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Abstract. This paper presents a study of possible extensions of Path-
way Logic to represent and reason about semiquantitative and probabilis-
tic aspects of biological processes. The underlying theme is annotation
of reaction rules with affinity information that can be used in different
simulation strategies. Several such strategies were implemented, and ex-
periments carried out to test feasibility, and to compare results of differ-
ent approaches. Dimerization in the ErbB signalling network, important
in cancer biology, was used as a test case.

1 Introduction

Biological networks have complex interconnections, non-linear responses to stim-
uli and self-regulation. This presents clear challenges for modeling and studying
behaviors of such networks, and it is important to efficiently organize and repre-
sent knowledge about biological networks needed for modeling. Pathway Logic
[1-3] is an approach to modeling cellular processes based on symbolic logic. It
allows one to model aspects of the structure and state of interacting components,
to represent individual process steps (reactions) and to study possible ways a
system could evolve using techniques based on logical inference. Reactions can
be modeled at many levels of detail ranging from micro steps representing events
such as phosphorlyation at specific sites or binding of protein domains, to macro
steps such as the results of signaling or metabolic modules. The choice of level of
detail depends both on available data and the questions to be asked. This flexible
approach allows one to study reaction networks of hundreds or even thousands
of nodes.

Although detailed data concerning reaction rates is sparse, there is much
more data concerning time series and overall effects of changes in cellular signals
and expression levels of different cellular components. Thus there is increasing
interest in developing simulation and verification tools to handle quantitative or
semi-quantitative data. Moreover it is important to address probabilistic aspects
of biochemical processes. Thus one would like to ask a model semi-quantitative
questions about the possible outcomes under different initial conditions or due



to perturbations of ongoing processes, without sacrificing the ability to scale to
moderately complex processes. For example, one might ask about the relative
amounts of different phenotypes related to an overexpressed gene; or how the
outcomes change when the network is perturbed, say by mutations or blocking
activity of particular components.

In this paper we report on a study of different approaches to represent in-
formation about approximate quantities and rates as a first step to extending
the Pathway Logic modeling framework. The underlying theme is use of proba-
bilities and stochastic modeling as a flexible technique to account for stochastic
features and to incorporate different levels of quantitative information. Questions
of interest include: how do different mathematical models represent rates and
quantities? What are good choices for modeling randomness in these networks?
What simplifications and abstractions are meaningful? Which techniques have
efficient implementations that can scale to moderately complex modules?

We considered different but related approaches from the literature to repre-
sent probabilities and random events: probabilistic boolean networks, stochastic
simulations of chemically reacting systems, and stochastic Petri nets. We reinter-
preted and customized these different techniques to the framework of Pathway
Logic and several variations of these approaches were implemented and com-
pared. Experiments were carried out using the ErbB dimerization network as a
testbed. A first simple approach based on prioritizing rules and using a greedy
discrete algorithm for simulation was developed and tested on a model of dimer-
ization and activation all four ErbBs. The greedy algorithm was compared to
an analysis using a model-checker for probabilistic systems. The feasibility of
predicting the final /equilibrium state for a smaller model of dimerization of two
ErbBs was first tested using a probability-based-rule-sampling approach, pro-
grammed in Matlab. Then, a probabilistic extension of the rewriting semantics
underlying Pathway Logic was implemented in the Maude rewriting logic lan-
guage and an extension of the small ErbB dimerization network with rules for
internalization and degradation of the ErbBs was studied and compared to a
previously published model.

2 Symbolic modeling and Pathway Logic

This section begins with a brief summary of approaches to modeling biologi-
cal processes based on symbolic formalisms, then discusses the Pathway Logic
approach in more detail.

2.1 Symbolic modeling of cellular processes

Symbolic/logical models allow one to represent partial information and to model
and analyze systems at multiple levels of detail, depending on information avail-
able and questions to be studied. Such models are based on formalisms that
provide language for representing system states and mechanisms of change such
as reactions, and tools for analysis based on computational or logical inference.



Symbolic models can be used for simulation of system behavior. In addition
properties of processes can be stated in associated logical languages and checked
using tools for formal analysis. A variety of formalisms have been used to de-
velop symbolic models of biological systems, including Petri nets [4, 5]; the pi-
calculus [6] and stochastic variants [7]; stochastic logics and associated model
checkers [8]; ambient/membrane calculi [9,10]; statecharts [11]; live sequence
charts [12]; and rule-based systems including P-systems [13]; BioCham [14, 15];
and Pathway Logic [1-3]. Each of the underlying formalisms was initially devel-
oped to model and analyze computer systems with multiple processes executing
concurrently.

2.2 Pathway Logic

In Pathway Logic (PL) models of biological processes are developed using the
Maude system [16] a formal language and tool set based on rewriting logic.
Rewriting logic [17] is a logical formalism that is based on two simple ideas:
states of a system are represented as elements of an algebraic data type; and
the behavior of a system is given by local transitions between states described
by rewrite rules. The process of application of rewrite rules generates computa-
tions (also thought of as deductions). In the case of biological processes these
correspond to pathways.

A PL model includes representation of cellular components such as proteins
and small molecules, their locations, protein state, and post translational modi-
fications. It also includes representations, as rewrite rules, of basic process steps
such as metabolic reactions or intra- and inter- cellular signaling. Execution of
the rules allow one to represent and reason about dynamic assembly of com-
plexes, cascading transmission of signals, feedback-loops, cross talk between
subsystems, and larger pathways. Pathways are not predefined. Instead they
are assembled by instantiating and connecting individual steps, starting from an
initial state, subject to user-defined constraints. PL models are transformed into
Petri nets for visualization and analysis using the Pathway Logic Assistant, a
tool for interactive visualization and analysis of PL models.

In the following we use the EGFR family of receptor tyrosine kinases (ErbBs),
important in the study of cancer tumor cells, as the basis of our case studies.
These receptors form a multiplicity of homo- and hetero-dimers [18]. As an exam-
ple, the following are rules (in simplified form, represented using Maude syntax)
for the homo- and hetero-dimerization of two receptors ErbB1 (also known as
EGFR) and ErbB2 (also known as HER2).

rl[r1]: ErbB1 ErbBil => ErbBi1:ErbBi1
r1[r2]: ErbB1 ErbB2 => ErbBi:ErbB2
r1[r3]: ErbB2 ErbB2 => ErbB2:ErbB2

The first rule (labeled r1) says that if ErbB1 is present in the system in multiple
copies, then two can bind together to form a homo-dimer ErbB1:ErbB1. When this
rule fires two occurrences of ErbB1 are removed from the state and ErbB1:ErbB1



is added. The second rule describes the hetero-dimerization of ErbB1 and ErbB2,
and the third rule describes homo-dimerization of ErbB2.

Sample PL models, tutorial material, papers and presentations are available
from the PL web site, http://pl.csl.sri.com/, along with the Pathway Logic As-
sistant [19].

3 Prioritized rule modeling of ErbBs

We started with a very simple idea for semi-quantitative reasoning, namely to
assign priorities to rules. The priorities can be thought of as affinities or an
abstraction of the thermodynamics. We used these priorities in two ways: as
parameters to a greedy algorithm for choosing which rule to fire next; and as
parameters of a probabilistic model. This idea was tested on a simplified set of
rules for the four members of the ErbB family of receptors. These rules model
the (homo- and hetero-) dimerization and resulting cross phosphorylation steps,
assuming the receptors that need ligands are initially ligand bound.

r1[1]: E2 E3B => E3Bp E2d r1[5]: E4B E4B => E4Bp E4Bp
rl1[2]: E2 E1B => E2p E1Bp r1[6]: E1B E3B => E3Bp E1Bd
rl1[3]: E2 E4B => E2p E4Bp rl[7]: E1B E4B => E1Bp E4Bp
rl[4]: E1B E1B => E1Bp E1Bp r1[8]: E3B E4B => E3Bp E4Bd

In these rules E1B represents ligand bound ErbB1, and similarly for E3B and E4B.
E2 represents ErbB2 which has no ligand. E1Bp is bound phosphorylated ErbB1,
implicitly dimerized with its phosphorylation partner, and E1Bd represents ErbB1
that is dimerized but not phosphorylated. Similarly, for the other ErbBs. The
rules express the known biochemistry of the ErbB dimers. In particular ErbB3
has no kinase activity and thus can not cross phosphorylate its dimerization
partner. Also rules for homo-dimerization of ErbB2 and ErbB3 have been omit-
ted. For simulation purposes an execution state is a set of pairs (n,e), where e
is one of the ErbB symbols and n is the number of molecules of e.

In the following subsections we explain the two uses of priorities, give results
from some test cases, and compare the two methods.

3.1 Greedy algorithm

The greedy algorithm for using the priorities is the following: all rules of highest
priority are applied until none can be applied. Then rules of the next highest
priority are considered, until all of the priority levels are exhausted. Note that
because there are no cycles (no rule produces something another rule can use)
if a rule is applied as much as possible, application of other rules will not result
in a state where the rule is again applicable.

The table below summarizes the results of 4 test cases: two starting states
and two assignments of rule priorities. The two starting states are

((10000 x E1B) (100000 x E2) (100000 x E3B) (n x E4B))



where n is 0 or 10000. The first assignment gives all rules have same priority
and second assignment is the following

r1[1] -> 1, r1[2] -> 2, r1[3] -> 2, rl[4] -> 3,
rl[5] -> 3, rl[6] -> 4, rl[7] -> 4, rl[8] -> 4.

where lower numbers correspond to higher probability, reflecting the experimen-
tal observation that ErbB2 is the preferred dimerization partner of the ErbBs.

The row labels code the test case, eq is the same priority case and neq is the
varied priority case. The +/- corresponds to presence or absence of ErbB4 in the
initial state.

| E1IBA E1Bp E2d E2p  E3Bp E4Bd E4Bp
eq- | 3334 6668 96666 3334 100000 0 0
eq+ | 2500 7500 95000 5000 100000 2500 7500
neq- | 0 10000 100000 0 100000 0 0
neq+ | 0 10000 100000 0 100000 0 10000

With equal priority rules the presence of ErbB4 effects the outcome for others
by competing with ErbB3 for dimerization resulting in more phosphorylation of
other ErbBs. With highest probability assigned to dimerization of ErB2 with
ErbB3 this reaction uses all the ErbB2 and ErbB3 and ErbB1 and ErbB4 will
dimerize with partners that can cross phosphorylate.

3.2 Probabilistic Model

A simple algorithm was used to convert rule priorities into probabilities. Namely,
starting with the highest priority, for each group of priorities, we give half of the
probability left to that group and divide that amount equally among rules in the
group. Thus, for the priority assignment above, we get the following probability
assignment

rl[1] -> 1: .5

rl[2] -> 2, r1[3] -> 2: .25/2 = .125

r1[4] -> 3, rl[5] -> 3: .125/2 = .0625

rl[6] -> 4, r1[7] -> 4, r1[8] -> 4: .125/3 = .0416

The problem now is, for a given starting state, to determine the probabilities
for each of the different ErbBs in the final state. In particular we want the mean
of random variables representing the number of different forms of ErbBs. That
is we want E(e) = Xpp - P(|e|] = p in a final state), where |e| is the quantity of
the named ErbB state.

To determine the distribution in a final state we formulated a series of for-
mulas in PCTL about the probability that the value of each random variable
is in a given range and used the PRISM model checker [20] to determine the
corresponding probabilities. As this is a much more complex process than the
discrete case, we used a scaled down version of the initial state for the discrete



case study with no ErbB4 as a test case: ((10,E1B) (100,E2) (100,E3B)). The
table below compares the results using PRISM (row labeled probl) with those
using the greedy discrete algorithm (row labeled greedy) to find the distribution
in the final state.

E1BD E1BP E2D E2P E3B  E3BP
probl 0.22 9.78 93.48 6.52 6.31 93.69
greedy 0 10 100 0 0 100

The results turn out to be quite close. We find that the probabilistic computation
produces small non-zero values whenever the discrete computation produces ze-
ros. This is consistent with the hypothesis that the probabilistic approach models
the stochastic nature of the system. In the case that small non-zero values can
safely be ignored, the discrete greedy algorithm is a better choice as it is sub-
stantially more efficient. However, if there is a chance that the small amounts
could be amplified in a larger context then a probabilistic model is better.

In the following section, we explore more sophisticated choices in extend-
ing Pathway Logic to model stochastic behavior. We will analyze the resulting
models using stochastic simulation techniques, which fall in between the two
extremes of the simplistic “greedy method” and the exhaustive “probabilistic
model-checking method” used in this section.

4 Beyond PL: Quantitative and Probabilistic Modeling

We extend the PL modeling formalism in two distinct directions: incorporating
quantitative information and the notion of time; and incorporating stochastic
information into the models. We note here that most stochastic modeling ap-
proaches integrate the notion of probability and time and exploit quantitative
information to define and handle these concepts. For instance, the classic chem-
ical master equation (CME) [21] describes the time evolution of a probability
density function using partial differential equations. Other stochastic modeling
formalisms, such as stochastic Petri nets [4], are also given semantics using the
CME. As a result, simulation engines for stochastic models produce time series
data of species concentrations.

The notion of time elapse and probabilistic transition are inherently coupled.
However, as Gillespie points out in his seminal paper [21], while performing a
stochastic simulation of CME, there is a certain decoupling between the choice
of the next reaction to fire and the time that elapses before the effects of the
reaction are observed. This is reflected in Gillespie’s Direct Method stochastic
simulation algorithm (SSA), where the algorithm samples two distinct random
variables for these two purposes.

In our extension of PL, we keep the two aspects separate and make the model
modular with respect to the choices for these two parts. As a result, we get a
natural and flexible modeling language that is more useful as a modeling and
prototyping formalism. We also have the possibility of using different options



for defining probabilistic rule firing and similarly, different options for specifying
the timing behavior.

The syntax of PL changes only very slightly when it is extended with proba-
bilities. With each rule, we now associate a scalar value, called weight or affinity.

rl1[r1]: ErbBl ErbBil => ErbB1:ErbBl al =1
rl1[r2]: ErbBl ErbB2 => ErbB1:ErbB2 a2 = 10
r1[r3]: ErbB2 ErbB2 => ErbB2:ErbB2 a3 = 10

There are different ways of interpreting these scalar affinities. In any state,
the likelihood of a reaction will be proportional to the product of its affinity and
the number of each reactant®: given a state s (represented as a function from
species to its number) and a rule r with reactants r1,73,. .., let f.(s) denote the
product a,IT;s(r;).

Let Enabled(s) denote the set of all rules that are enabled in the state s, i.e.
all the reactions that can possibly occur and change the state of the system. The
semantics of PL specifications extended with affinities can be given as a Markov
chain. There are different choices for defining such a Markov chain, although
in all cases reactions to fire are ultimately chosen by sampling from a uniform
distribution. We describe three choices here, exactly one rule, atmost one rule,
and multiple rules, that we have explored.

Ezactly one rule at a time. One natural way is to assume that in any state, the
events set in the probability space consists of all the enabled rules. If we assume
that these rules are exclusive—that is no more than one reaction can happen at
the same time—and independent, then the probability that a rule r fires in state
s is exactly equal to

fr(s)

211 ¢ Bnabled(s) fr/ (8)

Probability of firing r in state s =

Note that if exactly one rule is enabled in a given state, then that rule is fired
with probability 1.

At most one rule at a time. If we assume the existence of a maximum constant
M such that X,.c grabicd(s)fr(8) < M for all states s, then the probability that a
rule r fires in state s can be given to be f,.(s)/M. In contrast with the previous
case, in this case we may have a nonzero probability of no rule firing.

Possible multiple rules. In this case, we allow the rules to fire simultaneously.
This is done to account for possible co-occurrence of the rule firing events, as
is the case in Probabilistic Boolean Networks. In this case, the event space in
state s consists of 21Fnabled(s)| elements: each rule r € Enabled(s) may or may
not fire. The probability of each event is the product of the probabilities that

® For completeness, we mention here that the “product of reactants” can be replaced by
the more accurate “number of different possible combinations between the reactants”
as suggested in [22].



each reaction happens or does not happen in the next time step. Note here the
higher computational burden of this method compared to the first two.

The choice of a particular one may depend on the particular network under
study, and on the available information (i.e., whether we are given general firing
likelihoods, or affinities, or reaction rates).

We have specified above a time-abstract semantics for extended PL specifi-
cations. We can incorporate time in the semantics as well. To do this, we need
to give a time-dependent interpretation to the affinities. Again, there are a few
options here, and we describe two of them below: exponential random and de-
terministic amortized.

Ezxponential random variables. While in state s, we assume that the time that
elapses before a reaction fires is given by an exponential random variable with
decay constant K=2X,c gnapicd(s) fr(8). In other words, the probability that ¢ time
units elapse while in state s is given by

pi(tls) = K e Kt

Deterministic amortized variables. We can consider a deterministic approach
for computing the time elapse by assuming that the rate of change of a species’
concentration is given by the difference between its propensity to be created (by
rules that create that species) and its propensity to be destroyed (by rules that
use up that species). Given a state s, let p denote a species that is produced in the
rules Prod(p) and consumed in the rules Cons(p), where {Prod(p), Cons(p)} €
Enabled(s). Mathematically, we can say that

dp/dt = ZTGProd(p)fT(S) - ET‘ECO’I’LS(p)fT(S)

Now the time interval At between two adjacent states, s and s, from the point
of view of species p can be computed by approximating the above expression via
a first-order Taylor expansion, and solving for the time step At.

At = (s'(p) —s(p))
ETEPTOd(p)fT(S) - ETECO’VLS(p)fT(S)

We do not have a notion of global time in this case. Each species has its own
clock.

As we mentioned earlier, the explicit decoupling of the state change aspect
of a transition (or, equivalently, of the rule selection) from its timing aspects
leads to greater flexibility in modeling and simulating PL models with affinities.
It allows simulations to be first performed in a time abstract way and then, if
required, to embed timing information in the simulation a posteriori, that is after
the simulation has been performed.

Other approaches in the literature.

We review here three related approaches for stochastic modeling that have also
partly inspired our choices above. The main difference between PL schemes ex-
tended with affinities and the following models is that the extended PL models



and their simulation engine explicitly decouple time elapse and probabilistic
state transition features and allows for more choices in each feature.

The Stochastic Simulation Algorithm. Gillespie’s Stochastic Simulation Al-
gorithm (SSA) [21] aims at simulating the evolution of a set of N chemical species
interacting through M possible different reactions within a fixed volume V. Un-
like the classical reaction-rate approach, which sets up a deterministic system of
differential equations based on the “law of mass action”, Gillespie’s algorithm
simulates the Chemical Master Equation (CME), which describes both the time
and probabilistic transition behavior of the system. Specifically, if P(s,t|so, o)
denotes the probability that the state is s at time ¢, given it was s at time to,
the CME is given as:

%P(S»HSOatO) = Er[fr(s - VT’)P(S - Vrat‘SOatO) - fr(s)P(S»ﬂsOatO)]

where v, is the vector of the change in the number of molecules of each species
caused by a firing of reaction r.

Gillespie shows that his stochastic simulation algorithm (SSA) exactly sim-
ulates the above chemical master equation, [22]. At each step, the algorithm
chooses two quantities:

(i) the time delay 7 for the next reaction to occur;

(ii) the reaction r, among the enabled reactions, that will occur next.

The time step 7 is a sample of the exponential random variable with decay con-
stant X,.c gnasied(s)fr(s). Note that this is the first option in the two choices for
incorporating time in extended PL models described above. The reaction r to
fire is chosen by sampling an integer random variable on [1, M] with point proba-
bilities f;.(8)/ X e Enabied(s) fr' (s). Note again that this is the first option, among
the three options, for defining the next time abstract transition in extended
PL models described above. As noted by Gillespie, this particular combination
of choices for simulation (and the CME dynamics) is a consequence of the as-
sumption that the propensity function, f,.(s) for reaction r in state s is such
that f,.(s)dt defines the probability that the reaction r will fire once in the next
infinitesimal time interval [¢,¢ + dt) given that the state is s at time ¢.

Stochastic Petri Networks. In Section 2.2, we mentioned that a PL model
essentially encodes a Petri net. Stochastic Petri nets are an extension of Petri
nets that incorporate random events. There are many variants of stochastic
Petri nets in the literature. The standard stochastic Petri nets can also be given
semantics using a chemical master equation, and hence the stochastic simulation
algorithm can be used to perform simulations on such models [4]. The literature
on stochastic Petri nets also considers other semantics for time elapse given by
non-exponential random variables. Moreover, there are variants, called general
stochastic Petri nets, that allow immediate and time delayed transitions.



Probabilistic Boolean Networks. Probabilistic Boolean Networks (PBN)
have been introduced to model and simulate regulatory networks through a
rule-based approach [23]. They are described by a set of boolean-valued nodes
and functions (rules) that update these nodes. The rules to be fired are chosen
probabilistically allowing for possible multiple rule firings. Unlike the Gillespie’s
Stochastic Simulator, they do not embed any notion of time, but just sequentially
execute a particular set of rules.

5 Implementation and Simulations

In this Section of the paper we describe the implementation of the ideas and two
simulation case studies.

Simple ErbB dimerization network (sErbB): We consider the simple bio-
logical system containing three second-order forward reactions first described in
Sec. 2.2 and enhanced with the definition of affinities, as in Sec. 4. No reverse re-
action is modeled in this simple network. Considering the corresponding reaction
equations, the quantitative parameters are the concentrations of each reactant
(E1 = ErbB1 and F2 = ErbB2) and dimerized products (F1FE1 = ErbB1:ErbB1,
E1E2 = ErbB1:ErbB2, E2E2 = ErbB2:ErbB2). Associated to each reaction are
the three “association affinities” ai.

If we conceive the aforementioned affinities as reaction rates, we can come
up with a system of ordinary differential equations (ODEs) for solving the above
network kinetics:

AELEL — a1 . F1-F1;  “ELE2 — a0 . F1-E2;  4E2E2 — a3 (2. B2

9Bl — —2a1-FE1F1 —a2- E1E2; 4“2 = —2a3. E2E2 — a2- F1E2.

Extended ErbB interaction network (eErbB): A more complete ErbB
interaction network was constructed based on an earlier work (see [24],[25]) and
reported in Appendix 2. The dissociations (reactions 4,5, 6) and internalizations
(which products are denoted by subscripts in) of the dimerized products are
additional reactions in this network, compared to sErbB. Rate constants are
named according to [24] and are assumed to be known.

Quantitative and Probabilistic Rule Selection. We implemented a Prob-
abilistic Rewriting Module (PRR) in Maude. The following direct scheme de-
scribes the set of Maude procedures that is executed, where meta-level maude
programming is used.

1. A multiset of reactants and products with their associated quantities is de-
fined as a “state”.
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2. A chemical reaction is represented by a “rule” where a multiset of reactants
turn into a multiset of products. Applying a rule yields a decrease of the
quantity of reactants and and increase of the quantity of products according
to the reaction stoichiometry.

3. The firing likelihood of a rule is computed with a probability that depends
on one of the approaches in Sec. 4.

4. At each step of the PRR simulation a rule is selected according to its prob-
ability; the selected rule is applied; the state is updated and specific new
probabilities are computed. The rule rewriting and the state update are per-
formed in meta level.

5. Simulation terminates when there is no rule that can be selected according
to the current state. For a network where no reverse reaction is considered
(e.g., sErbB), PRR stops at the end of reactants usage. For network with
feedback loops (e.g., eErbB) PRR stops when the steady state is reached,
which can be inferred from the stabilization of the quantities of the species.

6. As a post processing step, time information is optionally embedded into the
simulation data by using one of the approaches in Sec. 4. Further details can
be found in Appendix 1.

Discussion of Results.

We first analyzed the simple network of growth factor receptor dimerization
sErbB to test the methodology and the performance of the PRR module in
predicting the steady state of the biological pathway. We then enabled the time
embedding feature (see Sec. 4) to add some dynamics to the simulations. Further-
more, both sequential and dynamic simulations were performed for the extended
eErbB interaction network. As we shall see, the results are in good agreement
with experiments and previous computational studies.

Simulating sErbB dimerization by PRR module.

Comparison between PRR and the deterministic rate equations. The determin-
istic simulation of the sErbB network was obtained by solving the correspond-
ing kinetic rate equations (see beginning of Sec. 5) in MATLAB. The PRR
procedure was executed via routines written in Maude. The initial concentra-
tions of reactants (ErbB1, ErbB2) and products (the homo-dimers ErbB1:ErbB1,
ErbB2:ErbB2 and the hetero-dimer ErbB1:ErbB2), as well as the affinities (al,
a2, a3) were varied systematically to examine the response of the network.

Fig. 1 shows PRR simulations for two of the probability models® (exactly one
rule at a time and possible multiple rules). The predictions from the two prob-

5 Concentration of reactants and products has a unit of number-per-volume and a
volume 1 is assumed for all reactions studied in this work. The rate constants are
the inverse of the concentration, times seconds, for the second-order dimerization
reaction, and the inverse of seconds for the first order dissociation or internalization
reactions.

11
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Fig.1. PRR simulation of sErbB interaction network (ErbBi: blue, ErbB2: green,
ErbB1:ErbBi1: red, ErbB1:ErbB2: cyan, ErbB1:ErbB2: magenta) using the single rule
(top) and multi-rule (bottom) probability models, given initial state ErbB1 = ErbB2 =
1000, ErbB1:ErbBl = ErbB1:ErbB2 = ErbB2:ErbB2 = 0, and al = 1, a2 = a3 = 10.
The change of quantities of the reactants and products (left plots) and the probabilities
of the reactions are plotted along the simulation evolution (right plot).

ability models are similar: the final state contains approximately 500 hetero-
dimers ErbB1:ErbB2 (Fig. 1, left panels, cyan line) and approximately 200
homo-dimers ErbB1:ErbB1 and ErbB2:ErbB2 (Fig. 1, left panels, red and ma-
genta lines). The statistical significance of this similarity was confirmed from
500 independent runs of the simulations. The similar values for the outputs
ErbB1:ErbB1 ~ ErbB2:ErbB2 are due to the equality the inputs ErbB1 = ErbB2
and the symmetric topology of the network. The probability values of the re-
actions in the network are plotted along the steps of PRR simulation for both
probability models (Fig. 1, right plot, top for the single-rule model and bottom
for multiple-rules model). The last rule selection model illustrates that the con-
currency of a set of reactions, as a product of multiple probabilities, is insignifi-
cant in general compared to the individual reaction for this particular example,
where symmetry and high quantities play an important role. Yet a non-negligible
probability of concurrent reactions could occur if the concurrent reactions have
considerably higher likelihood than the single reactions, as shown in Fig. 1.

Responses of sErbB network to change of input variables. The response of the
sErbB network to changes on the initial reactants concentration or the affinity
of the reactions are explored in Figure 3, in Appendix 1. To summarize the out-
comes, the observed non-sensitive response of the network to affinities under the
“over expression” condition suggests a possibility to predict a system behavior
with incomplete knowledge. In other words, accurate measurements of affinities
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are not strictly discriminating in this case. The less strict requirement of the
input parameter would be extremely beneficial in analyzing biological data as
experimental accuracy is very limited in in-vivo studies.

Incorporating time into the PRR module. 1t is possible to enhance the outcomes
of the PRR procedure by time-scaling the sequential data: as discussed in Sec.
4, this can be achieved either by post-simulation Taylor expansion (amortized
approach), or by the application of the Gillespie algorithmic idea (exponential
assumption). As shown in Fig. 2, plotting PRR prediction against the time by
the amortized method (left) or by the exponential embedding (right) yields be-
haviors that agree with those from the ODE approach, as expected. As the
network contains large numbers of reacting molecules (as expected for exper-
imental conditions of the ErbBs dimerization), the time interval between two
successive reaction events is small enough to validate the the first order Talyor
expansion. Similarly, with these large numbers of reactants, the stochastic sim-
ulation (Gillespie algorithm) converges to the ODEs trajectories. Note that the
apparent inconsistent termination in the time-resolved kinetics of reactants or
products in the traces of ErbB2, ErbB1:ErbB2 and ErbB2:ErbB2 in Fig. 2(left) is
explained by our a-posteriori method for embedding time, whereby local clocks
for consumed reactants stop. As ErbB2 is consumed faster and is the first to
be used up due to the higher dimerization rate, the products (ErbB1:ErbB2,
ErbB2:ErbB2) run out accordingly from the reactions that require ErbB2 as re-
actant. The procedure thus treats this behavior as the termination of the kinetics
for ErbB2, ErbB1:ErbB2 and ErbB2:ErbB2.
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Fig.2. sErbB network kinetics (ErbBl: blue, ErbB2: green, ErbB1:ErbB1: red,
ErbB1:ErbB2: cyan, ErbB2:ErbB2: magenta) predicted by time-resolved PRR (dots)
via Taylor approximation (left) and exponential firing (right), in comparison to
ODEs traces (dash lines). Initial state are ErbB1 = ErbB2 = 1000,ErbB1:ErbBl =
ErbB1:ErbB2 = ErbB2:ErbB2 = 0, and a1 = 1, a2 = a3 = 10.
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Applying PRR to the more complex eErbB dimerization network. We
applied the stochastic simulations to the more complex eErbB biological net-
work which, based on the work in [24], additionally models dissociation of the
dimers and internalization of monomers and dimers; both steady state and ki-
netic studies were performed and compared to the results obtained there; the
study of the equilibrium (Appendix 2, Fig. 4, left) has showed, under the sub-
strate saturating conditions, that the relative amount of hetero-(ErbB1:ErbB2)
and homo-(ErbB1:ErbB1, ErbB2:ErbB2) dimers varies according to the initial
expression levels of ErbBl and ErbB2 (named, respectively, EGFR and HER2 in
24)).

Four extreme conditions were studied there, corresponding to the four corners
of the horizontal plane in Fig. 4 (left): 1. Both ErbB1 and ErbB2 are normally
expressed, 3 - 10% per cell; 2. ErbB1 is over-expressed, 6 - 10° per cell; 3.ErbB2
is over-expressed, 6 - 10° per cell; 4. Both ErbB1 and ErbB2 are over expressed.
We then performed the sequential PRR simulations with similar initializations:
1. ErbBl = ErbB2 = 103; 2. ErbB1 = 2 - 10%, ErbB2 = 10°%; 3. ErbB1 = 103,
ErbB2 = 2.10%; 4. ErbB1 = ErbB2 = 2-10*. Note that we scaled down the absolute
quantities of ErbBs in this simulation for coherence with previous sections, but
we kept the same ratio of over-expression and normal expression, i.e. 20-fold;
in addition, we simplied the network by assuming an EGF saturation condition
such that any monomer or dimer species without EGF bound is eliminated.
According to these modifications, reproducing exactly the outcome in [24]) with
a scaling factor of 20 is not to be precisely expected. Nevertheless, our results
shown in the Table below are consistent with the outputs in Appendix 2, Fig. 4,
left7.

ErbB1|ErbB2|ErbB1:ErbB2 — ErbB1:ErbB1|ErbB1:ErbB2 — ErbB1:ErbB1
10° | 103 6 7.6-103
10% 2-10% 260 1.5-10%

2.10% 10° —5019 —-2.3-10°

2-10%2- 107 2071 1.6-10°

We also performed kinetic simulations with both ErbBs normally expressed
(initial state 1.) and ErbB2 over-expressed (initial condition 2.). Signaling homo-
dimer (ErbB1:ErbB1) and hetero-dimer (ErbB1:ErbB2) were calculated by time-
stretched PRR simulations (Appendix 2, Fig.5). The outcomes in Fig. 5 under
these two circumstances are analogous to those in Fig. 4, right: when ErbB1 and
ErbB2 are both 3 - 10% (normal expression), a similar, a low output of homo-
dimer(ErbB1:ErbB1) and hetero-dimer (ErbB1:ErbB2) is observed; when ErbB2
is 20-fold overexpressed over ErbB1, the hetero-dimers are greatly enhanced and
dominate the signaling species, while the homo-dimers are suppressed down to
ground level. The good agreement with [24](Appendix 2, Fig. 4, right) indicates
the adequacy of the PRR module in handling these network kinetics.

" The values of the fourth column are taken from [24] and reported in Appendix 2,
Fig. 4, left.
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6 Conclusion and Future Directions

We have discussed the underlying principles and several approaches for extending
Pathway Logic with the ability to represent and reason about semi-quantitative
and probabilistic aspects of biological processes. In summary our conclusions are

— The probability-based rule-selection strategy represents a reasonable ap-
proach to incorporate semi-quantitative information into Pathway Logic.
Applying this strategy to modeling ErbB dimerization networks shows good
agreement with the rate equation approach in predicting the final state.

— A flexible approach to modeling temporal aspects was developed, allowing
simulations to be time sensitive, or to account for time a posteriori.

— Traditionally only the evolution of the quantities of reactants are observed
when carrying out simulations. We observed that it is also interesting to
observe the evolution of reactions probabilities.

— There is a wide range of options to consider when analyzing a model contain-
ing some quantitative data. Depending on the number of reactants present,
the accuracy of available quantitative information, the question of interest,
and the abstraction level, one could use fast greedy approaches, or use more
accurate stochastic simulation based approaches with varying degrees of sim-
plifications.

There are a number of interesting questions left for future work. Experiments
showed that simulations in which multiple reactions occur simultaneously yield
results very close the simulations based on one reaction occurring at each step.
This apparently is due to the product of probabilities of the single reactions
being too small to have a substantial effect. Using a product to compute the
probabilities of multi-reaction steps may not be appropriate as it corresponds
to synchronous interaction, while in fact multiple independent reactions occur
concurrently and asynchronously. A challenging problem is to develop a theory
of truly concurrent probabilistic systems, that accounts for asynchronicity and
the transformations of time depending on the view of the system.

The simple and efficient greedy algorithm for simulation based on rule priori-
ties gives surprisingly good results, especially when there are abundant quantities
of reactants. A next step is to develop hybrid approaches capable of switching
between different simulation methods according to suitable conditions. A pos-
sible approach would be to use generalized stochastic Petri nets as a formal
representation.
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Appendix 1: sErbB Network

Ezxtracting Time Tags in the sErbB Model As mentioned in Sec. 4, introducing
quantitative information in the models allows further analysis of its dynamics
and the possibility of calculating the actual time flow, as opposed to just keeping
track of the sequential operations that are performed. In the case of the sErbB
model, the time interval between two adjacent states (the i** and (i + 1)t*)
of a specific species in the network (say E1), that is Atgy, = t;41 — ¢, is the
time interval when reactant E1 changes from state E1; to E1l,41; it can be
deterministically approximated by the “amortized” approach by discretizing the
corresponding ODEs and solving for the time stamps:

AtEli = (E1i+1 — Elz)/(—2a1 . E]-z . E].l —a2- E]-z . E27,)7

Atgs, = (E2i41 — F2;)/(—2a3 - E2; - E2; — a2 - E1; - E2,);
Atpipr, = (E1E1,4, — E1E1;)/(al - E1; - E1,);
Atgips, = (E1E241 — E1E2;)/(a2 - E1; - E2;);
Atgops, = (E2E2,41 — E2E2;)/(a3 - E2; - E2;).

Responses of sErbB network to change of input variables studied by PRR. The
outcomes of the simulations are reported in Figure 3. If the initial quantity of
ErbBl and ErbB2 are comparable (ErbBl ~ ErbB2), that is, there is no prefer-
ential cellular expression in either of the ErbBs, the final quantities of products
largely depends on the value of the affinity (Fig. 3, top). However, when one
of the ErbBs is over-expressed, e.g., ErbB2, the influence of the affinities is only
moderate or weak. The ErbB2:ErbB2 homo-dimer greatly dominates the final
state, regardless of the change in the affinities (Fig. 3, bottom). Furthermore,
ErbB1:ErbB1l and ErbB1:ErbB2 have insignificant changes (for instance, the hetero-
dimer ErbB1:ErbB2 varies only 2-fold in Fig. 3, cyan lines).

Appendix 2: eErbB Network

The Extended eErbB Network. We report the reactions involved in this network®:
[r1] : ErbBi ErbBl => ErbBi1:ErbBil kc = 0.001

[r2] : ErbBi ErbB2 => ErbBi1:ErbB2 kc = 0.00
[r3] : ErbB2 ErbB2 => ErbB2:ErbB2 kc = 0.00
[r4] : ErbB1:ErbB1 => ErbBil ErbBi kull = 10
[r5] : ErbBi:ErbB2 => ErbBi1 ErbB2 kul2 = 10

[r6] : ErbB2:ErbB2 => ErbB2 ErbB2 ku22 = 10

[r7] : ErbBl1 => ErbBlin kinll = 0.28

[r8] : ErbBi:ErbBl => ErbBi:ErbBlin kinll = 0.28
[r9] : ErbB2 => ErbB2in kin2- = 0.01

[r10] : ErbB2:ErbB2 => ErbB2:ErbB2in kin2- = 0.01
[r11] : ErbB1:ErbB2 => ErbB1l:ErbB2in kin12l = 0.1

Applying PRR to the more complex eErbB dimerization Network.

® The units for kc are [(#/cell min)~'], while the for the other rates are [min~'].
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Fig. 3. PRR simulation of sErbB network (ErbBi: blue, ErbB2: green, ErbB1:ErbB1:
red, ErbB1:ErbB2: cyan, ErbB2:ErbB2: magenta) with altered reaction affinities. Top:

the initial condition is ErbBl = ErbB2
ErbB2:ErbB2 = 0. Bottom: The

initial condition

1000, ErbB1:ErbB1
is ErbBi1

ErbB1:ErbB2
= 200,ErbB2

1000, ErbB1:ErbBl = ErbB1:ErbB2 = ErbB2:ErbB2 = (0. The affinites are indicated
within the single plots.
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Fig. 4. A steady state simulation and a kinetic study of eErbB presented in [24].

#lcell

19

Signaling Species

x 10"

IS

homodimers
heterodirners

600,000

time (min)



th
e

g

4

§
!
zﬂ
s
lt‘
}

= N N @ @
e 0
e @
by

-
e
e @

th
e

e rE Ui
ey —

Signaling homo and hetero dimmers

&

L1 ] 0.02 0.04 0.06 0.032 0.1
time {(min)

Fig.5. Quantities of signaling homodimer (ErbB1:ErbB1, blue) and heterodimer
(ErbB1:ErbB2, red) under normal expression (initial values ErbBl = ErbB2 = 1000,
solid lines) or over-expression (initial values ErbB1 = 1000,ErbB2 = 20,000, dotted
lines) condition, predicted by time-resolved PRR.

20



