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Abstract— We describe Viptos (Visual Ptolemy and TinyOS), an inte-
grated graphical development and simulation environment for TinyOS-
based wireless sensor networks. TinyOS is a component-based, event-
driven runtime environment designed for wireless sensor networks. Viptos
allows networked embedded systems developers to construct block and
arrow diagrams to create TinyOS programs from any standard library of
TinyOS components written in nesC, a C-based programming language.
Viptos automatically transforms the diagram into a nesC program that
can be compiled and downloaded from within the graphical environment
onto any TinyOS-supported target platform. Viptos is built on Ptolemy
II, a modeling and simulation environment for embedded systems, and
TOSSIM, an interrupt-level discrete event simulator for homogeneous
TinyOS networks. In particular, Viptos includes the full capabilities
of VisualSense, a Ptolemy II environment that can model communi-
cation channels, networks, and non-TinyOS nodes. Viptos extends the
capabilities of TOSSIM to allow simulation of heterogeneous networks.
Viptos provides a bridge between VisualSense and TOSSIM by providing
interrupt-level simulation of actual TinyOS programs, with packet-level
simulation of the network, while allowing the developer to use other
models of computation available in Ptolemy II for modeling the physical
environment and other parts of the system. This framework allows
application developers to easily transition between high-level simulation
of algorithms to low-level implementation and simulation. This paper
presents our experiences with integrating the nesC/TinyOS/TOSSIM and
Ptolemy II programming and execution models.

I. I NTRODUCTION

Wireless sensor networks provide a way to create flexible, teth-
erless, automated data collection and monitoring systems. Building
sensor networks today requires piecing together a variety of hardware
and software components, each with different design methodologies
and tools, making it a challenging and error-prone process. Typical
networked embedded system software development may require the
design and implementation of device drivers, network stack protocols,
scheduler services, application-level tasks, and partitioning of tasks
across multiple nodes. Little or no integration exists among the tools
necessary to create these software components, mostly because the
interactions between the programming models are poorly understood.
In addition, these tools typically have little infrastructure for building
models and interactions that are not part of their original scope
or software design paradigms. The goal of this work is to create
integrated tools for networked embedded application developers to
model and simulate their algorithms and quickly transition to testing
their software on real hardware in the field, while allowing them to
use the programming model most appropriate for each part of the
system.

We choose to focus on TinyOS [1], an open-source runtime
environment designed for sensor network nodes known asmotes,
as our underlying programming platform. TinyOS has a large user
base – over 500 research groups and companies use TinyOS on

the Berkeley/Crossbow motes. It has been ported to over a dozen
platforms and numerous sensor boards, and new releases see over
10,000 downloads. TinyOS differs from traditional operating system
models in that events drive the behavior of the system. Using this type
of execution, battery-operated nodes can preserve energy by entering
sleep mode when no interesting events are happening.

A TinyOS program consists of a graph of components that are
written in an object-oriented style using nesC [2], an extension to
the C programming language. TOSSIM [3], a TinyOS simulator for
the PC, can execute nesC programs designed for a mote. TOSSIM
contains a discrete event simulation engine which allows modeling
of various hardware and other interrupt events. Although a large
community uses TinyOS in simulation to develop and test various
algorithms and protocols, they face some key limitations when
using the nesC/TinyOS/TOSSIM programming tool suite. Users may
choose from a few built-in radio connectivity models in TOSSIM,
but it is difficult to use other models. TOSSIM can efficiently model
large homogeneous networks where the same nesC code is run on
every simulated node, but does not allow simulation of networks that
contain different programs. Additionally, whereas a TinyOS program
consists of a graph of mostly pre-existing nesC components, users
must write their programs in a multi-file, text-based format, even
though a graphical block diagram programming environment would
be much more intuitive.

To address these problems, we turn to VisualSense [4], a Ptolemy
II-based graphical modeling and simulation framework for wireless
sensor networks that supports actor-oriented definition of sensor
nodes, wireless communication channels, physical media such as
acoustic channels, and wired subsystems. VisualSense does not
include a mechanism for transitioning from a sensor network ap-
plication developed within the framework to an implementation for
real hardware without rewriting the code from scratch for the target
platform.

Integrating TinyOS and VisualSense combines the best of both
worlds. TinyOS provides a platform that works on real hardware
with a library of components that implement low-level routines.
VisualSense provides a graphical modeling environment that supports
hierarchical, heterogeneous systems. In this paper, we describe our
experiences with integrating the programming and execution models
and the component libraries of these two systems, necessary for
building an integrated tool chain for designing, simulating, and
deploying sensor network applications.

Section II provides detailed background information on nesC,
TinyOS, TOSSIM, and VisualSense. Section III describes the ar-
chitecture of the integrated TinyOS and VisualSense toolchain and
investigates the semantics of this interface. Section IV presents related



configuration SenseToLeds {
} implementation {

components Main, SenseToInt,
IntToLeds, TimerC,
DemoSensorC as Sensor;

Main.StdControl -> SenseToInt;
Main.StdControl -> IntToLeds;
SenseToInt.Timer ->

TimerC.Timer[ unique( "Timer" ) ];
SenseToInt.TimerControl ->

TimerC;
SenseToInt.ADC -> Sensor;
SenseToInt.ADCControl ->

Sensor;
SenseToInt.IntOutput ->

IntToLeds;
}

(a)

module SenseToInt {
provides {

interface StdControl;
}
uses {

interface Timer;
interface StdControl

as TimerControl;
interface ADC;
interface StdControl

as ADCControl;
interface IntOutput;

}
} implementation {

...
}

(b)

Fig. 1. Sample nesC source code.

work. Sections V and VI conclude with a discussion of work-in-
progress and future work.

II. BACKGROUND

In this section we provide detailed information on the nesC syntax,
TinyOS execution model, TOSSIM architecture, and VisualSense
framework. We feel that this background material is essential to
understanding the contributions of our work and include material
previously discussed in [4].

A. nesC

A TinyOS program consists of a set of nesC components that
are “wired” together. Figure 1a shows a TinyOS program called
SenseToLeds that displays the value of a photosensor in binary
on the LEDs of a mote. TinyOS includes a library of nesC compo-
nents, including the ones listed inSenseToLeds , such asMain ,
SenseToInt (shown in Figure 1b),IntToLeds , TimerC , and
DemoSensorC.

A nesC component exposes a set ofinterfaces. An interface
consists of a set of methods. A method is known as either acommand
or an event. The component implements itsprovidesmethods and
expects another component to implement itsusesmethods. nesC
interfaces can also beparameterizedto provide multiple instances
of the same interface in a single component. A nesC component is
either aconfigurationthat contains a wiring of other components, or
a modulethat contains animplementationof its interface methods.
In Figure 1a, theTimerC.Timer interface is parameterized. The
Timer interface of SenseToInt connects to a unique instance
of the corresponding interface ofTimerC . If another component
connects to theTimerC.Timer interface, it will be connected to a
different instance. Each timer can be initialized with different periods.

B. TinyOS

In TinyOS, there is a single thread of control managed by the
scheduler, which may be interrupted by hardware events. Compo-
nent methods encapsulate hardware interrupt handlers. Methods may
transfer the flow of control to another component by calling auses
method. Computation performed in a sequence of method calls must
be short, or it may block the processing of other events. A long
running computation can be encapsulated in atask, which a method
poststo the scheduler task queue. The TinyOS scheduler processes
the tasks in the queue in FIFO order whenever it is not executing an

interrupt handler. Tasks are atomic with respect to other tasks and do
not preempt other tasks.

When a user compiles a TinyOS program for a sensor node, the
nesC compiler automatically searches the TinyOS component library
paths for included components, including directories containing the
components that encapsulate the hardware components specific to
the target platform, such as the clock, radio, and sensors. The nesC
compiler generates a pre-processed C file, which can then be sent to
a cross compiler for the target hardware.

C. TOSSIM

TinyOS programs can also be compiled for simulation on a PC. In
this case, the nesC compiler follows the procedure just described but
replaces the TinyOS scheduler and device drivers with TOSSIM code.
The TOSSIM scheduler contains a task queue similar to the regular
TinyOS scheduler. However, the TOSSIM scheduler also contains
an ordered event queue. Events in this queue have a timestamp
implemented as along long in C (a 64-bit integer on most
systems). The smallest time resolution is equal to 1 / 4MHz, the
original CPU frequency of the Rene/Mica motes. Upon initialization,
TOSSIM inserts a boot up event into the event queue. In the main
scheduling loop, the TOSSIM scheduler begins by processing all
tasks in the task queue in FIFO order. If there is an event in the
event queue, it updates the simulated time with the timestamp of the
new event and then processes the event. The processing of an event
may cause tasks to be posted to the task queue and creation of new
events with time stamps possibly equal to the current time stamp.

TOSSIM allows one or more nodes with the same TinyOS program
to be simulated by maintaining a copy of the state of each component
for each simulated node. Support for these copies is built into
the nesC compiler so that the user does not need to modify the
TinyOS program source code. TOSSIM has built-in models for radio
connectivity between multiple nodes, and per-node ADC (analog-to-
digital converter) values, as well as an interface for manually setting
the per-node and per-link values and probabilities.

D. VisualSense

VisualSense is a modeling and simulation framework for wireless
sensor networks that builds on Ptolemy II [5]. This framework
supports actor-oriented definition of sensor nodes, wireless commu-
nication channels, physical media such as acoustic channels, and
wired subsystems. The software architecture consists of a set of
base classes for defining channels and sensor nodes, a library of
subclasses that provide specific channel models and node models, and
an extensible visualization framework. Custom nodes can be defined
by subclassing the base classes and defining the behavior in Java or by
creating composite models using any of several Ptolemy II modeling
environments. Custom channels can be defined by subclassing the
WirelessChannel base class and by attaching functionality defined in
Ptolemy II models.

To support this style of modeling, VisualSense uses a specialization
of the discrete-event (DE) domain of Ptolemy II. The DE domain
of Ptolemy II [6] provides execution semantics where interaction
between components occurs via events with time stamps. A sophis-
ticated calendar-queue scheduler is used to efficiently process events
in chronological order. The DE domain has a formal semantics that
ensures determinate execution of deterministic models [7], although
stochastic models for Monte Carlo simulation are also well supported.
The precision in the semantics prevents the unexpected behavior that
sometimes occurs due to modeling idiosyncrasies in some modeling
frameworks.



The DE domain in Ptolemy II supports models with dynamically
changing interconnection topologies. Changes in connectivity are
treated as mutations of the model structure. The software is care-
fully architected to support multithreaded access to this mutation
capability. Thus, one thread can be executing a simulation of the
model while another changes the structure of the model, for example
by adding, deleting, or moving actors, or changing the connectivity
between actors. The results are predictable and consistent.

The most straightforward uses of the DE domain in Ptolemy II
are similar to other discrete-event modeling frameworks such as
NS, Opnet, and VHDL. Components (which are calledactors) have
ports, and the ports are interconnected to model the communication
topology. Ptolemy II provides a visual editor for constructing DE
models as block diagrams. VisualSense is a subclass of the DE
modeling framework in Ptolemy II that is specifically intended
to model sensor networks. In particular, it removes the need for
explicit connections between ports, and instead associates ports with
channels by name (e.g., “RadioChannel”). Connectivity can then be
determined on the basis of the physical locations of the components.
The algorithm for determining connectivity is itself encapsulated in
a component as a channel model, and hence can be developed by
the model builder. In VisualSense, sensor nodes themselves can be
modeled in Java, or more interestingly, using more conventional DE
models (as block diagrams) or other Ptolemy II models (such as
dataflow models, finite-state machines or continuous-time models).

Ptolemy II also permits customized icons for components in a
model. This can be used to render as part of a model useful
visualizations that lend insight into the behavior of models. For
example, a sensor node can have as an icon a translucent circle that
represents (roughly or exactly) its transmit range.

Another feature of Ptolemy II is its sophisticated type system [8].
In this type system, actors, parameters, and ports can all impose
constraints on types, and a type resolution algorithm identifies the
most specific types that satisfy all the constraints. By default, the type
system in Ptolemy II includes a type constraint for each connection
in a block diagram. However, in wireless models, these connections
do not represent all the type constraints. In particular, every actor that
sends data to a wireless channel requires that every recipient from
that channel be able to accept that data type. VisualSense imposes this
constraint in the WirelessChannel base class, so unless a particular
model builder needs more sophisticated constraints, the model builder
does not need to specify particular data types in the model. They
will be inferred from the ultimate sources of the data and propagated
throughout the model.

III. V IPTOS

Viptos provides a bridge between VisualSense and
nesC/TinyOS/TOSSIM by enabling the graphical development
and interrupt-level simulation of actual TinyOS programs, with
packet-level simulation of the network, while allowing the developer
to use other models of computation available in Ptolemy II for
modeling various parts of the system. We describe the architecture
of this system in detail, including the representation of nesC
components in Ptolemy II, the transformation of the TinyOS
component library and existing TinyOS applications into this
representation, generation of code for TinyOS programs developed
in Viptos, and simulation of sensor network models that include
nodes running TinyOS.

A. Representation of nesC components in Ptolemy II

In Ptolemy II, basic executable code blocks are calledactorsand
may contain input and outputports. A port may be a simple port

that allows only a single connection, or it may be amultiport that
allows multiple connections. Fan-in or fan-out to simple ports may be
achieved by placing arelation (the diamond-shaped icons in Figure
2) in the path of the connection. A code block is stored in aclass,
and an actor is an instance of the class.

We have developed the following representation scheme for the
various parts of nesC components in Ptolemy II. We represent
nesC components with Ptolemy II classes, and nesC component
interfaces with Ptolemy II ports. We represent nesCuses interfaces
with Ptolemy II output ports, and nesCprovides interfaces with
Ptolemy II input ports. We currently represent non-parameterized in-
terfaces with simple ports; and single-index, parameterized interfaces
with multiports.1 Although multiple-index parameterized interfaces
are allowed in nesC, Viptos does not support them, since they are
not used in practice and do not appear in any existing components
in the TinyOS component library. Figure 2c shows a graphical
representation in Viptos of the equivalent wiring diagram for the
SenseToLeds configuration shown in Figure 1a. Note that in Fig-
ure 2c, theTimerC component provides a parameterized interface,
or input multiport, as indicated by the white triangle pointing into the
block. Non-parameterized interfaces, or simple ports, are represented
with the black triangles.

B. Transformation of the TinyOS component library and applications

Ptolemy II uses an XML-based language called MoML (Modeling
Markup Language) [9] to specify interconnections of parameterized,
hierarchical components. Viptos provides a tool callednc2momlfor
harvesting existing nesC files in the TinyOS 1.x component library
and converting them into MoML for use within the Ptolemy II
framework. We implemented the first version of the tool by modifying
the nesC 1.1 compiler. The current version ofnc2momluses the XML
output feature of the nesC 1.2 compiler. In both versions, the tool
uses information about the component interfaces to generate MoML
syntax that specifies the name of the component, as well as the
name and input/output direction of each port, and whether it is a
multiport. The resulting MoML files are used in Viptos to display
TinyOS components as a library of graphical blocks. The user may
drag and drop components from the library onto the workspace and
create connections between component interfaces by clicking and
dragging between ports. Figure 3 shows generated MoML code for
the TimerC component referenced in Figure 1a. Figure 2c shows
a TinyOS program created using components from the converted
library.

Viptos provides another harvest tool,ncapp2moml, which converts
existing TinyOS 1.x application files into Viptos models. Whereas
nc2momlonly examines the interfaces contained in the nesC file,
TinyOS application files in nesC do not have interfaces.ncapp2moml
uses information about the nesC wiring graph and the referenced
interfaces to generate MoML syntax that specifies a model that
contains the actor corresponding to each nesC component used, the
relations required at each port, and the links between the ports and
relations such that the connections in the model correspond to the
connections between interfaces in the nesC file.ncapp2momlcan
also automatically embed the converted TinyOS application into a
template model containing a representation of the node. Figure 4
shows an example of a portion of the MoML code generated from
the file shown in Figure 1a.

1See Section V for how we plan to change this to better support special
cases where there are multiple connections to a single non-parameterized
provides interface.



C. Generation of code for simulation and target deployment

Viptos can serve as both a program editing environment and a
simulation environment. In both cases, an entity called the PtinyOS
Director is placed into the workspace containing the nesC compo-
nents. The PtinyOS Director controls code generation, compilation,
simulation, and deployment to target hardware for a single node.
Running the model shown in Figure 2c causes the PtinyOS Director
to generate a nesC component file forSenseToLeds , equivalent
to that shown in Figure 1a, as well as a makefile. The user can
configure the PtinyOS Director (see Figure 2d) to compile the
generated nesC code to any target supported by the TinyOS make
system, including cross-compilation to target hardware, or TOSSIM
for external simulation. The user can also load code to the target

hardware from the Viptos interface.
To use Viptos as a simulation environment, the PtinyOS Director

and the nesC components for the program graph should be embed-
ded within a PtinyOSCompositeActor. The PtinyOSCompositeActor
should be controlled by a DE Director. Figure 2b shows an example
of this placement, where MicaCompositeActor is a subclass of
PtinyOSCompositeActor that provides a representation of the Mica
hardware interface, including ports for the ADC channels connected
to sensors including a thermistor, photoresistor, microphone, magne-
tometer, and accelerometer; and also ports for the LEDs and radio
communication. The user specifies theptII simulation target as the
target compilation platform. When the model is run, the PtinyOS
Director generates a nesC file and a makefile, and compiles the nesC
file against a custom version of TOSSIM to create a shared library.

c

b

a

d

f

e

Fig. 2. SenseToLeds application in Viptos.



<?xml version="1.0"?>
<!DOCTYPE plot PUBLIC "-//UC Berkeley//DTD MoML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">

<class name="TimerC"
extends="ptolemy.domains.ptinyos.lib.NCComponent">

<property name="source"
value="$CLASSPATH/tos/system/TimerC.nc" />

<property name="_displayedName" class="..."
value="TimerC" />

<port name="StdControl" class="ptolemy.actor.IOPort">
<property name="input" />
<property name="_showName" class="..." />

</port>
<port name="Timer" class="ptolemy.actor.IOPort">

<property name="input" />
<property name="multiport" />
<property name="_showName" class="..." />

</port>
</class>

Fig. 3. Generated MoML for TimerC.nc

...
<entity name="MicaCompositeActor"

class="ptolemy.domains.ptinyos.lib.MicaCompositeActor">
...
<entity name="DemoSensorC"

class="tos.sensorboards.micasb.DemoSensorC" />
<entity name="TimerC" class="tos.system.TimerC" />
<entity name="Main" class="tos.system.Main" />
<entity name="SenseToInt"

class="tos.lib.Counters.SenseToInt" />
<entity name="IntToLeds"

class="tos.lib.Counters.IntToLeds" />
<relation name="relation1"

class="ptolemy.actor.IORelation" />
<relation name="relation2"

class="ptolemy.actor.IORelation" />
<relation name="relation3"

class="ptolemy.actor.IORelation" />
<relation name="relation4"

class="ptolemy.actor.IORelation" />
<relation name="relation5"

class="ptolemy.actor.IORelation" />
...
<link relation="relation1" port="Main.StdControl"/>
<link port="IntToLeds.StdControl" relation="relation2"/>
<link relation1="relation2" relation2="relation1"/>
<link port="SenseToInt.StdControl" relation="relation3"/>
<link relation1="relation3" relation2="relation1"/>
<link relation="relation4" port="SenseToInt.Timer"/>
<link port="TimerC.Timer" relation="relation5"/>
<link relation1="relation5" relation2="relation4"/>
...

</entity>
...

Fig. 4. Generated MoML for SenseToLeds.nc

The PtinyOS Director also generates a Java wrapper to load the shared
library into Viptos so that it can be run via JNI method calls.

D. Simulation of TinyOS in Viptos

In this section, we explain how Viptos simulates TinyOS programs
from within the Ptolemy II framework.

1) Scheduling:Each instance of the PtinyOS Director compiles
a custom copy of TOSSIM and uses it in its single node mode.
This custom copy is a modified version of TOSSIM in which the
scheduler and device driver functions contain additional JNI (Java
Native Interface) calls to the PtinyOS Director with which it was
compiled. JNI allows calls to be made between the Ptolemy II Java-
based environment and the TOSSIM C-based environment.

All TOSSIM components call thequeue_insert_event()
function to insert new events into the TOSSIM event queue. The
Viptos version of this function also makes a JNI call to insert

equivalent events into the event queue of the DE Director controlling
the PtinyOS Director usingfireAt() with the TOSSIM system
time as the argument. At each event timestamp, Viptos calls the
modified TOSSIM scheduler to process the event. The modified
TOSSIM scheduler updates the TOSSIM system time, processes an
event in the TOSSIM event queue, and then processes all tasks in the
task queue. If the TOSSIM event queue contains another event with
the current TOSSIM system time, the scheduler processes the event
along with any tasks that may have been generated. This last step
is repeated until there are no other events with the current TOSSIM
system time. Note that the order in the main loop is opposite that of
the original TOSSIM, which processes all tasks before updating the
TOSSIM system time and processing an event in the TOSSIM event
queue. This change is required in order to guarantee causal execution
in Viptos, since tasks may generate events with the current TOSSIM
time stamp. Otherwise, new events may have a time stamp that is
before the current Ptolemy II system time.

2) Type system:Communication between actors in Ptolemy II
occurs through typed tokens. However, nesC components do not use
Ptolemy II tokens; they use the C type system instead. To facilitate
the embedding of a different type system within Ptolemy II, the
PtinyOSCompositeActor subclasses the TypeOpaqueCompositeActor,
which allows the actor’s ports to have types, but does not require that
the actors inside be typed. Thus, the inside of such an actor is not
part of the Ptolemy II type system. In this case, the actors inside the
PtinyOSCompositeActor are nesC components that use the C type
system.

The PtinyOS Director and the modified TOSSIM automatically
perform conversion between the token types used in Ptolemy II
and the C types used in nesC. For example, most actors used in
the DE domain of Ptolemy II communicate via tokens with values
of type double. However, the ADC channel of a mote uses 10-bit
unsigned values. When an ADC value is requested by TOSSIM,
Viptos automatically performs the lossy conversion from a double-
valued token in Ptolemy II to an unsigned short integer value in
TOSSIM that is masked for 10-bit usage. In another example, when
TOSSIM updates the state of the LEDs, Viptos automatically converts
the char representing the LED value in TOSSIM into a boolean-
valued token in Ptolemy II.

3) I/O: In the DE domain of Ptolemy II, tokens received at the
input port of an actor will cause the actor to fire at the time of the
token timestamp. The token is usually consumed, at which point the
port is empty. The PtinyOSCompositeActor may receive tokens on the
ADC ports that represent new values. To reconcile the difference in
timing between when the simulated environment makes a new ADC
value available and when the simulated node reads its ADC ports,
we use a Ptolemy II PortParameter instead of a Port for the ADC
ports. Our usage of the PortParameter makes the port value persistent
between updates such that when the TinyOS program requests data
from the ADC port, it gets the value of the most recently received
token.

The DE model containing the PtinyOS Director and nesC compo-
nents can be embedded in a VisualSense Wireless model so that the
physical environment and radio channels can be simulated. Figure 2a
shows an example of embedding a node running theSenseToLeds
TinyOS program in the Wireless domain. Viptos overrides the built-in
ADC and radio models and LED device drivers in the original version
of TOSSIM so that they can send data to and receive data from the
ports of the PtinyOSCompositeActor. This allows the simulated node
to interact with user-created models of sources of light (see Figures
2e and 2f), temperature, radio channels, other nodes, etc.



4) Multiple nodes:By embedding multiple PtinyOSCompositeAc-
tors, each controlled by a different PtinyOS Director, into the Wireless
domain, multiple nodes with different programs can be simulated
at the same time. Separately compiled and loaded shared libraries
prevent namespace collision between different simulated TinyOS
programs.

Figure 5 shows an example model that contains two nodes that
communicate over a lossless radio channel. The first node contains
the CntToLedsAndRfm TinyOS program, which maintains an
increasing integer counter and broadcasts the value over the radio and
displays the value in binary on the LEDs. The second node contains
the RfmToLeds TinyOS program, which receives the counter value
over the radio and displays the value in binary on the LEDs. The radio
channel model can easily be replaced by deleting it and dragging in
a different channel model from the menu in the left-hand pane.

IV. RELATED WORK

A. Modeling and simulation environments for wireless systems

A number of frameworks for modeling wireless systems are
available.

ns-2 is a well-established, open-source network simulator. It is
a discrete event simulator with extensive support for simulating
TCP/IP, routing, and multicast protocols over wired and wireless
(local and satellite) networks. The wireless and mobility support
in ns-2 comes from the Monarch project, which provides channel
models and wireless network layer components in the physical, link,
and routing layers.

SensorSim [10] also builds on ns-2 and claims power models and
sensor channel models. A power model consists of an energy provider
(the battery) and a set of energy consumers (CPU, radio, and sensors).
An energy consumer can have several modes, each corresponding to a
different trade-off between performance and power. The sensor chan-
nels model the dynamic interaction between the physical environment
and the sensor nodes. SensorSim also claims hybrid simulation in
which real sensor nodes can participate. Unfortunately, SensorSim is
no longer under development and will not be publicly released.

OPNET Modeler is a commercial tool that offers sophisticated
modeling and simulation of communication networks. An OPNET
model is hierarchical, where the top level contains the communication
nodes and the topology of the network. Each node can be constructed
from software components, called processes, in a block-diagram fash-
ion, and each process can be constructed using finite state machine
(FSM) models. It uses a discrete event simulator to execute the entire
model. In conventional OPNET models, nodes are connected by static
links. The OPNET Wireless Module provides support for wireless
and mobile communications. It uses a 13-stage “transceiver pipeline”
to dynamically determine the connectivity and propagation effects
among nodes. Users can specify transceiver frequency, bandwidth,
power, and other characteristics. These characteristics are used by
the transceiver pipeline stages to calculate the average power level
of the received signals to determine whether the receiver can receive
this signal. In addition, antenna gain patterns and terrain models are
well supported.

OMNET++ [11] is an open source tool for discrete-event modeling.
With the Mobility Framework extension, it shares many concepts,
solutions and features with OPNET. But instead of using FSM models
for processes, it defines a component interface for the basic module,
with a set of methods including initialize(), handleMessage(), and
finish(), that are overridden by the model builder. The initialize()
method is called by the simulator at the beginning of executing
the network, the handleMessage() method is called when a message

is sent to this module, and the finish() method is called when the
execution is prepared to stop. This object-oriented approach is similar
to the abstract semantics of Ptolemy II [5]. The NesCT tool of the
EYES WSN project allows users to run TinyOS applications directly
in OMNeT++ simulations. However, according to the documentation,
simulated nodes can only send radio messages; they cannot receive
radio messages.

J-Sim [12] is an open-source, component-based, compositional net-
work simulation environment that is developed entirely in Java. A new
wireless sensor framework [13] is being developed that builds upon
the autonomous component architecture (ACA) and the extensible
internetworking framework (INET) of J-Sim, and provides an object-
oriented definition of (i) target, sensor and sink nodes, (ii) sensor and
wireless communication channels, and (iii) physical media such as
seismic channels, mobility model and power model (both energy-
producing and energy-consuming components). Application-specific
models can be defined by sub-classing classes in the simulation
framework and customizing their behaviors. It also includes a set
of classes and mechanisms to realize network emulation. This new
framework extends the notion of network emulation to Berkeley Mica
mote-based WSNs, which are used to extract physical environment
data by using SerialForwarder, a utility distributed with TinyOS that
collects TinyOS packets sent to a mote base station attached to a PC
and forwards them through the serial port.

Prowler [14] is a probabilistic wireless network simulator running
under MATLAB capable of simulating wireless distributed systems,
from the application to the physical communication layer. Although
Prowler provides a generic simulation environment, its current target
platform is the Berkeley Mica mote running TinyOS. Prowler is an
event-driven simulator that can be set to operate in either deterministic
mode (to produce replicable results while testing the application) or
in probabilistic mode that simulates the nondeterministic nature of the
communication channel and the low-level communication protocol of
the motes. It can incorporate arbitrary number of motes, on arbitrary
(possibly dynamic) topology, and it was designed so that it can easily
be embedded into optimization algorithms.

Em* [15] is toolsuite for developing sensor network applications
on Linux-based hardware platforms called microservers. It supports
deployment, simulation, emulation, and visualization of live systems,
both real and simulated. EmTOS [16] is an extension to Em* that
enables an entire nesC/TinyOS application to run as a single module
in an Em* system. The EmTOS wrapper library is similar to the
TOSSIM simulated device library. Em* modules are implemented
as user-space processes that communicate through message passing
via device files. This means that the minimum granularity of a
timer is 10ms, corresponding to the Linux jiffy clock that is part
of the scheduler in the Linux 2.4 kernel. Thus, EmTOS modules
are restricted to using the Linux scheduler as the main programming
model.

TinyViz [3] is a Java-based graphical user interface for TOSSIM.
TinyViz supports software plugins that watch for events coming from
the simulation – such as debug messages, radio messages, and so forth
– and react by drawing information on the display, setting simulation
parameters, or actuating the simulation itself, for example, by setting
the sensor values that simulated motes will read. TinyViz includes a
radio model plugin with two built-in models: ”Empirical” (based on
an outdoor trace of packet connectivity with the RFM1000 radios)
and ”Fixed radius” (all motes within a given fixed distance of each
other have perfect connectivity, and no connectivity to other motes).

Other simulators used in the TinyOS community for cycle accurate
simulation/emulation of the Atmel AVR (processor used in the Mica



mote series) instruction set include ATEMU [17] and Avrora [18].
ATEMU simulates a byte-oriented interface to the radio and its
transmissions at the bit level with precise timing. Avrora works at
the byte level with precise timing, and its simulation speed scales
much better than ATEMU for large number of nodes. Both support
simulation of heterogeneous networks.

All of these systems provide extension points where model-builders
can define functionality by adding code. Some are also open-source
software, like Viptos. All except EmStar provide some form of
discrete-event simulation, but none provide the ability that Viptos
inherits from Ptolemy II to integrate diverse models of computation,
such as continuous-time, dataflow, synchronous/reactive, and time-
triggered. This capability can be used, for example, to model the
physical environment, as well as the physical dynamics of mobility of
sensor nodes, their digital circuits, energy consumption and produc-
tion, signal processing, or real-time software behavior. Such models
would have to be built with low-level code. Ptolemy II supports
hierarchical nesting of heterogeneous models of computation [5]. It
also appears to be unique among these modeling environments in that
FSM models can be arbitrarily nested with other models; i.e., they
are not restricted to be leaf nodes [19]. It also appears to be the only
one to provide a modern type system at the actor level (vs. the code
level) [8].

B. TinyOS development and editing environments

GRATIS II (Graphical Development Environment for TinyOS) is
built on top of GME 3 (Generic Modeling Environment). The TinyOS
component library is available as graphical blocks with GRATIS II.
Given a valid model, the GRATIS II code generator can transform all
the interface and wiring information into a set of nesC target files.
However, GRATIS II was developed mainly for static analysis of
TinyOS component graphs and does not support simulation.

TinyDT is a TinyOS 1.x plugin for the Eclipse platform that imple-
ments an IDE (integrated development environment) for TinyOS/nesC
development. This open source project features syntax highlighting of
nesC code, code navigation, code completion for interface members,
support for multiple target platforms and sensor boards, automatic
build support, team development support (through Eclipse-CVS in-

tegration), and support for multiple TinyOS source trees. TinyDT
uses a Java nesC parser implemented using ANTLR to build an in-
memory representation of the actual nesC application, which includes
component hierarchy, wirings, interfaces and the JavaDoc style nesC
documentation. TinyOS IDE is another Eclipse plugin that supports
TinyOS project development and provides nesC syntax highlighting.
Both TinyDT and TinyOS IDE complement Viptos in that they can
be used to create and edit the source code for new TinyOS library
components, which can then be imported into Viptos for simulation
usingnc2moml.

V. WORK IN PROGRESS

This section describes features of Viptos that are currently being
changed as we further develop the framework.

A. Ports

The current mapping of non-parameterized nesC interfaces to
Ptolemy II simple ports and parameterized nesC interfaces to Ptolemy
II multiports leads to an inability to express certain types of nesC
configurations. For example, if a configuration contains the following
mapping, wherea, b, c , andd are non-parameterized interfaces:

a -> d
b -> d
a -> c

Then, the original Viptos mapping will produce an extra connection
betweenb andc , since in Ptolemy II, relations are required to create
multiple connections to portd, and relations that are connected to
each other are considered to be part of a relation group in which
the relations are indistinguishable from each other, and connections
between relations are directionless.

Similarly, multiple connections between the sameuses and
provides interfaces may be lost or lead to extra connections
when translating from nesC to MoML. Since relations in a group
are indistinguishable from each other, multiple connections between
relations cannot be represented in Ptolemy II.

We plan to change the current multiport/simple port distinction and
represent both parameterized and non-parameterized nesC interfaces

Fig. 5. SendAndReceive application in Viptos.



with multiports. We plan to attach a Ptolemy II parameter to multi-
ports that represent parameterized nesC interfaces. The value of the
parameter will be an array of integers that is constrained to have a
length equal to the number of connections made to the port. Using
multiports for all connections will allow all types of connections that
can be made in nesC. Note that multiple connections to the same
provides port may actually be a sign of a possible race condition,
since the provided code can be triggered by simultaneous events from
the physical world. However, to avoid duplicate functionality, we rely
on the nesC compiler to do a complete analysis of the connected
interface methods to detect incorrect usage of commands or events
marked with theasync keyword and hence possible race conditions.

B. Multihop routing

We are currently working on supporting multihop routing within
Viptos. Planned features include: setting node IDs external to
TOSSIM, graphical support for visualizing the routing tree, and
creating a special channel model that can parse TinyOS packets and
direct them to the appropriate node.

VI. CONCLUSION AND FUTURE WORK

We have described an extensible software framework for sensor
network modeling called Viptos that is built on VisualSense and
TinyOS. An important area of future research involves investigating
the scalability of this framework as more nodes are simulated. One
option is to investigate the scalability of building on top of the Avrora
simulator instead of TOSSIM, since Avrora supports heterogeneous
networks. However, this would make the simulation platform specific
to the AVR processor family. Other interesting topics include how
to enable code dissemination algorithms such as Deluge [20] from
within the framework. We are also investigating how to represent the
individual methods of an interface using ports or an alternate visual
syntax.

Viptos is open-source software, freely available at
http://ptolemy.eecs.berkeley.edu/viptos. We hope that the community
can use this framework to encapsulate and exchange methods and
expertise in channel modeling, sensor node design, and application
development.
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