
Generalized Parity Games

Krishnendu Chatterjee
Thomas A. Henzinger
Nir Piterman

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-144

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-144.html

November 8, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This research was supported in part by the AFOSR MURI grant F49620-
00-1-0327 and the NSF ITR grant CCR-0225610.

Generalized Parity Games ⋆

Krishnendu Chatterjee1, Thomas A. Henzinger1,2, and Nir Piterman2

1 University of California, Berkeley, USA
2 EPFL, Switzerland

c krish@eecs.berkeley.edu, {tah,Nir.Piterman}@epfl.ch

Abstract. We consider games where the winning conditions are disjunctions (or dually,
conjunctions) of parity conditions; we call them generalized parity games. These winning
conditions, while ω-regular, arise naturally when considering fair simulation between parity
automata, secure equilibria for parity conditions, and determinization of Rabin automata.
We show that these games retain the computational complexity of Rabin and Streett con-
ditions; i.e., they are NP-complete and co-NP-complete, respectively. The (co-)NP-hardness
is proved for the special case of a conjunction/disjunction of two parity conditions, which
is the case that arises in fair simulation and secure equilibria. However, considering these
games as Rabin or Streett games is not optimal. We give an exposition of Zielonka’s algo-
rithm when specialized to this kind of games. The complexity of solving these games for k

parity objectives with d parities, n states, and m edges is O(n2kd · m) · (k·d)!

d!k
, as compared

to O(n2kd ·m) · (k · d)! when these games are solved as Rabin/Streett games. We also extend
the subexponential algorithm for solving parity games recently introduced by Jurdziński,
Patterson, and Zwick to generalized parity games. The resulting complexity of solving gen-
eralized parity games is nO(

√
n) · (k·d)!

d!k
. As a corollary we obtain an improved algorithm for

Rabin and Streett games with d pairs, with time complexity nO(
√

n) · d!.

1 Introduction

Games offer a natural framework for reasoning about systems. For example, controller synthesis
is a natural framework where two-player games arise. We consider the controller that we wish to
synthesize as a player in a game against an environment. The controller has to come up with a
strategy that will allow it to decide on its action given environment inputs such that regardless of
environment actions some goal is satisfied [17].

A two-player game is a finite or infinite directed graph where the vertices are partitioned
between the two players. A play proceeds by moving a token between the vertices of the graph. If
the token is found on a vertex of player 1, she chooses an outgoing edge and moves the token along
that edge. If the token is found on a vertex of player 2, she gets to choose the outgoing edge. The
result is an infinite sequence of vertices. In order to determine the winner in a play we consider the
infinity set, the set of states occurring infinitely often in the play. Then, there are several methods
to define acceptance conditions that determine which infinity sets are winning for which player.
We solve a game by computing the set of states from which player 1 has a strategy to resolve her
choices so that regardless of player 2’s choices the play is winning, this is called the winning set of
player 1. In the games considered here, the winning set of player 1 and the winning set of player 2
(defined dually) form a partition of the vertices of the game [12].

The class of Rabin [16] and Streett [20] winning conditions are cannonical forms to express all
ω-regular winning conditions. Both conditions are defined using a set of pairs of subsets of the

⋆ This research was supported in part by the AFOSR MURI grant F49620-00-1-0327 and the NSF ITR
grant CCR-0225610.

vertices of the graph. In order to win the Rabin condition over {〈E1, F1〉, . . . , 〈Ek, Fk〉} the infinity
set has to intersect Ei and not intersect Fi for some i. The Streett winning condition is the dual of
the Rabin condition. In order to win the Streett condition over {〈E1, F1〉, . . . , 〈Ek, Fk〉} the infinity
set has to either be disjoint from Ei or to intersect Fi for every i. Rabin and Streett games with
n vertices, m edges, and k pairs can be solved in time O(mnkk!) [15].

Another general acceptance condition is the parity acceptance condition [6]. In the parity con-
dition, every vertex has a priority and a play is won if the maximal priority visited infinitely often
is even. The parity condition is a special case of Rabin and Streett conditions that is closed under
complement. While Rabin games are NP-complete (and Streett co-NP-complete) [5], parity games
are in NP∩co-NP [6]. Solving a parity game with m edges, n vertices, and 2k priorities can be done
in time O(m · nk) [10] or nO(

√
n) [11].

In this paper, we are interested in games where the winning condition is a disjunction (dually
conjunction) of parity conditions. That is, instead of considering one function assigning priorities
to vertices we consider a set of such functions. A play is winning according to this definition if for
one of the functions the maximal priority visited infinitely often is even. We call these winning
conditions generalized parity.

Generalized parity winning conditions arise naturally in several scenarios. As mentioned, one
of the main motivations for considering two-player games is controller synthesis. In the classical
setting we consider the system playing against an arbitrary environment. Sometimes, it makes
more sense to consider the case where the environment has a goal of its own. In such a case, we
are searching for some equilibrium between the system and the environment in which both satisfy
their requirements. This led to the introduction of secure equilibria [2]. When both players have
parity winning conditions the solution of secure equilibria requires considering a game where the
winning condition is the implication between two parity conditions. As parity objectives are closed
under complement we can think about this as either the disjunction or the conjunction of two
parity conditions.

Two-player games arise also in the context of simulation [13, 8]. Simulation is an important
precondition for language containment between automata [3] and is also used in the context of
minimization of automata [7, 19, 1]. Simulation between parity automata (automata whose accep-
tance condition is parity) is naturally framed as a game whose winning condition is again the
implication of parity conditions. Finally, the disjunction of parity games also arises when consid-
ering determinization of Rabin and parity automata. Given a Rabin automaton with one pair, we
know how to create an equivalent deterministic parity automaton [18, 14]. It follows that in order
to determinize a Rabin automaton with k pairs we can consider the disjunction of deterministic
parity automata. The acceptance condition of such an automaton is again a disjunction of parity
conditions.

As explained, parity conditions are a special case of Rabin and Streett conditions. It follows that
generalized parity conditions are again a special case of Rabin and Streett conditions. Indeed, every
parity condition is in particular a Rabin condition and a disjunction of Rabin conditions is again a
Rabin condition. Dually, every parity condition is a Streett condition and a conjunction of Streett
conditions is again a Streett condition. On the other hand, they are also more general than Rabin
and Streett conditions. Indeed a Rabin condition is a disjunction of parity conditions of index 3
and a Streett condition is a conjunction of parity conditions of index 3. It is an interesting question
whether generalized parity conditions retain the computational hardness of Rabin and Streett
conditions. We would also like to devise specialized algorithms for generalized parity conditions
that outperform the natural reduction to Rabin and Streett conditions. These are the two questions
considered in this paper.

2

We show that generalized parity conditions are NP and co-NP complete, suggesting that the
computational complexity of Rabin and Streett conditions is retained. Our lower bound applies
already for the special case of a disjunction/ conjunction of two parity conditions, which is the
case that comes up in secure equilibria and fair-simulation.

We give specialized algorithms that outperform the reduction of generalized parity conditions
to Rabin and Streett conditions. Specifically, Zielonka’s algorithm [21] when specialized to a dis-

junction of k parity objectives with d parities works in time proportional to O(m · n2kd · (k·d)!
d!k)

(compared to O(m ·n2kd · (k ·d)!) when these games are solved as Rabin or Streett games). We gen-
eralize the techniques of the subexponential algorithm for solving parity games [11] to generalized

parity games. The resulting complexity of solving generalized parity games is nO(
√

n) · (k·d)!
d!k . As a

corollary we obtain an improved algorithm for Rabin and Streett games with k pairs, with time
complexity nO(

√
n) · k!, as compared to the previous best known algorithm with time complexity

O(m · nk · k!) [15].
In the full version we also show how to extend the direct rank computation [10, 15] to generalized

parity conditions. The resulting complexity of solving generalized parity games is O(m ·nkd · (k·d)!
d!k

)

(as compared to O(m · nkd · (k · d)!)).

2 Definitions

We consider turn-based deterministic games played by two-players with conjunction and disjunction
of parity objectives; we call them generalized parity games. We define game graphs, plays, strategies,
objectives and notion of winning below.

Game graphs. A game graph G = ((S,E), (S1, S2)) consists of a directed graph (S,E) with a
finite state space S and a set E of edges, and a partition (S1, S2) of the state space S into two sets.
The states in S1 are player 1 states, and the states in S2 are player 2 states. For a state s ∈ S, we
write E(s) = {t ∈ S | (s, t) ∈ E} for the set of successor states of s. We assume that every state
has at least one out-going edge, i.e., E(s) is non-empty for all states s ∈ S.

Plays. A game is played by two players: player 1 and player 2, who form an infinite path in the
game graph by moving a token along edges. They start by placing the token on an initial state,
and then they take moves indefinitely in the following way. If the token is on a state in S1, then
player 1 moves the token along one of the edges going out of the state. If the token is on a state
in S2, then player 2 does likewise. The result is an infinite path in the game graph; we refer to
such infinite paths as plays. Formally, a play is an infinite sequence 〈s0, s1, s2, . . .〉 of states such
that (sk, sk+1) ∈ E for all k ≥ 0. We write Ω for the set of all plays.

Strategies. A strategy for a player is a recipe that specifies how to extend plays. Formally, a
strategy σ for player 1 is a function σ: S∗·S1 → S that, given a finite sequence of states (representing
the history of the play so far) which ends in a player 1 state, chooses the next state. The strategy
must choose only available successors, i.e., for all w ∈ S∗ and s ∈ S1 we have σ(w · s) ∈ E(s).
The strategies for player 2 are defined analogously. We write Σ and Π for the sets of all strategies
for player 1 and player 2, respectively. Strategies in general require memory to remember the
history of plays. An equivalent definition of strategies is as follows. Let M be a set called memory.
A strategy with memory can be described as a pair of functions: (a) a memory-update function
σu: S ×M → M that, given the memory and the current state, updates the memory; and (b) a
next-state function σn: S ×M → S that, given the memory and the current state, specifies the
successor state. The strategy is finite-memory if the memory M is finite. An important special
class of strategies are memoryless strategies. The strategy is memoryless if the memory M is a

3

singleton set. The memoryless strategies do not depend on the history of a play, but only on the
current state. Each memoryless strategy for player 1 can be specified as a function σ: S1 → S

such that σ(s) ∈ E(s) for all s ∈ S1, and analogously for memoryless player 2 strategies. Given
a starting state s ∈ S, a strategy σ ∈ Σ for player 1, and a strategy π ∈ Π for player 2, there is
a unique play, denoted ω(s, σ, π) = 〈s0, s1, s2, . . .〉, which is defined as follows: s0 = s and for all
k ≥ 0, if sk ∈ S1, then σ(s0, s1, . . . , sk) = sk+1, and if sk ∈ S2, then π(s0, s1, . . . , sk) = sk+1.

Conjunction and disjunction of parity objectives. We consider game graphs with a con-
junction of parity objectives for player 1 and the complementary disjunction of parity ob-
jectives for player 2. For a play ω = 〈s0, s1, s2, . . .〉 ∈ Ω, we define Inf(ω) = {s ∈ S |
sk = s for infinitely many k ≥ 0} to be the set of states that occur infinitely often in ω. We also
define reachability and safety objectives as they will be useful in the analysis of the algorithms.

1. Reachability and safety objectives. Given a set T ⊆ S of states, the reachability objective
Reach(T) requires that some state in T be visited, and dually, the safety objective Safe(F)
requires that only states in F be visited. Formally, the sets of winning plays are Reach(T) =
{〈s0, s1, s2, . . .〉 ∈ Ω | ∃k ≥ 0. sk ∈ T } and Safe(F) = {〈s0, s1, s2, . . .〉 ∈ Ω | ∀k ≥ 0. sk ∈ F}.
The reachability and safety objectives are dual in the sense that Reach(T) = Ω \ Safe(S \ T).

2. Parity objectives, conjunction and disjunction. For d ∈ N, we let [d] = {0, 1, . . . , d} and [d]+ =
{1, 2, . . . , d}. Let p : S → [d] be a function that assigns a priority p(s) to every state s ∈ S. The
parity objective requires that the maximal priority occurring infinitely often is even. Formally,
the set of winning plays is Parity(p) = {ω ∈ Ω | max(Inf(ω)) is even}. For a priority function p :
S → [d] we denote by p : S → [d+1]+ the priority function defined as follows: for s ∈ S we have
p(s) = p(s)+1. Then we have Parity(p) = Ω \Parity(p), i.e., parity objectives are closed under
complementation. For i = 1, 2, . . . , k, consider k priority functions pi : S → [di]. The objective
ConjParity(p1, p2, . . . , pk) is the conjunction of the parity objectives defined by Parity(pi), i.e.,

ConjParity(p1, p2, . . . , pk) =
⋂k

i=1 Parity(pi). Similarly, the objective DisjParity(p1, p2, . . . , pk)
is the disjunction of the parity objectives defined by Parity(pi), i.e., DisjParity(p1, p2, . . . , pk) =⋃k

i=1 Parity(pi). The conjunction and disjunction of parity objectives are dual in the sense that
ConjParity(p1, p2, . . . , pk) = Ω \ DisjParity(p1, p2, . . . , pk). If all priority functions have range
[d] and there are k priority functions, then we refer to this class of conjunction and disjunction
of parity objectives as (∧, k, [d]) and (∨, k, [d]), respectively. Similarly, if all priority functions
have range [d]+ and there are k priority functions, then we refer to this class of conjunction and
disjunction of parity objectives as (∧, k, [d]+) and (∨, k, [d]+), respectively. We refer to parity
objectives with priority functions with range [1] as coBüchi objectives and with range [2]+ as
Büchi objectives.

3. Rabin and Streett objectives. A Rabin specification for the game graph G is a finite set F =
{〈E1, F1〉, . . . , 〈Ed, Fd〉} of pairs of sets of states, that is, Ej ⊆ S and Fj ⊆ S for all 1 ≤ j ≤ d.
The pairs in F are called Rabin pairs. The Rabin specification F requires that for some Rabin
pair 1 ≤ j ≤ d, all states in the left set Ej be visited finitely often, and some state in the
right set Fj be visited infinitely often. Thus, the Rabin objective defined by F is the set
Rabin(F) = {ω ∈ Ω | (∃1 ≤ j ≤ d)(Inf(ω) ∩ Ej = ∅ ∧ Inf(ω) ∩ Fj 6= ∅)} of winning paths.
The complements of Rabin objectives are called Streett objectives. A Streett specification for
G is likewise a set F = {〈E1, F1〉, . . . , 〈Ed, Fd〉} of pairs of set of states Ej ⊆ S and Fj ⊆ S.
The pairs in F are called Streett pairs. The Streett specification F requires that for all Streett
pairs 1 ≤ j ≤ d, if some state in the left set Fj is visited infinitely often, then some state in the
right set Ej is visited infinitely often. Formally, the Streett objective defined by W is the set
Streett(F) = {ω ∈ Ω | (∀1 ≤ j ≤ d)(Inf(ω)∩Ej 6= ∅∨ Inf(ω)∩Fj = ∅)} of winning paths. The
Rabin and Streett objectives are dual in the sense that Streett(F) = Ω \Rabin(F). The parity

4

objectives are a subclass of the Rabin objectives that are closed under complementation. It
follows that every parity objective is both a Rabin objective and a Streett objective.

Relationship between objectives. It may be noted that given k priority functions p1, p2, . . . , pk

with range [2d1], [2d2] . . ., [2dk], the disjunction of the parity objectives can be expressed as a

Rabin objective with
∑k

i=1 di pairs, and the conjunction of parity objectives can be expressed

as a Streett objective with
∑k

i=1 di pairs. Conversely, a Rabin objective Rabin(F) with k pairs
can be expressed as an objective in (∨, k, [3]+) as follows: for a pair 〈Ei, Fi〉 consider the priority
function pi : S → [3]+ such that pi(s) = 3 if s ∈ Ei and 2 if s ∈ Fi \ Ei and 1 otherwise;
then DisjParity(p1, p2, . . . , pk) = Rabin(F). Similarly, a Streett objective Streett(F) with k pairs
can be expressed as an objective (∧, k, [2]) as follows: for a pair 〈Ei, Fi〉 consider the priority
function pi : S → [2] such that pi(s) = 2 if s ∈ Ei, 1 if s ∈ Fi \ Ei and 0 otherwise; then
ConjParity(p1, p2, . . . , pk) = Streett(F).

Winning strategies and sets. Given a game graph G and an objective Φ ⊆ Ω for player 1, a
strategy σ ∈ Σ is a winning strategy for player 1 from a state s if for all player 2 strategies π ∈ Π

the play ω(s, σ, π) is winning, i.e., ω(s, σ, π) ∈ Φ. The winning strategies for player 2 are defined
analogously. A state s ∈ S is winning for player 1 with respect to the objective Φ if player 1 has
a winning strategy from s. Formally, the set of winning states for player 1 with respect to the
objective Φ in a game graph G is WG

1 (Φ) = {s ∈ S | ∃σ ∈ Σ. ∀π ∈ Π. ω(s, σ, π) ∈ Φ}. Analogously,
the set of winning states for player 2 with respect to an objective Ψ ⊆ Ω is WG

2 (Ψ) = {s ∈ S | ∃π ∈
Π. ∀σ ∈ Σ. ω(s, σ, π) ∈ Ψ}. If the game graph is clear from the context we drop the game graph
from the superscript. We say that there exists a memoryless winning strategy for player 1 with
respect to the objective Φ if there exists such a strategy from all states in W1(Φ); and similarly for
player 2.

Theorem 1 (Determinacy and complexity [5]). The following assertions hold.
1. For all game graphs G = ((S,E), (S1, S2)), for all Streett objectives Φ for player 1, and the

complementary Rabin objective Ψ = Ω \ Φ for player 2, the following assertions hold.
– We have W1(Φ) = S \W2(Ψ).
– There exists a memoryless winning strategy for player 2 and finite-memory winning strategy

for player 1.
2. Given a game graph G, a Streett objective Φ for player 1, and the complementary Rabin objective

Ψ = Ω\Φ for player 2, the problem of deciding whether s ∈W2(Ψ) is NP-complete and deciding
whether s ∈W1(Φ) is coNP-complete.

Observe that for Streett objective Φ and the Rabin objective Ψ = Ω \ Φ by definition we have
S \W2(Ψ) = {s ∈ S | ∀π ∈ Π. ∃σ ∈ Σ. ω(s, σ, π) ∈ Φ}. Theorem 1 states that S \W2(Ψ) = {s ∈
S | ∃σ ∈ Σ. ∀π ∈ Π. ω(s, σ, π) ∈ Φ}, i.e., the order of the universal and the existential quantifiers
can be exchanged.

Closed sets and attractors. Some notions that will play key roles in the analysis of the algorithms
are the notion of closed sets and attractors. We define them below.

Closed sets. A set U ⊆ S of states is a closed set for player 1 if the following two conditions hold:
(a) for all states u ∈ (U ∩ S1), we have E(u) ⊆ U , i.e., all successors of player 1 states in U are
again in U ; and (b) for all u ∈ (U ∩S2), we have E(u)∩U 6= ∅, i.e., every player 2 state in U has a
successor in U . A player 1 closed set is also called a trap for player 1. The closed sets for player 2
are defined analogously. Every closed set U for player ℓ, for ℓ ∈ {1, 2}, induces a sub-game graph,
denoted G ↾ U .

5

Proposition 1. Consider a game graph G, and a closed set U for player 2. For every objective Φ
for player 1, we have WG↾U

1 (Φ) ⊆WG
1 (Φ).

Attractors. Given a game graphG, a set U ⊆ S of states, and a player ℓ ∈ {1, 2}, the set Attrℓ(U,G)
contains the states from which player ℓ has a strategy to reach a state in U against all strategies
of the other player; that is, Attrℓ(U,G) = Wℓ(Reach(U)). The set Attr1(U,G) can be computed
inductively as follows: let R0 = U ; let

Ri+1 = Ri ∪ {s ∈ S1 | E(s) ∩Ri 6= ∅} ∪ {s ∈ S2 | E(s) ⊆ Ri} for all i ≥ 0;

then Attr1(U,G) =
⋃

i≥0 Ri. The inductive computation of Attr2(U,G) is analogous. For all states
s ∈ Attr1(U,G), define rank(s) = i if s ∈ Ri \ Ri−1, that is, rank(s) denotes the least i ≥ 0 such
that s is included in Ri. Define a memoryless strategy σ ∈ Σ for player 1 as follows: for each state
s ∈ (Attr1(U,G)∩S1) with rank(s) = i, choose a successor σ(s) ∈ (Ri−1 ∩E(s)) (such a successor
exists by the inductive definition). It follows that for all states s ∈ Attr1(U,G) and all strategies
π ∈ Π for player 2, the play ω(s, σ, π) reaches U in at most |Attr1(U,G)| transitions.

Proposition 2. For all game graphs G, all players ℓ ∈ {1, 2}, and all sets U ⊆ S of states, the
set S \ Attrℓ(U,G) is a closed set for player ℓ.

Notation. For a game graph G = ((S,E), (S1, S2)), a set U ⊆ S and ℓ ∈ {1, 2}, we write G \
Attrℓ(U,G) to denote the game graph G ↾ (S \ Attrℓ(U,G)).

3 Computational Complexity

In this section we study the computational complexity of generalized parity games. We will consider
(∨, k, [d]) and (∧, k, [d]) objectives and present complexity results varying both k and d. Observe
that if both k and d are constants, then generalized parity games can be solved in polynomial time
(by reduction to Rabin and Streett objectives with constant number of pairs). The next theorem
completes the complexity analysis.

Theorem 2. Given a game graph G the following assertions hold.
1. For objectives Ψ in (∨, k, [d]) and Φ in (∧, k, [d]), and a state s: whether s ∈ W2(Ψ) can be

decided in NP and whether s ∈ W1(Φ) can be decided in coNP.
2. For objectives Ψ in (∨, k, [3]+) and Φ in (∧, k, [2]), and a state s: (a) whether s ∈ W2(Ψ) is

NP-hard and (b) whether s ∈ W1(Φ) is coNP-hard.
3. For objectives Φ in (∨, k, [2]+), or in (∧, k, [2]+), or in (∨, k, [1]), or in (∧, k, [1]) and a state

s: whether s ∈W1(Φ) (or s ∈W2(Φ)) can be decided in PTIME.
4. For objectives Φ in (∨, 1, [d]) or (∧, 1, [d]) and a state s: whether s ∈ W1(Φ) (or s ∈ W2(Φ))

can be decided in NP ∩ co NP.
5. For objectives Ψ in (∨, 2, [d]) and Φ in (∧, 2, [d]), and a state s: whether s ∈W2(Ψ) is NP-hard

and whether s ∈ W1(Φ) is coNP-hard.

Proof. We prove all the cases below.
1. The result follows from reduction to Rabin and Streett objectives, respectively.
2. Observe that by reduction of Rabin and Streett objectives to generalized parity objectives,

we have Rabin objectives are subsumed in (∨, k, [3]+) and Streett objectives are subsumed in
(∧, k, [2]). Hence the NP-hardness and coNP-hardness follows from Theorem 1.

6

3. It may be noted that disjunction of Büchi objectives is a Büchi objective, the conjunction of
coBüchi objectives is again a coBüchi objective, and the conjunction of Büchi objectives is a
generalized Büchi objective. Games with Büchi, coBüchi and generalized Büchi objectives can
be solved in polynomial time.

4. The result follows from the complexity of games with parity objectives.
5. We prove the result in Lemma 1.

Lemma 1. Given a game graph G, an objective Ψ in (∨, 2, [d]), and a state s deciding whether
s ∈W2(Ψ) is NP-hard.

Proof. We present a reduction from the SAT-problem. Consider a SAT formula ψ with clauses
C0, C1, . . . , Cm and over boolean variables x0, x1, . . . , xn. We denote by C the set of all clauses and
by X the set of all variables. A literal is a variable or its negation (i.e, xi or ¬xi). We denote by
l a literal and by L the set of all literals. We now construct a game graph G = ((S,E), (S1, S2))
and an objective Ψ that is obtained as a disjunction of two parity objectives.

1. State space and transitions. We have

S1 = {s0}; S2 = C ∪ L;
E = {(s0, Ci) | Ci ∈ C} ∪ {(Ci, l) | Ci ∈ C, l occurs in Ci} ∪ {(l, s0) | l ∈ L}

Hence player 1 chooses between the clauses, and in each clause player 2 can choose a literal
that makes the clause true, and from the literals the next state is the starting state s0.

2. Priority functions. We specify priority functions p1 : S → [2n] and p2 : S → [2n] as follows:

p1(s) =

0 s ∈ C; or s = s0;

2k s = xk;

2k + 1 s = ¬xk;

p2(s) =

0 s ∈ C; or s = s0;

2k s = ¬xk;

2k + 1 s = xk;

We analyze the game with objective Ψ = DisjParity(p1, p2) for player 2. Since the objective is a
Rabin objective it suffices to analyze the memoryless strategies as candidate winning strategies for
player 2. We analyze the following two cases.

1. Satisfiability implies winning. Let A : X → {0, 1} be a satisfying assignment for ψ. We define

Â : X → L as follows: for x ∈ X we have Â(x) = x if A(x) = 1 and ¬x otherwise. Fix a
memoryless strategy π : S2 → S as follows: for Ci ∈ C pick a literal lk that appear in Ci

and Â(xk) = lk (such a literal exists since A is a satisfying assignment), and set π(Ci) = lk.
Now consider any strategy σ for player 1. Let lj be the maximal literal that appear infinitely
often along the play ω(s0, σ, π). Observe that both xj and ¬xj cannot appear infinitely often.
If lj = xj , then Parity(p1) is satisfied, and if lj = ¬xj , then Parity(p2) is satisfied. Hence we
can construct a winning strategy for player 2 from a satisfying assignment.

2. Winning implies satisfiability. Consider a pure memoryless strategy π for player 2. If there
exists Cj , Ck such that π(Cj) = xi and π(Ck) = ¬xi, then we show that π is not winning
for player 2; otherwise, it is easy to construct a satisfying assignment from the memoryless
strategy π. Consider Cj , Ck such that π(Cj) = xi and π(Ck) = ¬xi, and the strategy σ for
player 1 that alternates between Cj and Ck at s0. Then we have max(pℓ(Inf(ω(s, σ, π)))) =
max{pℓ(xi), pℓ(¬xi)} = 2i + 1, for ℓ ∈ {1, 2}. It follows that π is not a winning strategy for
player 2.

The result follows.

7

4 The Classical Algorithm

We first present the classical style algorithm (Zielonka’s algorithm) for games with conjunction
and disjunction of parity objectives. We first present an informal description of the algorithm; and
a formal description of the algorithm is given as Algorithm 1.

Notations. We will consider k priority functions p1 : S → [2d1], p2 : S → [2d2], . . . , pk : S → [2dk].
The objective Φ for player 1 is the conjunction of the parity objectives ConjParity(p1, p2, . . . , pk)
and the objective for player 2 is the complementary objective Ψ = DisjParity(p1, p2, . . . , pk). We
will use the following notation: (a) for pi : S → [2di] we denote by MaxEven(pi) = p−1(2di) the
set of maximal even priority states, and if we consider a sub-game defined a by a subset Sj of

states with pi : Sj → [2d̂i] with d̂i ≤ di, then in the sub-game we denote by MaxEven(pi) =

p−1(2d̂i) the maximal even priority states in the sub-game; and (b) for pi : S → [2di] we denote by
MaxOdd(pi) = p−1(2di − 1) the set of maximal odd priority states, and if we consider a sub-game

defined a by a subset Sj of states with pi : Sj → [2d̂i] with d̂i ≤ di, then in the sub-game we denote

by MaxOdd(pi) = p−1(2d̂i − 1) the maximal odd priority states in the sub-game.

Informal description of the classical algorithm. The algorithm computes the set of states
winning for player 2 according to the disjunction of the parity conditions. We assume that all parity
functions are to the range [1..(2d + 1)] for some d. If all parity conditions contain only states of
priority 1, then obviously player 2 is losing. Indeed, every infinite play visits the maximal priority
1 according to all disjuncts. Suppose that no such void parity condition exists. The algorithm
proceeds by choosing one of the disjuncts. Let d denote the maximal odd priority occurring in this
disjunct. Then we compute the states from which player 2 wins by visiting priority d finitely often
and visiting d − 1 infinitely often, or eventually avoiding both of them and winning according to
the lower priorities of this disjunct or one of the other disjuncts. In order to compute this region,
we compute the set of states from which player 1 can force a visit to priority d, clearly we want
to avoid these states so we consider the arena without these states. We now search for a trap of
player 1 that is composed of two parts: First some states with priority d−1 and player 2’s attractor
to these states, and second, some states that are won with the simpler winning condition. When we
find such a trap we conclude that it is winning for player 2, remove it from the arena and continue
with the rest. If we do not find such a trap for every one of the disjuncts, we conclude that player 1
wins from all the region that remains.

Correctness and time complexity. The following theorem states the correctness and complexity
of Algorithm 1. The correctness proofs in various forms are available in [4, 21, 9]. The exposition
and proof here mostly resembles the one of Horn’s paper [9].

Theorem 3 (Correctness and running time). Given a game graph G = ((S,E), (S1, S2)) and
priority functions p1 : S → [2d1], p2 : S → [2d2], . . . , pk : S → [2dk] the following assertions hold:
1. we have

W=W2(DisjParity(p1, p2, . . . , pk)); S \W=W1(ConjParity(p1, p2, . . . , pk)),

where W is the output of Algorithm 1;
2. and the running time of Algorithm 1 is O(m · n2d) ·

(
d

d1,d2,...,dk

)
where n = |S|, m = |E| and

d =
∑k

i=1 di.

Proof. We first prove the correctness of the algorithm. Suppose that all the disjuncts have only
priority 1. Then player 1 wins according to each of the disjuncts on the entire graph. Suppose that
there exist some disjuncts where the maximal priority is at least three. We distinguish between
two cases.

8

Algorithm 1 Classical algorithm for Disjunction of Parity Objectives

Input : A 2-player game graph G = ((S,E), (S1, S2)) and
priority functions p1 : S → [2d1], p2 : S → [2d2], . . . , pk : S → [2dk].

Output: W2 ⊆ S.
1. return DisjParityWin(G,p1, p2, . . . , pk);

Procedure DisjParityWin(G,p1, p2, . . . , pk)
1. if (for all i = 1, 2, . . . , k we have di = 0)

1.1 return ∅;
2. foreach i = 1, 2, . . . , k such that di 6= 0

2.1 G1 = G \ Attr 1(MaxOdd(pi), G);
2.2 H1 := G1 \ Attr2(MaxEven(pi), G1); j := 0;
2.3 repeat

2.3.1 j := j + 1;
2.3.2 Wj := DisjParityWin(Hj , p1, p2, . . . , pi : Hj → [2di − 2], . . . , pk);

2.3.3 W j = Attr 1(Hj \ Wj , Gj);

2.3.4 Gj+1 := Gj \ W j ;
2.3.5 Hj+1 := Gj+1 \ Attr 2(MaxEven(pi), Gj+1);

2.4 until Wj = ∅ or Wj = Hj

2.5 if (Wj = Hj)
2.5.1 return Attr 2(Gj , G) ∪ DisjParityWin(G \ Attr2(Gj , G),p1, . . . , pk);

end foreach

3. return ∅;

1. Case 1. Consider the case where the procedure returns through line 2.5.1. In this case the
algorithm chooses a priority pi and computes a sequence of regions W 1,W 2, . . . ,W l such that
W l = ∅ and Wl = Hl. Forall j the game Hj is a trap for player 1 in Gj and the game G1 is a
trap for player 1 in G. It follows that the only edges of player 1 that go outside Wl = Hl are
to Gl. Consider a play that reaches Gl. We partition Gl to the attractor of MaxEven(pi) and
Hl = Wl. Player 2 plays in Gl according to the following strategy.
– If the play is in the attractor to MaxEven(pi) player 2 attracts to MaxEven(pi).
– If the play is in Wl player 2 applies the winning strategy in the subgame

DisjParity(Hl, p1, p2, . . . , pi : Hj → [2di − 2], . . . , pk).
Consider an infinite play that in which player 2 follows this strategy. Clearly, player 1 cannot
escape Gl, so the game stays indefinitely in Gl. There are two cases to consider.
– Either the play gets to the attractor of MaxEven(pi) infinitely often, in which case

MaxEven(pi) is visited infinitely often and MaxOdd(pi) finitely often and player 2 wins.
– Or the play eventually stays in Hl and then player 2 wins according to the winning strategy

in the subgame.
2. Case 2. Consider the case where the procedure returns through line 3. In this case for every one

of the disjuncts pi the algorithm computes a sequence of regions that are winning for player 1.
We suggest the following strategy for player 1. The strategy uses the disjunct number i as
memory. When playing according to disjunct i, player 1 applies the following strategy.
– If the play is in the attractor to MaxOdd(pi) player 1 attracts to MaxOdd(pi).
– If the play is in MaxOdd(pi) player 1 chooses some successor in G and updates her memory

to i+ 1.
– Otherwise, the play is in some winning regionW j and player 1 applies the winning strategy

in the appropriate subgame.

9

Consider an infinite play in which player 1 follows this strategy. If the memory value used
by player 1 is changed infinitely often then forall priorities pi we have the set MaxOdd(pi) is
visited infinitely often and player 1 wins. If eventually the memory is constant then player 1 is
playing according to some partition W 1, . . . ,W k. Each of the regions W j is a trap for player 2.
It follows that from W j player 2 can escape by going to some W j′ for j′ < j. However, this can
happen only a finite number of times. Eventually, the play remains in W j for some constant j
and player 1 wins according to the winning strategy in the subgame.
Finally, we consider the complexity of the algorithm. For a disjunct, the algorithm computes at

most n times the winning region in a smaller region with one priority function with two less priori-
ties. Then, at least one state is removed and the algorithm resumes on a smaller graph. In addition
each attractor computation takes at most time proportional to the size of the transition O(m).
Denote the running time of the algorithm by T (n, d1, d2, . . . , dk), then the following recurrences
hold T (n, d1, d2, . . . , dk).

T (n, d1, d2, . . . , dk) = O(m) + n · ∑k

i=1 T (n−1, d1, d2, . . . , di−1, . . . , dk) + T (n−1, k);

T (n, d1, d2, . . . , dk) = O(m) + n2 · ∑k

i=1 T (n− 1, d1, d2, . . . , di − 1, . . . , dk)

The bound T (n, d1, d2, . . . , dk) ≤ O(m · n2d) ·
(

d
d1,d2,...,dk

)
follows from the second recurrence.

Remarks. In the case of Rabin or Streett objectives the above algorithm is identical to the one
in [4, 21, 9]. Indeed, every disjunct has 3 priorities, this means that forall i we have di = 1 and(

d
d1,d2,...dk

)
is d!. On the other hand, if we reduce the ConjParity(p1, . . . , pk) to a Streett objective

we get d = Σk
i=1di pairs and the classical Streett algorithm would compute in time O(m ·n2d · d!).

5 A New Algorithm

In this section we present a new algorithm for games with disjunction and conjunction of parity
objectives. The algorithm is inspired by the algorithm of [11] for parity games. The algorithm
is based on the notion of dominions and identifying small dominions cheaply. We now define
dominions and the complexity to compute non-empty dominions (if they exist).

Dominions. Given a game graph G = ((S,E), (S1, S2)), with priority functions p1, p2, . . . , pk,
we consider the objectives Φ = ConjParity(p1, p2, . . . , pk) and Ψ = DisjParity(p1, p2, . . . , pk) for
player 1 and player 2, respectively. A set U ⊆ S is a dominion
1. for player 1, if there exists a strategy σ for player 1 such that for all strategies π for player 2

and all states s ∈ U we have ω(s, σ, π) ∈ Φ ∩ Safe(U);
2. for player 2, if there exists a strategy π for player 2 such that for all strategies σ for player 1

and all states s ∈ U we have ω(s, σ, π) ∈ Ψ ∩ Safe(U).
An equivalent characterization of dominions is as follows. A set U ⊆ S is a dominion
1. for player 1, if U is a player 2 closed set and player 1 has a winning strategy σ for objective Φ

from all states in U in the sub-game G ↾ U ;
2. for player 2, if U is a player 1 closed set and player 2 has a winning strategy π for objective Ψ

from all states in U in the sub-game G ↾ U .

Find dominion procedures. We show that given a set U of size ℓ, i.e., |U | = ℓ, we can verify in

time ℓO(ℓ) ·O(d ·m) whether U is a dominion for a player, where pi : S → [2di], d =
∑k

i=1 di, and
m is the number of edges. We consider the following steps.
1. Whether U is a closed set for a player can be verified in time O(m).

10

2. Given U is a closed set, we consider the sub-game G ↾ U . The number of pure memoryless
strategies for player 2 in this sub-game is at most ℓℓ. By memoryless determinacy (Theorem 1)
and reduction of disjunction of parity objectives to Rabin objectives, all states s ∈ U are
winning in G ↾ U for player 2 if there is a pure memoryless winning strategy for player 2 from
all states in U ; and all states s ∈ U are winning for player 1 if player 1 can win from all s ∈ U

against all pure memoryless strategies for player 2.
3. Once a pure memoryless strategy for a player is fixed we obtain a graph. The winning sets for

Rabin and Streett objectives in a graph can be computed in time O(m · k), where m is the
number of edges and k is the number of pairs.

Our claim is a consequence of the above facts. We obtain the following lemma characterizing the
computation of dominions.

Lemma 2. Let G be a game graph with n states. Consider priority functions p1, p2, . . . , pk, and ob-
jectives Φ = ConjParity(p1, p2, . . . , pk) and Ψ = DisjParity(p1, p2, . . . , pk) for player 1 and player 2,

respectively. Let pi : S → [2di] and d =
∑k

i=1 di. A dominion for player 1 or player 2 of size at
most ℓ, for ℓ ≥ 1, if one exists, can be computed in time nO(ℓ) ·O(d).

Proof. The number of possible subsets of size at most ℓ of n is
∑ℓ

i=1

(
n
i

)
≤ nO(ℓ). We generate all

possible subsets U ⊆ S of size at most ℓ and then verify whether U is a dominion in time

nO(ℓ) ·O(d ·m) ≤ nO(ℓ)+2 ·O(d) = nO(ℓ) ·O(d).

The result follows.

We will use the following notation in the sequel. Given a game graph G = ((S,E), (S1, S2))
with priority functions p1, p2, . . . , pk, and objectives Φ = ConjParity(p1, p2, . . . , pk) and
Ψ = DisjParity(p1, p2, . . . , pk) for player 1 and player 2, respectively, we denote by
DisjParityDominion(G, p1, p2, . . . , pk, ℓ) a procedure that returns a dominion of size at most
ℓ for player 2 (if one exists) and runs in time |S|O(ℓ) · O(d): if the procedure returns emp-
tyset, then all dominions for player 2 have at least ℓ + 1 states; and similarly, we denote
ConjParityDominion(G, p1 , p2, . . . , pk, ℓ) a procedure that returns a dominion of size at most ℓ
for player 1 (if one exists) and runs in time |S|O(ℓ) ·O(d): if the procedure returns emptyset, then
all dominions for player 1 have at least ℓ+ 1 states.

The new algorithm. The new algorithm is based on the following simple observations about the
sets obtained in the classical algorithm.

Fact 1. The set Gj obtained in step 2.5.1 of Algorithm 1 is a player 2 dominion in the game G.

Fact 2. The set Hj \Wj obtained in step 2.3.2 of Algorithm 1 is a player 1 dominion in the sub-game
Gj .
With the above observations we obtain the new algorithm from the classical algorithm as follows.
The formal description of algorithm is presented as Algorithm 2.
1. Before step 2 of the classical algorithm (which correspond to step 3 of Algorithm 2) we invoke

DisjParityDominion(G, p1, p2, . . . , pk, ℓ) with ℓ = ⌈
√
|S|⌉; and if a non-emptyset U is obtained,

then we take U and its player 2 attractor out as a subset of the player 2 winning set and
proceed on the sub-game; else we proceed as the classical algorithm.

2. Before step 2.3.2 of the classical algorithm (which correspond to step 3.3.3 of Algorithm 2) we
invoke ConjParityDominion(G, p1 , p2, . . . , pk, ℓ) with ℓ = ⌈

√
|S|⌉; and if a non-emptyset U is

obtained, then we take U and its player 1 attractor out and proceed to step 2.3.4 (step 3.3.5
of Algorithm 2); else we proceed as the classical algorithm.

11

Algorithm 2 New algorithm for Disjunction of Parity Objectives

Input : A 2-player game graph G = ((S,E), (S1, S2)) and
priority functions p1 : S → [2d1], p2 : S → [2d2], . . . , pk : S → [2dk].

Output: W2 ⊆ S.
1. return DisjParityWin(G,p1, p2, . . . , pk);

Procedure DisjParityWin(G,p1, p2, . . . , pk)
1. if (for all i = 1, 2, . . . , k we have di = 0)

1.1 return ∅;

2. U =DisjParityDominion(G, p1, p2, . . . , pk, ℓ) for ℓ = ⌈
p

|S|⌉
2.1 if (U 6= ∅)
2.2 return Attr2(U,G) ∪ DisjParityWin(G \ Attr 2(U, G),p1, p2, . . . , pk);

3. foreach i = 1, 2, . . . , k such that di 6= 0
3.1 G1 = G \ Attr 1(MaxOdd(pi), G);
3.2 H1 := G1 \ Attr2(MaxEven(pi), G1); j := 0;
3.3 repeat

3.3.1 j := j + 1;

3.3.2 U =ConjParityDominion(G, p1, p2, . . . , pk, ℓ) for ℓ = ⌈
p

|S|⌉
3.3.2.1 if (U 6= ∅)
3.3.2.2 W j = Attr 1(U, Gj); goto step 3.3.5

3.3.3 Wj := DisjParityWin(Hj , p1, p2, . . . , pi : Hj → [2di − 2], . . . , pk);

3.3.4 W j = Attr 1(Hj \ Wj , Gj);

3.3.5 Gj+1 := Gj \ W j ;
3.3.6 Hj+1 := Gj+1 \ Attr 2(MaxEven(pi), Gj+1);

3.4 until Wj = ∅ or Wj = Hj

3.5 if (Wj = Hj)
3.5.1 return Attr 2(Gj , G) ∪ DisjParityWin(G \ Attr2(Gj , G),p1, . . . , pk);

end foreach

3. return ∅;

Correctness. The correctness of Algorithm 2 is immediate from the correctness of the classical
algorithm and the observation that a dominion U for a player in a game graph G is a subset of the
winning set of the player in G (Proposition 1).

Time complexity of Algorithm 2. We now analyze the time complexity of Algorithm 2. Let
us denote by T (n, d1, d2, . . . , dk) the running time of the algorithm on graphs with n states and

priority functions p1, p2, . . . , pk with pi : S → [2di], for i = 1, 2, . . . , k. Let d =
∑k

i=1 di. By

Lemma 2 step 2 takes nO(
√

n) · O(d) time. For simplicity we will drop the O(·) from O(d), the
whole analysis can be easily carried out with O(d). We now analyze the following cases.

1. If step 2 succeeds, then at least one state is removed and we need to solve a sub-game with
one less state (which takes time T (n− 1, d1, d2, . . . , dk)).

2. If step 2 fails, then any dominion for player 1 in G must have size at least
√
n; hence the

dominion Gj discovered at step 3.5.1 must be of size at least
√
n, (as otherwise it would have

been discovered in step 2). Hence the DisjParityWin call at step 3.5.1 would require to solve a
sub-game of size at most n−√

n and this would require time T (n−√
n, d1, d2, . . . , dk). We now

analyze the loop in step 3.3, and we analyze the work for a priority function and then sum it up
for the k priority functions. For a fixed priority function pi step 3.3.2 can get executed at most
n times and by Lemma 2 each time it requires at most nO(

√
n) · d time. Hence the total work

12

of step 3.3.2 requires at most n ·nO(
√

n) · d = nO(
√

n) · d time. We now analyze step 3.3.3: since
3.3.3 is invoked upon failure of step 3.3.2, the set Hj \Wj discovered (which is a dominion)
is of at least size

√
n. Hence this step gets executed

√
n times, the first time it is called on a

game graph with n − 1 states and the range of the priority function pi is [2di − 2]; and each
subsequent time it is called with at most n−√

n states and with range of pi as [2di −2]. Hence
the total work of the loop for priority function pi is

nO(
√

n) · d+ T (n− 1, d1, d2, . . . , di − 1, . . . , dk) +
√
n · T (n−√

n, d1, d2, . . . , di − 1, . . . , dk).

Hence the total work when step 2 fails is obtained by summing over i = 1 to k and then adding
T (n − √

n, d1, d2, . . . , dk) (the work after step 3.5.1 on the reduced game graph). That is we
obtain the total work when step 2 fails is given by

k∑

i=1

(
nO(

√
n) · d +T (n− 1, d1, d2, . . . , di − 1, . . . , dk) (1)

+
√
n · T (n− √

n, d1, d2, . . . , di − 1, . . . , dk)

)
+ T (n−√

n, d1, d2, . . . , dk).

Thus we obtain that T (n, d1, d2, . . . , dk) = nO(
√

n) · d+ max{Term1,Term2}, where

Term1 = T (n− 1, d1, d2, . . . , dk)
(
step 2 succeeds

)

Term2 = Expression of (1)
(
step 2 fails

)

The max is taken over the two terms as step 2 may succeed or fail. If T (n, d1, d2, . . . , dk) =
nO(

√
n) · d+ T (n− 1, d1, d2, . . . , dk), then easily we obtain that

T (n, d1, d2, . . . , dk) = nO(
√

n) · d · n = nO(
√

n) · d.
We now analyze the recurrence T (n, d1, d2, . . . , dk) = nO(

√
n) · d+ Term2, where Term2 correspond

to the expression of (1). The following lemmas analyze the recurrence. Lemma 3 follows easily by
induction.

Lemma 3. Consider the following recurrence:

T (n, d1, d2, . . . , dk) =

{
nO(

√
n) · d+ Term2 if n ≥ 2;(
d

d1,d2,...,dk

)
otherwise.

Then we have T (n, d1, d2, . . . , dk) ≤ nO(
√

n) · k · d ·
(

d
d1,d2,...,dk

)
· t(n), where

t(n) =

{
1 + t(n− 1) + (

√
n+ 1) · t(n−√

n) if n ≥ 2;

1 otherwise

We will now show that the recurrence t(n) = 1 + t(n − 1) + (
√
n + 1) · t(n − √

n) satisfies
the bound that t(n) = nO(

√
n). In [11] a similar recurrence was analyzed. In [11] the recurrence

t(n) = 1 + t(n − 1) + t(n−√
n) was proved to satisfy the bound nO(

√
n). Our recurrence is more

complex. In the next lemma we show that still the bound of [11] can be proved for the recurrence.

Lemma 4. Consider the recurrence

t(n) =

{
1 + t(n− 1) + (

√
n+ 1) · t(n−√

n) if n ≥ 2;

1 otherwise.

Then we have t(n) = nO(
√

n).

13

Proof. To bound t(n) we will analyze the following tree:
1. there is a root labeled n (this correspond to the term 1 of the recurrence);
2. if n > 1, then it has a left child labeled n − 1 and the sub-tree of t(n − 1) is attached to this

child (this correspond to the term t(n− 1) of the recurrence);
3. if n > 1, then it has (⌈√n⌉+1) right children labeled n−⌊√n⌋ and the sub-tree of t(n−⌊√n⌋)

is attached to each of the right children (this correspond to the term (
√
n + 1) · t(n −√

n) of
the recurrence). For simplicity we will drop the ceilings ⌈·⌉ and floors ⌊·⌋ below.

The number of nodes in the tree is a bound for our recurrence. We now bound the number of the
nodes in the tree. A node in the tree with no sub-tree is referred as a leaf.
Length of a path. Any path in the tree from root down to a leaf has length at most n (as the label
decrease by at least 1 at every step).
Right children in a path. We now bound the number right children on a path from the root down
to a leaf. Consider a path from the root to a leaf and we consider the number of right children
possible in a segment of the path between label k and k

2 . Whenever a right children appear in this

segment the label goes down by at least
√

k
2 ; and hence the number of possible right children in

this segment is at most
k
2√

k
2

=

√
k

2
.

Hence the number of right children in a path from root to the leaf can be bounded by considering
the bound on segments: n to n

2 ; then n
2 to n

4 ; then n
4 to n

8 ; and so on. This yields the bound

√
n ·

(∞∑

i=1

1√
2i

)
= O(

√
n).

The number of paths. We now bound the number of paths in the tree. The length of a path is at
most n; there are at most O(

√
n) right children; every choice of a left child in the path is unique

and for every choice of a right children there are at most (
√
n+1) choices (since any node can have

at most (
√
n + 1) right children). Hence we obtain the following bound for the number distinct

paths (
n

O(
√
n)

)
· (√n+ 1)O(

√
n) = nO(

√
n).

Hence the desired result follows.

Combining all the analysis of the recurrence and the correctness of Algorithm 2 we obtain the
following result.

Theorem 4 (Correctness and running time). Given a game graph G = ((S,E), (S1, S2)) and
priority functions p1 : S → [2d1], p2 : S → [2d2], . . . , pk : S → [2dk] the following assertions hold:
1. we have

W=W2(DisjParity(p1, p2, . . . , pk)); S \W=W1(ConjParity(p1, p2, . . . , pk)),

where W is the output of Algorithm 2;
2. and the running time of Algorithm 2 is nO(

√
n) · O(k · d) ·

(
d

d1,d2,...,dk

)
, where n = |S| and

d =
∑k

i=1 di.

Remark. In the special case of Rabin and Streett objectives with k pairs the running time of
Algorithm 2 is nO(

√
n) ·O(k2)·k!. For comparison, the algorithm in [15] works in time O(mnk+1kk!).

We conclude that the algorithm presented above is of better complexity when the number of pairs
is larger than

√
n.

14

References

1. D. Bustan and O. Grumberg. Simulation based minimization. In Proc. of the 17th International

Conference on Automated Deduction, Pittsburgh, PA, June 2000.
2. K. Chatterjee, T.A. Henzinger, and M. Jurdziński. Games with secure equilibria. In Proc. 19th IEEE

Symposium on Logic in Computer Science, pages 160–169. IEEE, 2004.
3. D.L. Dill, A.J. Hu, and H. Wong-Toi. Checking for language inclusion using simulation relations.

In Proc. 3rd Conference on Computer Aided Verification, volume 575 of Lecture Notes in Computer

Science, pages 255–265, Aalborg, July 1991. Springer-Verlag.
4. S. Dziembowski, M. Jurdziński, and I. Walukiewicz. How much memory is needed to win infinite

games. In Proc. 12th IEEE Symp. on Logic in Computer Science, pages 99–110, 1997.
5. E.A. Emerson and C. Jutla. The complexity of tree automata and logics of programs. In Proc. 29th

IEEE Symp. on Foundations of Computer Science, pages 328–337, October 1988.
6. E.A. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In Proc. 32nd IEEE Symp.

on Foundations of Computer Science, pages 368–377, San Juan, October 1991.
7. K. Etessami and G. Holzmann. Optimizing büchi automata. In 11th International Conference on

Concurrency Theory, volume 1877 of Lecture Notes in Computer Science, pages 153–167. Springer-
Verlag, 2000.

8. T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. In Proc. 8th Conference on Con-

currency Theory, volume 1243 of Lecture Notes in Computer Science, pages 273–287, Warsaw, July
1997. Springer-Verlag.

9. F. Horn. Streett games on finite graphs. In Proc. 2nd Workshop on Games in Design and Verification,
2005.

10. M. Jurdziński. Small progress measures for solving parity games. In 17th Annual Symposium on

Theoretical Aspects of Computer Science, volume 1770 of Lecture Notes in Computer Science, pages
290–301. Springer-Verlag, 2000.

11. M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for solving parity
games. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms. ACM/SIAM, 2006.

12. D.A. Martin. Borel determinacy. Annals of Mathematics, 65:363–371, 1975.
13. R. Milner. An algebraic definition of simulation between programs. In Second International Joint

Conference on Artificial Intelligence, pages 481–489. The British Computer Society, 1971.
14. N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity automata.

In Proc. 25th Symposium on Logic in Computer Science. IEEE, IEEE press, 2006. to appear.
15. N. Piterman and A. Pnueli. Faster solution of rabin and streett games. In Proc. 21st Symposium on

Logic in Computer Science. IEEE, IEEE press, 2006.
16. M.O. Rabin. Decidability of second order theories and automata on infinite trees. Transaction of the

AMS, 141:1–35, 1969.
17. P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. IEEE Transactions on

Control Theory, 77:81–98, 1989.
18. S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp. on Foundations of Computer

Science, pages 319–327, White Plains, October 1988.
19. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In Computer Aided Verifica-

tion, Proc. 12th International Conference, volume 1855 of Lecture Notes in Computer Science, pages
248–263. Springer-Verlag, 2000.

20. R.S. Streett. Propositional dynamic logic of looping and converse. Information and Control, 54:121–
141, 1982.

21. W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees.
Theoretical Computer Science, 200(1–2):135–183, 1998.

15

