
Model Driven Compression of 3-D Tele-Immersion
Data

Jyh-Ming Lien
Ruzena Bajcsy

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-170

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-170.html

December 12, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Model Driven Compression of 3-D Tele-Immersion Data
Jyh-Ming Lien Ruzena Bajcsy

{neilien,bajcsy}@eecs.berkeley.edu
University of California Berkeley

Berkeley, CA USA

Abstract

Due to technology advances, reconstructing three-
dimensional representations of physical environments in
real time using cheap and non-professional cameras and
PCs becomes possible. These advances will make 3-
D tele-immersive environments available for everyone in
the near future. However, the data captured by a Tele-
Immersion (TI) system can be very large. Compression
is needed to ensure real-time transmission of the data.
Due to this real-time requirement, compressing TI data
can be a challenging task and no current techniques can
effectively address this issue. In this paper, we propose
a model driven compression. The main idea of this ap-
proach is to take advantage of prior knowledge of objects,
e.g., human figures, in the physical environments and to
represent their motions using just a few parameters. The
proposed compression method provides tunable and high
compression ratios (from 50:1 to 5000:1) with reasonable
reconstruction quality. Moreover, the proposed method
can estimate motions from the noisy data captured by our
TI system in real time.

1 Introduction

Three-dimensional Tele-Immersion (TI) systems aim to
provide a rich communication medium that captures
three-dimensional data from physically separated envi-
ronments and projects the captured data into a shared vir-
tual space in real time [6, 25]. Due to recent technology
advances, a 3-D TI system can be constructed cheaply us-
ing off-the-shelf products. Figure 1 shows a 180-degree
full-body reconstruction from our TI system.

10 camera views
full body reconstruction

Figure 1: Point data captured from our TI system with 10 cali-
brated camera clusters. All clusters are registered to a global co-
ordinate system. The full 3-D reconstruction is simply a union
of the individual reconstructions without any post processing,
e.g., hole filling or noisy point removal, due to the real-time con-
straint.

One of the major bottlenecks of the current 3-D TI sys-
tems is in transmitting the huge amount of data in real
time. For example, our system, which generates 640×480
pixel depth and color maps from 10 camera clusters in a
rate of 15 frames per second (fps), requires a 220 MB/s
bandwidth. Several methods [15, 24] have been proposed
to address this problem using image and video compres-
sion techniques, but the data volume remains to be prohib-
itedly large. Currently, our system, using the compression
method by Yang et al. [24], can only reach 4∼5 fps when
connected with a single remote TI.

Challenges of compressing TI data. Our TI data is
composed of a stream of points as shown in Figure 1.
Methods have been proposed to compress static or dy-
namic point data. However, there are issues that have not
yet been addressed in the literature, thus making our com-
pression problem more challenging. The main challenges
include:

1

point cloud Q model P
T (P)

Step 1: Motion Estimation

Input
Output

residual atlas

R = |Q − T (P)|

Step2: Prediction Residuals

Figure 2: Model driven compression of the point data Q, where P is our model, and T is the motion parameter (e.g., the skeleton
configuration) that transforms P to Q. The prediction residuals R is the difference between T (P) and Q.

1. real-time constraint,
2. little or no data accumulation, and
3. multiple or no data correspondences.

The real-time constraint forbids us to directly use most
of the existing compression methods for point data, e.g.,
the methods [12, 19] designed for off-line compression
(which usually takes tens of seconds to several minutes
to compress a few thousands of points, and our system
creates about 8∼10 thousand points in each frame). The
real-time constraint also requires us to accumulate little
or no data, i.e., the captured data should be transmitted as
soon as they become available. However, data accumula-
tion is usually necessary for the methods that exploit the
temporal coherence [17, 3, 14, 22].

Finding correspondences between two point data is an-
other challenging problem. In many existing motion com-
pression methods [13, 16, 26], the correspondence infor-
mation is given. This is not the case in our TI data. More-
over, a point in a point set may correspond to zero (e.g.,
due to occlusion) or multiple (reconstructed in multiple
views) points in the next point set.

Our approach. This paper aims to address the prob-
lems in TI data compression from a model driven ap-
proach. The main idea of this work is to take advantage
of prior knowledge of objects, e.g. human figures, in the

TI environments and to represent their motions using just
a few parameters, e.g., joint positions and angles.

More specifically, our proposed method compresses
points that represent human motion using motion estima-
tion. Therefore, instead of transmitting the point clouds,
we can simply transmit the motion parameters. This ap-
proach is based on the assumption that most points will
move under rigid-body transform along with the skele-
ton. In reality, point movements may deviate from this
assumption, such as muscle movements and hair or cloth
deformations. Therefore, we further compress the devia-
tions from the rigid movements. As we will see later (in
Section 4), the deviations (we call prediction residuals) in
most cases are small. An overview of this model driven
approach is shown in Figure 2.

Key results. Our compressor provides (tunable) high
compression ratios (from 50:1 to 5000:1) with reasonable
reconstruction quality. Our method can estimate motions
from the data captured by our TI system in real time (10+
fps).

2 Related Work

TI data compression. Only a few methods have been
proposed to compress TI data. Kum et al. [15] pro-

2

posed an algorithm to compress TI data in real time. Their
method aimed to provide scalability to camera size, net-
work bandwidth, and rendering power. Their method has
5:1 compression ratio. Recently, Yang et al. [24] pro-
posed a real-time compression method to compress depth
and color maps using lossless and lossy compression, re-
spectively. Their method has 15:1 compression ratio. Un-
fortunately, the volume produced by these real-time com-
pression methods is still too large to be transmitted in real
time.

Motion estimation. Extensive work has been done to
track human motion in images (see surveys [2, 9]). In this
paper, we focus on motion estimation from 3-D points.

A popular method called “Iterative Closest Points”
(ICP) [4, 20] has shown to be an efficient method for
estimating rigid-body motion [23] in real time. For two
given point sets P and Q, ICP first computes correspond-
ing pairs {(pi ∈ P, qi ∈ Q)}. Using these corresponding
pairs, ICP computes a rigid-body transform T for

error = argmin
T

∑

i

|(T (pi), qi)|
2 . (1)

The main step for solving Eq. 1 (see details in [4]) is to
compute the cross-covariance matrix ΣPQ of the corre-
sponding pairs {pi, qi},

ΣPQ =
1

n

n
∑

i=1

[(pi − µp)(qi − µq)
t] , (2)

where µp and µq are the centers of {pi} and {qi}, resp.,
and n is the size of {pi, qi}. As outlined in Algorithm 2.1,
ICP iterates these steps until the error is small enough.
An important property of ICP is that the error always
decreases monotonically to a local minimum when Eu-
clidean distance is used for finding corresponding points.

Algorithm 2.1 ICP(P , Q), Besl and Mckay [4]
Input. Two point clouds, P and Q

1: repeat
2: find corresponding points {(pi ∈ P, qi ∈ Q)}
3: compute error and T in Eq. 1.
4: P = T (P)
5: until error < τ

ICP has also been applied to estimate motions of ar-
ticulated objects, e.g., hand [8], head [18], upper [7] and

full bodies [21]. In these methods, ICP is applied to min-
imize the distance between each body part and the point
cloud Q, i.e., error(P,Q) =

∑

l error(Pl, Q), where Pl

represents the points of the body part l. However, this ap-
proach lacks a global mechanism to oversee the overall
fitting quality. For example, it is common that two body
parts can overlap and a large portion of Q is not ‘cov-
ered’ by P . Therefore, considering the global structure as
a whole is needed. To the best of our knowledge, joint
constraint [7, 21] is the only global measure studied.

On the contrary, our ICP-based motion tracking
method, called ARTICP, considers both joint and global
fitting constraints. More specifically, we propose to esti-
mate the global fitting error as:

global error(P,Q) = |Fe(P) − Fe(Q)|, (3)

where the function Fe transforms a point set to a space
where the difference is easier to compute. A more de-
tailed discussion on Fe can be found in the next two sec-
tions. Note that Eq. 3 also computes the prediction resid-
uals (shown in Figure 2).

3 Motion Estimation

We extend ICP to estimate motion of dynamic point data
in real-time. Our approach uses a computationally more
expensive (may not be real time) initialization to generate
an accurate skeleton of the subject and then a real-time
tracking method will fit the skeleton to the point clouds
captured from the rest of the movements. Several meth-
ods, e.g., [5], exist and can provide us an initial skeleton
to start the process. In this paper, we will focus on the
tracking aspect.

3.1 Model and Segmentation

Unlike most ICP-based work [18, 8, 7, 21], our method
uses the segmentation of the initial frame to estimate the
motion by taking the advantage of that the appearances of
the initial frame, denoted by P , and the remaining frames
are usually similar. We compute a segmentation of P us-
ing a given skeleton S. A skeleton S is organized as a
tree structure, which has a root link, lroot, representing the
torso of the body. Each link has the shape of a cylinder.
After segmentation, each point of P is associated with a

3

link. A point p is associated with a link l if l is closest to
p. The closeness is computed as the follows:

closeness(p, l) =







0 ~np ·
−→
l p ≤ 0

1 p ∈ l

e− dist(p,∂l)/r otherwise

,

(4)
where ~np is the normal of p,

−→
l p is the vector from (p’s

closest point on) link l to p, ∂l is the surface of the link and
r is the radius of the link. We denote the points associated
with a link l and a skeleton S as Pl and PS , respectively.

3.2 ICP of Articulated Body

Now, we can start to fit the skeleton S to the next point
cloud Q. Our goal here is to find a rigid-body transform
for each link so the (global) distance between PS and Q

is minimized. The main features of our ARTICP include:

• Hierarchical fitting for faster convergence,
• articulation constraint,
• monotonic convergence to local minimum guaran-

teed,
• global error minimization.

ARTICP is outlined in Algorithm 3.1. We will discuss
each of these important features in detail.

Algorithm 3.1 ARTICP(S, Q)
Input. a skeleton S, and the current point cloud Q.

1: cluster Q . see Section 3.3
2: q.push(lroot) . q is a queue
3: while q 6= ∅ do
4: l← q.pop() . l is a link
5: T ← ICP(Pl, Q) . T is a rigid-body transform
6: for each child c of l do
7: apply T to c

8: q.push(c)
9: global fitting . see Section 3.4

Clustering. ARTICP first clusters the current point
cloud Q. Each cluster has a set of points with similar
outward normals and similar colors. These clusters will
be used in ICP for finding better correspondences. (See
details in Section 3.3.)

Hierarchical ICP. Next, we evoke ICP to compute a
rigid-body transform for each link. Note that we do this in

a fashion that the torso (root) of the skeleton is fitted first
and limbs are fitted last. By considering links in this order,
ARTICP can increase the convergence rate by applying
the transform not only to the link under consideration but
also applies the transform to the children of the link. The
rationale behind this is that a child link, e.g., limbs, gen-
erally moves with its parent, e.g., torso. If the child link
does not follow the parent’s movement, the movement of
the child link is generally constrained and is easy to track.

Articulation constraint. We consider the articula-
tion constraint, i.e., the transformed links should remain
jointed, by replacing both of the centers µp and µq in Eq. 2
by the joint position.

Global fitting. Now, after we apply ICP to the indi-
vidual links, the skeleton S is roughly aligned with the
current point cloud Q but may still be fitted incorrectly
without considering the entire skeleton as a whole. We
consider a global fitting step in Section 3.4.

3.3 Robustness, Efficiency and Conver-
gence

Real time is one of the most important requirements of our
system. Computing correspondences is the major bottle-
neck of ICP. Considering additional point attributes, e.g.,
color and normal information, can increase both ICP’s
efficiency and robustness. Some spatial partitioning data
structures, e.g, k-d tree, can also alleviate this problem,
but the performance of these data structures degrades
quickly when the dimensionality of the space becomes
high. Moreover, considering addition attributes usually
does not guarantee monotonically convergence in ICP.

To gain efficiency, robustness, and convergence using
point colors and normals, we construct a data structure
called (n, c)-clustered kd-tree (shown in Figure 3). In this
data structure, we cluster normals using geographic co-
ordinate system and cluster colors using hues and satura-
tions. Then, we construct a k-d tree from the 3-D point
positions in each cluster.

When a point m looks for its corresponding point, ICP
will only exam the points in m’s the neighborhood in a
(n, c)-clustered kd-tree. By doing so we can find better
correspondences efficiently while guarantee that ICP can
always converge to a local minimum. Theorem 3.1 proves
this property.

4

kd-tree

la
ti
tu

d
e

n

m

π

2

−π πlongitude

−

π

2

color

Figure 3: A (n, c)-clustered kd-tree. Points n and m only look
for their corresponding points in the gray regions around n and
m.

Theorem 3.1. Using a (n, c)-clustered kd-tree, ICP can
always converge monotonically to a local minimum.

Proof. Besl and Mckay [4] have shown that ICP can al-
ways converge monotonically. An important fact that
makes this true is that the corresponding points of a point
p are always extracted from the same point set Q. The rea-
son why considering point normals may not have mono-
tonic convergence is that in each iteration p’ correspond-
ing point can be extracted from a different subset of Q.
On the contrary, ICP uses a (n, c)-clustered kd-tree will
always search for p’s corresponding point from the same
set of clusters, therefore, is guaranteed to converge mono-
tonically.

3.4 Global Fitting

So far, we only consider fitting each link to the point cloud
independently. However, as we mentioned earlier, consid-
ering links independently sometimes causes overlapping
even when the fitting error (Eq. 1) is small! Therefore,
we realize that, in order to get more robust results, it is
necessary to consider the entire skeleton as whole.

Global error. Global fitting error (Eq. 3) is measured
as the difference between the model PS and the current
point cloud Q. Due to the size difference and ambiguous
correspondences of PS and Q, it is not trivial to compute
the difference directly. We need the function Fe to trans-
form PS and Q so that the difference is easier to estimate.
Our selection of Fe has indeed been mentioned before (in
Section 3.1): Segmentation. It is important to note that
the segmentation process is a global method, in which
each link competes with other links to be associated with
a point (using Eq. 4). Because Fe(PS) is already known

at the beginning, we only need to compute Fe(Q). After
segmenting Q, each link l will have two associated point
sets, Pl and Ql. To measure the difference of Pl and Ql,
we use a compact shape descriptor: the third moment, µ3,
of Pl and Ql. To summarize, our global function is ap-
proximated as:

global error(PS , Q) =
∑

l∈S

|µ3(Pl) − µ3(Ql)| . (5)

When the error is above a user-defined threshold, we
start to minimize the global error.

Minimizing global error. To minimize the global er-
ror, we iterate between the following two steps: matching
Pl to Ql using ICP and segmenting Q (i.e., computing
a new Ql). Another benefit of Eq. 5 is that we can dis-
tinguish the quality of each link. Therefore, we can just
apply this iteration to the links with intolerably large er-
rors.

4 Prediction Residuals

Motion estimation brings the skeleton S close to the cur-
rent point cloud Q. However, due to several reasons, e.g.,
non-rigid movements and estimation errors, our model PS

may not match Q exactly. We call the difference between
PS and Q “prediction residuals” (or simply residuals).
Because PS and Q are close to each other, we expect the
residuals to be small. In this section, we present a method
to compute the prediction residuals.

Figure 4: A torso link.

Similar to Eq. 5, we compute
the prediction residuals for each
link by finding the difference be-
tween Pl and Ql. However, this
time the difference is measured
by re-sampling the points. More
precisely, we project both Pl and
Ql to a regular 2-D grid embed-
ded in a cylindrical coordinate
system defined by the link l. Be-
cause Pl and Ql are now encoded
in regular grids, we can easily
compute the difference, which
can be compressed using image
compression techniques. Figure 5

5

illustrates the prediction residual computed from the torso
link in Figure 4. Because this projection is invariant from
a rigid-body transform, we only need to re-sample Ql at
each time step.

(a) (b) (c)

Figure 5: (a) Color and depth maps at time t − 1 of the torso
link in Figure 4. The Y-axis of the maps is parallel to the link.
(b) Color and depth maps at time t of the same torso link. (c)
The differences between the maps at times t− 1 and t.

We determine the size of a grid from the shape of a
link l and the size of l’s associated points |Pl|. We make
sure that our grid size is at least 2|Pl| using the following
formulation, i.e., the width and the height of the grid are
2πRlS and LlS, resp., where Rl and Ll are the radius
and the length of the link l and S =

√

|Pl|
πRlLl

. We call
that a grid encodes 100% prediction residuals if the grid
has size 2|Pl|. As we will see later, we can tune the grid
size to produce various compression ratios and qualities.

5 Experimental Results

We use both synthetic and TI data to evaluate our method.
Synthetic data is generated from a polygonal mesh ani-
mated using the mocap data from Carnegie Mellon Uni-
versity. We study synthetic data because it provides a
‘ground truth’ for us to evaluate our method. We study
the quality of our model-driven compression on the TI
data with various levels of prediction residuals consid-
ered. We also compare our model-driven compression
to H.264 video compression [1] and Yang et al.’s method
[24]. All the experimental results in this section are ob-
tained using a Pentium4 3.2GHz CPU with 512 MB of
RAM. The best way to visualize our results is via the sub-
mitted videos.

5.1 Motion estimation of synthetic data

We study the robustness of our motion estimation us-
ing three synthetic data sets, dancing, crouch&flip, and
turning. Each frame in the synthetic data contains about
10,000 points, and 75% of the points are removed ran-
domly to eliminate easy correspondences. The table be-
low shows a summary of the averaged motion estimation
frame rate.

motion dance crouch&flip turn tai-chi
estimated (Fig. 6) (Fig. 7) (Fig. 8) (in video)
avg. fps 39.1 fps 29.6 fps 48.4 fps 61.3 fps

The quality of the estimated motion is measured as the
normalized distance offset et between joints, i.e.,

et =
1

n · R

n
∑

i=1

|jest
i − j

mocap
i |,

where, jest
i and j

mocap
i are the estimated and mocap joint

positions, resp., and R is the radius of the minimum
bounding ball of the point cloud, i.e., we scale the skele-
ton so that the entire skeleton is inside a unit sphere.

With and without global constraints. We compare
the difference between the results from the tracking algo-
rithm with and without articulation and global fitting con-
straints. Figure 6 shows that global constraints do have a
significant influence on motion estimation quality.

Downsampling factor. In this experiment, we study
how point size (% of downsampling) affects the motion
estimation quality. Figure 7 shows that the downsampling
rate does not have a significant influence on the quality (at
least down to 1% for this crouch & flip motion).

Noise level. In this experiment, we study how noise
affects the quality. From Figure 8, it is clear that as we in-
crease the noisiness of the points, the difference between
the estimated motion and the “ground truth” increases.
However, the overall difference remains small even for
very noisy data.

5.2 Compressing TI data

We evaluate the results of our compression method using
four motion sequences captured by our TI system. These
motions are performed by two dancers, one student and

6

(a) (b) (c)

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2

 0 20 40 60 80 100 120 140 160

no
rm

al
iz

ed
 e

rr
or

time step

global constraints: dance

with global constraints
without global constraints

Figure 6: Top: The postures from (a) motion capture, and (b)
estimation with global constraints and (c) without global con-
straints. Bottom: Tracking errors with and without global con-
straints.

one tai-chi master. The date captured by our TI system
have about 8 to 10 thousand points in each frame. Because
the TI data is much noisier than the synthetic data and can
have significant missing data, estimating motion from the
TI data is more difficult, thus we use 50% of the initial
point set as our model. The table below shows that we can
still maintain at least 10 fps interactive rate in all studied
cases.

motion dancer 1 dancer 2 student tai-chi master
estimated (Fig 2) (Fig 4) (in video) (Fig 10)
avg. fps 11.9 fps 11.5 fps 12.5 fps 12.6 fps

Quality. Unlike synthetic data, we do not have a
ground truth to evaluate the quality in the TI data. Instead,
we directly measured the quality of our method as the dif-
ference between the point data before and after our model-
driven compression. More specifically, we compute the
“peak signal-to-noise ratio” (PSNR) of the images ren-
dered from uncompressed and compressed point data. In
our experiments, two sets of images (one for each point
set) are rendered from six (60 degree separated) camera
views in each frame. The results of our study are summa-
rized in Table 1.

In Table 1, we compare the reconstruction quality by

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 e

rr
or

time step

downsampling factor: crouch and flip

100%
40%
10%
1%

Figure 7: Tracking errors with different downsampling factors.

no noisenoise level level 2 level 3 level 4level 1

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 20 40 60 80 100 120 140

no
rm

al
iz

ed
 e

rr
or

time step

noise level: turn

no noise
noise level 1
noise level 2
noise level 3
noise level 4

Figure 8: Tracking errors with different noise intensities.

computing PSNRs w.r.t the uncompressed data. Typi-
cal PSNR values in image compression are between 20
and 40 dB. We considered three compression levels, i.e.,
compression without residuals and with 50% and 100%
residuals. We see that encoding residuals indeed gener-
ate better reconstruction than that without residuals by 4
dB. Figure 9 provides an even stronger evidence that con-
sidering residuals always produces better reconstructions
for all frames. Another important observation is that the
compression quality remains to be the same (around 30)
for the entire motion. Figure 10 shows that the difference
is more visible when the prediction residuals are not con-
sidered.

7

Table 1: Compression quality. The “peak signal-to-noise ratio” (PSNR) is computed between rendered images of the
compressed and uncompressed point data. PSNR is defined as: 20 log10 (255

rmse), where rmse =
√

∑

i |Ii − Ji|2 is the
root mean squared error of images I and J . We also measure the qualify by varying the levels of residual considered.
A compression with x% residuals means its residual maps are x% smaller than the full residual maps.

motion dancer 1 dancer 2 student tai-chi master
no residuals 23.87 dB 24.10 dB 25.82 dB 26.27 dB

avg. PSNR 25% residuals 25.77 dB 26.18 dB 27.96 dB 28.75 dB
100% residuals 27.95 dB 28.27 dB 29.91 dB 30.83 dB

(a) (b) (c) (d) (e)

Figure 10: Reconstructions from the compressed data and their differences with the uncompressed data. (a) Uncompressed data.
(b) Compressed without residuals. (c) Difference between (a) and (b). (d) Compressed with residuals. (e) Difference between (a)
and (d).

 22

 24

 26

 28

 30

 32

 34

 36

 0 50 100 150 200 250 300

P
S

N
R

time step

taichi

100% residuals
no residuals

Figure 9: PSNR values from the tai-chi motion. Each point in
the plot indicates a PSNR value.

Compression Ratio. One of the motivations of this
work is that no existing TI compression methods can pro-
vide high compression ratios. In this experiment, we show
that our model-driven compression method can achieve
50:1 to 5000:1 compression ratios. As we have shown ear-
lier, our compression method can provide different com-

pression ratio by varying the level of residuals considered
during encoding. We summarize our experimental results
in Table 2.

We would like to note that because our method is fun-
damentally different from the other two methods we can
achieve very high compression ratio while maintaining
reasonable reconstruction quality (as shown earlier). Both
Yang et al.’s and H.264 are image (or video)-based com-
pressions, which take color and depth images as their
input and output. On the contrary, our model-driven
compression converts the color and depth images to mo-
tion parameters and prediction residuals. Moreover, even
though H.264 provides high quality and high ratio com-
pression, H.264 is not a real-time compression for the
amount of data that we considered in this work.

6 Discussion and Future Work

We proposed a model driven compression method to con-
vert point set data to a few motion parameters and a set of

8

Table 2: Compression ratio. Both Yang et al.’s [24] and H.264 (we use and implementation from [1]) compression
methods took the color and depths images as their input and output. The compression ratio of H.264 reported in this
table is obtained using 75% of its best quality. We use jpeg and png libraries to compress color and depth residuals,
respectively.

motion dancer 1 dancer 2 student tai-chi master
size before compression 142.82 MB 476.07 MB 1.14 GB 988.77 MB

Yang et al. [24] 11.36 11.73 10.23 14.41
compression H.264 [1] 64.04 53.78 32.04 49.58

ratio no residuals 1490.31 3581.52 5839.59 5664.55
25% residuals 195.62 173.52 183.80 183.82

100% residuals 66.54 55.33 60.29 61.43

residual maps, whose size can be tuned adaptively accord-
ing to available space and time. Our motion estimation
method, ARTICP, can efficiently estimate the motions
from synthetic and TI data at interactive rates (10∼60
frames per second).

Despite our promising results, our method has limi-
tations. First, we observed that our motion estimation
fails when many occlusions occurred. This problem be-
comes more serious when multiple subjects appear in the
scene. Second, we assume that points move under rigid-
body transform and non-rigid motions are usually com-
paratively small. However, this assumption becomes in-
valid when the subjects wear skirts or long hairs. Third,
although the quality of our compression method is rea-
sonable, its PSNR values are still low comparing to the
current video compression standards. It is not clear at this
point how our method can be improved to produce higher
quality results.

Currently, we are exploring the possibility of estimat-
ing motions from multiple targets. Our compression
method can also be extended in several ways. For exam-
ple, we would like to investigate efficient ways to detect
temporal coherence in our residual maps. One possible
approach is to accumulate residuals from a few frames
and compress them using video compression techniques.

Note that even though we focus only on the applica-
tion in data compression in this paper, the result of this
work can also be used broadly in applications including
human activity recognition and analysis [11, 10], marker-
less motion capture, and Ergonomics.

References

[1] Adobe. Qicktime 7.0 h.264 implementation, 2006.

[2] J. K. Aggarwal and Q. Cai. Human motion analysis:
a review. Comput. Vis. Image Underst., 73(3):428–
440, 1999.

[3] O. Arikan. Compression of motion capture
databases. ACM Trans. Graph., 25(3):890–897,
2006.

[4] P. J. Besl and N. D. McKay. A method for registra-
tion of 3-d shapes. IEEE Trans. Pattern Anal. Mach.
Intell., 14(2):239–256, 1992.

[5] K. M. Cheung, S. Baker, and T. Kanade. Shape-
from-silhouette of articulated objects and its use
for human body kinematics estimation and motion
capture. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, June
2003.

[6] K. Daniilidis, J. Mulligan, R. McKendall, G. Kam-
berova, D. Schmid, and R. Bajcsy. Real-time 3d tele-
immersion, 2000.

[7] D. Demirdjian and T. Darrell. 3-d articulated pose
tracking for untethered diectic reference. In ICMI
’02: Proceedings of the 4th IEEE International Con-
ference on Multimodal Interfaces, page 267, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[8] G. Dewaele, F. Devernay, and R. Horaud. Hand mo-
tion from 3d point trajectories and a smooth surface
model. In ECCV (1), pages 495–507, 2004.

9

[9] D. M. Gavrila. The visual analysis of human move-
ment: a survey. Comput. Vis. Image Underst.,
73(1):82–98, 1999.

[10] G. Guerra-Filho and Y. Aloimonos. Human activ-
ity language: Grounding concepts with a linguistic
framework. In Proc. of the 1st International Con-
ference on Semantics and Digital Media Technology
(SAMT), 2006.

[11] G. Guerra-Filho, C. Fermüller, and Y. Aloimonos.
Discovering a language for human activity. In Proc.
of the AAAI 2005 Fall Symposium on An-ticipatory
Cognitive Embodied Systems, 2005.

[12] S. Gumhold, Z. Karni, M. Isen-burg, and H.-P. Sei-
del. Predictive point-cloud compression. In Sig-
graph 2005 Sketches, 2005.

[13] L. Ibarria and J. Rossignac. Dynapack: space-time
compression of the 3d animations of triangle meshes
with fixed connectivity. In SCA ’03: Proceedings
of the 2003 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, pages 126–135,
Aire-la-Ville, Switzerland, Switzerland, 2003. Eu-
rographics Association.

[14] Z. Karni and C. Gotsman. Compression of soft-
body animation sequences. Computers & Graphics,
28(1):25–34, 2004.

[15] S.-U. Kum and K. Mayer-Patel. Real-time multi-
depth stream compression. ACM Trans. Multimedia
Comput. Commun. Appl., 1(2):128–150, 2005.

[16] J. E. Lengyel. Compression of time-dependent ge-
ometry. In SI3D ’99: Proceedings of the 1999 sym-
posium on Interactive 3D graphics, pages 89–95,
New York, NY, USA, 1999. ACM Press.

[17] W. M. Marc Alexa. Representing animations by
principal components. Computer Graphics Forum,
19(3):411–418, 2000.

[18] L.-P. Morency and T. Darrell. Stereo tracking us-
ing icp and normal flow constraint. In Proceedings
of International Conference on Pattern Recognition,
2002.

[19] T. Ochotta and D. Saupe. Compression of point-
based 3d models by shape-adaptive wavelet coding
of multi-height fields. In Symposium on Point-Based
Graphics, pages 103–112, 2004.

[20] S. Rusinkiewicz and M. Levoy. Efficient variants of
the icp algorithm. In Proceedings of the Third In-
ternational Conference on 3-D Digital Imaging and
Modeling (3DIM), pages 145–152, 2001.

[21] R. D. S. Knoop, S. Vacek. Sensor fusion for 3d
human body tracking with an articulated 3d body
model. In Proceedings of the IEEE International
Conference on Robotics and Automation, Walt Dis-
ney Resort, Orlando, Florida, May 15 2006.

[22] M. Sattler, R. Sarlette, and R. Klein. Simple
and efficient compression of animation sequences.
In SCA ’05: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer an-
imation, pages 209–217, New York, NY, USA,
2005. ACM Press.

[23] D. Simon, M. Hebert, and T. Kanade. Real-time 3-
d pose estimation using a high-speed range sensor.
In Proceedings of IEEE International Conference
on Robotics and Automation (ICRA ’94), volume 3,
pages 2235–2241, May 1994.

[24] Z. Yang, Y. Cui, Z. Anwar, R. Bocchino,
N. Kiyanclar, K. Nahrstedt, R. H. Campbell, and
W. Yurcik. Real-time 3d video compression
for tele-immersive environments. In Proc. of
SPIE/ACM Multimedia Computing and Networking
(MMCN’06), San Jose, CA, 2006.

[25] Z. Yang, K. Nahrstedt, Y. Cui, B. Yu, J. Liang,
S. hack Jung, and R. Bajscy. Teeve: The next gen-
eration architecture for tele-immersive environment.
In ISM ’05: Proceedings of the Seventh IEEE Inter-
national Symposium on Multimedia, pages 112–119,
Washington, DC, USA, 2005. IEEE Computer Soci-
ety.

[26] J. Zhang and C. B. Owen. Octree-based animated
geometry compression. In DCC ’04: Proceedings
of the Conference on Data Compression, page 508,
Washington, DC, USA, 2004. IEEE Computer Soci-
ety.

10

