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Abstract

Replay Debugging for Distributed Applications

by

Dennis Michael Geels

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ion Stoica, Chair

Researchers in networks and computer systems have developed exciting new dis-

tributed applications in recent years; however, adoption of real-world prototypes has

been slow. The development of stable, usable services has been hindered by the

tremendous effort required to debug distributed applications that are deployed across

the Internet. We believe that more powerful debugging tools are needed to address

this problem. This dissertation presents the progress we have made on this front, in

the form of two new tools, Liblog and Friday.

The first, Liblog, is a replay debugging library for libc- and POSIX-based dis-

tributed applications. It logs the execution of deployed application processes and re-

plays them deterministically, faithfully reproducing race conditions and non-deterministic

failures, enabling careful offline analysis.

To our knowledge, Liblog is the first replay tool to address the requirements of

large distributed systems: lightweight support for long-running programs, consistent

replay of arbitrary subsets of application nodes, and operation in a mixed environ-

ment of logging and non-logging processes. In addition, it runs on generic Linux/x86

computers without special hardware or kernel patches and supports unmodified ap-

plication executables.

The second tool, Friday, combines the deterministic replay provided by Liblog

with the power of symbolic, low-level debugging and a simple language for expressing

higher-level distributed conditions and actions. Friday allows the programmer to
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understand the collective state and dynamics of a distributed collection of coordinated

application components, as part of the debugging process.

This dissertation presents the design of Liblog and Friday, an evaluation of the

performance overhead that they impose at runtime, and a set of case studies that

illustrate the new functionality enabled for real distributed applications.

Professor Ion Stoica
Dissertation Committee Chair
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Chapter 1

Introduction

Over the past few years, research has produced new algorithms for routing over-

lays, query processing engines, byzantine fault-tolerant replication, and distributed

hash tables. Popular software like peer-to-peer file sharing applications suggests that

interest in distributed applications is not restricted to academic circles.

But debugging is hard. Debugging distributed applications is harder still, and de-

bugging distributed applications deployed across the Internet is downright daunting.

We believe that the development of new services has been held back by this difficulty

and that more powerful debugging tools are needed.

1.1 Step One: Liblog

A distributed application is a collection of processes running on machines spread

across a network (for our purposes, the Internet). The individual processes may

be analyzed independently, and debugging existing tools can catch common “local”

errors such as unsafe memory accesses and thread synchronization errors. Unfortu-

nately, these tools do not address the new problems that arise when the processes are

composed across an unpredictable and lossy network. Races between network mes-

sages produce non-deterministic behaviour. Message delay and failure ensure that

the aggregate application state is only rarely globally consistent.

Simulation and small-scale test deployments help developers evaluate aggregate
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system behaviour in a relatively easy environment. With a simulator, the developer

has full power to repeat the same execution across multiple experiments, and the

state of each application process is available locally for examination. Test deployments

complement simulation by adding more realistic network and host machine behaviour.

Using local clusters and small, or even emulated, networks, developers may carefully

control the degree of realism exposed to their applications.

However, once deployed, distributed applications will reach states that were not

tested, and the underlying network will fail in ways that the developer did not antic-

ipate. Long-running services are particularly prone to the slow-developing and non-

deterministic, low-probability faults that resist detection during the testing phase.

And once the application is deployed, race conditions and internal state are diffi-

cult to observe. Developers rely on application-level logging and printf statements,

but these techniques only help if the developer chooses to expose the affected inter-

nal state before the fault manifests. These types of bugs are generally impossible to

reproduce locally, where analysis would be simpler. This limited visibility is the core

problem for debugging distributed applications. We have developed a new debugging

tool, Liblog, to address it.

1.1.1 Requirements

We designed this tool to help fix non-deterministic failures in deployed, distributed

applications. This goal imposed several requirements on our design.

Deterministic Replay: First and foremost, deployed applications need logging and

replay. Normal debuggers monitor an application’s execution synchronously, so that

the process can be paused immediately when a failure, signal, or breakpoint occurs.

This approach is infeasible for real, deployed systems for three reasons. First, the la-

tency of a synchronous connection to a remote debugger would significantly slow down

the application. Second, pausing the process (or processes, if the developer wished to

look at global state) at breakpoints would be unacceptable for real, deployed services,

which interact continuously with peer services and clients. Third, real networks are
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not stable enough to maintain a persistent connection to each process.

Thus debugging must be asynchronous. Each process records its execution to a

local log, with sufficient detail such that the same execution can be replayed later.

We should follow the same code paths during replay, see the file and network I/O,

and even reproduce signals and other IPC. The replay could run in parallel with the

original execution, after the original process dies, or even on a completely different

machine.

Continuous Logging: In order to record the manifestation of slow-developing and

non-deterministic, low-probability faults, the logging infrastructure must remain ac-

tive at all times. We must operate under the assumption that more bugs are always

waiting. Also, any slight perturbations in application behaviour imposed by the de-

bugger becomes the “normal” behaviour. Removing it then would be a perturbation

that might activate so-called “heisenbugs”: bugs that behave differently or disappear

under observation.

If the debugging system required significant resources, the cost in performance

(or faster hardware) might be prohibitive. Fortunately, many types of distributed

applications consume relatively few local resources themselves. Whereas network

bandwidth and latency might be precious, we often have extra CPU cycles and disk

space to accommodate our logging tools. In particular, if we confine ourselves to a

small processing budget, the network will remain the performance bottleneck, and

the application will exhibit little slowdown.

Consistent Group Replay: We are particularly interested in finding distributed

bugs, such as race conditions and incorrect state propagation. This kind of error may

be difficult or impossible to detect from the state of any one process. For example,

transient routing loops are only visible when the aggregate state of multiple routers

is considered.

So we must be able to see snapshots of the state across multiple processes and to

trace message propagation from machine to machine. Naturally, true snapshots are

impossible without synchronized clocks (cf. [Lam78]), but we can require that each
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machine is replayed to a consistent point, where no message is received before it has

been sent.

Mixed environment: Most applications will not run our software, particularly

client software and supporting services like DNS. This fact becomes a problem if

we require coordination from communication peers during logging or replay, as we

generally must in order to satisfy the previous requirement (consistent replay). Since

we do not operate in a closed system, our tools must understand the difference between

cooperating and non-cooperating peers and treat each appropriately.

1.2 A Need for Distributed Comprehension

Correct operation of a distributed application is frequently a function not only

of single-component behaviour, but also of the global collection of states of multiple

components. For instance, in a message routing application, individual routing ta-

bles may appear correct while the system as a whole exhibits routing cycles, flaps,

wormholes or other inconsistencies.

To face this difficulty, ideally a programmer would be able to debug the whole

application, inspecting the state of any component at any point during a debugging

execution, or even creating custom invariant checkers on global predicates that can

be globally evaluated continuously as the system runs. In the routing application

example, a programmer would be able to program her debugger to check continuously

that no routing cycles exist across the running state of the entire distributed system,

with the same ease as we read the current state of program variables in typical

symbolic debuggers.

Friday, the second system we present in this dissertation, is a first step towards

realizing this vision. Friday builds upon Liblog, which can capture the distributed

execution of an application and replay the captured execution trace within a symbolic

debugger in a single location. But simple replay does not supply the global view of

the system required to diagnose emergent misbehaviour of the application as a whole.

For this distributed comprehension, Friday extends the debugger’s programmability
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for complex predicates that involve the whole state of the replayed system.

Friday combines the flexibility of symbolic debuggers on each replayed node with

the power of a general-purpose, embedded scripting language. Bridging the two al-

lows a single global invariant checker script to monitor and control the global exe-

cution of multiple, distinct replayed components. To our knowledge, this is the first

replay-based debugging system for unmodified distributed applications that can track

arbitrary global invariants at the fine granularity of source symbols.

1.3 Contributions

The first contribution of our work is the design and evaluation of a debugging

tool, Liblog, that satisfies each of the requirements listed in section 1.1.1. Previous

projects have developed logging and replay tools that focus on either low overhead

or providing consistent replay, but we have addressed both. Furthermore, to the

best of our knowledge, Liblog is the first tool that (1) provides consistent replay in a

mixed environment, or (2) allows consistent replay for arbitrary subsets of application

processes.

In addition, Liblog requires neither special hardware support nor patches to priv-

ileged system software. Also, it operates on unmodified C/C++ application binaries

at runtime, without source code annotations or special compilation tools. Multi-

threading, shared memory, signals, and file and network I/O all work transparently.

Finally, we designed Liblog to be simple to use. Logging only requires running

our start-up script on each machine. Our replay tools make debugging as easy as

using a symbolic debugger with local applications: they automate log collection,

export the traditional debugger interface to the programmer, and even extend that

interface to support consistent replay of multiple processes and tracking messages

across machines.

Friday incorporates two additional contributions. First, it provides primitives

for detecting events in the replayed system based on data (watchpoints) or control

flow (breakpoints). These watchpoints and breakpoints are distributed, coordinating

detection across all nodes in the replayed system, while presenting the abstraction of
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operating on the global state of the application.

Second, Friday enables users to attach arbitrary commands to distributed watch-

points and breakpoints. Friday gives these commands access to all application state

as well as a persistent, shared store for saving debugging statistics, building be-

havioural models, or shadowing global state.

We have built an instance of Friday for the popular Gnu Project Debugger [GDB],

using Python as the script language, though our techniques are equally applicable to

other symbolic debuggers and interpreted scripting languages.

1.4 Are Liblog and Friday Right For You?

Many distributed applications can benefit from Friday’s functionality, including

both fully distributed systems (e.g., overlays, protocols for replicated state machines)

and centrally managed distributed systems (e.g., load balancers, cluster managers,

centralized resource managers, grid job schedulers). Using Friday’s facilities, devel-

opers can evaluate global conditions during replay to validate a particular execution

for correctness, to debug distributed problems, to catch inconsistencies between a

central management component and the actual state of the distributed managed

components, and to express and iterate behavioural regression tests. For example,

in implementing an IP routing protocol that drops an unusual number of packets,

a developer might hypothesize that the cause is a routing cycle, and use Friday to

verify cycle existence. If the hypothesis is true, the developer can further use Friday

to capture cycle dynamics (e.g., are they transient or long-lasting?), identify the likely

events that cause them (e.g., router failures, processor overload, congestion on the

control plane), and finally identify the root cause by performing step-by-step debug-

ging and analysis on a few instances involving such events, all the time without the

need for recompilation or annotation of source code.

However, Friday does not come without limitations. First, Friday inherits several

limitations of Liblog, such as large storage requirements for logs and an inability to

execute threads in parallel on multi-processor or multi-core machines.

We designed Liblog with lightweight distributed applications like routing overlays
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in mind. We assume that the host machines have spare resources–specifically CPU,

memory, network, and disk–that we can apply to our debugging efforts.

Although it can correctly log and replay general C/C++ applications, the run-

time overhead imposed could outweigh the benefits for resource-intensive systems

like streaming video servers or heavily multi-threaded databases. We quantify this

overhead in Section 3.3.
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Chapter 2

Background

Before we dive into the details of our new debugging tools, we present an overview

of previous research in the area, in order to develop context for our own design

decisions.

2.1 Deterministic Replay

Deterministic replay has been a reasonably active research subject for over two

decades. Most of this work centered on efficient logging for multiprocessors and

distributed shared memory computers; for an overview of the field we recommend an

early survey by Dionne et al [DFD96] and later ones by Huselius [Hus02] and Cornelis

et al [CGC+03].

None of these previous projects focused on deployed, distributed applications or

addressed the technical challenges raised by that set of requirements. In particular,

our support of consistent group replay in a mixed environment is unique, and we are

the first to support multi-threaded applications without kernel support.

On the other hand, the core techniques of logging and replay have been explored

thoroughly, and we borrowed or reinvented much from earlier projects. Specifically,

Lamport clocks [Lam78] have been used for consistent replay of MPI [RBdK99] and

distributed shared memory [RZ97]. Replaying context switches to enforce determin-

istic replay in multi-threaded apps was based on DejaVu [KSC00], which built the
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technique into a Java Virtual Machine. Finally, some projects have integrated GDB

and extended its interface to include replay commands [SKAZ04,KDC05], but only

Liblog seamlessly provides consistent replay across multiple processes.

Our library-based implementation most closely resembles Jockey [Sai05]; they also

have simple binary-rewriting functionality to detect use of non-deterministic appli-

cations. Flashback [SKAZ04] also has many similarities, but they chose to modify

the host OS. Their modifications enable very efficient checkpoints and (potentially)

simplified thread support. We chose instead to implement all of Liblog at user level

in order to maximize its portability and to lower barriers to use on shared infrastruc-

ture. Also, our support for multiple threads, migratable checkpoints, and consistent

replay across machines makes Liblog more appropriate for distributed applications.

Much research has also been devoted to replay debugging via virtualization, which

can capture system effects below the system library level. Harris first made the case

for pervasive, distributed debugging [Har02] through virtualization. Several projects

have pursued that agenda since [SKAZ04, KDC05, JKDC05], albeit only for single-

thread, single-process, or single-machine applications. Furthermore, symbolic debug-

ging in such systems faces greater challenges than with Friday, since the “semantic

gap” between application-defined symbols and the virtual machine interface must be

bridged at some computational and complexity cost.

The DejaVu project [KSC00] shared our goal of replaying distributed applications.

Like Liblog, they support multi-threaded applications and consistently replay socket-

based network communication. Unlike Liblog, they targeted Java applications and

built a modified Java Virtual Machine. Thus they addressed a very different set of

implementation challenges. Also, they do not support consistent replay in a mixed

environment, although they do sketch out a potential solution.

2.2 Log-based Debugging Without Replay

Moving away from replay debugging, many systems focus on extracting execution

logs and then mining those logs for debugging purposes [Sno88, WSY91, AMW+03,

BDIM04,CECZ05,CAK+04,HM93]. Such systems face the challenge of reconstruct-
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ing meaningful data- and control-flow from low-level logged monitoring information.

Liblog circumvents this challenge, since it can fully inspect the internal state of the

nodes in the system during a replay of the traced execution and, as a result, need

not guess causality (as with black-box approaches) or recompile the system (as with

annotation-based systems).

Notable logging-based work in closer alignment with Liblog comes from the Bi-

directional, Distributed BackTracker (BDB) [KMLC05] and Pip [RWM+06]. BDB

tracks and logs causality among events within a distributed system. These logs allow

tracing identified back-door programs backwards to the events that enabled them or

forwards to their further implications. Most of the causality tracing rules used by BDB

can be implemented using Liblog, except for those relying on kernel-level interactions,

which lie beyond our library tracing granularity. However, a bidirectional distributed

backtracker implemented with Liblog may be able to take advantage of successive

replays to refine causality tracking for BDB rules that are inherently “noisy,” e.g.,

directory listing filesystem operations.

Pip [RWM+06] works by comparing actual behaviour and expected behaviour to

expose bugs. Such behaviours are defined as orderings of logged operations at partici-

pating threads and limits on the values of annotated and logged performance metrics.

They can be extracted automatically from the logs, or specified by the programmer

and matched against the logs. Unlike Pip, Friday does not learn behaviours from

a running system and has a much cruder, textual interface. However, Friday of-

fers programmers greater flexibility in describing and capturing system behaviours

for two reasons. First, it applies not only to manually annotated events but to any

source symbol—without need for manual instrumentation; this means that behaviour

exploration on a trace can be refined, redefined, and extended without the need to

collect new traces that include new metrics or new events logged. Second, Friday can

encode dynamic behaviours that go beyond pattern matching against logs. Such are

the parametrized link symmetry checks of Section 4.2.1, where the identities of the

pairs of processes that must satisfy the symmetry pattern are unknown until runtime

and change as the system evolves.
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2.3 Off-line vs. On-line

Most distributed debuggers in the literature, like Friday, are off-line: they per-

form their operations on logs or traces that have been collected during an execution

of the system. In contrast, the P2 debugger [SMRD06] operates on the P2 [LCH+05]

system for the high-level specification and implementation of distributed systems.

Like Friday, this debugger allows programmers to express distributed invariants in

the same terms as the running system, albeit at a much higher-level of abstraction

than Friday’s libc-level granularity. Unlike Friday, P2 targets on-line invariant

checking, not replay execution. As a result, though the P2 debugger can operate in a

completely distributed fashion and without need for log back-hauling, it can primar-

ily check invariants that have efficient on-line, distributed implementations. Friday,

however, can check expensive invariants such as the existence of disjoint paths, since

it has the luxury of operating outside the normal execution of the system.

Further afield, many distributed monitoring systems can perform debugging func-

tions, typically with a statistical bend [vRBDV02, YD04, BAS04]. Such systems

employ distributed data organization and indexing to perform efficient distributed

queries on the running system state, but do not capture control path information

equivalent to that captured by Friday.
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Chapter 3

Liblog

We built Liblog by combining existing technology in new ways and extending the

state of the art as necessary. In the following sections, we will present an overview of

the resulting design (Section 3.1) and then explain in more detail the new technical

challenges that arose, along with our solutions (Section 3.2).

3.1 Design

In this section we present an overview of Liblog’s design, highlighting the deci-

sions that we made in order to satisfy the requirements listed above.

3.1.1 Shared Library Implementation

The core of our debugging tool is a shared library (the eponym liblog), which

intercepts calls to libc (e.g., select, gettimeofday) and logs their results. Our

start-up scripts use the LD PRELOAD linker variable to interpose liblog between libc

and the application and its other libraries (see Figure 3.1). Liblog runs on Linux/x86

computers and supports POSIX C/C++ applications.

We chose to build a library-based tool because operating in the application’s ad-

dress space is efficient. Neither extra context switches nor virtualization layers are

required. Alternative methods like special logging hardware [NM92,XBH03,NPC05]
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Figure 3.1: Logging: liblog intercepts calls to libc and sends results to logger process.
The latter asynchronously compresses and writes the logs to local storage.

or kernel modifications [TH00,SKAZ04] can be even faster, but we found these solu-

tions too restrictive for a tool that we hope to be widely adopted and deployed.

Another promising alternative is to run applications on a virtual machine and

then to log the entire VM [KDC05,SH,HH05]. We rejected it because we believe that

VM technology is still too difficult to deploy and too slow for most deployed services.

On the other hand, there are serious drawbacks of a library implementation. First,

several aspects of observing and controlling applications are more difficult from within

the address space, most notably supporting multiple threads and shared memory. We

will discuss these challenges in Section 3.2.

Fundamentally, however, operating in the application’s address space is neither

complete (we cannot replay all non-determinism) nor sound (internal state may be-

come corrupted, causing mistakes). We will discuss such limitations in Section 3.3.

Nevertheless we believe that the combined efficiency and ease of use of a library-

based logging tool makes this solution the most useful.

3.1.2 Message Tagging and Capture

The second defining aspect of our logging tool is our approach to replaying network

communication. We log the contents of all incoming messages so that the receiving

process can be replayed independently of the sender.

This flexibility comes at the cost of significant log space (cf. Section 3.4) but is
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well justified. Previous projects have tried the alternative, replaying all processes and

regenerating message contents on the sender. We cannot do so because we operate in

a mixed environment with non-logging processes. Even cooperating application logs

may be unavailable for replay due to intervening disk or network failure.

So far we satisfy one requirement, but we must be able to coordinate these individ-

ual replays in order to provide another, Consistent Group Replay. For this purpose,

we embed 8-byte Lamport clocks [Lam78] in all outgoing messages during execution

and then use these virtual clocks to schedule replay. The clock update algorithm en-

sures that the timestamps in each log entry respect the “happens-before” relationship.

They also provide a convenient way to correlate message transmission and reception

events, so we can trace communication from machine to machine.

To make the virtual clocks more intuitive, we advance them at the rate of the

local machine clock. If the machine clocks happen to be synchronized to within one

network RTT, the virtual clocks will match exactly.

3.1.3 Central Replay

Our third major design decision was to enable off-site replay. Rather than restart

each process in situ, a central console automatically downloads the necessary logs

and checkpoints and instantiates each replay process locally. Local replay removes

the network delay from the control loop, making it feasible to operate on distributed

state and to step across processes to follow messages.

The costs are several: first, the network bandwidth consumed by transferring logs

may exceed that required to control a remote debugger. Second, the hardware and

system software on the replay machine must match the original host; currently we

support only GNU/Linux/x86 hosts. Third, we must log data read from the local

file system (as with network messages) because the files may not be available on the

replay machine. This technique also obviates maintaining a versioned file system

or undoing file modifications. Finally, building a migratable checkpoint system is

challenging. We consider the first two costs to be acceptable and will discuss our

solution to the last challenge in Section 3.2.6.
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3.2 Challenges and Solutions

In this section we will discuss the technical challenges we faced when building

our logging and replay system. Most are new problems caused by our user-level

implementation and/or message annotations; previous projects did not address them

because their focus allowed for different design choices.

3.2.1 Signals and Thread Replay in Userland

As we noted earlier, logging and replaying applications at the libc level assumes

that they only interact with their environment through that interface and that, out-

side of libc calls, the application execution is deterministic. This assumption fails

when multiple threads execute concurrently on the same address space. The value

read from a shared variable depends on the order in which competing threads modify

it; every write could be a race condition. The same problem arises when multiple pro-

cesses share memory segments or when signal handlers (effectively another thread)

access global variables.

To make replay deterministic in these cases, we must either intercept and replay

the value of each read from shared memory, or we must replay each read and write

in the same order, so races resolve identically. The former option is too invasive and

requires log bandwidth proportional to the memory access stream. The latter is still

expensive, but the cost can be reduced significantly by logging only the order and

timing of thread context switches. If we assume a single processor, or artificially

serialize thread operation, then identical thread schedules produce identical memory

access patterns.

The challenge in our case was to record and replay thread schedules using only

our user-level shared library. The task is relatively simple for kernel- or VM-based

tools, but user-level libraries generally have no ability even to observe context switches

among kernel threads, much less control them. We believe that Liblog is the first to

address the problem.

Our solution effectively imposes a user-level cooperative scheduler on top of the OS
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scheduler. We use a pthread mutex to block all but one thread at a time, ignoring

conflicting context switches by the kernel. The active thread only surrenders the

lock at libc call points, as part of our logging wrapper, and the next active thread

logs the context switch before continuing. Processes that share memory are handled

identically. Similarly, signals are queued and delivered at the next libc call.

Restricting context switches to our wrapper functions provides a convenient point

to repeat the switches during replay, but the change to thread semantics is not fully

transparent. In particular, we cannot support applications that intentionally use tight

infinite loops, perhaps as part of a home-grown spin lock, because other threads will

not have any opportunity to acquire our scheduling lock. Delaying signals may affect

applications more, although we note that the kernel already tries to perform context

switches and to deliver signals at syscall boundaries. We believe that the impact

of our solution is negligible in most cases, but we have not quantified the degree to

which the schedule that we impose differs from a normal one.

3.2.2 Unsafe Memory Access

Another potential source of non-determinism arises when an application reads

from uninitialized (but allocated) heap memory or beyond the end of the stack. The

contents of these memory regions are not well defined for C applications, and in

practice they change between execution and replay. One could argue that accessing

these regions could be considered incorrect behaviour, but it is legal, reasonably safe,

and present even in robust software like OpenSSL [SSL].

Much of the change in memory between logging and replay is due to the logging

tool itself, which calls different functions during replay, leaving different stack frames

and allocating different memory on the heap. One can significantly minimize the

tool’s memory footprint, as stressed in Jockey [Sai05], but it can never be completely

eliminated by a library-based debugging tool. Internal memory use by libc will

always differ because its calls are elided during replay, so malloc may return different

memory to the application.

Our solution is simpler: we merely zero-fill all memory returned by malloc (effec-



17

tively replacing it with calloc) as well as stack frames used by our libc wrappers.

Thus, uninitialized reads replay deterministically, even if malloc returns a different

region. This solution still fails if the application depends on the actual address, for

example, as a key for a hash table.

Also, it is very difficult to protect a library-based tool from corruption by stray

memory writes into the tool’s heap. A virtual machine-based alternative would avoid

this problem. Also, one could imagine disabling write access to the Liblog’s memory

each time control returns to the application. Instead, we rely on dedicated memory-

profiling tools like Purify [Pur] and Valgind [Val] to catch these various memory

errors, so that we can focus on efficient logging.

3.2.3 Consistent Replay for TCP

As described in Section 3.1.2, we annotate all network messages between applica-

tion processes with Lamport clocks so that we can replay communicating peers con-

sistently. For datagram protocols like UDP, we use simple encapsulation: we prepend

a few bytes to each packet, and remove them on reception. We pass a scatter/gather

array to sendmsg to avoid extra copies.

Annotating byte streams like TCP is more complicated, because timestamps must

be added throughout the stream, at the boundary of each sent data chunk. But the

receiver need not consume bytes in the same batches; it often will read all available

data, be it more or less than the contents of a single send payload.

Our solution is a small (3-state) state machine for each incoming TCP connections

(see Figure 3.2). Once the stream has been verified as containing annotations, the

state machine alternates reading annotations and reading application data until the

calling function has enough data or the socket is drained. Each state transition

requires a separate call to read the underlying stream; we cannot simply read extra

bytes and extract the annotations, because we cannot anticipate how far to read. We

do not know the frequency of future annotations, and attempting to read more data

than necessary may cause the application to block needlessly. It is always possible

that more bytes will not arrive.
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Figure 3.2: Receiving Annotated TCP: Detecting and extracting Lamport clocks from
incoming byte streams requires additional bookkeeping.

If multiple annotations are consumed by a single read call, we log the most recent

timestamp, as it supersedes the others. Naturally, we remember the stream state

between calls so that we may continue even if the last read attempt ended in the

middle of an annotation.

3.2.4 Finding Peers in a Mixed Environment

Embedding annotations in messages also complicates interaction with non-logging

processes such as third-party clients, DNS and database servers, or, if Liblog is only

partially deployed, even fellow application processes. These non-loggers do not expect

the annotations and would reject or (worse yet) misinterpret the message. We believe

that this problem is the reason that no previous logging tool has supported consistent

replay in a mixed environment.

We must either send annotations that will be safely ignored by non-logging pro-

cesses or discover whether a remote peer expects annotations and omit them when

appropriate. The former option could be implemented using either IP options1 or the

out-of-band (OOB) channel for TCP connections, but either method would conflict

with networks that already used these paths. Also, we have seen evidence that adding

IP options has a negative impact on application traffic, and OOB does not help UDP

traffic (nor incompatible TCP implementations).

We opted for a safer, but slower, solution. The logger on each machine tracks

1See RFC 791
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the local ports opened by logging processes and listens on a globally well-known port

(currently 5485). This approach fails to fully support applications hidden behind

NAT-enabled firewalls, but it could easily replaced by a more sophisticated discovery

mechanism. Each Liblog-enabled process then queries the remote logger (via TCP)

before sending the first datagram or opening a TCP connection. The query contains

the destination port and protocol of interest and asks whether that port is currently

assigned to a logging process.

If the application receives a negative reply, or none at all, that packet flow will

not be annotated. Replies are cached for the duration of a stream, or 30 seconds

for datagram sockets, to amortize the query latency overhead. Currently, we wait a

maximum of 2 seconds for a query, but that maximum is only reached if the remote

machine has no logger and does not reset our TCP request. But this case does hap-

pen frequently for firewall-protected machines, so we cache information on dropped

queries for up to 5 minutes.

3.2.5 Replaying Multiple Processes

The real power of replay debugging depends on the ability to set breakpoints, to

pause execution, and to observe internal application state, just as one can in normal

symbolic debuggers. Rather than develop new technology with its own interface, we

decided to adapt the GNU Project Debugger [GDB]. GDB provides a powerful and

familiar interface for controlling application execution and accessing internal state by

symbolic names.

Unfortunately, GDB, like many debuggers, can only control a single process. Re-

playing multiple processes, or even children created with fork, requires multiple in-

stances of the debugger. Our challenge was to coordinate them, multiplexing their

input and output to the programmer and scheduling the application execution so that

replay is consistent.

We use a two-tiered approach to controlling the replay processes. Threads within

a process group are multiplexed by the same scheduling locks used during logging

(cf. Section 3.2.1), always choosing the next thread based on the schedule stored in



20

the log. These locks also block a newly fork-ed process until we attach a new GDB

instance to it.

Across process groups, consistent replay is enforced by our replay console, a small

Python [Py] application. For each application process, the console uses GDB to set

breakpoints in key libreplay functions. These pause execution at each libc call,

allowing us to schedule the next process or to download the next set of logs.

The replay console provides a single interface to the programmer, passing com-

mands through to GDB and adding syntax for broadcasting commands to multiple

processes. It also allows advanced programmability by interacting directly with the

underlying Python interpreter.

3.2.6 Migratable Checkpoints

Replaying application processes centrally, offline, makes the debugger more re-

sponsive and makes it feasible to operate on distributed application state. But restart-

ing processes on a new machine is tricky. The two main challenges are first, to copy

the state of the original application into a live process on the new machine, and

second, to reconcile this new process with the debugger (GDB).

Our checkpoint mechanism is based on the ckpt [Ckp] library from the University

of Wisconsin. This library reads the /proc/ filesystem to build a list of allocated

memory regions for the application and then writes all such memory to a checkpoint

file. For replay, a small bootstrap application reads that file and overwrites its own

memory contents, adjusting memory allocations as necessary.

First we extended ckpt to handle the kernel-level thread state for multi-threaded

applications, which was simplified by our user-level scheduler. A thread saves its state

before relinquishing the CPU, so at any time we have the state of all inactive threads

stored in our tables.

Next we added support for shared memory regions: each process in a group check-

points its private memory, and one “master” process writes and restores the shared

memory for everyone.

Integrating checkpoint support to GDB required additional work. Starting the
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process within GDB is problematic because the symbol tables of the bootstrap pro-

gram and the restored application do not generally agree, or even necessarily overlap,

and GDB does not support symbol tables moving during runtime. Even if we use the

original application to bootstrap the process, GDB becomes confused when shared

libraries are restored at new locations.

To solve this problem, we added a new method for finding the in-memory symbol

table of a running application (by reading the r debug.r brk field), ignoring the

conflicting information from the local executable file. It is then sufficient to attach

to the restored application and to invoke this new symbol discovery method.

Our modifications required adding approximately 50 lines of code, including com-

ments, to one source file in GDB. Most of those lines comprise the new function for

locating the symbol table.

3.3 Limitations

There are several limitations to our debugging tool, both fundamental and mun-

dane.

Log storage The biggest reason for a developer to not use Liblog with an appli-

cation is the large amount of log data that must be written to local disk. Log storage

is a fundamental problem for any deterministic replay system, but our approach to

handling I/O (cf. Section 3.1) renders Liblog infeasible for high-throughput appli-

cations. Every Megabyte read from the network or disk must be logged (compressed)

to the local disk, consuming space and disk bandwidth. This approach is accept-

able for relatively lightweight applications like routing overlays, consuming only a

few megabytes per hour, but is probably unrealistic for streaming video or database

applications. We will quantify the problem in Section 3.4.

Host requirements Our basic logging strategy only addresses POSIX applications

and operating systems that support run-time library interposition. In practice, our OS

options are restricted even further, to recent Linux/x86 kernels (2.6.10+) and GNU
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system software (only libc 2.3.5 has been tested). These limitations are imposed by

our borrowed checkpointing code and compatibility issues with our modified version

of GDB.

Scheduling semantics As explained in Section 3.2.1, Liblog’s user-level scheduler

only permits signal delivery and context switches at libc function calls. The OS

generally tries to do the same, so most applications will not notice a significant

difference.

However, we are assuming that applications make these calls fairly regularly. If

one thread enters a long computation period, or a home-grown spin lock implemented

with an infinite loop, Liblog will never force that thread to surrender the lock, and

signals will never be delivered. We have designed a solution to this problem, but

implementation remains future work.

Network overhead Our network annotations consume approximately 16 bytes per

message, which may be significant for some applications. The first 4 bytes constitute

a “magic number” that helps us detect incoming annotations, but this technique is

not perfect. Thus another limitation is that streams or datagrams that randomly

begin with the same sequence of 4 bytes may be incorrectly classified by Liblog and

have several bytes removed. This probability is low (1 in 232 for random messages),

and is further mitigated by additional validity checks and information remembered

from previous messages in a flow, but false positives are still possible.

Limited consistency Fundamentally, consistent replay in a mixed environment is

not guaranteed to be perfectly consistent. A message flow between two application

processes loses its timing information if the flow is relayed by a non-logging third

party. Then, if the virtual clocks for the two processes are sufficiently skewed, it is

possible to replay message transmission after its reception. The probability of this

scenario decreases rapidly as the application’s internal traffic patterns increase in

density, which keeps the virtual clocks loosely synchronized.
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Completeness Finally, as mentioned earlier, library-based tools are neither com-

plete nor sound, in the logical sense of the words. They are incomplete because

they cannot reproduce every possible source of non-determinism. Liblog addresses

non-determinism from system calls, from thread interaction, and, to a lesser extent,

from unsafe memory accesses. Jockey [Sai05] focuses on a different set of sources,

reducing changes to the heap and adding binary instrumentation for intercepting

non-deterministic x86 instructions like rdtsc and, potentially, int.

Unfortunately, logging libraries will never succeed in making the replay environ-

ment exactly identical to the original environment because they operate inside the

application’s address space. The libraries run different code during logging and dur-

ing replay, so their stack and heap differ. Theoretically, an unlucky or determined

application could detect the difference and alter its behaviour.

Soundness We say logging libraries are unsound because, as part of the application,

they may be corrupted. We hope that applications have been checked for memory

bugs that could cause stray writes to Liblog’s internal memory, but C is inherently

unsafe and mistakes may happen. We do assume the application is imperfect, after

all.

Furthermore, libraries are susceptible to mistakes or crashes by the operating

system, unlike hardware solutions or virtual machines (although even virtual machines

generally rely on the correctness of a host OS).

Fortunately, these theoretical limitations have little practical impact. Most ap-

plications are simple enough for Liblog to capture all sources of non-determinism,

and simple precautions to segregate internal state from the application’s heap are

usually sufficiently safe. Indeed, most debuggers (including GDB) are neither sound

nor complete, but they are still considered useful.

3.4 Evaluation

We designed Liblog to be sufficiently lightweight so that developers would leave

it permanently enabled on their applications. In this section, we attempt to quantify
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the overhead imposed by Liblog, both to see whether we reached this goal and to

help potential users estimate the impact they might see on their own applications.

We start by measuring the runtime latency added by our libc wrappers and

its effect on network performance. We find that each system call requires a few

microseconds, which reduces peak UDP send rate by %18 but has negligible effect

on TCP throughput. A second set of experiments measures the storage overhead

consumed by checkpoints and logs. This overhead depends greatly on the behaviour

of the application being logged, and averages 3–6 MB/hour for our own programs.

All experiments were performed on a Dual 3.06GHz Pentium 4 Xeon (533Mhz

FSB) with 512K L2 cache, 2GB of RAM, 80GB 7500 rpm ATA/100 disk, and Broad-

com 1000TX gigabit Ethernet.

3.4.1 Wrapper Latency

To measure the processing overhead of Liblog, we first analyzed the latency added

to each libc call. Figure 3.3 shows the latency for a few representative wrappers.
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Figure 3.4: Packet rate reduction: Maximum UDP send rate for various datagram sizes.
The maximum standard deviation over all points is 1.3 percent of the mean.

The wrappers add approximately 1 microsecond to the function random, which

shows the minimum amount of work each wrapper must do to intercept the call

and to write a log entry. The sendto wrapper is slightly slower as it includes the

amortized cost of querying the destination to determine whether to send annotations

(cf. Section 3.2.4). The “copy” phase is also longer, because we store the outgoing

message address and port to facilitate message tracing. The recvfrom overhead is

higher still because it must extract the Lamport clock annotation from the payload

and copy the message data to the logs.

3.4.2 Network Performance

Next we measured the impact of Liblog on network performance. First we wrote

a small test application that sends UDP datagrams as fast as possible. Figures 3.4

and 3.5 show the maximum packet rate and throughput for increasing datagram sizes.

With Liblog enabled, each rate was reduced by approximately 18%.

For TCP throughput, we measured the time required for wget to download a

484 MB binary executable from various web servers. Figure 3.6 shows that Liblog

hinders wget when downloading the file over a gigabit ethernet link, but the reduction
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Figure 3.5: UDP bandwidth: Maximum UDP send throughput for various datagram sizes.
The maximum standard deviation over all points is 1.3 percent of the mean.

in throughput is negligible when the maximum available throughput is lowered. Even

the relatively fast 100 Mbps link to our departmental web server can be filled using

Liblog.

Finally, Figure 3.7 shows the round-trip time (RTT) measured by lmbench to the

local host and to a machine on a nearby network. The gigabit ethernet test shows

that Liblog adds a few wrappers worth of latency to each RTT, as expected. On a

LAN, the RTT overhead is so small that the difference is hard to discern from the

graph.

3.4.3 Log Bandwidth

The amount of log space required depends greatly on the frequency of libc calls

made by an application, as well as on the throughput and content of its network

traffic, because incoming message contents are saved.

To give an idea of the storage rates one might expect, we first measured the

average log growth rate of the applications we use ourselves: I3/Chord [SAZ+02b] and

the OCALA proxy [JKK+06]. For this experiment, we started a small I3 network on

PlanetLab [PL] and attached a single local proxy. No additional workload was applied,
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Figure 3.6: TCP throughput for wget downloading a 484MB file. Each pair of bars repre-
sents a different web server location.

so the processes were only sending their basic background traffic. We also show the

logging rates for wget downloading an executable file when we artificially limit its

download rate to simulate applications with various network throughput. Figure 3.8

shows the (compressed) log space required per hour for each application. This rate

varies widely across applications and correlates directly with network throughput.

We have found the 3–6 MB/hour produced by our own applications to be quite

manageable.

Figure 3.9 illustrates the degree to which message contents affect the total log

size. We limited wget to a 1 KB/s download rate and downloaded files of various

entropy. The first file was zero-filled to maximize compressibility. Then we chose two

real files: File A is a binary executable and File B is a Liblog checkpoint. Finally,

we try a file filled with random numbers, which, presumably, is incompressible. The

difference between zero and full entropy is over an order of magnitude, although most

payloads are presumably somewhere in the middle.
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3.4.4 Checkpoint Overhead

Finally, we measured the checkpoint latency (Figure 3.10) and size (Figure 3.11)

for a few of our test applications. The checkpoint size depends on the amount of the

application’s address space that is in use. The checkpoint latency is dominated by

the time required to copy the address space to file system buffers, which is directly

proportional to the (uncompressed) checkpoint size. These costs can be amortized

over time by tuning the checkpoint frequency. The trade-off for checkpoint efficiency

is slower replay, because more execution must be replayed on average before reaching

the point of interest.

3.4.5 Evaluation Summary

These experiments suggest that the CPU overhead imposed by Liblog is suffi-

ciently small for many environments and has little affect on network performance.

Logging could consume considerable disk space (and disk bandwidth), but the dis-

tributed applications we are familiar with (I3/Chord and OCALA) could store logs

for a week or two, given 1GB of storage. Checkpoints also consume a noticeable
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Figure 3.10: Checkpoint Latency: time taken to dump memory to checkpoint file for various
applications.

amount of space, but writing one once an hour is probably sufficient for most cases.

3.5 Experience

We have been developing Liblog for over two years, and although the library

itself has undergone constant change, the basic form of the prototype described in this

dissertation has remained somewhat stable for the past year. We have used the tool

on distributed applications with which we are familiar, namely I3/Chord [SAZ+02b]

and the OCALA proxy [JKK+06]. We have already discovered several errors in these

applications. In this section, we will describe how Liblog helped in these cases, along

with a few stories from earlier prototypes and work debugging Liblog itself.

3.5.1 Programming Errors

To start, we found a few simple mistakes that had escaped detection for months.

The first, inserted accidentally by one of the author over a year ago, involved checking

Chord timeouts by calling gettimeofday within a “MAX” macro that evaluated its

arguments twice. The time changed between calls, so the value returned was not
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applications.

always still the maximum.

We also found an off-by-one error in code that assumed 1-based arrays and timer

initialization code that did not add struct timeval microseconds properly, both in

OCALA’s I3 library.

The off-by-one error normally had no visible effect but occasionally caused the

proxy to choose a distant, high-latency gateway. The two timer-related errors only

manifested occasionally but would cause internal events to trigger too late, or too

early, respectively.

These bugs had escaped earlier testing because they were non-deterministic and

relatively infrequent. But once we noticed the problems, Liblog was able to de-

terministically replay the exact execution paths so that we could step through the

offending code in GDB and watch the problem unfold.

3.5.2 Broken Environmental Assumptions

Perhaps more interesting are bugs caused not by programmer mistakes but rather

by correct implementation based on faulty assumptions. To illustrate, here are two

problems in Chord we had found with an earlier Liblog prototype.
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The first problem is common in peer-to-peer systems, and was discussed along

with solutions in a later paper [FLRS05]. Basically, many network overlays like

Chord assume that the underlying IP network is fully connected, modulo transient

link failures. In practice, some machine pairs remain permanently disconnected due to

routing policy restrictions and some links experience unexpected partial failure modes,

such as transient asymmetry. Both problems cause routing inconsistencies in Chord,

and both were witnessed by Liblog in a network deployed across PlanetLab [PL].

Rather than finding a coding error in the application, replay showed us code that

worked as designed. Our project is focused on application debugging, and we do not

attempt to debug the underlying network; nevertheless, our logs clearly showed the

unexpected message-loss patterns. Of course the problem had not been detected using

simulation, because the simulator made the same assumptions about the network as

the application.

A second assumption we had made was that our application processes would re-

spond to keep-alive messages promptly. Chord includes RTT estimation and timeout

code based on TCP, which expects a reasonable amount variance. On PlanetLab,

however, high CPU load occasionally causes processes to freeze for several seconds,

long enough for several successive pings to time out. Chord then incorrectly declared

peers offline and potentially misrouted messages.

Upon inspection, Liblog showed us that the timeout code was operating correctly,

and the message tracing facilities detected the keep-alive responses arriving at the

correct machines, although long after they had been considered lost. The virtual

clock timestamps let us correlate otherwise-identical messages, as well as detect the

long delay in between system calls on the pinged machine.

3.5.3 Broken Usage Assumptions

We found two problems with the OCALA proxy’s overlay client initialization code,

both caused by sensitivity to the bootstrap gateway list. Like those of the previous

section, these “bugs” were not programming errors per se, but rather user errors

(providing an imperfect configuration list) or design flaws (not tolerating user error).
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One phase of startup involves pinging these gateways and triangulating the local

machine’s latitude and longitude based on the response times. We noticed that the

proxy occasionally made a very poor estimate of local coordinates, which then caused

a poor (high latency) choice of primary gateways.

We investigated the phenomenon by setting breakpoints in the relevant methods

and stepping through the replay. We noticed first that very few points were used for

triangulation. We then moved backwards in the execution to find that only a small

number of pings were sent and that the proxy did not wait long enough for most the

replies. If care is taken to nominate only lightly loaded gateways, triangulation works

fine. If not, as in our case, performance suffers until periodic maintenance routines

manage to choose a better gateway, which could take hours.

We also discovered that the proxy client is very trusting of liveness information

contained in the initial gateway list. Normally this list is continually updated by an

independent process so that only active gateways are included. If the list becomes

stale, as we unintentionally allowed, the proxy could waste minutes trying to contact

dead I3 servers before finally connecting.

We diagnosed the problem by replaying and comparing the paths taken by two

executions: one which exhibited the interminable timeouts and one which lucked upon

a good subset of gateways immediately. This problem could easily be dismissed as

invalid usage. Nevertheless, solving it relied on our ability to deterministically replay

the random choices made during the gateway selection process.

3.5.4 Self-Debugging

The program we have spent the most time debugging recently is Liblog itself.

Because the tools run as shared libraries in the application address space, we are able

to use GDB to set breakpoints and to step through our own code during replay, just

like the supposed target application. We used this ability to fix programming errors in

our message annotation layer and our remote discovery service. Deterministic replay

also made it easy to find faults in our replay console because each log provided a

repeatable test case.
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Some bugs in Liblog, such as incomplete libc wrappers, manifest as non-determinism

during replay. Ironically, this non-determinism made them easy to detect because we

could step through the execution at the point where the original execution and re-

play diverged in order to isolate the failure. This approach also led us to realize the

problem of applications accessing undefined heap and stack memory.

3.5.5 Injected Bugs

Our tool is interactive, aiding a human programmer but requiring their domain

knowledge and expertise. We find it difficult to quantify the benefit Liblog provides

because the user injects a large amount of variability into the process. Ideally, we

will be able to compile a large library of “real” bugs that exist in tested and used

applications for some time before being fixed with Liblog. But this process is slow

and unpredictable.

Projects that develop automated analytic techniques often pull known errors from

bug databases and CVS histories in order to quantify how many of the problems can

be re-fixed with their tools. This path is also available to use, but the results would

be somewhat suspect as the human tester may have some prior knowledge of old bugs.

Similar doubts may arise if one set of programmers manually introduces errors into a

current application code base for testing by an independent second group. This trick

has the benefit of testing our tools on bugs that are arbitrarily complex or slow to

develop.

While we wait for our library of real bugs to grow, we have decided to try both of

these somewhat-artificial testing methods. So far we have only started on the latter,

with one author injecting an error into the I3/Chord code base while the other uses

Liblog to isolate and fix it. Our experience suggests that the task is equivalent to

debugging Chord in a local simulator.



35

3.6 Summary

We have designed and built Liblog, a new logging and replay tool for deployed,

distributed applications. We have plans for a few additional improvements to Liblog,

both to reduce its runtime overhead and to remove some of the limitations listed in

Section 3.3. Meanwhile, we hope to receive feedback from the community that will

help us improve its usability.

Our ongoing research plan views Liblog as a platform for building further anal-

ysis and failure detection tools. Specifically, replaying multiple processes together

provides a convenient arena for analyzing distributed state. We see great poten-

tial for consistency checking and distributed predicate evaluation tools. In the next

chapter we will present one such tool, Friday.
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Chapter 4

Friday

While Liblog provides the programmer with the basic information and tools for

debugging distributed applications, the process of tracking down the root cause of a

particular problem remains a daunting task. The information presented by Liblog

can overwhelm the programmer, who is put, more often than not, in the position

of finding a “needle in the haystack.” Friday enables the programmer to prune the

problem search space by expressing complex global conditions on the state of the

whole distributed application.

In this chapter, we present in detail the two key facilities provided by Friday: (1)

distributed watchpoints and breakpoints that operate on the global state of the appli-

cation, and (2) commands that allow one to associate arbitrary code with breakpoints

and watchpoints, that operate on the application’s global state.

4.1 Design

Friday presents to users a central debugging console, which is connected to re-

played node processes, each of which runs an instance of a traditional symbolic debug-

ger such as GDB (see Figure 4.1). The console includes an embedded script language

interpreter, which interprets actions and can maintain central state for the debugging

session. Most user input is passed directly to the underlying debugger processes,

allowing full access to the debugger’s data analysis and control functions. Friday ex-
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Figure 4.1: Overall architecture of Friday

tends the debugger’s commands to handle distributed breakpoints and watchpoints,

and to show status information about the whole system of debugged processes.

4.1.1 Distributed Watchpoints and Breakpoints

Traditional watchpoints allow a symbolic debugger to react—stop execution, dis-

play values, or evaluate a predicate on the running state—when the debugged process

updates a particular variable location. Though watchpoints are defined in terms of

writes to a specific set of memory addresses, debuggers allow these addresses to be

specified via the symbolic names defined by the application’s source code.

In addition to this traditional functionality, Friday’s distributed watchpoints can

specify variables and expressions that belong to multiple nodes in the replayed dis-

tributed application. For example, a programmer debugging a ring network can

use Friday to watch a variable called successor on all machines by specifying “watch

successor” or for a single machine (here, #4) from the replay group “4 watch successor”.

A command of the form “<node number>, ... watch <variable>, ...” specifies

both a set of nodes on which to watch variables, and a set of variables to watch.

When no list of nodes is indicated, a watch expression refers to all nodes. The node

numbering used is private to Friday; to identify a particular node by its application-

specific identifier such as an IP address or an overlay ID, an appropriate mapping

watchpoint can be provided—see Section 4.1.2 for an example.
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Distributed breakpoints in Friday have a similar flavor. Like traditional break-

points, they allow the debugger to react when the debugged process executes a par-

ticular instruction, specified symbolically as a source line number or a function name.

Friday allows the installation of such breakpoints on one, several, or all replayed

nodes.

Implementation

Friday implements distributed watchpoints and breakpoints by setting local in-

stances on each replay process and mapping the individual watch- or breakpoint num-

bers and addresses to a global identifier for easier operation from the replay console.

These map tables are used to re-write and forward requests to disable or re-enable

a distributed watch- or breakpoint, and also to map local events back to the global

index in order to notify the user and find any attached commands to execute.

Local breakpoints simply use GDB breakpoints, which internally either use de-

bugging registers on the processor or inject trap instructions into the code text. In

contrast, Friday implements its own mechanism for local watchpoints. Friday uses

the familiar technique of write-protecting the memory page where the value corre-

sponding to a given symbol is stored [Wah92]. When a memory write to the page con-

taining the watched variable occurs, the ensuing SEGV signal is captured by Friday,

which unprotects the page and completes the write before passing control to any state

manipulation scripts attached to the watchpoint.

This implementation can of course give rise to false positives, that is, trapping

into Friday for unwatched data changes, since writes to any variable sharing a page

with a watchpoint will cause a trap. The more densely populated a memory page,

the more such false positives occur. Furthermore, if the watched variable shares

a page with an unwatched, but frequently updated, value, the overhead can become

significant. Nevertheless, we decided that protection-based watchpoints are preferable

to alternative implementations, as explained next.
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Why a New Watchpoint Mechanism?

We explored but rejected four other alternatives to implement watchpoints: hard-

ware watchpoints, single stepping, implementation via breakpoints, and time-based

sampling.

Hardware watchpoints are offered by many processor architectures. They are

extremely efficient, causing essentially no runtime overhead, but most common pro-

cessors have small, hard limits on the number of hardware watchpoint registers (a

typical value is 8, and these are shared with breakpoints), as well as on the width of

the watched variable (typically, a single machine word). These limits are too restric-

tive for the flexible predicates that we wanted to support; however, we have planned

a hybrid system that uses the fast hardware watchpoints as a cache for our more

flexible mechanism.

Single-stepping, or software watchpoints, can implement watchpoints by executing

one machine instruction at a time and checking for variable modifications at each step.

Unfortunately, single-stepping is prohibitively slow—we compare it to our method in

Section 4.3.4 and demonstrate that it is a few thousand times slower.

Local breakpoints can emulate watchpoints by identifying the points where the

watched variable could be modified and only checking for changes there. When this

identification step is accurate the technique is highly efficient, but unfortunately it

requires comprehensive knowledge of the program code. It is more work for the

programmer, and prone to false negatives, that is, missed data changes for watched

variables.

Periodic sampling of watched variable values (e.g., every k logical time ticks) to

check for modifications enables a trade-off between replay speedup and watchpoint

accuracy: it is potentially faster than all the techniques described above, but it

may be difficult to identify precisely when the value was changed. Combined with

replay checkpointing and backtracking, it might prove a valuable but not complete

alternative.
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Implementation Complexity

Building a new watchpoint mechanism in Friday required reconstructing some

functionality normally provided by the underlying symbolic debugger, GDB. Namely,

debuggers maintain state for each watched expression, including the stack frame

where the variable is located (for local variables) and any mutable subexpressions

whose modification might affect the expression’s value. For example, a watchpoint

on srv->successor->addr should trigger if the pointers srv or srv->successor change,

pointing the expression to a new value. Because GDB does not expose this function-

ality cleanly, we replicated it in Friday.

Also, the new watchpoint mechanism conflicts with GDB’s stack maintenance al-

gorithms. When Friday removes write permissions from a page of memory on the

stack, which is later modified, Friday will catch the segmentation fault and attempt

to restore permissions, as described in Section 4.1.1. This operation should succeed,

because GDB creates a new stack for calling functions in the target application’s

address space. Unfortunately, GDB performs a small amount of initialization that

touches the main application stack, which is still unwritable, so the call to restore

permissions (via mprotect) fails. We have solved this problem by avoiding GDB’s nor-

mal calling method and creating our own, manipulating the application’s PC directly.

However, this solution conflicts with GDB’s breakpoint maintenance routines if the

application is stopped at a breakpoint when we modify the application PC. We are

working on alleviating this adverse interaction between Friday and GDB, but we

have not encountered the problem in our use of the system, including our case studies

presented later in this dissertation.

4.1.2 Commands

The second crucial feature of Friday is the ability to view and manipulate the dis-

tributed state of replayed nodes. These actions can either be performed interactively

or triggered automatically by watchpoints or breakpoints. Interactive commands

such as backtrace and set are simply passed directly to the named set of debugger

processes. They are useful for exploring the distributed state of a paused system.
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In contrast, automated commands are written in a scripting language for greater

expressiveness. These commands are typically used to maintain additional views of

the running system to facilitate statistics gathering or to reveal complex distributed

(mis)behaviours.

Friday commands can maintain their own arbitrary debugging state, in order to

gather statistics or build models of global application state. In the examples below,

emptySuccessors and nodesByID are debugging state, declared in Friday via the python

statement; e.g., python emptySuccessors = 0. This state is shared among commands

and is persistent across command executions.

Friday commands can also read and write variables in the state of any replayed

process, referring to symbolic names exposed by the local GDB instances. To simplify

this access, Friday embeds into the scripting language appropriate syntax for calling

functions and referencing variables from replayed processes. For example, the state-

ment “@4(srv.successor) == @6(srv.predecessor)” compares the successor variable on

node 4 to the predecessor variable on node 6. By omitting the node specifier, the pro-

grammer refers to the state on the node where a particular watchpoint or breakpoint

was triggered. For example, the following command associated with a watchpoint on

srv.successor increments the debugging variable emptySuccessors whenever a successor

pointer is set to null, and continues execution:

if not @(srv.successor):

emptySuccessors++

cont

For convenience, the node where a watchpoint or breakpoint was triggered is also

accessible within command scripts via the NODE metavariable, and all nodes are

available in the list ALL . For example, the following command, triggered when

a node updates its application-specific identifier variable srv.node.id, maintains the

global associative array nodesByID:

nodesByID[@(srv.node.id)] = __NODE__

cont

Furthermore, Friday provides commands with access to the logical time kept by

the Lamport clock exported by Liblog, as well as the “real” time recorded at each log
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event. Because Liblog builds a logical clock that is closely correlated with wall clock

during trace acquisition, these two clocks are usually closely synchronized. Friday

exposes the global logical clock as the LOGICALCLOCK metavariable and node i’s real

clock at the time of trace capture as @i( REALCLOCK ).

Similarly to GDB commands, our language allows setting and resetting distributed

watchpoints and breakpoints from within a command script. Such nested watchpoints

and breakpoints can be invaluable in selectively picking features of the execution to

monitor in reaction to current state, for instance to watch a variable only in between

two breakpoints in an execution. This can significantly reduce the impact of false

positives. It can also enable powerful debugging usage patterns efficiently, such as

observing whether the distributed execution of an application follows a parametric

global state machine—for example, observing that after variable @nodeA(neighbor) is

set then variable @neighbor(X) should be set. Nested watchpoints allow us to watch

@neighbor(X) only after @nodeA(neighbor) has been set, reducing the overhead signifi-

cantly.

Language Choice

The Friday commands triggered by watchpoints and breakpoints are written in

Python, with extensions for interacting with application state, which we describe in

the next section.

Evaluating Python inside Friday is straightforward, because the console is itself a

Python application, and dynamic evaluation is well supported. We chose to develop

Friday in Python for its high-level language features and ease of prototyping; these

benefits also apply when writing watchpoint command scripts.

We could have used a compiled command language instead, as C is used in Intro-

Virt [JKDC05]. Such an approach might provide better performance, and it allows

the debugging predicates to share the application’s namespace. Unfortunately this

option requires recompiling a shared library and loading it into the application each

time the user thinks of a new predicate; we wanted to support a more dynamic,

interactive model.
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We could have avoided the compilation step by leveraging GDB’s “command list”

functionality, which lets the user attach a series of normal GDB commands and

simple conditional expressions to a watchpoint or breakpoint. Unfortunately these

commands lack the high-level language expressiveness of Python, like the ability to

construct new data structures. Furthermore, that would require execution of Friday

commands on individual nodes’ GDB instances, which would reprise the problem of

local, partial knowledge of application state. Using a general-purpose language like

Python running at the console was a more flexible choice.

Syntax

When a distributed command is entered, Friday examines every statement to

identify references to the target application state. These references are specified

with the syntax @<node>(<symbol>[=<value>]) where the node defaults to that which

triggered the breakpoint or watchpoint. These references are replaced with calls to

internal functions that read from or write to the application using GDB commands

print and set, respectively. Metavariables such as LOGICALCLOCK are interpolated

similarly. Furthermore, Friday allows commands to refer to application objects on

the heap whose symbolic names are not within scope, especially when stopped by a

watchpoint outside the scope within which the watchpoint was defined. Such pointers

to heap objects that are not always nameable can be passed to watchpoint handlers

as parameters at the time of watchpoint definition, much like continuations (see Sec-

tion 4.2.2 for a detailed example). The resulting statements are compiled, saved, and

later executed within the global Friday namespace and persistent command local

namespace.

If the value specified in an embedded assignment includes keyed printf placehold-

ers, i.e., %(<name>)<fmt>, the value of the named Python variable will be interpolated

at assignment time. For example, the command

tempX = @(x)

tempY = @other(y)

@(x=%(tempY)d)

@other(y=%(tempX)d)
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swaps the values of integer variables x at the current node and y at the node whose

number is held in the python variable other.

Commands may call application functions using similar syntax:

@<node>(<function>(<arg>,....))

These functions would fail if they attempted to write to a memory page protected by

Friday’s watchpoint mechanism, so Friday conservatively disables all watchpoints

for that replay process for the duration of the function call. Unfortunately that

precaution may be very costly (see Section 4.3). If the user is confident that a

function will not modify any protected memory, she may start the command with the

safe keyword, which instructs Friday to leave all watchpoints enabled. This option is

helpful, for example, if the invoked function only modifies the stack, and watchpoints

are only set on global variables.

The value returned by GDB using the @() operator must be converted to a Python

value for use by the command script. Friday understands strings (type char* or

char[]), and coerces pointers and all integer types to Python long integers. Any other

type, including any structs and class instances, are extracted as a tuple containing

their raw bytes. This solution allows simple identity comparisons, which was sufficient

for all useful case studies we have explored so far.

Finally, our extensions had to resolve some keyword conflicts between GDB and

Python, such as cont and break. For example, within commands continue refers to the

Python keyword whereas cont to GDB’s keyword. In the general case, we can prefix

the keyword gdb in front of GDB keywords within commands.

4.1.3 Limitations

We have found Friday to be a powerful and useful tool; however, it has several

limitations that potential users should consider.

We start with limitations that are inherent to Friday. First, false positives can

slow down application replay. False positive rates depend on application structure

and dynamic behaviour, which vary widely. In particular, watching variables on

the stack can slow Friday down significantly. In practice we have circumvented
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this limitation by recompiling the application with directives that spread the stack

across many independent pages of memory. Though this runs at odds with our goal

of avoiding recompilation, it is only required once per application, as opposed to

requiring recompilations every time a monitored predicate or metric must change.

Section 4.3 has more details on Friday performance.

The second Friday-specific limitation involves replaying from a checkpoint, as

opposed to from the beginning of a replay trace. Since some Friday predicates

build up their debugging state by observing the dynamic execution of a replayed

application, when starting from a checkpoint these predicates must rebuild that state

through observation of a static snapshot of the application at that checkpoint. While

such rebuilding of debugging state is straightforward for the applications we study

in Section 4.2, it may be more involved for applications with less clean, complex

data structures. We are currently working on a method for checkpointing and storing

debugging state along with Liblog checkpoints at debug time, to simplify further the

predicate complexity required of programmers for quick replays.

Thirdly, we have found that Friday’s centralized and type-safe programming

model makes predicates considerably simpler than the distributed algorithms they

verify. Nevertheless, most Friday predicates do require some debugging themselves.

For example, Python’s dynamic type system allowed us to refer to application vari-

ables that were not in dynamic scope, causing runtime errors. These issues can be

addressed by using a statically-typed language like OCaml.

Beyond Friday’s inherent limitations, the system inherits certain limitations from

the components on which it depends. First, an application may copy a watched

variable and modify the copy instead of the original, which GDB is unable to track.

This pattern is common, for example, in STL collection templates, and requires the

user of GDB (and consequently Friday) to understand the program well enough to

place watchpoints on all such copies. The problem is exacerbated by the difficulty of

accessing these copies, mostly due to GDB’s inability to place watchpoints on STL’s

many inlined accessor functions.

A second inherited limitation is unique to stack-based variables. As with most

common debuggers, we have no solution for watching stack variables in functions
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that have not yet been invoked. To illustrate, it is difficult to set up ahead of time a

watchpoint on the command line argument variable argv of the main function across

all nodes before we have entered the main at all nodes. Nested watchpoints are a

useful tool in that regard.

Finally, Friday inherits from Liblog its non-trivial storage requirements for logs

and an inability to log or replay threads in parallel on multi-processor or multi-core

machines. The latter may be a feature disguised as a limitation, since most human

programmers are not quite as proficient at debugging in parallel as computers are.

4.2 Case Studies

In this section, we present use cases for the new distributed debugging primitives

presented above. First, we look into the problem of consistent routing in the i3/Chord

DHT [SAZ+02a], which has occupied networking and distributed research literature

extensively. Then we turn to debugging Tk, a reliable communication toolkit [Sub05],

and demonstrate sanity checking of disjoint path computation over the distributed

topology, an integral part of many secure-routing protocols. For brevity, most ex-

amples shown omit error handling, which typically adds a few more lines of Python

script.

4.2.1 Routing Consistency

In this section, we describe Friday predicates to demonstrate debugging of routing

inconsistencies in i3/Chord. In such a distributed lookup service, routing consistency

is the property of answering the same lookup with the same result at the same time,

regardless of who is asking. All examples refer to the srv data structure, which

contains a node’s successor and predecessor pointers in Chord’s ring topology, and a

node’s application-specific identifier srv.node.id and IP address srv.node.addr.

We show examples that detect link reciprocity, extract consistency statistics, and

detect routing state oscillation, a common misbehaviour of routing protocols that

might result in route flaps, wormholes, or even black holes.
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Node Indexing

An important invariant in many distributed systems is that naming assigns unique

nodes to each distinct system-specific identifier. For example, nodes on the same

subnet cannot have the same IP address, and nodes on a distributed hash table

cannot have the same ID.

One simple use of our distributed comprehension infrastructure allows us to in-

dex nodes according to an application-specific node identifier, as introduced in Sec-

tion 4.1.2. We extend the earlier utilitarian indexing example to check the uniqueness

of names in the population as well:

break chord.c:58

python nodesByID = {}
command

id = @(srv.node.id)

if id in nodesByID :

print __NODE__, "is stealing identifier", id

else

nodesByID[id] = __NODE__

cont

end

These distributed commands are triggered by a breakpoint on a source code line,

not shown here, where a node’s application-specific ID is set. At that time, Friday

will update its index with the current node number for the triggering node, and will

stop execution if an ID collision is detected. This example harnesses application-

specific knowledge that a node sets its id only once, so a breakpoint, rather than the

more expensive watchpoint, can be used. To check even that assumption, one could

also set a distributed watchpoint and command on srv.node.id, ensuring that it is a

write-once variable.

This mechanism can be extended to index replayed machines according to any

choice of one or more application-specific literals. For example, we could index re-

played machines according to the multicast groups to which they participate or ac-

cording to the IDs of the resources they hold, etc.
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Figure 4.2: At the top, we show what node n hopes the ring topology looks like around it. At the
bottom, we see the relevant state as stored by the involved nodes n, s and p. The thick routing entry
from node s to its predecessor, which points to p instead of node n illustrates a possible inconsistency
with node p and s’s successor pointers.

Ring Consistency

Routing inconsistency can result when basic assumptions on the connectivity

graph are violated. For example, in overlays that organize members in a bidirec-

tional ring topology, the symmetry of ring links is such an assumption. The specific

invariant in terms of individual nodes’ states is that every node is its immediate ring

successor’s predecessor and its immediate ring predecessor’s successor. Figure 4.2

provides an illustration.

Checking that successor/predecessor consistency conditions hold at all times is

unnecessary. Instead, it is enough to check the conditions only when a successor or

predecessor pointer changes, and only check those specific conditions in which the

changed pointers participate. We can encode these two symmetric checks in Friday

as follows:

watch srv.successor

command

successor_id = @(srv.successor->id)

if @(srv.node.id) != @nodesByID[successor_id](srv.predecessor->id):

print __NODE__, "’s successor link is asymmetric."

end

and symmetrically for the predecessor’s successor. Recall that in the absence of a
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node specifier, a variable in a distributed command applies to the node that triggered

the watchpoint. Also, the index nodesByID is maintained as described in Section 4.1.2.

Such graph invariants are especially straightforward to write given Friday’s abil-

ity to manipulate the local state of all nodes in a distributed execution. For instance,

in more complex overlays that enhance rings with long links (such as distributed hash

tables), a programmer can trivially maintain an inverted index of all nodes’ local views

of the identifier space and that space’s partitioning among peers, pinpointing colli-

sions. The complexity of such examples is marginally greater than the link symmetry

example shown above, and we omit them here for brevity.

Ring Consistency Statistics

The techniques of Section 4.2.1 will typically issue inconsistency warnings many

times during any system execution. Such inconsistencies occur transiently even when

the system operates perfectly while an update occurs, e.g., when a new node is inserted

into the ring. Without transactional semantics across all involved nodes in which

checks are performed only before or after a transition, such warnings are unavoidable.

Therefore, an interesting question might be “how long do such inconsistencies last?”

Given this measure, a programmer can conclude whether an inconsistency warning is

a transient or a pathological one.

In Friday, we can characterize the execution of the system by computing the frac-

tion of time during which the ring topology lies in an inconsistent state. Specifically,

by augmenting the monitoring statements from Section 4.2.1, one can instrument

transitions from consistent to inconsistent state and back, to keep track of the time

when those transitions occur, and averaging over the whole system.

watch srv.successor, srv.predecessor

command

myID = @(srv.node.id)

successorID = @(srv.successor->id)

predecessorID = @(srv.predecessor->id)

if not (myID == @nodesByID[successorID](srv.predecessor->id)

== @nodesByID[predecessorID](srv.successor->id) ):
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# inconsistent now

if consistent[myID]:

consistentTimes += (@(__REALCLOCK__) - lastEventTime[myID])

consistent[myID] = False

lastEventTime[myID] = @(__REALCLOCK__)

else:

# converse: consistent now

if not consistent[myID]:

inconsistentTimes += @((__REALCLOCK__) - lastEventTime[myID])

consistent[myID] = True

lastEventTime[myID] = @(__REALCLOCK__)

cont

end

py consistent = {}
py lastEventTime = {}
py consistentTimes = inconsistentTimes = 0

This example illustrates how to keep track of how much time each replayed machine is

in the consistent or inconsistent state, with regards to its ring links. The monitoring

specification keeps track of the amounts of time node i is consistent or inconsistent

in the debugging counters consistentTimes and inconsistentTimes, respectively. Also,

it remembers when the last time a node switched to consistency or inconsistency

in the debugging hash tables consistent and inconsistent, respectively. When the

distributed commands are triggered, if the node is now inconsistent but was not before

(the last time of turning consistent is non-empty), the length of the just-ended period

of consistency is computed and added to the thus-far sum of consistency periods. The

case for inconsistency periods is symmetric and computed in the “else” clause.

Periodically, or eventually, the relevant ratios can be computed as the ratio of

inconsistent interval sums over the total time spent in the experiment, and the whole

system might be characterized taking an average or median of those ratios.
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State Oscillation

The previous case studies have focused on detecting routing consistency. Consider

a scenario in which a system operator has used those tools to note a large amount of

inconsistency. She would next like to determine the reason.

One common cause of routing inconsistency is a network link that, whether due to

high loss rates or intermittent hardware failure, makes a machine repeatedly disappear

and reappear to its neighbor across the link. This oscillation may cause routes through

the nodes to flap to backup links, or even create routing wormholes and black holes.

The system operator could analyze the degree of oscillation in her network with the

following simple Friday breakpoint commands.

break remove_finger

command

finger = @(f->node.addr)

# ’f’ is parameter to remove_finger()

eventTable = routeEvents[@(srv.node.addr)]

if finger not in eventTable:

eventTable[finger] = []

eventTable[finger].append(("DOWN",__LOGICALCLOCK__))

cont

end

break insert_finger

command

finger = @(addr)

# ’addr’ is parameter to insert_finger()

eventTable = routeEvents[@(srv.node.addr)]

if finger in eventTable:

lastEvent,time = eventTable[finger][-1]

if lastEvent == "DOWN":

eventTable[finger].append(("UP",__LOGICALCLOCK__))

cont

end

The first command adds a log entry to the debugging table routeEvents (initialized
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elsewhere) each time a routing peer, or finger, is discarded from the routing table. The

second command adds a complementary log entry if the node is reinserted. The two

commands are slightly asymmetric because insert finger may be called redundantly

for existing fingers, and also because we wish to ignore the initial insertion for each

finger. The use of virtual clocks here allows us to correlate log entries across neighbors.

Mis-delivered Packets

Our last study moves beyond calculating the frequency and duration of routing

inconsistencies to check an execution for actual occurrences of packets being mis-

delivered. To do so, we first build a table containing the application-specific ID for

each node. We intentionally extract the ID as a string, rather than the internal binary

representation, so that we can use the application function atoid to regenerate this

binary representation on demand. This approach is less efficient than simply copying

the internal ID but allows us to demonstrate the ability in Friday to pass debugger

data back into application functions.

py ids =

py failures = []

break chord.c:58

command

# ’id’ is string from configuration file

ids[__NODE__] = @((char*)id)

cont

end

break process.c:63

command

failures.append( ("ALONE",ids[__NODE__], __LOGICALCLOCK__) )

cont

end

break process.c:69

command
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for peer in __ALL__:

@((chordID)_liblog_workspace = atoid("%(ids[peer])s"))

if @(is_between((chordID*)&_liblog_workspace, packet_id, &successor->id)) :

failures.append( ("MISSING",ids[__NODE__], ids[peer], __LOGICALCLOCK__) )

break

cont

end

We use two breakpoints in the packet-delivery method to detect mis-delivered packets.

The first is located on the clause that handles empty networks. Because we are

running these tests on non-trivial networks, a node should never believe that it is

alone.

The second breakpoint checks every packet that the process believes has reached its

best destination. We iterate across all peers in the network, using the atoid function

to load the peer’s ID into application scratch space and then to check ownership of

the packet’s ID using the application logic found in the is between function1. If a

better destination can be found, we log the packet ID as a failure. Construction of

such a global index of all nodes is a powerful technique of catching inconsistencies

that is virtually impossible in a distributed and efficient fashion.

It would be more efficient to build a sorted shadow ring and check for gaps in

the Python command, but this method does not require the operator to understand

the routing logic encoded in is between. And, more importantly for us, this method

showcases the ability of Friday to call application functions and provides a resource-

intensive case study for evaluation in the following section.

4.2.2 A Reliable Communication Toolkit

In the second scenario, we investigate Tk [Sub05], a toolkit that allows nodes in

a distributed system to communicate reliably in the presence of k adversaries. The

only requirement for reliability is the existence of at least k disjoint paths between

communicating nodes. To ensure this requirement is met, each node pieces together

1The liblog workspace, linked into the application’s address space by Liblog, provides that
scratch space for passing large arguments by reference.
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a global graph of the distributed system based on path-vector messages and then

computes the number of disjoint paths from itself to every other node using the max-

flow algorithm. A bug in the disjoint path computation or path-vector propagation

that mistakenly registers k or more disjoint paths would seriously undermine the

security of the protocol. Here we show how to detect such a bug.

Maintaining a Connectivity Graph

When performing any global computation, including disjoint-path computation,

a graph of the distributed system is a prerequisite. The predicate below constructs

such a graph by keeping track of the connection status of each node’s neighbors.

py graph = zero_matrix(10, 10)

break server.cpp:355

command

neighbor_pointer = "(*(i->_M_node))"

neighbor_status_addr = @(&(%(neighbor_pointer)s->status))

# Set watchpoint at memory location neighbor_status_addr

# with parameter neighbor_pointer and associated command.

watchpoint(["*%d"%neighbor_status_addr], np=@(%(neighbor_pointer)s))

command

status = @((((Neighbor*)(%(np)d))->status))

neighbor_id = @((((Neighbor*)(%(np)d))->id))

my_id = @(server->id)

if status > 0:

graph[my_id][neighbor_id] = 1

compute_disjoint_paths() # Explained below.

cont

end

cont

end

This example showcases the use of nested watchpoints, which are necessary when

a watchpoint must be set at a specific program location. In this application, a neigh-
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bor’s connection status variable is available only when the neighbor’s object is in

scope. Thus, we place a breakpoint at a location where all neighbor objects are enu-

merated, and as they are enumerated, we place a watchpoint on each neighbor object’s

connection status variable. When a watchpoint fires, we set the corresponding flag in

an adjacency matrix.

A connection status watchpoint can be triggered from many programs locations,

making it hard to determine what variables will be in scope for use within the watch-

point handler. In our example, we bind a watchpoint handler’s np argument to the

corresponding neighbor object pointer, thereby allowing the handler to access the

neighbor object’s state even though a pointer to it may not be in the application’s

dynamic scope.

Computing Disjoint Paths

The following example checks the toolkit’s disjoint path computation by running

a centralized version of the disjoint path algorithm on the global graph created in the

previous example. The predicate records the time at which the k-path requirement

was met, if ever. This timing information can then be used to detect disagreement

between Friday and the application or to determine node convergence time, among

other things.

py time_friday_found_k_paths = zero_matrix(10, 10)

def compute_disjoint_paths():

my_id = @(server->id)

k = @(server->k)

for sink in range(len(graph)):

friday_num_disjoint_paths = len(vertex_disjoint_paths(graph, my_id, sink))

if friday_num_disjoint_paths >= k:

time_friday_found_k_paths[my_id][sink] = __VCLOCK__

The disjoint path algorithm we implemented in vertex disjoint paths, not

shown here, employs a brute force approach—it examines all k combinations of paths
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Benchmark Latency (ms)

False Positive 13.2
Null Command 15.6
Value Read 15.9
Value Write 15.9
Function Call 26.1
Safe Call 16.5

Table 4.1: Micro-benchmarks - single watchpoint

between source and destination nodes. A more efficient approach may be possible;

however, since predicates are run offline, Friday affords us the luxury of using an

easy-to-implement, albeit slow, algorithm.

4.3 Evaluation

In this section, we evaluate the performance of Friday, by reporting its overhead

on fundamental operations (micro-benchmarks) and its impact on the replay of large

distributed applications. Specifically, we evaluate the effects of false positives, of

debugging computations, and of state manipulations in isolation, and then within

replays of a routing overlay.

For our experiments we gathered logs from a 62-node i3/Chord overlay running

on PlanetLab [BBC+04]. After the overlay had reached steady state, we manually

restarted several nodes each minute for ten minutes, in order to force activity in the

Chord maintenance routines. No additional lookup traffic was applied to the overlay.

All measurements were taken from a 6 minute stretch in the middle of this turbulent

period. The logs were replayed in Friday on a single workstation with a Pentium D

2.8GHz dual-core x86 processor and 2GB RAM, running the Fedora Core 4 OS with

version 2.6.16 of the Linux kernel.
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4.3.1 Micro-benchmarks

Here we evaluate Friday on six micro-benchmarks that illustrate the latency over-

head required to watch data values and execute code on replayed process state. Ta-

ble 4.1 contains latency measurements for the following operations:

• False Positive: A false positive occurs when a variable watchpoint is triggered

by the modification of an unwatched variable that happens to occupy the same

memory page as the watched variable.

• Null Command : A null command is the simplest command we can execute once

a watchpoint has passed control to Friday. The overhead includes reading the

new value (8 bytes) of the watched variable and evaluating a simple compiled

Python object.

• Value Read : This is a single fetch of a variable from the state of one of the re-

played processes for reading. The overhead involves contacting the appropriate

GDB process and obtaining the requested variable’s contents.

• Value Write: A value write updates the contents of a single variable in a single

replayed process.

• Function Call : The command calls an application function that returns imme-

diately. All watchpoints (only one in this experiment) must be disabled before,

and re-enabled after the function call.

• Safe Call : The command is marked “safe” to obviate the extra watchpoint

management.

These measurements indicate that the latency of handling the segmentation faults

dominates the cost of processing a watchpoint. Our implementation of watchpoints

is therefore sensitive to the false positive rate, and we could expect watchpoints that

share memory pages with popular variables to slow replay significantly.

Fortunately, the same data suggests that executing the user commands attached

to a watchpoint is inexpensive. Reading or writing variables or calling a safe function
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adds less than a millisecond of latency over a null command, which is only a few

milliseconds slower than a false positive. The safe function call is slightly slower

than simple variable access, presumably due to the extra work by GDB to set up a

temporary stack, marshal data, and clean up afterward.

A normal “unsafe” function call, on the other hand, is 50% slower than a safe one.

The difference (9.6 ms) is attributed directly to the cost of temporarily disabling the

watchpoint before invoking the function.

Next we break down the processing latency by major phases:

• Unprotect : Temporarily disable memory protection on the watched variable’s

page, so that the faulting instruction can complete. This step requires calling

mprotect for the application, through GDB.

• Step: Re-execute the faulting instruction, potentially modifying a watched vari-

able. Also requires setting and triggering one temporary breakpoint, used to

return to the instruction from the segmentation fault handler.

• Reprotect : Re-enable memory protection with mprotect.

• Check and Execute: If the faulting address falls in a watched variable (as op-

posed to a false positive), its new value is extracted from GDB. If the value has

changed, any attached command is evaluated by the Python interpreter. The

command may interact with GDB further.

• Other : Miscellaneous tasks, including reading the faulting address and PC from

the signal’s user context structure.

Figure 4.3 highlights how the steps required to process a false positive also consume

the same amount of time for any type of watchpoint hit. The dark segments in the

middle of each bar show the portion required to execute the user command. It is

small and approximately equal for each case except the unsafe function call, where it

dominates.
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Figure 4.3: Latency breakdown for various watchpoint events.

4.3.2 Micro-benchmarks: Scaling of Commands

Next we explored the scaling behaviour of the four command micro-benchmarks:

value read, value write, function call, and safe call. Figure 4.4 shows the cost of

processing a watchpoint as the command reads, writes, or calls a function in an

increasing number of nodes. All data points for each graph are averaged over the

same number of watchpoints; the latency increases because more GDB instances

must be contacted.

The figure includes the best-fit slope for each curve, which approximates the over-

head added for each additional node that the command reads, writes, or calls. For

most of the curves this amount closely matches the difference between a null com-

mand and the corresponding single-node reference. In contrast, the unsafe function

call benchmark increases at a faster rate—almost double—and with higher variance

than predicted by the single node overhead. We attribute both phenomena to greater

contention in the replay host’s memory hierarchy due to the extra memory protection

operations.
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Figure 4.4: Microbenchmarks indicating latency and first standard deviation (y axis), as a function
of the percentage of nodes involved in the operation (x axis). The population contains 62 nodes.

4.3.3 Micro-benchmarks on Replayed Chord

We continue by evaluating how the same primitive operations described in the

previous section affect a baseline replay of a distributed application. For each bench-

mark, we average across 6 consecutive minute-long periods from the i3/Chord overlay

logs described above.

We establish a replay baseline by replaying all 62 traced nodes in Liblog without

additional debugging tasks. Average replay slowdown is 3.12x, with a standard devi-

ation of .08x over the 6 samples. Liblog achieves a slowdown less than the expected

62x by skipping idle periods in each process. By comparison, simply replaying the

logs in GDB, but without Liblog, ran 11 times faster, for a replay speedup of 3.5x.

The difference between GDB and Liblog is due to the scheduling overhead required

to keep the 62 processes replaying consistently. Liblog must continually stop the

running process, check its progress, and swap in a new process to keep their virtual

clocks synchronized. Conversely, we let GDB replay each log fully before moving on

to the next.

To measure false positives, we add an otherwise inconsequential watchpoint on

a variable inhabiting a memory page that is written about 4.7 times per second
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Benchmark Slowdown (dev) Relative

No Watchpoints 3.12 (.08) 1
False Positives Only 7.95 (0.22) 2.55
Null Command 8.24 (0.24) 2.64
Value Read 8.25 (0.17) 2.65
Value Write 8.26 (0.21) 2.65
Function Call 9.01 (0.27) 2.89
Safe Call 8.45 (0.26) 2.71

Table 4.2: Micro-benchmarks: slowdown of Chord replay for watchpoints with different commands.

per replayed node; the total average replay slowdown goes up to 7.95x (0.2x stan-

dard deviation), or 2.55x slower than baseline replay. This is greater than what our

microbenchmarks predict: 4.7 triggered watchpoints per second should expand every

replayed second from the baseline 3.12 second by an additional 4.7×62×0.0132 = 3.87

seconds for a slowdown of 4.87x. We conjecture that this difference is caused by cache

contention on the replay machine, though further testing will be required to validate

this.

To measure Friday’s slowdown for the various types of watchpoint commands,

we set a watchpoint on a variable that is modified once a second on each node. This

watchpoint falls on the same memory page as in the previous experiment, so we now

see one watchpoint hit and 3.7 false positives per second. The slowdown for each type

of command is listed in Table 4.2.

The same basic trends from the micro-benchmarks appear here: function calls

are more expensive than other commands, which are only slightly slower than null

commands. Significantly, the relative cost of the commands is dwarfed by the cost

of handling false positives. This is expected, because the latency of processing a

false positive is almost as large as a watchpoint hit, and because the number of false

positives is much greater than the number of hits for this experiment. We examine

different workloads later, in Section 4.3.4.

First, we scale the number of replayed nodes on whose state we place watchpoints,

to verify that replay performance scales with the number of watchpoints. These

experiments complement the earlier set which verified the scalability of the commands.
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Figure 4.5: (a) Number of watchpoints crossed vs. percentage of nodes with watchpoints en-
abled (i3/Chord logs). Approximately linear. (b) Replay slowdown vs. percentage of nodes with
watchpoints enabled, relative to baseline replay (i3/Chord logs).

As expected, as the number of memory pages incurring false positives grows,

replay slows down relative to the baseline. Figure 4.5(a) shows that the rate at which

watchpoints are crossed—both hits and false positives—increases as more processes

enable watchpoints. The correlation is not perfectly linear, because some nodes were

more active in the i3/Chord overlay and executed the watched inner loop more often

than others.

Figure 4.5(b) plots the relative slowdown caused by the different types of com-

mands as the watchpoint rate increases. These lines suggest that Friday does indeed

scale with the number of watchpoints enabled and false positives triggered.

4.3.4 Case Studies

Finally, we turn to the performance overheads incurred by Friday in the case

studies from Section 4.2. Unlike the experiments up to this point, these case studies

include realistic and useful commands. They exhibit a range of performance, and two

of them employ distributed breakpoints instead of watchpoints.

We used Friday to replay the same logs used in earlier experiments with the predi-

cates for Ring Consistency Statistics, (Section 4.2.1), State Oscillation (Section 4.2.1),
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Predicate Slowdown

None 1.00
Ring Consistency Stat. 2.53
State Oscillation 1.48
Mis-delivered Packets 9.05
Software Watchpoints 8470.0

Table 4.3: Normalized replay slowdown under three different case studies. The last row gives
the slowdown for the Ring Consistency Statistics predicate when implemented in GDB with single-
stepping.

and Mis-delivered Packets (Section 4.2.1). Figure 4.6 plots the relative replay speed

vs. baseline replay against the percentage of nodes on which the predicates are en-

abled. Table 4.3 summarizes the results. Results with the examples of Section 4.2.2

were comparable, giving a 100%-coverage slowdown of about 14 with a population of

10 nodes.

Looking at the table first, we see that the three case studies range from 1.5 to 9

times slower than baseline replay. For comparison, we modified Friday to use software

watchpoints in GDB instead of our memory protection-based system, and reran the

Ring Consistency Statistics predicate. As the table shows, that experiment took over

8000 times longer than basic replay, or about 3000 times slower than Friday’s watch-

points. GDB’s software watchpoints are implemented by single-stepping through the

execution, which consumes thousands of instructions per step. The individual mem-

ory protection operations used by Friday are even more expensive but their cost can

be amortized across thousands of non-faulting instructions.

Turning to Figure 4.6, the performance of the Ring Consistency Statistics predi-

cate closely matches that of the micro-benchmarks in the previous section (cf., Fig-

ure 4.5(b)). This fact is not surprising: performance here is dominated by the false

positive rate, because these predicates perform little computation when triggered.

Furthermore the predicate measured here and the micro-benchmarks in Figure 4.5(b)

all watch variables located on the same page of memory, due to the internal structure

of the i3/Chord application, so their false positive rates are the same.

The figure shows that the State Oscillation predicate encounters more breakpoints

than the Ring Consistency predicate does watchpoints. However, handling a break-
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point is almost free, and the commands are similar in complexity, so Friday runs

much faster for State Oscillation predicates.

The last case study, which checks for Mis-delivered Packets, hit even fewer break-

points, and ran the fewest number of commands. Those commands were very resource-

intensive, however, requiring dozens of (safe) function calls each time. Overall per-

formance, as shown in Figure 4.6(a), is the slowest of the three predicates.

4.4 Summary

Friday is a replay-based symbolic debugger for distributed applications that en-

ables the developer to maintain global, comprehensive views of the system state.

It extends the GDB debugger and Liblog replay library with distributed watch-

points, distributed breakpoints, and actions on distributed state. Friday provides

programmers with sophisticated facilities for checking global invariants—such as rout-

ing consistency—on distributed executions. We have described the design, implemen-

tation, usage cases, and performance evaluation for Friday, showing it to be powerful

and efficient for demanding distributed debugging tasks that were, thus far, under-

served by commercial or research debugging tools.
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Chapter 5

Conclusion

In this dissertation we have presented our efforts to improve the state of the art

for debugging support for distributed applications. Our work produced two novel

tools: first, Liblog, a system for deterministically replaying POSIX applications;

and second, Friday, the next step towards distributed comprehension. Together,

these tools provide a level of visibility into the runtime behaviour of real distributed

applications that was previously infeasible.

5.1 Future Work

Liblog and Friday are only the first steps in our distributed replay research.

Now that the foundation has been laid, there are dozens of fascinating debugging and

analytical tools that could be built on top with relatively little effort. We outline a

few here.

First, could the information provided by Liblog help a programmer trace cor-

rupted state back to its source? If we have a distributed application propagating

garbage or triggering remote failures, we can search through the execution history by

finding all messages that could have triggered a local fault, replaying the processes

that sent those messages, and then finding all the messages arriving on those nodes

that could have imported the problem. Iterating this simple algorithm will eventually

find the origin of the problem, but the fan-out is huge. We could build a system using
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Friday’s support for predicate evaluation to verify valid state and prune the search

space significantly. The result could be tremendously useful for debugging routing

applications in particular.

A related research direction would be to expose messages as first-class objects

for Friday’s distributed predicates. This would allow the user to easily correlate

transmission and reception, detect dropped messages, and trace message paths across

a network.

These abilities would also enable new visualization tools that provide a higher

granularity and accuracy than currently possible, and for an entire distributed ap-

plication. Beyond drawing routes and packet transmissions, Friday-enabled visual-

izers could display statistics computed from global state, with no prior planning and

predicate-specific instrumentation. The user could even search for arbitrary applica-

tion state.

Another opportunity is to combine the power of Liblog with ideas from Delta

Debugging [CZ05]. First, we would add the ability to libreplay to intentionally alter

history during replay. For example, it could pretend a message was not received, or

swap the arrival order of two messages, or change the return value of a system call.

This selective non-determinism would let us experiment with alternate executions and

search for changes that avoid non-deterministic failures. The goal of Delta Debugging

is to automate that search.

An automated tool that could detect even a few types of bugs would be a huge

boon for developers of distributed applications. The ability to replay execution re-

peatedly and evaluate predicates on application state is already provided by Liblog

and Friday. We need now to develop a good notion of variations on an execution

log and the search algorithm itself. And, of course, we must explore the soundness

of replay in an alternate history. How do we adjust for new, unlogged behaviour

from the application? How long can the alternate execution remain stable? Could we

simply let the application run “live”, without the log, in an emulated environment?

Many questions remain.

In addition to these follow-up projects, we also have several improvements to the

core Liblog and Friday tools that merit investigation. One immediate idea is to
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reduce watchpoint overheads via the reimplementation of the malloc library call and

memory page fragmentation, or through intermediate binary representations, such as

those provided by the Valgrind [Val] tool. Building a hybrid system that leverages

the limited hardware watchpoints, yet gracefully degrades to slower methods, would

also be rewarding.

Another feature we seek to include in the near future is the ability to checkpoint

Friday state during replay. This would allow a programmer to replay in Friday

a traced session with its predicates from its beginning, constructing any debugging

state along the way, but only restarting further debugging runs from intermediate

checkpoints, without the need for reconstruction of debugging state. This would also

make it easier to debug the debugger on those occasions when Friday predicates

themselves become complicated and/or buggy.

We are considering better support for thread-level parallelism in Friday and

Liblog. Currently threads execute serially with a cooperative threading model, to or-

der operations on shared memory. We have also designed a mechanism that supports

preemptive scheduling in userland, and we are also exploring techniques for allowing

full parallelism in controlled situations.

Further down the road, we are very interested in improving the ability of the

system operator to reason about time. Perhaps our virtual clocks could be optimized

to track real or average time more closely when the distributed clocks are poorly

synchronized. Better yet, it could be helpful to make stronger statements in the face

of concurrency and race conditions. For example, could Friday guarantee that an

invariant always held for an execution, given all possible interleavings of concurrent

events?

5.2 Afterword

Thus ends this dissertation: a small book but a huge chapter in my life.

My advisor, Ion, first suggesting building a replay tool for Chord in Fall 2003. I

initially rejected the idea, suspecting that the details of capturing non-determinism

and integrating with GDB would be devilish, and that only a fool would tackle such
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a wide-open research problem with so much technical grunt work.

A few months later I returned to the topic, because we needed better debugging

tools. This time I was drawn to the wide-open nature of the research problem, and

foolishly optimistic about the technical details and the devil therein. That was almost

three years ago, and by now we have a rather powerful and mostly bug-free prototype.

I hope that it may help others in their own work.

I came to graduate school for the challenge. I leave feeling that I have met the

challenge and succeeded. Or maybe we’ll call it a draw. In any case, I now move on

to the next chapter. Thank you for reading.
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