Efficient Search in File-Sharing Networks

Paul Burstein
Alan J. Smith

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-179
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-179.html

December 16, 2006




Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



1

Keyword-based search has become an integral part of today’s computing experience. One major apf
cation is that provided by Internet search engines offering full-text search over web content. The secor
major application consuming a substantial fraction of overall Internet traffic today is peer-to-peer file-
sharing, offering keyword search over file metadata, including file name, type and author. A compute
running file-sharing software provides a service which lets other peers download files stored in its publi
directory. A file-sharing network lets its users submit a query containing several keywords and return
pointers to peers with files which contain the keywords provided with the query in their metadata. The

Efficient Search in File-Sharing Networks

Paul Burstein and Alan Jay Smith
Computer Science Division, EECS Department
University of California Berkeley
Berkeley, CA 94720-1776
(burst, smithxat>eecs.berkeley.edu

Abstract

Currently, the most popular file-sharing applications have used either centralized or flood-based
search algorithms. Napster has been successful in providing a centralized index with presumably per-
fect query recall. Succeeding, more distributed protocols like Gnutella and Kazaa have used flood-
based search procedures in which a query is propagated through an unstructured network. Query result
guality in such networks suffers as queries for items that are rare have high probabilities of not being
found as the entire corpus is not covered during a search. In this paper, we present a new and improved
implementation of a distributed file-sharing system vyielding (1) query result quality better than flood-
ing and close to a centralized index, and (2) low-maintenance network overhead. These improvements
result from our optimized approaches to (a) high churn rates (clients and servers frequently entering
and leaving the system) and (b) skewed workloads (high variation in access frequencies vs. key). High
churn rates are addressed by keeping all data in soft state, which is periodically refreshed, such that
the loss of a server or client is quickly reflected in the indexes; higher refresh rates imply fewer false
positives. Skewed workloads are load balanced with the use of a layer of indirection for placing and
locating data, such that data is partitioned and distributed based on the frequency of use. A trace-
driven prototype evaluation based on Gnutella system traces shows that our prototype implementation
achieves a low network bandwidth, attains max-average load ratios within a factor of three across all
servers, and has positive recall values for over 90% of all queries, despite a high churn rate; the recall
would be 100% absent churn.

Introduction

user can then examine the pointers and follow any of them to download a given file.

*Primary support for this research has been provided by AT&T Laboratories, with additional support by the University of

California MICRO Program and Toshiba Corporation.



Typical file-sharing workloads play an important role in the design of file-sharing systems. The
systems generally experience a large amount of churn. The composition of peers is bimodal, ranging fro
server-like nodes that stay online for days at a time to client-like consumers which join the networks fol
a few hours to run some queries and perform quick downloads while offering their data in the mean time
These high churn rates create frequent updates to the indexing structures as clients enter and leave
network. The typical distributions of keywords are highly skewed on both the querying and the metadat
publishing fronts. We propose a system that explicitly deals with both churn, by keeping all the data in sof
state and implementing an efficient update protocol, and the skewed workload by load balancing with th
help of an additional layer of indirection which provides for location independence and load distribution.
The keyword space is partitioned such that each inverted index for a particular keyword resides on or
or a handful of nodes. A layer of indirection is used for locating the precise nodes. Thus, our systen
distributes data in such a way that finding exactly a query target can be accomplished with a small numb
of lookups.

In this paper, we present a new and improved implementation of a distributed file-sharing sys
tem yielding (1) query result quality better than flooding and close to a centralized index, and (2) low-
maintenance network overhead. While others have proposed solutions for structured distributed indice
the problem of balancing load has not previously been addressed. Our work concentrates on the proble
of load balancing within the index, which occurs due to the uneven distribution of keyword popularity
in the publishing and query workloads. We achieve this through an additional layer of indirection which
allows for more flexible allocation of storage and search resources. In this work we present, analyze ar
evaluate a structured distributed index protocol for file sharing. We evaluate a prototype implementatio
on PlanetLab, a global-scale test bed for deploying large distributed services. A trace-based evaluati
shows that our prototype achieves good levels of load balancing while maintaining a reasonable netwo
overhead, roughly that of streaming video. The prototype returns results for over 90% of all queries witt
93% of all queries requiring less than 10 seconds to complete.

The rest of this report is organized as follows. In Section 2 we provide some background and discus
the related work. In Section 3 we present the system design overview, the details of its soft-state protoco
and a cost analysis model for evaluating the overhead associated with our protocols against varying syst
workloads. Section 4 addresses the issue of load balancing due to the typical non-uniformity of file sharin
query and keyword distributions. In Section 5 we present experimental data evaluating our prototyp
and conclude in Section 6. In the Appendix, we present our analysis of the Gnutella network traces
provide the derivations behind our analytical model, and discuss and evaluate our distributed hash tak
implementation.

2 Related Work

The general solution space for solving the distributed search problem can be broken into four categori
represented in Figure 1. In a centralized index system a cluster of nodes is responsible for maintaining i
index of what files every file-sharing client stores. Each client connects to one or more machines in th



(a) Centralized Index (b) Unstructured Flooding (c) Supernode Flooding (d) Supernode Index

Figure 1: Solution space

cluster and publishes its local index once. Queries get resolved within the centralized cluster. The que
result quality is "absolute” as the whole index can be searched to resolve any incoming query. The bene
of the centralized index is that it incurs minimal publishing costs and produces full query results. The
prototypical example of a centralized cluster was Napster in its original form with a cluster of about 160
machines. A typical centralized index is depicted in Figure 1(a). In a pure flooding system all nodes ar
equal. Each has some number of neighbors and all the nodes are organized in an unstructured network
shown in Figure 1(b). A query by a node gets forwarded to all of its neighbors, and they in turn forward it
to theirs. Each query has an associated time-to-live, specified in number of hops, and only gets propaga
that many hops away from the initiator of the query. The result quality grows with the number of nodes
that are visited as part of the query flood but is usually only partial. Later versions of the protocol have
evolved into a two tier structure in which peers are split up into regular nodes and more capable supernod
as shown in Figure 1(c). In this scheme queries get propagated only among the supernodes but the gen
problems of poor recall are still present.

A substantial amount or work has been done in the area of metadata search for flood-based fil
sharing systems [CGM02, YGM02, CRB3, CCR04, GF03]. Many of the papers either have not
fully considered the appropriate overheads, load balancing issues, or have not focused on search qual
Several solutions have been proposed for using an index based approach, but have usually been in
space of full-text search [RV03, TXD03, TDO04, L3, CLLO4]. These schemes utilize the structure
of distributed hash tables [SMK1b, RFH 01, RD, ZKJO01], and a typical two-tier setup is depicted in
Figure 1(d). More recent work [LHH04, ZH05] suggests using a DHT-based index in conjunction with
current flood-based approaches to achieve better overall query result quality. Caching in flood-based
well as index-based file-sharing systems has been the subject of several works [CS0R2L.8802].
Caching can be considered a complementary addition to the problem of distributed search and we do r
explicitly concentrate on it in our work. We do however use a moderate amount of structured replicatior
to distribute load and achieve limited caching behavior. Measuring and understanding typical file-sharin
workloads has been the interest of several studies [RIBSGSG02, KLVWO04]. In our work we leverage
on the results of these studies as well as the analysis of traces from the Gnutella network, detailed
Appendix A to address the skew in distributions of keywords and queries, the primary reason behind th
need for inherent load balancing in a structured file-sharing search system.



client { storage node 1} get(keyword: K5) client

request to get pointers

to storage nodes
- >

reference to a storage
node from a pointer node

request from client to
R . :
| N stoage node

oy 2 Y 4 Y o NG &

keyword: K1 keyword: K2 keyword: K3 keyword: K5 keyword: K5
keyword: K3 keyword: K4

storagenodel  storagenode2  storage node 3 storagenode 4  storage node 5
Figure 2: Design Overview

3 Design Overview

In this section we present the design of our distributed file-sharing index. We define the relevant termi
nology and in subsequent sections we describe the protocols used, and analyze the overheads of th
protocols. In our system, users share files. They provide access to files they hold, and request files he
by others. Requests for files held by others consist of queries containing keyword strings. Files are idel
tified by their metadata. When a keyword string matches the metadata for a file, then a hit occurs and tt
matching file is a target being searched for.

There are two types of nodes in this system: clients and servers. Clients store files, provide files t
others and make requests for files held by others. Servers perform two functions: (a) Each server no
holds an index for a subset of all possible keywords. This index contains a copy of the metadata fc
every file in the overall system containing the indexed keyword, and a pointer to the client holding the
file. (b) The servers are linked as a distributed hash table (DHT) (hashed on keyword) in whidy the
is a keyword and thealueis the address of a server storing an index for that keyword. A server when
performing function (a) is called a "storage node” and a server when performing function (b) is called &
"pointer node.”

A client seeking a given file presents a keyword string to a storage node that indexes at least one
those keywords. The storage node, since it has the entire metadata for each file with that keyword, can d
full compare between the keyword string and the file metadata, and will return a pointer to every matchin
file. Thus only one storage node access is needed in order to locate target files - there is no need to ses
separate storage nodes on separate keywords and then do a join.

In practice, as further explained in Section 4, for load balancing purposes a given keyword inde
may appear on more than one storage node. In that case, each of those storage nodes will have to
accessed in order to get a full list of target files. Further, a given keyword is not bound to a given storag
node - the DHT is used to find the storage node(s) for a given keyword. This latter feature allows for loac
balancing, and the dynamic addition and deletion of storage nodes from the system.

The pointer nodes are organized in a circular distributed hash table (dht), based on chord[BIK
Each node has a unique 160-bit identifier and is responsible for storing key/value pairs for all the keyword
that hash closest to its identifier. Since pointer nodes are organized in a dht, a client may contact any poin



Entity | Exposed Interface Usage Description
Storage| publish(keyword, client, entries)Client publishes the inverted index
Node entries for the given keyword
update(keyword, client) Clientupdates the TTL for its
entries on this storage node
query(query) Client queries the storage node
Pointer | put(keyword, storag@ode) Storage Nod@nserts/updates its reference
Node for the given keyword
get(keyword) Clientretrieves pointers t8torage Nodgs)
for the given keyword

Table 1: Exposed interfaces

node to perform a lookup request, which gets forwarded to the appropriate pointer node within the dht.
client therefore only needs to know the location of only one server node. We describe the full operation
of our implementation of the distributed hash table in Appendix C. The load balancing aspect is discusse
separately in Section 4.

Clients wishing to make files available to the community "publish” the metadata for those files.
The publishing process is depicted in Figure 2. To publish its local contents a client node first needs t
construct an inverted index based on the files it wants to make available. For each keyword, the inverte
index contains a list of local files that contain the keyword. For every keyword, the client needs to publist
the corresponding list to any storage node responsible for that keyword. In some cases several store
nodes may be responsible for a particular keyword if the entries for that keyword need to be distribute
for load balancing purposes. In the example in Figure 2, the client performs a pointer lookup in the dht fo
keyword K1, receives a list consisting of storage node 1, and publishes its index for keysnoddectly
to storage node 1. In the rare instance when there’s no storage node associated with the keyword or if
the associated storage nodes are at their full capacity, the client may pick any other storage node.

The querying process is also depicted in Figure 2. A client issuing a query for a set of keywords
contacts the storage node for any one of the keywords and requests it to resolve the query. If there &
several storage nodes responsible for the queried keyword, then to get the full response, the client need:
contact each of the appropriate storage nodes. To find the storage node(s) responsible for Kéywuard
guery client in Figure 2 asks any available pointer node. It receives a response directly from the pointe
node responsible fok'5. The routing of the lookup request is done within the distributed hash table (see
Appendix C). In this example, the client sends its query to storage nodes 4 and 5, which contain inde
entries for keywordk'5. Even if the query contains several keywords, it is fully evaluated at the storage
nodes responsible for any of the keywords in the query. The entries stored at storage nodes contain all
each file’s metadata allowing for the query to be fully evaluated locally.

3.1 Soft State Protocols

In this section we describe the soft state protocols used to deal with churn. Any of the three types (clien
pointer, storage) of nodes might leave the system at any point in time and without warning. Our protocc
is explicitly designed to deal with churn by keeping all of the information in soft state. If a client leaves

5



the network, the inverted index entries for that client’s files need to be invalidated on all the storage node
that contain them. If a storage node goes down, two actions must take place to reflect that all the keywo
entries that it was storing are now lost. (1) The pointers to the no-longer present storage node need to
invalidated on the pointer nodes. (2) The indexed metadata that was lost needs to be recreated to refl
the clients that are still online. Finally, if a pointer node disconnects from the network, all of the pointers
that it was maintaining are gone and need to be recreated on some other pointer node.

The pointer nodes provide a distributed hash table put/get interface as shown in Table 1. Each point
to a storage node has an associated time-to-live and is removed from the pointer node if not updated by t
storage node. This ensures that (a) storage node failure is reflected on the pointer nodes and that (b) th
are few pointers to storage nodes that are no longer present. In order to guard against lost pointers due
pointer node failure, the storage nodes periodically update their pointers pathimterface. Theput
always gets routed to theurrentlyresponsible pointer node, which accounts for pointer node failure. An
entry for each keyword is updated periodically by each storage node at a configurable period on the ord
of minutes. The process of storage nodes updating their pointers ensures that their pointers are refresh
This exchange accounts for resolving pointer node as well as storage node failures.

The client and storage nodes engage in a protocol to ensure that (a) storage node failure is detec
by the clients and that (b) client departure is detected by the storage nodes. The interface exposed by
storage nodes is shown in Table 1. After a clipablish es its entries to a storage node, it needs to
make sure that the entries remain there and are not lost if the storage node suddenly departs. The cli
does so by periodically issuing aiqpdate call directly to the storage node. If the storage node is found
to be gone, then the client needs to republish his information. Likewise, the storage node needs to ma
sure that the client whose metadata it’s storing is still available and that it’'s not storing stale data. Clients
entries have a ttl and entries that haven't been updated for a set period are discarded. A process of clie
periodically pinging storage nodes mitigates both of the above mentioned problems. The client ensure
that the storage node is still up and is using its data to satisfy queries. The storage node is certain that
clients are still alive and that is does not need to discard their metadata.

3.2 Protocol Overhead

In this section we go through the steps involved in the normal operations of the pointer, storage and cliel
protocols. We are expecting churn to be part of normal operations and it is accounted for in the protoco
and their overheads. We compute the overhead of each protocol by calculating resulting per server netwc
load in terms of bytes per second. We feel that total traffic is a good estimate because the real processi
in our system comes from sending and receiving update messages. We feel that this is indicative
the amount of work that each entity needs to perform and also reflects the overall load injected into th
network. Table 2 lists all the relevant system parameters, and shows how they effect the individual parts
our protocol. Two sample workloads are provided, one which we used to evaluate the system on PlanetL.
(see Section 5) and one typical of real large scale setups such as the Gnutella network. Note the orders
magnitude disparity in the number of servers between the two workloads and the scaling that our syste



Parameter | Description Sample A Sample B
C Clients 130 1,000,000
S Servers 76 100,000
Py Pointer Period (seconds) 2 2
Ps Store Period (seconds) 120 120
Pc Client Period (seconds) 240 240
Py Query Period (seconds) 60 60
L Average Message Length (Bytes) 100 100
Lg Query Response Length (Bytes) 500 500
r Replication Factor 4 8
K Total Keywords 50,000, 10,000,000
K¢ Keywords / Client 1000 1000
Fe Files / Client 600 600
Kr Keys / File 5 5
M Metadata Size (Bytes) 50 50
Uc Client Uptime (seconds) 2400 3600
Us Server Uptime (seconds) 86400 86400
Overhead | Computation KBps KBps
POINTER | (4 + 4r + 2log(s)) * L/ P; 1,625 3,461
STORAGE | (2xlog(s)+4x(r—1))* L/Psx K/S 13,430 5,102
Lookup (2% 1log(s)) * Lx Kc/Uc*C/S 891 9,228
Transfer (Fox KpxM)/UcxC/S 107 417
PUBLISH | Lookup + Transfer 998 9,644
Churn PUBLISH xU¢/Usg 28 402
CLIENT Churn + (2% Lxmin(K¢, S))/Pc x (C/S) 136 8,735
QUERY ((2xlog(s)* L)+ L+ Lg)/Py = (C/S) 53 654
TOTAL 16,241 KBps| 27,596 KBps
TOTAL 129,927 Kbps 220,765 Kbps

Table 2: Overhead summary

achieves with a less than two fold increase in load. For a full explanation of the system parameters ar
complete derivations we refer the reader to Appendix B. The five main costs are summarized in Table 3.

Three of our costs, the publish overhead, client overhead and query overhead, depend linearly on t
client-to-server ratio (Table 2). In Figure 3(a) we observe the effective per server load as a result of varyin
the ratio of clients to servers in the system. We can note that as the ratio of clients to servers increase
the overhead quickly reaches unacceptable levels, far beyond those sustainable by common DSL or ca
lines. The load is however reasonable for a server to maintain when the client-to-server ratio is on the ord
of 10. Such aratio is typical to expect in a peer-to-peer system, where a large fraction of participants act :
servers. Keeping the number of clients and servers stable at 1 million clients and 100,000 servers, (usi
Sample B in Table 2) we vary a number of other crucial system parameters. In Figure 3(b) we vary th
average server uptime from one hour to about one day. Small server uptimes induce churn in the syste
and have a direct effect on the client overhead (due to continuous publishing), which in the model is th



100000 ‘ ‘ - ‘ 400 ‘ ‘ ‘ ‘ ‘ ‘
1000K clients —— Query
. 100K clients - 350 Client E=T
10K clients - Publish
o 10000 b 10Mbps o 30 '
> o 1Mbps ------- >
8 ‘ 128Kbps - ) 250
g 1000 o g 200
2 e 2 150
a . a
x 100 | LRI X100
T . T 50
lo 1 1 1 0 0N A RSN \
100 1000 10000 100000 1et+06 1 2 4 8 16 32
servers server uptime (hours)
(a) Varying the client/server ratio (b) Varying server uptime
500 — ‘ ‘ ‘ ‘ ‘ ‘ 400 :
Query zzzzzza Query 3
450 Client ETSTED | 350 t  Client £o=mm
400 Publish 1 Publish
T 30 Storage ——— | 7 3007  Storage —
S Pointer =< S 250 | Pointer =<
® 300 3
a 250 g 200 |
9 200 Q150 |
S 150 v
\'4 X 100 t
100
50 1 50 ¢
0 PSS Pt P SB] Pt B S P SB] Priessss 0 4 g 8
025 05 1 2 4 8 16 4 8 16 32
client uptime (hours) pointer replication factor
(c) Varying client uptime (d) Varying the replication factor
600 : \ : 600 ‘ ‘
Query Query
500 Client =Ty | 500 - Client ST
Z Publish Publish
° Storage 1 T Storage
5 400 Pointer 1 5 400 I Pointer
g 300 z g 300 r
n %]
S 200 & 200t
X X
100 100
o % AP % AP % PSS 2 B3 % O 8 8 $ed GO CT
1 2 4 8 16 32 64 128 1 10 100 1000
client query interval (seconds) keywords per server
(e) Varying query interval (f) Varying number of keywords

Figure 3: Protocol Overhead. Figures (b)-(f) consider a setup with 1,000,000 clients and 100,000 servel

only quantity affected by server churn. Typical server uptimes of at least one day are reasonable to expe
[GSGO02]. Varying the client uptime has a direct effect on the publishing cost as shown in Figure 3(c)
In our model we assume that the average number of clients up at any time remains stable. As the clie
uptimes become shorter and more clients enter the system on average, more data needs to be publisl



Cost Description

QUERY cost due to resolving the queries generated by clients
CLIENT the cost of clients refreshing their index entries on the storage
nodes, and recreating lost entries due to storage node failure
(affected by server churn)
PUBLISH | the cost of clients publishing their shared metadata when they
join the network (affected by client churn)
STORAGE | cost of the storage node interaction with the pointer nodes
during the pointer update protocol
POINTER | cost of the dht maintenance protocol among the pointer nodes

Table 3: Cost summary

The expected average client uptime is about one hour [GSGO02].

Within the dht, each pointer to a storage node is replicated on a fixed number of adjacent pointe
nodes. The replication factor improves load balancing and increases response time and is fully discuss
in Section 4 and Appendix C. Changing the pointer replication parameter in Figure 3(d) affects only the
pointer overhead and the storage overhead. The rate at which clients issue queries has a linear effect @
on the query cost. Figure 3(e) shows the effect of changing the average number of queries issued
clients from one per second, to one in two minutes. Finally, in Figure 3(f) we look at the effect which
the total number of distinct keywords has on the system. The number of distinct keywords effects th
number of keywords that each storage node is responsible for and that has a linear effect on the store
node overhead.

4 Load Balancing

In this section we address the problem of balancing load in our system. Specifically, we look at twc
problems of (1) balancing the query load among pointer nodes and (2) balancing the storage load amo
storage nodes. By query load we mean the number of lookup messages received by each pointer node.
storage load we mean the number of index entries stored per storage node.

The first step of each client query involves obtaining pointers to storage nodes from the pointer dhi
Each pointer node is responsible for storing pointers and resolving queries for roughly the same numb
of keywords. However, if the distribution of queries per keyword is not uniform, pointer nodes responsible
for the more popular keywords will be likely to receive more lookup requests. To deal with this problem,
each pointer is replicated on a fixed number of adjacent pointer nodes. We show that this provides
moderate improvement in the pointer node load distribution. On the other hand, the number of entries th
a storage node stores for a given keyword depends on the number of files in which that keyword appea
If the distribution of files per keyword is not uniform, the number of index entries for different keywords
may be drastically different. The amount of storage space that each storage node would need to contribt
would depend directly on which keywords it’s storing entries for. To deal with this problem we split the
larger keyword entries and distribute them among several storage nodes, while using indirection throug
the pointer layer to identify where the split entries reside.



10000 ‘ ‘ ‘ 10000 P
10 Keywords —— 100,000 Nodes ——
° 100 Keywords - ’ ° 10,000 Nodes -
b= 1,000 Keywords -~ =1 1,000 Nodes -
8 1000 : 10000 Keywords B 1000 ¢ 100 Nodes =
8 100,000 Keywords - 8 10 Nodes =
‘© ©
D 100 ¢ D 100 ¢ e
b aj -
8 8 .
& 10 ¢ & 0 -~
1S 1S S
- -‘;D_n ° a a
1 L L L 1 il S S S
10 100 1000 10000 100000 0 2 4 6 8 10 12 14 16
number of nodes replication factor

(a) Query load for various number of nodes and (b) Effects on max/average ratio as result of
number of keywords varying replication factor for different number of
nodes and 100,000 keywords

Figure 4: Evaluating query load
4.1 Query Load

First, we observe the effect that the ratio of the number of servers to the number of keywords has on tt
load. If there are more keywords than nodes, each pointer node becomes responsible for several keywo
at a time and that in itself has a favorable impact. In Figure 4(a) we look at the max/average load rati
as we vary the number of keywords for which queries are issued and the number of servers in the syste
The Zipf distribution is sampled to drive the keyword frequency in queries (as observed in Appendix A).
When the ratio of keywords to nodes is large, each node is responsible for several keywords. Therefor
there are fewer nodes that are under-loaded and the max/average ratio is rather small. As the numbel
nodes increases, and each node becomes responsible for a smaller number of keywords we can clearly
the effects of the uneven query distribution.

To ameliorate the imbalance, we rely on the fact that in our dht implementation each pointer is
replicated on a fixed number of nodes, and contacting any one of them is sufficient to retrieve the pointe
to the storage node. In Figure 4(b) we observe the improvement in load balancing max/average ratio
we vary the value of the replication factor. In this experiment we fix the number of keywords at 100,000
which is roughly the number of keywords we observed in Gnutella traces (see Appendix A) and analyz
the max/average ratio. While not completely perfect, increasing the replication factor shows improvemen
in the load ratio.

We can further reduce the load imbalance by letting each multi-keyword query perform a lookup
for the least popular of the keywords. Each client can estimate global keyword frequency by computing |
over the metadata that it holds. In Appendix A we analyzed the Gnutella query traces, and for every quel
with more than one keyword only recorded the frequency for the least popular of the keywords. The quer
keyword frequency for the most selective keywords is still somewhat Zipfian but the highest appearing
frequencies are reduced by an order of magnitude (Figure 12(b) in Appendix A). Figure 5(a) shows th
max/average ratios derived from the traces in which a query is issued for the least popular keyword ar
we can observe that the max/average ratio is also reduced by an order of magnitude.

10



1000 ‘ ; ‘ ‘ ‘ ‘ 10000 —
100,000 Nodes —— All Keywords ——
° 10,000 Nodes - ° Without top 25—
= 1,000 Nodes - = 1000 | Without top 50 - |
= 100 Nodes = = Without top 100 =
g 100y 10 Nodes ---=--- ] k|
9 9 100 | :
) & B
E 10 L X i E * .
& e & 10 b Pl T
£ £ B T,
1 og N J*‘* 1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ o
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
replication factor splitting factor

(a) Effects on max/average ratio as result of vary- (b) Storage load balancing with replication and
ing replication factor with 100,000 keywords stop words, with 100,000 clients and 10,000
servers

Figure 5: Query and storage load distribution

4.2 Storage Load

The distribution of keyword frequencies in filenames, like the distribution of keywords in queries, resem-
bles the Zipfian (Figure 11(c) in Appendix A). A small fraction of keywords such as file extensions and
popular English words appear in a disproportionate amount of file names. To ensure that the load on tt
storage nodes is balanced we employ two solutions. First, the index entries for keywords with a larg
number of files are split, and stored on any set of storage nodes. This is achieved with the help of ind
rection through the dht, which can store several pointers for a given keyword. Second, we make sure th
clients do not publish index entries for a fixed number of top ranking keywords, unless there are no othe
available keywords. While the system cannot restrict which keywords get queried, we can control whicl
entries get published. Clients can choose which entries get published based on local index estimates or
global values, for instance the number of current storage nodes for a keyword. Storage nodes also he
complete freedom in determine which index entries and how many they wish to store. If a storage nod
is overloaded with keyword entries, it can choose not to accepiudlish  requests from clients, and
clients will find a different storage node to publish to. This can be done as we enforce no binding betwee
a storage node and the keywords it stores.

In Figure 5(b) we look at the performance of the two schemes for distributing the storage load. This
shows a simulation of a network with 100,000 clients and 10,000 storage nodes with clients having a
average of 100 files with 5 keywords per file (as observed in Appendix A). We can observe the effects c
increasing the splitting factor as well as increasing the number of stop words for which entries do not ge
published. We can see that simply increasing the splitting factor by itself or only removing stop words
from being published, while effective, is not as successful as the two measures taken together. Includir
the two simultaneously reduces the max/average load ratio by two orders of magnitude and brings it dow
to reasonable limits.

11



Duration 5 hours

Number of servers 76

Average number of 123

simultaneous clients

Total number of clients 1,108

Average client uptime 35 minutes

DHT Ping Period 2 seconds

Storage Pointer TTL 5 minutes

Storage Node Update Perio® minutes / keyword
Client Entry TTL 10 minutes

Client Entry Update Period | 4 minutes / keyword
Average Query Rate 1 query per minute / client
Queries Issued 31,284 queries

Table 4. Experimental setup and summary

5 Evaluation

A prototype of the system has been implemented and incorporates all of the elements described abo
including load balancing and soft state maintenance. The prototype implementation is about 12,000 line
of Java and includes modules for the routing and pointer layers, the storage layer as well as the clier
The goals of our evaluation are threefold. First, we want to observe the overhead of the protocols o
a running system. Second, we want to observe the distribution of load under non-uniform query an
publishing workloads. Finally, our goal is to evaluate the effective query result quality, compared agains
a centralized index solution.

Our evaluation is trace driven. We use existing client publishing workload utilizing the data from
603 real Gnutella clients (discussed in Appendix A). An existing query workload of 70,000 queries from
[LHH"04] is also used. To facilitate our experiments, we run a central distribution host which has two
main responsibilities. First, it assigns publishing and query workloads to clients based on the trace:
Second, it acts as a centralized server resolving queries locally to evaluate the effective recall. We ultiliz
a single local machine to act as the distribution host. About 76 PlanetLab nodes are used to stimulate t
server and client workloads. Each PlanetLab node runs a server (a pointer node and a storage node couj
together) and two client instances. A client instance continuously loops in two modes: up and down t
simulate churn. In this evaluation each client instance goes up for average of 35 minutes, shuts down f
average of 10 minutes and repeats. Each time a client comes up it gets a new publishing workload fro
the distribution host and sends it heartbeats while running in up mode. The client also receives a que
workload from the distribution host, and issues the queries at a rate of one query per minute. Each time
client issues a query to our distributed index, it also resolves it with the distribution host for comparison
The experimental setup is summarized in Table 4.

The system is configured with the following parameters. The system-wide pointer replication factol
is four. The pointer node update period is set to 2 seconds. Each storage node updates its entries in
dht every 2 minutes and each entry is set to expire after 5 minutes, if not updated. Storage node statisti
used for load balancing, precisely the current number of entries and the number of keys, are piggyback

12



140 w w w w w w 120000

120 ¢ 100000 |

100 ¢ 80000 |

80 |

; 60000 |
60 -

40000 |

40 L
20 | 20000 (|,
. . . . ! L 0 ; . P i -
19:00 20:00 21:00 22:00 23:00 00:00 19:00 20:00 21:00 22:00 23:00 00:00
time(hh:mm) time(hh:mm)
(a) Total number of servers and clients (b) Traffic per server (bytes/second)

Figure 6: Experimental results

with dht ping messages as well as pointer update messages. These statistics are later used by clients
load balancing. The client update period is set to 4 minutes and client entries expire at storage nodes af
ten minutes. That means that there is a lag of at most ten minutes between the time when a client go
down and the time when queries are no longer resolved against its entries. This lag time is the source
any false positives returned with query results.

Two specific policies are used by the clients, one for publishing and one for querying. When pub-
lishing its entries, clients can choose which storage node the entries for a particular keyword should ¢
to. The clients publish entries for all keywords, no matter how many entries there are or what ranking th
keyword has. When the client looks up the current pointers for a keyword, it gets a list of storage node
currently storing entries for that keyword along with their last reported statistics. Also included is a shor
list of other storage nodes that the responding pointer node knows about along with their current statistic
If the keyword is not in the top 5cally and the number of entries is less than 500, the client publishes
to the storage node which already stores entries for that keyword. If there are several, it chooses the o
with the least number of reported entries. If there are none, then it chooses a storage node from the |
with the least number of entries, and the pointer nodes are updated. On the other hand, if the keyword
either in the top 50 or has more than 500 entries, the client chooses the storage node from the whole |
that has the least number of entries, whether it’s already storing that keyword’s entries or not. For multipl
keyword queries a simple local policy is implemented for choosing the least selective keyword. If all of
the keywords appear locally, the client chooses the keyword with the lowest local ranking. Otherwise, |
just chooses the longest length keyword.

The experiment ran for a total of about five hours with an average of 76 servers and 123 clients u
at any instance. Over 1,100 distinct client instances were observed with an average uptime of 35 minute
The number of operational clients and servers aggregated in one minute intervals is shown in Figure 6(z

13



35000 7000

30000 6000
25000 5000
20000 4000
15000 3000

10000 | | 2000 | |t

1000 |/

L L L L L L o U T i i i
19:00 20:00 21:00 22:00 23:00 00:00 19:00 20:00 21:00 22:00 23:00 00:00
time(hh:mm) time(hh:mm)
(a) Number of index entries per server (b) Number of keys per server

35

30 95% - j
avg
g g 57
c c
E E 207
g7 g7
B g8 15t
> = | |
g 8 10!
5 L
A H . L L 0 U . L L
19:.00 20:00 21:00 22:.00 23:00 00:00 19:.00 20:00 21:00 22:.00 23:00 00:00
time(hh:mm) time(hh:mm)
(c) Query requests p@ointer node (d) Query requests pstoragenode

Figure 7: Experimental results
5.1 Traffic and Storage Load

The network traffic generated by the experiment is presented in Figure 6(b). For each server we captu
the total number of bytes, sent and received, in a bytes/second rate, averaged over one minute interv:
This data includes the overheads of the pointer protocol and storage protocols as well as the file metad:
published by clients. For each one minute interval Figure 6(b) shows the maximum, average, minimur
and 95 percentile data transfer rates over all operational servers. The average amount of traffic per ser
was 15,888 bytes per second, which closely corresponds to the result obtained with our model of 16,2
bytes per second (derived in Appendix B and summarized in Table 2).

Figures 7(a) shows the distribution for the number of keyword entries stored at each server. We d
observe some periodic spikes in the maximum number of entries per storage node. The 95th percentile
almost always within a factor of two of the average, and the minimum number of entries is extremely clos
to the average, and the max/average ratio hovers around two for the majority of the run. The distributio
of keywords per storage node shown in Figures 7(b) has a steady 95th percentile twice above the avera
The peak maximum at the beginning of the run gets resolved within the first hour and the max/averag
ratio is steadily below 4 for the rest of the run.

14



3500 w w w w w w 4000

max ——
3000 | 95% - j 3500
avg -
o 2500 | o 3000
2 2 2500 |
g 2000 - IS
g7 W 2000 f
B 1500 f 8
= = 1500 r
g 1000 g A
1000 | ‘
500 r; 500 [/ o ]
0 L= 0 h— : : : : :
19:00 20:00 21:00 22:00 23:00 00:00 19:00 20:00 21:00 22:00 23:00 00:00
time(hh:mm) time(hh:mm)
(a) Publishgetrequests per pointer node (b) Publishput requests per pointer node

Figure 8: Experimental results
5.2 Query and Publish Load

In this section we examine the amount of query and publishing load exerted on the system. Figure 7(
shows the distribution of the average numbegef requests received per minute by each pointer node.
A get isissued by a client as the first step of each query to discover the storage nodes that maintain clie
entries for the queried keyword. The average number of queries per minute observed by each server
about two as we have about twice as many clients as there are servers issuing queries at a steady rat
one per minute each. The max/average ratio is steady at about 5.

Figure 7(d) shows the distribution of query requests per storage node. The average number of queri
per storage node is a little higher than the average numbgetofrequests per pointer node. This is due
to the fact that some keyword entries are split between several nodes. A querying client in this experime
gueries all the applicable storage nodes. For every query, there is exactly one request issued in the dht,
might be more than one issued to storage nodes. One trend to observe is there seems to be a hotspot ir
beginning of the experiment but we see that it gets relieved as the experiment continues. The hotspot
due to the temporarily uneven distribution of keywords per storage node as was observed in Figure 7(k
but it gets resolved as a side effect of dynamic load balancing. Once the hot spot has been eliminated t
distribution shows a low max/average ratio.

The poorest resulting load distribution is the one due to the client publishing process. Figure 8(a
shows the distribution of lookup requests per pointer node, which get issued when a client is deciding t
which storage node it should publish entries for a particular keyword. As some keywords appear in mo:
clients’ filenames, the pointer nodes responsible for those keywords get hit the most. This can only b
controlled by the clients as they choose which keyword entries to publish, and which lookups to perform
It can however, be improved by using a different client-side policy requiring clients not to publish any
entries for the top ranking keywords as was shown in Section 4. The max/average ratio for this distributio
is the highest of all, peaking at around 35. On the other hand, the load generated by the storage nods
pointer insert protocol is very well balanced as shown in Figure 8(b).

15



700000

600000 | 1
500000 |
400000 | |
300000 | |

queries cdf

200000 | |

100000

19:00 20:00 21:00 22:00 23:00 00:00 1 10 100 1000 10000
time(hh:mm) results

(a) Number of client entries: actual vs. stored (b) CDF of results returned per query

1| lookuptime
total time ————

. . . . . . . 0 . . . .
0 5 10 15 20 25 30 35 0001 001 0.1 1 10 100 1000
number of pointers time(sec)
¢) Number of storage node pointers per looku d) Query response time
g p p p y resp
l recal ——— ‘ ‘ ] 1L recal ——
01t
8 8
g g
& = 0.01
RN X
0.001 |
0 : : : : : 0.0001
0.1 1 10 100 1000 10000 100000
recall% recall%
(e) Query recall CDF (f) Query recall PDF

Figure 9: Experimental results

5.3 Query Quality and Recall

Figure 9(a) shows the true size of the index for currently running clients against the size of the inde:
stored in our system. We can see that the number of entries stored follows the trends in the "actual” cun
but lags behind by about ten minutes. The reason behind this disparity is that as clients go down, the

16



entries don’t expire in the storage nodes until the entry ttl expires. The client entry ttl in this experiment
is set to 10 minutes. This lag causes a bit of a problem for query quality as queries are resolved agair
some stale data and the results produced contain false positives. Figure 9(b) is the cdf of the number
results per query, both the results reported by our system and the centralized distribution server. Abo
45% of all queries reported no results. The queries used were the ones that had an answer when evalue
against our whole dataset of 603 clients. In the experiment, only a fraction of those clients are up at ar
one point, and the issued queries are only evaluated against this subset. We can see that the two cur
are very similar with the "actual” curve a bit higher, testifying to the fact that the reported results contain
some false positives.

Figures 9(c) and 9(d) mostly testify to the efficiency of our dht implementation. Figure 9(c) shows
the distribution of the number of pointers to storage nodes returned to clients when issuing queries. Wit
theget operation set to timeout after 5 seconds, only 0.7% percent of the requests actually timed ou
Less than 16% percent of lookups returned zero pointers signifying the fact that there were no entrie
stored for the queried keyword. Almost 40% of all queried keywords did not have their inverted indices
split and were located on a single storage node. Only 7 percent of queried keywords had their entries sf
on more that 10 storage hosts, with the largest split factor of 34. The effective query completion times ar
shown in Figure 9(d). Resolving each query is a two step process composed of isgeindaokup in
the dht to get the pointers and then following the pointers to the storage nodes. In this experiment, if mor
than 1 pointer is returned, we follow all of them, primarily to get the absolute number of query results.
92% of all pointer lookups get resolved in less than 1 second and 93% of all queries get resolved in le:
than 10 seconds. The longest running query took a total of five minutes to complete, contacting 22 stora
nodes in the process.

Finally, we look at the effective query recall in our system. To compute query recall we looked
at all the queries that had one or more results and used the ratio of results reported by our system
"actual” results (as provided by the centralized distribution host). Figure 9(e) shows the query recall cd
and Figure 9(f) the corresponding pdf. A total of 16,478 queries out of 31,284 queries issued actuall
had one or more matches, and we only consider these queries when computing the recall. Exactly 1C
of these queries had reported no results in our system. We attribute this to the temporal lag in the clie
publishing process. The publishing process is not instantaneous and some queries are issued for keywc
whose entries have not been published yet. A total of 15 percent of the queries have recall less than 5(
and 25 percent have recall less than 100%. Exactly 40% of all queries get resolved absolutely, with 100
recall quality. Less than 7% of all queries got a false positive rate of more than 2. The rest of the querie
contain more false positives due to the 10 minute lag present when clients leave the system.

6 Conclusion

In this paper, we presented a new implementation of a file-sharing system based on partitioned invert
indices. The system yields (1) query result quality better than flooding and close to a centralized inde»
and (2) a low-maintenance network overhead. These improvements result from our optimized approach

17



to handling (a) high churn rates and (b) skewed publishing and querying workloads. We addressed hic
churn rates by keeping all data in soft state, which is periodically refreshed, such that the loss of a serv
or client is quickly reflected in the indexes. Skewed workloads are load balanced with the use of a layer c

indirection for placing and locating data based on the frequency of use. Through a synergy of a dht-base

layer of indirection and an original soft-state maintenance protocol we have created a platform that goe
well beyond the current unstructured flood-based file sharing systems.

References

[CCRO4] Miguel Castro, Manuel Costa, and Antony I. T. Rowstron. Should we build gnutella on a structured
overlay? Computer Communication Reviegd4(1):131-136, 2004.

[CGMO02]  Arturo Crespo and Hector Garcia-Molina. Routing indices for peer-to-peer systet@DG§ pages
23—, 2002.

[CLLO4] Jacky Chu, Kevin Labonte, and Brian Neil Levine. An evaluation of chord using traces of peer-to-peer
file sharing. INSIGMETRICSpages 432-433, 2004.

[CRBT03] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker. Making gnutella
like p2p systems scalable. 8IGCOMM pages 407-418, 2003.

[CS02] Edith Cohen and Scott Shenker. Replication strategies in unstructured peer-to-peer networks. |
SIGCOMM pages 177-190, 2002.

[DKK*T01] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and lon Stoica. Wide-area cooperative
storage with CFS. IRroceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP
'01), Chateau Lake Louise, Banff, Canada, October 2001.

[GDST03] P. Krishna Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D. Gribble, Henry M. Levy, and John
Zahorjan. Measurement, modeling, and analysis of a peer-to-peer file-sharing worklo8@Sk
pages 314-329, 2003.

[GFJ™03]  Zihui Ge, Daniel R. Figueiredo, Sharad Jaiswal, James F. Kurose, and Donald F. Towsley. Modeling
peer-peer file sharing systems.INFOCOM, 2003.

[GSGO02] P. Krishna Gummadi, Stefan Saroiu, and Steven D. Gribble. A measurement study of napster ar
gnutella as examples of peer-to-peer file sharing syst€msputer Communication Revigd2(1):82,
2002.

[KLVWO04] Alexander Klemm, Christoph Lindemann, Mary K. Vernon, and Oliver P. Waldhorst. Characterizing
the query behavior in peer-to-peer file sharing systemdntbrnet Measurement Conferengages
55-67, 2004.

[LCCT02] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and replication in unstructured
peer-to-peer networks. I€S pages 84-95, 2002.

[LHHT04] Boon Thau Loo, Joseph M. Hellerstein, Ryan Huebsch, Scott Shenker, and lon Stoica. Enhancing p2
file-sharing with an internet-scale query processoNILDB, pages 432—-443, 2004.

[LLHT03] Jinyang Li, Boon Thau Loo, Joseph M. Hellerstein, M. Frans Kaashoek, David R. Karger, and Robert
Morris. On the feasibility of peer-to-peer web indexing and searchPTiPS pages 207-215, 2003.

[RBOZ2] Mema Roussopoulos and Mary Baker. Cup: Controlled update propagation in peer-to-peer networks
CoRR ¢s.NI1/0202008, 2002.

[RD] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location, and routing fo
large-scale peer-to-peer systerhecture Notes in Computer Scien@218.

[RFHT01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A scalable conter
addressable network. Proceedings of ACM SIGCOMM 2004001.

[RGKT05] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia Ratnasamy, Scott Shenker, lor

Stoica, and Harlan Yu. Opendht: A public dht service and its usesPrdoeedings of the ACM
SIGCOMM '05 Conferengedugust 2005.

18



[RGRKO04] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling Churn in a DHT. In
Proceedings of the 2004 USENIX Technical Conference, Boston, MA,JuSé& 2004.

[RVO3] Patrick Reynolds and Amin Vahdat. Efficient peer-to-peer keyword searchingidiiieware pages
21-40, 2003.

[SMK*01a] lon Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applicationBrdoeedings of the ACM SIGCOMM
'01 ConferenceSan Diego, California, August 2001.

[SMK™01b] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applicationSIGCOMM pages 149-160, 2001.

[Str] Jeremy Stribling. Planetlab all-pairs ping.

[TDO4] Chungiang Tang and Sandhya Dwarkadas. Hybrid global-local indexing for efficient peer-to-peer
information retrieval. IMNSDI, pages 211-224, 2004.

[TXDO3]  Chungiang Tang, Zhichen Xu, and Sandhya Dwarkadas. Peer-to-peer information retrieval using self
organizing semantic overlay networks. 3hGCOMM pages 175-186, 2003.

[YGMO02] Beverly Yang and Hector Garcia-Molina. Improving search in peer-to-peer networkDIDS pages
5-14, 2002.

[ZHO5] Rongmei Zhang and Y. Charlie Hu. Assisted peer-to-peer search with partial indexingER
INFOCOM, March 2005.

[ZKJO01] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for fault-tolerant wide-
area location and routing. Technical Report UCB/CSD-01-1141, UC Berkeley, April 2001.

19



Appendix

A Gnutella Trace Analysis

Gnutella clients expose larowse host interface through which they report the names of all the files
that are residing in their shared directory and that they are offering to other Gnutella clients. We hav
instrumented our local Gnutella client to connect to the Gnutella network, issue queries for a hand-picke
set of keywords with the intention of getting many query replies with links to numerous clients. For each
unique client that we observe in the query replies, we issuéribvwse host call. In this trace, from

May 2, 2005, we have issued 10Bfbwse host requests to unique Gnutella clients and have received
replies containing one or more files from 603 clients. A reply was received for each file on a client anc
contains the unique client identifier and the full file name. We have received listings for 443,213 files
containing a total of 180,683 unique keywords obtained from the file names using white space and ’.’ a
the delimiters. We use this trace to obtain the distributions of files per host, keywords per file name an
the keyword popularity in file names.

1 1
09 09
08 08
07t 8 o7}
06 | = 06
e o
T 05 g 05
04 b= 04
03 | g 03 |
02} / < ] 02}
I ple —— | I
o _~~"Exponential(1/600) ——— o i
1 10 100 1000 10000 100000 0 010203040506070809 1
number of files fraction of clients
(a) files per client distribution (b) fraction of files shared by clients

Figure 10: Distribution of files per client

In Figure 10(a) we plot the distribution of number of files per host. The sample cdf is plotted against
the exponential cdf with mean 600. The median and average number of files per host is 297 and 7:
respectively. The maximum number of files per host observed in this trace was 16,921. The middle 50¢
of all clients share between 125 and 670 files. About 13% of all clients have more than 1,000 files. T
closely observe the disparity between the number of files shared by clients we ranked the clients based
the number of files they share and plot the cumulative percentage of files shared by clients in Figure 10(k
This plot shows that 50% of all available files are offered by only 8% of all clients.

Figures 11(a) and 11(b) show the cdf and the pmf for the number of keywords observed in a file
name. The median number of keywords is five and the average number of keywords is six. The maximul
number of keywords per file observed in our traces was 44. The distribution peaks at two, has a somewt
flat head between 3 and 7 keywords and then drops with a long tail.

20



09 |
08 |
07 |
06 |
05 ;
04 /
031}/
02}/
01|

cdf

0
0

(a) Distribution of keywords per file name (cdf)

Sanﬁple .
Exponential (1/5)

1le+06

100000
10000 ¢
1000
100 ¢

10 ¢

frequency

(c) Keyword frequency distribution in file names

0.1

5 10 15 20 25 30 35 40 45
keywords per file

455520 Files

10
keyword rank

0.18

0.16 i
014 |
012 | I}
01}
0.08 |
0.06 |
0.04 |
0.02 |

pmf

0 . . P ; ; ,
0O 5 10 15 20 25 30 35 40 45

‘ Sarﬁple T
Exponential (1/5)

keywords per file

(b) Distribution of keywords per file name (pmf)

100000

10000 ¢
1000 ¢
100 ¢

10

0.1

100 1000 100001000001e+06

1

keywbrds Per Host
Files Per Host
Keywords/FilesRatio  x

0O 100 200 300 400 500 600 700

host

(d) Number of files and distinct keywords per host

° 2 4 6 8 10 12 14 oS 1 10 100 1000 10000 100000
keywords per query queries akeyword appearsin
(e) Keywords per query (f) Queries per keyword
Figure 11: Trace analysis
Rank 1 2 3 4 5 6 7 8 9 10
Keyword | - mp3 iPg the gif exe wmv | you of &
Frequencyl 257451| 241169| 49415| 47364 | 21408| 20899| 17514| 17235| 16084 | 15157

Table 5: Top 10 keywords and frequencies

21




100000 p-

\ \ — \ 10000 \ \ — \
~ 703696 Queries ——— . 703696 Queries ———
o St =S
10000 ¢ 1000 s
o) 1000 ¢ & 100 |
§ 100 §
g g 10 | i |
1} 1y | A
0.1 0.1
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
keyword rank keyword rank
(a) keyword frequency in queries (b) keyword frequency in queries using the most

selective keyword

Figure 12: Keyword frequency in queries

Figure 11(c) plots the distribution of keyword frequency among all file names obtained against the
Zipf distribution. Once again, 180,683 unique keywords we observed and their popularity in file name:
drops roughly according to Zipf. Table 5 lists the top 10 most popular keywords. Due to the choice of
our keyword delimiter, ’-" appears to be most popular. The rest of the keywords in the top ten are file
extensions and common English words.

In Figure 11(d) we ranked the hosts based on the number of distinct keywords their local files
contained. The median and average number of keywords per client were 831 and 1201 and the maximt
is 14,312 keywords. For each point we also plot the number of files residing on that client. The ratio o
number of keywords to number of files per host is also plotted and the average ratio is about 2.8.

From the traces gathered in [LH184] we are able to obtain the following data about the distribution
of keywords in queries. More than 700,000 queries were observed containing more than 93,000 uniqt
keywords. Figure 11(e) displays the distribution of the number of keywords per query. The average
number of keywords is 2.9 and the median is 2. Less than 2% of all observed queries had more than
keywords in them. Figure 11(f) shows the distribution of the frequency of keywords in queries. More thar
50% of all observed keywords were seen in exactly one query, and more than 85% of the keywords we
seen less than 10 queries. Figure 12(a) plots the keyword frequency in queries against the Zipf distributio
and Figure 12(b) plots the same distribution using only the most selective keyword from each query.

B Protocol Overhead

In this section we go through the steps involved in the normal operations of the pointer, storage and cliel
protocols. We are expecting churn to be part of normal operations and it is accounted for in the protoco
and their overhead. We calculate the overhead of each protocol by calculating resulting per server netwo
overhead in terms of bytes per second. Total traffic is a good estimate because the real processing in ¢
system comes from sending and receiving messages. The servers (pointer/storage nodes) don't really

22



Parameter | Description Sample A| Sample B
C Clients 130| 1,000,000
S Servers 76 100,000
Py Pointer Period (seconds) 2 2
Ps Store Period (seconds) 120 120
Pc Client Period (seconds) 240 240
Py Query Period (seconds) 60 60
L Average Message Length (Bytes) 100 100
Lg Query Response Length (Bytes) 500 500
r Replication Factor 4 8
K Total Keywords 50,000/ 10,000,000
K¢ Keywords / Client 1000 1000
Fe Files / Client 600 600
Kr Keys / File 5 5
M Metadata Size (Bytes) 50 50
Uc Client Uptime (seconds) 2400 3600
Us Server Uptime (seconds) 86400 86400

Table 6: Overhead parameter summary

anything else. We feel that this is indicative of the amount of work that each entity needs to perform an
reflects on the overall load injected into the network. Table 6 lists all the relevant system parameters, ar
provides two sample workloads, one which we used to evaluate the system on PlanetLab (see Section
and one typical of real large scale setups such as the Gnutella network.

Parameterg’ and S represent the number of clients and servers in the system. Servers are the
nodes running the pointer and storage protocols. Everything in the system is a timed event with a peric
expressed in seconds. Pointer nodes engage in a stabilization protocol to maintain the integrity of the
routing tables every’; seconds. Each storage node issupstarequest to update the pointer to itself at a
rate of Ps seconds for every keyword it stores. Clients engage in update protocol with the storage nodes .
a period ofP-. We model the event of queries being issued by clients as a periodic, per-client process witl
one query being issued eveRy seconds. These periods, except for query rate, are configurable systen
parameters. The pointer replication factas also a system wide parameter.

To keep the model cleaner, we ukas the average length of all the control and lookup messages.
The actual variance in the length of different control messages is small, and each message is sent o
UDP. The typical length of the query results is represented py K represents the number of distinct
keywords that appear in all of the clients’ shared files. This is a non-decreasing funcfiothef number
of clients but we do not have a closed form solution for it. In this analysis we will use reasonable estimate
or observed values. We use the raigS as an estimate for number of keyword per server. This assumes
that we can achieve perfect load balancing and that each storage node will be responsible for an eqt
portion of the key space. In Section 4 we discuss techniques to achieve balanced storage load distributic
and confirm with experiments in Section 5.

The following four parameterss -, F, K, andM are properties of the client shared workload and
are derived from our analysis of Gnutella client traces in Appendix A). We observe the average values fc

23



the number of files per client, distinct keywords per client, keywords per file and average size of the file
metadata. The final parameters that affect the model are the average client and server uptimes. We asst
that the number of clients and servers up at any time is approximately constant, an assumption back
by the observation of typical Gnutella usage. Not surprisingly, churn is the direct byproduct of client anc
server uptimes.

B.1 Pointer Node Overhead

Each pointer node performs three actions evérgeconds to keep its routing tables up-to-date. First, it
successively pings one node from it's routing table to make sure that it’s still alive. Second, it sends a pin
to each of it'sr immediate neighbors to make sure that its neighbor set is always up to date. Finally, eacl
node updates it&" routing table entry by finding the current no2feaway from it in the ring structure. To
perform a ping, the node sends a ping message, recipient receives it, sends a reply, and the node rece
reply. A total of4 « L bytes are sent and received by the serversS Asrvers send pings evefy seconds,
the resulting traffic ig« L« S bytes total4 « L« S/ P bytes per second and finally« L/ P; « S/S bytes per
second per server. To keep its neighbor set up-to-date, each node sends a message to adightters.
Each neighbor replies with its current neighbor set. Two messages are sent and two are received for a tc
of 4 x r x L bytes. The total traffic overhead for the neighbor protocdlig r x L)/ P; bytes per second
per server. To fix a routing table entry, one lookup is made for the current successor. The average numk
of messages sentisg(S) for a cost of(2 x log(S) = L)/ P; bytes per second per server. The total cost of
the pointer protocol is

(44+4*r+2xlog(S)) = L)/P;

bytes per second per server.

B.2 Storage Node Overhead

Storage nodes need to periodically update their pointers. For every keyword at a storage node, a poin
is inserted into the dht evers seconds. We assume that a storage node is responsible for an averag
of K/S keywords, and thus needs to perforiy S/ Ps put operations per second. Eaphtis routed
throughlog(S) nodes and at the destination gets forwarded-tol neighbor nodes (for replication) with
an expected acknowledgement. Thus, for gaat{2xlog(S)+4* (r—1)) x L bytes are sent and received.
(2xlog(S)+4=(r—1))= L= (K/S/Ps)* S bytes per second are sent by &lservers, which amounts
to the overhead of

(2% 1log(S)+4*(r—1))«L/Ps)*(K/S)

bytes per second per server.

24



B.3 Publishing Overhead

During its uptime ofU. seconds, each client needs to publish its entries into the system. The publishing
process can be viewed as composed of two stages, the lookup stage and the transfer stage. For e
keyword a client first performs a lookup in the dht to find an appropriate storage node and then sends tl
portion of the entries to the chosen storage node. If a clienfFhafes and each file name contains an
average of - keywords the number of entries in the client’s inverted index wilFbex K -, as there will

be K entries for each file. The size of the inverted index willlie x K « M bytes, wherel/ is the
average length of a file’'s metadata ( the length of the file name). Each client will publish it's index once in
it’s lifetime, of Uy seconds. We account for storage node churn, and the need to re-publish lost entries i
the client overhead, in the next section. Thus, each client will make the storage nodes receive an average
(FoxKpx M) /U bytes per second as part of the transfer process. With an averaggiefts publishing

their entries every/ seconds, with the publishing load split amaosigtorage nodes, the transfer cost is
(Fex Kpx M)/Uc * (C/S) bytes per second per server. With a totalgf distinct keywords per client,
each client needs to perforii: getlookups in the dht during it’s lookup stage. Each lookup exerts a load
of (2 xlog(S) = L) on the pointer nodes, for a total load @fx log(S) * L) * Ko /Uc x (C/S) bytes per
second per server. The total resulting publishing overhead is

((2%1og(S)* Lx K¢)+ (Fox Kpx M))/Uc % (C/S)

bytes per second per server.

B.4 Client Update Overhead

The client’s index entries are set to expire in the storage node unless they are updated by the client. T
client periodically sends a small refresh message directly to the storage nodes letting them know that |
entries should not be discarded. Once the client is past the publishing stage and knows the address
each storage node maintaining its entries, it can communicate with the storage node directly to refresh
entries. Through this mechanism the client also makes sure that the storage node is still alive and is stori
the client’s entries. If not, the client needs to find a new storage node and republish the missing entries.
If the number of storage nodésis significantly smaller than the number of keywords on a client
K¢, then it makes sense for the client to send updates on per storage node basis. If however, the numbe
storage nodes is much larger than the number of keywords then the client updates its entries per keywo
The number of updates that each client needs to send évesgconds is themin(K¢, S). The refresh
cost is that of sending and receiving a refresh message of.di@aeand frommin (K¢, S) storage nodes
every Pc seconds. There atex L « min(K¢, S)/Pc bytes per second due to every client. The resulting
refresh load ig2 « L « min(K¢, S))/Pc = (C/S) bytes per second per server.
The cost of churn can be estimated using the average storage node Uptand the client uptime
Uc. For each of the(- keywords on a client, the probability that the corresponding storage node wend
down in the lastP. seconds isPr|down] = Px/Us. Republishing entries for one keyword requires a

25



lookup and a corresponding transfer, for a total@f /Us) x (2xlog(S) * L+ (Fox Kpx M)/ K¢ ) bytes.
Considering all thé( keywords, each client send& (Pc/Us)x(2xlog(S)*x L+ (FoxKpxM)/K¢)/ Po
bytes per second to account for storage node churn. For a total of

Ko % (Po/Us) % (2% log(S) * L+ (Fo* Kpx M)/K¢)/Pe * (C/S)

= (Pc/Us) * (2% log(S)* L* Ko+ (Fox Kpx M))/Po * (C/S)
= (Uc/Ug) * (2% 1og(S) * L*x K¢+ (Fo x Kpx M))/Uc % (C/S)
— (Ue/Us) * PUBLISH

Thus, the total client overhead, including churn and refresh is
(Uc/Us) x PUBLISH + 2 L * min(K¢,S)/Pc * (C/S)

bytes per second for each server.

B.5 Query Overhead

Querying involves performing a lookup to find the correct storage node, sending the query to the storac
node and receiving the results. The query and result length are specified by pardnaetdrs; bytes. A
single client query issued once evdry seconds requires work o2 « log(S) « L + L + Ly)/ P bytes

per second. Witll clients issuing queries at this rate, the resulting load is

(2%1log(S)* L+ L+ Lg)/Pgy = (C/S)

bytes per second per server.

C Index Layer

We build our index layer on top of a distributed hash table. In general, a DHT exposes a thin interfac
for the typical hash tablput and get operations. For every object identifief,, a unique node exists

in the DHT that is responsible farl,. In some DHTSs it's the node whose id immediately follows the
object’s identifier in a geometric structure like the ring [SMKLa], while in others it's the node whose id

is numerically closest to the object’s identifier [RGRKO04]. Nodes in a DHT experience varying network
latencies and application response times due to physical network proximity and machine load. When
source node initiates a lookup for a particular identifier, the response time it experiences greatly depen
on the response times of the individual nodes that are involved in resolving the lookup. A lookup in a DHT
with n nodes is expected to contaetlog(n)) nodes and if any one of them is slow to respond, the entire
lookup will be prolonged. Intermediate node selection in a DHT lookup is crucial to the lookup’s overall
performance. Here we explore DHT routing algorithms and their performance with respect to the overa

26



(a) (b)

Figure 13: Index Routing. (a) Deterministic routing for a lookup where the top node is the source of
the lookup, the tick mark represents the id being looked up and dark node is the successor of the id. (
Resolving a lookup with proximity successor selection with replication factor of 3.

lookup latency. An evaluation of our implementation of the index layer is presented in Appendix C.4.

C.1 Deterministic Routing

We will use Chord as the base case for deterministic routing [S®I]. In Chord all nodes are organized

in a ring and have 160-bit identifiers. #uccessorof an identifier is defined to be the node whose id
immediatelyfollows the identifier in the ring. Aredecessoof an identifier isanynode whose id precedes

the given identifier in the ring space. An immediate predecessor of an identifier, or a node, is defined t
be the closest predecessor. A nadeith identifier:d,, makes sure that it always knows itsmmediate
predecessors andimmediate successors through a neighbor upate protocol. It also maintains a routing
table where for every € {0...159} it stores the address of the successdi@f + 2')mod2'%°. For node

n to complete getrequest forid,, n routes the request to the closest predecessof id, thatn knows
about. Ifp; cannot determine the successori@f locally, thenp, recursively proceeds with the request

by finding the closest predecessoridj in its routing table and forwards the request there. When the
request reaches its destination, the actual successdy,@nd it's guaranteed to do so @n(logn) steps,

the successor sends a reply back téhe source of the request.

Figure 13(a) pictorially depicts this process. The top node issues a get request for an object who:s
identifier is represented by the tick mark on the ring. The node responsible for storing the object fo
that identifier is the node whose id directly follows the object identifier in the ring, represented by the
dark node. The source node forwards the message to the routing entry that is closest to the object
which is half way around the ring. The farthest that the next hop node can forward the message witho
overshooting the destination is a quarter way around the ring. The message proceeds taking smaller &
smaller hops around the ring until it reaches the destination node’s predecessor, and the predecessor fi
aware of its neighborhood can safely forward the message to its destination. The destination node th
resolves the get request and sends the reply directly to the source of the message. The problem with t

27



routing scheme is that given a concrete network, a source maahel lookup identifieid,, the choice of
nodes that will be contacted as the lookup proceeds is predetermined based on the identifiers. The requ
can be delayed at any one of the nodes and not much can be done to expedite it.

C.2 Proximity Neighbor Selection

Proximity neighbor selection, also called proximity route selection, addresses the problem of limited next
hop choices by considering more nodes for the routing table. As described above, routing tableentry
noden keeps the address of the natleaway fromn in the ring. With PNS, instead of storing a unique
node for every routing table entry, entiyconsiders up to nodes in the rangg’ to 2! — 1 and uses

the entry with the smallest observed delay. Delays are observed with through periodic pings as describ
earlier. For largeé, many alternate nodes can be considered for the routing table, bdeaseases fewer
choices become available. As a message gets routed closer to its destination in the network, the numi
of choices for the next hop depends on the routing table entries that can be used.

We now consider the choices that are available in the routing scenario of Figure 13(a). The destin:
tion node needs to send a direct reply to the source of the lookup message so there is no choice pres
there. The last hop in the lookup can only go to the destination of the message and there is only one choi
present there as well. Working backwards, the nodes on the previous hops start having more freedom
choosing who to forward the message to. The second to last hop has a choice of two, the one before
a choice of four and so forth. We can approximate average lookup latency in a DHT implementing PN
assuming an exponential per-hop latency distribution with median del@lye average lookup latency is
approximated as + (6 + /2 + /4 + ...) = 30 = 1.5RTT where the first is for the reply to the source
of the request, the seconds for the message to the successor, and the rest of the series is for the best ho
among a choice of routing entries.

C.3 Proximity Successor Selection

Even though proximity neighbor selection presents more choices for most of the hops taken when routing
message, there is still only one choice for the last hop to the destination and for the hop back to the sourc
Although we cannot change the source of the request, the last hop to the single destination presents
with a bottleneck to be dealt with. To deal with it, we make sure that objects are stored not only on ¢
single node but om nodes, which we make a system-wide parameter. Now, the original destination node
of an object’s identifier plus its — 1 immediate successors in the ring are responsible for maintaining
the object. A get request can be forwarded to any ofrthedes and be resolved locally. A put request
can be forwarded to any of thenodes and then propagated to the other 1 nodes. This replication
assumption is a common one and has been used in existing systems$ BEABKK*01], and has been
taken advantage of by Pastry’s [RD] routing algorithms. Figure 13(b) shows the possible hops taken whil
resolving a lookup using proximity successor selection. To mimic the calculations of the previous sectior
the average lookup should take- (6/r + J/r + d/r + . ..) wherer is the system-wide parameter for the
number of immediate successors. In the case wheeonfigured to béogn, the average lookup delay

28



will be equal to26 = 1IRTT.

C.4 Index Performance
C.4.1 Analysis

Here, we analyze how the additional next hop choices offered on selected hops affect the expected delay
a lookup message. Consider the one-way delay between two nodes on the network as a random varial
and let the expected value of the one-way delay .b®/hen a node considekspossible next hops and
chooses the next hop based on the smallest delay, the expected delay now becomes the expected v
of the minimum of thek random variables. If thé random variables are independent and identically
distributed, exponentially with meay the expected value of the minimum of these variablégisand is

also exponentially distributed. If we létbe the mean delay of a one-way hop, thes 1/5. Now, let ),

be mean of the random variahlée = min(X;, ..., Xx), which is the minimum of: choices, where; is

the delay to theé" choice, and lef, be the mean delay whenchoices are present. Thap = kX = 1/4

andJd, = 0/k. Thus, when a node can considenodes for its next hop, the expected delay of the next
hop isl/kth of the average one-way delay

For deterministic routing ib is the expected value of the one way delay between two nodes and
the lookup message makésyn node-to-node hops, the expected value for the delay of the lookup is
0 x logn. To calculate the approximate average lookup latency in a DHT implementing PNS we need tc
once again consider the number of next hop choices present at every node. The average lookup later
is approximated ag + (6 +0/2 4+ §/4 +...) = 30 = 1L.5RTT where the first is for the reply to the
source of the request, the secand for the message to the destination, and the rest of the series is for the
best hop among a choice of neighbors. To mimic the previous calculations, the average lookup with PS
should takey + (6/r + 0/r + §/r + ...) wherer is the system-wide replication parameter. There is still
only one choice for the message reply back to the source of the lookup but all the other hops can safe
choose between nodes. Ifr is configured to béogn, as recommended [SM#)1a], then the average
lookup delay will be equal tdy = 1RTT. Even ifr is set to a smaller value, as long as that value is greater
than one, significant improvement in the observed lookup latency can be expected.

Figure 14(a) shows the distribution of one way delays between nodes on PlanetLab measured wi
ping [Str], plotted against the exponential distribution with mg@an200ms. They are more skewed than
the exponential distribution and therefore the expected value of the minimundelays is at least as
good as the expected value when the exponential is used.

C.4.2 Evaluation

The index layer implementation contains support for all of the three routing algorithms which allows for an
easy evaluation. In this evaluation, the implementation has been deployed on about 200 PlanetLab nod
Each index node runs a proxy which exposes the put and get interfaces to machines which are not p
of the index. In the overall system this proxy is used by both client and storage nodes. (In the following
discussion when we refer to proxy clients, we are including both client and storage nodes.) In the currel

29



09 1 09
08 1 08
0.7 + 1 0.7 +
0.6 1 0.6
05 1 05
04 1 04
03+ 1 03+ 1
02 Sample 1 02 pr?s T
O'é j ‘ Equnent?al e ] O'(l) ’ ‘ ‘ ‘ chgrd o]
0 200 400 600 800 1000 0 200 400 600 800 1000
latency (ms) latency (ms)

(a) CDF of one-way latency between nodes on (b) Experiments on PlanetLab with 200 nodes,
PlanetLab. r = 4 and 10,000 requests for random identifiers
through one proxy

Figure 14: Lookup performance

implementation, when a proxy receives a request from a client it routes the request on behalf of the cliel
and maintains its connection to the client until it receives a response or it times out. The proxy issues tf
request every two seconds until a response is received and propagated to the client or the timeout expi
and an error is returned. The timeout is specified by the client.

Chord| PNS PSS
50% 0.194s| 0.147s| 0.095s
90% 0.865s| 0.350s| 0.167s
95% 2.652s| 0.756s| 0.242s
99% > 10s| 3.846s| 1.115s
99.9% | > 10s| > 10s| 3.963s
99.99%| > 10s| > 10s| 5.054s
100% > 10s| > 10s| 5.858s

Table 7: PlanetLab latency summary

In this experiment we first find a proxy node which is not heavily loaded and is close to our client.
We then randomly choose 10,000 identifiers and for each one issue three get requests, one for each rou
algorithm. To give a fair evaluation, we have to make sure that we evaluate the three algorithms with th
same source destination pairs. We can explicitly specify to the proxy which algorithm we want to be use
for routing the messages. The network runs with the system-wide paransetieio four and each request
to the proxy is set to timeout after 10 seconds without a response. Figure 14(b) shows the cumulati
distribution function forget request latency and Table 7 summarizes the results of our experiment. Not
only is the average behavior of PSS much better than the other two routing algorithms, but the long ta
behavior is also eliminated. While 1% of all deterministic routing requests and 0.1% of all requests using
PNS require more than 10 seconds to complete, all requests routed using PSS complete in less tha
seconds.

30



