has 1 + |I'1(4)| + n variables.
Similarly, for i € S, a € T'1(i), y € D(I'2(7)), v € R™ and < 1, we have polynomials for player 2 as

u(zaZ) Y,v, ﬂ B Z Z a, b (1 _ﬂ) Z y(b) Zé(iuaa b)(ll)v(zl) —U(Z)
bel's(7) bel's (4) i’es

The total number of polynomials is s1 = >, g(|I'1(¢) + |I'2(4)|) = O(|d|). The formula stating that
the value at state 1 is at least o is as follows:

Qo) = Fx,...,2n. y1,...,Yn.- FU(), ..., 0(0).

(ACY a@-1-0) (ALY utr-1-0)

€S ael (i) €S bela(i)

A
/\< A $i(a)20> /\( N ?/i(b)20>
A

1€S5,a€T'1 (2) 1€5,b€T2 (1)

/\ < /\ u(i,b,l) (JL‘, v, ﬁ) > 0) /\ u(i,a,2) (y7 v, ﬁ) < 0)

1€8S,b€T2(7) 1€85,a€T1 (2)

A (v(l)—a>0).

The correctness of the above formula to specify ’U? (1) > « can be proved from the results of [14].



Value of a game as limit of discounted games. The result of Mertens-Neyman [10] establishes
the equivalence of the value of a stochastic limit-average game as the limit of the S-discounted games
as 3 goes to 0. Formally, we have

: B
vi(s) = lim o (s).
1(s) $—0,0<p<1 1(5)
Sentence for value of stochastic games. From the characterization of the value of a stochas-
tic limit-average game as the limit of the (-discounted games and the monotonicity property of
normalized positive limit-average games in a neighborhood of 0 we obtain the following sentence
stating that the value at state 1 is at least a:

(o) = 361 V6. 1, 20 Y1, - yn. (), ... 0(n0).

(A(Y s@-1-0)

€S ael’ (Z)

AN w20

( Z yi(b)_120)>

€S beDy (Z)

A o) =0)

7 N N 7N N

D > >

1€5,a€T'1 (2) 1€85,bel (1)
A (m=0)A <oV (Gi-5>0) A v 20)
iES,bEFQ(i)
/\ u(i,a,Q)(yvvaﬁ) < 0)>:|
iES,aGFl(i)

A (v(l)—a>0>.

The total number of polynomials in the above formula in addition to the polynomials s1 is s =
> ics(2+|1(d)| +|T'2(i)]) +4. Hence the total number of polynomials is O(n 4+ [0]) = O(|d]). The
formula ®(«) contains no free variables (i.e., each varaible z, y, v and [’s are quantified). In the
setting of Theorem 3 we obtain the following bounds for ®(a):

s=0(]);  k=0(n); H(kﬂrl) =0(n);  £=0; (4)

)

T = 0; r=0(1); d=3; ' =0; (5)

and hence we have
STkt 1) L g/ TL O — o(|5])Om) — 90 (nos(9)

Also observe that for a stochastic game G, the sum of the length of the polynomials appearing in
the formula is O(|d|) and the size of the polynomials appearing in the formula is O(size(G)) + |o| =
O(|G]) + O(]ea|), where || is the space required to express « in binary. The present analysis along
with Theorem 3 yields the following theorem.

Theorem 4 Given a stochastic limit-average game G and a real o, the following assertions hold.

1. There is a quantifier free sentence V(«) that specifies v1(1) > a with

len(T(a)) = 90 (n-1og(151)) -0(|8]);
size(¥(a)) = 20(n'log(‘5|)) - (O(size(G)) + O(lal)).



2. There is an algorithm to determine the truth of U(«) using 20(” log(l91) ) O(|d]) arithmetic
operations.

4.2 Algorithmic analysis

For algorithmic analysis we consider stochastic games with rational inputs, i.e., stochastic games
such that r(¢, a,b) and 0(7, a,b) are rational for all i € S, a € I'1 (i) and b € I's(7). Given the formula
® () to specify v1(1) > « we first reduce it to an equivalent formula ®(«) as follows:

e for every rational coefficient e = %, where p, ¢ € N, appearing in ®(«) we apply the following
procedure
1. introduce a variable z.,
2. replace e by z in ®(«),
3. add a polynomial ¢ - z. —p = 0, and
4. existentially quantify z. in the block of existential quantifiers after quantifying 5, and

3.

Thus we add O(|d]) variables and polynomials and increase the degree of the polynomials in ®(«)
by 1. Also observe that the coefficients in <I>( ) are integers and hence the ring D generated by the
coefficients in <I>( ) is a subset of Z. Similar to the bounds obtained in (4) and (5), in the setting
of Theorem 3 we obtain the following bounds for ®(a):

§=0(0);  k=0m+ld); J[k+1)=0m+ld); =0

i

and hence we have
$TLOG+Y) . FTLOG) — o(|s])O+D _ 50 (18l 1og(n+181) _ 90(J61-10g(14]))
Also observe that the length of the formula <I>(a) can be bounded by O(|d]) and the bitsizes of the

coefficients in ®(a) can be bounded by size(G) + O(la|) = O(]G| + |a|). This along with (3) of
Remark 1 yield the following result.

Theorem 5 Given a stochastic limit-average game G and a real o, there is an algorithm that
computes whether v1(1) > « in time

20(18110815)) . 0(15]) - O(IGI2 + |af?).

4.3 Approximating the value

We now present an algorithm that approximates the value within a tolerance of ¢ > 0. The
algorithm (Algorithm 1) is obtained by a binary search technique along with the result of Theorem 5.

Running time of Algorithm 1. In Algorithm 1 we denote by ®(m) the formula to specify
v1(1) > m and by Theorem 5 the formula ®(m) can be computed in time

20(181150) . 0 ((3]) - O(IGI? + |m2),



Algorithm 1 Approximating the value

Input: Normalized positive limit-average game G,
and a rational value € as tolerance.
Output: An interval [I,u] such that v — [ < 2e and v1(1) € [I, u].

1. 1:=0,u:=1,m:= 1h.
2. repeat for [log ()] steps
2.1 if (®(m))

21lal:=m,u:=u,m:= HT“;
2.2 else
22.al:=l,u:=m,m:= HT“

3. return [, u].

for the stochastic game G, where |m| is the number of bits required to specify m. In Algorithm 1,
the variables [, u, m are initially set to 0,1 and 1/, respectively and can be expressed in 1-bit. In
each iteration of the algorithm, after the division by 2 in Steps 2.1.a and 2.2.a the variables [, u and
m can be expressed with one more bit w.r.t. to the previous iteration. Hence [, © and m can always
be expressed in log (%) bits. The loop in Step 2 runs for log (%)—steps and every iteration can be

computed in time 20(\5|~10g(|5\)) - 0(|6]) - 0(‘G‘2 + log? (%)) This gives us the following theorem.

Theorem 6 Given a normalized positive limit-average game G, the state 1 of G, and a rational
e >0, Algorithm 1 computes an interval [I,u] such that v1(1) € [l,u] and u —1 < 2¢, in time

9 9

1 1
20 (105(050) . O 15 O(|G|2 log () + log” (—))-
By our reduction to normalized positive limit-average games, this also gives an algorithm for general
limit-average games.

Corollary 1 The value of a stochastic limit-average game G at a state i can be approzimated to
within € > 0 in time

20 (s1es190) . 0(11) - 0 (1612 og () + 1og* () )

The complexity class EXPTIME. A problem is in the complexity class EXPTIME, if there is
an algorithm A that solves the problem, and there is a polynomial p(-) such that for all inputs I
of |I|-bits, the running time of the algorithm A on input I can be bounded by 2P, Tn case of
stochastic games the input is the size of the game G, i.e., size(G). Hence from Corollary 1 and
Theorem 5 we obtain the following result.

Theorem 7 Given a rational € > 0 and a rational o the following assertions hold:

1. the values of stochastic limit-average games can be computed within e-precision in EXPTIME;
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2. whether v1(i) > « for a state i can be decided in EXPTIME.

Unfortunately, the only lower bound on the complexity is PTIME-hardness (polytime hardness).
The hardness follows from a simple reduction from alternating reachability. Even for the simpler
case of perfect information deterministic games no polynomial time algorithm is known [16], and
the best known algorithm for perfect information games is exponential in the size of the game [9].
In case of perfect information stochastic games, deterministic and stationary optimal strategies
exist [9]. Since the number of deterministic stationary strategies can be at most exponential in
the size of the game, there is an exponential time algorithm to compute the values exactly (not
approximation) (also see Chapter by Raghavan in [11]).
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