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Abstract

Currently, the most popular file-sharing applications have used either centralized or flood-based
search algorithms. Napster has been successful in providing a centralized index with presumably per-
fect query recall. Succeeding, more distributed protocols like Gnutella and Kazaa have used flood-
based search procedures in which a query is propagated through an unstructured network. Query result
quality in such networks suffers as queries for items that are rare have high probabilities of not being
found as the entire corpus is not covered during a search. In this paper, we present a new and improved
implementation of a distributed file-sharing system yielding (1) query result quality better than flood-
ing and close to a centralized index, and (2) low-maintenance network overhead. These improvements
result from our optimized approaches to (a) high churn rates (clients and servers frequently entering
and leaving the system) and (b) skewed workloads (high variation in access frequencies vs. key). High
churn rates are addressed by keeping all data in soft state, which is periodically refreshed, such that
the loss of a server or client is quickly reflected in the indexes; higher refresh rates imply fewer false
positives. Skewed workloads are load balanced with the use of a layer of indirection for placing and
locating data, such that data is partitioned and distributed based on the frequency of use. A trace-
driven prototype evaluation based on Gnutella system traces shows that our prototype implementation
achieves a low network bandwidth, attains max-average load ratios within a factor of three across all
servers, and has positive recall values for over 90% of all queries, despite a high churn rate; the recall
would be 100% absent churn.

1 Introduction

Keyword-based search has become an integral part of today’s computing experience. One major appli-

cation is that provided by Internet search engines offering full-text search over web content. The second

major application consuming a substantial fraction of overall Internet traffic today is peer-to-peer file-

sharing, offering keyword search over file metadata, including file name, type and author. A computer

running file-sharing software provides a service which lets other peers download files stored in its public

directory. A file-sharing network lets its users submit a query containing several keywords and returns

pointers to peers with files which contain the keywords provided with the query in their metadata. The

user can then examine the pointers and follow any of them to download a given file.

∗Primary support for this research has been provided by AT&T Laboratories, with additional support by the University of
California MICRO Program and Toshiba Corporation.
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Typical file-sharing workloads play an important role in the design of file-sharing systems. The

systems generally experience a large amount of churn. The composition of peers is bimodal, ranging from

server-like nodes that stay online for days at a time to client-like consumers which join the networks for

a few hours to run some queries and perform quick downloads while offering their data in the mean time.

These high churn rates create frequent updates to the indexing structures as clients enter and leave the

network. The typical distributions of keywords are highly skewed on both the querying and the metadata

publishing fronts. We propose a system that explicitly deals with both churn, by keeping all the data in soft

state and implementing an efficient update protocol, and the skewed workload by load balancing with the

help of an additional layer of indirection which provides for location independence and load distribution.

The keyword space is partitioned such that each inverted index for a particular keyword resides on one

or a handful of nodes. A layer of indirection is used for locating the precise nodes. Thus, our system

distributes data in such a way that finding exactly a query target can be accomplished with a small number

of lookups.

In this paper, we present a new and improved implementation of a distributed file-sharing sys-

tem yielding (1) query result quality better than flooding and close to a centralized index, and (2) low-

maintenance network overhead. While others have proposed solutions for structured distributed indices,

the problem of balancing load has not previously been addressed. Our work concentrates on the problem

of load balancing within the index, which occurs due to the uneven distribution of keyword popularity

in the publishing and query workloads. We achieve this through an additional layer of indirection which

allows for more flexible allocation of storage and search resources. In this work we present, analyze and

evaluate a structured distributed index protocol for file sharing. We evaluate a prototype implementation

on PlanetLab, a global-scale test bed for deploying large distributed services. A trace-based evaluation

shows that our prototype achieves good levels of load balancing while maintaining a reasonable network

overhead, roughly that of streaming video. The prototype returns results for over 90% of all queries with

93% of all queries requiring less than 10 seconds to complete.

The rest of this report is organized as follows. In Section 2 we provide some background and discuss

the related work. In Section 3 we present the system design overview, the details of its soft-state protocols,

and a cost analysis model for evaluating the overhead associated with our protocols against varying system

workloads. Section 4 addresses the issue of load balancing due to the typical non-uniformity of file sharing

query and keyword distributions. In Section 5 we present experimental data evaluating our prototype

and conclude in Section 6. In the Appendix, we present our analysis of the Gnutella network traces,

provide the derivations behind our analytical model, and discuss and evaluate our distributed hash table

implementation.

2 Related Work

The general solution space for solving the distributed search problem can be broken into four categories

represented in Figure 1. In a centralized index system a cluster of nodes is responsible for maintaining an

index of what files every file-sharing client stores. Each client connects to one or more machines in the
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(a) Centralized Index (b) Unstructured Flooding (c) Supernode Flooding (d) Supernode Index

Figure 1: Solution space

cluster and publishes its local index once. Queries get resolved within the centralized cluster. The query

result quality is ”absolute” as the whole index can be searched to resolve any incoming query. The benefit

of the centralized index is that it incurs minimal publishing costs and produces full query results. The

prototypical example of a centralized cluster was Napster in its original form with a cluster of about 160

machines. A typical centralized index is depicted in Figure 1(a). In a pure flooding system all nodes are

equal. Each has some number of neighbors and all the nodes are organized in an unstructured network as

shown in Figure 1(b). A query by a node gets forwarded to all of its neighbors, and they in turn forward it

to theirs. Each query has an associated time-to-live, specified in number of hops, and only gets propagated

that many hops away from the initiator of the query. The result quality grows with the number of nodes

that are visited as part of the query flood but is usually only partial. Later versions of the protocol have

evolved into a two tier structure in which peers are split up into regular nodes and more capable supernodes

as shown in Figure 1(c). In this scheme queries get propagated only among the supernodes but the general

problems of poor recall are still present.

A substantial amount or work has been done in the area of metadata search for flood-based file-

sharing systems [CGM02, YGM02, CRB+03, CCR04, GFJ+03]. Many of the papers either have not

fully considered the appropriate overheads, load balancing issues, or have not focused on search quality.

Several solutions have been proposed for using an index based approach, but have usually been in the

space of full-text search [RV03, TXD03, TD04, LLH+03, CLL04]. These schemes utilize the structure

of distributed hash tables [SMK+01b, RFH+01, RD, ZKJ01], and a typical two-tier setup is depicted in

Figure 1(d). More recent work [LHH+04, ZH05] suggests using a DHT-based index in conjunction with

current flood-based approaches to achieve better overall query result quality. Caching in flood-based as

well as index-based file-sharing systems has been the subject of several works [CS02, LCC+02, RB02].

Caching can be considered a complementary addition to the problem of distributed search and we do not

explicitly concentrate on it in our work. We do however use a moderate amount of structured replication

to distribute load and achieve limited caching behavior. Measuring and understanding typical file-sharing

workloads has been the interest of several studies [GDS+03, GSG02, KLVW04]. In our work we leverage

on the results of these studies as well as the analysis of traces from the Gnutella network, detailed in

Appendix A to address the skew in distributions of keywords and queries, the primary reason behind the

need for inherent load balancing in a structured file-sharing search system.
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Figure 2: Design Overview

3 Design Overview

In this section we present the design of our distributed file-sharing index. We define the relevant termi-

nology and in subsequent sections we describe the protocols used, and analyze the overheads of those

protocols. In our system, users share files. They provide access to files they hold, and request files held

by others. Requests for files held by others consist of queries containing keyword strings. Files are iden-

tified by their metadata. When a keyword string matches the metadata for a file, then a hit occurs and the

matching file is a target being searched for.

There are two types of nodes in this system: clients and servers. Clients store files, provide files to

others and make requests for files held by others. Servers perform two functions: (a) Each server node

holds an index for a subset of all possible keywords. This index contains a copy of the metadata for

every file in the overall system containing the indexed keyword, and a pointer to the client holding the

file. (b) The servers are linked as a distributed hash table (DHT) (hashed on keyword) in which thekey

is a keyword and thevalue is the address of a server storing an index for that keyword. A server when

performing function (a) is called a ”storage node” and a server when performing function (b) is called a

”pointer node.”

A client seeking a given file presents a keyword string to a storage node that indexes at least one of

those keywords. The storage node, since it has the entire metadata for each file with that keyword, can do a

full compare between the keyword string and the file metadata, and will return a pointer to every matching

file. Thus only one storage node access is needed in order to locate target files - there is no need to search

separate storage nodes on separate keywords and then do a join.

In practice, as further explained in Section 4, for load balancing purposes a given keyword index

may appear on more than one storage node. In that case, each of those storage nodes will have to be

accessed in order to get a full list of target files. Further, a given keyword is not bound to a given storage

node - the DHT is used to find the storage node(s) for a given keyword. This latter feature allows for load

balancing, and the dynamic addition and deletion of storage nodes from the system.

The pointer nodes are organized in a circular distributed hash table (dht), based on chord [SMK+01b].

Each node has a unique 160-bit identifier and is responsible for storing key/value pairs for all the keywords

that hash closest to its identifier. Since pointer nodes are organized in a dht, a client may contact any pointer
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Entity Exposed Interface Usage Description
Storage publish(keyword, client, entries)Client publishes the inverted index
Node entries for the given keyword

update(keyword, client) Client updates the TTL for its
entries on this storage node

query(query) Client queries the storage node
Pointer put(keyword, storagenode) Storage Nodeinserts/updates its reference
Node for the given keyword

get(keyword) Client retrieves pointers toStorage Node(s)
for the given keyword

Table 1: Exposed interfaces

node to perform a lookup request, which gets forwarded to the appropriate pointer node within the dht. A

client therefore only needs to know the location of only one server node. We describe the full operations

of our implementation of the distributed hash table in Appendix C. The load balancing aspect is discussed

separately in Section 4.

Clients wishing to make files available to the community ”publish” the metadata for those files.

The publishing process is depicted in Figure 2. To publish its local contents a client node first needs to

construct an inverted index based on the files it wants to make available. For each keyword, the inverted

index contains a list of local files that contain the keyword. For every keyword, the client needs to publish

the corresponding list to any storage node responsible for that keyword. In some cases several storage

nodes may be responsible for a particular keyword if the entries for that keyword need to be distributed

for load balancing purposes. In the example in Figure 2, the client performs a pointer lookup in the dht for

keywordK1, receives a list consisting of storage node 1, and publishes its index for keywordK1 directly

to storage node 1. In the rare instance when there’s no storage node associated with the keyword or if all

the associated storage nodes are at their full capacity, the client may pick any other storage node.

The querying process is also depicted in Figure 2. A client issuing a query for a set of keywords

contacts the storage node for any one of the keywords and requests it to resolve the query. If there are

several storage nodes responsible for the queried keyword, then to get the full response, the client needs to

contact each of the appropriate storage nodes. To find the storage node(s) responsible for keywordK5, the

query client in Figure 2 asks any available pointer node. It receives a response directly from the pointer

node responsible forK5. The routing of the lookup request is done within the distributed hash table (see

Appendix C). In this example, the client sends its query to storage nodes 4 and 5, which contain index

entries for keywordK5. Even if the query contains several keywords, it is fully evaluated at the storage

nodes responsible for any of the keywords in the query. The entries stored at storage nodes contain all of

each file’s metadata allowing for the query to be fully evaluated locally.

3.1 Soft State Protocols

In this section we describe the soft state protocols used to deal with churn. Any of the three types (client,

pointer, storage) of nodes might leave the system at any point in time and without warning. Our protocol

is explicitly designed to deal with churn by keeping all of the information in soft state. If a client leaves
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the network, the inverted index entries for that client’s files need to be invalidated on all the storage nodes

that contain them. If a storage node goes down, two actions must take place to reflect that all the keyword

entries that it was storing are now lost. (1) The pointers to the no-longer present storage node need to be

invalidated on the pointer nodes. (2) The indexed metadata that was lost needs to be recreated to reflect

the clients that are still online. Finally, if a pointer node disconnects from the network, all of the pointers

that it was maintaining are gone and need to be recreated on some other pointer node.

The pointer nodes provide a distributed hash table put/get interface as shown in Table 1. Each pointer

to a storage node has an associated time-to-live and is removed from the pointer node if not updated by the

storage node. This ensures that (a) storage node failure is reflected on the pointer nodes and that (b) there

are few pointers to storage nodes that are no longer present. In order to guard against lost pointers due to

pointer node failure, the storage nodes periodically update their pointers via theput interface. Theput

always gets routed to thecurrentlyresponsible pointer node, which accounts for pointer node failure. An

entry for each keyword is updated periodically by each storage node at a configurable period on the order

of minutes. The process of storage nodes updating their pointers ensures that their pointers are refreshed.

This exchange accounts for resolving pointer node as well as storage node failures.

The client and storage nodes engage in a protocol to ensure that (a) storage node failure is detected

by the clients and that (b) client departure is detected by the storage nodes. The interface exposed by the

storage nodes is shown in Table 1. After a clientpublish es its entries to a storage node, it needs to

make sure that the entries remain there and are not lost if the storage node suddenly departs. The client

does so by periodically issuing anupdate call directly to the storage node. If the storage node is found

to be gone, then the client needs to republish his information. Likewise, the storage node needs to make

sure that the client whose metadata it’s storing is still available and that it’s not storing stale data. Clients’

entries have a ttl and entries that haven’t been updated for a set period are discarded. A process of clients

periodically pinging storage nodes mitigates both of the above mentioned problems. The client ensures

that the storage node is still up and is using its data to satisfy queries. The storage node is certain that its

clients are still alive and that is does not need to discard their metadata.

3.2 Protocol Overhead

In this section we go through the steps involved in the normal operations of the pointer, storage and client

protocols. We are expecting churn to be part of normal operations and it is accounted for in the protocols

and their overheads. We compute the overhead of each protocol by calculating resulting per server network

load in terms of bytes per second. We feel that total traffic is a good estimate because the real processing

in our system comes from sending and receiving update messages. We feel that this is indicative of

the amount of work that each entity needs to perform and also reflects the overall load injected into the

network. Table 2 lists all the relevant system parameters, and shows how they effect the individual parts of

our protocol. Two sample workloads are provided, one which we used to evaluate the system on PlanetLab

(see Section 5) and one typical of real large scale setups such as the Gnutella network. Note the orders of

magnitude disparity in the number of servers between the two workloads and the scaling that our system
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Parameter Description Sample A Sample B
C Clients 130 1,000,000
S Servers 76 100,000
PI Pointer Period (seconds) 2 2
PS Store Period (seconds) 120 120
PC Client Period (seconds) 240 240
PQ Query Period (seconds) 60 60
L Average Message Length (Bytes) 100 100
LQ Query Response Length (Bytes) 500 500
r Replication Factor 4 8
K Total Keywords 50,000 10,000,000
KC Keywords / Client 1000 1000
FC Files / Client 600 600
KF Keys / File 5 5
M Metadata Size (Bytes) 50 50
UC Client Uptime (seconds) 2400 3600
US Server Uptime (seconds) 86400 86400

Overhead Computation KBps KBps
POINTER (4 + 4r + 2log(s)) ∗ L/PI 1,625 3,461
STORAGE (2 ∗ log(s) + 4 ∗ (r − 1)) ∗ L/PS ∗K/S 13,430 5,102
Lookup (2 ∗ log(s)) ∗ L ∗KC/UC ∗ C/S 891 9,228
Transfer (FC ∗KF ∗M)/UC ∗ C/S 107 417
PUBLISH Lookup+ Transfer 998 9,644
Churn PUBLISH ∗ UC/US 28 402
CLIENT Churn+ (2 ∗ L ∗min(KC , S))/PC ∗ (C/S) 136 8,735
QUERY ((2 ∗ log(s) ∗ L) + L+ LR)/PQ ∗ (C/S) 53 654

TOTAL 16,241 KBps 27,596 KBps
TOTAL 129,927 Kbps 220,765 Kbps

Table 2: Overhead summary

achieves with a less than two fold increase in load. For a full explanation of the system parameters and

complete derivations we refer the reader to Appendix B. The five main costs are summarized in Table 3.

Three of our costs, the publish overhead, client overhead and query overhead, depend linearly on the

client-to-server ratio (Table 2). In Figure 3(a) we observe the effective per server load as a result of varying

the ratio of clients to servers in the system. We can note that as the ratio of clients to servers increases,

the overhead quickly reaches unacceptable levels, far beyond those sustainable by common DSL or cable

lines. The load is however reasonable for a server to maintain when the client-to-server ratio is on the order

of 10. Such a ratio is typical to expect in a peer-to-peer system, where a large fraction of participants act as

servers. Keeping the number of clients and servers stable at 1 million clients and 100,000 servers, (using

Sample B in Table 2) we vary a number of other crucial system parameters. In Figure 3(b) we vary the

average server uptime from one hour to about one day. Small server uptimes induce churn in the system

and have a direct effect on the client overhead (due to continuous publishing), which in the model is the
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Figure 3: Protocol Overhead. Figures (b)-(f) consider a setup with 1,000,000 clients and 100,000 servers.

only quantity affected by server churn. Typical server uptimes of at least one day are reasonable to expect

[GSG02]. Varying the client uptime has a direct effect on the publishing cost as shown in Figure 3(c).

In our model we assume that the average number of clients up at any time remains stable. As the client

uptimes become shorter and more clients enter the system on average, more data needs to be published.
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Cost Description
QUERY cost due to resolving the queries generated by clients
CLIENT the cost of clients refreshing their index entries on the storage

nodes, and recreating lost entries due to storage node failure
(affected by server churn)

PUBLISH the cost of clients publishing their shared metadata when they
join the network (affected by client churn)

STORAGE cost of the storage node interaction with the pointer nodes
during the pointer update protocol

POINTER cost of the dht maintenance protocol among the pointer nodes

Table 3: Cost summary

The expected average client uptime is about one hour [GSG02].

Within the dht, each pointer to a storage node is replicated on a fixed number of adjacent pointer

nodes. The replication factor improves load balancing and increases response time and is fully discussed

in Section 4 and Appendix C. Changing the pointer replication parameter in Figure 3(d) affects only the

pointer overhead and the storage overhead. The rate at which clients issue queries has a linear effect only

on the query cost. Figure 3(e) shows the effect of changing the average number of queries issued by

clients from one per second, to one in two minutes. Finally, in Figure 3(f) we look at the effect which

the total number of distinct keywords has on the system. The number of distinct keywords effects the

number of keywords that each storage node is responsible for and that has a linear effect on the storage

node overhead.

4 Load Balancing

In this section we address the problem of balancing load in our system. Specifically, we look at two

problems of (1) balancing the query load among pointer nodes and (2) balancing the storage load among

storage nodes. By query load we mean the number of lookup messages received by each pointer node. By

storage load we mean the number of index entries stored per storage node.

The first step of each client query involves obtaining pointers to storage nodes from the pointer dht.

Each pointer node is responsible for storing pointers and resolving queries for roughly the same number

of keywords. However, if the distribution of queries per keyword is not uniform, pointer nodes responsible

for the more popular keywords will be likely to receive more lookup requests. To deal with this problem,

each pointer is replicated on a fixed number of adjacent pointer nodes. We show that this provides a

moderate improvement in the pointer node load distribution. On the other hand, the number of entries that

a storage node stores for a given keyword depends on the number of files in which that keyword appears.

If the distribution of files per keyword is not uniform, the number of index entries for different keywords

may be drastically different. The amount of storage space that each storage node would need to contribute

would depend directly on which keywords it’s storing entries for. To deal with this problem we split the

larger keyword entries and distribute them among several storage nodes, while using indirection through

the pointer layer to identify where the split entries reside.
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Figure 4: Evaluating query load

4.1 Query Load

First, we observe the effect that the ratio of the number of servers to the number of keywords has on the

load. If there are more keywords than nodes, each pointer node becomes responsible for several keywords

at a time and that in itself has a favorable impact. In Figure 4(a) we look at the max/average load ratio

as we vary the number of keywords for which queries are issued and the number of servers in the system.

The Zipf distribution is sampled to drive the keyword frequency in queries (as observed in Appendix A).

When the ratio of keywords to nodes is large, each node is responsible for several keywords. Therefore,

there are fewer nodes that are under-loaded and the max/average ratio is rather small. As the number of

nodes increases, and each node becomes responsible for a smaller number of keywords we can clearly see

the effects of the uneven query distribution.

To ameliorate the imbalance, we rely on the fact that in our dht implementation each pointer is

replicated on a fixed number of nodes, and contacting any one of them is sufficient to retrieve the pointer

to the storage node. In Figure 4(b) we observe the improvement in load balancing max/average ratio as

we vary the value of the replication factor. In this experiment we fix the number of keywords at 100,000,

which is roughly the number of keywords we observed in Gnutella traces (see Appendix A) and analyze

the max/average ratio. While not completely perfect, increasing the replication factor shows improvements

in the load ratio.

We can further reduce the load imbalance by letting each multi-keyword query perform a lookup

for the least popular of the keywords. Each client can estimate global keyword frequency by computing it

over the metadata that it holds. In Appendix A we analyzed the Gnutella query traces, and for every query

with more than one keyword only recorded the frequency for the least popular of the keywords. The query

keyword frequency for the most selective keywords is still somewhat Zipfian but the highest appearing

frequencies are reduced by an order of magnitude (Figure 12(b) in Appendix A). Figure 5(a) shows the

max/average ratios derived from the traces in which a query is issued for the least popular keyword and

we can observe that the max/average ratio is also reduced by an order of magnitude.
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4.2 Storage Load

The distribution of keyword frequencies in filenames, like the distribution of keywords in queries, resem-

bles the Zipfian (Figure 11(c) in Appendix A). A small fraction of keywords such as file extensions and

popular English words appear in a disproportionate amount of file names. To ensure that the load on the

storage nodes is balanced we employ two solutions. First, the index entries for keywords with a large

number of files are split, and stored on any set of storage nodes. This is achieved with the help of indi-

rection through the dht, which can store several pointers for a given keyword. Second, we make sure that

clients do not publish index entries for a fixed number of top ranking keywords, unless there are no other

available keywords. While the system cannot restrict which keywords get queried, we can control which

entries get published. Clients can choose which entries get published based on local index estimates or on

global values, for instance the number of current storage nodes for a keyword. Storage nodes also have

complete freedom in determine which index entries and how many they wish to store. If a storage node

is overloaded with keyword entries, it can choose not to accept newpublish requests from clients, and

clients will find a different storage node to publish to. This can be done as we enforce no binding between

a storage node and the keywords it stores.

In Figure 5(b) we look at the performance of the two schemes for distributing the storage load. This

shows a simulation of a network with 100,000 clients and 10,000 storage nodes with clients having an

average of 100 files with 5 keywords per file (as observed in Appendix A). We can observe the effects of

increasing the splitting factor as well as increasing the number of stop words for which entries do not get

published. We can see that simply increasing the splitting factor by itself or only removing stop words

from being published, while effective, is not as successful as the two measures taken together. Including

the two simultaneously reduces the max/average load ratio by two orders of magnitude and brings it down

to reasonable limits.
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Duration 5 hours
Number of servers 76
Average number of 123
simultaneous clients
Total number of clients 1,108
Average client uptime 35 minutes
DHT Ping Period 2 seconds
Storage Pointer TTL 5 minutes
Storage Node Update Period2 minutes / keyword
Client Entry TTL 10 minutes
Client Entry Update Period 4 minutes / keyword
Average Query Rate 1 query per minute / client
Queries Issued 31,284 queries

Table 4: Experimental setup and summary

5 Evaluation

A prototype of the system has been implemented and incorporates all of the elements described above,

including load balancing and soft state maintenance. The prototype implementation is about 12,000 lines

of Java and includes modules for the routing and pointer layers, the storage layer as well as the client.

The goals of our evaluation are threefold. First, we want to observe the overhead of the protocols on

a running system. Second, we want to observe the distribution of load under non-uniform query and

publishing workloads. Finally, our goal is to evaluate the effective query result quality, compared against

a centralized index solution.

Our evaluation is trace driven. We use existing client publishing workload utilizing the data from

603 real Gnutella clients (discussed in Appendix A). An existing query workload of 70,000 queries from

[LHH+04] is also used. To facilitate our experiments, we run a central distribution host which has two

main responsibilities. First, it assigns publishing and query workloads to clients based on the traces.

Second, it acts as a centralized server resolving queries locally to evaluate the effective recall. We utilize

a single local machine to act as the distribution host. About 76 PlanetLab nodes are used to stimulate the

server and client workloads. Each PlanetLab node runs a server (a pointer node and a storage node coupled

together) and two client instances. A client instance continuously loops in two modes: up and down to

simulate churn. In this evaluation each client instance goes up for average of 35 minutes, shuts down for

average of 10 minutes and repeats. Each time a client comes up it gets a new publishing workload from

the distribution host and sends it heartbeats while running in up mode. The client also receives a query

workload from the distribution host, and issues the queries at a rate of one query per minute. Each time a

client issues a query to our distributed index, it also resolves it with the distribution host for comparison.

The experimental setup is summarized in Table 4.

The system is configured with the following parameters. The system-wide pointer replication factor

is four. The pointer node update period is set to 2 seconds. Each storage node updates its entries in the

dht every 2 minutes and each entry is set to expire after 5 minutes, if not updated. Storage node statistics

used for load balancing, precisely the current number of entries and the number of keys, are piggybacked
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Figure 6: Experimental results

with dht ping messages as well as pointer update messages. These statistics are later used by clients for

load balancing. The client update period is set to 4 minutes and client entries expire at storage nodes after

ten minutes. That means that there is a lag of at most ten minutes between the time when a client goes

down and the time when queries are no longer resolved against its entries. This lag time is the source of

any false positives returned with query results.

Two specific policies are used by the clients, one for publishing and one for querying. When pub-

lishing its entries, clients can choose which storage node the entries for a particular keyword should go

to. The clients publish entries for all keywords, no matter how many entries there are or what ranking the

keyword has. When the client looks up the current pointers for a keyword, it gets a list of storage nodes

currently storing entries for that keyword along with their last reported statistics. Also included is a short

list of other storage nodes that the responding pointer node knows about along with their current statistics.

If the keyword is not in the top 50locally and the number of entries is less than 500, the client publishes

to the storage node which already stores entries for that keyword. If there are several, it chooses the one

with the least number of reported entries. If there are none, then it chooses a storage node from the list

with the least number of entries, and the pointer nodes are updated. On the other hand, if the keyword is

either in the top 50 or has more than 500 entries, the client chooses the storage node from the whole list

that has the least number of entries, whether it’s already storing that keyword’s entries or not. For multiple

keyword queries a simple local policy is implemented for choosing the least selective keyword. If all of

the keywords appear locally, the client chooses the keyword with the lowest local ranking. Otherwise, it

just chooses the longest length keyword.

The experiment ran for a total of about five hours with an average of 76 servers and 123 clients up

at any instance. Over 1,100 distinct client instances were observed with an average uptime of 35 minutes.

The number of operational clients and servers aggregated in one minute intervals is shown in Figure 6(a).
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Figure 7: Experimental results

5.1 Traffic and Storage Load

The network traffic generated by the experiment is presented in Figure 6(b). For each server we capture

the total number of bytes, sent and received, in a bytes/second rate, averaged over one minute intervals.

This data includes the overheads of the pointer protocol and storage protocols as well as the file metadata

published by clients. For each one minute interval Figure 6(b) shows the maximum, average, minimum

and 95 percentile data transfer rates over all operational servers. The average amount of traffic per server

was 15,888 bytes per second, which closely corresponds to the result obtained with our model of 16,241

bytes per second (derived in Appendix B and summarized in Table 2).

Figures 7(a) shows the distribution for the number of keyword entries stored at each server. We do

observe some periodic spikes in the maximum number of entries per storage node. The 95th percentile is

almost always within a factor of two of the average, and the minimum number of entries is extremely close

to the average, and the max/average ratio hovers around two for the majority of the run. The distribution

of keywords per storage node shown in Figures 7(b) has a steady 95th percentile twice above the average.

The peak maximum at the beginning of the run gets resolved within the first hour and the max/average

ratio is steadily below 4 for the rest of the run.
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Figure 8: Experimental results

5.2 Query and Publish Load

In this section we examine the amount of query and publishing load exerted on the system. Figure 7(c)

shows the distribution of the average number ofget requests received per minute by each pointer node.

A get is issued by a client as the first step of each query to discover the storage nodes that maintain client

entries for the queried keyword. The average number of queries per minute observed by each server is

about two as we have about twice as many clients as there are servers issuing queries at a steady rate of

one per minute each. The max/average ratio is steady at about 5.

Figure 7(d) shows the distribution of query requests per storage node. The average number of queries

per storage node is a little higher than the average number ofget requests per pointer node. This is due

to the fact that some keyword entries are split between several nodes. A querying client in this experiment

queries all the applicable storage nodes. For every query, there is exactly one request issued in the dht, but

might be more than one issued to storage nodes. One trend to observe is there seems to be a hotspot in the

beginning of the experiment but we see that it gets relieved as the experiment continues. The hotspot is

due to the temporarily uneven distribution of keywords per storage node as was observed in Figure 7(b),

but it gets resolved as a side effect of dynamic load balancing. Once the hot spot has been eliminated the

distribution shows a low max/average ratio.

The poorest resulting load distribution is the one due to the client publishing process. Figure 8(a)

shows the distribution of lookup requests per pointer node, which get issued when a client is deciding to

which storage node it should publish entries for a particular keyword. As some keywords appear in most

clients’ filenames, the pointer nodes responsible for those keywords get hit the most. This can only be

controlled by the clients as they choose which keyword entries to publish, and which lookups to perform.

It can however, be improved by using a different client-side policy requiring clients not to publish any

entries for the top ranking keywords as was shown in Section 4. The max/average ratio for this distribution

is the highest of all, peaking at around 35. On the other hand, the load generated by the storage nodes’

pointer insert protocol is very well balanced as shown in Figure 8(b).
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Figure 9: Experimental results

5.3 Query Quality and Recall

Figure 9(a) shows the true size of the index for currently running clients against the size of the index

stored in our system. We can see that the number of entries stored follows the trends in the ”actual” curve

but lags behind by about ten minutes. The reason behind this disparity is that as clients go down, their

16



entries don’t expire in the storage nodes until the entry ttl expires. The client entry ttl in this experiment

is set to 10 minutes. This lag causes a bit of a problem for query quality as queries are resolved against

some stale data and the results produced contain false positives. Figure 9(b) is the cdf of the number of

results per query, both the results reported by our system and the centralized distribution server. About

45% of all queries reported no results. The queries used were the ones that had an answer when evaluated

against our whole dataset of 603 clients. In the experiment, only a fraction of those clients are up at any

one point, and the issued queries are only evaluated against this subset. We can see that the two curves

are very similar with the ”actual” curve a bit higher, testifying to the fact that the reported results contain

some false positives.

Figures 9(c) and 9(d) mostly testify to the efficiency of our dht implementation. Figure 9(c) shows

the distribution of the number of pointers to storage nodes returned to clients when issuing queries. With

the get operation set to timeout after 5 seconds, only 0.7% percent of the requests actually timed out.

Less than 16% percent of lookups returned zero pointers signifying the fact that there were no entries

stored for the queried keyword. Almost 40% of all queried keywords did not have their inverted indices

split and were located on a single storage node. Only 7 percent of queried keywords had their entries split

on more that 10 storage hosts, with the largest split factor of 34. The effective query completion times are

shown in Figure 9(d). Resolving each query is a two step process composed of issuing aget lookup in

the dht to get the pointers and then following the pointers to the storage nodes. In this experiment, if more

than 1 pointer is returned, we follow all of them, primarily to get the absolute number of query results.

92% of all pointer lookups get resolved in less than 1 second and 93% of all queries get resolved in less

than 10 seconds. The longest running query took a total of five minutes to complete, contacting 22 storage

nodes in the process.

Finally, we look at the effective query recall in our system. To compute query recall we looked

at all the queries that had one or more results and used the ratio of results reported by our system to

”actual” results (as provided by the centralized distribution host). Figure 9(e) shows the query recall cdf

and Figure 9(f) the corresponding pdf. A total of 16,478 queries out of 31,284 queries issued actually

had one or more matches, and we only consider these queries when computing the recall. Exactly 10%

of these queries had reported no results in our system. We attribute this to the temporal lag in the client

publishing process. The publishing process is not instantaneous and some queries are issued for keywords

whose entries have not been published yet. A total of 15 percent of the queries have recall less than 50%

and 25 percent have recall less than 100%. Exactly 40% of all queries get resolved absolutely, with 100%

recall quality. Less than 7% of all queries got a false positive rate of more than 2. The rest of the queries

contain more false positives due to the 10 minute lag present when clients leave the system.

6 Conclusion

In this paper, we presented a new implementation of a file-sharing system based on partitioned inverted

indices. The system yields (1) query result quality better than flooding and close to a centralized index,

and (2) a low-maintenance network overhead. These improvements result from our optimized approaches
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to handling (a) high churn rates and (b) skewed publishing and querying workloads. We addressed high

churn rates by keeping all data in soft state, which is periodically refreshed, such that the loss of a server

or client is quickly reflected in the indexes. Skewed workloads are load balanced with the use of a layer of

indirection for placing and locating data based on the frequency of use. Through a synergy of a dht-based

layer of indirection and an original soft-state maintenance protocol we have created a platform that goes

well beyond the current unstructured flood-based file sharing systems.
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Appendix

A Gnutella Trace Analysis

Gnutella clients expose abrowse host interface through which they report the names of all the files

that are residing in their shared directory and that they are offering to other Gnutella clients. We have

instrumented our local Gnutella client to connect to the Gnutella network, issue queries for a hand-picked

set of keywords with the intention of getting many query replies with links to numerous clients. For each

unique client that we observe in the query replies, we issue thebrowse host call. In this trace, from

May 2, 2005, we have issued 1090browse host requests to unique Gnutella clients and have received

replies containing one or more files from 603 clients. A reply was received for each file on a client and

contains the unique client identifier and the full file name. We have received listings for 443,213 files

containing a total of 180,683 unique keywords obtained from the file names using white space and ’.’ as

the delimiters. We use this trace to obtain the distributions of files per host, keywords per file name and

the keyword popularity in file names.
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Figure 10: Distribution of files per client

In Figure 10(a) we plot the distribution of number of files per host. The sample cdf is plotted against

the exponential cdf with mean 600. The median and average number of files per host is 297 and 735

respectively. The maximum number of files per host observed in this trace was 16,921. The middle 50%

of all clients share between 125 and 670 files. About 13% of all clients have more than 1,000 files. To

closely observe the disparity between the number of files shared by clients we ranked the clients based on

the number of files they share and plot the cumulative percentage of files shared by clients in Figure 10(b).

This plot shows that 50% of all available files are offered by only 8% of all clients.

Figures 11(a) and 11(b) show the cdf and the pmf for the number of keywords observed in a file

name. The median number of keywords is five and the average number of keywords is six. The maximum

number of keywords per file observed in our traces was 44. The distribution peaks at two, has a somewhat

flat head between 3 and 7 keywords and then drops with a long tail.
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Figure 11: Trace analysis

Rank 1 2 3 4 5 6 7 8 9 10
Keyword - mp3 jpg the gif exe wmv you of &
Frequency 257451 241169 49415 47364 21408 20899 17514 17235 16084 15157

Table 5: Top 10 keywords and frequencies
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Figure 12: Keyword frequency in queries

Figure 11(c) plots the distribution of keyword frequency among all file names obtained against the

Zipf distribution. Once again, 180,683 unique keywords we observed and their popularity in file names

drops roughly according to Zipf. Table 5 lists the top 10 most popular keywords. Due to the choice of

our keyword delimiter, ’-’ appears to be most popular. The rest of the keywords in the top ten are file

extensions and common English words.

In Figure 11(d) we ranked the hosts based on the number of distinct keywords their local files

contained. The median and average number of keywords per client were 831 and 1201 and the maximum

is 14,312 keywords. For each point we also plot the number of files residing on that client. The ratio of

number of keywords to number of files per host is also plotted and the average ratio is about 2.8.

From the traces gathered in [LHH+04] we are able to obtain the following data about the distribution

of keywords in queries. More than 700,000 queries were observed containing more than 93,000 unique

keywords. Figure 11(e) displays the distribution of the number of keywords per query. The average

number of keywords is 2.9 and the median is 2. Less than 2% of all observed queries had more than 6

keywords in them. Figure 11(f) shows the distribution of the frequency of keywords in queries. More than

50% of all observed keywords were seen in exactly one query, and more than 85% of the keywords were

seen less than 10 queries. Figure 12(a) plots the keyword frequency in queries against the Zipf distribution,

and Figure 12(b) plots the same distribution using only the most selective keyword from each query.

B Protocol Overhead

In this section we go through the steps involved in the normal operations of the pointer, storage and client

protocols. We are expecting churn to be part of normal operations and it is accounted for in the protocols

and their overhead. We calculate the overhead of each protocol by calculating resulting per server network

overhead in terms of bytes per second. Total traffic is a good estimate because the real processing in our

system comes from sending and receiving messages. The servers (pointer/storage nodes) don’t really do
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Parameter Description Sample A Sample B
C Clients 130 1,000,000
S Servers 76 100,000
PI Pointer Period (seconds) 2 2
PS Store Period (seconds) 120 120
PC Client Period (seconds) 240 240
PQ Query Period (seconds) 60 60
L Average Message Length (Bytes) 100 100
LQ Query Response Length (Bytes) 500 500
r Replication Factor 4 8
K Total Keywords 50,000 10,000,000
KC Keywords / Client 1000 1000
FC Files / Client 600 600
KF Keys / File 5 5
M Metadata Size (Bytes) 50 50
UC Client Uptime (seconds) 2400 3600
US Server Uptime (seconds) 86400 86400

Table 6: Overhead parameter summary

anything else. We feel that this is indicative of the amount of work that each entity needs to perform and

reflects on the overall load injected into the network. Table 6 lists all the relevant system parameters, and

provides two sample workloads, one which we used to evaluate the system on PlanetLab (see Section 5)

and one typical of real large scale setups such as the Gnutella network.

ParametersC andS represent the number of clients and servers in the system. Servers are the

nodes running the pointer and storage protocols. Everything in the system is a timed event with a period

expressed in seconds. Pointer nodes engage in a stabilization protocol to maintain the integrity of their

routing tables everyPI seconds. Each storage node issues aput request to update the pointer to itself at a

rate ofPS seconds for every keyword it stores. Clients engage in update protocol with the storage nodes at

a period ofPC . We model the event of queries being issued by clients as a periodic, per-client process with

one query being issued everyPQ seconds. These periods, except for query rate, are configurable system

parameters. The pointer replication factorr is also a system wide parameter.

To keep the model cleaner, we useL as the average length of all the control and lookup messages.

The actual variance in the length of different control messages is small, and each message is sent over

UDP. The typical length of the query results is represented byLR. K represents the number of distinct

keywords that appear in all of the clients’ shared files. This is a non-decreasing function ofC, the number

of clients but we do not have a closed form solution for it. In this analysis we will use reasonable estimates

or observed values. We use the ratioK/S as an estimate for number of keyword per server. This assumes

that we can achieve perfect load balancing and that each storage node will be responsible for an equal

portion of the key space. In Section 4 we discuss techniques to achieve balanced storage load distributions

and confirm with experiments in Section 5.

The following four parameters,KC , FC , KF , andM are properties of the client shared workload and

are derived from our analysis of Gnutella client traces in Appendix A). We observe the average values for
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the number of files per client, distinct keywords per client, keywords per file and average size of the file

metadata. The final parameters that affect the model are the average client and server uptimes. We assume

that the number of clients and servers up at any time is approximately constant, an assumption backed

by the observation of typical Gnutella usage. Not surprisingly, churn is the direct byproduct of client and

server uptimes.

B.1 Pointer Node Overhead

Each pointer node performs three actions everyPI seconds to keep its routing tables up-to-date. First, it

successively pings one node from it’s routing table to make sure that it’s still alive. Second, it sends a ping

to each of it’sr immediate neighbors to make sure that its neighbor set is always up to date. Finally, each

node updates itsith routing table entry by finding the current node2i away from it in the ring structure. To

perform a ping, the node sends a ping message, recipient receives it, sends a reply, and the node receives

reply. A total of4∗L bytes are sent and received by the servers. AsS servers send pings everyPI seconds,

the resulting traffic is4∗L∗S bytes total,4∗L∗S/PI bytes per second and finally4∗L/PI ∗S/S bytes per

second per server. To keep its neighbor set up-to-date, each node sends a message to all of itsr neighbors.

Each neighbor replies with its current neighbor set. Two messages are sent and two are received for a total

of 4 ∗ r ∗ L bytes. The total traffic overhead for the neighbor protocol is(4 ∗ r ∗ L)/PI bytes per second

per server. To fix a routing table entry, one lookup is made for the current successor. The average number

of messages sent islog(S) for a cost of(2 ∗ log(S) ∗ L)/PI bytes per second per server. The total cost of

the pointer protocol is

((4 + 4 ∗ r + 2 ∗ log(S)) ∗ L)/PI

bytes per second per server.

B.2 Storage Node Overhead

Storage nodes need to periodically update their pointers. For every keyword at a storage node, a pointer

is inserted into the dht everyPS seconds. We assume that a storage node is responsible for an average

of K/S keywords, and thus needs to performK/S/PS put operations per second. Eachput is routed

throughlog(S) nodes and at the destination gets forwarded tor − 1 neighbor nodes (for replication) with

an expected acknowledgement. Thus, for eachput (2∗ log(S)+4∗(r−1))∗L bytes are sent and received.

(2 ∗ log(S) + 4 ∗ (r − 1)) ∗ L ∗ (K/S/PS) ∗ S bytes per second are sent by allS servers, which amounts

to the overhead of

(2 ∗ log(S) + 4 ∗ (r − 1)) ∗ L/PS) ∗ (K/S)

bytes per second per server.
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B.3 Publishing Overhead

During its uptime ofUC seconds, each client needs to publish its entries into the system. The publishing

process can be viewed as composed of two stages, the lookup stage and the transfer stage. For each

keyword a client first performs a lookup in the dht to find an appropriate storage node and then sends the

portion of the entries to the chosen storage node. If a client hasFC files and each file name contains an

average ofKF keywords the number of entries in the client’s inverted index will beFC ∗KF , as there will

beKF entries for each file. The size of the inverted index will beFC ∗ KF ∗M bytes, whereM is the

average length of a file’s metadata ( the length of the file name). Each client will publish it’s index once in

it’s lifetime, of UT seconds. We account for storage node churn, and the need to re-publish lost entries in

the client overhead, in the next section. Thus, each client will make the storage nodes receive an average of

(FC∗KF ∗M)/UC bytes per second as part of the transfer process. With an average ofC clients publishing

their entries everyUC seconds, with the publishing load split amongS storage nodes, the transfer cost is

(FC ∗KF ∗M)/UC ∗ (C/S) bytes per second per server. With a total ofKC distinct keywords per client,

each client needs to performKC get lookups in the dht during it’s lookup stage. Each lookup exerts a load

of (2 ∗ log(S) ∗ L) on the pointer nodes, for a total load of(2 ∗ log(S) ∗ L) ∗KC/UC ∗ (C/S) bytes per

second per server. The total resulting publishing overhead is

((2 ∗ log(S) ∗ L ∗KC) + (FC ∗KF ∗M))/UC ∗ (C/S)

bytes per second per server.

B.4 Client Update Overhead

The client’s index entries are set to expire in the storage node unless they are updated by the client. The

client periodically sends a small refresh message directly to the storage nodes letting them know that its

entries should not be discarded. Once the client is past the publishing stage and knows the address of

each storage node maintaining its entries, it can communicate with the storage node directly to refresh its

entries. Through this mechanism the client also makes sure that the storage node is still alive and is storing

the client’s entries. If not, the client needs to find a new storage node and republish the missing entries.

If the number of storage nodesS is significantly smaller than the number of keywords on a client

KC , then it makes sense for the client to send updates on per storage node basis. If however, the number of

storage nodes is much larger than the number of keywords then the client updates its entries per keyword.

The number of updates that each client needs to send everyPC seconds is thenmin(KC , S). The refresh

cost is that of sending and receiving a refresh message of sizeL to and frommin(KC , S) storage nodes

everyPC seconds. There are2 ∗ L ∗min(KC , S)/PC bytes per second due to every client. The resulting

refresh load is(2 ∗ L ∗min(KC , S))/PC ∗ (C/S) bytes per second per server.

The cost of churn can be estimated using the average storage node uptimeUS and the client uptime

UC . For each of theKC keywords on a client, the probability that the corresponding storage node wend

down in the lastPC seconds isPr[down] = PC/US. Republishing entries for one keyword requires a
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lookup and a corresponding transfer, for a total of(PC/US)∗ (2∗ log(S)∗L+ (FC ∗KF ∗M)/KC) bytes.

Considering all theKC keywords, each client sendsKC∗(PC/US)∗(2∗log(S)∗L+(FC∗KF∗M)/KC)/PC

bytes per second to account for storage node churn. For a total of

KC ∗ (PC/US) ∗ (2 ∗ log(S) ∗ L+ (FC ∗KF ∗M)/KC)/PC ∗ (C/S)

= (PC/US) ∗ (2 ∗ log(S) ∗ L ∗KC + (FC ∗KF ∗M))/PC ∗ (C/S)

= (UC/US) ∗ (2 ∗ log(S) ∗ L ∗KC + (FC ∗KF ∗M))/UC ∗ (C/S)

= (UC/US) ∗ PUBLISH

Thus, the total client overhead, including churn and refresh is

(UC/US) ∗ PUBLISH + 2 ∗ L ∗min(KC , S)/PC ∗ (C/S)

bytes per second for each server.

B.5 Query Overhead

Querying involves performing a lookup to find the correct storage node, sending the query to the storage

node and receiving the results. The query and result length are specified by parametersL andLR bytes. A

single client query issued once everyPQ seconds requires work of(2 ∗ log(S) ∗ L + L + LR)/PQ bytes

per second. WithC clients issuing queries at this rate, the resulting load is

(2 ∗ log(S) ∗ L+ L+ LR)/PQ ∗ (C/S)

bytes per second per server.

C Index Layer

We build our index layer on top of a distributed hash table. In general, a DHT exposes a thin interface

for the typical hash tableput andget operations. For every object identifierido, a unique node exists

in the DHT that is responsible forido. In some DHTs it’s the node whose id immediately follows the

object’s identifier in a geometric structure like the ring [SMK+01a], while in others it’s the node whose id

is numerically closest to the object’s identifier [RGRK04]. Nodes in a DHT experience varying network

latencies and application response times due to physical network proximity and machine load. When a

source node initiates a lookup for a particular identifier, the response time it experiences greatly depends

on the response times of the individual nodes that are involved in resolving the lookup. A lookup in a DHT

with n nodes is expected to contactO(log(n)) nodes and if any one of them is slow to respond, the entire

lookup will be prolonged. Intermediate node selection in a DHT lookup is crucial to the lookup’s overall

performance. Here we explore DHT routing algorithms and their performance with respect to the overall
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(a) (b)

Figure 13: Index Routing. (a) Deterministic routing for a lookup where the top node is the source of
the lookup, the tick mark represents the id being looked up and dark node is the successor of the id. (b)
Resolving a lookup with proximity successor selection with replication factor of 3.

lookup latency. An evaluation of our implementation of the index layer is presented in Appendix C.4.

C.1 Deterministic Routing

We will use Chord as the base case for deterministic routing [SMK+01a]. In Chord all nodes are organized

in a ring and have 160-bit identifiers. Asuccessorof an identifier is defined to be the node whose id

immediatelyfollows the identifier in the ring. Apredecessorof an identifier isanynode whose id precedes

the given identifier in the ring space. An immediate predecessor of an identifier, or a node, is defined to

be the closest predecessor. A noden with identifier idn makes sure that it always knows itsr immediate

predecessors andr immediate successors through a neighbor upate protocol. It also maintains a routing

table where for everyi ∈ {0 . . . 159} it stores the address of the successor of(idn + 2i)mod2160. For node

n to complete aget request forido, n routes the request to the closest predecessorp1 of ido thatn knows

about. Ifp1 cannot determine the successor ofido locally, thenp1 recursively proceeds with the request

by finding the closest predecessor ofido in its routing table and forwards the request there. When the

request reaches its destination, the actual successor ofido, and it’s guaranteed to do so inO(logn) steps,

the successor sends a reply back ton, the source of the request.

Figure 13(a) pictorially depicts this process. The top node issues a get request for an object whose

identifier is represented by the tick mark on the ring. The node responsible for storing the object for

that identifier is the node whose id directly follows the object identifier in the ring, represented by the

dark node. The source node forwards the message to the routing entry that is closest to the object id,

which is half way around the ring. The farthest that the next hop node can forward the message without

overshooting the destination is a quarter way around the ring. The message proceeds taking smaller and

smaller hops around the ring until it reaches the destination node’s predecessor, and the predecessor fully

aware of its neighborhood can safely forward the message to its destination. The destination node then

resolves the get request and sends the reply directly to the source of the message. The problem with this
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routing scheme is that given a concrete network, a source noden and lookup identifierido, the choice of

nodes that will be contacted as the lookup proceeds is predetermined based on the identifiers. The request

can be delayed at any one of the nodes and not much can be done to expedite it.

C.2 Proximity Neighbor Selection

Proximity neighbor selection, also called proximity route selection, addresses the problem of limited next-

hop choices by considering more nodes for the routing table. As described above, routing table entryi of

noden keeps the address of the node2i away fromn in the ring. With PNS, instead of storing a unique

node for every routing table entry, entryi considers up tor nodes in the range2i to 2i+1 − 1 and uses

the entry with the smallest observed delay. Delays are observed with through periodic pings as described

earlier. For largei, many alternate nodes can be considered for the routing table, but asi decreases fewer

choices become available. As a message gets routed closer to its destination in the network, the number

of choices for the next hop depends on the routing table entries that can be used.

We now consider the choices that are available in the routing scenario of Figure 13(a). The destina-

tion node needs to send a direct reply to the source of the lookup message so there is no choice present

there. The last hop in the lookup can only go to the destination of the message and there is only one choice

present there as well. Working backwards, the nodes on the previous hops start having more freedom in

choosing who to forward the message to. The second to last hop has a choice of two, the one before it

a choice of four and so forth. We can approximate average lookup latency in a DHT implementing PNS

assuming an exponential per-hop latency distribution with median delayδ. The average lookup latency is

approximated asδ + (δ + δ/2 + δ/4 + . . .) = 3δ = 1.5RTT where the firstδ is for the reply to the source

of the request, the secondδ is for the message to the successor, and the rest of the series is for the best hop

among a choice of routing entries.

C.3 Proximity Successor Selection

Even though proximity neighbor selection presents more choices for most of the hops taken when routing a

message, there is still only one choice for the last hop to the destination and for the hop back to the source.

Although we cannot change the source of the request, the last hop to the single destination presents us

with a bottleneck to be dealt with. To deal with it, we make sure that objects are stored not only on a

single node but onr nodes, which we make a system-wide parameter. Now, the original destination node

of an object’s identifier plus itsr − 1 immediate successors in the ring are responsible for maintaining

the object. A get request can be forwarded to any of ther nodes and be resolved locally. A put request

can be forwarded to any of ther nodes and then propagated to the otherr − 1 nodes. This replication

assumption is a common one and has been used in existing systems [RGK+05, DKK+01], and has been

taken advantage of by Pastry’s [RD] routing algorithms. Figure 13(b) shows the possible hops taken while

resolving a lookup using proximity successor selection. To mimic the calculations of the previous section,

the average lookup should takeδ + (δ/r + δ/r + δ/r + . . .) wherer is the system-wide parameter for the

number of immediate successors. In the case wherer is configured to belogn, the average lookup delay
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will be equal to2δ = 1RTT.

C.4 Index Performance

C.4.1 Analysis

Here, we analyze how the additional next hop choices offered on selected hops affect the expected delay of

a lookup message. Consider the one-way delay between two nodes on the network as a random variable,

and let the expected value of the one-way delay beδ. When a node considersk possible next hops and

chooses the next hop based on the smallest delay, the expected delay now becomes the expected value

of the minimum of thek random variables. If thek random variables are independent and identically

distributed, exponentially with meanλ, the expected value of the minimum of these variables isλ/k and is

also exponentially distributed. If we letδ be the mean delay of a one-way hop, thenλ = 1/δ. Now, letλk
be mean of the random variableX = min(X1, . . . , Xk), which is the minimum ofk choices, whereXi is

the delay to theith choice, and letδk be the mean delay whenk choices are present. Thenλk = kλ = 1/δk

andδk = δ/k. Thus, when a node can considerk nodes for its next hop, the expected delay of the next

hop is1/kth of the average one-way delayδ.

For deterministic routing ifδ is the expected value of the one way delay between two nodes and

the lookup message makeslogn node-to-node hops, the expected value for the delay of the lookup is

δ ∗ logn. To calculate the approximate average lookup latency in a DHT implementing PNS we need to

once again consider the number of next hop choices present at every node. The average lookup latency

is approximated asδ + (δ + δ/2 + δ/4 + . . .) = 3δ = 1.5RTT where the firstδ is for the reply to the

source of the request, the secondδ is for the message to the destination, and the rest of the series is for the

best hop among a choice of neighbors. To mimic the previous calculations, the average lookup with PSS

should takeδ + (δ/r + δ/r + δ/r + . . .) wherer is the system-wide replication parameter. There is still

only one choice for the message reply back to the source of the lookup but all the other hops can safely

choose betweenr nodes. Ifr is configured to belogn, as recommended [SMK+01a], then the average

lookup delay will be equal to2δ = 1RTT. Even ifr is set to a smaller value, as long as that value is greater

than one, significant improvement in the observed lookup latency can be expected.

Figure 14(a) shows the distribution of one way delays between nodes on PlanetLab measured with

ping [Str], plotted against the exponential distribution with meanλ =200ms. They are more skewed than

the exponential distribution and therefore the expected value of the minimum ofk delays is at least as

good as the expected value when the exponential is used.

C.4.2 Evaluation

The index layer implementation contains support for all of the three routing algorithms which allows for an

easy evaluation. In this evaluation, the implementation has been deployed on about 200 PlanetLab nodes.

Each index node runs a proxy which exposes the put and get interfaces to machines which are not part

of the index. In the overall system this proxy is used by both client and storage nodes. (In the following

discussion when we refer to proxy clients, we are including both client and storage nodes.) In the current
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(a) CDF of one-way latency between nodes on
PlanetLab.
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(b) Experiments on PlanetLab with 200 nodes,
r = 4 and 10,000 requests for random identifiers
through one proxy

Figure 14: Lookup performance

implementation, when a proxy receives a request from a client it routes the request on behalf of the client

and maintains its connection to the client until it receives a response or it times out. The proxy issues the

request every two seconds until a response is received and propagated to the client or the timeout expires

and an error is returned. The timeout is specified by the client.
Chord PNS PSS

50% 0.194s 0.147s 0.095s
90% 0.865s 0.350s 0.167s
95% 2.652s 0.756s 0.242s
99% > 10s 3.846s 1.115s
99.9% > 10s > 10s 3.963s
99.99% > 10s > 10s 5.054s
100% > 10s > 10s 5.858s

Table 7: PlanetLab latency summary

In this experiment we first find a proxy node which is not heavily loaded and is close to our client.

We then randomly choose 10,000 identifiers and for each one issue three get requests, one for each routing

algorithm. To give a fair evaluation, we have to make sure that we evaluate the three algorithms with the

same source destination pairs. We can explicitly specify to the proxy which algorithm we want to be used

for routing the messages. The network runs with the system-wide parameterr set to four and each request

to the proxy is set to timeout after 10 seconds without a response. Figure 14(b) shows the cumulative

distribution function forget request latency and Table 7 summarizes the results of our experiment. Not

only is the average behavior of PSS much better than the other two routing algorithms, but the long tail

behavior is also eliminated. While 1% of all deterministic routing requests and 0.1% of all requests using

PNS require more than 10 seconds to complete, all requests routed using PSS complete in less than 6

seconds.
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