
Automatic Action Advisor for Storage System
Performance Management

Li Yin

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-160

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-160.html

November 28, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Automatic Action Advisor for Storage System Performance Management

by

Li Yin

B.E. (Tsinghua University) 1998
M.Phil. (Hong Kong University of Science and Technology) 2001

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Randy H. Katz, Chair
Professor Eric Brewer

Professor Steven N. Evans

Fall 2006

The dissertation of Li Yin is approved.

Chair Date

Date

Date

University of California, Berkeley

Fall 2006

Automatic Action Advisor for Storage System Performance Management

Copyright c© 2006

by

Li Yin

Abstract

Automatic Action Advisor for Storage System Performance Management

by

Li Yin

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Randy H. Katz, Chair

With growing storage demands and system requirements, storage systems have become more com-

plicated to manage. Management cost now dominates the Total Cost of Ownership. To reduce the

cost and adapt to system changes more efficiently, storage systems must be managed more automat-

ically. In this thesis, we aim to develop a framework to automatically and responsively generate an

integrated multi-action plan, consisting of what actions to invoke, when to invoke them and how to

invoke them, that can maximize the system utility.

To tackle the problem of automatic multi-action plan generation, we face four challenges: how

to react rapidly, how to invoke actions proactively, how to compare alternative plans fairly and han-

dle unexpected system changes. To solve these challenges, we use system models and constraint

optimization to find the optimal action quickly, perform time-series forecasting and risk manage-

ment to invoke actions proactively, use the system utility and optimization window to guide the

comparison of actions, and apply a defensive strategy to handle unexpected system changes.

Within the general SMART framework, we develop three specific tools. (1) CHAMELEON is an

automatic throttling tool that identifies the set of workloads to throttle and the degree of throttling

using system models and constraint optimization techniques. (2) SMARTMIG is a proactive migra-

tion decision tool that generates the optimal migration plan in three phases: optimization, planning

and risk management. Its decision takes into account the future workload demands and the benefit

1

and risk of migration options. (3) SMART’s core design piece, Action Advisor. It integrates multi-

ple action options and generates an action plan to handle expected and unexpected system changes.

For predictable system changes, the Action Advisor finds the action plan using a recursive greedy

algorithm. For unexpected changes, it applies a defensive strategy based on the ski-rental algorithm

to choose actions. We implement SMART in both a real-world distributed file system, GPFS, and a

simulator. Our evaluation results show that SMART can improve the system utility significantly. For

90% of the scenarios tested, SMART eliminates 94% of the utility loss. For the remaining 10%, it

reduces the utility loss by 70%.

Professor Randy H. Katz
Dissertation Committee Chair

2

To my parents, my brother and Weidong.

i

Contents

Contents ii

List of Figures vi

List of Tables ix

Acknowledgments x

1 Introduction 1
1.1 Motivation . 1

1.2 Problem Statement and Challenges . 6

1.3 Contributions and Structure of The Thesis . 9

2 Related Work 13
2.1 Storage System Performance Modeling . 13

2.1.1 Simulation-Based Approaches . 14

2.1.2 Analytical Models . 15

2.1.3 Black-box Approaches . 16

2.1.4 Other Works . 17

2.2 Automatic Storage System Management . 18

2.2.1 Policy-Based Approaches . 18

2.2.2 Feedback-Based Approaches . 19

2.2.3 Scheduling-Based Approaches . 22

2.2.4 Model-Based Approaches . 24

2.2.5 Other Works . 25

2.2.6 Summary . 26

ii

3 Model-Based Automatic Action Advisor 28
3.1 Motivation . 29

3.2 Terminology . 29

3.3 Framework for Model-Based Action Advisor: SMART 33

3.3.1 Input Modules . 34

3.3.2 Utility Evaluator . 36

3.3.3 Single Action Tools . 37

3.3.4 Action Advisor . 37

3.4 Experimental Exploration of Black-Box Based Component Models 38

3.4.1 Goal of Performance Modeling . 39

3.4.2 Procedure of Black-Box Based Modeling 40

3.4.3 Analyzing the Performance Models . 41

3.4.4 Experimental Evaluation . 44

3.5 Conclusions . 52

4 CHAMELEON: An Automatic Throttling Decision Tool for Storage System 54
4.1 Motivation . 55

4.2 Overview . 57

4.3 System Models . 59

4.3.1 Workload Models . 60

4.3.2 Action Models . 61

4.4 Reasoning Engine . 61

4.4.1 Intuition . 62

4.4.2 Formalization in CHAMELEON . 63

4.4.3 Workload Unthrottling . 65

4.4.4 Confidence on Decisions . 66

4.5 Designer-Defined Policies . 66

4.6 Informed Feedback Module . 67

4.7 Experimental Evaluation . 70

4.7.1 Testbed Configuration . 70

4.7.2 Evaluation Standard . 71

4.7.3 Using Synthetic Workloads . 71

4.7.4 Replaying Real-World Traces . 74

4.7.5 Decision Overhead of the Reasoning Engine 81

iii

4.8 Working with SMART . 82

4.9 Conclusions . 84

5 SMARTMIG: An Automatic Proactive Data Migration Decision Tool 86
5.1 Motivation and Related Work . 87

5.2 Overview of SMARTMIG . 89

5.3 Migration Plan Generator . 91

5.3.1 The Optimization Phase: What and Where 91

5.3.2 The Planning Phase: How and When . 94

How: Choosing Migration Speed . 94

When: Choosing the Migration Starting Time t∗ 95

5.3.3 Risk Management Phase . 98

5.4 Evaluation . 100

5.4.1 Experiments Configuration . 100

5.4.2 Sanity Check . 102

Working of Three Phases . 102

Impact of the Optimization Window T . 104

Impact of Utility Configuration . 104

5.4.3 Efficiency Tests . 105

Percentage of the Utility Loss Elimination 105

Computational Overhead of SMARTMIG 106

5.4.4 Sensitivity Test of Performance Model Errors 107

5.5 Summary . 109

6 SMART: An Integrated Multi-Action Advisor for Storage Systems 111
6.1 Motivation . 112

6.2 Framework Revisited . 115

6.3 Decision Algorithms of the Action Advisor . 117

6.3.1 Normal Mode: Greedy Pruning with Lookback and Lookforward 119

6.3.2 Risk Management . 123

6.3.3 Unexpected Mode: Defensive Action Selection 125

6.4 Experimental Evaluation . 128

6.4.1 Evaluation Metric . 130

6.4.2 GPFS Prototype Implementation . 130

iv

6.4.3 Testbed Configurations . 132

6.4.4 Sanity Check . 135

6.4.5 Feasibility Test Using the GPFS Prototype 141

6.4.6 Sensitivity Test . 144

6.4.7 Decision Overhead of SMART . 149

6.5 Conclusion . 152

7 Conclusions and Future Work 154
7.1 Thesis Summary . 154

7.2 Future Work . 157

Bibliography 160

v

List of Figures

1.1 The HDD areal density (left) and the price of various storage devices (right).
Source: the evolution of storage systems [61]. 2

1.2 DAS, NAS and SAN . 3

1.3 A typical consolidated storage system . 5

3.1 Architecture of SMART: a model-based action advisor 33

3.2 A regression tree example . 40

3.3 Impact of training size on latency models: single workload 50

3.4 Impact of training size on latency models: multiple workloads 51

4.1 CHAMELEONin the SMART framework . 56

4.2 CHAMELEON moves along the line according to the quality of the predictions gen-
erated by the internally-built models at each point in time. 56

4.3 Architecture of CHAMELEON . 58

4.4 Workload model for SPC. 60

4.5 Overview of constraint optimization. 62

4.6 Workload classification. Region limits correspond to the 100% of the SLO values. . 64

4.7 Operation of the feedback module. 68

4.8 Effect of priority values on the output of the constraint solver. 73

4.9 Sanity test for the reasoning engine (workload W5 operating from the controller
cache.) . 74

4.10 The final output of CHAMELEON using a combination of prediction and feedback-
based approach . 75

4.11 Uncontrolled throughput and latency values for real-world and synthetic workload
traces. 76

4.12 Throughput and latency values for real-world workload traces with throttling (with-
out periodic unthrottling.) . 78

vi

4.13 Throughput and latency values for real-world workload traces with throttling and
periodic unthrottling. 79

4.14 Handling a change in the confidence value of the models at run-time. 81

4.15 Decision overhead of the reasoning engine . 82

5.1 Architecture of SMARTMIG . 89

5.2 Flow chart of optimization phase . 93

5.3 Overall solution utility loss . 96

5.4 CDF of the percentage of utility loss with no action invocation for all 86 scenarios 102

5.5 Migration speed vs. component load . 103

5.6 Overall utility loss for various migration start times 103

5.7 CDF of the percentage of the saved utility loss 105

5.8 CDF of the percentage of the utility loss with SMARTMIG 106

5.9 Computation overhead of SMARTMIG . 107

5.10 Impact of model errors on the accuracy of the predicted utility loss 108

5.11 Impact of model errors on the percentage of the saved utility loss 108

6.1 Problem with single action . 113

6.2 Architecture of SMART: a model-based action advisor 115

6.3 Tree based action schedule generation . 119

6.4 Pseudocode for the greedy pruning procedure . 121

6.5 Lookback and lookforward optimization . 121

6.6 Pseudocode of lookback and lookforward optimization 123

6.7 Pseudocode of the recursive greedy procedure . 124

6.8 Example of the unexpected mode . 127

6.9 IO rate of workloads as a function of time . 133

6.10 Utility functions of workloads . 134

6.11 Utility loss if no corrective action is invoked . 135

6.12 Action invocation for different utility functions assigned to Wtrend 136

6.13 Action invocation for different optimization windows 137

6.14 Action invocation for different budget constraints 138

6.15 Action invocation for different risk factor . 139

6.16 Action invocation for unexpected case . 140

6.17 The cumulative utility loss comparison between no action and SMART’s actions . . 141

vii

6.18 The observed utility loss . 142

6.19 Difference in utility loss (after filtering): observed value-predicted 142

6.20 Unexpected mode: the cumulative utility loss with migration invoked and with no
action . 143

6.21 CDF of the percentage of utility loss . 145

6.22 CDF of the percentage of the saved utility loss 145

6.23 Impact of model errors on the accuracy of the predicted utility loss 146

6.24 Impact of performance model errors . 147

6.25 Impact of future forecasting errors on the accuracy of the predicted utility loss . . 148

6.26 Impact of future forecasting errors . 150

6.27 Computational overhead of SMART . 151

viii

List of Tables

3.1 Multiple workload environment . 46

3.2 All data vs. non-saturated data only . 47

3.3 Impact of OSIO . 47

3.4 Coarse models vs. fine models: aggregate performance 48

3.5 Coarse models vs. fine models: per-workload performance 49

4.1 Synthetic workload streams. 71

5.1 Constraint optimization for what and where . 91

5.2 Solutions returned by SMARTMIG with a 14 day optimization window 103

5.3 Solutions returned by SMARTMIG with a 7 day optimization window 104

5.4 Five solutions returned by SMARTMIG with different utility configuration 105

6.1 Access characteristics of workloads . 132

ix

Acknowledgements

I am truly grateful to everyone who has directly or indirectly helped me in the past five years.

Without their help and support, I wouldn’t be able to finish my Ph.D. dissertation successfully.

First and foremost, I would like to thank my advisor, Professor Randy Katz, for giving me

a chance to work with him, guiding me through these years and teaching me how to be a good

researcher. He gave me the freedom to pursue different areas of research. I began my research with

Randy on networks, then moved on to the performance study of networked storage before settling on

automatic storage system management. I want to thank him for being so supportive and for always

giving insightful advices. Despite his busy schedule, Randy managed to meet with me every week.

He provided very detailed and insightful feedback on this dissertation with amazing turn-around

time, even when he was traveling. This thesis would not have been possible without his guidance.

I would also like to thank my dissertation committee members, Professors Eric Brewer and

Steven Evans, for their valuable comments and suggestions on my proposal and thesis. I want to

thank Professor Michael Franklin for chairing my qualifying exam committee and providing helpful

comments on my work.

In the past two years, I was generously supported by IBM Almaden Research Center as a part

time supplemental researcher. I want to thank Dr. Sandeep Uttamchandani for giving me the oppor-

tunity to start the collaboration with the lab in Summer 2004, and for being a great mentor. I would

also like to thank Dr. John Palmer, Dr. Kaladhar Voruganti and Dr. Honesty Young for their con-

tinuous encouragement and support. I am also fortunate to work with many excellent researchers

there: Dr. Guillermo Alvarez, Linda Duyanovich, Dr. Madhukar Korupolu, David Pease, Ranami

Routray and Aameek Singh.

I have received a lot of help and encouragement from fellow students at Berkeley. I thank the

members of the SAHARA and OASIS projects and other friends—Matthew Caesar, Yanlei Diao,

Yitao Duan, Ling Huang, Yaping Li, Sridhar Machiraju, Ana Sanz Merino, George Porter, Mukund

Seshadri, Lakshminarayanan Subramanian, Mel Tsai, Kai Wei, Fang Yu and Shelley Zhuang.

My life in Berkeley would have been much less fun without my friends. Kaichuan He, Wendy

Huang, Jinhui Pan and Xu Zou have given me tremendous help since my first day in the United

x

States. Yanmei Li, Yaping Li, Fang Yu and Rui Xu have given me continuous support and encour-

agement in these years. I want to thank all of them for their generous help and support. I am also

very grateful to Minghua Chen, Guozheng Ge, Zhanfeng Jia, Wei Wei, Guang Yang, Jing Yang,

Min Yue, Jianhui Zhang, Haibo Zeng, Wei Zheng for all the joy they have brought to me in these

years.

Finally, I am deeply grateful to my parents, my brother and my husband. My father and mother

taught me the importance of being honest, confident and hard-working. My brother took the re-

sponsibility of taking care of my mother while I was away from home to pursue my degrees. My

husband, Weidong Cui, is my best colleague and friend. His love, encouragement, and faith in me

made my years in Berkeley a happy journey. Their constant love and support have always been

and will be the source of my strength. I also thank my parents-in-law for their love, support and

generosity.

xi

Chapter 1

Introduction

1.1 Motivation

Reduction in system hardware cost and growing system requirements for performance, reliabil-

ity, availability and security have made management cost the dominant factor in the Total Cost of

Ownership (TCO) [36, 37]. Management costs includes the cost of hiring administrators to manage

and maintain the system and training support personnel and users. Hawkins [37] states that these

management costs now contribute up to 85% of the total cost of ownership. To reduce the TCO,

automatic system management has become a major research challenge and technical opportunity.

This thesis focuses on automating storage system management because managing storage is now

considered the largest component of TCO, estimated at 60% to 80% [36].

Over the recent past, three major trends have driven the evolution of storage systems.

• Growing storage capacity and decreasing storage cost. Storage systems are built on Hard

Disk Drive (HDD) technology. To understand the evolution of storage systems, it is important

to consider the evolution of the HDD. Figure 1.1 plots the HDD areal density and the price

of various storage devices since 1980 [61]. We can see that the areal density of the HDD

has improved by seven orders of magnitude and the number of bits stored per unit of HDD

media is doubling about every year, which is faster than the speed of doubling every 1.5 years

in Moore’s law. At the same time, the HDD prices have decreased by about five orders of

1

magnitude and the total cost of storage systems has fallen about 2.5 orders of magnitude in

the same period. The decreasing cost of storage systems has enabled new applications. Over

time, the cost of the raw storage devices account for a smaller fraction of the total cost of the

storage systems.

Figure 1.1. The HDD areal density (left) and the price of various storage devices (right). Source:
the evolution of storage systems [61].

• Increasing demand for storage. Three major factors contribute to this growing demand.

First, the decreasing cost of storage systems enables digitization and replacement of legacy

media, such as paper and film. As a result of the increased use of digital images, online audio

and video presentations, the volume of stored data is increasing exponentially. Second, more

data are generated due to business automation, where, the data are generated using digital

devices, such as sensors and digital medical imaging, with a much faster speed than the tra-

ditional hand-authored data [61]. Another important factor is due to legal regulations. Many

companies now must archive e-mail or scan in all documents and store them electronically

for a certain period of time to comply with legal requirements. Due to these reasons, the

demand of storage increases dramatically. The Seagate IDC 2002 report estimated that the

disk storage capacity shipped expected to grow at a 62% compound annual growth rate [91].

• Growing management cost. The growing storage demands results in an increasing num-

ber of HDDs and makes the management tasks more complicated. For example, a typical

data center can have more than 10,000 HDDs. In addition, as the cost of storage systems

2

decreases, clients are seeking additional features such as performance, reliability, availability

and security. To provide these services, technologies such as disk arrays, network-attached

storage systems (NAS) [75], and the storage area network (SAN) [23] were developed, thus

complicating the management of storage systems. Example technologies include the redun-

dant array of independent disks (RAID) [10], the Network File System (NFS) [43] and the

Internet Small Computer Systems Interface (iSCSI) protocols [23]. Figure 1.2 shows several

possible ways of accessing data, including the traditional Direct Attached Storage (DAS),

NAS and SAN. Taken together, these factors have made the management cost dominant in

the TCO of storage systems. [61] estimated that out of three million dollars spent on storage

systems, storage administration costs 2 million dollars.

NAS Servers

NAS Servers

Storage Controllers

Storage Controllers

Applications

Network
Storage Area

Internet

D
ire

ct
 A

tta
ch

ed
 S

to
ra

ge

Figure 1.2. DAS, NAS and SAN

As a result of these trends, many organizations are trying to either deploy a centralized corporate

data center to consolidate their storage system operations or outsource the data and/or management

tasks to a storage service provider (SSP). In both the corporate data center and the SSP environment,

the storage system is often shared by multiple independent applications. For example, independent

customers share a common storage service provider. Or a given enterprise runs “consolidated”

applications on a common storage systems whereas in the past these were independent. Each ap-

3

plication has different priorities, workload access characteristics and the Service Level Objectives

(SLOs). The SLOs are negotiated between the clients and the service provider and are defined on

a per-workload basis. They often prescribe the lower bounds for performance, capacity, availability

and security that a client expects from the storage infrastructure. In the environment of an SSP, the

SLOs also include financial incentives, such as the cost of per GB of storage, and penalties when

SLOs are violated by the service provider. For example, when the performance goal is violated,

the client might receive a 30% discount. In addition, the data center or SSP is also associated with

business-level constraints that determine the “optimization window” and the budget for provisioning

addition hardware. The “optimization window” specifies the time window over which the storage

resources need to be provisioned and optimized.

From the perspective of the SSP or data center, their goal is to minimize the SLO violations to

avoid revenue losses due to penalties. At the same time, they want to improve the storage utilization

and reduce their system cost. To improve the storage system utilization and ease its management,

they employ storage virtualization technologies to map application data to storage resources in-

dependently of the underlying infrastructure (Figure 1.3). This application-to-resource mapping

cannot be static, as the correct configuration for optimal performance changes with the workload,

application priorities and run-time exceptions such as load surges and hardware failures. As a result,

corrective storage system actions must be invoked to change the application-to-resource mappings

dynamically. For example, the corrective action throttling limits the lower priority requests admitted

to the storage system to leave more bandwidth to the higher priority ones. Action migration mod-

ifies the physical location of workloads to redistribute the bandwidth to applications. Provisioning

action adds new physical resources to the system.

Currently, system administrators follow a process of Observe-Analyze-Act (OAA) to invoke

the corrective actions at run-time to optimize the application-to-resource mapping. In the Observe

process, they continuously monitor the system state and detect SLO violations. For example, they

monitor load and performance of each workload to detect whether these fall below acceptable and

agreed upon thresholds. In the Analyze process, they analyze the system state and determine the

corrective action plan, including what actions to invoke, when to invoke them and how to invoke

them. An example action plan is to throttle Workload 1 by 10% immediately and migrate its data

4

��
��

��

��
��
��

��������������	�	�	�		�	�	�	
�
�
�
�

�
�
�
�
�����������������������
�
�
�
�
�� �� ��
��

Storage Virtualization
Map Application Data to Storage Resources

E−Commerce ServiceEmail Service Web Hosting

Figure 1.3. A typical consolidated storage system

from device A to B at 2 am at a speed of 100 migration IOs per second. Finally, in the Act part, they

trigger the action actuators to correct the SLO violations.

This human-driven OAA loop has three key drawbacks.

• First, it is slow. It can take the administrators hours or days to determine the optimal corrective

action plan due to the complexity involved. The decision-making requires processing a large

amount of data along with other information, such as workload characteristics, component

features and business constraints.

• Second, it frequently leads to a sub-optimal solution. Improving the system utility depends

on the knowledge of the administrators and is only as good as they are themselves. In addi-

tion, due to the complexity involved, the administrators often settle for a quick, sub-optimal

solution. The solution may over-provision the system, making the system under-utilized, or it

may fail to solve the root cause of the problem, having the system oscillating around the bad

state, with many client SLOs in violation.

• Third, it is expensive due to the high “people” cost. One rule of thumb is that one adminis-

trator with an annual hiring cost of $60K to $130K can only manage about 5-20 terabytes of

storage, which only cost about $5K-$20K for the raw storage.

5

To address these problems, we must develop mechanisms to automate the OAA loop to increase the

amount of storage managed by an administrator, and to adapt to system changes and exceptions in

a fast and cost-effective way.

In the next section (Section 1.2), we describe the research problems we tackle in this thesis

and discuss the research challenges we face. In Section 1.3, we present our contributions and the

structure of this thesis.

1.2 Problem Statement and Challenges

Many research efforts have been made to automate the OAA loop. The key functionality of

the Observe part is to monitor system behaviors and detect problems such as SLO violations. The

Analyze process is responsible for evaluating system behavior and deciding the corrective action

plans to correct the SLO violations. The analysis typically requires processing a large amount

of data and combining various inputs such as workload characteristics, component features and

business constraints. The corrective action plans include details about what actions to invoke, when

to invoke the actions and how to invoke them. The what decision evaluates all action options such

as throttling, migration and provisioning, and selects the best actions that can solve the system

problems. An example what decision is to invoke migration as well as throttling. The when decision

chooses the optimal invocation time for selected actions. For example, throttling needs to be invoked

immediately and migration should be invoked at 2 am tonight. The how analysis generates the action

invocation parameters. For example, the token issue rates of throttling is 150 IOPS for workload

1 and 300 IOPS for workload 2, and workload 1 should be moved from device A to device B at

a speed of 100 IOPS. For the Act part, the key challenge is to implement actuators to enforce the

action behavior as designed. Many research prototypes as well as commercial products have been

developed to automate the Observe, Analyze or Act process. For example, the ControlCenter from

EMC [25] and the Total Productivity Center (TPC) from IBM [26] provide an extensive monitoring

framework to automate the Observe process. They also implement a class of action actuators such as

throttling, migration and provisioning tools to assist the Act process. However, the Analyze process

6

is still not well-understood. It is either manually controlled or based on simple heuristics, which

often lead to sub-optimal solutions.

In this thesis, we focus on automating the Analyze process. Our goal is to design a framework

that can generate the corrective action plan yielding the maximum system utility in an automatic

and responsive fashion. The system utility here is associated with workloads’ performance to reflect

the degree of users’ satisfaction (see Chapter 3 for the definition). This problem has the following

challenges:

• Rapid reaction. When the SLOs are violated, the storage service providers are charged a

penalty. To reduce revenue loss, it is critical that our framework adjusts the storage system

to meet the clients SLOs quickly. Generating the corrective action plan in a short time is a

very challenging task due to the large number of workloads, action options and complex in-

teractions between the system and workloads. In such an environment, quickly exploring the

search space to find a “near optimal” solution, if not optimal, is difficult. Existing feedback-

based solutions [47, 54] trade decision speed for optimality. On the other hand, policy-based

solutions [17] trade optimality for speed. In this thesis, we take the model-based approach

to find a quick “near optimal” solution. We construct mathematical models to describe the

system behaviors. Specifically, we define models for the capabilities of components in the

storage system (component models), the workload being presented to them (workload mod-

els) and the expected response to different action invocation options (action models). By

composing these models (Section 4.4), we can calculate the “expected” system behaviors for

a candidate action plan without actually invoking the system subjected to real workloads. In

addition, we apply constraint optimization techniques to reduce the overhead of searching

the candidate configuration space. In Chapter 3, we give details of the system models. In

Chapter 4, Chapter 5, and Chapter 6, we present our approximation algorithms for finding the

corrective action parameters and the corrective action plan.

• Proactive corrective actions. Existing solutions focus on correcting the system behaviors

after the SLOs are violated. However, once the SLO violations happen, the service provider

starts losing revenue. Ideally, we want to invoke the corrective actions before the SLOs are

7

violated to avoid penalty. Existing techniques such as time-series analysis [84] can forecast

the future workload demands. By leveraging these, we can predict SLO violations and invoke

appropriate corrective actions in advance. Proactively invoking actions have the benefit of

avoiding future SLO violations. At the same time, it also faces the risk of paying penalty cost

of incorrectly invoking actions. The challenge is how to balance the benefit and the risk. In

this thesis, we perform risk management to balance the benefit and the risk of an action plan.

Specifically, we combine the time-series forecasting and system models to predict the benefit

of an action plan, and scale the benefit with the risk factor, that captures the risk of future

uncertainty and action invocation overhead. In Chapter 5 and Chapter 6, we give details of

the risk management for migration and corrective action plans.

• Fair comparison of corrective actions. Researchers have developed multiple corrective ac-

tions for storage systems. When SLOs are violated or will be violated, we need to compare all

feasible action options and decide which to invoke. Different corrective actions are designed

for different purposes and have different strengths and weakness. For example, throttling can

adjust the system behavior in a very short time and is most appropriate for SLO violations

due to temporary fluctuations. Migration can solve problems caused by “long-lived” work-

load changes, such as change of hot-spot, but with a long action execution time due to data

movement. Hardware provisioning can solve the root cause of the problem—insufficient re-

source, but they face the risk of over-provisioning. The challenge is how to compare them

without bias.

To address this problem, the solution in this thesis utilizes two concepts, the “optimization

window” and the “system utility”, and looks for actions that can maximize the system utility

for a given optimization window. By looking for actions that are optimal for the optimization

window, we are not biased towards either short-term actions or long-term actions. The actions

selected are the most appropriate for the given optimization window. In addition, by using

“system utility” (see the definition in Section 3.2), actions with different properties are uni-

formly evaluated based on their impact on the system utility. The goal of our framework is to

find actions to maximize the utility value delivered by the storage system to all workloads. In

Chapter 3, we define the system utility, utility functions and the calculation of system utility.

8

In Chapter 5 and Chapter 6, we describe algorithms for finding the action options that lead to

maximum system utility improvement for a given optimization window.

• Handling unexpected system changes. Real world storage systems often experience unex-

pected system changes such as changes of workload characteristics and load surges. Due to

the limited information about the system states, generating corrective action plans for unex-

pected system changes is more difficult than handling the normal system changes that can

be forecast based on the history. In this thesis, we propose a defensive strategy to handle

unexpected system changes. We borrow the concept of the well-known “ski-rental” problem

[48], where we need to make a decision to buy or rent a ski equipment without knowledge on

how many times one might go skiing in the future. The commonly used strategy is to stay

with the lower cost option, that is, “to keep renting until the amount paid in renting equals to

the cost of buying, and then buy”. In our solution, we continuously examine the accuracy of

future prediction. There exist multiple metrics to evaluate the future prediction accuracy. One

example is the absolute prediction error, defined as the difference of the predicted value and

the observed value. When the future prediction accuracy is low, we switch to the defensive

decision strategy, which always invokes the action with the lowest cost. In the mean time,

we continuously collect new observations to improve the time-series prediction accuracy and

switch to the normal decision strategy when the prediction is accurate enough. In Chapter 6,

we describe our defensive algorithm for handling the unexpected system changes.

In the next section, we highlight our contributions and describe the structure of this thesis.

1.3 Contributions and Structure of The Thesis

In this thesis, we tackle the problem of automatically generating the corrective action plan in

the OAA loop. We propose a new framework, SMART, which is a model-based action advisor. It

generates action plans by combining system models, time-series forecasting, business constraints

and single action options. Specifically, we develop the following specific tools within the more

general framework:

9

• An Automatic Throttling Decision Tool: We develop a new throttling tool, CHAMELEON,

which automates the decision making of the throttling actions. It uses system models to pre-

dict the system behavior for given throttling invocation parameters and applies constraint op-

timization techniques such as linear programming to scan the candidate space for the optimal

settings. In addition, it uses a feedback-loop to control the throttling execution and defines

simple heuristics as the fall-back strategy when the system knowledge is insufficient. For

example, when the accuracy of system models falls below a given threshold, CHAMELEON

determines the invocation parameters using heuristics. We replay traces from production en-

vironments in a real storage system, and demonstrate that CHAMELEON makes accurate de-

cisions for the workloads examined. With our testbed and scenarios tested, CHAMELEON can

react to and solve performance problems in 3 to 14 minutes using the feedback loop guided

by the decision based on system models.

• A Proactive Risk Modulated Migration Tool: We develop a new migration tool, SMART-

MIG, which can determine the migration invocation parameters, including what and where to

migrate, how to migrate and when to invoke. SMARTMIG makes the migration decision in

three phases. In the optimization phase, SMARTMIG selects the migration data (what) and

migration targets (where). In the planning phase, SMARTMIG determines the migration speed

(how) and the migration starting time (when). In the risk management phase, SMARTMIG ap-

plies risk analysis to select migration options leading to the maximum system utility gain

and minimum risk. Compared with previous solutions, SMARTMIG’s migration decision can

account for both the current and future system states. It also considers the risk of migration

operation due to future uncertainty and the migration invocation overhead. Experimental re-

sults show that SMARTMIG’s migration plan can account for various configuration settings.

For the scenarios tested, SMARTMIG eliminates 80% of the utility loss that the system may

experience when no corrective action is taken. We also show that SMARTMIG can make a

decision on the order of minutes.

• An Integrated Multi-Action Advisor: In SMART, the Action Advisor is designed to generate

the action plan to handle both expected and unexpected system changes. Depending on the

accuracy of the future prediction, it operates in either the normal mode or the unexpected

10

mode. In the former, it applies a recursive greedy algorithm to generate the action plan and

performs the risk management to balance the benefit and risk of an action option. In the

latter, it applies a defensive strategy and always selects the action with the lowest cost. In

both modes, SMART continuously collects new observations on the system states to improve

the accuracy of the future prediction. We test the SMART framework using both the GPFS

prototype and a simulator. Our experimental results show that SMART’s action plan can adapt

to the change of system configuration parameters and generate flexible action schedules to

improve the system utility. For our test scenarios, SMART was able to improve system utility,

often by substantial margins. For more than 90% of scenarios tested, SMART elimiates more

than 94% of utility loss. For the remaining 10% cases, it reduces the utility loss by more

than 70%. SMART decision was made without operator intervention. With our testbed, we

measured that SMART can generate the action plan in the order of minutes with 100 workloads

running in the system.

The rest of this thesis is organized as follows. In Chapter 2, we discuss the related work in

the areas of storage system performance modeling and storage system management. It provides the

background from which this thesis is developed.

In Chapter 3, we describe the framework of SMART. We introduce the key components of

SMART, including the input modules, single corrective action tools and the Action Advisor. In

addition, we study one of the key elements of the system, storage performance models in detail. We

choose the black-box approach and construct system models using an off-the-shelf regression tree

implementation GUIDE [53]. Our experimental results show that, to improve the model accuracy, it

is important to filter the data in the saturated region and take into account the number of outstanding

I/Os. With three workloads running in a real storage system, we achieve an error rate of 19.3% for

the latency models and 4.5% for the throughput models.

In Chapter 4, we describe the design and formulation of CHAMELEON. We discuss the models,

reasoning engine, base heuristics and the feedback-control of throttling execution in details. We

also present our experimental evaluation results of replaying traces from production environments

in a real storage system.

11

In Chapter 5, we describe the design of SMARTMIG and decision algorithms in three phases:

optimization, planning and risk management. We evaluate SMARTMIG’s efficiency in terms of

utility loss reduced and measure its decision overhead using a simulator.

The core design piece of SMART, the Action Advisor is discussed in Chapter 6. We describe

how Action Advisor collects single action options and generate an integrated multi-action plan. We

describe the decision algorithms to handle the normal and unexpected system changes in details.

We test the SMART framework using both the GPFS prototype and a simulator. Our experiment

evaluates how SMART adapts to configuration changes, how SMART performs in real system, the

impact of input errors on SMART’s decision and the decision overhead.

Finally, in Chapter 7, we summarize our work and contributions, and discuss directions for

future work.

12

Chapter 2

Related Work

In this chapter, we discuss the related work in the areas of storage system performance modeling

and storage system management. Instead of covering every piece of work in these areas, we focus

on the most relevant ones to provide the background from which we developed this thesis. We start

with storage system performance modeling (Section 2.1), describing simulation-based approaches,

analytical and black-box models and some other relevant work. In Section 2.2, we summarize the

existing research efforts in the area of automatic storage system management, which motivate our

work on developing an automatic and responsive framework to generate the corrective action plan.

2.1 Storage System Performance Modeling

Our framework, SMART, is a model-based action advisor. It relies on storage system perfor-

mance models to predict the system behavior without real action invocation. In this thesis, we do

not aim to propose any new modeling techniques. Instead, we apply existing techniques to assist the

action selection. In this section, we review the most relevant efforts in storage system performance

modeling and identify their weaknesses and strengths for automatic storage system management.

Storage system performance modeling has a long and successful history. The goal is to pre-

dict the system’s performance characteristics along such dimensions as throughput, latency, and

utilization. Based on the approaches taken, existing solutions can be classified into three categories:

13

simulation-based [33, 93], analytic or white-box techniques [69, 74, 86], and black-box approaches

[6, 89]. In the rest of this section, we limit the discussion to several important and relevant efforts

in each category. Note that storage systems can consist of a single disk or disks connected using

switches and storage controllers. The latter is more complicated to model because disks and con-

trollers interact in a complicated manner. Configurations such as caching and data stripping policies

can alter the load seen to each disk and affect the performance of the storage system. For more

complicated storage systems, such as networked storage system, it can be modeled by composing

the network and the storage subsystem. There exists a large body of literature to simulate and model

the network behaviors [3, 4, 63, 64]. We skip the solutions in the domain of network modeling and

focus on the models for disks and disk array in this section.

2.1.1 Simulation-Based Approaches

Simulation-based approaches simulate the mechanical seek and rotational behavior of the de-

vices within the storage system and measure the performance for a given configuration to predict

performance. Ruemmler and Wilkes [69] developed an accurate simulator based on the mechanical

behavior of disks. The simulator considered important features such as data-caching characteristics,

data transfer effect including bus transfers, seek-time and head-switching costs, rotational position

and data layout. Later on, two well-known simulators, DiskSim [33] and Pantheon [93], were de-

veloped to model a storage sub-system. They can support most secondary storage components,

including device drivers, buses, controllers, adapters and disk drives. The workload performance

achieved using these simulators is close to that of a real system. However, only the disk modules

have been carefully validated, but the rest of the components have not.

Developing detailed disk simulators requires both mechanical and behavioral parameters of

the component, such as mechanical delays, on-board caching and prefetching algorithm. These

characterizations are often not publicly available and are very difficult to acquire. To address this

problem, Schindler, et al., developed an automatic tool DIXTRAC [72]. It used a collection of pre-

programmed test vectors to measure timing for mechanical and command processing overhead and

expert-system-like algorithms to identify the layout and caching policies. DIXTRAC simplifies the

parameterization of simulators such as DiskSim and Pantheon.

14

In summary, simulation-based approaches can achieve detailed and accurate results. However,

developing simulators require both mechanical and behavior parameters that may not be publicly

available. As modern storage architectures becoming more complicated, it becomes even more

difficult to develop an accurate simulator. In general, simulators can be used for model bootstrap-

ping or static provisioning. However, their long execution time make them unsuitable for run-time

storage system management, where the decision making mechanisms often need to explore the con-

sequences of multiple design points quickly.

2.1.2 Analytical Models

There is a large body of work on analytical models of disks and disk arrays. Different from

simulation-based approach, analytical approaches describe the behavior of storage devices using

a set of formulas. These often take workload characterizations as input and output the predicted

performance such as system utilization, throughput and response time.

Many analytical models have been developed to approximate the microscope disk performance,

such as the seek time, the disk cache impact, and the queuing delay for disks. The seek time was

normally modeled as a function of the seek distance [69] or a function of the workload [39]. The

most commonly used seek time approximation is a three-part function, which models the acceler-

ation and deceleration of the disk head, the head coasting time and the settling time. Analytical

models were also developed to approximate the impact of disk cache with write-back policy [15],

write-only policy [77], and to estimate the cache hit rate based on the workload sequentiality [74].

Analysis on the request scheduling was mostly based on the queuing theory. The M/G/1 model was

applied to approximate the FCFS scheduling algorithm [92]. Alternative scheduling algorithms like

SCAN and LOOK were analyzed in [62, 83].

Shriver, et al., [74] proposed an analytical model for disk drives with read ahead caches and

request reordering. They constructed the storage device model by developing sub-models for indi-

vidual components, including request queues, caches, and disk mechanisms and composing them.

Each workload was associated with thirteen attributes describing the request size, the temporal lo-

cality, the spatial locality and other measurable. These workload behavior parameters together with

15

the lower-level device behavior parameters are used to construct the model of a component. They

validated their model using Pantheon and show that for disk utilization less than 60%, they can

predict the behavior of a variety of real-world devices with mean errors less than 17%.

Previous discussions focus on the analytical models of disk drives. As the disk arrays become

more dominant, many analytic models were developed to approximate disk array’s behavior in the

normal mode [51, 59, 94], the degraded mode and the rebuild mode [58]. Recently, based on

Shriver’s disk model, Uysal, et al., [86] constructed analytic models to predict the throughput of

disk array by decomposing storage system into individual components. They validated their model

against a state-of-art disk array for a variety of synthetic workloads and array configurations. The

results show that their predictions are within 32% of the actual performance and 15% on average.

In general, compared to simulation-based approaches, analytical models are less accurate, but

they are orders of magnitude faster to generate performance prediction. However, defining analyt-

ical formulas requires deep understanding of the internal operation of the storage devices and the

interaction among workloads. In addition, we often need to develop various analytical models to

cover the different configuration of the storage devices, such as the scheduling policies, caching

policies and operation mode. As the storage system becomes more complicated, these formulas are

often difficult to develop and slow to evolve.

2.1.3 Black-box Approaches

Black box approaches treat the storage systems as black-boxes and require minimal or no device

specific information. Most of them construct models by correlating the input measurable with the

output observables using machine learning techniques. Anderson, et al., [6] proposed a table-based

approach. They bootstrapped the model with various data points and recorded the corresponding

performance in the form of a table. Each data point consists of system state and workload fea-

tures. The performance of a new point was predicted using interpolation techniques such as closet

point, nearest neighbor averaging and hyperplane interpolation. Experimental results show that

their approach can achieve an error rate of 5% to 20%, depending on the size of performance table.

However, this approach is not scalable with respect to the dimensions of the input vector. In addi-

16

tion, they represented the model with a table, which limits the flexibility of applying mathematical

techniques such as constraint optimization.

Hidrobo, et al., [38] applied machine learning techniques to model the response time as a func-

tion of the request type, the block address, the reference distance and the request size. They evalu-

ated three models: linear, quadratic and neural network. Their study show that the neural networks

outperforms the other two with an error below 10%.

Wang, et al., [89] proposed a solution based on the Classification And Regression Trees (CART)

algorithm. The CART model uses piece-wise constant functions to approximate the performance

functions on a multi-dimensional Cartesian space. They studied both the request level and the work-

load level models and found that the request level prediction achieves better accuracy because the

input information is more precise. At the workload level, the latency prediction has approximately

40% error.

In summary, black-box approaches require minimal or no device specific information. Models

are constructed by correlating the input measurable with the output observables. Compared with

the simulation-based approaches and analytical models, they are easier to develop. In addition,

by continuously updating the training data, they can evolve with changes in the system behavior,

workload characteristics and action effects automatically. On the other hand, black box approaches

are less accurate. The model accuracy depends on the quality of training data. When the storage

system becomes complicated, black-box approaches may require a long bootstrap time to achieve a

high prediction accuracy.

2.1.4 Other Works

In a storage system with multiple workloads, the I/O requests interleave together and change

the behavior of each individual workload. Most works in storage system performance analysis treat

the mixed workloads as one stream and focus on analyzing the performance of the whole system

such as overall throughput and average latency. Limited research has been done on analyzing the

performance of individual workloads. As the degree of resource sharing grows, the per-workload

performance prediction becomes more important to provide the service guarantee on a per-workload

17

basis. The most relevant work on this problem is the study by Borowsky, et al., [12]. They applied

queuing theory to approximate the bound of the response time. Their formulation requires prior-

knowledge on the correlation between workloads and the mean and variance of the service time for

each individual workload. Evaluation results showed that the approximated bound can accurately

determine if a given bound can be satisfied. Although their work did not construct an analytical

function to predict the exact performance, it provided a feasible solution to detect if a workload can

meet its SLO requirement in the shared system.

2.2 Automatic Storage System Management

With the growing complexity of storage system management, many commercial products and

research prototypes have been developed to manage the storage system automatically. Manage-

ment software, such as the Total Productivity Center (TPC) [26] from IBM and the ControlCenter

from EMC [25], provided an extensive monitoring framework and also implemented various ac-

tion actuators. Other solutions [21, 22, 66] can detect and diagnose system problems using machine

learning techniques. In this section, instead of covering all work related to automatic storage system

management, we focus on the specific literature of automatic decision making for storage system

performance optimization. Existing solutions fall in the taxonomy of policy-based, feedback-based,

scheduling-based and model-based approaches. In the rest of this section, we cover the most rele-

vant work in each.

2.2.1 Policy-Based Approaches

In policy-based approaches [42, 87], system administrators encode policies as sets of Event-

Condition-Action (ECA) rules that are triggered when some precondition is satisfied. An example

of the precondition is that one or more system metrics go beyond a predetermined threshold. Most

current commercial tools for automatic resource allocation belong to this category. For example,

BMC Patrol [76], IBM Total Productivity Center [26] and EMC ControlCenter [25] are all policy-

based solutions. Rules are a clumsy, error-prone programming language. They are written by

experts with many years of experience as system architects and administrators. However, as systems

18

grow in complexity, even experts find it difficult to develop such rules. Administrators are expected

to account for all relevant system states, to know which corrective action to take in each case, to

specify useful values for all the thresholds that determine when rules will fire, and to make sure that

the right rule will fire if preconditions overlap. Moreover, simple policy changes may translate into

modifications of a large number of rules, which makes it difficult to adapt to system changes. Verma,

et al., developed a variation [88] based on case-based reasoning. It relies on iterative refinement to

derive rules from a tabula rasa initial knowledge base. Tabula rasa refers to the development of

autonomous agents that are provided with a mechanism to reason and plan toward their goal, but no

“built-in” knowledge-base of their environment. This approach does not scale well to real systems

because it explores the search space in an unstructured way.

Sleds [17] is a distributed controller that provides statistical performance guarantees for a stor-

age system. It uses a leaky bucket filter [31] to shape and throttle I/O flows from each client.

It defines policies to specify the set of workloads supposedly responsible for the SLO violations

and the degree of throttling. Sleds can provide service isolation and differentiation by selectively

throttling workloads. It also scales well with its decentralized architecture. However, in Sleds, the

policies are predefined by administrators and hard-wired into the system. As a result, it cannot adapt

to system changes at run-time.

In summary, policy-based approaches front-load all the complexity into the work of creating the

rules, in exchange for simplicity of execution at run-time. They can only provide a coarse-grained

optimization, as good as the human who wrote the rules and they can not adapt to system changes

automatically.

2.2.2 Feedback-Based Approaches

A huge body of existing works fall into this category. Feedback-based approaches based on the

control theory make minimum or zero assumptions on the system behavior and workload character-

istics. The action decision is solely based on the most recent performance samples and the desired

system states.

Diao, et al., [29] discussed the control theoretic foundations for self-managing systems. They

19

made an analogy between the elements of autonomic systems and those in control systems, and

argued that control theory approach provides properties such as stabilities, accurate regulation and

short settling times. These are important properties for self-managing systems. Stability means

that for any bounded input over any amount of time, the output will also be bounded [67]. In the

domain of self-managing system, it indicates that for any bounded configuration parameters, the

performance of the storage system is also bounded. It is an important feature for mission critical

applications. Accurate regulation ensures the measured output will converge to the objectives. An

example objective is “maximizing the throughput without exceeding the latency constraints”. Set-

tling time is the time from the change in input to when the measured output is sufficiently close

to its new steady state value. For example, the settling time for throttling is the time from when

the new throttling decision is enforced to when the latency of the storage system is stable. A short

settling time indicates that the system converges quickly to its steady state value. They also pointed

out a set of challenges, including measurement delays and noises, long convergence time to meet

the objectives, and development of effective resource models to characterize the behavior of storage

systems.

Chase, et al., proposed Muse [19], which applies economic models to manage the energy and

sever resources in a data center. In the Muse system, customers “bid” for resources as a function

of delivered performance. Muse continuously monitors the load and plans resource allotments by

estimating the value of their effects on service performance and allocating resources to their most

efficient use. Muse uses a feedback loop to adjust the resource prices to balance the supply and

demand. Experimental results showed that Muse can adapt to offered load and available resources,

and can reduce the server energy usage by 29% or more for a typical Web workload.

Lumb, et al., proposed a virtual storage controller, Façade [55], which sits between hosts and

storage devices in the networks and controls the scheduling of interleaved I/O requests. Façade

maintains per-workload latency targets and a queue, which is shared by interleaved workloads. It

adjusts the queue length based on the workloads’ changing latency targets and the observed latency

in previous window. When the observed latency is higher than the latency target, it reduces the queue

length to admit less requests into the system. This is equivalent to throttling. However, Façade does

not support complex decisions about which subset of the workloads should be left alone. Therefore,

20

unexpected demand surge of one competing workload will cause all workloads being throttled, and

high priority workloads are throttled equally with low priority ones. As a result, it fails to provide

service isolation and differentiated service.

Triage [47] is another feedback-based throttling scheme. It defines a number of bands based

on the aggregated throughput. Each band specifies policies on how workloads should share the

additional throughput. At run-time, Triage keeps track of the performance band of the system and

uses an on-line feedback loop to control the sending rate and adjust the performance band to meet

the latency goal of each workload. The concept of band helps to capture the relative importance

between workloads and can provide a certain level of performance isolation and differentiation.

However, as the number of workloads increases, the number of bands grows. It becomes difficult to

specify the detailed sharing policies for each band.

Aqueduct [54] is an on-line migration algorithm based on control theory. It constructs a feed-

back loop to dynamically adjust the migration speed such that the performance guarantees on the

application can be satisfied in the presence of workload and system variations. Its prototype was

evaluated on a real storage system. The experimental results showed that Aqueduct successfully

provides the performance guarantees in terms of bounded average latencies. It reduced the aver-

age I/O latency by as much as 76% and the migration was performed very close to the maximum

migration speed allowed by the latency contract.

Hippodrome [8] is a tool to automate the design and configuration process of storage systems.

It is structured as an iterative loop: it first analyzes a workload to determine its requirements, then

creates a better storage system configuration to better meet these goals. It then invokes migration to

migrate the existing system to the new design. Hippodrome repeats the loop until it finds a storage

system configuration that satisfies the workload’s I/O requirements. Unlike previous examples that

use feedback for parameter tuning, Hippordrome’s feedback loop involves data migration. There-

fore, adapting system changes using Hippodrome can be both costive and time-consuming.

In general, compared with policy-based approaches, feedback-based solutions require mini-

mum or no prior-knowledge on the controlled system and workloads characteristics. They can

work well for parameter-tuning decisions with limited scale. However, they are not well-suited for

21

decision-making with multiple variables [82] due to the large solution space and the possible long

convergence time. For decisions other than parameter tuning, feedback-based approaches may have

a slow feedback loop and suffer from a long convergence time. Lastly, feedback-based approaches

rely on system signals to trigger actions and adjust the decisions. Thus, they lack the ability to

invoke actions and determine action parameters proactively.

2.2.3 Scheduling-Based Approaches

Scheduling-based approaches control resource allocation through managing job scheduling. It

has a successful history in the field of providing quality of service in networks. However, because

request dropping is not an option in storage as it is in networks, scheduling algorithms for storage

systems normally work differently. In this section, we focus our review on scheduling mechanisms

in domains other than networks.

Sullivan, et al., [81] proposed a framework for proportional-share resource management. The

goal is to provide flexible resource sharing and secure isolation at the same time. They extended

the standard lottery-scheduling scheme to support both hard shares and soft shares. By hard shares,

we mean absolute resource reservations, such as 10 GB of bandwidth. Soft shares are proportional

allocations, such as 10% of bandwidth. In addition, they introduced the ticket exchange mecha-

nism to allow applications to modify their own shares without compromising the rights of other

resource principles. They have prototyped their framework in the VINO operating system and

have used it to manage the CPU time, physical memory and disk bandwidth. The experimental

results demonstrated that the extended lottery-scheduling framework can improve the performance

of server applications.

Scheduling-based mechanisms are also used in storage systems to enforce fair share and provide

isolation. Jin, et al., [45] designed scheduling schemes to enforce fair share by throttling request

flows and reordering I/O requests. They studied two scheduling schemes based on the Start-time

Fair Queuing (SFQ) and a request window algorithm. Their results showed that their algorithms can

achieve efficient resource usage and performance isolation. However, they found that scheduling

22

schemes cannot ensure tight bounds on the performance, which is essential for satisfying the SLO

constraints.

Lan, et al., proposed a multi-dimensional storage virtualization system, Stonehenge [40], which

uses a learning-based bandwidth allocation mechanism to map SLOs to virtual device shares dy-

namically. One of its key component is the CSCAN-based Virtual Clock (CVC) scheduler, an

efficiency-aware real-time disk scheduling algorithm. The CVC scheduler maintains two disk re-

quest queues. One, the QoS queue, orders requests based on the Virtual Clock queuing algorithm

and the other one, the utilization queue, orders requests based on the standard CSCAN order. To

pick the next disk request for service, the CVC scheduler checks whether servicing the head request

in the utilization queue first will violate the finish time of the head request of the QoS queue. The

head request of the utilization queue will only be dispatched if no finish time guarantee is violated.

Otherwise, the head request in the QoS queue is scheduled first. The results showed that CVC

achieves 25% to 80% better disk utilization efficiency than generic VC scheduling algorithm. How-

ever, although Stonehenge allows more general SLOs with multiple dimensions, such as bandwidth,

capacity, latency and availability, it can only arbitrate accesses to the storage device, not to any other

bottleneck components in the system.

QoSMig [28] is an adaptive rate-control scheme for migration. It leverages the traffic shaping

ability from Sleds [17] and uses a unified admission control framework to control the migration

speed. QoSMig defines the reward models for I/O and migration requests to capture both the per-

formance requirements of clients I/Os and the constraints associated with migration. The migration

speed is controlled through the admission control algorithm that admits request with maximum

system rewards first. The trace-driven experimental study demonstrates that QoSmig can provide

significant better I/O performance as compared to existing migration methodologies.

In general, scheduling-based approaches provide fine-granularity rate-control and can enforce

isolation and fairness successfully. However, they are not sufficient for automatic decision making

because they cannot ensure tight bounds on the workloads’ performance.

23

2.2.4 Model-Based Approaches

Model-based approaches describe the system behaviors using models and apply them to make

decisions. It was applied to construct a portable high-level library in 1995 [13]. Recently, it has

been applied to make dynamic resource allocation decisions in server farms [18, 57] and to assist

the storage system provisioning decision making [5, 9].

Brewer [13] used statistical models to make decisions for portable high-level optimizations

such as data layouts and algorithm selection. He constructed models automatically from profiling

information and used them to select the optimal parameters and implementations. He studied the

models of the performance of the stencil module and the sorting algorithms and applied them to

select the optimal parameters and implementations in different platforms. The results showed that

both models were very accurate and can make correct decision. Finally, a portable high-level library

was constructed using this method.

Menascȩ, et al., [57] proposed a model-based scheme to tune resource configuration parame-

ters, such as the number of threads and the maximum queue size of requests at each server. They

used queuing theory to predict the system performance for given parameters, and applied the hill-

climbing algorithm to find the optimal configuration values.

Chandra, et al., [18] proposed an on-line dynamic resource allocation algorithm to provide

service guarantees to web applications running on shared data centers. They applied time-series

analysis techniques to predict expected workload parameters from measured system metrics and

employed a constrained non-linear optimization technique to dynamically allocate the server re-

sources based on the estimated application requirements.

Doyle, et al., [30] designed a resource provisioning scheme for web service utility using perfor-

mance models. It predicts the performance with multiple models, including server memory, storage

I/O rate, storage response time and service response time, and adjusts the storage and memory

allotment dynamically to satisfy the SLOs constraints in terms of response time.

Minerva [5] is an automated resource provision tool for storage systems. The goal is to find the

minimum set of storage devices that can satisfy the performance requirements of input workloads.

It solved this problem by constructing analytical device models to predict the performance for a

24

given configuration, and then using constraint optimization solver and optimizer to find the optimal

configuration. Minerva targeted at automating the initial configuration of storage systems instead

of run-time system management. Our work is complimentary because our system makes on-line

action decisions, which can be viewed as a dynamic tuning of workload placement in response to

system changes.

Ergastulum [9] is another storage system configuration tool, which was proposed after Minerva

as part of the Hippodrome loop [8]. It takes the input workload, a set of allowed device types and

a goal as input and generates a storage system design. Ergastulum uses analytic storage system

performance models to evaluate whether a candidate design supports a given workload, and uses

a generalized version of the best-fit bin packing algorithm with randomization and backpacking

to search for the optimal configuration. In addition, to avoid local optima and to find-tune the

design, it performs re-assignments to undo existing parts of the assignment at different granularity.

Compared to Minerva, Ergastulum can find a system configuration with similar costs in a shorter

execution time. It typically runs in 15% - 25% of the time of Minerva.

In summary, model-based solutions enable the systems to make complicated decisions through

convenient mathematical formulations. They can explore a large number of design alternatives in a

very short time. In addition, model-based approaches are not depending on any system signals, thus,

they can detect and correct the system changes proactively. However, generating accurate models

is still a challenging problem even after decades of research efforts. A wrong model can lead to

decisions that make the system even worse. When making decisions using system models, we need

to either derive accurate models, or design schemes that are not sensitive to model errors.

2.2.5 Other Works

Some existing works are relevant, but do not belong to any category just discussed. We briefly

review them here.

Polus [85] is a framework for storage system QoS management. It combines declarative spec-

ification and predictive calculus as in the field of logic based programming. In Polus, system ad-

ministrators do not need to specify details, such as action thresholds and parameters. Instead, they

25

first input knowledge in the form of “rules of thumb”. For example, prefetch requires memory and

improves throughput. After that, they use machine learning techniques to quantify the relationship

defined in the rules-of-thumb. For example, prefetch improves throughput when available memory

is greater than 20 percent. The reasoning engine in Polus is expressed in first-order predicate cal-

culus. When exceptions such as SLO violations happen, Polus triggers the reasoning engine and

determines the corrective action to invoke.

Ganger, et al., [32, 80] developed an analogy between human organizations and storage systems

and proposed the self-* storage system. Their proposal is based on a set of interesting observations

from human organizations, such as complaint-based tuning, try it and see, observe-diagnose-repair

loop and negotiation. These observations are applied as the design guide for the Self-* storage

project.

2.2.6 Summary

In this chapter, we reviewed the related work in the areas of storage system performance mod-

eling and the automatic storage system management. We observe that the black-box approach is

promising for performance modeling due to its ability to adapt to system changes automatically and

the minimal requirements it places on device specific information. Existing results in storage system

performance modeling improve our confidence to design a model-based management framework for

storage systems.

In the domain of automatic storage system management, we observe that most existing solu-

tions are policy-based, feedback-based, scheduling-based or model-based. Policy-based approaches

front-load all the complexity into the work of creating the rules at design time, in exchange for sim-

plicity of execution at run-time. In addition, they cannot adapt to system changes easily. Feedback-

based approaches require minimum assumptions about the system. But they are not well-suited for

decision-making with multiple variables [82] due to the large search space and possible long con-

vergence time. Scheduling-based approaches can enforce isolation and fairness successfully. But

they cannot ensure tight bounds on the workload’s performance. As a result, they are not sufficient

to provide SLO guarantee. Model-based approaches can explore the configuration space and choose

26

the optimal action quickly and can predict the system state proactively to prevent the system from

running into the bad state. The main challenge is to construct accurate system models. In this the-

sis, we develop mechanisms to select the invocation parameters that can enforce the SLO bounds

automatically and quickly by combining model-based decision making and a feedback-based action

execution (Chapter 4).

In addition, existing solutions focus on choosing the invocation parameters for single corrective

action only. they lack the ability to generate an action plan with more than one action, which is

necessary when the system can not invoke the optimal action immediately due to resource limitation

or business constraints. Moreover, due to continuous changes of workloads and systems, there is

no one-size-fit-all solution. The decisions about what corrective action(s) to invoke and when to

invoke them need to be made dynamically. In this thesis, we develop framework and algorithms to

generate an integrated multi-action plan automatically. Our plan consists of the optimal corrective

actions with their optimal invocation time and invocation parameters (Chapter 6).

In the next chapter, we present the framework of SMART, a model-based action advisor that

can generate an integrated multi-action plan in an automatic and responsive fashion. Details of the

framework are given in Chapter 4, Chapter 5 and Chapter 6.

27

Chapter 3

Model-Based Automatic Action Advisor

The main goal of our work is to design a framework and algorithms to generate the corrective

action plan in an automatic and responsive fashion such that the system utility can be maximized.

In this chapter, we describe the design of SMART, a framework to generate the optimal corrective

action plan, and give a brief introduction to its key building blocks including input modules such as

system models and time-series forecasting, utility evaluator, single action tools and action advisor.

In addition, we study in details one of the key elements of the framework, storage performance

models. Our experimental results show that using the off-the-shelf GUIDE algorithm, by filtering

the data in the saturated region and including the number of outstanding I/Os as a parameter, we

can achieve an error rate of 19.3% for latency models and 4.5% for throughput models. In the

following chapters, we first discuss the design of single action tools. In particular, we use throttling

(Chapter 4) and migration (Chapter 5) as examples to illustrate how to choose action invocation

parameters using system models, time-series analysis and constraint optimization techniques. We

then describe the design of SMART’s core piece, the Action Advisorand give details on how it

generates an integrated multi-action plan in Chapter 6.

28

3.1 Motivation

With increasing storage demands and system requirements for performance, reliability and se-

curity, storage system management becomes more complicated. Today’s run-time system manage-

ment is handled by skilled system administrators who continuously observe the system behavior,

analyze it and invoke corrective actions to adjust the application-resource mapping at run time. This

human-driven Observe-Analyze-Act (OAA) loop can be slow, expensive and inefficient. To reduce

the management cost and adapt to the system changes more responsively, we need mechanisms

to automate the OAA loop. Existing commercial products [25, 26] and research prototypes pro-

vide excellent monitoring and execution frameworks. However, the “analyze” process is still not

well-understood. We aim to develop a framework and algorithms to automate the analyze part to

connect the gap. In particular, our work focuses on the invocation decision of corrective actions. As

described in Chapter 2, existing solutions lack the ability of integrating multiple actions. Our frame-

work, which we call SMART, aims to generate an integrated multi-action plan that simultaneously

answers the questions of what actions to invoke, when to invoke them and how to invoke them.

In addition, since model-based approaches can explore the configuration space and choose the

optimal action quickly, and proactively prevent the system from running into the bad state, our work

falls into this category. SMART uses system models to estimate the resulting performance of each

action option and generate an optimal action plan. In the rest of this chapter, we begin by first

introducing the terminology we will use throughout the thesis (Section 3.2). We will then describe

the framework of our automatic action advisor, SMART in Section 3.3. In Section 3.4, we will

demonstrate our study and experimental results of performance models in storage systems.

3.2 Terminology

This section covers the terminology used in the rest of this thesis.

• Workloads: A typical consolidated storage infrastructure often is shared by several applica-

tions, such as online transaction, decision support, scientific computing, e-mail and web ser-

vices. The I/O requests from one or more related applications are logically grouped together

29

and referred to as a workload. A workload is characterized by its I/O access characteristics,

typically defined in terms of request rate, read/write ratio, random/sequential ratio, request

size and the footprint size. The read/write ratio is the ratio of read requests to write requests.

The random/sequential ratio is the percentage of I/O requests that access the data sequentially

versus at random. The request size is the average transfer size of the I/Os, and the footprint

size is the size of the data set accessed by this workload. These characteristics are not static

and may change continuously at run-time. In our work, we assume the workloads are in-

dependent. That is, changing of one workload will not alter the characteristics of another

workload.

• Service Level Objectives (SLOs): SLOs are defined on a per-workload basis. They often

prescribe lower bounds or service requirements for capacity, performance, availability and

security that the clients expect from the storage infrastructure. For example, the capacity

constraint specifies the minimum storage capacity that the client requires and is often in the

unit of GB. The performance SLOs often specify the thresholds on received throughput and

latency. For example, the workload should have a minimum throughput of 10 MB/s and a less

than 10 ms average latency. The availability SLO has multiple parameters, such as the number

of 9s. The security SLO specifies detailed security requirements such as authorization mech-

anisms, encryption requirements and access control schemes. Beyond these requirements,

SLOs may also include information on the financial incentives and penalties when SLOs are

violated. In our work, we focus on performance management, where the SLOs define the

minimal required throughput and the maximum average response time.

• Utility Functions: The storage systems typically cannot always satisfy the SLOs for all the

workloads. As such, the concept of utility function was borrowed from the domain of eco-

nomics and was used to evaluate the degree of user’s satisfaction [46]. The utility functions

represent preferences of different consumptions, such as throughput received. In SMART, the

utility function is defined on a per-workload basis and it associates the achieved throughput

and latency with a utility value. A higher utility value indicates the corresponding perfor-

mance is more preferred by the user. The goal of our management framework is to maximize

the utility value delivered by the storage system to all the workloads.

30

• Business-Level Constraints: These are the constraints the storage infrastructure needs to

meet due to business reasons. It may include constraints on the available resources, budgets

and acceptable time overhead. They are often specified by the administrators as input to

management softwares. In SMART, we consider two business constraints, the optimization

window and a budget. The optimization window is the time over which the storage resources

need to be provisioned and optimized. The budget constraint specifies the amount of money

that can be spent on new hardwares.

• Corrective Actions: A corrective action changes the application-to-resource mapping to

changes the utility value delivered to one or more workloads. The intent is to maximize the

overall utility value delivered by the system. Many corrective actions have been developed for

storage systems. For example, throttling action improves the system utility by rate-limiting

the low-utility workloads to leave more resource to the high utility ones. Cache repartition

modifies the workloads’ share of the cache to increase the performance of the high utility

ones. Migration moves the data of some workloads to other physical locations to redistribute

the load to storage devices. Replication action also improves the performance by modify-

ing the physical location of workloads. It creates additional copies of the data such that the

load can be shared among the replicas. Hardware provisioning involves adding new physical

resources to the system.

Each action has invocation parameters which specify how the action should be invoked. For

example, the migration action has four invocation parameters, including what data to migrate,

where to place them, when to invoke migration and how fast to move data. In addition, each

action also has a cost in terms of resource overheads, a benefit in improving the cumulative

utility over a certain window of time, and a lead time to come into effect. For example, the

data migration action has the cost of moving the data, the benefit of balancing the load among

the components and improving the utility.

In general, depending on their invocation overhead and impact on the storage system, cor-

rective actions can be classified into three categories: short-term actions, long-term actions

and hardware provisioning. Short-term actions, such as throttling and cache repartition, can

adjust the system behavior in a very short time and have very low invocation cost. They are

31

most appropriate to solve system problems caused by temporary fluctuations. However, for

problems due to “long-lived” workload or system changes, short-term actions often lead to

sub-optimal system utility. Long-term actions, such as migration and replication, can achieve

higher system utility in these situations. However, they often experience a long action lead

time due to data movement. Compared to short-term actions, they often lead to higher benefit,

but are not easily reversible due to the higher invocation cost. Hardware provisioning involves

adding new hardware to the system. It can solve the root cause of the problem, insufficient

resource. But hardware provisioning faces the risk of over-provisioning. For example, the

demands may drop after new hardware arrives, thus making the new hardware un-utilized. In

this thesis, we use three commonly used corrective actions, throttling, migration and hard-

ware provisioning, to illustrate how to generate an integrated multi-action plan. We develop

decision making mechanisms for throttling (Chapter 4) and migration (Chapter 5).

• System State: This loosely means the run-time details of the system. In SMART, system

state S is a triple, S = 〈W, C,M〉, where W represents the access characteristics of the set

of workloads in the system, C is the set of components in the system and M represents the

mapping of workloads to components. The values in the system state typically represent the

average over a sampling window, which is typically a window of 1200 seconds in data-center

environment. In addition to the average value, it is important to record the variance or the

histogram of the value distribution, especially for workloads with a bursty access pattern.

After describing the terminology, we next present our framework, SMART, and describe its

key building blocks including input modules, utility evaluators, single corrective action tools and

the action advisor. We will briefly introduce how these components work together to generate the

action plan. The details of the single corrective action tools and the action advisor are covered in

Chapter 4, Chapter 5, and Chapter 6.

32

Time−Series

Evaluator

Utility
Functions

Input Modules

System
Models

Business
Constraints

Action PlanAction Advisor

State Forecasting

Utility

System

Single
Action Tool

...Single
Action Tool

Figure 3.1. Architecture of SMART: a model-based action advisor

3.3 Framework for Model-Based Action Advisor: SMART

This section describes the framework of SMART, a model-based action advisor. SMART is a

general framework and can be deployed in file systems, storage resource management software and

storage virtualization boxes.

Figure 3.1 shows the architecture of SMART. It has four key components: input modules,

utility evaluator, single action tools and action advisor. It takes five types of information as input

so that it can react to system changes rapidly and proactively, and can compare different actions

fairly (see Chapter 1 for detailed discussion). The output of SMART is the corrective action plan,

which consists of the set of actions and their invocation time and parameters. The details of the key

components are as follows:

• Input modules: They include sensors monitoring the system state S , specifications for

administrator-defined business-level constraints such as budget constraints and optimization

window, utility functions, time-series forecasting of workload request-rate, and system mod-

els for the storage devices.

33

• Utility evaluator: It calculates the overall utility value in a given system state. To do so,

it uses system models to interpolate the I/O performance values and then maps them to the

utility delivered to the workloads.

• Single action tools: These tools decide the optimal invocation parameters for a corrective

action in a given system state. In Chapter 4 and 5, we will use throttling and migration as

examples to illustrate the design of single action tools to choose action invocation parameters

automatically. Separating the single action tools from the action advisor does not only allow

easy upgrade in the future, It also allows SMART to leverage existing tools for individual

corrective actions when the appropriate interface is provided.

• Action Advisor: The Action Advisor aims to choose an optimal action schedule to improve

storage system utility for a given optimization window and business-level constraints. It

interacts with the single action tools and generates a time-based action schedule with details

of what action to invoke, when to invoke and how to invoke. We will present the decision

algorithm for generating an action schedule in Chapter 6.

In the rest of this section, we will describe the details of the key components of the framework.

3.3.1 Input Modules

For the input modules described below, several different well-known techniques are available.

Rather than developing new techniques, we focus instead on demonstrating how these building

blocks work together to generate the action plan.

• Time-series Forecasting. The forecasting of future workload demands is based on extracting

patterns and trends from historical data. There are several well-known approaches for time

series analysis of historic data such as ARIMA [84] and Neural Networks [11]. The general

form of time-series functions is as follows:

yt+h = g(Xt, θ) + εt+h (3.1)

34

where: yt is the variable(s) vector to be forecast, t is the time when the forecast is made, Xt

is the predictor variable(s) vector, which usually includes the observed and lagged values of

yt till time t, θ is the vector of parameters of the function g, and εt+h is the prediction error.

With the assistance of Time-series forecasting, SMART can evaluate an action’s impact on

the future system state and suggest action options optimizing the entire optimization time-

window.

• Utility functions. The concept of utility function has been used in the domain of Economics to

evaluate the degree of user’s satisfaction [46]. We borrow the concept the represent the client’s

preference of service received. Utility functions are defined on a per-workload basis. There

are several different techniques to specify them. For SMART, the utility function associates

workloads performance with a utility value, which reflects the user’s degree of satisfaction.

The utility function for each workload can be (1) provided by the administrators; (2) defined

in terms of priority value and SLOs; or (3) defined by associating a dollar value to the level

of service delivered, e.g., $1000/GB if the latency is less than 10ms, otherwise $100/GB.

• System models. System models are mathematical functions that describe the system behav-

ior. SMART defines models for characterizing the capabilities of components in the storage

system, the workload being presented to them, and the expected response to different action

invocation options.

– Component models. A component model predicts values of a delivery metric as a func-

tion of workload characteristics. SMART can in principle accommodate models for any

system component. In Section 3.4.3, we will use a storage device as an example to illus-

trate how to construct component models using machine learning techniques. Building

component models is an area of active research. Models based on simulation or emu-

lation [33, 93] require a fairly detailed knowledge of the system’s internals; analytical

models [69, 74] require less, but device-specific information must still be considered

to obtain accurate predictions. Black-box [6, 89] models are built by recording and

correlating inputs and outputs to the system in diverse states, without regarding its in-

ternal structure. Since SMART needs to explore a large candidate space in a short time,

35

simulation-based approaches are not feasible due to the long prediction overhead. An-

alytical models and black box approaches both work with SMART. For the SMART

prototype, we use a black-box approach to regress the models as a function of the work-

load characteristics. The models are first bootstrapped and continuously refined at run

time. Details of model construction is given in Section 3.4.3.

– Workload models. The representation and creation of workload models has been an

active area of research [14]. In SMART, workload models predict the load on each

component as a function of the request rate of each workload. The rate of requests

at component i originated from workload j may change continuously as workload j

or other workloads change their access patterns. For example, a workload with good

temporal locality will push other workloads off the cache.

– Action models. Action models predict the effect of corrective actions on workloads

and components. For example, the throttling action alters the workload sending rate

by limiting the number of requests served by storage devices and the migration action

increases the load on the source and destination component due to the copy operation.

In general, for a given workload’s I/O characteristics and action invocation parameters,

SMART applies system models to estimate the performance of each workload, then estimate

the system utility using the utility evaluator.

3.3.2 Utility Evaluator

The Utility Evaluator calculates the utility delivered by the storage system in a given system

state. The calculation involves obtaining the access characteristics of each workload, and using the

system models to interpolate their performance. Specifically, in our prototype, the Utility Evaluator

uses the throughput and response-time for each workload to calculate the utility delivered by the

storage system:

Usys =
N

∑

j=1

UFj(Thruj , Latj) (3.2)

where N is the total number of workloads, UFj is the utility function of workload j, with throughput

Thruj and latency Latj .

36

In addition, for any given workload demands Dj , the maximum utility UMaxsys is defined as

the “ideal” utility if the requests for all workloads are satisfied. Utility loss ULsys is the difference

between the maximum utility and the current system utility. They can be calculated as follows:

UMaxsys =

N
∑

j=1

UFj(Dj , SLOlatj)

ULsys = UMaxsys − Usys (3.3)

where the SLOlatj is the latency requirement of workload j. In addition, the cumulative utility for

a given time-window refers to the sum of the utility over the time-window.

3.3.3 Single Action Tools

These tools automate invocation of a single action. In principle, SMART can leverage existing

single action decision tools to make decisions. Each of these tools typically includes the logic for

deciding the action invocation parameter values, and an executor to enforce these actions.

As described earlier (Section 3.2), there exist many possible corrective actions. In principle, for

any corrective action, once we have enough information about its invocation behaviors to build the

action models, SMART can generate an integrated action plan, with the corrective action considered

as action options. In the rest of this thesis, we use three commonly-used actions, throttling, mi-

gration and provisioning as examples to illustrate how SMART generates an integrated multi-action

schedule. In Chapter 4 and Chapter 5, we will present the logic of invocation parameter selection

for throttling and migration using system models.

3.3.4 Action Advisor

The Action Advisor generates the corrective action schedule. The steps involved are as follows

(the algorithm is presented in details in Chapter 6):

• Generate and analyze the current state (S0) as well as look-ahead states (S1,S2, ...) according

to the forecast future.

37

• Feed the system states along with the workload utility functions and performance models to

the single action tools and collect their invocation options

• Analyze the cost-benefit of the action invocation options using the Utility Evaluator module

and system models.

• Prune the solution space and generate a schedule of what actions to invoke, when to invoke,

and how to invoke.

In this section, we described the architecture of the SMART framework and its key components.

Its core piece is the Action Advisor, that communicates with the single action tools to collect the

single action options and generates a multi-action plan using the input information. In the next

section, we study in details one of the key elements of the input modules, storage performance

models. We demonstrate how to construct accurate models using the black-box approach.

3.4 Experimental Exploration of Black-Box Based Component Mod-

els

In the previous section, we introduced the framework of SMART, a model-based action advisor.

SMART suggests correction action plans based on system models, time-series forecasting, utility

functions and other information. Among all inputs, system models provides the foundation for

fast exploration of all possible action plans and their impact on the system. The effectiveness of

the action plan generated depends on the accuracy of the system models. In this section, we use

component models as an example to demonstrate how models can be constructed. Workload models

and action models can be constructed with different measurable but similar techniques.

As we have discussed in Chapter 2, black-box approach is the most promising modeling tech-

nique for storage system management because it can adapt to system changes on the fly and place

minimum requirements on device specific information. In this section, we use black-box approach

to demonstrate how to construct component models. We evaluate the accuracy of an off-the-shelf

black-box algorithm using a real-world storage system. Our goal is to understand the accuracy of

38

performance models in the real-world setup and to gain insights into how to improve the accuracy

of performance models.

In the rest of this section, we will first introduce how to construct performance models using

only those parameters that are easily measurable with standard tools such as iostat. Then we will

present some experimental results collected in real-world setup and discuss our findings on improv-

ing the performance models.

3.4.1 Goal of Performance Modeling

The goal of performance modeling in storage systems is to have a prediction function for the

observable I/O performance as a function of the total incoming load on the storage subsystem. Here,

the storage subsystem can be as simple as a single disk, or as complicated as disks connected using

switches and storage controllers. The total load is a summation of the load from individual workload

streams (W), where each workload is characterized by the following parameters:

• iops is the I/O request rate.

• rwratio is the ratio of read requests to write requests.

• rsratio is the percentage of I/O requests that access data sequentially versus at random.

• reqsize is the average transfer size for the I/Os.

• fprtsize is the size of the total data set accessed by this workload.

A storage subsystem has several performance metrics. Specifically, from the perspective of stor-

age management, three parameters are the most important. They are enumerated below in ascending

order of their modeling difficulty:

• Detection of saturation state: The goal is to predict if the storage system will be saturated

by a set of workloads. A storage system is saturated when its operating point is beyond the

knee of the typical hockey-stick curve for response time and throughput. Administrators tune

the system to avoid saturation since it leads to growing queue size, increasing latency and

reduced throughput. It is important to predict if an operating point is saturated.

39

• Throughput: Predict the overall throughput of the storage system as well as the per-workload

throughput. The overall throughput is the sum of the throughput of all workloads in the

system.

• Latency: Predict both the average latency and the per-workload latency. In this thesis, we

use the average latency, but the techniques discussed are applicable to other values such as

the 90th percentile latency value.

3.4.2 Procedure of Black-Box Based Modeling

Using the modeling terminology, we refer to the workload features (W =<

iops, rwratio, rsratio, reqsize, fprtsize >) together with some additional measurable system

parameters (if any) as independent variable vector and the performance metric, namely saturation

state, throughput, or latency, as the dependent variable.

1
latency=Function1(W, ...)

2 3
latency=Function2(W, ...) latency=Function3(W, ...)

rwratio < 0.3

rsratio < 0.7

Figure 3.2. A regression tree example

We use the popular regression tree techniques for modeling. The idea of a regression tree is to

estimate a regression function 1 with either a piecewise constant or piecewise function. The entire

sample space starts from the root node and the tree is constructed by recursively partitioning the

sample space. The internal nodes define the splitting points and each leaf node is associated with

a constant or a function. This is used to predict the outcome value for all input data matching the

criteria along the path to this point from the root node. There are several variants of the regression

tree algorithm depending on the heuristics used to select the split variables. GUIDE is one of them.
1A regression function describes the relationship between dependent variable Y and the independent variable(s) (X).

40

It employs Chi-Square analysis of residuals and eliminates the bias in variable selection. We choose

the GUIDE implementation as it is publicly available. Figure 3.2 gives an example of the regression

tree returned by GUIDE.

Performance modeling has two phases: bootstrapping and run-time. In the bootstrapping phase,

the system collects training data, each consists of the independent variable vector along with the

corresponding value of the dependent variable. The training data is analyzed using GUIDE and a

regression function is returned. In the run-time phase, the regression function takes the independent

variable vector as input and outputs the corresponding dependent variable (i.e., performance predic-

tion). Using GUIDE, the performance can be predicted by traversing the tree. For example, given

the regression tree shown in Figure 3.2, for workload features W =< 1000, 0.4, 0.8, 8, 50 >,

the latency should be calculated using Function3. In addition, the models are evolved continu-

ously over the life-time of the system. The models are bootstrapped using a small set of data, and

continuously refined over newly observed data during the run-time phase.

3.4.3 Analyzing the Performance Models

In this section, we will create models for both storage systems with single and multiple work-

loads. Although in reality, it is often the case that the storage system is shared by multiple work-

loads, as we can see later in the section, models for single workload can help construct and un-

derstand the models for multiple workloads. After creating the base models, we will investigate

techniques to improve the accuracy of the models later in the section.

3.4.3.1 Storage System With Single Workload

For a storage system with only one workload, each training data point consists of the workload

features (W) and the observable performance. The model is formulated as follows.

Perf = Func(rwratio, rsratio, reqsize, fprtsize, iops) (3.4)

Where the observable performance Perf can be saturation state, throughput, or latency.

41

3.4.3.2 Multiple Workload Environment

For a storage system with more than one workload, workloads affect each other and alter the

queuing delay in a very complicated manner. The aggregate performance such as the saturation

state, the overall throughput and the average latency are important since they are good utilization

indicators of the system. On the other hand, in real-world shared storage system, the SLOs are often

defined on a per-workload basis. As a result, performance models for the throughput and latency of

individual workload are critical as well. In the rest of this section, we will discuss models for the

aggregate and per-workload performance, respectively.

A straight-forward way to model the performance in the multiple workload environment is to

include the workload features W of all workloads as independent variables since all workloads will

affect the performance:

Perf = Funcperf(rwratio1, rsratio1, reqsize1, fprtsize1, iops1,

..., rwration, rsration, reqsizen, fprtsizen, iopsn) (3.5)

Here, the performance metric Perf can be either the aggregate or per-workload performance, such

as saturation state, the throughput and latency for each workload. In the rest of our discussion,

models constructed using Equation 3.5 are referred to as the fine models.

The fine model is an intuitive extension of the single workload model. However, the feature

space grows with the number of workloads in the system. It may require a very long bootstrapping

time to collect enough training data for an accurate model. To solve this problem, we propose

coarse models to trade the model accuracy for bootstrapping time. The key idea is to reduce the

number of parameters by aggregating workload features together. For the aggregate performance

metrics, the coarse models are constructed by using the single workload models (see Equation 3.4)

with the weighted average features of all workloads as the input parameters, workload features W .

To create the per-workload performance models, the coarse approach will first construct the fine

models for two workload scenario using Equation 3.5 with n = 2. Then, to predict the performance

of workload i, the weighted average workload features of all workloads except workload i are

estimated, referred to as Wrest. The performance of workload i can now be predicted by using the

42

two workload performance models, with Wrest and Wi as input parameters, shown as follows:

Individual Perfi = Functwo workloads(rwratioi, ..., iopsi,

rwratiorest, rsratiorest, ..., iopsrest) (3.6)

In general, the coarse models are more scalable but less accurate due to fewer parameters and

simpler models. Experimental results comparing the two models are given in Section 3.4.4.6.

3.4.3.3 Improving the Model Accuracy

In the models described earlier, the training data consisted of both the saturated as well as the

non-saturated regions and the regression algorithm treated the data equally. However, these two re-

gions behave very differently in storage system. The latency in the saturated region is dominated by

the queuing delay and varies dramatically, which makes the modeling very difficult, if not impos-

sible. This observation suggests that although it may be difficult to have a model accurate for both

regions, it may be feasible to develop a good model for the non-saturated region only. Moreover,

since in practice, the non-saturated region is where most control happens, it is where an accurate

model is mostly needed. For the saturated region, the most critical control is to pull the system

back to non-saturation. For this purpose, the saturation state model is sufficient—the storage man-

agement software or administrators can try various workloads configurations until the predicted

saturation state becomes non-saturated.

In addition, the base models discussed earlier are constructed with only workload features as

independent variables. These parameters have the advantage of easy to measure, but they provide

limited information about the queuing behavior of the storage system, which plays a significant part

of the latency. Other parameters such as the number of outstanding I/Os (OSIO) and the queue

length may be difficult to measure, but they give more information on the queuing behavior. One

intuitive way to improve the model accuracy is to include parameters related to queuing behavior.

In our experimental section, we specifically use OSIO as an example to study its impact on the

model quality.

In this section, we described the procedure of constructing performance models for storage

systems with single and multiple workloads. We also discussed two observations to improve the

43

model accuracy. In the nest section, we will present our evaluation results on the accuracy of

various models using a real-world storage system.

3.4.4 Experimental Evaluation

In this section, we perform experimental study to evaluate the accuracy of various performance

models. The experimental evaluation is divided into five parts. First, we evaluate the accuracy

of various performance models for both single and multiple workload environments. Second, we

analyze the impact of filtering data in the saturated region on the model accuracy. Third, we evaluate

the impact of adding the number of outstanding I/Os as an independent variable. Fourth, we compare

the model accuracy of the coarse models and the fine models. Fifth, we perform a sensitivity test

of the model accuracy to the amount of training data.

In the rest of this section, we first describe the data collection procedure (Section 3.4.4.1) and

the model evaluation metrics (Section 3.4.4.2). After that, we present our experimental results on

the five tests.

3.4.4.1 Data Collection

The training and testing data used in our experiments are collected using a real storage system,

with a host machine generating I/O streams on a fibre channel SAN. The host is an IBM X-series

440 server. It has a 2.4GHz 4-way Intel Pentium 4 CPU with 4GB RAM and runs on Redhat Server

Linux 2.1 Kernel. The back-end storage is an eight drive RAID0 LUN created on a IBM FastT

900 storage controller with 512MB on-board NVRAM. The host and the storage controller are

connected using a 2Gbps Fibre-Channel (FC) link. The storage system is accessed as a raw device

so that we can control the workload features precisely.

We developed our own workload generator. It takes the rwratio, rsratio, reqsize, fprtsize

and iops as input and generates the I/O requests to the storage system. The workload generator

starts a number of worker threads. Each worker generates synchronized I/Os independently. For

each test, which is one data point in the training set, we let the workload generator run for one

minute to measure the throughput and latency in the stable state.

44

3.4.4.2 Model Evaluation Metrics

We evaluate the accuracy of a model using three metrics: the mean absolute error (MAE),

defined as |Y − Ŷ |; the mean relative error (MRE) | Y −Ŷ
Y

| and the classic metric R in statistical

learning, where, Y and Ŷ are the observed and the predicted performance vector. R is defined as:

R = 1 − SSerr/SStotal (3.7)

Where SSerr is the sum of square of regression errors, which is defined as SSerr =
∑n

i=1 (ŷi − yi)
2

and reflects how well the regression function fits the data. SStotal is the sum of square of data errors,

defined by SStotal =
∑n

i=1 (yi − y)2, and evaluates the randomness of the data itself. yi, ŷi and y

are the ith observed value, predicted value and the mean of the observations, respectively.

3.4.4.3 Accuracy of Base Models

In this section, we study the base performance models, that only take workload features as the

independent variables and all training data are treated equally. They are in contrast to later models,

for which, the training data in the saturated region are filtered.

Single Workload Environment. In this test, we test 900 settings of rwratio, rsratio, reqsize,

fprtsize. For each setting, the workload is generated with eight different sending rates ranging

from 100 IOPs to 8000 IOPs. We have 7200 (7200 = 8*900) data points in total. Each data point

consists of the workload features, the measured throughput and latency, and a saturation state label

which is determined based on if the throughput is less than the sending rate. With these 7200 data

points, we construct the saturation state model, the throughput model and the latency model using

Equation 3.4, respectively.

For the saturation state model, out of the 7200 data points collected, 153 (2.13%) cases are

mis-classified. The throughput model has a 0.89 R value, a 139.53 IOPS MAE with a 1671.7 IOPS

mean throughput, and a 9.9% MRE. The latency model has a 0.882 R value, a 2.2 ms MAE out

of the 12.6 ms mean latency, and a 30.3% MRE. Compared to the throughput model, the latency

model has a much higher error rate, which indicates the latency is more difficult to predict. This

is because the latency has a much larger variation compared to the throughput. When the system

45

enters the saturation region, the throughput either flattens out or reduces as the load grows, but the

latency can be arbitrarily large due to the queuing effect.

Multiple Workloads Environment. For this test, in each run, we randomly pick n workloads from

the 7200 settings used in previous test and start n instances of workload generator to send I/O re-

quests. The throughput and latency for each workload are measured and the aggregate performances

are calculated accordingly. The rest of our analysis is based on the 5000 training data points with

three workloads running in the system. In addition, all results presented in this section are based on

the fine model (Equation 3.5). The results of the coarse models are presented in Section 3.4.4.6.

For the saturation state detection, out of the 5000 data points, 457 cases (9.15%) are wrongly clas-

sified. Compared to the single workload result, 2.13%, the higher mis-classification rate shows

that the complicated workload interaction among multiple workloads make the performance less

predictable.

Performance Metric R Value MAE (Mean) MRE
Overall Throughput 0.677 226.5 (1614.3 IOPS) 20.8%

Average Latency 0.0028 100.2 (96.9 ms) 270%
Per-Workload Throughput 0.776 97.47 (556.9 IOPS) 23.0%

Per-Workload Latency 0.14 100.1 (99.7 ms) 257%

Table 3.1. Multiple workload environment

Table 3.1 shows the quality of models for aggregate throughput, average latency, per-workload

throughput and latency. From the table, we have three observations as expected:

• The models for overall and per-workload performance have similar quality—20.8% and

23.0% MRE for throughput and 270% and 257% MRE for latency.

• The latency is more difficult to predict than the throughput. Specifically, with multiple work-

loads in the storage system, it is very difficult to construct a good latency model for all data

points with the base model.

• The performance for multiple workload environment is less predictable than the single work-

load system. For example, the MRE of the throughput model grew from 10% to 20.8%. The

higher error rate is a result of the complicated interaction among workloads.

46

3.4.4.4 Models With Saturation Data Filtered

In Section 3.4, we proposed the idea of filtering the saturated data to improve the model accuracy

for the more-critical non-saturated region only. The goal of this test is to examine the effectiveness

of this idea. In the rest of our discussion, we focus on the more realistic and more complicated

configuration—storage system with multiple workloads.

Performance Metric Data Set R Value MAE (Mean) MRE
Per-Workload Throughput ALL 0.776 97.47 (556.9 IOPS) 23.0 %
Per-Workload Throughput NoSat 0.992 17.9 (490.1 IOPS) 4.13 %

Per-Workload Latency All 0.14 100.1 (99.7 ms) 257%
Per-Workload Latency NoSat 0.573 11 (29.9 ms) 76.8%

Table 3.2. All data vs. non-saturated data only

Table 3.2 compares the accuracy of models constructed using all data (ALL) and data in non-

saturated region only (NoSat). For both throughput and latency, the NoSat data set helps construct

a better model. Specifically, the MRE of the throughput model improves from 23.0% to 4.13% and

the latency model improves from 257% to 76.8%. The error rate of the latency model is still large,

which indicates that additional mechanisms are needed to have a good latency model.

3.4.4.5 With Number of Outstanding IOs

In this section, we examine the effectiveness of considering the number of outstanding I/Os

(OSIO) in the latency and throughput prediction. Here, the OSIO is the number of outstanding

I/Os in the whole system instead of for every workload. We choose the OSIO as an indicator of

the queue size because it is relatively easier to monitor.

Performance Metric With OSIO R Value MAE (Mean) MRE
Per-Workload Throughput No 0.992 17.9 (490.1 IOPS) 4.13 %
Per-Workload Throughput Yes 0.993 18.45 (490.1 IOPS) 4.54%

Per-Workload Latency No 0.573 11 (29.9 ms) 76.8%
Per-Workload Latency Yes 0.946 3.29 (29.9 ms) 19.3%

Table 3.3. Impact of OSIO

Table 3.3 compares the model accuracy with and without OSIO. The results are based on the

47

dataset NoSat with multiple workloads in the system. For the per-workload throughput model,

the quality of models with OSIO remains roughly the same as without OSIO. This is because

the workload generator limits the number of workers and each worker generates synchronized I/O

requests. As a result, the impact of the queuing behavior is limited. However, for unsynchronized

I/Os, where the queue size will grow with the sending rate, the OSIO may become critical for

throughput performance modeling. We leave the investigation on unsynchronized I/Os to our future

work. The third and fourth rows of the table compare the accuracy of the per-workload latency

models. The benefit of introducing OSIO is obvious: the R value is increased from 0.573 to 0.946,

the MRE is reduced from 76.8% to 19.3% and the MAE is reduced to 3.29 ms. We also examined

the models the ALL data set and the results are very similar to the NoSat data set. In summary,

OSIO is an important parameter for constructing a good latency model in the multiple workload

environment.

3.4.4.6 Accuracy of Coarse Models

All of the previous results for multiple workloads are based on the fine model, where the features

of each workload are counted as input parameters. The focus of this section is on the coarse models,

for which, the aggregated workload features are used to approximate multiple workloads. The

coarse models are proposed to reduce the number of parameters and the bootstrapping time to

achieve better scalability. The goal of this test is to understand the cost of the workload features

aggregation.

Performance Metric Model R Value MAE (Mean) MRE
Overall Throughput coarse 0.886 146.4 (1470.4 IOPS) 10.4%
Overall Throughput fine 0.99 37.9 (1470.4 IOPS) 2.68%

Average Latency coarse -0.0008 1.44 (27.9 ms) 52.7%
Average Latency fine 0.984 1.67 (27.9 ms) 11.0 %

Table 3.4. Coarse models vs. fine models: aggregate performance

We first examine the accuracy of saturation state detection. The coarse model applies the satu-

ration state model for single workload to classify the data. The average weighted workload features

are used as the input. Out of the 5000 cases, 491 cases (9.82%) are mis-classified, which is similar

48

to the result of the fine model (9.13%). This shows that the coarse model works effectively for

saturation state models.

We now compare the models of throughput and latency, for both aggregate and per-workload

performance, using two modeling approaches (Table 3.4 and Table 3.5). The models are constructed

after filtering the saturated data and with OSIO as additional parameter. For all models, the coarse

models have a higher error rate. However, the accuracy of throughput models are quite acceptable

(MRE <10.4%). These results suggest that the coarse models can be a good candidate for boot-

strapping the throughput model. But for latency models, the model error due to less information is

significant (42.2% vs. 19.3% MRE).

Performance Metric Model R Value MAE (Mean) MRE
Per-Workload Throughput coarse 0.988 19.03 (490.1 IOPS) 4.61%
Per-Workload Throughput fine 0.993 18.45 (490.1 IOPS) 4.54%

Per-Workload Latency coarse 0.467 9.05 (29.9 ms) 42.2 %
Per-Workload Latency fine 0.946 3.29 (29.9 ms) 19.3 %

Table 3.5. Coarse models vs. fine models: per-workload performance

To balance the scalability and the accuracy, an intermediate solution is to construct fine models

for m workload, in contrast to the default two workload models. m is a positive integer and reflects

the trade-offs of scalability and accuracy. When more than m workload running in the storage

system, the performance of workload i can be predicted by using i as one workload, grouping the

remaining workloads into m− 1 sub-groups, and plugging in the m − 1 aggregate features into the

m workload models.

3.4.4.7 Sensitivity Analysis of the Amount of Bootstrapping Data

Previous tests answered the question on how good the models are. In this test, we aim to answer

the question on how many training data are needed to construct a model with reasonable accuracy.

The answer to this question can help us understand the bootstrapping overhead and configure the

model refinement interval.

In this test, for each experiment, we randomly pick a proportion of data points from the entire

data set as the training data for model construction. The rest data is then used as testing data. For

49

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1000 2000 3000 4000
R

Va
lu

e
Number of Training Data

Training Data
Testing Data

(a) R Value (Single)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 2000 3000 4000

M
ea

n
Ab

so
lu

te
 E

rro
r (

m
s)

Number of Training Data

Training Data
Testing Data

(b) Mean Absolute Errors (MAE)

 5

 10

 15

 20

 25

 30

 35

 1000 2000 3000 4000

M
ea

n
Re

la
tiv

e
Er

ro
r (

%
)

Number of Training Data

Training Data
Testing Data

(c) Mean Relative Errors (MRE)

Figure 3.3. Impact of training size on latency models: single workload

each performance model, we change the percentage of training data from 5% to 95% and record the

R value, MAE and MRE on both the training and testing data. Results on all performance metrics

50

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96

 400 800 1200 1600
R

Va
lu

e
Number of Training Data

Training Data
Testing Data

(a) R Value

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0.006

 0.0065

 400 800 1200 1600

M
ea

n
Ab

so
lu

te
 E

rro
r (

m
s)

Number of Training Data

Training Data
Testing Data

(b) Mean Absolute Errors (MAE)

 15
 20
 25
 30
 35
 40
 45
 50
 55

 400 800 1200 1600

M
ea

n
Re

la
tiv

e
Er

ro
r R

at
e

(%
)

Number of Training Data

Training Data
Testing Data

(c) Mean Relative Errors (MRE)

Figure 3.4. Impact of training size on latency models: multiple workloads

demonstrate similar trend with different knee points. We only present the results for the latency

models because they are the most difficult to model. Figure 3.3 (a-c) shows the R value, MAE and

51

MRE of the latency models for single workload configuration. All three evaluation metrics require

about 1000 non-saturated data points to reach to a stable model quality: 12% MRE on the training

data and 15% on the testing data. Similarly, for multiple workloads configuration, 600 data points

are necessary to construct a good latency model. Note that, each data point contains three per-

workload performance values and can be used as three data points for per-workload performance

model construction.

In general, the experimental results show that it is feasible to use regression tree based black-

box approach to construct performance models with reasonable accuracy. For the storage system

tested, we have an error rate of 19.3% for latency models and 4.5% for throughput models. In

general, it is more difficult to predict the performance of a storage system with multiple workloads

than that with single workload. In addition, we found that filtering the saturated data and including

additional queue-size related parameter can improve the model accuracy. Last, the coarse models

can be a candidate for fast bootstrapping. However, it has a significant lower accuracy than the fine

models.

3.5 Conclusions

In recent years, storage system management has become more complicated due to increasing

storage system consolidation. To reduce the total cost of ownership and to adapt to changes more

quickly, the traditional manually controlled observe-analyze-act (OAA) loop must operate more

automatically. In this chapter, we described the framework of SMART, a model-based automatic

action advisor for storage systems. SMART aims to automate the “analyze” part of the OAA loop

by generating optimal action plan for a given optimization time window. SMART takes system

states, time-series forecasting, system models, utility functions and business level constraints as

inputs. Its Action Advisor communicates with single corrective action tools to collect action options,

and generates an action schedule based on further analysis. SMART is a model-based approach,

where mathematical models are constructed to describe the system behaviors and used to explore

the configuration space. As a result, the efficiency of SMART’s decision is affected by the accuracy

of system models. To understand the accuracy of system models in real storage systems, we used

52

component models as an example to demonstrate how machine learning techniques can help to

build models without any expert knowledge and device-specific information. Our experimental

results showed that using the off-the-shelf regression tree implementation GUIDE, by filtering the

data in the saturated region and considering the number of outstanding I/Os, our latency models can

achieve an error rate of 19.3% and our throughput models are around 4.5%.

In the rest of this thesis, we will first use throttling (see Chapter 4) and migration (see Chapter 5)

as examples to illustrate how to develop single action tools that can determine the optimal invocation

parameters using system models. We will then discuss details of how the Action Advisor can

combine all information and generate an optimal multi-action schedule in Chapter 6.

53

Chapter 4

CHAMELEON: An Automatic Throttling

Decision Tool for Storage System

In the previous chapter, we described the framework of SMART, a model-based automatic action

advisor, which is designed to generate action plans by combining system models, time-series fore-

casting, business constraints and single action options. Before describing the design of the Action

Advisor to generate an integrated multi-action plan in Chapter 6, we first discuss the mechanisms

of single action tools. Specifically, in this chapter, we use throttling as an example to illustrate

how to use system models to make the invocation decision automatically. Throttling is one of

the commonly used corrective actions in modern storage systems. It improves the system utility

by rate-limiting the low-utility workloads to leave more resource to the high utility ones. In this

chapter, we present an automatic throttling framework, CHAMELEON.1 In the SMART framework,

CHAMELEON can act as the single action tool for throttling action. It takes the system models and

system states as input and outputs the throttling options with invocation parameters to the Action

Advisor. CHAMELEON makes the throttling decision by combining system models and constraint

optimization. In our experiments, we replay traces from production environments in a real storage

system. With our current system and the workload perturbations we impose, CHAMELEON can ana-
1Our throttling framework changes its decision making strategy among heuristic-based, model+heuristic based and

model-based approaches according to the quality of system models. This is similar to the way Chameleon varies its color
to adapt to the environment changes.

54

lyze and correct performance violations using the feedback loop in 3-14 minutes—which compares

very favorably with the time a human administrator would have needed. In addition, CHAMELEON

can also be used as a stand-alone tool to automatically make throttling decisions and correct SLO

violations. In the rest of this chapter, we will first motivate the need for a throttling tool that can

make intelligent throttling decisions to minimize the number of SLO violations and provide service

isolation and performance differentiation in Section 4.1. Then we will introduce the architecture of

CHAMELEON (Section 4.2) and describe its main components: the models (Section 4.3), the rea-

soning engine (Section 4.4), the base heuristics (Section 4.5) and the feedback-control of throttling

execution (Section 4.6). After that, we describe our prototype and experimental results (Section

4.7). In Section 4.8, we describe how CHAMELEON works in the SMART framework. We summa-

rize in Section 4.9. In the next chapter, we will discuss another commonly used corrective action,

migration, to demonstrate how to discover more complicated action options by combining system

models, time-series forecasting and risk management.

4.1 Motivation

We have argued in Chapter 1 that, to maximize the system utility, we need to invoke correc-

tive actions dynamically to change the application-resource mapping at run time. As described in

Section 3.2, according to the invocation time and action impact, corrective actions can be classified

into short-term actions, long-term actions and hardware provisioning. Throttling is one of the most

commonly used short-term actions. It controls the rate of work admitted into the storage system,

using mechanisms such as token-bucket algorithms [31] to regulate the resource competition and

lead to a fair, predictable resource allocation. Compared to long-term and hardware provisioning

actions, it has the advantages of low invocation cost and can correct the system’s behavior in a very

short time—sometimes instantaneously.

Because of its short invocation time and low invocation cost, throttling has been widely-used in

storage systems. Researchers have proposed many mechanisms to control throttling automatically.

Existing solutions have following limitations. Policy-based solutions, such as Sleds [17], lack the

ability to adapt to system changes automatically. Feedback-based solutions, such as Façade [55]

55

and Triage [47], fail to provide service isolation and performance differentiation. Schedule-based

solutions [45] cannot enforce a tight bound on the performance, which is essential for meeting

the SLO constraints. We need an automatic decision tool that can minimize the number of SLO

violations, and throttle the right workloads by the right degree. The right workloads are those that

are supposedly responsible for the problem or those with lower priority. These workloads should be

throttled just enough to correct the SLO violations.

Time−Series

Evaluator

Utility
Functions

Input Modules

System
Models

Business
Constraints

Action PlanAction Advisor

State Forecasting

Utility

System

... Action Tool
SingleSingle Action Tool

for Throttling
CHAMELEON

Figure 4.1. CHAMELEONin the SMART framework

Effectiveness (Accuracy)

Time

e.g. Hardware Failures
Significant System Variation

Heuristic−Based
−Coarse−grained Optimization
−Constant Step Size
−Bootstrapping of Models

Model + Heuristic Based
−Variable Step Size
−Evolution of Models

−Fine−grained Optimization
−One Step

Model−Based

Figure 4.2. CHAMELEON moves along the line according to the quality of the predictions generated
by the internally-built models at each point in time.

In this chapter, we present CHAMELEON, a model-based throttling tool for storage systems.

CHAMELEON can work as the throttling decision tool in the SMART framework (Figure 4.1), as

well as a stand-alone throttling tool. It defines its own logic of selecting throttling parameters and

invocation strategy. Its goal is to make more accurate throttling decisions as it learns more about

56

the characteristics of the running system and the workloads. The key idea is to use system models

to make optimal decisions, feedback loops to fine tune the action execution at run time, and heuris-

tics as a fall-back strategy. As shown in Figure 4.2, CHAMELEON can operate at any point in a

continuum between decisions based on relatively uninformed, deployment-independent heuristics,

and blind obedience to models of the particular system. CHAMELEON’s throttling decision consider

the priorities of workloads, and therefore, can provide service isolation and performance differen-

tiation. In addition, CHAMELEON’s design choice of introducing the feedback-loop and heuristics

also shows how a carefully designed actuator can compensate for the inaccuracy of the “analyze”

decision.

In the rest of this chapter, we will first describe CHAMELEON as a stand-alone subsystem since

we originally designed it as an early prototype of the more general SMART framework. We start

from introducing the framework of CHAMELEON 4.2, then proceed to describe its main components:

the models (Section 4.3), the reasoning engine (Section 4.4), the base heuristics (Section 4.5) and the

feedback-controlled throttling (Section 4.6). After that, we describe our prototype and experimental

results in Section 4.7. We evaluate CHAMELEON using a real system testbed. With our current

system, for our test scenarios, CHAMELEON corrects the system behavior between 3 and 14 minutes.

In Section 4.8, we describe how to integrate CHAMELEON into the general SMART framework by

applying general optimization techniques in the reasoning engine. We summarize CHAMELEON in

Section 4.9.

4.2 Overview

CHAMELEON is a framework for providing predictable performance to multiple clients access-

ing a common storage infrastructure using throttling actions. We begin with CHAMELEON’s design

as a stand-alone decision tool. We then describe how to generalize its design to service as a single

action tool within the SMART framework in Section 4.8.

Each workload j has a priority value PWi
and a known SLOj associated with it. The goal of

CHAMELEON is to maximize the number of workloads satisfying their SLOs. In addition, each

workload uses a fixed set of components—its invocation path —such as controllers, logical vol-

57

Model Refinement

Re−trigger

Piecewise

Reasoning Engine

Models

Models
Action
Models

Workload Models

Current
States

Throttling Step Size
Incremental

Feedback Module

Linear Throttling Values

Designer−defined
Policies

Storage System

Component

Programming

System Models

Figure 4.3. Architecture of CHAMELEON

umes, switches, and logical units (LUNS). CHAMELEON assumes SLOs are conditional—a work-

load will be guaranteed a specified upper bound on average I/O latency, as long as its I/O rate is

below a specified limit. An SLO is violated if the rate is below the limit, but latency exceeds its up-

per bound. If workloads exceed their stated limits on throughput, the system is under no obligation

of guaranteeing any latency. Obviously, such rogue workloads are prime candidates for throttling.

But in some extreme cases, well-behaved workloads may also need to be restricted.

CHAMELEON automates the entire OAA loop. It can monitor, and optionally delay every I/O

processed by the system. This can be implemented at each host, as in our prototype, or at logical

volume managers, or at block-level virtualization appliances [34]. It then periodically evaluates the

SLOs, i.e., the average latency and throughput value of each workload. When SLOs are violated,

CHAMELEON performs its analysis and decides how much the workloads should be throttled. The

throttling decision is enforced using a token-bucket protocol [31] on a per workload basis, where a

I/O request can be admitted to the system only when tokens are present. As a result, by controlling

the speed of tokens added to the bucket (referred to as token issue rate), the sending rate of each

workload is limited.

To summarize the presentation thus far, the core of CHAMELEON consists of four parts, as

shown in Figure 4.3:

• System models: by taking periodic performance samples on the running system,

58

CHAMELEON builds internal black-box models of system behavior without any human

supervision. Models become more accurate as time goes by because CHAMELEON refines

them automatically.

• Reasoning engine: CHAMELEON employs optimization techniques based on system models.

It computes throttle values, and quantifies the statistical confidence of its own decisions.

• Designer-defined policies: As a fall-back mechanism, we maintain a set of fixed heuristics

specified by the system designer for system-independent, coarse-grained resource arbitration.

If the confidence value from the reasoning engine is below a certain threshold, such as during

bootstrapping of the models, CHAMELEON falls back on the fixed policies to make decisions.

• Informed feedback module: To account for model errors and real system fluctuation,

CHAMELEON employs a feedback loop to execute the throttling action. The general guiding

principle is to take radical corrective actions as long as they are warranted by the available

knowledge about the system.

In this section, we described the architecture of CHAMELEON and its key components. In

the next section, we discuss how to construct the workload and action models for throttling using

machine learning techniques.

4.3 System Models

CHAMELEON uses the same system models as SMART (see Chapter 3). It builds models in an

automatic, unsupervised way and uses them to characterize the capabilities of components of the

storage system, the workloads being presented to them, and their expected responses to different

levels of throttling. Since we have studied the component models in details in the previous chapter,

we will focus on the specific workload models and action models for throttling here.

59

4.3.1 Workload Models

Representation and creation of workload models has been an active research area [14]. In

CHAMELEON, workload models predict the load on each component as a function of the request rate

that each workload injects into the system. For example, we denote the predicted rate of requests

at component i originated by workload j as wij(workload request ratej). Regression techniques

can be applied here to predict the wij as a function of workload request ratek , where k includes all

workloads running on component i. In addition, function wij changes continuously as workload

j changes or other workloads change their access patterns. For example, a workload with good

temporal locality will push other workloads out of the cache. To account for these effects, the

function wij is refined continuously.

2000

2500

3000

1500 1700 1900 2100 2300

Co
m

po
ne

nt
 L

oa
d

Workload Request Rate

SPC
linear regression

Figure 4.4. Workload model for SPC.

Figure 4.4 shows the workload models for the SPC web-search trace [27] accessing a 24-drive

RAID 1 LUN on an IBM FAStT 900 storage controller with 512MB on-board NVRAM. The SPC

trace was collected by running the SPC benchmark, which uses a highly efficient multi-threaded

workload generator to emulate sophisticated enterprise class multi-user I/O applications [27]. We

developed our own workload generator to replay the trace. It uses tokens to control the workload

request rate and sequentially scans the trace to inject the corresponding I/O requests to the storage

system (see Section 4.7 for details). The training data was collected by varying the workload request

rate and recording the corresponding load seen by the storage controller using iostat [1]. In Figure

60

4.4, a workload request rate of 1500 IOPS in SPC translates to 2000 IOPS at the controller. The

extra 500 IOs are a result of the disassembling operation introduced by the device driver’s limitation

on I/O request size.

In practical systems, reliable workload information can only be gathered from production runs.

Therefore, we bootstrap workload models by collecting performance observations. CHAMELEON

resorts to throttling heuristics in the meantime, until workload models become accurate enough.

4.3.2 Action Models

In CHAMELEON, action models predict the effect of corrective actions on workloads. The throt-

tling action model computes each workload’s average request rate (the input for workload models)

as a function of the token issue rate, i.e., aj(token issue ratej). Real workloads exhibit significant

variations in their I/O request rates due to burstiness and ON/OFF behaviors [12]. We model aj as a

linear function: aj(token issue ratej) = θ × token issue ratej where θ is initially set to 1 for

bootstrapping. This simple model assumes that the components in the workload’s invocation path

are not saturated.

In addition, function aj will also deviate from our linear model because of performance-aware

applications and higher-level dependencies between applications. We define performance-aware

applications as those that modify their access patterns based on the I/O performance they experience.

In this section, we described the architecture and system models of CHAMELEON. We now

proceed to describe the design of the reasoning engine of CHAMELEON. We will discuss how to

predict the workloads performance for a given throttling decision by composing system models and

how to find the optimal token issue rates using linear programming techniques.

4.4 Reasoning Engine

The reasoning engine computes the rate at which each workload should be allowed to issue

I/Os to the storage system. We implemented it as a constraint solver using piecewise-linear pro-

gramming [2]. The constraint solver analyzes all possible combinations of workload token rates

61

and selects the one that optimizes an administrator-defined objective function, e.g., “minimize the

number of workloads violating their SLO”, or “ensure that highest priority workloads always meet

their guarantees” (Section 4.4.2). The reasoning engine is not only invoked upon an SLO violation

to decide throttle values, but also periodically to unthrottle the workloads if the load on the system

is reduced (Section 4.4.3). In addition, the output of the constraint solver is assigned a confidence

value based on the errors associated with the models (Section 4.4.4)

In the rest of this section, we first describe the intuition of the reasoning engine (Section 4.4.1)

and give the formalization after that (Section 4.4.2). We then discuss the mechanisms of unthrottling

(Section 4.4.3) and the calculation of confidence value (Section 4.4.4).

4.4.1 Intuition

Component Load

La
te

nc
y

Token Issue Rate Request Rate

Token Issue Rate of Workload 1

Workload 1

Re
qu

es
t R

at
e

Co
m

po
ne

nt
 L

oa
d Workload ModelAction Model

Estimated Performance for the Given Configuration

Component Model

Workload N

Workload 2

Figure 4.5. Overview of constraint optimization.

The reasoning engine relies on the component, workload, and action models as oracles on which

to base its decision-making. Figure 4.5 illustrates a simplified version of how the constraint solver

builds a candidate solution: (1) for a given configuration of token issue rates, it uses the action

models to determine the change of the request rates for each workload, (2) it queries the work-

62

load model for each workload using the under-performing component to determine the change in

the workload’s I/O injection rate to the component. An underperforming component is the storage

devices with workloads violating their SLOs, (3) it uses the component models to determine the

throughput and latency for each workload, and (4) it records the value of the objective function for

the given configuration. CHAMELEON repeat the same procedure for all combinations of compo-

nents and token issue rates, and return the configuration leading to the optimal value of the objective

function.

4.4.2 Formalization in CHAMELEON

We formulate the task of computing throttle values as a constraint optimization problem:

Variables: token issue rate ti for workload i, i = 1, 2, . . . , n.

Objective function: Many objective functions can be accommodated by the current CHAMELEON

prototype. Moreover, it is possible to switch them on the fly. For our experiments, we choose an

objective function that can

• Minimize the number of workloads violating their SLOs.

• Minimize the degree of throttling. Workloads should operate as close to the SLO throughput

boundary as possible.

• Provide performance differentiation. Workloads with lower priority should have a higher

probability of being throttled compared with the ones with higher priority.

• Provide service isolation. The throttling decision should consider the received performance

of workloads. Those workloads that are responsible for the problem, such as those that are

sending more I/Os than they are allowed, should be throttled with higher probability.

To correlate the probability of being throttled with the received performance, we characterize work-

loads into one of four regions (see Figure 4.6) according to their current request rates, latency and

their SLO goals. Region names are mostly self-explanatory. Lucky workloads are getting a higher

throughput while meeting the latency goal. Exceeded workloads get higher throughput at the ex-

pense of high latency. Each region is associated with a quadrant priority (represented as Pquadi
),

63

which represents the probability that workloads in that region will be selected as throttling candi-

dates. In our formalization, we assume the Pquadi
is a constant. It is also possible to change it

dynamically at run-time.

0

0.5

1

1.5

2

0 0.5 1 1.5 2

La
te

nc
y(

Fr
ac

tio
n)

IOps (Fraction)

failed

meet

exceeded

lucky

Figure 4.6. Workload classification. Region limits correspond to the 100% of the SLO values.

To meet all requirements, we define the objective function as follows:

Minimize
∑

i6∈failed

∣

∣

∣

∣

Pquadi
PWi

SLOWi − ai(ti)

SLOWi

∣

∣

∣

∣

where PWi is the workload priority for workload i, Pquadi
is the quadrant priority, and ai(ti)

represents the action model for workload i.

This objective function can successfully capture all requirements. For example, the goal of

minimizing the degree of throttling is enforced by introducing the item SLOWi−ai(ti)
SLOWi

, the goal of

performance differentiation is captured by the item PWi, and the goal of service isolation is achieved

by introducing the Pquadi
.

Constraints: Constraints are represented as inequalities: the latency of a workload should be less

than or equal to the value specified in the SLO. More precisely, we are only interested in solu-

tions that satisfy latencyWj
≤ SLOWj

for all workloads Wj running in the system. We esti-

mate the contribution of component i to the latency of Wj by composing our system models, i.e.,

latencyi,j = cij(wij(aj(tj)), · · · , wik(ak(tk))), where k is a workload running on component i. In

this composition, ak(tk) estimates the request rate of workload k given token issue rate tk, which is

then taken as input to the workload model wik to estimate the load at component i originated from

64

workload k. The same estimation is performed for all workloads running on component i. The

component model cij estimates the performance of workload j on component i as a function of the

load originated from all workloads running on component i.

The latency of workload j in the system is the sum of the latency along its invocation path

(shown in Equation 4.1). The throughput of workload j can be estimated similarly, with the

throughputj = min(throughputi,j) for all i on its invocation path.

latencyj =
∑

i∈ invocation path

latencyi,j (4.1)

In this section, we have described how CHAMELEON makes the throttling decision by com-

posing system models and applying constraint optimization technique. System model composition

helps to determine the efficiency of a throttling decision without executing it. Constraint optimiza-

tion technique allows us to explore the decision candidate space in a very short time. In addition, the

design of our objective function can find an accurate throttling decision as well as providing service

isolation and performance differentiation. Next, we will discuss how CHAMELEON unthrottles the

workloads using the same formalization when the system load is reduced.

4.4.3 Workload Unthrottling

CHAMELEON invokes the reasoning engine periodically, to re-assess token issue rates. If the

load on the system has decreased since the last invocation, some workloads may be unthrottled to

re-distribute the unused resources based on workload priorities and average I/O rates. If a workload

is consistently wasting its tokens because it has less significant needs, unused tokens will be con-

sidered for re-distribution. On the other hand, if the workload is using all its tokens, they won’t be

taken away from it, no matter how low its priority is. CHAMELEON makes unthrottling decisions

using the same objective function with additional “lower-bound” constraints such as not allowing

any I/O rate to become lower than its current average value.

65

4.4.4 Confidence on Decisions

The confidence value of the reasoning engine is based on the accuracy of the models. With

system models constructed using black box approaches, the inaccuracies can stem from errors due

to curve-fitting, and also from trying to use the models outside of the region(s) in which they were

trained. The regression of system models is a multivariate regression problem, which predicts the

dependent variable ŷ as a function of multiple independent variables x and has the form of ŷ =

xT β̂ + A + E, where β̂ is the coefficient vector, A is the Y intercept and E is an error term.

There are multiple ways of capturing the inaccuracy for the multivariate regression models [44].

We choose the standard error Sŷ (see Equation 4.2) of the model prediction to capture both the

errors from regression and from residuals.

Sŷ = σ
√

1 + xT
∗ (XT X)−1x∗ (4.2)

where σ is the standard error 2 of the regression model, x∗ is the input vector whose y value

to be predicted, and X is the observed input matrix used to construct the regression model. In

CHAMELEON, we represent the confidence value CV of a model as CV = 1 − Sŷ. Based on

the value of CV , CHAMELEON switches its operation point among model-based or heuristic-based

approaches, and tunes the aggressiveness of the throttling execution by changing the feedback step

size (see Section 4.6 for details). An example transition strategy is to apply heuristics when the

CV < 0.6, else follow the output of the reasoning engine.

4.5 Designer-Defined Policies

The system designer defines heuristics for coarse-grained throttling control. The system uses

heuristics to make decisions whenever the predictions of the models cannot be relied upon—either

during bootstrapping or after significant system changes such as hardware failures. The former

is captured by the confidence value (CV) of the reasoning engine as described in Section 4.4.4.

The latter is detected by monitoring the mean relative error of the predicted performance (ŷ) and
2The standard error is the estimated standard deviation of a statistic. It provides a simple measure of uncertainty in a

value [78].

66

the observed value (y). The mean relative error is defined as | y−ŷ
y

|. When the error is above

some threshold, such as 40%, CHAMELEON switches to heuristics. For example, when hardware

failures happens, the observed latency increases to six times of the predicted value, thus forcing the

CHAMELEON to switch to heuristics.

These heuristics can be expressed in a variety of ways such as Event-Condition-Action (ECA)

rules or hard-wired code. An example of the ECA rule is “when SLO is violated, if system utilization

is greater than 85%, throttling workloads in the lucky region by 10%”. In any case, fully speci-

fying corrective actions at design time is an error-prone solution to a highly complex problem [85],

especially if they are to cover a useful fraction of the solution space and to accommodate priorities.

It is also very hard to determine accurate threshold values to differentiate different scenarios, in the

absence of any solid quantitative information about the system being built. In CHAMELEON, the

designer-defined heuristics are implemented as simple hard-wired code (see below).

1. Determine the list of components being used by the under-performing workload, referred to

as compList.

2. For each component in the compList, add the non-underperforming workloads using it to

the candidate list (the candidateList).

3. Sort the candidateList first by current operating quadrant: lucky first, then exceed, then

meet. Within each quadrant, sort by workload priority.

4. Traverse the candidateList and throttle each workload, either uniformly or proportionally

to its priority (e.g., the higher the priority, the less significant the throttling).

4.6 Informed Feedback Module

CHAMELEON’s reasoning engine determines the token issue rate based on the estimated per-

formance. The accuracy of the decision depends on the accuracy of system models used for per-

formance estimation. In real world, system models always have errors from regression or from

residuals. Blind obedience to decisions made based on such models may lead to over-throttling,

under-utilizing the system, or under-throttling, leaving the SLOs violation unsolved. To compensate

67

Y

Incremental throttling

N

Re−calculate
throttle values

Reasoning engine invoked

Executing the reasoning

proportional to CV
engine output with step−size

policies with constant step−size
Executing system−designer

CV< Threshold

after m throttling steps
Analyze the system state

Continue
throtting

Swith to heuristics

Figure 4.7. Operation of the feedback module.

for model errors and to account for system fluctuation, CHAMELEON incorporates a feedback mod-

ule to execute the throttling strategy. The feedback module (see Figure 4.7) incrementally throttles

workloads based on the decisions of either the reasoning engine or the system-designer heuristics.

If CHAMELEON is following the reasoning engine, throttling is applied at incremental steps whose

size is proportional to the confidence value of the reasoning engine; otherwise, the throttling step

is a small constant value. In our prototype, when CHAMELEON follows the reasoning engine, the

throttling is applied in following manner:

• Initialize the token issue rate to α ∗ distance, where distance is the difference between the

targeting token issue rate (tj) and the current token issue rate, α is configured proportional to

the confidence value of the constraint solver. Specially, in our prototype, a ∈ {0, 0.5} and

grows linearly with CV = 1 − Sŷ.

• In each step, increase the token issue rate by (1−α)∗distance
b

, where (1 − α) ∗ distance is the

remaining distance to the target after the initial step, b is the total number of steps planned,

and is configured as a piece-wise constant value depending on the value of CV .

After every m throttling steps, the feedback module analyzes the state of the system and de-

68

cides among continue throttling, re-invoking the reasoning engine and switching to the designer

heuristics. The feedback-module re-invokes the reasoning engine if any of the following condition

is true:

• Latency increases for the under-performing workload. That is, it moves away from the meet

region.

• A non-underperforming workload moves from the meet or exceed to lucky.

• Any workload undergoes a two times or greater variation, compared to the values at the

beginning of throttling, in the request rate or any other access characteristic.

• There is a two times or greater difference between the predicted and observed response times

for a component.

In addition, CHAMELEON switches to designer heuristics if any of the following happens: (1) the

CV is below the pre-defined threshold, (2) the mean relative error of the predicted and the observed

performance is above some threshold, or (3) the reasoning engine has been re-invoked consecutively

for l times. Otherwise, the feedback module continues applying the same throttling decisions in

incremental steps.

We have described how CHAMELEON combines system models and constraint optimization

techniques to generate optimal throttling parameters, uses heuristic policies as the fall-back mecha-

nism when the confidence value of the reasoning engine is low, and incorporates a feedback loop to

compensate for the inaccuracy of models. By doing so, CHAMELEON takes the advantages of the

model-based, feedback-based and the policy-based approaches. It makes more accurate throttling

decisions as we know more about the running system and the workloads. In the next section, we

present the evaluation results of CHAMELEON in a real system testbed using both synthetic work-

loads and real-world trace replay. Our focus is on understanding CHAMELEON’s ability to select the

right set of workloads, the effectiveness of the feedback loop and its responsiveness in correcting

SLO violations.

69

4.7 Experimental Evaluation

The key capability of CHAMELEON is to regulate resource load so that SLOs are achieved. In

our experiments, we use a variety of combinations of synthetic and real-world request streams to

evaluate the effectiveness of CHAMELEON. As expected, synthetic workloads are easier to handle

than their real-world counterparts that exhibit burstiness and highly variable access characteristics.

In the rest of this section, we will first describe our testbed configurations (Section 4.7.1) and evalu-

ation metrics (Section 4.7.2). We then present our results using synthetic workloads (Section 4.7.3)

and real world trace replay (Section 4.7.4).

4.7.1 Testbed Configuration

The experimental setup consists of a host machine generating multiple I/O streams to a shared

storage infrastructure. The host is an IBM X-series 440 server, which has a 2.4GHz 4-way Intel

Pentium 4 CPU with 4GB RAM and runs the Redhat Server Linux 2.1 kernel. The back-end storage

is a 24-drive RAID 1 LUN created on a IBM FAStT 900 storage controller with 512MB on-board

NVRAM, and accessed as a raw device so that there is no I/O caching at the host. The host and the

storage controller are connected using a 2Gbps FibreChannel link.

For synthetic workloads, we develop our own workload generator that takes the

rwratio, rsratio, reqsize, fprtsize and iops (see Chapter 3) as input and generates the I/O

requests to the storage system. The workload generator starts a number of worker threads. Each

worker generates synchronized I/Os independently.

For real world trace replay, we use the web-search SPC trace [27] and HP’s Cello96 trace [68] of

a department file server. Both are block-level traces with timestamps recorded for each I/O request.

In our experiments, we first pre-process the traces to count the number of I/O requests issued in

every 10ms interval. At run-time, our workload generator creates a thread that is woken up every

10ms to allocate tokens to a worker thread according to the pre-processing results. By doing this,

we can control the number of I/O requests to be issued in every 10ms interval. When a worker

thread receives tokens, it sequentially scans the traces to inject the corresponding I/O requests to

the storage system. Note that the rationale for batching I/O requests for every 10ms is that 10ms

70

is the default system clock interrupts in our system, and therefore, is the minimum timeslice and

scheduler quanta.

4.7.2 Evaluation Standard

In our evaluation, we examine the quality as well as the efficiency of CHAMELEON’s decision.

In terms of quality, a good throttling decision should (1) minimize the number of workloads in the

failed region; (2) enforce a minimum degree of throttling. That is, the sending rate after throttling

should be as close to the SLO throughput boundary as possible; and (3) throttle the right workloads.

That is, the workload priority and quadrant priority should be correctly accounted for. A throttling

decision is viewed as a good decision when it matches all three criteria. To evaluate the efficiency of

CHAMELEON, we measure the time that CHAMELEON takes to correct the SLO violations, defined

as the duration from SLO violation happens to SLOs are satisfied again.

4.7.3 Using Synthetic Workloads

The synthetic workload specifications used in this section are derived from a study in the Min-

erva project [5] (see Table 4.1). Our experiments in this section serve two objectives. First, they

evaluate the correctness of the decisions made by the constraint solver. Throttling decisions should

take into account each workload’s priority, its current operating point compared to the SLO, and the

percentage of load on the components generated by the workload. Second, these tests quantify the

effect of model errors on the output values of the constraint solver and how incremental feedback

helps the system converge to the optimal state.

Workload Request size [KB] Rd/wrt ratio Seq/rnd ratio Foot-print [GB]
W1 27.6 0.98 0.577 30
W2 2 0.66 0.01 60
W3 14.8 0.641 0.021 50
W4 20 0.642 0.026 60
W5 2 1 1 0.01

Table 4.1. Synthetic workload streams.

We report experimental results by showing each workload’s original and the post-

throttling position in the classification chart as defined in Figure 4.6. In addition, to demon-

71

strate the degree of throttling for each workload, we give the throttling ratios, defined as
old token issue ratei−new token issue rate

old token issue rate
, in the figures (shown as ti) rather than the absolute value of

token rates.

Case 1: Effect of workload and quadrant priorities

Figure 4.8 compares the direct output of the constraint solver with equal priority values (Figure

4.8(a)), different workload priorities (W1 = 8,W2 = 8,W3 = 2,W4 = 8) (Figure 4.8(b)) and

the quadrant priorities (failed = 16, meet = 2, exceed=8 , lucky=8) (Figure 4.8(c)). In comparison

to the equal priority scenario, W3 (Figure 4.8(b)) and W2 (Figure 4.8(c)) are throttled more when

priorities are assigned for the workloads and quadrants respectively. This is because the constraint

solver optimizes the objective function by throttling the lower priority workloads more aggressively

before moving on to the higher priority ones.

Case 2: Usage of the component by the workload

This experiment is a sanity check with workload W5 operating primarily from the controller

cache (2KB sequential read requests). Because W5 does not consume disk bandwidth, the reasoning

engine should not attempt to solve the SLO violation for W1 by throttling W5 even if W5 has the

lowest priority. As shown in Figure 4.9, the reasoning engine selects W2 and W3.

Case 3: Throttling executor combined with the Reasoning engine

In CHAMELEON, the output of the reasoning engine is executed in incremental steps using

the feedback loop. Instead of directly executing the throttling decision of the reasoning engine

as in the case of no feedback, feedback controlled execution moves towards the decision of the

reasoning engine in multiple steps. The step-size is dependent on the confidence value associated

with the component models (see Section 4.6 for details). In this test, we evaluate the efficiency

of the feedback controlled throttling executor by comparing its post throttling position with that of

the no feedback loop case. We use the setting with different workloads priority and same quadrant

priority (W1 = 8,W2 = 8,W3 = 2,W4 = 8) as an example. The workload status before executing

72

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

La
te

nc
y(

Fr
ac

tio
n)

IOps(Fraction)
 (t1=0,t2=0,t3=33.87%,t4=29.17%)

w1

w2
w3

w4

(a) Equal priority

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

La
te

nc
y(

Fr
ac

tio
n)

IOps(Fraction)
 (t1=0,t2=0,t3=65.98%,t4=10.02%)

w1

w2
w3

w4

(b) Effect of workload priority

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

La
te

nc
y(

Fr
ac

tio
n)

IOps(Fraction)
 (t1=0,t2=64.18%,t3=33.86%,t4=10.01%)

w1
w2 w3

w4

(c) Effect of quadrant priority

Figure 4.8. Effect of priority values on the output of the constraint solver.

73

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2
La

te
nc

y(
Fr

ac
tio

n)
IOps(Fraction)

 (t1=0,t2=42.94%,t3=4.68%,t5=0%)

w1

w2
w3

w5

Figure 4.9. Sanity test for the reasoning engine (workload W5 operating from the controller cache.)

CHAMELEON’s throttling decision is plotted in Figure 4.10(a). Figure 4.10(b) and Figure 4.10(c)

plot the workload status without and with the feedback loop respectively. The result shows that with

feedback, CHAMELEON stops right after W1 meets its SLO goal. In this case, it results in a much

smaller throttling ratio than without the feedback loop.

4.7.4 Replaying Real-World Traces

In these experiments, we replay the web-search SPC trace [27] and HP’s Cello96 trace [68].

Both are block-level traces with timestamps recorded for each I/O request. We use approximately

six hours of SPC and one day of Cello96. To generate a reasonable I/O load for the storage infras-

tructure, SPC was replayed 40 times faster and Cello96 was replayed ten times faster.

In addition to the traces, we use a phased, synthetic workload, which is assigned with the highest

priority. In the case without throttling, with three workloads, SPC, Cello96 and Synthetic, running

on the system, one or more of them violate their SLOs. Figure 4.11 shows the throughput and

latency values for this uncontrolled case. For all the figures in this subsection, there are four parts

ordered vertically: the first plot represents the throughput for the SPC, Cello96, and the synthetic

workload. The second, third, and fourth plots represent the latency for each workload, respectively.

We use these experiments to evaluate the following properties:

74

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

La
te

nc
y(

Fr
ac

tio
n)

IOps(Fraction)

w1

w2
w3

w4

(a) Initial workloads status

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

La
te

nc
y(

Fr
ac

tio
n)

IOps(Fraction)
 (t1=0,t2=0,t3=65.98%,t4=10.02%)

w1

w2
w3

w4

(b) Output of the reasoning engine

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

La
te

nc
y(

%
)

IOps(%)(t1=0,t2=0,t3=19.79%,t4=0.03%)

w1

w2
w3

w4

(c) Increment throttling using feedback loop

Figure 4.10. The final output of CHAMELEON using a combination of prediction and feedback-
based approach

75

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30 35 40 45 50
IO

PS

time (minute)

Cello96
SPC
SYN

 0
 2
 4
 6
 8

 10
 12
 14

 0 5 10 15 20 25 30 35 40 45 50

la
te

nc
y

(m
s)

time (minute)

Cello96
Cello SLA

 0
 2
 4
 6
 8

 10

 0 5 10 15 20 25 30 35 40 45 50

la
te

nc
y

(m
s)

time (minute)

SPC
SPC SLA

 0
 2
 4
 6
 8

 10
 12
 14

 0 5 10 15 20 25 30 35 40 45 50

la
te

nc
y

(m
s)

time (minute)

SYN
SYN SLA

Figure 4.11. Uncontrolled throughput and latency values for real-world and synthetic workload
traces.

• The throttling decisions made by CHAMELEON for converging the workloads towards their

SLO;

• The reactiveness of the system with throttling and periodic unthrottling of workloads under

reduced system load;

• The handling of unpredictable variations in the system that cause errors in the model pre-

76

dictions and force CHAMELEON to use the sub-optimal but conservative designer-defined

policies.

In these experiments, the SLOs for each workload are: 1000 IOPS with 8.2 ms latency for

Cello96, 1500 IOPS with 6.5 ms latency for SPC and 1600 IOPS with 8.6 ms latency for the syn-

thetic workload unless otherwise specified.

Case 1: Solving SLO violations

The behavior of the system is shown in Figure 4.12. To explain the working of CHAMELEON,

we divide the time-series into phases, shown as dotted vertical line in the figures as follows:

Phase 0 (0 - 5 min): Only the SPC and Cello96 traces are running on the system. The latency

values of both these workloads are significantly below the SLO.

Phase 1 (5 - 13 min): The phased synthetic workload is introduced in the system. This causes

an SLO violation for the Cello96 and synthetic traces. CHAMELEON triggers the throttling of the

SPC and Cello96 workloads. Cello96 is also throttled because it is operating in the exceeded region,

which means it is sending more than it should. Therefore, it is throttled even if its SLO latency goal

is not met. The system uses a feedback approach to move along the direction of the decision of the

constraint solver. In this experiment, the feedback system starts from 30% of the throttling value

with a step size of 8% (see Section 4.6 for detailed algorithm). It takes the system six minutes to

meet the SLO goal and stop the feedback.

Phase 2 (13 - 20 min): The system stabilizes after the throttling and all workloads can meet

their SLOs.

Phase 3 (20 - 25 min): The synthetic workload enters the OFF phase. During this time, the

load on the system is reduced, but the throughput of Cello96 and SPC remains the same.

Phase 4 (beyond 25 min): The system is stable, with all the workloads meeting their SLOs.

As a side note, around 39 min the throughput of Cello96 decreases because it has a decreasing I/O

sending rate.

Figure 4.12 shows the effectiveness of the throttling: all workloads can meet their SLO after

77

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40 45 50
IO

PS

time (minute)

Cello96
SPC
SYN

 0
 2
 4
 6
 8

 10
 12
 14

 0 5 10 15 20 25 30 35 40 45

la
te

nc
y

(m
s)

time (minute)

Cello96
Cello SLA

 0
 2
 4
 6
 8

 10

 0 5 10 15 20 25 30 35 40 45

la
te

nc
y

(m
s)

time (minute)

SPC
SPC SLA

 0
 2
 4
 6
 8

 10
 12
 14

 0 5 10 15 20 25 30 35 40 45

la
te

nc
y

(m
s)

time (minute)

SYN
SYN SLA

Figure 4.12. Throughput and latency values for real-world workload traces with throttling (without
periodic unthrottling.)

throttling. However, because the lack of an unthrottling scheme, throttled workloads have no means

to increase their throughput even when tokens are released by other workloads. Therefore, the

system is underutilized.

78

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 5 10 15 20 25 30 35 40 45 50
IO

PS

time (minute)

Cello96
SPC
SYN

 0
 2
 4
 6
 8

 10
 12
 14

 0 5 10 15 20 25 30 35 40 45 50

la
te

nc
y

time (minute)

Cello96
Cello96 SLA

 0
 2
 4
 6
 8

 10

 0 5 10 15 20 25 30 35 40 45 50

la
te

nc
y

time (minute)

SPC
SPC SLA

 0
 2
 4
 6
 8

 10
 12
 14

 0 5 10 15 20 25 30 35 40 45 50

la
te

nc
y

time (minute)

SYN
SYN SLA

Figure 4.13. Throughput and latency values for real-world workload traces with throttling and
periodic unthrottling.

Case 2: With throttling and unthrottling

The previous experiment demonstrates the effectiveness of throttling. Figure 4.13 shows throt-

tling combined with unthrottling of workloads during the periods of reduced system load. Compared

to Figure 4.12, the key differences are: (1) SPC and Cello96 increase their request rates when the

system load is reduced (17 min to 27 min), improving overall system utilization; and (2) the sys-

tem has a non-zero settling time when the synthetic workload is turned on (27 min to 29 min). In

79

summary, unthrottling allows for better system utilization, but requires a non-zero settling time for

recovering the resources.

Case 3: Handling system changes at run-time

This experiment demonstrates how CHAMELEON handles system changes at run-time. These

changes can be due to unpredictable system variations, such as hardware failures, or un-modeled

properties of the system, such as changes in the workload access characteristics that change the

workload models. Refining the models to reflect the changes will not be instantaneous. In the

meantime, CHAMELEON should have the ability to detect decreases in the confidence value or pre-

diction accuracy, and switch to a designer heuristics, or generate a warning for human administrator.

Figure 4.14 shows the reaction of the system when the access characteristics of the SPC and

Cello96 workloads are synthetically changed such that the cache hit rate of Cello96 increases sig-

nificantly and the SPC generates more random access. In reality, a similar scenario arises due to

changes in the cache allocation to workload streams sharing the controller.

The SLOs used for this experiment are: 1000 IOPS with 7 ms latency for Cello96, 2000 IOPS

with 8.8 ms latency for SPC and 1500 IOPS and 9 ms latency for the synthetic workload.

Phase 0 (at 3 min): The synthetic workload violates its latency SLO. In response, CHAMELEON

decides to throttle the Cello96 workload using the original workload model. The output of the

reasoning engine has a confidence value of 65%.

Phase 1 (3 min to 13 min): The feedback module continues to throttle for three consecutive

steps; since the latency of the synthetic workload does not change, it re-invokes the reasoning en-

gine. The output of the reasoning engine is similar to the previous invocation since the models

haven‘t changed. This repeats for consecutive invocations of the reasoning engine. Finally the

feedback module switches to use the designer-defined policies.

Phase 2 (13 min to 17 min): CHAMELEON uses the designer policy described in Section 4.5

and throttles all the non-violating workloads uniformly (uniform pruning). Both SPC and Cello96

are throttled in small steps, 5% of their SLO IOPS, till the latency SLO of the synthetic workload is

satisfied.

80

 0

 500

 1000

 1500

 2000

 2500

 5 10 15 20
IO

PS

time (minute)

Cello96
SPC
SYN

 0
 2
 4
 6
 8

 10

 5 10 15 20

la
te

nc
y

(m
s)

time (minute)

Cello96
Cello96 SLA

 0
 2
 4
 6
 8

 10
 12

 5 10 15 20

la
te

nc
y

(m
s)

time (minute)

SPC
SPC SLA

 0
 2
 4
 6
 8

 10
 12

 5 10 15 20

la
te

nc
y

(m
s)

time (minute)

SYN
SYN SLA

Figure 4.14. Handling a change in the confidence value of the models at run-time.

Phase 3 (beyond 17 min): All workloads are meeting their SLO goals and the system is stabi-

lized.

4.7.5 Decision Overhead of the Reasoning Engine

The current implementation of CHAMELEON uses piece-wise linear programming for constraint

solving. The decision overhead of the constraint solver is a function of the number of variables

81

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 50 100 150 200 250 300 350 400

tim
e

(s
ec

on
d)

Number of Variables (Workloads)

Figure 4.15. Decision overhead of the reasoning engine

involved. Figure 4.15 shows the amount of time CHAMELEON takes to generate the answer. This

experiment is run on a P4 2.8 GHZ linux machine with 512MB memory.

In this section, we have presented our experimental evaluation of CHAMELEON using a real

system testbed. The results show that CHAMELEON can automatically execute throttling procedures

that move the system to its optimal state, as defined by the objective function. In all cases, the right

workloads are throttled and the amount of the throttling is the minimum needed to meet the targets.

With our current system and for the workload perturbations we imposed, we see reaction times

between 3 and 14 minutes. While this is not instantaneous, it is almost certainly quicker than a

human could react. Such reaction cause the operator to first notice the problem, then decide what

to do and execute it. We also test the unthrottling decision and the results show that CHAMELEON

successfully releases constraints on the workloads when the system load is reduced. In the next

section, we will discuss how to generalize the design of the reasoning engine to integrate it with the

SMART’s framework.

4.8 Working with SMART

In the previous sections, we described the framework, reasoning techniques and execution con-

trol of CHAMELEON. In the more general SMART framework, CHAMELEON can act as the single

throttling tool to determine the optimal throttling parameters and as a throttling actuator. Since

82

CHAMELEON’s design methodology can be applied directly in SMART, in the rest of our discus-

sion, we will focus on how to apply general optimization techniques to improve CHAMELEON’s

reasoning engine to match the objective of SMART—maximizing the system utility.

As shown in Figure 4.1, CHAMELEON’s reasoning engine takes the current system states and

system models as input and chooses the optimal token issue rates using the piece-wise linear pro-

gramming technique. In SMART, the Action Advisor will feed the interested system states to

CHAMELEON. The system models can be fed either by the Action Advisor or by input modules

directly. These are described in Chapter 3. However, the piece-wise linear programming technique

used by the reasoning engine cannot handle the objective function of maximizing the system utility.

This is because it can have both linear and non-linear forms. As a result, the optimization algo-

rithm of CHAMELEON’s reasoning engine needs to be generalized to accommodate more general

objective functions.

Choosing token issue rates to maximize the system utility can be formulated as a global op-

timization problem, where the problem is to find the global optimum of a given function in large

search space. Many approximation algorithms have been proposed to reduce the complexity of

global optimization problem [70], such as the hill climbing algorithm, tabu search [35] and genetic

algorithms [60]. In our prototype of SMART to be described in Chapter 6, we use the simulated

annealing (SA) algorithm, invented independently by S. Kirkpatrick, C. D. Gellatt and M. P. Vecchi

in 1983 [50] and by V. C̆erný in 1985 [16]. The key idea of SA was to combine the hill climbing

algorithm, that always goes uphill, with some reasonable degree of random walk to allow downhill

moves and avoid local optimum. SA exploits an analogy between the annealing process in metal-

lurgy, where a metal was heated and cooled in a controlled manner to reach to a minimum energy

crystalline structure. In brief, each step of SA algorithm replaces the current solution, such as the

token issue rates configuration, by a random “nearby” solution, such as allocating additional tokens

to a randomly selected workload. If the move improves the objective value, it is always accepted.

Otherwise, it is accepted with some probability, which decreases exponentially with the reduction

of the objective value, as well as the “temperature”. The “temperature” is a configurable parame-

ters and deceases gradually during the process. It can be shown that, for any given finite problem,

83

if the temperature is decreased slowly enough, SA can find a global optimum with a probability

approaching to one [70].

In summary, by replacing the piece-wise linear programming algorithm with a general global

optimization formulation, CHAMELEON can work as the single action tool in SMART to find the

throttling invocation parameters that can maximize the system utility.

4.9 Conclusions

An ideal solution for resource arbitration in shared storage systems would adapt to changing

workloads, client requirements and system conditions. It would also relieve system administrators

from the burden of having to specify when to step in and take corrective actions, and what actions

to take. Thus administrators can concentrate on specifying the global objectives to maximize the

storage utility and having the system take care of the details. No existing solution achieves this

today. Prior approaches are either inflexible, or require administrators to supply up-front knowledge

that is not available to them.

Our approach for identifying which client workloads should be throttled is based on constraint

optimization. Constraints are derived from the running system by monitoring its delivered perfor-

mance as a function of the demands placed on it during normal operation. The objective function

being optimized can be defined by the administrator to reflect organizational goals. Given that the

actions prescribed by our reasoning engine are only as good as the quality of the models used to

compute them, CHAMELEON will switch to a conservative, decision-making process if sufficient

knowledge is not available. We replay traces from production environments in a real storage sys-

tem, and demonstrate that CHAMELEON makes accurate decisions for the workloads examined.

With our current system and scenarios tested, CHAMELEON reacts to and solves the performance

problems using the feedback loop in the range of 3-14 minutes.

CHAMELEON can work as the single action tool for throttling in the SMART framework as well

as a stand-alone throttling decision tool. In Chapter 5, we will present SMARTMIG, a single ac-

tion tool for another corrective action, migration. SMARTMIG is responsible of determining the

migration invocation parameters, including what and where to migrate, how to migrate and when to

84

invoke the migration operation. It generates the migration plan by applying system models, time se-

ries analysis, constraint optimization and risk management analysis. In Chapter 6, we will describe

our algorithm for generating an integrated, multi-action schedule that completes the analysis task of

SMART.

85

Chapter 5

SMARTMIG: An Automatic Proactive

Data Migration Decision Tool

Growing consolidation of storage systems necessitates resource sharing among multiple com-

peting applications. To maximize the system utility, corrective actions are invoked to change the

application-to-resource mapping at run-time. Our work focuses on proposing framework and al-

gorithms to generate the corrective action schedules automatically. We started with describing the

framework of SMART, a model-based automatic action advisor in Chapter 3. In Chapter 4, we pre-

sented CHAMELEON, an automatic throttling decision tool that chooses the invocation parameters

by combining system models and constraint optimization techniques. In this chapter, we will present

SMARTMIG, a decision tool for another commonly used corrective action, migration. Different

from throttling, which corrects the system behavior by reducing the loads to the system, migration

improves the system performance by changing the physical location of data to redistribute the load

within the system. Since migration involves data movement, it often has a long action execution

time and its action effect is not easily reversible. As such, the decision strategy of migration is very

different from that of throttling. Thus, it is necessary to discuss the design of the single migration

action tool for SMART.

Migration as a corrective action requires deciding what data-set to migrate, where to migrate,

when to migrate and how fast to migrate. SMARTMIG generates the complete migration plan over

86

three phases: the optimization phase chooses the optimal data-set and target component, the plan-

ning phase determines the migration starting time and the migration speed, and the risk management

phase balances the benefit and risk of migration options. It applies system models, time-series anal-

ysis and risk management to account for both the temporary migration effect when migration is

ongoing, and the permanent impact on the system after migration finishes. We develop a simulator

to evaluate the efficiency of SMARTMIG’s decision. Our results show that, for 83% of the scenarios

tested, SMARTMIG can reduce the utility loss by more than 80% compared to the case of no action

invocation. In the rest of this chapter, we will first motivate the need for a migration tool that can

account for future system states and the risk of migration options, and can invoke migration at ap-

propriate time in Section 5.1. We then give an overview of the decision making algorithm in Section

5.2, and describe the details of optimization, planning, and risk management phases in Section 5.3.

We evaluate SMARTMIG in Section 5.4. Finally, we summarize this chapter in Section 5.5.

5.1 Motivation and Related Work

Automated invocation of data migration is an area of ongoing research. It requires first decid-

ing what data-set to migrate, which we refer to as migration candidates. Next is where to migrate,

which we call the target. We also must decide how to migrate, the migration speed. The final de-

cision is when to migrate, the migration starting time. Existing efforts to automate migration focus

on the new data placement configuration, that is, what to move and where to place them. Other

solutions consider the migration speed. No previous approach considers all four aspects at the same

time. Traditional approaches [24, 71, 90] of selecting the migration candidates are based on data

temperature, defined as the quotient of the load and data size. Migration candidates are ranked

in the descending order of temperature. The one with the highest temperature is migrated to the

least loaded storage devices. These approaches fail to consider the component’s ability to satisfy

the workload requirements, and therefore, often lead to suboptimal system utility. Recently, Hippo-

drome [8] and its follow-on work [7] apply system models to select migration candidates and targets

to meet the SLOs goals. They perform an iterative loop to refine the data placement automatically.

However, their migration decisions are based on the “current” system state only without considering

87

future system states. This limits their ability to adapt to system changes proactively. In addition to

these efforts in deciding the migration candidates and targets, researchers also propose algorithms

to determine the migration speed, such as Aqueduct [54] and QoSMig [28]. As discussed in Chapter

2, these solutions rely on run-time signals to adjust the migration speed. As a result, they lack the

ability to predict the possible impact of various migration options, which is critical for planning a

migration operation beforehand.

In summary, existing solutions to make automatic the what, where, how decisions have follow-

ing limitations. First, the decision-making is typically optimized for improving only the current

system state rather than considering forecasted trends in system load and workload usage. This

makes it difficult to avoid bad states by proactively invoking migration. Second, migration has been

traditionally treated as a background task invoked when the system is lightly loaded. However,

in utility-based computing, migration can be scheduled as a foreground task to correct resource

bottlenecks for high-utility applications. This requires new techniques to determine when to sched-

ule migration actions. Third, migration incurs the cost of moving data. Previous solutions fail to

account for the penalty cost of incorrectly invoke the migration operation. An ideal migration plan-

ning tool should account for both the benefit and risk of a given migration operation in its decision

making.

In the rest of this chapter, we present SMARTMIG, a proactive migration scheme for maximizing

system utility. SMARTMIG uses a combination of system models, workload demand forecasting

and risk management to decide what, where, how and when to migrate automatically. SMARTMIG

determines the migration parameters in three phases. In the optimization phase, it makes the what

and where decisions using constraint optimization with the objective to maximize the system utility

for a given optimization time window. In addition, it outputs multiple options for later processing

to improve the optimality of the final plan. In the planning phase, it determines the detailed how

and when migration plan for the migration candidates and targets. In the risk management phase,

it analyzes the level of risk involved versus the expected benefit, and selects the plan with best risk

and utility efficiency. SMARTMIG requires the same set of input information as SMART (see Section

3.3). Therefore, it can operate as the single action tool for migration actions in the general SMART

88

framework. Its role is to generate migration options to the Action Advisor for action scheduling

(see Chapter 6).

We will first give an overview of the decision making algorithm in Section 5.2. We discuss how

to estimate the system utility for any time t in the optimization window and the rational for breaking

the decision making procedure into three phases: optimization, planning and risk management. In

Section 5.3, we describe the design details for each phase. Our experimental results are shown in

Section 5.4. Finally, we summarize this chapter in Section 5.5.

5.2 Overview of SMARTMIG

Risk Management Migration
Executor

Plan Generator

Time−Series
Forecasting

State
System

System
Models

Functions
Utility

Business
Constraints

Input Modules

Optimization Planning

Figure 5.1. Architecture of SMARTMIG

In this section, we will give an overview of SMARTMIG and the mechanisms of generating the

migration plan will be described in the next section.

Figure 5.1 gives the architecture of SMARTMIG. As with SMART, SMARTMIG takes system

state, forecast workloads demands, system models, utility functions and business constraints as in-

put. Details about the input modules are covered in Chapter 3. In particular, the migration operation

has both permanent and transient impact on the system. By permanent, we mean the change of data

physical placement. The transient impacts include the extra load on the source and the targets for

copying the data. Given a migration plan, its permanent effect on workload performance can be

89

estimated as follows: first, it uses the workload models (see description in Section 4.3) to derive

the load on the components; Then, it uses the component models (see Section 3.3) to estimate the

performance using the new data placement configuration. For transient effects, we construct migra-

tion action models to capture the extra load introduced by the migration process as a function of the

migration speed. We then apply the same model composition techniques discussed in CHAMELEON

(see Section 4.4) to estimate the workload performance. With time-series forecasting, for any given

time t, the system utility can be predicted by first plugging in the forecast workload demand as input

to system models to estimate the received performance. Then the received performance is taken as

input to utility functions to calculate the system utility for time t. In general, with system models,

time series forecasting and utility functions, we can estimate the system utility at any time in the

optimization time window, with or without the migration process.

SMARTMIG’s design goal is to find a migration plan to maximize the system utility value for a

given optimization window T— equivalent to minimizing the system utility loss, ULsys (Equation

5.1).

UMaxsys =

N
∑

j=1

UFj(Dj , SLOlatj)

ULsys = UMaxsys − Usys (5.1)

The invocation of migration requires deciding what, where, how and when parameters. These pa-

rameters are not independent. The choice of one parameter may affect the optimality of another

one. For example, the optimal migration speed depends on the (what, where) decision and the best

migration starting time can only be determined if all other three parameters are known. The ideal

optimal migration plan should consider the interaction among the four parameters and examine all

possible combinations. However, full scan of the configuration space introduces high complexity—

even its sub-problem of choosing the migration candidates and targets is a NP-complete problem

[8]. To reduce the complexity, SMARTMIG trades the optimality for complexity. It breaks the

decision procedure into three phases as follows:

• Optimization Phase: Finds the top-K answers for what data to migrate and where to place

them.

90

• Planning Phase: Finds the best migration starting time and migration speed for each of the

top-K < what, where > pairs.

• Risk Management Phase: Evaluates the risk associated with each migration plan and selects

the one leading to maximum utility and minimum risk.

In each phase, SMARTMIG uses system models, forecast workload demands and utility functions to

estimate the decision impact on the system, and to explore the design space for the optimal plan. In

the next section, we will describe the design details for each phase.

5.3 Migration Plan Generator

The decision making procedure of SMARTMIG consists of three phases: optimization, planning

and risk management. This section covers the details for each phase.

5.3.1 The Optimization Phase: What and Where

The selection of migration candidates and targets represents the “permanent” effect of the mi-

gration. The goal is to find a new data placement configuration that maximizes system utility. This

can be formulated as a constraint optimization problem, shown in Table 5.1.

Variable sij = 1 if data j is placed on component i. Otherwise, sij = 0.

Objective Maximize
∑M

i=1,j sijUFj(Perfij)

Subject to ∑M
i=1 sij = 1 for all j

Where M is the number of components in the system, j is any workload
running on the underperforming component, UFj is the utility function
of workload j (see Section 3.3), and Perfij is the predicted perfor-
mance of workload j on component i. The Perfij is affected by all
workloads running on component i. Therefore, it is dependent on the
data placement configuration.

Table 5.1. Constraint optimization for what and where

Existing work on data placement often reduces the problem to the Knapsack problem [49],

which is known to be NP-complete. In the Knapsack problem, for a given container with fixed

91

volume, and a set of items with different values and volumes, the goal is to choose a set of items

to maximize the total value while satisfying the volume constraints. By mapping the component as

container, with the resource as its volume, and the workloads as items, with the resource require-

ments as the volumes and the utility values as their values, we can directly apply the Knapsack

approximation algorithms [20, 41, 49, 65]. In addition, we need to consider following effects. First,

we focus on automatic performance optimization using metrics such as throughput and latency. The

resource to be optimized is the bandwidth instead of the capacity. In the shared environment, the

behavior of how a workload consumes the I/O bandwidth affects the resource requirements of other

workloads sharing the same component. For example, the amount of load to the storage component

is affected by the caching behavior, which is determined by all workloads competing for the cache.

As a result, the “volume of an item”, that is the amount of bandwidth required by a workload, is not

a static value. It may change with different data placement configuration. Second, the utility value

is a function of the received performance, which varies with different placement decisions. As such,

the “value of an item” varies with different data placement configurations. Dynamic programming

[70] can find the optimal migration candidates and targets, but has a high complexity due to the

large search space. To reduce this complexity, SMARTMIG settles for an approximation solution

using a greedy approach, shown in the flow chart in Figure 5.2.

In the flow chart, UL is the utility loss, tk is the time when maximum utility loss happens in

the given optimization window T . For a different T value, maximum utility loss may happen at a

different time and therefore, the what and where decisions are optimized for different system set-

tings. In each step of the greedy operation, for every (workloadj , componenti) pair, the utility gain

UGij of moving workload j to component i is estimated. Here the utility gain UGij is defined as

the utility difference of the new data placement from the old one. The pair leading to the maximum

utility gain, shown as (workloadn, componentm) in the figure, is put into the migration candidate

set. The greedy procedure repeats until the utility gain of moving any workload is marginal–less

than some threshold. The threshold is a configurable parameter and reflects the trade-off between

the convergence speed and the quality of the solution. The list of (workload, component) pairs in

the candidate set are returned as one option.

In addition, to avoid the local optimal, SMARTMIG repeats the greedy procedure K times and

92

Calculate UL from time 1 to T

Set Migration Candidate Set S to EMPTY

Calculate utility gain UGij of moving
workload j to component i

> Threshold

Yes No

Add (Workload n, Component m) to
Migration Candidate Set S

Output Migration Candidate Set S

Update data placement configuration

Find the pair with maximum utility gain
(UGmn = Max(UGij))

If UGmn

Find time tk with maximum UL

K Iterations

Figure 5.2. Flow chart of optimization phase

in each run, it removes the workload with the minimum utility gain to data size ratio in the candidate

set from consideration in the following iterations.

In summary, SMARTMIG finds K migration candidates and targets options using the greedy

algorithm. In the next section, we will discuss how to generate plans for each option. In particular,

these plans choose the migration speed and the migration starting time.

93

5.3.2 The Planning Phase: How and When

The optimization phase makes the what and where decisions and sends the K options to the

planning phase to determine the migration speed and the migration starting time. In the rest of our

discussion, we will first describe how to determine the migration speed at any given time, and then

discuss how to select the migration starting time.

How: Choosing Migration Speed

The migration process affects the system utility from two perspectives. On the one hand, it

introduces extra utility loss by injecting a migration load to consume the already limited resources,

such as I/O bandwidth. On the other hand, it can potentially improve the system utility after it is

finished. As a result, it is very difficult to quantify the exact impact on the utility loss for different

migration speeds. SMARTMIG chooses to correlate the migration speed with the amount of spare re-

source in the system, in this case, bandwidth. The intuition is to migrate more data when the system

is lightly loaded and less when it is busy. It selects a migration speed proportional to the system’s

slack resources, particularly, available bandwidth. To enforce the migration speed, SMARTMIG

treats the migration process as one workload and uses throttling mechanism to control its sending

rate. In addition, SMARTMIG also controls the sending rate for all regular workloads to regulate the

bandwidth competition and optimize the system utility. By correlating migration speed with system

utilization status, and throttling low priority workloads, SMARTMIG minimizes the utility loss due

to the migration procedure. At any time t, the how decision procedure is summarized as follows:

1. For both the source and the target components, estimates the component utilization:

Comp Utilization = Total Load
Maximum Load

, where the Total Load is the predicted load on the

component according to the workload demands forecast and the data placement configuration

at time t.

2. For both the source and the target components, SMARTMIG uses Equation 5.2 to calculate

the migration speed. The minimum value is chosen as the migration speed at time t.

MigSpeed = (1 − Comp Utilization) ∗ p ∗ MAX SPEED (5.2)

94

where p is a constant between 0 to 1 and has different values when the system is operating in

different spectrum of utilization. The heavier the system is loaded, the smaller the p is. The

MAX SPEED is the maximum migration sending rate allowed by the system. It reflects

how aggressively the migration can be performed.

3. SMARTMIG applies the throttling control using the token bucket algorithm to regulate the

sending rate of the migration process as well as workloads running on the source or the target

storage component. It applies the simulated annealing (SA) algorithm discussed in Section

4.8 to search for the optimal token issue rates leading to the maximum system utility. The

basic idea of the SA algorithm is that, each step replaces the current token issue rates by a

random “nearby” solution. For example, allocate additional tokens to a randomly selected

workload. If the new solution improves the system utility, it is always accepted. Otherwise,

it is accepted with some probability. The details are presented in Section 4.8.

Using this algorithm, we can decide the migration speed for time 0 to T , represented as MigSpeed i

for i = 0, · · · , T . Next, we will discuss how to determine the migration starting time t∗

When: Choosing the Migration Starting Time t∗

The best migration starting time is affected by the migration candidates, targets and the migra-

tion speed. For example, larger migration size often biases towards starting the migration when the

system is lightly loaded; higher utility gain often encourages starting the migration earlier. In this

section, we present an algorithm to find the best migration starting time for given what, where and

how decisions.

First, let us consider the impact of migration starting time. For a migration operation starting

from time t, the optimization time window is partitioned into three regions,

• Before region: interval [0, t). In this region, the system still stays with its old configuration

and the migration operation has not been performed.

• Ongoing region: interval [t, t+mt), where mt is the migration execution time if the migration

starts from time t. In this region, the migration process performs the copy operations and

95

the load is gradually directed to the new data location. The system behavior in this region

is dominated by the migration speed—the how decision. The duration of mt depends on the

total size of data to be moved, TotalMigSize, and the migration speed:

mt = min(k such that
∑k

j=t MigSizej ≥ TotalMigSize) (5.3)

where MigSizej = MigSpeedj ∗ Lenj is the amount of data moved with migration speed

MigSpeedj in interval j with duration Lenj .

• After region: interval [t+mt, T]. In this region, the migration process has finished and the

system is operating under the new data placement. The system behavior in this region is

determined by the migration candidates and targets.

Start Done

Utility Loss

Time

Before Region Utility Loss

Ongoing Region Utility Loss

After Region Utility Loss

Overall Solution Utility Loss

Figure 5.3. Overall solution utility loss

For a given migration starting time t, the accumulative utility loss for the entire optimization

96

time window is:

UL(T, t) = ULBefore + ULOngoing + ULAfter

=

t−1
∑

l=1

ULlsys
+

t+mt−1
∑

l=t

UL1
lsys

+

T
∑

t+mt

UL2
lsys

(5.4)

where UL, UL1 and UL2 are utility loss for the Before, Ongoing and After region respectively.

Using the what, where and howdecisions, the UL,UL1, UL2 can be calculated as follows.

At each time point l, the Before region utility loss, ULlsys
, is calculated by first estimating the

workloads performance under the old data location settings, then using utility functions to calculate

the utility value of the estimated performance (see Section 3.3 for details). The estimation of the

Ongoing region utility loss UL1
lsys

considers the migration speed MigSpeedl . The After region

utility loss UL2
lsys

is calculated under the new data placement configuration. The best starting time

t∗ is the time t leading to minimum UL(T, t). Based on this, SMARTMIG finds the best starting

time as follows:

• For every time t in the optimization window, SMARTMIG estimates the migration execution

time (mt) using Equation 5.3.

• For every time t, the algorithm estimates the following utility loss values: (1) if time t is under

the old data placement configuration (the Before Region Utility Loss curve in Figure 5.3); (2)

if the migration operation is underway at time t (the Ongoing Region Utility Loss curve); and

(3) if the migration has finished by t (the After Region Utility Loss curve).

• SMARTMIG scans the optimization window. For each time t, it calculates the overall utility

loss using Equation 5.4, with t as the start time. Figure 5.3 illustrates the calculation of the

overall utility loss for a given migration starting time, shown as start, and the corresponding

ending time, end. The overall utility loss is the shadow area in the last curve in the figure. It

is the sum of the utility loss in the three regions, shown as the shadow areas in the top three

curves.

• The t leading to minimum overall utility loss is selected as the migration starting time t∗.

In summary, the planning phase determines the migration speed along with the best starting time

t∗ for each of the K <what, where> options from the optimization phase. The K <what, where,

97

how, when> options with the corresponding overall system utility loss ULk are then analyzed in

the risk management phase to find the low risk, high benefit option.

5.3.3 Risk Management Phase

The goal of SMARTMIG is to assist the administrator in finding good migration options. The

optimization and planning phase returns the top K options leading to the lowest utility loss. A

time-series forecast may have errors and migration operations are not cost-free, because they will

consume system resources to move data around. Thus, there is a risk associated with each migration

option. The goal of the risk management phase is to evaluate the risks of the returned migration

options. SMARTMIG can be applied to make suggestions to the administrators, or to control the

migration operation without human intervention. In the former, the risk values are returned together

with the utility benefit of migration options as references for the administrators. In the latter, they

can be used to find the migration option with low risk and high benefit. In the rest of this section,

we focus on the latter scenario. We will describe the design of risk management and how to balance

the benefit and risk of a migration option.

The risk captures the probability that the utility improvement of the action invocation will be

lost in the future system-states as a result of volatility of workloads. For example, the demand for

W1 was expected to be 10K IOPS after one month, but it turns out to be 5K . Additionally, the

formulation of the risk should take into account the amount of utility loss due to wrong decision.

For example, moving data at 11am in a weekday morning during high system utilization has a higher

risk compared with moving it at 9 pm on a weekend, during low system utilization. The utility loss

due to a wrong decision is higher in the former case than the latter. Similarly, the impact of the

wrong decision is dependent on the amount of data moved.

There are several techniques for measuring the risk. Actions for assigning storage resources

among workloads are analogous to portfolio management in which funds are allocated to various

company stocks. In economics and finance, the Value at Risk, or VaR [52], is commonly used to

estimate the probability of portfolio losses based on the statistical analysis of historical price trends

and volatilities in trend prediction. In the context of SMARTMIG, V aR represents the bound on

98

the standard deviation of the workload demands prediction. That is, with a 95% confidence, the

standard deviation of the future prediction during the optimization window T will not exceed the

V aR value, defined in Equation 5.5.

V aR(95% confidence) = 1.65σ ×
√

T (5.5)

where σ is the standard deviation of the time-series request-rate predictions.

The risk value RF (k) of migration option k is calculated as follows:

RF (k) = (1 + αk) ∗ V aR (5.6)

where α reflects the risk factor of a migration option and is defined as follows:

αk =
bytes movedk

total bytes on source
∗ Sys Utilizationk

(5.7)

where Sys Utilization is the system utilization when the action is invoked and is estimated sim-

ilarly as the comp Utilization. Intuitively, a higher system utilization or larger migration data

set will lead to a larger αMk
and therefore, a larger RF (Mk) value. This reflects the fact that the

migration operation has a higher risk and is less preferred.

For each of the K options output by the planning phase, SMARTMIG calculates its risk value

RF (k) and scales its overall utility loss ULk as follows:

UL∗
k = (1 + RF (k)) × ULk (5.8)

SMARTMIG uses the scaling operation to balance the benefit (ULk) and the risk (RFk) of a

migration option and selects the one with the minimum UL∗
k. Lastly, because migration always

involves the cost of moving data, SMARTMIG compares the utility loss of the selected option with

a pre-determined threshold and drops this option if its benefit cannot justify the risk. That is, its

utility loss is greater than the threshold. Dropping the selected option indicates that migration will

not be invoked.

In summary, SMARTMIG selects the migration plan through optimization, planning and risk

management. The optimization phase returns K migration candidates and targets options. The

99

planning phase generates the detailed migration plans in terms of migration speed and migration

starting time for them. The risk management phase performs risk analysis and sends the low risk,

high utility migration option for execution. In the next section, we present our evaluation results in a

simulator. Our focus is on understanding the working of SMARTMIG’s three phases, SMARTMIG’s

efficiency in terms of the reduction in utility loss, and its computation time and sensitivity to system

model errors.

5.4 Evaluation

The goal of our experiments is to evaluate SMARTMIG’s ability to generate feasible and efficient

migration plans. The experimental evaluation is divided into three parts. First, we test its ability to

make decisions for different combinations of input parameter values using simulator (i.e., a sanity

check); Second, we evaluate the run-time complexity by stressing SMARTMIG with different num-

bers of workloads and components (i.e., an efficiency test). Third, we evaluate the sensitivity of the

migration plans to model-errors (i.e., a sensitivity test). In the rest of this section, we will first give

details of the simulator, then present the evaluation results for sanity check, efficiency test and the

sensitivity test.

5.4.1 Experiments Configuration

We implemented SMARTMIG using a simulator. The simulator takes as input the original sys-

tem state, consisting of the initial data placement configuration, system models, utility functions and

SLOs. It outputs the migration option with low risk and high benefit. The execution of workload

demands and the selected migration option is simulated using our system models. We generate the

testing scenarios using permutations of the following configuration parameters:

• Initial data placement: We intentionally create an un-balanced system. 60% of the work-

loads will go to one component and the remaining workloads are distributed to the rest of the

components randomly. The rationale is to make the migration operation necessary.

100

• Workload features: The request rate and footprint size of each workload, as defined in Sec-

tion 3.4, are generated using a Gaussian mixture distribution [56], whose density function is

the sum of multiple parameterized functions. In particular, with 60% of probability, the re-

quest rate of a workload follows a normal distribution with a lower mean, 100 IOPS. For the

remaining 40% of workloads, the request rates follow a normal distribution with a mean of

600 IOPS. The reason for using the Gaussian mixture distribution is to mimic the real-world

system behavior: a small number of applications contribute to the majority of the system load

and access the majority of data.

• Workload trending: To mimic workload changes in real systems, we changed the request

rates of the workloads over time. In our experiments, 30% of workloads were increased,

another 30% were decreased and the other 40% were flat. In particular, the increasing step

size is generated using a random distribution with a mean of 1/10 of the original load and the

decreasing step size is randomly distributed with a mean of 1/20 of the original load.

• Utility functions: The utility function of meeting the SLO requirement for each workload is

assumed to be a linear function and the coefficients are random numbers uniformly distributed

between 5 and 50. The utility function of violating the SLO requirement is assumed to be

zero for all workloads. The SLO goals are also randomly generated with considerations of

the workload demands and performance.

• Others: The optimization window is 14 days, the standard devision of the time-series forecast

is 10% and the time unit is on a per hour basis unless otherwise specified.

We vary the number of workloads in the system from 10 to 100 and generate ten scenarios

automatically for each of them. Out of the 100 scenarios, 14 are dropped because they don’t have

any utility loss. The remaining 86 scenarios experience a utility loss to various degrees, ranging

from 0.7% to 55% of the maximum system utility. We do not generate scenarios with a higher

utility loss because migration may not be the correct solution in that case. An example of such a

case is when new hardware should be requested to correct performance problems. Figure 5.4 plots

the Cumulative Distribution Function (CDF) of the percentage of utility loss (Equation 5.9) for all

101

86 scenarios.

utility loss percentage =
Max Utility − No Action Utility

Max Utility
(5.9)

As shown in the figure, more than 55% of the scenarios experienced more than 10% utility loss,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

CD
F

Percentage of Utility Loss (No Action)
Figure 5.4. CDF of the percentage of utility loss with no action invocation for all 86 scenarios

and around 30% had a utility loss higher than 20%.

The percentage of utility loss captures the degree of the utility loss that the storage system

experiences due to resource limitation and competition. Ideally, it should be zero when the system

is configured appropriately. A good migration algorithm should be able to find the migration option

leading to a zero utility loss. In our later sections (Section 5.4.3 and 5.4.4), we evaluate the quality

of SMARTMIG’s decisions based on the definition of the percentage of utility loss.

In the next section, we will present our sanity check results that show the working of the three

phases of SMARTMIG.

5.4.2 Sanity Check

Working of Three Phases

In this experiment, our goal is to examine the output of the three phases. We randomly pick one

scenario from the 86 cases. The scenario has twenty workloads distributed on four components. The

102

initial data placement caused a 7.8% utility loss. SMARTMIG is called for a 14 days optimization

window. The top five solutions returned are summarized in Table 5.2.

Migration Candidates and Tar-
gets

Size
(GB)

Utility
Loss

Start Time
(hour)

Scaled Utility
Loss

1 (1: 0→2) (5: 0→2) 19 10408 5 11629
2 (3: 0→3) (4: 0→1) (5: 0→2) 152 22552 4 43715
3 (3: 0→3) (5: 0→2) (13: 0→3) 28 10408 1 12208
4 (5: 0→2) (13:0→3) (14: 0→2) 118 22552 5 38981
5 (5: 0→2) (13:0→3) (17: 0→2) 20 10408 4 11694

Table 5.2. Solutions returned by SMARTMIG with a 14 day optimization window

The table shows that the optimization phase finds five sets of (what, where) decisions with

different data size and utility loss. For each of them, the planning phase selects different starting

times. The table cannot show the migration speed because this changes with time. In the risk

management phase, the utility losses for these migration options are scaled by different degrees to

balance the risk and the benefit. Finally, Option 1 is selected because it leads to minimum scaled

utility loss—0.04%.

 0
 20
 40
 60
 80

 100
 120
 140

 0 20 40 60 80 100
 0
 400
 800
 1200
 1600
 2000
 2400
 2800

M
ig

ra
tio

n
Sp

ee
d

O
ve

ra
ll S

ys
te

m
 L

oa
d

(IO
PS

)

time (hour)

migration speed
overall system load

Figure 5.5. Migration speed vs. component load

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 10 20 30 40 50

ov
er

al
l s

ys
te

m
 u

tili
ty

 lo
ss

starting time

Figure 5.6. Overall utility loss for various migration start times

103

Figure 5.5 shows the details of the selected migration speed. The X axis in the figure is the

time index, the left Y axis is the migration speed and the right Y axis is the overall system load.

The figure shows that the migration speed changes according to the load in the component. In

addition, the starting time selection is shown in Figure 5.6. We only plot the first fifty hours for

better visibility. The X axis is the starting time and the Y axis shows the corresponding overall

system utility loss if the migration starts at time x. As shown in the figure, the minimum overall

system utility is achieved at Time 5, when the system is lightly-loaded for the first time.

Impact of the Optimization Window T

SMARTMIG is designed to find the best migration option for a given optimization window T

specified by the administrators. For different values of T , SMARTMIG returns different migration

parameters that leads to better system utility for it. Using the same settings as in the previous test,

we change the optimization window from 14 days to seven days. SMARTMIG returns different what

and where answers. The corresponding five options are shown in Table 5.3.

Migration Candidates and Tar-
gets

Size
(GB)

Utility
Loss

Start Time
(hour)

Scaled Utility
Loss

1 (1: 0→2) 14 10354 5 11308
2 (6: 0→1) 12 81677 0 87850
3 (3: 0→2) (5: 0→2) 17 10408 6 11501
4 (4: 0→2) (5:0→2) 140 37461 5 42282
5 (5: 0→2) (13:0→3) 16 10354 5 11436

Table 5.3. Solutions returned by SMARTMIG with a 7 day optimization window

Based on the scaled utility loss, we select Option 1 and migrate Workload 1 from Component 0

to Component 2. This is a different decision than the previous test.

Impact of Utility Configuration

SMARTMIG aims to optimize the system utility. The utility function affects the solution

SMARTMIG will return. In this test, we use the same settings as in Section 5.4.2 and randomly

change the utility functions of three workloads (7, 13, 15) to lower values. The results returned by

104

SMARTMIG are given in Table 5.4. Option 4 is selected, which is different from the one selected in

Section 5.4.2.

Migration Candidates and Tar-
gets

Size
(GB)

Utility
Loss

Start Time
(hour)

Scaled Utility
Loss

1 (1: 0→2) (3: 0→2) (17: 0→2) 30 2488 4 2949
2 (3: 0→2) (17: 0→2) 16 21569 6 23700
3 (4: 0→2) (5: 0→3) (17: 0→2) 144 8371 30 15813
4 (5: 0→2) (13: 0→3) (17: 0→2) 20 2488 5 2796
5 (5: 0→2) (17:0→2) 9 15347 6 16200

Table 5.4. Five solutions returned by SMARTMIG with different utility configuration

In summary, these sanity check experiments demonstrate SMARTMIG’s ability to optimize the

migration decisions for different input parameters and system configurations.

5.4.3 Efficiency Tests

In this section, we will first evaluate SMARTMIG’s efficiency in terms of improving the system

utility, thus eliminating the system utility loss. We then measure the decision overhead of SMART-

MIG.

Percentage of the Utility Loss Elimination

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

CD
F

Percentage of Utility Loss (After Migration)
Figure 5.7. CDF of the percentage of the saved utility loss

105

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

CD
F

Percentage of Utility Loss (With Migration)
Figure 5.8. CDF of the percentage of the utility loss with SMARTMIG

For each of the 86 scenarios, SMARTMIG selects the migration option with the minimum scaled

utility loss. To understand how much of the system utility loss is saved by invoking the migration

operation chosen by SMARTMIG, we measure the percentage of the saved utility loss (Equation

5.10) and plot the CDF curve (Figure 5.7).

percentage of saved utility loss =
No Action Utility Loss − Utility Loss With Migration

No Action Utility Loss

(5.10)

The figure shows that for more than 83% of the scenarios tested, SMARTMIG successfully elimi-

nates 80% of the utility loss, and for another 12% of cases, it reduces the utility loss by 60%. The

percentage of utility loss (Equation 5.9) of invoking SMARTMIG’s decision is plotted in Figure 5.8.

We can see that for more than 90% of the cases, the system exhibits less than 0.7% utiltiy loss,

which is a significant improvement compared to the case of no migration, where only about 30% of

the cases exhibits less than 0.7% utility loss (see Figure 5.4).

Computational Overhead of SMARTMIG

Figure 6.27 plots the computational overhead in computing time of SMARTMIG. We run the

simulator on a Linux machine with a 2.66GHZ Pentium 4 CPU and 512MB of memory. We vary the

number of workloads in the system and record the time SMARTMIG takes to generate a migration

plan. Ten cases are generated for each workload number setting and the average time is plotted

106

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60 70 80 90 100

de
cis

io
n

m
ak

in
g

tim
e

(s
ec

on
ds

)

number of workloads
Figure 5.9. Computation overhead of SMARTMIG

in the figure. The curve grows exponentially with the number of workloads. The majority of the

overhead is due to the decision on the migration speed, where SMARTMIG greedily searches for

the optimal bandwidth allocation for each workload. This exponential growth can be reduced by

relaxing the sending rate control of the workloads, but with the cost of a higher utility loss due to

the un-regulated bandwidth competition.

5.4.4 Sensitivity Test of Performance Model Errors

Our sanity check experiments are based on the assumption that perfect component models are

available. However, in reality, this is never true. To measure the sensitivity of the migration deci-

sions to the component model errors, we perform the following experiment:

• First, we generate the synthetic component models to simulate the models constructed in the

real systems. For any given system state, These models are used to calculate the “predicted

performance” and the “predicted utility loss”, which are used by SMARTMIG to make migra-

tion decisions.

• The real system performance is simulated by introducing a random error to the “predicted

performance”. The random error is generated using a normal distribution. For example, with

107

a 10 ms “predicted latency” and 0.2 as the random error, the “real latency” is simulated using

12 ms (10*(1+0.2)). The “real utility loss” is then calculated based on it.

This design allows us to control the model error rates and measure their impact on SMARTMIG’s

decision. Figure 5.10 plots the accuracy of the predicted utility loss, defined as Predict Utility Loss
Real Utility Loss

.

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ed

ict
ed

 V
al

ue
/R

ea
l V

al
ue

Model Errors

Figure 5.10. Impact of model errors on the accuracy of the predicted utility loss

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.2 0.4 0.6 0.8 1Pe
rc

en
ta

ge
 o

f t
he

 s
av

ed
 u

tili
ty

 lo
ss

Model Errors

Figure 5.11. Impact of model errors on the percentage of the saved utility loss

As shown in the figure, the accuracy drops very quickly with the growing error, indicating the

predicted value matches less with the real value. We also measure the impact of the model errors

108

on the percentage of the saved utility loss (Equation 5.10) to understand the errors’ impact on the

effectiveness of SMARTMIG (Figure 5.11). From the figure, we can see the with an error rate of

30%, SMARTMIG can eliminate 73% of the utility loss on average. When the error rate goes up to

60%, SMARTMIG can still reduce the utility loss by 48%.

These experiments show that an accurate model can improve the effectiveness of SMARTMIG’s

decision. But even with a high model error, SMARTMIG can still provide useful suggestions to the

system.

In summary, our experimental results show that SMARTMIG can generate effective migration

plans that account for various configuration settings, such as utility functions and optimization time

windows. For our test scenarios, SMARTMIG eliminates 80% of the utility loss compared to the

no action option. Our computational overhead analysis shows that SMARTMIG can make decision

in the order of minutes. Our sensitivity tests show that SMARTMIG’s efficiency are improved with

better models. However, SMARTMIG can provide useful suggestions even when the model error is

high.

5.5 Summary

In this chapter, we described SMARTMIG, a proactive data migration decision scheme. It acts as

the single action tool for migration in SMART’s framework. SMARTMIG finds the optimal migration

plan using three phases: optimization, planning and risk management. It combines system models,

time-series analysis, risk management and constraint optimization to generate migration plans. Its

migration plan can choose the migration starting time, which enables foreground migration opera-

tion. In addition, it considers both the current and forecast system states and selects the migration

plan leading to maximum system utility adjusted based on the risk analysis. Experimental results

show that SMARTMIG’s decision can adapt to the changes of configuration parameters. For the

tested scenarios, SMARTMIG eliminates 80% of the utility loss compared to the no action option.

Our sensitivity tests show its high tolerance to model errors. In the next chapter, we will present the

design of SMART’s core piece, the Action Advisor. In particular, we will discuss how to generate a

109

multi-action schedule to improve the system utility by combining single action options determined

by single action tools such as CHAMELEON and SMARTMIG.

110

Chapter 6

SMART: An Integrated Multi-Action

Advisor for Storage Systems

Storage system management has become more complicated due to the trend of accelerating stor-

age system consolidation, where many applications share storage devices through the virtualization

layer. To adapt to system changes and meet the SLOs of applications, administrators continuously

observe the storage system, analyze the problem, and invoke corrective actions to improve its utility.

The human controlled observe-analyze-act loop is slow and expensive. The trend is to automate

the OAA loop to reduce the cost of ownership and to more rapidly adapt to system changes. The

focus of this thesis is to automate the analyze part of the loop—generate the corrective action sched-

ules automatically. We have described the framework of SMART, a model-based automatic action

advisor in Chapter 3. In Chapter 4 and Chapter 5, we presented model-based single action tools,

CHAMELEON for throttling and SMARTMIG for migration to determine the action invocation pa-

rameters automatically. However, in existing solutions, such tools are not properly integrated into a

single management framework. As a result, administrators still need to decide which action to take

and when to invoke it. It is challenging to find the best decision among multiple actions. It requires

considerations of system behaviors, action impacts, future system states and business impact. In

addition, there will be situations where a combination of actions would provide better cost benefit

tradeoffs, which makes the decision more difficult. Our SMART framework aims to assist adminis-

111

trators by generating effective action schedules to specify when to do what actions. In this chapter,

we will present the decision algorithm of the Action Advisor, the intelligence of SMART. It consid-

ers multiple types of corrective actions in an integrated manner and generates a combined corrective

action schedule. In addition, our algorithm can handle the expected predictable system changes as

well as unexpected events, where predicted and observed states vary. Specifically, Section 6.3.1

presents the design of a recursive greedy algorithm to plan for the expected system changes, while

Section 6.3.3 develops a defensive strategy to handle the system exceptions. Our experimental re-

sults show that our decision algorithms can account for various system configurations and generate

flexible action schedules to improve the system utility. In more than 90% of the tested scenarios, our

algorithm reduces the utility loss by more than 94%, with a decision time on the order of minutes.

And in the other 10%, the utility loss is reduced by 70%. In the rest of this chapter, we will first

motivate the need for a multi-action schedule in Section 6.1. Then we will briefly revisit the frame-

work of SMART in Section 6.2 (see Chapter 3 for more details). After that, we will describe how

to generate action schedules for the normal mode using our recursive greedy algorithm in Section

6.3.1, and our on-line decision algorithm for the unexpected mode in Section 6.3.3. In Section 6.4,

we will present our experimental results for the sanity check, the efficiency test, the computational

overhead and the sensitivity test with respect to the input information errors.

6.1 Motivation

With an increase in the number of applications, the amount of managed storage, and the number

of policies, storage system management becomes more challenging. To adapt to system changes and

improve system utility, administrators invoke corrective actions at run-time to change the resource-

to-application mapping. In recent efforts towards self-managed storage systems to reduce the total

cost of ownership, many research prototypes [8, 28, 54, 55] and products [25, 26] automatically

generate the invocation parameters for single action. However, these tools suffer from the following

two key drawbacks:

• Single Action Based: Existing efforts have focused on using a single type of corrective

action, such as workload throttling, data migration, or adding more resources, to correct SLO

112

SLO violated

Workload
Demands

Actions
N

T

M

T

M

N

Actions

Demands
Workload

5 days optimization window

1 month optimization window

3 months optimization window

T Throttling

N

M Migration

New Hardware

(a)

(b)

M

Figure 6.1. Problem with single action

violations. These tools lack the ability to consider alternative actions to provide a better

solutions. When the SLO for a workload is violated, many situations require a combination

of actions to achieve the maximum system utility improvement. For example, in Figure 6.1

(a), when the SLO is violated, the best action in the long run is to provision a new disk

array. However, it takes time to order and install the new hardware. In this case, instead

of waiting for the new hardware and losing utility continuously, a better solution is to start

throttling immediately and migrate some load to a less contended storage device before the

new hardware arrives. In addition, if necessary, the workload can be migrated to the new

storage device after it arrives. The decision tool must be able to advise the administrators to

take a single action or a combination of actions at the right time.

Existing storage management systems from various vendors provide good domain specific

decision tools such as network planning, storage controller planning and migration planning.

However, these tools work independently without considering other tool. For example, capac-

ity planning tools, which are typically considered as long term actions, are not well integrated

with the throttling planning. The latter is an instantaneous action. The lack of the proper

integration between the decision tools puts the responsibility of their integration on a system

administrator. As the system scales, this becomes more difficult, often resulting in solutions

113

that are either grossly over-provisioned with excess resource, or under-provisioned causing

frequent SLO violations. As a result, we need a tool that can assist the administrators in

integrating multiple actions to improve the system utility.

• Single time-window based: Another drawback of the existing tools is that they take a “one-

size fits all” approach to solve the system’s problem. For example, the throttling tool will

always invoke the throttling no matter if the system wants to be optimized for one hour or for

one year. However, the solution that is the most cost effective for one week might be different

from the best solution for one year. For example, as shown in Figure 6.1 (b), the optimal

solutions in terms of the system utility vary for different time windows: If the optimization

time window is five days, throttling is the optimal solution. If it is one month, data migration

is the most cost effective solution. When the window is opened to three months, adding

new hardware is the best way to cost effectively improve system utility. Overall, time is an

important aspect and is often overlooked in the decision-making process by the administrators

and existing tools. Existing automatic decision tools do not allow administrators to consider

plans for different optimization time windows. As a result, the administrators may not choose

the best action at the right time.

In this chapter, we present an action schedule algorithm for the Action Advisor in SMART’s

framework. The key contributions of our algorithm are:

1. Integrated multi-action planning: It combines seemingly disparate storage management ac-

tions such as workload throttling, data migration, and resource provisioning into an integrated

framework.

2. Multi-granularity temporal planning: It allows for the specification of optimization time

windows. For example, one could specify that they want the most cost effective solution for

one day or one year.

3. Action selection for unexpected workload variations: It can determine whether the surge in

the I/O requests is due to an unknown workload spike or a known trend and select corrective

actions accordingly.

114

The rest of this chapter is organized as follows, Section 6.2 briefly revisits the framework of

SMART and describes how CHAMELEON and SMARTMIG can be plugged in to SMART. Section

6.3 describes the action scheduling algorithm. Section 6.4 presents the experimental results, and

Section 6.5 summarizes this chapter.

6.2 Framework Revisited

Time−Series

Evaluator

Utility
Functions

Input Modules

System
Models

Business
Constraints

Action PlanAction Advisor

State Forecasting

Utility

System

...Single Action Tool
for Throttling

CHAMELEON

Single Action Tool
for Migration
SmartMig

Figure 6.2. Architecture of SMART: a model-based action advisor

In Chapter 3, we described the framework of SMART. The key components of SMART include

input modules, the utility evaluator, single action tools and the action advisor, shown in Figure 6.2:

• The input modules consist of the system state S collected using monitoring sensors, time-

series prediction of workload demands, utility functions, system models for storage devices,

and business-level constraints such as budget constraints and the optimization window.

• The utility evaluator estimates the system utility (Equation 3.2), the maximum system utility

and the utility loss (Equation 3.3) for given workloads’ performance. For the current system

state, the workloads’ performance can be measured directly. For future system states, they

115

can be interpolated by composing the action, workload and component models as described

in Section 5.2.

• The single action tools find the optimal corrective action options in a given system state, and

return the optimal invocation parameters to the Action Advisor. For example, CHAMELEON

is a throttling tool. It takes a system state (S =< C,W,M >) as input, applies the general

optimization technique to determine the token issue rates ti for each workload i, and sends

them to the Action Advisor. Similarly, SMARTMIG is a migration tool, which takes a set of

system states, including both the current S0 and the future states S1,S2, · · · , as input. It then

performs the optimization, planning and risk management analysis, and outputs the <what,

where, how, when> decision (Section 5.3). For both CHAMELEON and SMARTMIG, the

required input information, such as system models, time-series forecast and utility functions,

can be obtained from the input modules.

• The Action Advisor is the core of the SMART framework. It collects all single action options,

analyzes their impacts on the system utility and generates an action plan that can optimize the

system utility given the optimization window and the business constraints.

SMART can be deployed in file systems, storage resource management software and storage vir-

tualization boxes. The key requirements are sensors to monitor the system behavior and collect data

for establishing models and time-series forecast, and actuators to invoke the scheduled corrective

actions. The decision algorithm can be located anywhere in the system as long as it can access the

input modules and communicate with the actuators. In our prototype, we implemented SMART on

the IBM’s General Parallel File System (GPFS) [73], a scalable, distributed shared-disk file system.

In this chapter, we focus on the design of the Action Advisor, the intelligence behind SMART.

The Action Advisor can be invoked both reactively as a response to an SLO violation, or proactively,

driven by periodically examining the future system states using the time-series forecasts. When it

is invoked, it will execute the following steps:

• First, it analyzes the current state S0 as well as the look-ahead states (S1,S2, · · ·) using the

forecast workload demands. For each system state, it will first interpolate the performance of

each workload using the system models, with the forecast workload characteristics as input

116

parameters. After that, it will calculate the corresponding system utility using the utility

evaluator.

• Then it feeds the system states to the single action tools and collects their invocation options.

The system states fed to the single action tools are determined by the interface of each action

tool. For example, the Action Advisor generates individual queries to the CHAMELEON box

for every current and future system state. But for SMARTMIG, it feeds all the current and

future states in the optimization window in a single query and lets the SMARTMIG choose the

best migration plan for the given optimization window.

• Next it analyzes the effect on utility for each action option using the utility evaluator and

system models. This is similar to the first step.

• Last, it generates a schedule of what actions to invoke, when to invoke them and how they

should be invoked. Depending on the operation mode, which can be either normal or unex-

pected, Action Advisor uses different decision algorithms to generate the schedule.

In summary, SMART is a framework for generating corrective action plans automatically. It

takes the system models, time-series forecast, utility functions, business constraints as input, inter-

acts with single action tools to collect the action options, and uses the Action Advisor to generate

a multi-action schedule to maximize the system utility. In the next section, we will present our

recursive greedy algorithm and the risk management analysis for finding the action schedule when

the system states are predictable. After that, we will present our defensive action strategy based on

the well-known ski-rental algorithm to handle the unexpected system changes.

6.3 Decision Algorithms of the Action Advisor

The Action Advisor is the core of SMART. It determines an action schedule consisting of one

or more actions (what) with action invocation time (when) and parameters (how). The goal of the

Action Advisor is to pick a combination of actions that will improve the overall system utility or,

equivalently, reduce the system utility loss. First, we intuitively motivate its design to be followed

by the details of how the Action Advisor performs its task.

117

The Action Advisor operates in two different modes depending on whether the corrective ac-

tions are being invoked proactively in response to the forecast workload growth, or reactively in

response to unexpected variations in system states. The former is the normal mode, while the later

is the unexpected mode.

In the normal mode, SMART uses a recursive greedy algorithm with lookback and lookforward

to select the actions within the optimization window. The key idea is to use the greedy approach

to select a single action option which is optimal for the entire optimization window. After that, we

will partition the optimization window into the lookback and lookforward window. The former is

the time window before the previously selected action finishes and the latter is the window after

that. Within each sub-window, the same greedy-lookback-lookforward procedure is recursively per-

formed to continuously find new actions that can be combined with the previously selected actions

to improve the system utility further.

In the unexpected mode, SMART selects actions defensively. It tries to avoid invoking expensive

actions since the workload variation could go away soon after the action in invoked, making the

action invocation overhead wasted. However this needs to be balanced with the potential risk of the

high workload persisting and thus incurring continuous utility losses. We formulate this analysis

as a decision-making problem with an unknown future and apply the “ski-rental” online algorithm

[48] to select actions.

The Action Advisor uses a primitive mechanism to transition between the normal and unex-

pected modes. It continuously compares the observed workload demands against the predicted ones

using any chosen predictor model, such as ARIMA [84]. If the difference is large, for example,

greater than twice the standard deviation of the prediction, it moves into the conservative unex-

pected workload mode. While in that mode, it continuously refines the future predictor functions

by including the newly observed values. When the predicted and observed values are close enough

for a sufficiently long period, it transits to the normal mode.

In the rest of this section, we first present action selections for the normal mode (Section 6.3.1),

followed by the discussion on the risk management analysis to account for the future uncertainty

118

and the action invocation risk (Section 6.3.2). After that, we will present the defensive strategy for

the unexpected mode (Section 6.3.3).

6.3.1 Normal Mode: Greedy Pruning with Lookback and Lookforward

The Action Advisor takes as input the current system state, the workload prediction, the utility

functions, the available budget B for new hardware and the length of the optimization window, T .

The goal is to find a set of actions that maximize the cumulative system utility in the optimization

window. This process is formulated as a tree-construction algorithm (see Figure 6.3).

Left Branch: LOOK BACK

Right Branch: LOOK FORWARD

: Pruned Action Candidates

: Selected Action

[a,b]: Decision window

1

2

3 4

[0, finish_3] [finish_3, finish_2] [finish_2, finish_4] [finish_4, T]

[0, T] [0, T] [0, T] [0, T]

[finish_2, T][0, finish_2]

Lookback Optimization Lookforward Optimization

Greedy Pruning

Figure 6.3. Tree based action schedule generation

In the tree-based representation, the root corresponds to the entire optimization window, [0, T].

The branches originating from the root represent the candidate actions returned by the single action

tools. For m possible action options there will be m branches. The resulting node i for each action

has the following information:

• The start (starti) and end time (endi) of the decision window, which specifies the time dura-

tion for which the action is optimized. For nodes originating from the root, the value is [0, T],

where T is the optimization window from the business constraints. For other nodes in the

tree, the decision window is smaller as a result of the lookback and lookforward partition.

119

• The selected action and its invocation parameters.

• The action invocation time and finish time [invokei, f inishi].

• The initial state Si and resulting state Si+1. For example, the migration will change the

workload-component mapping M and the hardware provisioning will change the component

sets C.

• The predicted cumulative utility loss ULi, defined as the sum of system utility loss from

starti to endi if action i is invoked.

Greedy Pruning: Using the basic greedy approach, the Action Advisor selects a first-level node in

the tree that has the lowest utility loss ULi and prunes the other m−1 branches. The pruned actions

are represented by the circles crossed out in Figure 6.3. In addition, a threshold is introduced to

ensure that the action gives sufficient improvement in terms of the system utility. The selected action

will be scheduled only if the improvement exceeds the threshold. The threshold is a configurable

parameter. It controls how aggressive the Action Advisor prunes the action options—a higher value

leads to more aggressive pruning. In our experiments, we set the threshold as 10%, indicating that

an action option will be inserted to the action schedule only if it can reduce the system utility loss

by more than 10%. The pseudocode for this greedy pruning procedure is given in Figure 6.4.

Lookback and Lookforward Optimization: The greedy pruning procedure selects the best action

option for the given optimization window. However, in real-world systems, it may be required to

invoke more than one actions concurrently. For example, if data migration is selected, it might be

required to additionally throttle the lower priority workloads until all data are migrated. The Action

Advisor uses the lookback and lookforward optimization to improve the action plan. The lookback

and lookforward time windows are partitioned based on the finish time (finishi) of the selected

action. Lookback seeks action options in the time window [starti, f inishi] before the selected

action finishes. Lookforward examines possible actions in the window [finishi, endi] after the

selected action finishes (see Figure 6.5).

The time finishi is chosen as the splitting point for two reasons. First, the system state may be

permanently changed after the action finishes. For example, hardware arrival changes the compo-

nent set and the migration operation changes the workload-to-component mapping. The change of

120

Function GreedyPrune (NodeSet) {

MinNode = FindMinUL(NodeSet);

Foreach (i in NodeSet) {

if (i != MinNode) {

delete(i, NodeSet);

}

}

If ((UL(Parent(MinNode)) -UL(MinNode)}) < Threshold){

delete(MinNode, NodeSet);

}

}

Figure 6.4. Pseudocode for the greedy pruning procedure

��Selected Action

Decision Window

finish_iinvoke_i
start_i end_i

Lookback Window Lookforward Window

Figure 6.5. Lookback and lookforward optimization

system state may cause the cost-benefit of action options changed. For example, the original optimal

migration operation is less preferable due to the arrival of new hardware. The second reason is that

any action scheduled before the selected action finishes needs to satisfy the no-conflict constraint.

We will describe this later.

Basically, the lookback phase explores possible actions that can be performed while the selected

action is executing or has a wait time due to time constraints or resource limitation. For example,

Figure 6.1 represents the case in which before new hardware arrives, redistributing the load using

migration can result in a higher system utility than the old data placement configuration. In this

121

scenario, the tree scheduler may select “add hardware” as the best action. It then looks back to check

if another action could give further improvement before the hardware arrives. The lookforward

phase explores actions that can be invoked after the current one. This addresses cases where a

combination of actions is the best solution and no single action can give the necessary benefit.

For example, after hardware arrives, it often makes sense to schedule a migration operation to

re-balance the system load. In addition, within the lookback and lookforward time windows, the

greedy-lookback-lookforward procedure is recursively performed to construct an action schedule

until the GreedyPrune finds no action option.

In the tree-construction, the action candidates for the lookback and lookforward windows

are represented as the left and right children. These are marked as the circles in the rectangles

in Figure 6.3. The pseudocode for lookforward and lookback optimization is given in function

Lookback and Lookforward respectively (see Figure 6.6).

When considering actions to be scheduled before another action finishes in the lookback phase,

the actions should not conflict with the existing selected actions. We say two actions conflict if one

of the following conditions is true:

• They depend on the same resource. For example, two migration options are conflict if their

source and target components overlap.

• Action j overlaps with an action k already in the schedule, and action j violates the precon-

dition for action k. For example, migration action 1 of moving data A from LUN1 to LUN2

will invalidate action 2 of moving data A from LUN1 to LUN3 because the pre-condition of

action 2 that data A is on LUN1 is no longer true.

In summary, the Action Advisor generates a schedule of corrective actions using a recursive ap-

proach. The pseudocode is given in Figure 6.7. The final action schedule is obtained by sorting the

un-pruned nodes in the tree in the order of their action invocation time (invokei). The un-pruned

nodes are represented as solid circles in Figure 6.3.

122

Function Lookback(i) {

Foreach (ActionTools) {

Find action option in [start_i, finish_i];

If (!(Conflict(Existing actions)) {

Add to Left_Children(i);

}

}

GreedyPrune(Left_Children(i));

If (Left_Children(i)!=NULL) {

Lookback(Left_Children(i));

Lookforward(Left_Children(i));

}

}

Function Lookforward(i) {

Foreach (ActionTools) {

Find action option in [finish_i, end_i];

Add to Right_Children(i);

}

GreedyPrune(Right_Children(i))

If (Right_Children(i)!=NULL) {

Lookback(Right_Children(i));

Lookforward(Right_Children(i));

}

}

Figure 6.6. Pseudocode of lookback and lookforward optimization

6.3.2 Risk Management

In our previous discussion, we selected actions based on the cumulative utility loss ULi. The

accuracy of ULi depends on the accuracy of future workload forecasting, performance prediction

123

Function TreeSchedule() {

Foreach (ActionTools) {

Find action option in [0, T];

Add to Children(root);

}

GreedyPrune(Children(root));

If (Children(root) !=NULL) {

Lookback(Children(root));

Lookforward(Children(root));

}

}

Figure 6.7. Pseudocode of the recursive greedy procedure

and the estimation of the action’s impact on the system utility. Inaccurate estimation of ULi may

result in decisions leading to less that expected overall utility. To account for the impact of inaccu-

rate information, we perform the risk management analysis on ULi for each action option. This is

similar to the risk management in SMARTMIG, described in Section 5.3.3. The risk captures both

the probability that the utility gain of an action will be lost as a result of volatility in the prediction

of the future workload, and the amount of utility that could be lost due to a wrong action decision.

We borrow the concept of Value at Risk (VaR) from the domain of portfolio management [52]. In

the context of SMART, the VaR gives the bound on the standard deviation of the workload demands

prediction during the given optimization window, with a 95% confidence value. It measures the

volatility in the workload future prediction and is calculated using the following equation:

V aR(95% confidence) = 1.65σ ×
√

T (6.1)

where σ is the standard deviation of the time-series request-rate predictions and T is the optimization

window.

In addition, we also define the risk coefficient αi for every action option i based on its opera-

124

tional semantics as follows :

αthr = 0

αmig =
bytes moved

total bytes on source
∗ Sys Utilization

αhw =
hardware cost

total budget
∗ (1 − Sys Utilization)

Where Sys Utilization is the system utilization when the action is invoked. The risk coeffi-

cient αi reflects the invocation risk associated with every action option. Intuitively, a higher system

utilization or a larger migration data set increases the risk of invoking the migration operation, and

a high hardware purchase cost or a lightly loaded system makes the provisioning more risky.

Based on the VaR value and the risk coefficients, the risk value RF (Ai) for each action option

i can be calculated using the same equation (Equation 5.6) as in SMARTMIG:

RF (i) = (1 + αi) ∗ V aR

Then the Action Advisor will calculate the risk value RF (i) and scale the utility loss ULi for

each action option i to balance the benefit (ULi) and the risk RF (i). The greedy pruning described

earlier is performed based on the scaled UL∗
i :

UL∗
i = (1 + RF (Ai)) × ULi (6.2)

In summary, when the system has good knowledge on the future workload demands, the Ac-

tion Advisor generates the action schedule using the recursive greedy algorithm with lookback and

lookforward optimization. In addition, to account for future uncertainty and action invocation risk,

the Action Advisor performs risk management analysis and calculates the scaled utility loss (UL∗
i)

for each action option, which is then used for greedy pruning.

6.3.3 Unexpected Mode: Defensive Action Selection

In the previous section, we described the decision algorithm for generating the action schedules

in the normal mode. However, in the real world, there are always situations, such as workload

125

characteristics change, workloads come and leave, or load surges, that make an accurate prediction

infeasible. Optimizing the action selection for the unexpected system states is challenging since it is

difficult to predict the duration for which the workload variations will persist. The Action Advisor

uses a strategy similar to the one used in online decision making scenarios such as the “ski rental: to

rent or to buy” [48]. In that scenario, the choice of whether to buy or rent a ski equipment has to be

made without the knowledge of how many times one might go skiing in the future. In the absence

of the knowledge about the future, the commonly used strategy is “to keep renting until the amount

paid in renting equals the cost of buying, and then buy.” This strategy is always within a factor of

two of the optimal cost, regardless of how many times one goes skiing [48].

The Action Advisor follows a similar online strategy. It selects the least costly action until the

cumulative utility loss for staying with that action exceeds the cost of invoking the next expensive

action. When SMART is in the unexpected mode, the Action Advisor first finds all action candidates

under the assumption that the system state and workload demands will remain the same. For each

candidate Ai, the cost at Time 0, when SMART is switched to the unexpected mode, is initialized

as the extra utility loss and hardware cost if any paid for the action invocation. This is shown in

Equation 6.3:

Cost(Ai, 0) =

leadtime(Ai)
∑

t=0

(Usys(no action, t) − Usys(Ai ongoing, t)) + HW Cost(Ai) (6.3)

In this equation, Usys(no action, t) is the system utility value at time t if no corrective action

had been taken and Usys(Ai ongoing, t) is the system utility at time t if Ai is underway. For

example, for throttling, Cost(Ai, 0) will be zero because the lead time is zero. For migration, the

Cost(Ai, 0) is the total utility loss over leadtime(Ai) due to allocating bandwidth to move data

around.

Action Advisor selects the action with the minimum cost and invokes it immediately. Over time,

the cost of each action candidate, including both the selected one and the unchosen ones, is updated

continuously to reflect the utility loss experienced if Ai had been invoked (UL(Ai, t)). Equation

(6.4) gives the value of Cost(Ai, t) at time t:

Cost(Ai, t) = Cost(Ai, t − 1) + UL(Ai, t) (6.4)

126

The cost is continuously updated and the Action Advisor will invoke another action when its

cost is lower than the previously invoked action. Figure 6.8 illustrates the defensive algorithm

described above. In the figure, the X axis is the time and Y axis is the action cost. The Time 0 is the

Action Option 3
Action Option 2
Action Option 1Action Cost

Invoke Action Option 2

Invoke Action Option 3

t1 t2
Invoke Action Option 1

Time

Figure 6.8. Example of the unexpected mode

start time of the unexpected mode. In the example, the Action Advisor finds three action options

and invokes Option 1 at Time 0 immediately because Option 1 has the minimum action cost. While

the Action Advisor operates in the unexpected mode, the cost for all action options are updated

continuously using Equation 6.4. At Time t1, the cost of Option 2 is lower than Option 1. That

is, Cost(A2, t1) < Cost(A1, t1). As a result, the Action Advisor invokes Option 2 immediately.

Similarly, at Time t2, Option 3 is invoked because it becomes the lowest cost option.

This procedure for cost updating and action invocation continues until one of the following

situations happens:

• The system goes back to a good state, defined as no utility loss, for a period of time. In this

case, the Action Advisor will stop the action selection procedure because the exception has

gone.

• The system collects enough new observations and transitions back to the normal mode. This

127

occurs when the distance between the predicted values and the observed values are within the

threshold.

In summary, the Action Advisor is designed to have two operation modes, normal and unex-

pected. In the normal mode, the Action Advisor leverages the forecast workload demands and

aggressively selects actions that can benefit the predicted future. It recursively performs the greedy-

lookback-lookforward optimization to improve the action schedule until the utility gain of adding

another action is marginal, that is, below a given threshold. To account for the future uncertainty

and the action invocation cost, the Action Advisor also performs risk management analysis. This

is to scale the utility loss for each action option such that the benefit and risk can both be counted.

When the predicted values do not match the observations, the Action Advisor switches to the un-

expected mode, where a defensive action strategy is applied. The key idea is to always invoke the

action option with the minimum action cost. In both the normal and the unexpected model, the

Action Advisor continuously collects new observations from the system to improve the prediction

accuracy. In the next section, we will present our experimental results in both the GPFS system and

a simulator. Our focus is on understanding SMART’s efficiency in terms of the reduction in utility

loss, and its computation time and sensitivity to input errors.

6.4 Experimental Evaluation

SMART generates an action schedule to improve the system utility. To evaluate the quality of

its decision, we implement SMART in both a real file system GPFS [73] and a simulator. The real

system implementation allows us to verify if SMART can be applied in practice. The simulator

provides us a more controlled and scalable environment, thus allowing us to perform repeatable

experiments to gain insights on the overhead and sensitivity to input information errors.

SMART is designed to automatically generate the action plan to maximize the system utility for

a given optimization window. To evaluate the quality of its decision, we need to answer following

questions:

• First, we need to examine whether SMART’s decision can adapt to configuration changes.

128

SMART is designed to find the action plan that is optimal for given configuration parameters

such as the utility functions and the optimization window. When these parameters are dif-

ferent, SMART should be able to account for these differences and generate an appropriate

plan accordingly. To examine SMART’s ability to account for the configuration parameters

and adapt to their changes, we design the sanity check tests, where we vary the configuration

parameters and observe the changes on the generated action plan. By doing this, we can ex-

amine whether SMART meets its design goal of generating the optimal action plan for a given

configuration.

• Second, we must examine whether SMART works as expected. SMART can be used to control

the corrective action invocation automatically without human intervention. Alternatively, it

can be used to assist the administrators to find the optimal action plan. For both cases, the

question is, if we follow the SMART’s decision, will the system utility be improved? We

design the feasibility experiments, in which, we execute SMART’s action plan in the GPFS

prototype and evaluate the system utility it achieves. Specifically, we select two representative

cases in the sanity check tests. We then compare the observed system utility in the real

execution with the predicted value calculated based on system models and workload forecast.

By doing so, we examine whether SMART can work as expected in real system, and thus

improve the system utility.

• After examining how SMART adapts to configuration changes and its behavior in real system,

we next examine the quality of SMART’s decision with or without input errors. We perform

the sensitivity test to examine the quality of the decisions with accurate component models

and future prediction. We then introduce errors to the models and predictions to evaluate their

impact on the quality of SMART’s decisions. By doing this, we gain insights into how input

errors may affect SMART’s decision.

• Lastly, to examine whether SMART can find the optimal action plan rapidly, we perform the

decision overhead experiment to measure the decision-making time of SMART as a function

of the number of workloads.

In the rest of this section, we first define our evaluation metrics. After that, we describe our

129

GPFS prototype implementation and the testbed configurations. Then, we present the experimental

results of four tests, sanity check, feasibility test, sensitivity test and decision overhead test.

6.4.1 Evaluation Metric

An ideal yardstick to evaluate the quality of its decisions is by comparing SMART with existing

automated algorithms or with decisions made by an administrator. However, we are not aware of

any existing work that considers multiple actions. Neither is comparison with the administrator’s

decision feasible because it is difficult to quantify how representative is a given individual’s decision.

Thus, we take an alternative approach. We compare SMART’s quality with theoretical bounds. Since

SMART’s design goal is to find corrective actions that maximize the system utility, we evaluate the

quality of an action plan by comparing the system utility of SMART’s decision with the maximum

theoretical system utility (see Equation 3.3) and the system utility without any action. The former is

the upper bound and the latter is the lower bound. In our tests, we use two evaluation metrics. One

is the utility loss of SMART, defined as the distance of SMART’s system utility from the maximum

system utility. It considers whether SMART can correct the system behavior and how far it is from

the best system utility value. The second metric is the distance of SMART’s utility loss from that of

no corrective action. It measures the gain of using SMART. These two metrics are the basic ones

we use in our tests. In some experiments, we define other evaluation metrics, such as percentage of

utility loss, based on these two values. We give the detailed definitions when they are used.

6.4.2 GPFS Prototype Implementation

The SMART prototype is implemented on the General Parallel File System (GPFS): a commer-

cial high-performance distributed file-system [73]. GPFS manages the underlying storage systems

as pools that differ in their characteristics of capacity, performance and availability. Storage systems

can be accessed by any clients nodes running on separate physical machines transparently.

The prototype implementation involves sensors for monitoring the workloads states, actuators

for executing corrective actions and the Action Advisor for performing the decision making.

130

Sensors: They collect information about the run-time state of workloads. The monitor daemon in

each GPFS client node tracks the access characteristics of the workload and writes it to a file, that

can be analyzed periodically in a centralized fashion. Workloads are the unit of tracking and control

in the prototype implementation. A workload is manually specified as a collection of PIDs assigned

by the OS using a registration daemon. The monitoring daemon does bookkeeping at the GPFS

read/write function call after the VFS translation.

Action actuators: Although the long term goal of the prototype is to support all corrective actions,

as a proof of concept, we implement action actuators for three most commonly used corrective

actions: throttling, migration and adding new hardwares. An example of the latter is adding pools

in GPFS.

• The I/O throttling is enforced at the GPFS client nodes using a token-bucket algorithm [31].

Decision-making for throttling each workload is made in a centralized fashion, with the token-

issue rate and bucket size being written to a control file that is then periodically (20 ms)

checked by the node throttling daemon.

• Similarly, the control file for the migration daemon consists of entries of the form <file name,

source pool, the destination pool> and the migration speed is controlled by throttling the

migration process. The migration daemon runs in one of the client nodes. It periodically

checks for updates in the control file and invokes the GPFS built-in function mmchattr to

migrate files.

• Because the addition of hardware normally requires human intervention, we mimic the effect

of adding new hardware by reserving hardware devices and forbidding the access to them

until SMART decides to add them into the system. In addition, the reserved storage devices are

configured with different lead times to mimic the overhead of placing orders and performing

installations.

Action Advisor Integration: The SMART action advisor is implemented using techniques de-

scribed in Section 6.3. The time-series forecasting is done off-line, where the monitored access

characteristics for each workload are periodically fed to the ARIMA module [84] for refining the

131

future forecast. Similarly, performance prediction is done by bootstrapping the system for the initial

models and refining the models as more data are collected. Once the Action Advisor is invoked, it

communicates with single action decision-making tools and generates an action schedule. The se-

lected actions are hold by the action advisor until action invocation time, as determined by SMART.

At that time, the control files for corresponding action actuators are updated according to SMART’s

decision. The single action tools for throttling and migration are based on the CHAMELEON and the

SMARTMIG frameworks we have already described. SMART reaches its provisioning decision by

estimating the overall system utility for each provisioning option. This in turn considers the utility

loss before the hardware arrives, the loss introduced by the load balancing operation after the new

hardware comes into place, and the financial cost of buying and maintaining the hardware.

6.4.3 Testbed Configurations

Workload Request
Size
[KB]

Read/
Write
Ratio

Random/
Sequen-
tial Ratio

Footprint
Size
[GB]

ON/OFF
Phase
[Hour]

ON/OFF
[Iops]

WTrend 16 0.7 0.8 60 12/12 150/100
WBackup 16 1 1 600 8/16 250/0
WPhase 8 0.8 0.9 6 14/10 150/100

Table 6.1. Access characteristics of workloads

The configuration in our testbed is as follows:

• Workloads: We use the same trace replay technique and synthetic workload generators as

in the CHAMELEON testbed. A detailed description is in Section 4.7. By mixing real-world

trace replay with synthetic workloads, we introduce both real system fluctuation and long-

term workload trend. We use four workloads. One is a two month trace replay, spanning from

Nov. 1, 1999 to Dec. 30, 1999, of HP’s Cello99 traces [68]. The other three workloads are

synthetic workload traces with the following characteristics: (1) WTrend is used to simulate

a workload with a growth trend—the ON phase load increases by 100 IOPS every day while

the OFF phase load increases by 50 IOPS; (2) WPhase is a workload with periodic ON-OFF

phases. Many real applications like departmental file servers exhibit this ON-OFF behavior

as a result of users’ ON/OFF working schedule; and (3) WBackup simulates a backup load

132

with its ON-phase as an inverse of the phased workload. This is to mimic the real world

scenario in which backup applications often operate when regular applications (the WPhased)

are lightly loaded. The access characteristics of these workloads are summarized in Table 6.1.

The footprint size of real applications are often on the order of TB. We intentionally create

workloads with footprint size in the range of GB to reduce the overhead of data movement.

SMART can naturally handle workloads with large footprint size because the footprint size is a

parameter for both system models and the risk management analysis. Other I/O characteristics

are chosen to generate a reasonable load to the testbed.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 500 1000 1500 2000 2500 3000

Re
qu

es
ts

 R
at

e
(IO

Ps
)

Time (minutes)

HP (POOL1)
Trend (POOL1)

Backup (POOL2)
Phase (POOL2)

Figure 6.9. IO rate of workloads as a function of time

Figure 6.9 shows the I/O rate of these workloads as a function of time. In addition, the utility

functions of workloads are defined based on the throughput and the SLO latency. Its value is

a function of the received throughput and latency. Depending on whether the received latency

can meet the SLOlatency or not, different utility functions are used. Figure 6.10 plots the

default utility functions for violating and meeting the SLO latency goals.

• Components: Due to hardware resource limitation, we configure our test bed with three logi-

cal volumes: POOL1 and POOL2 are both RAID 5 arrays with 16 drives each, and POOL3 is

a RAID 0 with 8 drives. POOL3 is originally off-line, and is accessible only when SMART se-

lects hardware provisioning. The initial workload-to-component mapping is: [HP: POOL1],

[Trend: POOL1], [Phased: POOL2] and [Backup: POOL2].

• Miscellaneous settings: The optimization window is set to one month because the synthetic

trending workload (WTrend) is growing with a much faster speed, 100 IOPS growth every

day, than in the real world. The default budget constraint is $20,000. The one day standard

133

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 200 400 600 800 1000

Ut
ilit

y
Va

lu
e

Throughput

HP
Trend

Backup
Phased

(a) Utility functions for violating the SLO latency goals

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 0 200 400 600 800 1000

Ut
ilit

y
Va

lu
e

Throughput

HP
Trend

Backup
Phased

(b) Utility functions for meeting the SLO latency goals

Figure 6.10. Utility functions of workloads

deviation of the future prediction for risk analysis is configured as 10% unless otherwise

specified.

For these initial system settings, the system utility loss at different time intervals without any

corrective action is shown in Figure 6.11.

134

 0
 10000
 20000
 30000
 40000
 50000
 60000

 0 500 1000 1500 2000 2500 3000

Ut
ilit

y
Lo

ss

Ac
tio

n

Time (minutes)

Utility Loss

Figure 6.11. Utility loss if no corrective action is invoked

6.4.4 Sanity Check

As a sanity check, we give the Action Advisor the initial system settings as input, and we vary

the configuration parameters to examine their impacts on SMART’s action schedules. The key ques-

tion is whether SMART will generate a different schedule that is appropriate for the configuration

and improves the system utility.

We vary the following configuration parameters: the utility function values (Test 1), the length

of optimization window (Test 2), the budget constraints (Test 3) and the risk factor (Test 4). In

Test 5, we explore how SMART handles unexpected mode. For each of these tests, we present the

corrective action schedule generated by SMART, and the corresponding predicted utility loss as a

function of time. In the figures, the action schedule is represented by using different patterned

boxes for different actions: the empty box for migration, the cross patterned box for throttling and

the shadowed box for provisioning. The length of the boxes represent the invocation duration of the

action.

Test 1: Impact of Utility Functions

SMART selects actions that maximize the overall system utility value, which is driven by the

utility functions for individual workloads using the storage system. In this test, we vary WTrend’s

utility function when meeting the SLO latency goal from the default 20∗Thru to 540∗ log(Thru+

1). As shown in Figure 6.12(a), the default utility assignment for WTrend causes a fast growing

overall utility loss. Therefore, SMART chooses to add new hardware. However, for the low value

135

 0
 6000

 12000
 18000
 24000
 30000

 0 500 1000 1500 2000 2500 3000

Ut
ilit

y
Lo

ss

Ac
tio

n

Time (minutes)

Throttle
Migration

Add Hardware
Utility Loss

(a) High Utility Value Assignment UFtrend = 20 ∗ Thru

 0
 1000
 2000
 3000
 4000
 5000

 0 500 1000 1500 2000 2500 3000

Ut
ilit

y
Lo

ss

Ac
tio

n

Time (minutes)

Utility Loss
Throttle

Migration

(b) Low Utility Value Assignment UFtrend = 540 ∗ log(Thru + 1)

Figure 6.12. Action invocation for different utility functions assigned to Wtrend

utility assignment, the latency violation caused by the increasing load causes a much slower growth

in the utility loss. As a result, the cost of adding new hardware cannot be justified for the current

optimization window. Thus SMART decides to settle for throttling and migration. As the utility loss

slowly approaches to the point where the cost of adding new hardware can be justified, SMART will

suggest adding new hardware.

Test 2: Impact of Optimization Windows

SMART selects action options that are optimal for a given optimization window. In this test,

we vary the optimization window to two days, one week and one month, the latter is the default

value. Compared to the schedule for one month in Figure 6.12(a), Figure 6.13 shows that SMART

136

 0
 6000

 12000
 18000
 24000
 30000

 0 500 1000 1500 2000 2500 3000

Ut
ilit

y
Lo

ss

Ac
tio

n

Time (minutes)

Throttle
Utility Loss

(a) Two days optimization window

 0
 6000

 12000
 18000
 24000
 30000

 0 500 1000 1500 2000 2500 3000

Ut
ilit

y
Lo

ss

Ac
tio

n

Time (minutes)

Throttle
Migration

Utility Loss

(b) One week optimization window

Figure 6.13. Action invocation for different optimization windows

correctively chooses varying action schedules for different optimization windows. In brief, for a

short optimization window (Figure 6.13(a) and 6.13(b)), SMART correctly selects action options

with lower cost. For a longer optimization window (Figure 6.12(a)), it suggests corrective options

with higher costs, but which yield better system utility in the long run.

Test 3: Impact of Budget Constraints

Test 3 demonstrates how SMART responds to various budget constraints. As shown in Fig-

ure 6.14, SMART settles for throttling and migration if no budget is available for buying new hard-

ware. With $5000 budget, SMART opts for adding a hardware. However, compared to the hardware

137

 0
 5000

 10000
 15000
 20000
 25000
 30000

 0 500 1000 1500 2000 2500 3000

Ut
ilit

y
Lo

ss

Time (minutes)

Utility Loss
Throttle

Migration

(a) No budget available

 0
 6000

 12000
 18000
 24000
 30000

 0 500 1000 1500 2000 2500 3000

Ut
ilit

y
Lo

ss

Time (minutes)

Utility Loss
Throttle

Migration
Add Hardware

(b) Low budget available ($5000)

Figure 6.14. Action invocation for different budget constraints

selected for the default $20,000 budget (shown in Figure 6.12(a)), the hardware selected does not

solve the problem completely, so SMART also adds a traffic regulation using throttling.

Test 4: Impact of Risk Management

SMART uses risk management to balance between the risk of invoking an inappropriate action

and its benefit on the utility value. For this experiment, the size of the dataset selected for migration

is varied from 20GB to 1TB. This changes the risk value (see Equation 6.3.2) associated with the

action options. SMART will select the high-risk option only if its benefit is proportionally higher. As

shown in Figure 6.15, SMART changes the ranking of the corrective options and selects a different

action invocation schedule for the two cases.

138

 0
 5000

 10000
 15000
 20000
 25000
 30000

 0 500 1000 1500 2000 2500 3000

Ut
ilit

y
Lo

ss

Ac
tio

n

Time (minutes)

Utility Loss
Throttle

Migration
Add Hardware

(a) Migration option: 20GB data movement

 0
 6000

 12000
 18000
 24000
 30000

 0 500 1000 1500 2000 2500 3000

Ut
ilit

y
Lo

ss

Ac
tio

n

Time (minutes)

Utility Loss
Throttle

Migration
Add Hardware

(b) Migration option: 1TB data movement

Figure 6.15. Action invocation for different risk factor

Test 5: Handling of the Unexpected Case

This test explores SMART’s ability to handle unexpected workload demands. Figure 6.16(a)

shows the sending rate of the workload demands. From the 60th minute to the 145th minute, WTrend

sends at 1500 IOPS instead of the normal 250 IOPS. The difference between the predicted value,

250 IOPS, and the observed value, 1500 IOPS, exceeds the threshold and SMART switches to the

unexpected mode. We test two cases with different migration options. For Case 1, the available

migration option involves moving one TB of data. For Case 2, the migration option only requires

moving eight GB of data. As shown in Figure 6.16, for both cases, SMART invokes throttling

directly. But for Case 1 (Figure 6.16(b)), the migration operation is never invoked. This is because

the spike duration is not long enough to reach a point where the migration invocation cost is less

139

 0

 500

 1000

 1500

 2000

 0 50 100 150 200 250 300 350 400

Re
qu

es
ts

 R
at

e
(IO

Ps
)

Time (minutes)

HP (POOL1)
Trend (POOL1)

Backup (POOL2)
Phase (POOL2)

(a) Workloads demands

 0
 6000

 12000
 18000
 24000
 30000

 0 50 100 150 200 250 300 350 400

Ut
ilit

y
Lo

ss

Ac
tio

n

Time (minutes)

Utility Loss
Throttle

(b) Result for a “short” spike

 0
 6000

 12000
 18000
 24000
 30000

 0 50 100 150 200 250 300 350 400

Ut
ilit

y
Lo

ss

Time (minutes)

Utility Loss
Throttle

Migration

(c) Result for a “long” spike

Figure 6.16. Action invocation for unexpected case

than the utility loss of staying with throttling. For Case 2, at the 5th minute, the utility loss due to

settling for throttling exceeds the cost of moving eight GB of data. Thus, SMART invokes migration

immediately.

140

6.4.5 Feasibility Test Using the GPFS Prototype

In these tests, SMART runs in the actual GPFS deployment. The tests serve two purposes: (1)

verify if the action schedule generated by SMART can actually help reduce the system utility loss;

and (2) examine if the utility loss predicted by SMART matches with the observed utility loss. We

run two tests to demonstrate the normal and the unexpected mode operation.

Test 1: Normal Mode

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 20 40 60 80 100 120 140

Cu
m

ul
at

ive
 U

tili
ty

 L
os

s

Time (Minute)

With Action Advisor
No Action

Figure 6.17. The cumulative utility loss comparison between no action and SMART’s actions

In this experiment, to reduce the experiment running time, the I/O requests are re-

played/generated 60 times faster. In other words, every minute in the figure corresponds to

one hour in the trace. The settings for this experiment are the same as those described in Section

6.4.3 but with two exceptions: the footprint size and the lead time for adding hardware. The

footprint size is shrunk by a factor of 60. The lead time of adding hardware is set to 55 minutes.

This maps to the real value of 55 hours.

In the first step, SMART decides that the best option is to add a new storage pool. Because it

takes 55 minutes to come into effect, SMART looks back to seek for solutions that can reduce the

utility loss for the time window [0, 55]. It chooses to migrate the HP workload from POOL1 to

POOL2 and throttle all workloads until the new pool arrives. After POOL3 joins, the load balance

operation decides to migrate the Trend workload to POOL3 and HP back to POOL1. The final

workload-to-component mapping is: HP on POOL1, Backup and Phased on POOL2 and Trend

on POOL3.

141

As shown in Figure 6.17, compared to the case of no action, SMART’s action schedule eliminates

about 80% of the utility loss. Also the utility loss grows at a much slower rate. Before the 20th

minute, the utility loss of no action is slightly lower than with SMART because SMART’s schedule

pays extra utility loss for invoking the migration operation.

-2000
-1000

 0
 1000
 2000
 3000
 4000
 5000

 0 20 40 60 80 100 120 140

Ut
ilit

y
Lo

ss

Time (Minute)

Observed Utility Loss

Figure 6.18. The observed utility loss

From Figure 6.18, we can see that sometimes, the utility loss is a negative value. This is because

the maximum utility is estimated based on the planned workload demands, while the observed

utility value is calculated based on the observed throughput. Due to the lack of precise control in

task scheduling, the workload generator cannot generate I/O requests precisely as specified. For

example, the workload generator for the HP traces plans to send requests at 57.46 IOPS at the 33rd

minute, but has a real throughput of 58.59 IOPS. In this case, the observed utility value is higher

than the estimated maximum value, thus, resulting in a negative utility loss. For a similar reason,

the observed utility loss fluctuates frequently around zero.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 20 40 60 80 100 120 140

Ut
ilit

y
Lo

ss

Time (Minute)

Observed - Predicted

Figure 6.19. Difference in utility loss (after filtering): observed value-predicted

SMART schedules actions and predicts the utility loss to be close to zero. However, the observed

142

utility loss, shown in Figure 6.18, has many non-zero values. To understand the cause of this, we

filter out the amount of observed utility loss due to imprecise workload generation described above,

and plot the remaining utility loss in Figure 6.19. We can see that the predicted and observed values

usually match except for two spikes at the second and the 58th minute. Digging into the log of the

run-time performance, we found several high latency spikes on the migrated workload during the

migration procedure. These latency spikes are more than 60 ms, which is much higher than the

normal delay of 10 ms. This is because the migration process locks 256 KB blocks for consistency

purposes. Hence, if the workload tries to access these blocks, it will be delayed until the lock is

released. The performance models fail to capture this scenario, so we observe a mismatch between

the predicted and observed utility values. However, these are transient behaviors in the system and

do not affect the overall quality of SMART’s decision.

Test 2: Unexpected Mode

 0

 50000

 100000

 150000

 200000

 250000

 0 10 20 30 40 50 60

Cu
m

ul
at

ive
 U

tili
ty

 L
os

s

Time (Minute)

With Action Advisor
No Action

Figure 6.20. Unexpected mode: the cumulative utility loss with migration invoked and with no
action

Similar to the sanity check test of unexpected case handling in Test 5, we intentionally create a

load surge from the 10th to 50th minute. SMART invokes the throttling operation immediately and

waits for about 3 minutes till the invocation cost of the migration option is lower than the utility

loss of throttling. The migration operation executed from the 13th to 17th minute and the system

experiences no utility loss once it is done. Similar to the previous test, the temporary smaller utility

loss for the case of no action (shown in Figure 6.20) is due to the extra utility loss for the data

movement. We skip the other figures, as they offer no new observations for predicted and observed

utility values.

143

6.4.6 Sensitivity Test

In the sensitivity test, we examine SMART’s sensitivity to errors of performance models and fu-

ture prediction in a variety of configurations. Because the simulator provides a more controlled and

scalable environment and allows us to test various system settings, we use simulations to perform

the sensitivity test. Our simulator is based on SMARTMIG, described in Section 5.4, with the Action

Advisor algorithm replacing the migration decision algorithm.

In this test, we vary the number of workloads in the system from 10 to 100. For each workload

setting, we automatically generate 50 scenarios in a similar fashion as in the SMARTMIG’s evalu-

ation. We randomly generate the initial data placement, workload trending, workload features and

utility functions for each scenario, as described in Section 5.4. We then invoke the Action Advisor

to compute the action schedule.

For a three month optimization window, the 500 scenarios experience the utility loss in various

degrees, ranging from 0.02% to 83% of the maximum system utility. The Cumulative Distribution

Function (CDF) of the percentage of utility loss without corrective actions is shown in Figure 6.21,

where the percentage of utility loss is defined in Equation 6.5. As shown in the CDF curve, for more

than 90% of cases, the system experiences a utility loss higher than 20%.

percentage of utility loss =
utility loss

maximum utility
(6.5)

Test 1: Without Model Errors and Prediction Errors

For this test, we assume both the performance prediction and the future prediction are accurate.

The CDF of the percentage of utility loss with SMART’s actions is plotted in Figure 6.21. As shown

in the figure, for all scenarios, the utility loss is less than 20%. This is a significant improvement

compared to the case of without SMART, which results in 90% of cases with a utility loss higher

than 20%.

We also measure the percentage of the saved utility loss, defined in Equation 6.6. It reflects the

amount of utility loss eliminated by SMART’s action plan. When it is approaching to 1, the action

144

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n
Fu

nc
tio

n

Percentage of Utility Loss

Without Corrective Actions
With Action Advisor

Figure 6.21. CDF of the percentage of utility loss

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

CD
F

Percentage of Saved Utility Loss

Figure 6.22. CDF of the percentage of the saved utility loss

plan is more effective.

percentage of saved utility loss =
utility loss without actions − observed utility loss

utility loss without actions
(6.6)

Figure 6.22 plots the percentage of the saved utility loss. It shows that for more than 90% of

tested scenarios, SMART elimiates more than 94% of utility loss. For the remaining 10% of cases,

it reduces the utility loss by 70%.

145

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

50
%

 V
al

ue

Performance Model Error Rate

Figure 6.23. Impact of model errors on the accuracy of the predicted utility loss

Test 2: With Performance Model Errors

Our previous analysis is based on the assumption that accurate component models are available

for extrapolating the performance for a given workload. However, this is never true in real-world

systems. To understand how performance prediction errors affect the quality of SMART’s decision,

we perform the following experiments:

• First we generate the synthetic system models to simulate the real system models constructed

using modeling techniques, such as black-box regression and analytical models. For any given

system state, we use these models to calculate the predicted performance and the predicted

utility loss, that are used by SMART to generate action schedules.

• The observed real system performance is simulated by introducing a random error to the pre-

dicted performance. The random error is generated using a normal distribution with the speci-

fied error rate as the standard deviation. For example, if the predicted latency is 10 ms and the

random error generated is 0.2, the observed latency is simulated as 12 ms (12=10*(1+0.2)).

The observed utility loss is then calculated based on it.

This design allows us to control the model error rates and measure their impact on SMART’s

schedule. We vary the error rate from 0 to 100%. Figure 6.23 plots the accuracy of the predicted

utility loss (see Equation 6.7), which reflects the degree of mismatch between the predicted and

146

observed utility loss caused by performance prediction errors.

accuracy of the predicted utility loss =
predicted utility loss

observed utility loss
(6.7)

As shown in the figure, the accuracy drops very quickly with the growth of the model error. We

obtain 70% accuracy for a 20% model error and 30% accuracy for a 60% model error.

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

CD
F

Percentage of Saved Utility Loss

0 error
20% error
40% error
60% error
80% error

100% error

(a) CDFs of the percentage of the saved utility loss

 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 0 0.2 0.4 0.6 0.8 1

Pe
rc

en
ta

ge
 o

f S
av

ed
 U

tili
ty

 L
os

s

Model Errors

50% CDF Value
80% CDF Value

(b) Percentage of the saved utility loss

Figure 6.24. Impact of performance model errors

Figure 6.24(a) plots the CDF of the percentage of the saved utility loss for various model error

rates. We can see that as the model error increases, the saved utility loss of SMART’s action schedule

147

drops. But the reduction is small. To take a closer look at the impact of the model error rate, we plot

the 50% and 80% values from the CDF curve as a function of the model error rate. This is shown in

Figure 6.24(b). The figure shows that the model error rate has a minor impact on the percentage of

the saved utility loss—less than 10%. The step-wise decreasing behavior is because that, when the

model error rate grows, SMART will return the same action schedules if the error does not affect the

preference order of the action options.

In summary, these results show that SMART’s quality is affected by the performance model

errors, but it is not very sensitive to them.

Test 3: With Time-Series Prediction Errors

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

50
%

 V
al

ue

Future Forecasting Error Rate

Figure 6.25. Impact of future forecasting errors on the accuracy of the predicted utility loss

We introduce the future forecasting error in a fashion similar to the experiment with the perfor-

mance model errors. The workload demands forecasting is generated first and is used by SMART

for decision making. The real workload demands are generated by scaling the predicted workload

demands with a random factor. The random factor follows a normal distribution, with the future

forecasting error as the standard deviation. The predicted utility loss is calculated based on the fore-

cast demands and the observed utility loss is calculated based on the real workload demands. For

this set of tests, we restrict the Action Advisor to operate in the normal mode because, otherwise,

148

the Action Advisor will automatically switch to the unexpected mode and the future forecasting is

ignored.

Figure 6.25 shows the accuracy of the predicted utility loss (see Equation 6.7). Compared to

Figure 6.23, the prediction accuracy drops much faster. With a 10% future forecasting error, the

predicted utility loss is only 8% of the observed utility loss. This is because, for most actions like

throttling and migration, the performance values composed using the system models are used to

compare against some boundary, such as SLO constraints. As long as the model errors will not

make the action option flip from meeting the SLO to violating it, the impact is marginal. However,

the future forecasting errors can change the preference of action options. For example, migration

is preferred over throttling when there is a growing workload demands. As a result, the future

forecasting errors have a bigger impact on the accuracy of the predicted utility loss.

Figure 6.26(a) plots the CDF of the percentage of the saved utility loss after invoking SMART’s

action schedule. Compared to Figure 6.24(a), the percentage of the saved utility loss drops much

faster. Figure 6.26(b) plots the 50% and 80% CDF values. The 50% CDF curve shows that, for

about 50% of cases, with a 20% future forecasting error, SMART’s action schedule can reduce the

utility loss by up to 83%. But when the prediction errors grows to 60%, SMART can only eliminate

less than 45% of utility loss. From the 80% CDF curve, we can see that, for about 20% of cases,

SMART can only eliminate less than 15% of the utility loss when the future forecasting errors is

60%. When the errors grows, SMART may result in a system utility worse than the case of no

action. These results confirm our design choice: when the difference between the future prediction

and observed values are high, we should apply a defensive strategy.

6.4.7 Decision Overhead of SMART

Figure 6.27 plots the decision overhead of SMART. We ran the simulator on a Linux machine

with Pentium 4 3.0 GHZ CPU and 512MB memories. We vary the number of workloads in the

system and record the invocation and return time of SMART. The average decision time for the

500 scenarios are plotted in Figure 6.27(a). The figure shows an exponentially growing trend with

the number of workloads in the system. The decision time with 100 workloads approaches to 14

149

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

CD
F

Percentage of Saved Utility Loss

0 error
20% error
40% error
60% error
80% error

100% error

(a) CDFs of the percentage of the saved utility loss

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pe
rc

en
ta

ge
 o

f S
av

ed
 U

tili
ty

 L
os

s

Future Forecasting Error Rate

50% CDF Value
80% CDF Value

(b) Percentage of the saved utility loss

Figure 6.26. Impact of future forecasting errors

minutes. One reason for this long decision time is that the simulator makes decisions sequentially:

it first makes the throttling decisions, then the migration decisions, and the provisioning decisions.

In a real system, the Action Advisor can communicate with single action tools in parallel, thus,

reduce the decision overhead. To estimate the overhead of parallel decision making, we measure

the decision time for each individual action and use the the maximum of the three to approximate the

decision time using parallel queries. The results are shown in Figure 6.27(a). With parallel queries,

150

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 10 20 30 40 50 60 70 80 90 100

de
cis

io
n

m
ak

in
g

tim
e

(s
ec

on
d)

number of workloads

Sequential Decision Making
Parallel Decision Making

(a) Decision time for the sequential and parallel decision making

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 10 20 30 40 50 60 70 80 90 100

de
cis

io
n

m
ak

in
g

tim
e

(s
ec

on
d)

number of workloads

Throttle
Migration

Hardware + Load Balance

(b) Decision time for individual action

Figure 6.27. Computational overhead of SMART

SMART takes six minutes to generate an action schedule with 100 workloads in the system. In

addition, because for each system state, the Action Advisor needs to evaluate the system behavior

for every action option, the decision overhead is also related to the number of future states. We

measure the decision time with one system state for each type of actions and plot the results in

Figure 6.27(b). The figure shows that for every system state, the decision for all actions can be

made on the order of seconds.

In summary, we tested the SMART framework using both the GPFS prototype and the simulator.

Our sanity check results show that SMART can account for various configuration parameters and

151

generate appropriate action schedules. Our feasibility test using the GPFS prototype verifies that

SMART can improve the utility loss in the real system and the predicted utility values match well

with the observed values. Our sensitivity tests show that with accurate system models and future

prediction, for more than 90% senarios tested, SMART can elimiate more than 94% of utility loss.

For the remaining 10%, it reduces the utility loss by 70%. In addition, our results show that SMART

is more sensitive to the future forecasting errors than to the model errors. Our strategy of defensive

action scheduling starts acting when the future prediction is inaccurate. The decision overhead

analysis shows that SMART can generate an action plan on the order of minutes.

6.5 Conclusion

To reduce the total cost of ownership and adapt to system changes more responsively, the in-

dustrial trend is to introduce systems that can manage their storage more automatically. This thesis

focuses on automating the choice of the corrective actions. Our framework SMART aims to generate

an action schedule about when to invoke what actions in an integrated manner. Previous chapters

illustrated the model-based decision making processes for two corrective actions, throttling and mi-

gration. In this chapter, we described the intelligent optimization method in SMART, which we call

the Action Advisor. The Action Advisor considers a variety of information including the forecast

system state, the estimated action cost-benefit effect and the business constraints. From these inputs,

it generates a combination of corrective actions that can reduce the system utility loss. We design

it to create action plans for different optimization windows as well as react to both expected and

unexpected system changes. It uses a recursive greedy algorithm with lookback and lookforward

to generate plans for expected system changes, and a defensive strategy based on the well-known

ski-rental algorithm to handle unexpected cases. We have implemented SMART’s prototype in a dis-

tributed file system, GPFS. Our experiments show that the system utility is improved as predicted.

With accurate information, for the scenarios we tested, SMART’s action decision can reduce the util-

ity loss by 94% for more than 90% of cases and by 70% for the remaining 10% scenarios. Most of

the utility loss experienced by SMART is due to transient operations like data movement, or limited

resource such as before hardware arrives. We also evaluate the quality of SMART’s decision with

152

input errors. We find that SMART’s decision is more sensitive to inaccurate future prediction than

to system model errors. These results suggest us to apply SMART more carefully when we have

limited knowledge about the system or the workloads. SMART’s decision making time grows expo-

nentially with the number of workloads in the system. In our testbed, with less than 100 workloads,

the decision time is on the order of minutes.

153

Chapter 7

Conclusions and Future Work

In this chapter, we summarize our contributions in Section 7.1. We then finish this thesis with a

discussion of directions in future work in Section 7.2.

7.1 Thesis Summary

In this thesis, we focus on automating the Analyze part in the Observe-Analyze-Act process

of storage system management. We tackle the problem of generating the corrective plan leading

to maximum system utility automatically and responsively. We face four fundamental challenges:

how to react rapidly, how to invoke action proactively, how to compare alternative plans fairly, and

how to handle unexpected system changes. To generate an action plan rapidly, we construct system

models to describe the system behavior and apply constraint optimization techniques to explore

the search space quickly. To enable proactive action invocation, we predict the future workload

demands using time-series analysis and perform risk management to balance the benefit and risk

of an action plan. To compare corrective actions without bias, we utilize the concepts of system

utility and the optimization window, and look for actions that can maximize the system utility for

a given optimization window. To handle unexpected system changes, we borrow the concept of the

well-known ski-rental algorithm and design a defensive strategy to make action decisions when we

have limited knowledge about the system and the workloads.

154

In this thesis, we develop a new framework, SMART, which is a model-based action advisor. It

generates action plans consisting of what corrective actions to invoke, when to invoke and how to

invoke. It takes into account the future workload demands, component and workload models, cost

and benefit analysis of action options and business constraints. We develop the following specific

tools within the more general framework.

• CHAMELEON: An Automatic Throttling Decision Tool. Working as a single action tool for

throttling in the SMART framework, CHAMELEON automatically identifies which workloads

should be throttled and to what degree. It takes the targeting system state and system models

as input and generates the throttling options. The system state describes the workload char-

acteristics, component ability and the application-to-resource mapping. The system models

are used to predict the system behavior for a given throttling decision, which specifies the

token issue rates for all workloads. Constraint optimization techniques are then applied to

scan the candidate space for the optimal settings. In addition, to accommodate model errors

and workload fluctuation, it uses a feedback-loop to control the throttling execution. It also

defines simple heuristics as the fall-back strategy when the system knowledge is insufficient.

To evaluate the efficiency of CHAMELEON, we replay traces from production environments in

a real storage system. Our experimental results show that CHAMELEON makes accurate de-

cisions for all the scenarios examined. It always makes the optimal throttling decisions based

on the available knowledge. With our system and workloads we imposed, CHAMELEON can

analyze and correct the SLO violations using the feedback loop in 3-14 minutes—which com-

pares very favorable with the time a human administrator would have needed. CHAMELEON

demonstrates that model-based approaches can explore the design space and select an optimal

setting very quickly.

• SMARTMIG: A Proactive Risk Modulated Migration Tool. SMARTMIG acts as the single

action tool for migration in the SMART framework. It can find the optimal migration plan, in-

cluding what data to migrate, where to place them, when to migrate and how fast to migrate. It

combines system models, time-series analysis and constraint optimization techniques to find

the plan leading to the maximal system utility for a given optimization window. To reduce the

complexity, it breaks the decision process into three phases: optimization, planning and risk

155

management. The optimization phase chooses the migration candidates (what) and targets

(where) options. The planning phase determines the detailed migration plan in terms of the

migration speed (how) and the migration starting time (when). The risk management accounts

for the future uncertainty and action invocation overhead. Compared with previous solutions,

SMARTMIG’s migration plan considers both current and future system states, as well as the

risk of migration options. We evaluate SMARTMIG in a simulator. Our experimental results

show that SMARTMIG can adapt to the changes of configuration parameters and generate an

optimal migration plan. For our testing scenarios, SMARTMIG successfully reduces the sys-

tem utility loss by 80% for more than 83% of cases. Our sensitivity test shows SMARTMIG’s

high tolerance against model errors. In summary, SMARTMIG demonstrates that, by com-

bining system models, time-series analysis and constraint optimization techniques, we can

discover the options for complicated actions rapidly.

• SMART: An Integrated Multi-Action Advisor. The intelligence behind SMART is its Ac-

tion Advisor. It is responsible for generating the action plan for both expected and unexpected

system changes. Depending on the accuracy of the future prediction, the Action Advisor op-

erates in either the normal mode or the unexpected mode. In the former, it applies a recursive

greedy algorithm to find the set of actions that can improve the system utility. It also performs

the risk management to balance the benefit an risk of an action option. In the unexpected

mode, it applies a defensive strategy based on the well-known ski-rental algorithm. The key

idea is to always invoke the action with the lowest cost. The Action Advisor can transition

between two modes when the system changes so much that the future prediction is no longer

correct, or when it collects enough new observations on the system states to have an accurate

future prediction. We implemented SMART’s prototype in a distributed file system, GPFS.

Our experiments show that SMART can generate action plan that is optimal for the given sys-

tem configurations. For the scenarios tested, SMART can reduce the utility loss by 94% for

90% cases and by 70% for the rest. Our sensitivity test shows that SMART requires accurate

future prediction to work efficiently, but it is less sensitive to system model errors. These

results suggest us to apply SMART more carefully when we have limited knowledge about the

system or workloads.

156

In summary, we develop a framework, SMART, to automate the analysis of corrective action

plans for storage system management. Our study shows that model-based approaches enable us to

quickly scan the candidate space and find the optimal action plan. At the same time, it is critical

to consider realistic factors such as model and future prediction errors, action invocation overhead,

business constraints and unexpected system changes in the design. In the next section, we will

discuss several possible follow-on works for our thesis based on lessons learned.

7.2 Future Work

To fully automate the “analyze” part of the OAA loop, several challenges remain to be solved.

Here are several possible follow-on work for our thesis.

• Improving the decision making strategy. The goal is to make our algorithm less sensitive

to input errors and generate the plan faster. Our discussion in Chapter 5 and Chapter 6, shows

that the input errors can affect the quality of our decision. To reduce the impact of input

errors, on the one hand, we need to deploy better modeling technique as well as the future

forecasting techniques to improve the accuracy of input information. On the other hand, we

need to improve the decision making strategy to make it more robust to input errors. Cur-

rently, the Action Advisor operates in a binary mode, normal or unexpected. As a result, our

decision algorithm either trusts the input or ignore them completely. One possible direction

is to increase the number of modes and adjust the aggressiveness of the decision strategy by

controlling the type of actions considered according to the accuracy of the input information.

• Reducing the decision overhead. The current design has a decision overhead in the range of

six minutes with 100 workloads in the system. Although it is faster than the time required by

a human administrator, we need to reduce the overhead further. On the one hand, we need to

continuously look for better optimization techniques. The simulated annealing algorithm used

by throttling and the greedy approximation algorithm for migration are both time consuming

operations. We need to exploring other constraint optimization techniques and hypothesis

to reduce the decision overhead. On the other hand, we can reduce the decision overhead by

developing mechanisms to adjust the frequency of SMART invocation. Querying single action

157

tools for each system state contributes the majority of the decision overhead. One possible

direction to reduce the overhead is to discovery the opportunities to reuse SMART’s decision

when possible. For example, if a system state is similar to a previously seen one, SMART can

skip querying the single action tools.

• Integrating with existing tools. SMART is designed as a general framework. We inten-

tionally separate single action tools from the action advisor such that the action tools can be

upgraded easily in the future. The separation also allows SMART to work with single action

tools other than CHAMELEON and SMARTMIG. In principle, SMART can leverage any exist-

ing tools. To do so, we need to design appropriate interfaces between the Action Advisor and

single action tools. One direction is to create a standardized API for all single action tools

and the Action Advisor. The ongoing SMI-S [79] (Storage Management Initiative) is one of

the existing standardization efforts for services such as migration and hardware provisioning.

Our efforts can become part of it.

In the long run, the following directions are interesting and important for further investigation.

• Automatic problem determination. SMART is invoked when the storage system experiences

problems such as SLO violations and utility loss. In this thesis, we assume that the root cause

of the problem is known and the bottleneck component has been located. By bottleneck

component, we refer to the devices, such as storage controller, disks or switches, that are

overloaded. Under this assumption, SMART considers action candidates that can solve the

problem. In a distributed storage system with a complicated infrastructure, determining the

root cause of the problem and locating the bottleneck component is challenging. Existing

storage management softwares, such as TPC [26] and ControlCenter [25] collects extensive

monitoring information, which can be used to diagnose the problem. However, it remains

a challenge how to extract useful informations from the huge amount of data, and how to

correlate the observations and determine the root cause of the problem automatically.

• Benchmarking the automatic management software. Many research prototypes and com-

mercial products have been developed to automate the storage system management. They of-

ten have different objectives, adopt different strategies and are evaluated in different systems.

158

Designing a benchmark tool that can quantify the performance of alternative management

softwares and find the best strategy for a given system setup is an interesting and important

direction. In addition, existing tools often evaluate the effect of management decisions in sin-

gle dimension, such as performance, availability or security. In many cases, a management

decision will alter the system behavior in multiple dimensions. For example, a replication de-

cision affects the system performance, as well as the availability. A benchmark tool that can

uniformly evaluate and compare the complete impacts of management decisions is desirable.

• Constructing utility functions. SMART uses utility functions to capture the users’ degree of

satisfaction. It assumes that utility functions can be defined based on SLOs or other pricing

information. In an environment like corporation data center, such information may not always

be available. The challenge is how to figure out what the user wants. One possible solution

is to define the utility function using a complaint-based approach. The idea is to change the

workload’s performance by varying the resource allocated to it and adjust the utility function

based on users response. For example, reducing the utility value for a given performance if

the user complaints.

159

Bibliography

[1] Beyond Linux from scratch. http://www.linuxfromscratch.org/blfs/view/svn/general/

sysstat.html.

[2] GLPK (GNU) linear programming kit. http://www.gnu.org/software/glpk/glpk.html.

[3] The network simulator ns-2. http://www.isi.edu/nsnam/ns/.

[4] NIST NET - a Linux-based network emulation tool. Computer Communication Review, June

2003.

[5] Guillermo A. Alvarez, Elizabeth Borowsky, Susie Go, Theodore H. Romer, Ralph Becker-

Szendy, Richard Golding, Arif Merchant, Mirjana Spasojevic, Alistair Veitch, and John

Wilkes. Minerva: An automated resource provisioning tool for large-scale storage systems.

ACM Transactions on Computer Systems, 19(4):483–518, 2001.

[6] Eric Anderson. Simple table-based modeling of storage devices. Technical Report HPL-SSP-

2001-4, HP Laboratories, July 2001.

[7] Eric Anderson, Joseph Hall, Jason D. Hartline, Michael Hobbs, Anna R. Karlin, Jared Saia,

Ram Swaminathan, and John Wilkes. An experimental study of data migration algorithms.

In Proceedings of the 5th International Workshop on Algorithm Engineering (WAE’01), pages

145–158, 2001.

[8] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan Spence, Mustafa Uysal, and Alistair

Veitch. Hippodrome: Running circles around storage administration. In Proceedings of Con-

ference on File and Storage Technologies (FAST’02), pages 175–188, Monterey, CA, January

2002.

160

[9] Eric Anderson, Mahesh Kallahalla, Susan Spence, Ram Swaminathan, and Qian Wang. Er-

gastulum: quickly finding near-optimal storage system designs. Technical Report HPL-SSP-

2001-05, HP Laboratories, June 2002.

[10] David A.Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays of inex-

pensive disks (RAID). In Proceedings of the 1988 ACM SIGMOD International Conference

on Management of Data (SIGMOD’88), pages 109–116, Chicago, IL, June 1988.

[11] Michael E. Azoff and Eitan M. Azoff. Neural Network Time Series Forecasting of Financial

Markets. John Wiley & Sons, Inc., New York, NY, USA, 1994.

[12] Elizabeth Borowsky, Richard Golding, Patricia Jacobson, Arif Merchant, Louis Schreier, Mir-

jana Spasojevic, and John Wilkes. Capacity planning with phased workloads. In Proceedings

of the first International Workshop on Software and Performance (WOSP’98’), pages 199–207,

October 1998.

[13] Eric A. Brewer. High-level optimization via automated statistical modeling. In Proceedings

of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPOPP’95’), pages 80–91, Santa Barbara, CA, USA, July 1995. ACM Press.

[14] Maria Calzarossa and Giuseppe Serazzi. Workload characterization: a survey. Proceedings of

the IEEE, 81(8):1136–1150, 1993.

[15] Scott D. Carson and Sanjeev Setia. Analysis of the periodic update write policy for disk cache.

IEEE Transactions on Software Engineering, 18(1):44–54, January 1992.

[16] V. Cerny. Thermodynamical approach to the traveling salesman problem: an efficient simula-

tion algorithm. journal of optimization theory and applications, 45:41–51, 1985.

[17] David Chambliss, Guillermo A. Alvarez, Prashant Pandey, Divyesh Jadav, Jian Xu, Ram

Menon, and Tzongyu P. Lee. Performance virtualization for large-scale storage systems. In

Proceedings of the 22nd Symposium on Reliable Distributed Systems (SRDS’03), pages 109–

118, October 2003.

161

[18] Abhishek Chandra, Weibo Gong, and Prashant Shenoy. Dynamic resource allocation for

shared data centers using online measurements. SIGMETRICS Performance Evaluation Re-

view, 31(1):300–301, 2003.

[19] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin Vahdat, and Ronald P. Doyle.

Managing energy and server resources in hosting centers. In Proceedings of the eighteenth

ACM Symposium on Operating Systems Principles (SOSP’01), pages 103–116, October 2001.

[20] Chandra Chekuri and Sanjeev Khanna. A PTAS for the multiple knapsack problem. In Pro-

ceedings of the eleventh annual ACM-SIAM Symposium on Discrete Algorithms, pages 213–

222, January 2000.

[21] Mike Chen, Anthony Accardi, Emre Kiciman, Dave Patterson, Armando Fox, and Eric Brewer.

path-based failure and evolution management. In Proceedings of the First Symposium on

Networked Systems Design and Implementation (NSDI’04), pages 309–322, San Francisco,

CA, USA, March 2004.

[22] Mike Chen, Alice Zheng, Jim Lloyd, Michael Jordan, and Eric Brewer. Failure diagnosis using

decision trees. In Proceedings of the First International Conference on Autonomic Computer

(ICAC’04), pages 36–43, Los Alamitos, CA, USA, May 2004.

[23] Thomas Clark and Tom Clark. IP SANS: An Introduction to iSCSI, iFCP, and FCIP Protocols

for Storage Area Networks. Addison-Wesley Professional, 2001.

[24] George P. Copeland, William Alexander, Ellen E. Boughter, and Tom W.Keller. Data place-

ment in Budda. In Proceedings of the 1988 ACM SIGMOD International Conference on Man-

agement of Data (SIGMOD’88), pages 99–108, June 1988.

[25] EMC corporation. EMC ControlCenter family of storage resource management (SRM).

http://www.emc.com/products/storage management/controlcenter.jsp.

[26] IBM Corporation. IBM TotalStorage. http://www-1.ibm.com/servers/storage.

[27] Storage Performance Council. SPC I/O traces. http://www.storageperformance.org/.

162

[28] Koustuv Dasgupta, Sugata Ghosal, Rohit Jain, Upendra Sharma, and Akshat Verma. QoSMig:

Adaptive rate-controlled migration of bulk data in storage systems. In Proceedings of IEEE

International Conference on Data Engineering 2005 (ICDE’05), pages 816–827, April 2005.

[29] Yixin Diao, Joseph L. Hellerstein, and Sujay Parekh. Self-managing systems: A control theory

foundation. In Proceedings of 12th IEEE International Conference and Workshops on the

Engineering of Computer-Based Systems, pages 441–448, April 2005.

[30] Ronald P. Doyle, Jeffrey S. Chase, Omer M. Asad, Wei Jin, and Amin M. Vahdat. Model-based

resource provisioning in a web service utility. In Proceedings of the USENIX Symposium on

Internet Technologies and Systems (USITS’03), March 2003.

[31] Paul Ferguson and Geoff Huston. Quality of Service: Delivering QoS on the Internet and in

Corporate Networks. John Wiley & Sons, Inc., January 1998.

[32] Gregory R. Ganger, John D. Strunk, and Andrew J. Klosterman. Self-* Storage: Brick-based

storage with automated administration. Technical Report CMU-CS-03-178, Carnegie Mellon

University, August 2003.

[33] Gregory R. Ganger, Bruce Worthington, and Yale Patt. The DiskSim simulation environment

version 1.0 reference manual. Technical Report CSE-TR-358-98, University of Michigan,

February 1998.

[34] Joseph S. Glider, Carlos F. Fuente, and William J. Scales. The software architecture of a SAN

storage control system. IBM System Journal, 42(2):232–249, 2003.

[35] Fred W. Glover, Manuel Laguna, and Rafael Marti. Scatter search, Advances in evolutionary

computing: theory and applications. Springer-Verlag New York, Inc., New York, NY, 2003.

[36] Gartner Group. Total Cost of Storage Ownership—A User-oriented Approach. Research note,

Gartner Group, February 2000.

[37] Michael Hawkins. Total Cost of Ownership: The driver for IT infrastructure management.

http://www.informit.com, June 2001.

163

[38] Francisco Hidrobo and Toni Cortes. Towards a zero-knowledge model for disk drives. In

Proceedings of the Fifth Annual International Workshop on Action Middleware Services

(AMS’03), pages 122–130, June 2003.

[39] Andy Hospodor. Mechanical access time calculation. Advances in Information Storage Sys-

tems, 6:313–336, 1995.

[40] Lan Huang, Gang Peng, and Tzi cker Chiueh. Multi-dimensional storage virtualization. SIG-

METRICS Performance Evaluation Review, 32(1):14–24, 2004.

[41] Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the Knapsack and sum

of subset problems. Journal of the ACM, 22(4):463–468, October 1975.

[42] IETF Policy Framework Working Group. IETF Policy Charter.

http://www.ietf.org/html.charters/policy-charter.html.

[43] Sun Microsystems Inc. NFS: Network File System Protocol Specification, 1989.

[44] Raj Jain. The Art of Computer System Performance Analysis. John Wiley & Sons, Inc.,

February 2001.

[45] Wei Jin, Jeffrey S. Chase, and Jasleen Kaur. Interposed proportional sharing for a storage

service utility. SIGMETRICS Performance Evaluation Review, 32(1):37–48, 2004.

[46] John F. Nash Jr. The bargaining problem. Econometrica, 18:155, 1950.

[47] Magnus Karlsson, Christos Karamanolis, and Xiaoyun Zhu. Triage: Performance isolation and

differentiation for storage systems. In Proceedings of the twelve th International Workshop on

Quality of Service, June 2004.

[48] Richard M. Karp. On-line algorithms versus off-line algorithms: How much is it worth to

know the future? Algorithms, Software, Architecture, Information Processing 92, 1:416–429,

1992.

[49] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems. Springer, August

2005.

164

[50] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,

220(4598):671–680, 1983.

[51] Edward K. Lee and Randy H. Katz. An analytic performance model of disk arrays. SIGMET-

RICS Performance Evaluation Review, 21(1):98–109, 1993.

[52] Thomas J. Linsmeier and Neil D. Pearson. Risk measurement: An introduction to value at

risk. In Finance 960906, Economics Working Paper Archive EconWPA, September 1996.

[53] Wei-Yin Loh. Regression trees with unbiased variable selection and interaction detection.

Statistica Sinica, 12:361–386, 2002.

[54] Chenyang Lu, Guillermo A. Alvarez, and John Wilkes. Aqueduct: online data migration

with performance guarantees. In Proceedings of Conference on File and Storage Technologies

(FAST’02), pages 175–188, January 2002.

[55] Christopher R. Lumb, Arif Merchant, and Guillermo A. Alvarez. Façade: virtual storage

devices with performance guarantees. In Proceedings of the second Conference on File and

Storage Technologies (FAST’03), pages 131–144, San Francisco, CA, April 2003.

[56] Geoffrey McLachlan and David Peel. Finite Mixture Models. Wiley-Interscience, October

2000.

[57] Daniel A. Menasce, Daniel Barbara, and Ronald Dodge. Preserving QoS of e-commerce

sites through self-tuning: a performance model approach. In Proceedings of the 3rd ACM

Conference on Electronic Commerce (EC’01), pages 224–234, Tampa, Florida, USA, October

2001.

[58] Arif Merchant and Philip S. Yu. An analytical model of reconstruction time in mirrored disks.

Performance Evaluation, 20(1-3):115–129, May 1994.

[59] Arif Merchant and Philip S. Yu. Analytic modeling of clustered RAID with mapping based on

nearly random permutation. IEEE Transactions on Computers, 45(3):367–373, March 1996.

[60] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.

165

[61] Robert J.T. Morris and Brian J. Truskowski. The evolution of storage systems. IBM Systems

Journal, 42:205–217, 2003.

[62] Walter C. Oney. Queueing analysis of the scan policy for moving-head disks. Journal of the

ACM, 22(3):397–412, July 1975.

[63] Kihong Park, Gitae Kim, and Mark E. Crovella. On the effect of traffic self-similarity on

network performance. In Proceedings of SPIE International Conference on Performance and

Control of Network Systems, Dollas, TX, November 1997.

[64] Vern Paxson and Sally Floyd. Wide-area traffic: The failure of Poisson modeling. IEEE/ACM

Transaction on Networking, 3(3):226–244, June 1995.

[65] David Pisinger. A minimal algorithm for the 0-1 Knapsack problem. Journal of Operations

Research, 45:758–767, 1997.

[66] Kristal Pollack and Sandeep Uttamchandani. Genesis: A scalable self-evolving root-cause

analysis framework for storage systems. In Proceedings of the 26th International conference

on distributed computing systems (ICDCS’06), page 33, Los Alamitos, CA, USA, July 2006.

[67] John G. Proakis and Dimitris G. Mandalokis. Digital Signal Processing Principles, Algorithms

and Applications. Prentice Hall, 1996.

[68] Chris Ruemmler and John Wilkes. A trace-driven analysis of disk working set sizes. Technical

Report HPL-OSR-93-23, HP Laboratories, Palo Alto, CA, USA, April 1993.

[69] Chris Ruemmler and John Wilkes. An introduction to disk drive modeling. Computer,

27(3):17–28, 1994.

[70] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,

2003.

[71] Peter Scheduermann, Gerhard Weikum, and Peter Zabback. Adaptive load balancing in disk

arrays. In Proceedings of the 4th International Conference on Foundations of Data Organiza-

tion and Algorithms (FODO’93), pages 345–360, October 1993.

166

[72] Jiri Schindler and Gregory Ganger. Automated disk drive characterization. Technical Report

CMU-CS-99-176, Carnegie Mellon University, December 1999.

[73] Frank Schmuck and Roger Haskin. GPFS: A shared disk file system for large computing

clusters. In Proceedings of Conference on File and Storage Technologies (FAST’02), pages

231–244, Monterey, CA, January 2002.

[74] Elizabeth Shriver, Arif Merchant, and John Wilkes. An analytic behavior model for disk drives

with readahead caches and request reordering. In Proceedings of the 1998 ACM SIGMETRICS

joint International Conference on Measurement and Modeling of Computer Systems, pages

182–191, Madison, Wisconsin, USA, June 1998. ACM Press.

[75] Wolfgang Singer. NAS and iSCSI technology overview. http://www.snia.org/education/

tutorials/2006/spring/storage/NAS and iSCSI Technology Overview.pdf.

[76] BMC Software. PATROL for storage networking. http://www.bmc.com/products/

proddocview/0,2832,19052 19429 3786404 9689,00.html.

[77] Jon A. Solworth and Cyril U. Orji. Write-only disk caches. SIGMOD Record, 19(2):123–132,

1990.

[78] Charles J. Stone. A Course in Probability and Statistics. Duxbury Press, 1996.

[79] Storage Networking Industry Association. SMI Specification version 1.0. http://www.snia.org,

2003.

[80] John D. Strunk and Gregory R. Ganger. A human organization analogy for Self-* systems. In

Proceedings of the first workshop on Algorithms and Architectures for Self-Managing Systems,

June 2003.

[81] David G. Sullivan and Margo Seltzer. Isolation with flexibility: A resource management

framework for central servers. In Proceedings of 2000 USENIX Technical Conference

(USENIX’00), pages 337–350, San Diego, CA, June 2000.

[82] David G. Sullivan, Margo I. Seltzer, and Avi Pfeffer. Using probabilistic reasoning to automate

software tuning. SIGMETRICS Performance Evaluation Review, 32(1):404–405, 2004.

167

[83] Toby J. Teorey and Tad B. Pinkerton. A comparative analysis of disk scheduling policies.

Communications of the ACM, 15(3):177–184, 1972.

[84] Nancy Tran and Daniel A. Reed. ARIMA time series modeling and forecasting for adaptive

I/O prefetching. In Proceedings of the 15th International Conference on Supercomputing,

pages 473–485, Sorrento, Italy, 2001. ACM Press.

[85] Sandeep Uttamchandani, Kaladhar Voruganti, Sudrashan Srinivasan, John Palmer, and David

Pease. Polus: Growing storage QoS management beyond a 4-year old kid. In Proceedings of

3rd File and Storage Technologies (FAST’04), pages 31–44, San Francisco, CA, March 2004.

[86] Mustafa Uysal, Guillermo A. Alvarez, and Arif Merchant. A modular, analytical throughput

model for modern disk arrays. In Proceedings of the ninth International Symposium in Mod-

eling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS’01),

pages 183–192, August 2001.

[87] Dinesh C. Verma. Simplifying network administration using policy based management. IEEE

Network Magazine, 16(2):20–26, March 2002.

[88] Dinesh C. Verma and Seraphin Calo. Goal Oriented Policy Determination. In Proceedings of

the 1st Workshop on Algorithms and Architectures for Self-Managing System, pages 1–6, June

2003.

[89] Mengzhi Wang, Kinman Au, Anastassia Ailamaki, Anthony Brockwell, Christos Faloutsos,

and Gregory R. Ganger. Storage device performance prediction with CART models. SIG-

METRICS Performance Evaluation Review, 32(1):412–413, 2004.

[90] Gerhard Weikum, Axel Moenkeberg, Christof Hasse, and Peter Zabback. Self-tuning database

technology and information services: From wishful thinking to viable engineering. In Pro-

ceedings of the 28th Conference on Very Large Data Base Conference (VLDB’02), August

2002.

[91] John Wikes. Data services - from data to containers. Keynote address at File and Storage

Technologies (FAST’03), March 2003.

168

[92] Neil C. Wilhelm. An anomaly in disk scheduling: a comparison of FCFS and SSTF seek

scheduling using an empirical model for disk accesses. Communication of the ACM, 19(1):13–

17, 1976.

[93] John Wilkes. The pantheon storage-system simulator. Technical Report HPL-SSP-95-14, HP

Laboratories, December 1995.

[94] Philip S. Yu and Arif Merchant. Analytic modeling and comparisons of striping strategies for

replicated disk arrays. IEEE Transactions on Computers, 44(3):419–433, 1995.

169

