
Causality Interfaces for Actor Networks

Ye Zhou
Edward A. Lee

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-148

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-148.html

November 16, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This paper describes work that is part of the Ptolemy project, which is
supported by the National Science Foundation (NSF award number CCR-
00225610), and Chess (the Center for Hybrid and Embedded Software
Systems), which receives support from NSF, the State of California Micro
Program, and the following companies: Agilent, DGIST, General Motors,
Hewlett Packard, Infineon, Microsoft, National Instruments, and Toyota.

Causality Interfaces for Actor Networks

YE ZHOU and EDWARD A. LEE

UC Berkeley

We consider concurrent models of computation where “actors” (components that are in charge

of their own actions) communicate by exchanging messages. The interfaces of actors principally
consist of “ports,” which mediate the exchange of messages. Actor-oriented architectures contrast

with and complement object-oriented models by emphasizing the exchange of data between con-

current components rather than transformation of state. Examples of such models of computation
include the classical actor model, synchronous languages, dataflow models, process networks, and

discrete-event models. Many experimental and production languages used to design embedded

systems are actor oriented and based on one of these models of computation. Many of these
models of computation benefit considerably from having access to causality information about

the components. This paper augments the interfaces of such components to include such causal-
ity information. It shows how this causality information can be algebraically composed so that

compositions of components acquire causality interfaces that are inferred from their components

and the interconnections. We illustrate the use of these causality interfaces to statically analyze
timed models and synchronous language compositions for causality loops and dataflow models

for deadlock. We also show that that causality analysis only needs to be performed for one port

in each directed communication cycle, and we give a conservative approximation technique for
handling dynamically changing causality properties.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Tech-

niques; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs; D.1.3 [Programming Techniques]: Concurrent Programming

General Terms: Design, Reliability, Theory, Verification

Additional Key Words and Phrases: Actors, Behavioral types, Causality, Dataflow, Deadlock,
Discrete-event models, Interfaces, Synchronous languages, Timed systems

1. INTRODUCTION

Although prevailing component architecture techniques in software are object ori-
ented, a number of researchers have been advocating a family of complementary
approaches that we collectively call actor oriented [Lee 2003]. In practice (as re-
alized in UML, C++, Java and C#), the components of object-oriented design
interact principally through transfer of control (method calls) and transformation
of state. The components are passive, and things get done to them, much like phys-
ical “objects” from which the name arises.1 “Actors” react to stimulus provided by

1So called “active objects” add to the basic object-oriented model threads, but as a component

technology, active objects are semantically weak compared to the actor-oriented techniques we

Authors’ address: {zhouye, eal}@eecs.berkeley.edu, Department of Electrical Engineering and
Computer Sciences University of California, Berkeley Berkeley, CA 94720, USA.

This paper describes work that is part of the Ptolemy project, which is supported by the National
Science Foundation (NSF award number CCR-00225610), and Chess (the Center for Hybrid and

Embedded Software Systems), which receives support from NSF, the State of California Micro
Program, and the following companies: Agilent, DGIST, General Motors, Hewlett Packard, Infi-
neon, Microsoft, National Instruments, and Toyota.

2 · Y. Zhou and E. A. Lee

their environment, which can include other actors. As a component architecture,
the difference is one of emphasis and interpretation: objects interact principally
through transfer of control, whereas actors interact principally through exchange of
data. An immediate consequence is that actor-oriented designs tend to be highly
concurrent.

Several distinct research communities fall within this broad framework. As sug-
gested by the name, the classical “actor model” [Agha 1990; Hewitt 1977] falls into
this category. In the actor model, components have their own thread of control
and interact via message passing. We are using the term “actors” more broadly,
inspired the analogy with the physical world, where actors control their own ac-
tions.2 In fact, several other communities use similar ways of defining components.
In the synchronous/reactive languages [Benveniste and Berry 1991], which are prin-
cipally used for embedded software, components react at ticks of a global clock,
rather than reacting when other components invoke their methods. In the syn-
chronous language Esterel [Berry and Gonthier 1992], components exchange data
through variables whose values are (semantically) determined by solving fixed point
equations. The Lustre [Halbwachs et al. 1991] and Signal [Benveniste and Guer-
nic 1990] languages have a more dataflow flavor, but they have similar semantics.
Asynchronous dataflow models are also actor-oriented in our sense, including Kahn-
MacQueen process networks [Kahn and MacQueen 1977], where each component
has its own thread of control, extensions to nondeterministic systems [de Kock et al.
2000], and Dennis-style dataflow [Dennis 1974]. In dataflow, components (which
are also called “actors” in the original literature) “fire” in response to the avail-
ability of input data. Process networks have also been used for embedded system
design [de Kock et al. 2000].

A number of component architectures that are not commonly considered in soft-
ware engineering also have an actor-oriented nature and are starting to be used as
source languages for embedded software [Lee et al. 2003; Lee 2002]. Discrete-event
(DE) systems, for example, are commonly used in circuit design and in model-
ing and design of communication networks [Cassandras 1993; Armstrong and Gray
2000]. In DE, components interact via events, which carry data and a time stamp,
and reactions are chronologically ordered by time stamp. In continuous-time (CT)
models, such as those specified in Simulink (from The MathWorks) and Modelica
[Tiller 2001], components interact via (semantically) continuous-time signals, and
execution engines approximate the continuous-time semantics with discrete traces.

Surrounding the actor-oriented approach are a number of semantic formalisms
that complement traditional Turing-Church theories of computation by emphasiz-
ing interaction of concurrent components rather than sequential transformation of
data. These include stream formalisms [Kahn 1974; Broy and Stefanescu 2001;
Rutten 2005], discrete-event formalisms [Yates 1993; Lee 1999], and semantics for
continuous-time models [Lee and Zheng 2005]. A few formalisms are rich enough
to embrace a significant variety of actor-oriented models, including interaction

describe.
2The term “agents” is equally good, but we avoid it because in the mind of many researchers,
agents include a notion of mobility, which is orthogonal to interaction and irrelevant to our current

discussion.

Causality Interfaces · 3

categories [Abramsky et al. 1995], behavioral types [Lee and Xiong 2004; Arbab
2005], interaction semantics [Talcott 1996], and the tagged-signal model [Lee and
Sangiovanni-Vincentelli 1998].

Some software frameworks also embrace a multiplicity of actor-oriented com-
ponent architectures, including Reo [Arbab 2004], Ptolemy II [Eker et al. 2003],
PECOS [Winter et al. 2002], and Metropolis [Göessler and Sangiovanni-Vincentelli
2002]. Finally, a number of researchers have argued strongly for separation be-
tween the semantics of functionality (what is computed) from that of interaction
between components [Buck et al. 1994; Keutzer et al. 2000; Göessler and Sifakis
2005; Wegner et al. 2005].

In the object-oriented world, a great deal of time and effort has gone into defining
interfaces for components. Relatively little of this has been done for actor-oriented
models. In [Xiong 2002] Xiong extends some basic object-oriented typing concepts
to actor-oriented designs by clarifying subtyping relationships when interfaces con-
sist of ports (which represent senders or receivers of messages) rather than methods.
This is extended further in [Lee and Neuendorffer 2004] with inheritance mecha-
nisms.

In this paper, we give an interface theory [de Alfaro and Henzinger 2001], similar
in spirit to resource interfaces [Chakrabarti et al. 2003] and behavioral type systems
[Lee and Xiong 2004]. Our theory captures causality properties of actor-oriented
designs.3 Causality properties reflect in the interface the dependence that particular
outputs have on particular inputs. In this paper, we build a rather specialized
theory (of causality only) that is orthogonal to other semantic properties. Our
work can be applied to many concurrent semantics such as that of the synchronous
languages, discrete-event models, continuous-time models, and dataflow models.

Following [de Alfaro and Henzinger 2001] and common practice in object-oriented
design, an actor can have more than one interface. We consider actors with input
and output ports, where each input port receives zero or more messages, and the
actor reacts to these messages by producing messages on the output ports. One
interface of the actor defines the number of ports, gives the ports names or some
other identity, and constrains the data types of the messages handled by the port
[Xiong 2002]. Another interface of the actor defines behavioral properties of the
port, such as whether it requires input messages to be present in order to react [Lee
and Xiong 2004].

A causality interface declares the dependency that output messages have on input
messages. How this information is used depends on the model of computation.
In this paper, we focus on several models of computation with least fixed point
semantics. In stream-oriented dataflow models, our causality interface can be used
to analyze compositions of actors for deadlock [Broy and Stefanescu 2001; Lee
and Parks 1995]. In discrete-event models, it can be used to ensure deterministic
processing of simultaneous events, and to identify causality loops [Lee 1999; Yates
1993]. In synchronous languages, it can be used to identify whether a combinational
cycle has a reactive and deterministic behavior for all possible combinations of input
values [Schneider et al. 2004; Berry 1996; Edwards and Lee 2003]. In all three cases,
the causality properties of components determine whether a particular composition

3A preliminary form of causality interfaces is given in [Lee et al. 2005].

4 · Y. Zhou and E. A. Lee

is live.

2. ACTORS AND THEIR COMPOSITION

We begin by giving a formal structure for actors that is sufficiently expressive
to embrace all of the models of computation of interest. We then discuss briefly
syntaxes that are amenable to actor models and define the visual syntax used in this
paper. We then review fixed point semantics, which is used in quite a few models
of computation and serves as the semantic foundation for our causality interfaces.

2.1 The Tagged Signal Model

The tagged-signal model [Lee and Sangiovanni-Vincentelli 1998] provides a formal
framework for considering and comparing actor-oriented models of computation. It
is similar in objectives to the coalgebraic formalism of abstract behavior types
in [Arbab 2005], interaction categories [Abramsky et al. 1995], and interaction
semantics [Talcott 1996]. As with all three of these, the tagged signal model seeks
to model a variety of interaction styles between concurrent components.

Interactions between actors are tagged signals, which are sets of (tag, value)
pairs. The tags come from a partially or totally ordered set T , the structure of
which depends on the model of computation. For example, in a simple (perhaps
overly simple) discrete-event model of computation, T might be equal to the set
of non-negative real numbers with their ordinary numerical ordering, representing
time. In such a DE model, interactions between actors consist of (time, value)
pairs.

Formally, an event is a pair (t, v), where t ∈ T and v ∈ V, a set of values. The
set of events is E = T × V. Following [Liu 2005; Liu and Lee 2006], a signal s is a
function from a down set of T to V. A down set T ⊆ T is a subset that satisfies

t ∈ T ⇒ ∀ τ ∈ T where τ ≤ t, τ ∈ T.

Such a down set T where a signal s is defined is also called the preimage of s,
written as dom(s). A signal is called complete if dom(s) = T . We use D(T) to
denote the set of down sets of T . The following property comes from [Liu 2005].

Property 1. Let D(T) be the set of all down sets of a partially-ordered set T .

(1) (D(T),⊆) is a complete partial order (CPO).
(2) (D(T),⊆) is a complete lattice.
(3) If T is totally-ordered, then (D(T),⊆) is also totally-ordered.

We assume for simplicity one tag set T and one value set V for all signals, but
nothing significant changes in our formalism if distinct signals have different tag
and value sets. We write the set of all signals S.

The graph of a signal s ∈ S is

graph(s) = {(t, v) ∈ T × V | s(t) is defined and s(t) = v}.

We define a prefix order on signals as follows. Given s1, s2 ∈ S, s1 v s2 (read s1

is a prefix of s2) if graph(s1) ⊆ graph(s2). (S,v) is also a CPO [Liu 2005]. The
least element of S is the empty signal, denoted ⊥. The set of N -tuples of signals is
SN . The prefix order extends naturally to SN , and SN is also a CPO.

Causality Interfaces · 5

Actors receive and produce signals on ports. An actor a with N ports is a subset
of SN . A particular s ∈ SN is said to satisfy the actor if s ∈ a, and s is called
a behavior of the actor. Thus an actor is a set of possible behaviors. An actor
therefore asserts constraints on the signals at its ports.

A connector c between ports Pc is a particulary simple actor where signals at
each port p ∈ Pc are constrained to be identical. The ports in Pc are said to be
connected.

A set A of actors and a set C of connectors defines a composite actor. The
composite actor is defined to be the intersection of all possible behaviors of the
actors A and connectors C [Lee and Sangiovanni-Vincentelli 1998].

In many actor-oriented formalisms, ports are either inputs or outputs to an actor
but not both. Consider an actor a ⊆ SN where I ⊆ {1, ..., N} denotes the indices
of the input ports, and O ⊆ {1, ..., N} denotes the indices of the output ports. We
assume that I ∪O = {1, ..., N} and I ∩O = ∅. Given a signal tuple s ∈ a, we define
πI(s) to be the projection of s on a’s input ports, and πO(s) on output ports. The
actor is said to be functional if

∀ s, s′ ∈ a, πI(s) = πI(s′) ⇒ πO(s) = πO(s′).

Such an actor can be viewed as a function from input signals to output signals.
Specifically, given a functional actor a with |I| input ports and |O| output ports,
we can define an actor function with the form

Fa : S |I| → S |O|, (1)

where | · | denotes the size of a set. When it creates no confusion, we make no
distinction between the actor a (a set of behaviors) and the actor function Fa.

A source actor is an actor with no input ports (only output ports). It is functional
if and only if its behavior set is a singleton set. That is, it has only one behavior.
A sink actor is an actor with no output ports, and it is always functional.

A composite actor is itself an actor. In addition to the set P of ports contained
by the composite actor a, the actor may have a set of Q of external ports, where
Q

⋂
P = ∅ (see figure 1). Input ports in Q may be connected to any input port

in P that is not already connected. Output ports in Q may be connected to any
single output port in P . If the composite actor has no (external) input ports, it is
said to be closed. Otherwise it is open.

2.2 Syntax

Actor-oriented languages can be either self-contained programming languages (e.g.
Esterel, Lustre, LabVIEW) or coordination languages (e.g. Manifold [Papadopou-
los et al. 2006], Simulink, Ptolemy II). In the former case, the “atomic actors” are
the language primitives. In the latter case, the “atomic actors” are defined in a
host language that is typically not actor oriented (but is often object oriented).
Actor-oriented design is amenable to either textual syntaxes, which resemble those
of more traditional computer programs, and visual syntaxes, with “boxes” repre-
senting actors and “wires” representing connections. The synchronous languages
Esterel, Lustre, and Signal, for example, have principally textual syntaxes, although
recently visual syntaxes for some of them have started to catch on. Ports and con-
nectors are syntactically represented in these languages by variable names. Using

6 · Y. Zhou and E. A. Lee

Fig. 1. A composition of three actors and its interpretation as a feedback system.
P = {p1, p2, p3, p4, p5, p6} is the set of ports contained by the composite actor a.
Q = {q1, q2, q3, q4, q5, q6} is the set of external ports of a.

the same variable name in two modules implicitly defines ports for those modules
and a connection between those ports. Visual syntaxes are more explicit about
this architecture. Examples with visual syntaxes include Simulink, LabVIEW, and
Ptolemy II.

A visual syntax for a simple three-actor composition is shown in figure 1(a).
Here, the actors are rendered as boxes, the ports as triangles, and the connectors
as wires between ports. The ports pointing into the boxes are input ports and the
ports pointing out of the boxes are output ports. A textual syntax for the same
composition might associate a language primitive or a user-defined module with
each of the boxes and a variable name with each of the wires.

The composition in figure 1(a) is closed. In figure 1(b), we have added a level of
hierarchy by creating an open composite actor a with external ports {q1, q2, ..., q6}.
In figure 1(c), the internal structure of the composite actor is hidden. Using the
techniques introduced in this paper, we are able to do that without losing essential
causality information of composite actor a.

In fact, any network of actors can be converted to an equivalent hierarchical
network, where the composite actor internally has no directed cycles, like that
in figure 1(c). A constructive procedure that performs this conversion is easy to
develop. Just create one input port and one output port for each signal in the
original network. E.g., in figure 1(a), the signal going from p5 to p2 induces ports
q5 and q2 in figure 1(b) and (c). Then connect the output port providing the signal
value (p5 in this example) to the new output port (q5), and connect the new input
port (q2) to any input ports that observe the signal (p2). This can be done for any
network, always resulting in a structure like that in figure 1(c).

2.3 Fixed Point Semantics

It is easy to see that if actors a1, a2, and a3 in figure 1(b) are functional, then the
composite actor a in figure 1(c) is functional. Let Fa denote the actor function for
actor a. Assuming the component actors are functional, it has the form

Fa : S3 → S3.

The feedback connectors in figure 1(c) require the signals at the input ports of
a to be the same as the signals at its outputs. Thus the behavior of the feedback

Causality Interfaces · 7

composition in figure 1(c) is s ∈ S3 that is a fixed point of Fa. That is,

Fa(s) = s.

A key question, of course, is whether such a fixed point exists (does the composi-
tion have a behavior?) and whether it is unique (is the composition determinate?).
In quite a few models of computation, including synchronous language composi-
tions, timed models and dataflow models, we define the semantics of the diagram
to be the least fixed point (least in the prefix order), if it exists. The least fixed
point is assured of existing if Fa is monotonic (order preserving), and a constructive
procedure exists for finding that least fixed point if Fa is also (Scott) continuous
(in the prefix order) [Davey and Priestly 1990]. It is easy to show that if a1, a2,
and a3 in figure 1(b) have continuous actor functions, then so does a in figure 1(c).
Continuity is a property that composes easily.

However, even when a unique fixed point exists and can be found, the result may
not be desirable. Suppose for example that in figure 1(c) Fa is the identity function.
This function is continuous, so under the prefix order, the least fixed point exists
and can be found constructively. In fact, the least fixed point assigns to each port
the empty signal. We wish to ensure that for a particular network of actors, if all
sources of data are complete (∀ input signal s, dom(s) = T), then all signals in the
network are complete. A network that satisfies this requirement is said to be live.

Whether such a liveness condition exists may be harder to determine than whether
the composition yields a continuous function. In fact, Buck showed in [Buck 1993]
that boolean dataflow is Turing complete, and therefore liveness is undecidable for
boolean dataflow models. It follows that in general this question is undecidable
since boolean dataflow is a special case. The causality interfaces we define here
provide necessary and sufficient conditions for the liveness condition. Due to the
fundamental undecidability, our necessary and sufficient conditions cannot always
be statically checked. But we will show that for some concurrent models of com-
putations, they can always be checked.

3. DEPENDENCY ALGEBRA

In this section, we introduce the dependency algebra (D,≤,⊕,⊗). The dependency
set D is a partially ordered set with two binary operations ⊕ and ⊗ that satisfy the
axioms given below. The elements of D are called dependencies, which represent
the dependency relations between ports.

First, we require that the operators ⊕ and ⊗ be associative,

∀ d1, d2, d3 ∈ D, (d1 ⊕ d2)⊕ d3 = d1 ⊕ (d2 ⊕ d3), (2)
∀ d1, d2, d3 ∈ D, (d1 ⊗ d2)⊗ d3 = d1 ⊗ (d2 ⊗ d3). (3)

Second, we require that ⊕ (but not ⊗) be commutative,

∀ d1, d2 ∈ D, d1 ⊕ d2 = d2 ⊕ d1, (4)

and idempotent,

∀ d ∈ D, d⊕ d = d. (5)

In addition, we require an additive and a multiplicative identity, called 0 and 1,

8 · Y. Zhou and E. A. Lee

respectively, that satisfy:

∃ 0 ∈ D such that ∀ d ∈ D, d⊕ 0 = d
∃ 1 ∈ D such that ∀ d ∈ D, d⊗ 1 = 1⊗ d = d
∀ d ∈ D, d⊗ 0 = 0.

The ordering relation ≤ on the set D is a partial order, meaning, as usual,

∀ d ∈ D, d ≤ d
∀ d1, d2 ∈ D, d1 ≤ d2 and d2 ≤ d1 ⇒ d1 = d2

∀ d1, d2, d3 ∈ D, d1 ≤ d2 and d2 ≤ d3 ⇒ d1 ≤ d3.

We use d1 < d2 to mean (d1 ≤ d2) ∧ (d1 6= d2).
Finally, a key axiom of D relates the operators and the order as follows.

∀ d1, d2 ∈ D, d1 ⊕ d2 ≤ d1. (6)

Using these axioms, we get the following property:

Property 2. The additive identity 0 is the top element of the partial order
(D,≤).

Proof. Using (6), let d1 = 0, from which we conclude

∀ d2 ∈ D, d2 ≤ 0.

4. CAUSALITY INTERFACES

4.1 Definition

A causality interface for an actor a with input ports Pi and outports Po is a function

δ : Pi × Po → D, (7)

where D is a dependency algebra as defined in the previous section. Ports connected
by connectors will always have causality interface 1, and lack of dependency between
ports will be modeled with causality interface 0.

4.2 Causality Interfaces for Least Fixed Point Semantics

How these causality interfaces are used depends on the semantics of the model
computation. In this subsection, we give a dependency algebra that can be used for
models of computation with least fixed point semantics. This includes synchronous
languages, timed models and dataflow models.

We define the dependency set D to be a set of functions:

D = (D(T) → D(T)), (8)

where (X → Y) denotes the set of total functions with domain X and range con-
tained by Y . Recall from section 2.1 that D(T) is the set of down sets of the tag
set T . With appropriate choices for an order and ⊕ and ⊗ operators, the set D
forms a dependency algebra.

We define the order relation ≤ such that ∀ d1, d2 ∈ D, d1 ≤ d2 if ∀ T ∈ D(T),
d1(T) ⊆ d2(T).

Causality Interfaces · 9

The ⊕ operation computes the greatest lower bound of two elements in D. I.e.,
∀ d1, d2 ∈ D, the function (d1 ⊕ d2) : D(T) → D(T) is defined by

∀ T ∈ D(T), (d1 ⊕ d2)(T) = d1(T) ∩ d2(T). (9)

To see that (9) computes the greatest lower bound of d1 and d2, first note ∀ T ∈
D(T), (d1⊕d2)(T) ⊆ d1(T) and (d1⊕d2)(T) ⊆ d2(T). Therefore (d1⊕d2) ≤ d1 and
(d1⊕d2) ≤ d2, so (d1⊕d2) is a lower bound of {d1, d2}. Now consider another lower
bound d of {d1, d2}. Thus, ∀ T ∈ D(T), d(T) ⊆ d1(T) and d(T) ⊆ d2(T). Therefore
∀ T ∈ D(T), d(T) ⊆ d1(T) ∩ d2(T) = (d1 ⊕ d2)(T). This leads to d ≤ (d1 ⊕ d2).
Therefore (d1 ⊕ d2) is the greatest lower bound of {d1, d2}.

The ⊗ operator is function composition. I.e., ∀ d1, d2 ∈ D, the function (d1 ⊗
d2) : D(T) → D(T) is defined by

d1 ⊗ d2 = d2 ◦ d1

or

∀ T ∈ D(T), (d1 ⊗ d2)(T) = d2(d1(T)).

The additive identity 0 is the top function, d> : D(T) → D(T), given by

∀ T ∈ D(T), d>(T) = T .

The multiplicative identity 1 is the identity function, dI : D(T) → D(T), given by

∀ T ∈ D(T), dI(T) = T.

With these definitions, the dependency set (8) satisfies all of the axioms described
in section 3.

Recall that actors respond to events at input ports by producing events at output
ports. For input port p and output port p′ of an actor a, the causality interface
δa(p, p′) is interpreted to mean that a signal defined on T ∈ D(T) at port p can
affect the signal defined on (δa(p, p′))(T) at port p′. That is, there is a causal
relationship between the portion of the input signal defined on T and the portion
of the output signal defined on (δa(p, p′))(T). To make this precise, first consider an
actor a with one input port p, one output port p′, and actor function Fa : S → S.
Then, δa(p, p′) is the largest function such that ∀ s1, s2 ∈ S, ∀ T ∈ D(T),

s1 ↓ T = s2 ↓ T ⇒ Fa(s1) ↓ (δa(p, p′))(T) = Fa(s2) ↓ (δa(p, p′))(T),

where s ↓ T means the function s is restricted to a subset T of T (recall that a
signal is a function from a down set of T to V). We can generalize this to actors
with multiple input and output ports. The concept is similarly simple, although the
notation is more complex. As in section 2.1, let a ⊆ SN be an actor with N ports.
Let I ⊆ {1, ..., N} and O ⊆ {1, ..., N} denote the indices of the input and output
ports, where I ∩ O = ∅ and I ∪ O = {1, ..., N}. Let Fa : S |I| → S |O| denote the
actor function. Consider an s ∈ SN , and ∀ i ∈ {1, ..., N}, let si be the projection of
s on port i. For any i ∈ I and o ∈ O, the causality interface δ(pi, po) is the largest
function such that ∀ T ∈ D(T),

∀ s, s′ ∈ a, si ↓ T = s′i ↓ T, and ∀ j ∈ I, j 6= i, sj = s′j ,
⇒ so ↓ (δa(pi, po))(T) = s′o ↓ (δa(pi, po))(T).

10 · Y. Zhou and E. A. Lee

That is, if the inputs of s and s′ are same at port i on the down set T and same on
all other input ports, then the output signals at port o are same on the down set
(δ(pi, po))(T).

Recall that a functional source actor is an actor with no input ports and exactly
one behavior. To give it a causality interface, we define a fictional absent input port
ε, and for any output port po, δa(ε, po) is given by

∀ T ∈ D(T), (δa(ε, po))(T) = dom(s),

where s is the unique signal that satisfies the actor at po. If s is complete, dom(s) =
T , then δa(ε, po) = d>.

A sink actor is one with no output ports. Similarly, we define the causality
interface of a sink actor to be a function that maps an input port pi of the actor
and a fictional absent output port to the bottom function. I.e.,

δa(pi, ε) = d⊥,

where d⊥(T) = ∅,∀ T ∈ D(T).
The causality interface for a connector is simply the multiplicative identity 1 =

dI .
A causality interface δ(p, p′) is said to satisfy the liveness condition if δ(p, p′)(T) =

T . An actor is said to be live if all of its causality interfaces satisfy the liveness
condition. I.e., a complete input yields a complete output. We say that a composi-
tion of actors is live if, given complete signals on all external inputs, then all signals
that satisfy the composition are complete. For a live composition, every causality
interface is live, except those of sink actors.

A (functional) actor a with input ports Pi is said to be monotonic (or order
preserving) if

∀ s1, s2 ∈ S |Pi|, s1 v s2 ⇒ Fa(s1) v Fa(s2),

where Fa is the actor function of a. Intuitively, monotonicity says that if the input
signal is extended to a larger down set, the output signal can only be changed by
extending it to a larger down set. Thus we have the following property:

Property 3. Let p be an input port and p′ be an output port of a monotonic
actor a. Then δa(p, p′) is monotonic.

For the purpose of this paper, we assume all actors are (Scott) continuous, a
stronger property than monotonicity. A chain in a CPO is a totally ordered subset
of the CPO. In a CPO, every chain C has a least upper bound, written

∨
C (this

is what makes the CPO “complete”). An actor a is said to be (Scott) continuous
if for all chains C ⊆ S |Pi|, the least upper bound

∨
Fa(C) exists and

Fa(
∨

C) =
∨

Fa(C).

Here it is understood that Fa(C) = {Fa(s) | s ∈ C}.
Since the domains of the signals in a chain C also form a chain in D(T) (a CPO

with set inclusion order), it is easy to see that the following property holds:

Property 4. Let p be an input port and p′ be an output port of a (Scott) con-
tinuous actor a. Then δa(p, p′) is (Scott) continuous.

Causality Interfaces · 11

Continuity implies monotonicity [Davey and Priestly 1990], so it follows that the
causality interfaces of a continuous actor are also monotonic.

We will establish necessary and sufficient conditions for a composition of actors
to be live. To do this, we need some technical results for functions on down sets.
First, we define a new relation ≺ on D as follows. ∀ d1, d2 ∈ D, d1 ≺ d2 if

(1) d1 6= d2, and,

(2) for each T ∈ D(T), d1(T) ⊂ d2(T) ∨ d1(T) = d2(T) = T , where ⊂ denotes a
strict subset.

The relation ≺ is a strict partial order, meaning, as usual, that it is

· irreflexive: ∀ d ∈ D, d 6≺ d
· antisymmetric: ∀ d1, d2 ∈ D, d1 ≺ d2 ⇒ d2 6≺ d1

· transitive: ∀ d1, d2, d3 ∈ D, d1 ≺ d2 and d2 ≺ d3 ⇒ d1 ≺ d3.

It is easy to see irreflexivity and transitivity hold for the ≺ relation. To see
antisymmetry, consider two functions d1, d2 ∈ D. If d1 ≺ d2, then ∃ T ∈ D(T) such
that d1(T) ⊂ d2(T). Therefore, d2 6≺ d1.

The following theorem and corollary will prove useful in this paper.

Theorem 1. If d : D(T) → D(T) is a continuous function, then

(1) d has a least fixed point T0, given by
∧
{T ∈ D(T) | d(T) ⊆ T}.

(2) If dI ≺ d, where dI = 1 is the multiplicative identity, then the least fixed point
of d is T .

Proof. Note that D(T) is a complete lattice. Part (1) comes directly from the
Knaster-Tarski fixed point theorem [Davey and Priestly 1990].

Part (2): If dI ≺ d, then ∀ T ∈ D(T), T 6= T , dI(T) = T 6= T . Therefore,
T = dI(T) ⊂ d(T). Since d(T) ⊆ T = dI(T), then d(T) = dI(T) = T . Therefore,
T0 =

∧
{T ∈ D(T) | d(T) ⊆ T} = T .

Corollary 1. If d : D(T) → D(T) is a continuous function, where D(T) is
totally-ordered, then the least fixed point of d is T if and only if dI ≺ d.

Proof. The backward implication is identical to Theorem 1. We now prove
the forward implication. Since the least fixed point of d is

∧
{T ∈ D(T) | d(T) ⊆

T} = T , then ∀ T ⊂ T , d(T) 6⊆ T . Since D(T) is totally-ordered, d(T) 6⊆ T =
dI(T) ⇔ dI(T) ⊂ d(T). Since T is the least fixed point of d, this means d(T) =
T = dI(T). I.e., dI ≺ d.

5. COMPOSITION OF CAUSALITY INTERFACES

Given a set A of actors, a set C of connectors, and the causality interfaces for
the actors and the connectors, we can determine the causality interfaces of the
composition and whether the composition is live. To do this, we form a dependency
graph of ports, and observe that the paths between ports traverse both actors
and connectors. We will first discuss feedforward compositions and then deal with
feedback compositions.

12 · Y. Zhou and E. A. Lee

Fig. 2. A feedforward composition.

Fig. 3. A feedforward composition with parallel paths.

5.1 Causality Interfaces for Feedforward Compositions

A feedforward system does not have any cycles in its dependency graph. It is easy
to see that a feedforward composition of live actors is always live. To determine the
causality interfaces of a composite actor abstracting the feedforward composition,
we use the ⊗ operator for series composition and the ⊕ operator for parallel compo-
sition. For example, figure 2 shows a feedforward composition, which is abstracted
into a single actor b with external input port q1 and output port q2. To determine
the causality interface of actor b, we need to consider all the paths from q1 to q2,
and δb(q1, q2) is given by

δb(q1, q2) = δc1(q1, p1)⊗ δa1(p1, p5)⊗ δc2(p5, p2)⊗ δa2(p2, p4)⊗ δc3(p4, q2),

where δa1 and δa2 are the causality interfaces for actors a1 and a2, respectively, and
δc1, δc2, δc3 are the causality interfaces for connectors c1, c2, c3, respectively. Since
connectors have causality interface 1, the above equation simplifies to

δb(q1, q2) = δa1(p1, p5)⊗ δa2(p2, p4).

Figure 3 shows a slightly more complicated example, where there are two parallel
paths from port p5 to port p4. We get

δb(q1, q2) = δa1(p1, p5)⊗ [δa2(p2, p4)⊕ (δa3(p7, p6)⊗ δa2(p3, p4))], (10)

where we have omitted the causality interfaces for connectors.

5.2 Causality Interfaces for Feedback Compositions

The dependency graph of a feedback system contains cyclic paths. Given a cyclic
path c = (p1, p2, ..., pn, p1), where pi’s (1 ≤ i ≤ n) are ports of the composition, we
define the gain of c to be

gc = δ(p1, p2)⊗ δ(p2, p3)⊗ ...⊗ δ(pn, p1).

Causality Interfaces · 13

Fig. 4. An open composition with feedback loops.

Note that c′ = (pi, ..., pn, p1, ..., pi) is also a cyclic path, and gc 6= gc′ in general.
The ordering of ports of path c′ is only a shifted version of that of c. We say that
c and c′ are two different paths of the same cycle.

A simple cyclic path is a cyclic path that does not include other cyclic paths. A
simple cycle is a cycle that does not include other cycles.

How to compose causality interfaces for feedback systems depends on the seman-
tics of the model of computation. In this paper, we focus on models of computation
with least fixed point semantics.

We now begin by considering simple cases of feedback systems and build up to
the general case. Consider the composition shown in figure 4, where actor a is
a feedforward composite actor. From section 5.1, we can determine its causality
interfaces and we know it is live if its component actors are live.

The following two lemmas are useful. The first is an adaptation of Lemma 8.10
in [Winskel 1993]:

Lemma 1. Consider two CPOs S1 and S2, and a continuous function

Fa : S1 × S2 → S2.

For a given s1 ∈ S1, we define the function Fa(s1) : S2 → S2 such that

∀ s2 ∈ S2, (Fa(s1))(s2) = Fa(s1, s2).

Then for all s1 ∈ S1, Fa(s1) is continuous.

In the context of figure 4(a), this first lemma tells us that if Fa is continuous,
then given an input s1 ∈ S at port p1, the function Fa(s1) from port p2 to port
p3 is continuous. Thus, for each s1, Fa(s1) has a unique least fixed point, and that
fixed point is

∨
{(Fa(s1))n(⊥) | n ∈ N} [Davey and Priestly 1990].

The second lemma comes from [Liu and Lee 2006]:

Lemma 2. Consider two CPOs S1 and S2, and a continuous function Fa : S1 ×
S2 → S2. Define a function Fb : S1 → S2 such that

∀ s1 ∈ S1, Fb(s1) =
∨
{(Fa(s1))n(⊥S2) | n ∈ N},

where ⊥S2 is the least element of S2. Fb is continuous.

This second lemma tells us that under a least fixed point semantics the compo-
sition in figure 4(b) defines a continuous function Fb from port q1 to port q2.

14 · Y. Zhou and E. A. Lee

Fig. 5. An open system with a feedback connection that has the structure of figure 1.

We now want to find the causality interface for actor b. Given input signal s1 at
port p1 and s2 at p2, where dom(s1) = T1 and dom(s2) = T2,

dom(Fa(s1, s2)) = δa(p1, p3)(T1) ∩ δa(p2, p3)(T2).

For each T1 ∈ D(T), we define a function fa(T1) : D(T) → D(T) such that

∀ T2 ∈ D(T), (fa(T1))(T2) = δa(p1, p3)(T1) ∩ δa(p2, p3)(T2).

The function fa(T1) is continuous and,

δb(q1, q2)(T1) = dom(Fb(s1)) = dom(
∨
{(Fa(s1))n(⊥) | n ∈ N})

=
∨
{dom((Fa(s1))n(⊥)) | n ∈ N}

=
∨
{(fa(T1))n(∅) | n ∈ N} (11)

I.e., δb(q1, q2)(T1) is the least fixed point of fa(T1).
If actor a is live and 1 ≺ δa(p2, p3), where 1 = dI is the multiplicative identity,

then fa(T) = δa(p2, p3). Then the least fixed point of fa(T) is T . Hence actor b is
live.

Given the causality interface for actor b, as shown in (11), we now form the nested
feedback composition of figure 4(c). We are assured that since b is continuous, this
has a unique least fixed point. The composition will be live if 1 ≺ δb(q1, q2).

Working towards the structure of figure 1, we add an additional output port to
actor a in figure 5. We can easily adapt Lemmas 1 and 2 to this situation. Nothing
significant changes. We continue to add ports to the actor a, each time creating a
nested composite. Since every network can be put into the structure of figure 1(c),
we can determine from the causality interfaces of a, whether a composition is live.

If D(T) is totally-ordered, the following lemma helps us to give the causality
interface of feedback composition in a much simpler form than (11).

Lemma 3. Consider a continuous function δ : D(T) → D(T), where D(T) is
totally ordered, and a set K ∈ D(T). We define a function g : D(T) → D(T) such
that

∀ T ∈ D(T), g(T) = K ∩ δ(T).

Then g has a least fixed point given by T1 = K∩T0, where T0 is the least fixed point
of δ.

Proof.

g(T1) = K ∩ δ(K ∩ T0).

Causality Interfaces · 15

Note D(T) is totally-ordered, then either K ⊂ T0 or T0 ⊆ K.

(1) If K ⊂ T0, then K ∩T0 = K and K ⊂ δ(K) (because T0 is the least fixed point
of δ). Therefore, g(T1) = K ∩ δ(K) = K = T1.

(2) If T0 ⊆ K, then K∩T0 = T0. Therefore, g(T1) = K∩δ(T0) = K∩T0 = T0 = T1.

Therefore T1 is a fixed point of g. Note that for every down set T ⊂ T1 where
T1 = K ∩ T0, T ⊂ K and T ⊂ T0. Since T0 is the least fixed point of δ, T ⊂ δ(T).
Therefore, we have

T ⊂ (K ∩ δ(T)),

where K ∩ δ(T) = g(T), as defined. I.e., T ⊂ g(T). Therefore T1 is the least fixed
point of g.

Corollary 2. Given the composite actor b as shown in figure 4(b), and assum-
ing D(T) is totally-ordred,

(1) The causality interface of b is given by

∀ T ∈ D(T), δb(q1, q2)(T) = δa(p1, p3)(T) ∩ T0

where T0 is the least fixed point of δa(p2, p3).
(2) Actor b is live if and only if actor a is live and 1 ≺ δa(p2, p3), where 1 = dI is

the multiplicative identity.

Proof. Part (1) comes directly by applying fa(T) to g in Lemma 3.
Part (2): If 1 ≺ δa(p2, p3), then T0 = T . Therefore δb(q1, q2) = δa(p1, p3). Then

b is live if a is live.
On the other hand, if b is live, then δb(q1, q2)(T) = δa(p1, p3)(T) ∩ T0 = T .

Therefore T0 = T . Due to Corollary 1, this means 1 ≺ δa(p2, p3). Since T0 = T ,
δa(p1, p3) = δb(q1, q2). So actor a is live.

If D(T) is totally-ordered, it is easy to prove that distributivity holds for the
(⊕,⊗) algebra on the subset of monotonic functions of D. I.e., for any monotonic
functions d1, d2, d3 ∈ D,

d1 ⊗ (d2 ⊕ d3) = (d1 ⊗ d2)⊕ (d1 ⊗ d3) (12)
(d2 ⊕ d3)⊗ d1 = (d2 ⊗ d1)⊕ (d3 ⊗ d1). (13)

This suggests that intersecting cyclic paths can be considered independently. Thus
we have reached the most important theorem of this paper:

Theorem 2. A finite network of continuous and live actors where the tag set T
is totally-ordered is continuous and live if and only if for every cyclic path c in the
dependency graph, 1 ≺ gc, where 1 = dI is the multiplicative identity.

We now give some examples of models of computation where this theorem can
be used.

6. APPLICATION TO TIMED SYSTEMS

Timed systems have a tag set T that is totally-ordered. Since T is totally-ordered,
then D(T) is also totally-ordered. Examples of timed systems include discrete-
event models, continuous-time models and synchronous/reactive (SR) models. For

16 · Y. Zhou and E. A. Lee

Fig. 6. A timed model with a feedback loop.

discrete-event and continuous-time models, the tag set is R+ = [0,∞), the non-
negative reals, or R+ × N, where N = {0, 1, 2, ...} is the natural numbers. For SR
models, the tag set is N. In this last case, the dependency algebra can be further
simplified. It is easy to see that (D(N),⊆) and (N∞,≤) are isomorphic, where
N∞ = N ∪ {∞}, and ≤ is the usual numerical ordering. Therefore, for SR models,
the dependency algebra can be simplified to D = (N∞ → N∞).

In all three cases, the tag sets are totally-ordered. Therefore, Theorem 2 of this
paper can be easily applied to all three models of computation.

6.1 Causality

Causality is a key concept in timed systems. Intuitively, it means the time of output
events cannot be earlier than the time of input events that caused them. Causality
interfaces offer a formalization of this intuition.

A port p′ is said to have a causal dependency on port p if dI ≤ δ(p, p′). A timed
actor with at least one input port is said to be causal if every output port has a
causal dependency on every input port. A source actor, of course, is always causal.
A causal actor is live. Causality implies mononicity but not continuity [Liu 2005].

A port p′ is said to have a strict causal dependency on port p if dI ≺ δ(p, p′).
Consider again the example in figure 4. From Corollary 2, we know that the

causality interface of actor b in figure 4(b) is given by:

∀ T ∈ D(T), δb(q1, q2)(T) = δa(p1, p3) ∩ T0,

where T0 is the least fixed point of δa(p2, p3). If dI ≺ δa(p2, p3), then T0 = T ,
and therefore δb(q1, q2) = δa(p1, p3). Hence actor b is causal (and therefore live) if
and only if a is causal. If dI 6≺ δa(p2, p3), then T0 ⊂ T , and therefore b is not live
neither causal.

We can continue to add ports to actor a, as described in figure 5, to construct
any actor networks. The above analysis on causal dependencies can be adapted
easily. Thus we have the following theorem about causality, a stronger property
than liveness:

Theorem 3. A finite network of continuous and causal timed actors is continu-
ous and causal if and only if for every cyclic path c in the dependency graph, 1 ≺ gc,
where 1 = dI is the multiplicative identity.

Consider the example in figure 6(a). We use dashed line to denote a strict causal
dependency, and a solid line to denote a causality interface of dI .

Causality Interfaces · 17

First, we notice that there are two cyclic paths starting from p1, namely: c1 =
(p1, p5, p2, p4, p1), and c2 = (p1, p5, p7, p6, p3, p4, p1), where

gc1 = δa1(p1, p5)⊗ δa2(p2, p4)
gc2 = δa1(p1, p5)⊗ δa3(p7, p6)⊗ δa2(p3, p4)

and we want to check whether 1 ≺ gc1 and 1 ≺ gc2 . (Below we show that checking
c1 and c2 is sufficient to conclude liveness. Checks on cyclic paths starting from
other ports are unnecessary.)

A second way to view this model is to create a hierarchy, as shown in figure 6(b),
and there is only one cycle between q1 and q2. The causality interface of actor
b is given in (10), and we want to check whether 1 ≺ δb(q1, q2). In fact, we find
that δb(q1, q2) = gc1⊕gc2 (due to distributivity of monotonic functions). Therefore
1 ≺ δb(q1, q2) ⇔ 1 ≺ gc1 ∧ 1 ≺ gc2 . I.e., both approaches check for the same
condition. Thus, our technique achieves a measure of modularity, in that details
of a composite system can be hidden; it is only necessary to expose the causality
interface of the composite.

Using the second approach we get:

δb(q1, q2) = δa1(p1, p5)⊗ [δa2(p2, p4)⊕ (δa3(p7, p6)⊗ δa2(p3, p4))]
= dI ⊗ [δa2(p2, p4)⊕ (dI ⊗ dI)]
= dI

Thus we conclude that the model has a causality loop and the composition is not
live.

In this example, we do not need to know exactly δa2(p2, p4) but whether it
is strictly causal, i.e., whether dI ≺ δa2(p2, p4). In other words, given all the
component actors are causal, we are interested in whether there is at least one
strictly causal interface in every cycle.

7. APPLICATION TO DATAFLOW

In dataflow, the signals are streams of data tokens. Actors execute in response to
the availability of data tokens. The tag set T of dataflow is N. Since (D(N),⊆) and
(N∞,≤) are isomorphic, we simplify the dependency algebra to D = (N∞ → N∞).
For input port p and output p′ of an actor a, δa(p, p′) = d is interpreted to mean
that given n tokens at port p, there will be d(n) tokens at port p′. That is, given an
input stream of length n, the output stream has length (δa(p, p′))(n). Note that,
in general, δa(p, p′) may depend on the input tokens themselves. This fact is the
source of expressiveness that leads to undecidability of liveness. However, as we
will show, many situations prove decidable.

Since N is totally-ordered, we have the following theorem:

Theorem 4. A finite network of continuous and live dataflow actors is contin-
uous and live if and only if for every cyclic path c in the dependency graph, 1 ≺ gc,
where 1 = dI is the multiplicative identity.

Wadge [Wadge 1981] uses an element n ∈ N∞ to represent the dependency be-
tween ports, where nij ∈ N∞ means that the first k tokens at the j-th port depend
on at most the first k− nij tokens of the i-th port. However, Wadge’s technique is
only good for homogeneous synchronous dataflow, where every actor consumes and

18 · Y. Zhou and E. A. Lee

produces exactly one token on every port in every firing. Our causality information
is captured by a function (rather than a number), which is richer and enough to
handle multirate dataflow.

7.1 Decidability

One question that might arise concerns decidability of deadlock. The above theo-
rem gives us necessary and sufficient conditions for a dataflow network to be live.
However, deadlock is generally undecidable for dataflow models. These statements
are not in conflict. Our necessary and sufficient conditions may not be decidable. In
particular, the causality interfaces for some actors, e.g., boolean select and boolean
switch [Buck 1993], are in fact dependent on the data provided to them at the
control port. They cannot be statically known by examining the syntactic specifi-
cation of the dataflow network unless the input stream at the control port can be
statically determined. Theorem 4 implies that if for every cyclic path c, 1 ≺ gc is
decidable, then deadlock is decidable. More precisely, if we can prove for every c,
1 ≺ gc, then the model is live. If we can prove there exists a cyclic path c such that
1 6≺ gc, then there is at least one (local) deadlock in the model. If we can prove
neither of these, then we can draw no conclusion about deadlock.

Certain special cases of the dataflow model of computation make deadlock de-
cidable. For example, in the synchronous dataflow (SDF) model of computation
[Lee and Messerschmitt 1987], every actor executes as a sequence of firings, where
each firing consumes a fixed, specified number of tokens on each input port, and
produces a fixed, specified number of tokens on each output port. In addition, an
actor may produce a fixed, specified number of tokens on an output port at initial-
ization. Given an SDF actor a with input port pi and output port po, the causality
interface function δa(pi, po) is given by

∀ n ∈ N∞, (δa(pi, po))(n) =

{
bn/Nc ·M + I, if n < ∞
∞, if n = ∞,

(14)

where N is the number of tokens consumed at pi in a firing, M is the number of
tokens produced at po, and I is the number of initial tokens produced at po at
initialization. Using this, we get the following theorem.

Theorem 5. Deadlock is decidable for synchronous dataflow models with a finite
number of actors.

Proof. Since distributivity holds for continuous dataflow actors, it is easy to
see that the gain of any cyclic path can be written in the form

g =
⊕

(
⊗

δa(pi, po)), (15)

where each δa(pi, po) is in the form of (14), and the ⊗ and ⊕ operators operate on
a finite number of δ’s.

We first note that for each function δ in the form of (14), the following property
holds:

∀ k, r ∈ N, δ(kN + r) = δ(r) + kM, (16)

which means

δ(kN + r)− (kN + r) = δ(r)− r + k(M −N).

Causality Interfaces · 19

Therefore, 1 ≺ δ if and only if N ≤ M and ∀ r ∈ {0, 1, ..., N − 1}, r < δ(r),
which can be determined in finite time. Thus 1 ≺ δ is decidable.

Now consider two causality interfaces δa and δb of some SDF actors, where

∀ k, r ∈ N, δa(kNa + r) = δa(r) + kMa

δb(kNb + r) = δb(r) + kMb

where we have omitted mention of the ports for notational simplicity. A cascade of
δa and δb would therefore satisfy

(δa ⊗ δb)(kNaNb + r) = (δa ⊗ δb)(r) + kMaMb,

which is also in the form of (16). We can continue to compose any finite number
of causality interfaces with the ⊗ operator to get an expression of the form (⊗δ),
where each δ is a causality interface in the form of (14), and (⊗δ) satisfies (16).
Thus 1 ≺ (⊗δ) is decidable.

Now consider the ⊕ operation on two functions δ1 and δ2 for which we know
whether 1 ≺ δ1 and 1 ≺ δ2. Since ⊕ computes the greatest lower bound,

1 ≺ (δ1 ⊕ δ2) ⇔ 1 ≺ δ1 ∧ 1 ≺ δ2.

Thus 1 ≺ (δ1 ⊕ δ2) is decidable. This generalizes easily to any expression of the
form of (15) over a finite number of actors.

In [Lee and Messerschmitt 1987], it is shown that if a synchronous dataflow
model is consistent, then deadlock is decidable. In particular, this is shown by
following a scheduling procedure that provably terminates. Our theory applies to
both consistent and inconsistent SDF models, and hence is more general. Moreover,
it is more straightforward to check whether 1 ≺ g than to execute the scheduling
procedure described in [Lee and Messerschmitt 1987].

We now reconsider the example in figure 6 as a dataflow model. Assume all the
ports produce and consume one token on each firing of the corresponding actor,
and that port p5 produces I ∈ N initial tokens, and all other ports produce zero
initial tokens. We get

δb(q1, q2) = δa1(p1, p5)⊗ [δa2(p2, p4)⊕ (δa3(p7, p6)⊗ δa2(p3, p4))]
= (dI + I)⊗ [dI ⊕ (dI ⊗ dI)]
= dI + I

If I = 0, then 1 = δb(q1, q2), and the model deadlocks. If I > 0, then 1 ≺ δb(q1, q2).
The model is live.

This example also shows that our causality interfaces can help in designing a
system by properly allocating correct number of initial tokens to prevent deadlock.

7.2 Relationship to Partial Metrics

Matthews uses a metric-space approach to treat deadlock [Matthews 1995]. He
defines a partial metric, which is a distance function:

f : S × S → R+,

20 · Y. Zhou and E. A. Lee

where S is the set of all sequences and R+ is the non-negative real numbers. Given
two sequences s1, s2 ∈ S,

f(s1, s2) = 2−n,

where n is the length of the longest common prefix of s1 and s2 (if the two sequences
are infinite and identical, f(s1, s2) = 0). The pair (S, f) is a complete partial metric
space.

We first consider a simple scenario of a continuous dataflow actor a with one
input port pi and one output port po and a feedback connection from po to pi. The
actor function is Fa and the causality interface is δa. According to Theorem 4.1 in
[Matthews 1995], this feedback system is deadlock free if Fa is a contraction map
in this complete partial metric space, meaning

∃ c ∈ R0, 0 ≤ c < 1, such that
∀ s1, s2 ∈ S, f(Fa(s1), Fa(s2)) ≤ cf(s1, s2).

Theorem 6. Let a be a continuous dataflow actor with one input port pi and
one output port po. The actor function of a is Fa. Then 1 ≺ δa(pi, po) ⇔ Fa is a
contraction map in the Matthews partial metric space.

Proof. Since there is only one relevant causality interface, we abbreviate δa(pi, po)
by δa (without showing the dependency on the ports). We begin by showing the
forward implication.

Given s1, s2 ∈ S, let s be their longest common prefix, and let n = |s| be its
length. Then |Fa(s)| = δa(n) ≥ n + 1. By monotonicity, Fa(s) is a prefix of Fa(s1)
and Fa(s2). Therefore,

f(Fa(s1), Fa(s2)) ≤ 2−δa(n) ≤ 2−(n+1) =
1
2
· f(s1, s2),

so Fa is a contraction map.
We next show the backward implication. Consider two signals s1 and s2 ∈ S,

where |s1| = n < ∞ and s1 is a strict prefix of s2. Therefore, we have,

f(s1, s2) = 2−n,
f(Fa(s1), Fa(s2)) = 2−δa(n).

If Fa is a contraction map, then,

2−δa(n) < 2−n.

Since we can arbitrarily choose s1 (as long as |s1| is finite), it follows that ∀ n ∈
N, n < δa(n) ≤ δa(∞). This concludes that 1 ≺ δa.

In Theorem 5.1 in [Matthews 1995], Matthews gives a sufficient condition for
liveness for compositions with more than one feedback loop. We can similarly
prove that this sufficient condition is equivalent to the condition in Theorem 4 of
this paper. Our Theorem 4 shows that it is also a necessary condition for liveness.

8. COMPUTATION

It is stated in Theorem 2 that an actor network where the tag set T is totally-
ordered is live if and only if for every cyclic path c, 1 ≺ gc. We now ask a more
practical question. Do we need to verify 1 ≺ gc for every cyclic path c?

Causality Interfaces · 21

Consider a non-simple cyclic path c = (p1, ..., pi, q1, ..., qm, pi, ..., pn, p1). There-
fore c1 = (p1, ..., pi, pi+1, ..., pn, p1) and c2 = (pi, q1, ..., qm, pi) are two cyclic paths.

Let d1 = δ(p1, p2)⊗ ...⊗ δ(pi−1, pi), d2 = δ(pi, pi+1)⊗ ...⊗ δ(pn, p1). Then,

gc1 = d1 ⊗ d2

gc = d1 ⊗ gc2 ⊗ d2.

If 1 ≺ gc1 and 1 ≺ gc2 , then, 1 ≺ gc1 = d1 ⊗ d2 ≺ d1 ⊗ gc2 ⊗ d2 = gc. I.e., checking
gc1 and gc2 is sufficient. If c1 or c2 are non-simple cyclic paths, we can further
decompose them into simple cyclic paths. Thus checking only simple cyclic paths
is sufficient.

Now we consider two cyclic paths c1 = (p1, p2, ..., pn, p1) and c2 = (pi, ..., pn, p1, ...,
pi) of the same cycle. Let d1 = δ(p1, p2) ⊗ ... ⊗ δ(pi−1, pi), d2 = δ(pi, pi+1) ⊗ ... ⊗
δ(pn, p1). d1 and d2 are continuous, and,

gc1 = d1 ⊗ d2

gc2 = d2 ⊗ d1.

Since commutativity does not hold for the ⊗ operator, gc1 6= gc2 in general. How-
ever, if the tag set T is totally-ordered, we have the following lemma:

Lemma 4. Let δ1, δ2 ∈ (D(T) → D(T)) be two continuous functions, where
D(T) is totally-ordered, and δ1, δ2 satisfy the liveness condition, then 1 ≺ δ1 ⊗
δ2 ⇔ 1 ≺ δ2 ⊗ δ1.

Proof. If 1 ≺ δ1 ⊗ δ2, then

∀ T ∈ D(T), T 6= T , T ⊂ δ2(δ1(T)). (17)

Suppose, contrary to this lemma, that 1 6≺ δ2⊗δ1, which implies ∃ a down set T0 6=
T s.t. δ1(δ2(T0)) ⊆ T0. Since δ2 is monotonic (due to Property 3),

δ2(δ1(δ2(T0)) ⊆ δ2(T0). (18)

If δ2(T0) 6= T , then (18) contradicts (17). If δ2(T0) = T , then δ1(T) ⊆ T0 ⊂ T .
This contradicts the fact that δ1 satisfies the liveness condition, i.e., δ1(T) = T .
Therefore 1 ≺ δ2 ⊗ δ1.

Thus, if the tag set T is totally-ordered, it is sufficient to compute the gain of one
cyclic path for each simple cycle to check liveness for a finite network of continuous
and live actors.

9. DYNAMIC DEPENDENCIES

In the above examples, the dependencies are static (they do not change during
execution of the program). This situation is excessively restrictive in practice. One
simple way to model dynamically changing dependencies is to use modal models
[Girault et al. 1999]. In a modal model, an actor is associated with a state machine,
and its interface can depend on the state of the state machine. In particular, the
actor could have a different causality interface in each state of the state machine. In
particular, let X denote the set of states of the state machine. Then the causality
interfaces are given by a function

δ′a : Pi × Po ×X → D.

22 · Y. Zhou and E. A. Lee

A simple conservative analysis would combine the causality interfaces in all the
states to get a conservative causality for the actor. Specifically, for an input port
pi ∈ Pi and an output port po ∈ Po of actor a,

δa(pi, po) =
⊕
x∈X

δ′a(pi, po, x).

This is conservative because causality analysis based on this interface may reveal a
causality loop that is illusory, for example if the state in which the causality loop
occurs is not reachable.

Depending on the model of computation and the semantics of modal models, the
reachability of states in the state machine may be undecidable [Girault et al. 1999].
Hence, a more precise analysis may not always be possible. Nonetheless, it is easy
to imagine circumstances in which a precise analysis could be carried out. We leave
this to the imagination of the reader (Hint: The heterochronous dataflow model of
computation given in [Girault et al. 1999] has such a property).

10. DETERMINING CAUSALITY INTERFACES FOR ATOMIC ACTORS

The causality analysis technique we have given determines the causality interface
of a composition based on causality interfaces of the components and their inter-
connections. An interesting question arises: how do we determine the causality
interfaces of atomic actors? If the atomic actors are language primitives, as in the
synchronous langauges, then the causality interfaces of the primitives are simply
part of the language definition. They would be enumerated for use by a compiler.
However, in the case of coordination languages, the causality interfaces might be
difficult to infer. If the atomic actors are defined in a conventional imperative lan-
guage, then standard compiler techniques such as program dependence graphs (see
for example [Ferrante et al. 1987; Horwitz et al. 1988; Ottenstein and Ottenstein
1984]) might be usable. However, given the Turing completeness of such languages,
such analysis is likely to have to be conservative. A better alternative is probably to
use an actor definition language such as Cal [Eker and Janneck 2003] or StreamIT
[Thies et al. 2002] that is more amenable to such analysis.

11. CONCLUSION

We have given an interface theory that abstractly represents causality of actors and
that easily composes to get causality interfaces of composite actors. The theory
appears to be applicable to a wide range of actor-oriented models. We have given
examples of its application to synchronous languages, discrete-event, and dataflow
models.

REFERENCES

Abramsky, S., Gay, S. J., and Nagarajan, R. 1995. Interaction categories and the foundations
of typed concurrent programming. In Deductive Program Design: Proceedings of the 1994
Marktoberdorf Summer School, M. Broy, Ed. NATO ASI Series F. Springer-Verlag.

Agha, G. 1990. Concurrent object-oriented programming. Communications of the ACM 33, 9,

125–140.

Arbab, F. 2004. Reo: A channel-based coordination model for component composition. Mathe-
matical Structures in Computer Science 14, 3, 329–366.

Causality Interfaces · 23

Arbab, F. 2005. Abstract behavior types : A foundation model for components and their com-

position. Science of Computer Programming 55, 3–52.

Armstrong, J. R. and Gray, F. G. 2000. VHDL Design Representation and Synthesis, Second

ed. Prentice-Hall.

Benveniste, A. and Berry, G. 1991. The synchronous approach to reactive and real-time

systems. Proceedings of the IEEE 79, 9, 1270–1282.

Benveniste, A. and Guernic, P. L. 1990. Hybrid dynamical systems theory and the signal
language. IEEE Tr. on Automatic Control 35, 5, 525–546.

Berry, G. 1996. The Constructive Semantics of Pure Esterel. Book Draft.

Berry, G. and Gonthier, G. 1992. The esterel synchronous programming language: Design,

semantics, implementation. Science of Computer Programming 19, 2, 87–152.

Broy, M. and Stefanescu, G. 2001. The algebra of stream processing functions. Theoretical
Computer Science 258, 99–129.

Buck, J. T. 1993. Scheduling dynamic dataflow graphs with bounded memory using the token flow

model. Ph.D. Thesis Technical Memorandum UCB/ERL 93/69, EECS Department, University
of California, Berkeley.

Buck, J. T., Ha, S., Lee, E. A., and Messerschmitt, D. G. 1994. Ptolemy: A framework
for simulating and prototyping heterogeneous systems. Int. Journal of Computer Simulation,

special issue on “Simulation Software Development” 4, 155–182.

Cassandras, C. G. 1993. Discrete Event Systems, Modeling and Performance Analysis. Irwin.

Chakrabarti, A., de Alfaro, L., and Henzinger, T. A. 2003. Resource interfaces. In EMSOFT,

R. Alur and I. Lee, Eds. Vol. LNCS 2855. Springer, Philadelphia, PA, 117–133.

Davey, B. A. and Priestly, H. A. 1990. Introduction to Lattices and Order. Cambridge Uni-

versity Press.

de Alfaro, L. and Henzinger, T. A. 2001. Interface theories for component-based design. In
First International Workshop on Embedded Software (EMSOFT). Vol. LNCS 2211. Springer-

Verlag, Lake Tahoe, CA, 148–165.

de Kock, E. A., Essink, G., Smits, W. J. M., van der Wolf, P., Brunel, J.-Y., Kruijtzer,
W., Lieverse, P., and Vissers, K. A. 2000. YAPI: Application modeling for signal processing

systems. In 37th Design Automation Conference (DAC’00). Los Angeles, CA, 402–405.

Dennis, J. B. 1974. First version data flow procedure language. Tech. Rep. MAC TM61, MIT

Laboratory for Computer Science.

Edwards, S. A. and Lee, E. A. 2003. The semantics and execution of a synchronous block-
diagram language. Science of Computer Programming 48, 1.

Eker, J. and Janneck, J. W. 2003. CAL language report: Specification of the CAL actor

language. Tech. Rep. Technical Memorandum No. UCB/ERL M03/48, University of California,
Berkeley, CA. December 1.

Eker, J., Janneck, J. W., Lee, E. A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs,
S., and Xiong, Y. 2003. Taming heterogeneity—the Ptolemy approach. Proceedings of the

IEEE 91, 1, 127–144.

Ferrante, J., Ottenstein, K. J., and Warren, J. D. 1987. The program dependence graph
and its use in optimization. ACM Transactions On Programming Languages And Systems 9, 3,

319–349.

Girault, A., Lee, B., and Lee, E. A. 1999. Hierarchical finite state machines with multiple

concurrency models. IEEE Transactions On Computer-aided Design Of Integrated Circuits

And Systems 18, 6, 742–760.

Göessler, G. and Sangiovanni-Vincentelli, A. 2002. Compositional modeling in Metropolis. In

Second International Workshop on Embedded Software (EMSOFT). Springer-Verlag, Grenoble,

France.

Göessler, G. and Sifakis, J. 2005. Composition for component-based modeling. Science of

Computer Programming 55.

Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. 1991. The synchronous data flow
programming language LUSTRE. Proceedings of the IEEE 79, 9, 1305–1319.

24 · Y. Zhou and E. A. Lee

Hewitt, C. 1977. Viewing control structures as patterns of passing messages. Journal of Artifical

Intelligence 8, 3, 323–363.

Horwitz, S., Reps, T., and Binkley, D. 1988. Interprocedural slicing using dependence graphs.

In ACM SIGPLAN ’88 Conference on Programming Language Design and Implementation.

Vol. SIGPLAN Notices 23(7). Atlanta, Georgia, 35–46.

Kahn, G. 1974. The semantics of a simple language for parallel programming. In Proc. of the

IFIP Congress 74. North-Holland Publishing Co.

Kahn, G. and MacQueen, D. B. 1977. Coroutines and networks of parallel processes. In
Information Processing, B. Gilchrist, Ed. North-Holland Publishing Co.

Keutzer, K., Malik, S., Newton, A. R., Rabaey, J., and Sangiovanni-Vincentelli, A. 2000.

System level design: Orthogonolization of concerns and platform-based design. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 19, 12.

Lee, E. A. 1999. Modeling concurrent real-time processes using discrete events. Annals of

Software Engineering 7, 25–45.

Lee, E. A. 2002. Embedded software. In Advances in Computers, M. Zelkowitz, Ed. Vol. 56.

Academic Press.

Lee, E. A. 2003. Model-driven development - from object-oriented design to actor-oriented
design. In Workshop on Software Engineering for Embedded Systems: From Requirements to

Implementation (a.k.a. The Monterey Workshop). Chicago.

Lee, E. A. and Messerschmitt, D. G. 1987. Synchronous data flow. Proceedings of the
IEEE 75, 9 (September), 1235–1245.

Lee, E. A. and Neuendorffer, S. 2004. Classes and subclasses in actor-oriented design. In

Conference on Formal Methods and Models for Codesign (MEMOCODE). San Diego, CA,
USA.

Lee, E. A., Neuendorffer, S., and Wirthlin, M. J. 2003. Actor-oriented design of embedded

hardware and software systems. Journal of Circuits, Systems, and Computers 12, 3, 231–260.

Lee, E. A. and Parks, T. M. 1995. Dataflow process networks. Proceedings of the IEEE 83, 5,

773–801.

Lee, E. A. and Sangiovanni-Vincentelli, A. 1998. A framework for comparing models of
computation. IEEE Transactions on CAD 17, 12.

Lee, E. A. and Xiong, Y. 2004. A behavioral type system and its application in Ptolemy II.

Formal Aspects of Computing Journal 16, 3, 210–237.

Lee, E. A. and Zheng, H. 2005. Operational semantics of hybrid systems. In Hybrid Systems:

Computation and Control (HSCC), M. Morari and L. Thiele, Eds. Vol. LNCS 3414. Springer-

Verlag, Zurich, Switzerland, pp. 25–53.

Lee, E. A., Zheng, H., and Zhou, Y. 2005. Causality interfaces and compositional causality
analysis. In Foundations of Interface Technologies (FIT), Satellite to CONCUR. San Francisco,

CA.

Liu, X. 2005. Semantic foundation of the tagged signal model. Ph.D. Thesis Technical Memo-

randum UCB/EECS-2005-31, EECS Department, University of California, Berkeley. December

20.

Liu, X. and Lee, E. A. 2006. CPO semantics of timed interactive actor networks. Tech. Rep.

UCB/EECS-2006-67, EECS Department, University of California, Berkeley. May 18.

Matthews, S. G. 1995. An extensional treatment of lazy data flow deadlock. Theoretical Com-
puter Science 151, 1, 195–205.

Ottenstein, K. J. and Ottenstein, L. M. 1984. The program dependence graph in a software

development environment. SIGPLAN Notices 19, 5, 177–184.

Papadopoulos, G. A., Stavrou, A., and Papapetrou, O. 2006. An implementation framework
for software architectures based on the coordination paradigm. Science of Computer Program-

ming 60, 1, 27–67.

Rutten, J. J. M. M. 2005. A coinductive calculus of streams. Mathematical Structures in
Computer Science 15, 1, 93–147.

Causality Interfaces · 25

Schneider, K., Brandt, J., and Schuele, T. 2004. Causality analysis of synchronous programs

with delayed actions. In International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems. Washington DC, USA.

Talcott, C. L. 1996. Interaction semantics for components of distributed systems. In Formal

Methods for Open Object-Based Distributed Systems (FMOODS).

Thies, W., Karczmarek, M., and Amarasinghe, S. 2002. StreamIt: A language for streaming
applications. In 11th International Conference on Compiler Construction. Vol. LNCS 2304.

Springer-Verlag, Grenoble, France.

Tiller, M. M. 2001. Introduction to Physical Modeling with Modelica. Kluwer Academic Pub-

lishers.

Wadge, W. 1981. An extensional treatment of dataflow deadlock. Theoretical Computer Sci-

ence 13, 1, 3–15.

Wegner, P., Arbab, F., Goldin, D., McBurney, P., Luck, M., and Roberson, D. 2005.

The role of agent interaction in models of computation (panel summary). In Workshop on
Foundations of Interactive Computation. Edinburgh.

Winskel, G. 1993. The Formal Semantics of Programming Languages. MIT Press, Cambridge,

MA, USA.

Winter, M., Genssler, T., Christoph, A., Nierstrasz, O., Ducasse, S., Wuyts, R., Arévalo,
G., Müller, P., Stich, C., and Schönhage, B. 2002. Components for embedded software –

the PECOS approach. In Second International Workshop on Composition Languages, In con-

junction with 16th European Conference on Object-Oriented Programming (ECOOP). Málaga,
Spain.

Xiong, Y. 2002. An extensible type system for component-based design. Ph.D. Thesis Technical

Memorandum UCB/ERL M02/13, University of California, Berkeley, CA 94720. May 1.

Yates, R. K. 1993. Networks of real-time processes. In Proc. of the 4th Int. Conf. on Concurrency
Theory (CONCUR), E. Best, Ed. Vol. LNCS 715. Springer-Verlag.

