
Lambda Data Grid: Communications Architecture in
Support of Grid Computing

Tal I. Lavian

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-190

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-190.html

December 21, 2006



Copyright © 2006, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



 

                                                             1 

 
 

Lambda Data Grid: 

Communications Architecture in Support of Grid Computing 

 

by 

Tal I. Lavian 

 

B.S. Tel Aviv University 1988 

M.S. Tel Aviv University 1997 

 

A dissertation submitted in partial satisfaction of the 

Requirements for the degree of 

Doctor of Philosophy 

in 

Computer Science 

in the 

GRADUATE DIVISION 

of the 

UNIVERSITY OF CALIFORNIA, BERKELEY 

 

Committee in charge: 

Professor Randy H. Katz , Chair 

Dr. John Strand, 

Professor Connie J. Chang-Hasnain, 

Professor John Chuang 

 



 

                                                             2 

 

The dissertation of Tal I. Lavian is approved:  

 

Chair                                                                             Date                      .                                                                     

 

 

 

                                                                                       Date                      .                                                                     

 

 

 

                                                                                       Date                      .                                                                     

 

 

 

                                                                                       Date                      .                                                            

 

 

 

 

 

 

 

University of California, Berkeley 

 

        Fall 2006 

 

 

 



 

                                                             3 

 

Lambda Data Grid: 

Communications Architecture in Support of Grid Computing 

 

Copyright © 2006 

by 

Tal I. Lavian 

 

 

 

 

 

 

 

 

 

 

 



 

                                                             4 

Abstract 

Lambda Data Grid: 

Communications Architecture in Support of Grid 

Computing 

By 

Tal I. Lavian 

Doctor of Philosophy in Computer Science 

University of California at Berkeley 

Professor Randy H. Katz Chair  

The practice of science experienced a number of paradigm shifts in the 20th century, including the 

growth of large geographically dispersed teams and the use of simulations and computational science as a 

third branch, complementing theory and laboratory experiments. The recent exponential growth in 

network capacity, brought about by the rapid development of agile optical transport, is resulting in 

another such shift as the 21st century progresses. Essential to this new branch of e-Science applications is 

the capability of transferring immense amounts of data: dozens and hundreds of TeraBytes and even 

PetaBytes.  

The invention of the transistor in 1947 at Bell Labs was the triggering event that led to the technology 

revolution of the 20th century.  The completion of the Human Genome Project (HGP) in 2003 was the 

triggering event for the life science revolution of the 21st century. The understanding of the genome, 

DNA, proteins, and enzymes is prerequisite to modifying their properties and the advancement of 

systematic biology. Grid Computing has become the fundamental platform to conduct this e-Science 

research. Vast increases in data generation by e-Science applications, along with advances in 

computation, storage and communication, affect the nature of scientific research. During this decade, 

crossing the “Peta” line is expected: Petabyte in data size, Petaflop in CPU processing, and Petabit/s in 

network bandwidth. 
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Numerous challenges arise from a network with a capacity millions of times greater than the public 

Internet. Currently, the distribution of large amounts of data is restricted by the inherent bottleneck nature 

of today’s public Internet architecture, which employs packet switching technologies. Bandwidth 

limitations of the Internet inhibit the advancement and utilization of new e-Science applications in Grid 

Computing. These emerging e-Science applications are evolving in data centers and clusters; however, 

the potential capability of a globally distributed system over long distances is yet to be realized.   

Today’s network orchestration of resources and services is done manually via multi-party conference 

calls, emails, yellow sticky notes, and reminder                                                                                         

communications, all of which rely on human interaction to get results. The work in this thesis automates 

the orchestration of networks with other resources, better utilizing all resources in a time efficient 

manner. Automation allows for a vastly more comprehensive use of all components and removes human 

limitations from the process.  We demonstrated automatic Lambda setting-up and tearing-down as part of 

application servers over MEMs testbed in Chicago metro area in a matter of seconds; and across 

domains, over transatlantic links in around minute. 

The main goal of this thesis is to build a new grid-computing paradigm that fully harnesses the 

available communication infrastructure.  An optical network functions as the third leg in orchestration 

with computation and storage. This tripod architecture becomes the foundation of global distribution of 

vast amounts of data in emerging e-Science applications.  

A key investigation area of this thesis is the fundamental technologies that allow e-Science 

applications in Grid Virtual Organization (VO) to access abundant optical bandwidth through the new 

technology of Lambda on demand. This technology provides essential networking fundamentals that are 

presently missing from the Grid Computing environment.  Further, this technology overcomes current 

bandwidth limitations, making VO a reality and consequentially removing some basic limitations to the 

growth of this new big science branch.   
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In this thesis, the Lambda Data Grid provides the knowledge plane that allows e-Science applications 

to transfer enormous amounts of data over a dedicated Lightpath, resulting in the true viability of global 

VO. This enhances science research by allowing large distributed teams to work efficiently, utilizing 

simulations and computational science as a third branch of research.  
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1 Introduction and Preview 

1.1 Motivation 

1.1.1 New e-Science and its distributed architecture limitations 

Science is at the early stages of multiple revolutions spawned by the intersection of novice 

scientific research methods and emerging e-Science computation technologies [1]. Many new 

and powerful methodologies are evolving within the specialties of biology, health science, 

genomics, physics, astrophysics, earth science and environmental science. Contemporary science 

is advancing at an unprecedented rate, much faster than at any other time in history. This 

acceleration holds the promise of radical breakthroughs in many disciplines.  

New types of applications are emerging to accommodate widely  distributed research 

teams that are using computation-based simulations as the third scientific branch, 

complementing conventional theory and laboratory experiments. These applications require the 

orchestration of the right data, to the right computation, at the right time. Crucial is the 

distribution of information and data over time, space, and organizations. For these applications, 

the transfer of immense amounts of data is becoming increasingly necessary. However, major 

limitations arise from existing distributed systems architecture, due to the inability to transfer 

enormous amounts of data.   

Our mission was to build an architecture that can orchestrate network resources in 

conjunction with computation, data, storage, visualization, and unique sensors. In simple terms, 

it is the creation of an effective network orchestration for e-Science applications, with vastly 
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more capability than the public Internet. To realize this mission, some fundamental problems 

faced by e-Science research today require a solution.    

1.1.2 The Peta Lines  

Due to advances in computation, storage, scientific data generation, and communication, 

we are getting close to crossing, or are crossing the Peta (1015) line in storage size, 

communication speed and computation rate.  Several high level US Department of Energy 

(DOE) labs have built Petabyte storage systems, and there are some scientific databases that 

have exceeded one PetaByte.  While high-end super-computer centers are presently operating in 

the range of 0.1-1 Petaflops, they will cross the Petaflop line in a matter of years. Early optical 

lab transmission experiments are in the range of 0.01-0.1 Petabits/s, and by the end of this 

decade, they will cross the Petabits/s line [2].  

1.1.3 Gilder and Moore – Impact on the Future of Computing 

The principles of both Gilder and Moore are important phenomena that must be considered 

juxtaposed to Grid Computing infrastructure in new e-Science research.   Moore’s Law [3] 

predicts doubling silicon density every 18 months. In early 2000, a common misconception held 

that traffic was doubling every three months.  Andrew Odlyzko and Kerry Coffman [4] showed 

that this was not the case .  He demonstrated that traffic has been approximately doubling every 

12 months since 1997 Based on progress in optical bandwidth. Gilder’s Law [5] predicts that the 

total capacity of optical transport systems doubles every six months. New developments seem to 

confirm that optical transport bandwidth availability doubles every nine months. 

This difference between Moore and Odlyzko may look insignificant at a glance. However, 

see figure 1.1, where the calculation over time shows that the gap between computation and 
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traffic growth is x4 in six years,  x16 in 12 years, and x32 in 15 years. When comparing to 

optical transport growth, the difference is even more impressive. The impact of this phenomenon 

drives us to rethink the fundamentals of computation, storage, and optical transmission in 

regards to Grid infrastructure for e-Science research. Traditional data-intensive and compute-

intensive approaches requires a new balance in the areas of distributed systems, remote storage, 

moving data to computers, moving computation to the data, storage, and remote data processing.  

This substantial gap in favor of optical transmission compared to computation inspires one to re-

examine traditional computer science assumptions in reference to Grid Computing. 
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Fig 1.1 Processor vs. Traffic Growth 

1.2 Transmission Mismatch 

Recent advances in optical transport technologies have created a radical mismatch in 

networking between the optical transmission world and the electrical forwarding/routing world. 

Today, a single strand of optical fiber can transmit more traffic than the entire Internet core. 

However, end-systems with Data Intensive Applications do not have access to this abundant 

bandwidth. Furthermore, even though disk costs are attractively inexpensive, the feasibility of 
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transmitting huge amounts of data is limited. The encumbrance lies in the limited transmission 

ability of Layer 3 (L3) architecture. In the OSI model [6], L3 provides switching and routing 

technologies, mainly as packet switching, creating logical paths known as virtual circuits for 

transmission of data from node to node. L3 cannot effectively transmit PetaBytes or hundreds of 

Terabytes, and has impeding limitations in providing service to our targeted e-Science 

applications. Disk transfer speed is fundamentally slower than the network.  For very large data 

sets, access time is insignificant and remote memory access is faster than local disk access.  

Figure 1.2 represents the conceptual limitation that Lambda Data Grid is addressing 

between the requirements of Data-Intensive applications and the availability of optical 

bandwidth. The significant imbalance between e-Science applications requirements and the 

available resources to support them in today’s technologies motivates us to build a resource 

orchestration architecture integrating Grid Computing and optical networks.  

Availability: Abundant Optical Bandwidth

Requirements: Data-Intensive e-Science apps

Lambda Data Grid

 

Figure 1.2 – Transmission Obstacle for e-Science Applications 
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1.3 Limitations of L3 and Public Networks for Data Intensive e-

Science 

There are three fundamental technological choices to address when finding solutions for 

Data Intensive Applications.  

• Packet switching vs. Circuit switching 

• Public Internet vs. Private connection (shared vs. dedicated)  

• L3 vs. L1 functionalities 

 

The obvious solutions use existing technologies like L3, routing mechanisms, and the 

public internet for large data sets of e-Science research.  However, limitations embedded in these 

technologies make these solutions less effective. In the age-old question of using packet 

switching vs. circuit switching, historically packet switching won. Within the context of large 

data sets, this question must be examined again [7].  In our targeted area, L1 circuit switching to 

limited address space is more effective than L3 packet switching to large address space. The 

original Internet Design Principles provides a different set of criteria for low bandwidth supply, 

and does not perform optimally in e-Science.  Routing and L3 works well for small packets and 

short durations, but lose their effectiveness for large data sets and long durations. In L3 

mechanisms, look-ups are performed for large data streams. This is no longer required when the 

destination is known in advance, saving billions of identical forwarding decisions in large data 

sets.  On the shared public Internet, fairness is important and therefore considered in networking 

protocols. In dedicated private network, fairness is not an issue. The above ideological 

differences are also discussed in detail in Chapter 3.   
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1.4 e-Science 

The CyberInfrastructure Council of the National Science Foundation (NSF) is working on 

“CyberInfrastructure Vision for 21st Century Discovery. [8]” Figure 1.3 is a excerpt from this 

document. In a 2006 working draft of this document, some important questions are addressed. 

 

How does a protein fold? What happens to space-time when two black holes collide? 
What impact does species gene flow have on an ecological community? What are the key 
factors that drive climate change? Did one of the trillions of collisions at the Large Hadron 
Collider produce a Higgs boson, the dark matter particle or a black hole? Can we create an 
individualized model of each human being for targeted healthcare delivery? How does 
major technological change affect human behavior and structure complex social 
relationships? What answers will we find – to questions we have yet to ask – in the very 
large datasets that are being produced by telescopes, sensor networks, and other 
experimental facilities? These questions – and many others – are only now coming within 
our ability to answer because of advances in computing and related information technology.   

 

Figure 1.3– Excerpt  from NSF’s CyberInfrastructure draft Vision for the 21st Century Discovery 

 

The overarching infrastructure vision for the 21st Century is hugely complex. This thesis, 

”Lambda Data Grid: Communication Architecture in Support of Grid Computing,” is a solution 

for one small aspect of this infrastructure. The primary motivation of this thesis originated from 

the e-Science CyberInfrastructure quandary.  

Dictated by its unique requirements, e-Science has massive middleware designed to carry 

out the distribution of resources and data across the globe, and to facilitate the scientific 

collaboration. Data Intensive Applications (DIA) and Compute Intensive Applications are 

expected to grow at a rapid pace in the next decade. The network research community focuses on 

Internet-sized scaling and has not been pushed to anticipate the massive predicted scale of these 

e-Science applications. The data generated annually by e-Science experiments is of several 
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magnitudes larger than the entire current Internet traffic, with an expected growth pace that 

reaches many orders of magnitude beyond. It is difficult to comprehend these sizes because it is 

so vastly beyond the scope of our networking experience.  

To illustrate the scale of data, collaboration and computation being considered, we present 

below a small sample of e-Science projects, taken from the very large number of projects in 

progress.  

High Energy Physics (HEP) – Finding ‘Higgs’ particle associated with mass is one of 

HEP’s primary research goals. CERN’s Large Hadron Collider (LHC) [9] involves about 5,000 

researchers from 150 institutions across the globe. The distributed nature of the research requires 

collaboration with institutes like Stanford Linear Accelerator Center (SLAC) [10], Collider 

Detector at Fermilab [11] , (CDF) [11], Ring Imaging Cherenkov Detector (RICH) [12] , and 

Lawrence  Berkeley National Labratory (LBNL) [13]. The BaBar [14]  project at SLAC [15] 

generated over one Petabyte (1PB = 1015 Bytes) of data since its inception.  The new SLAC 

collider in construction will generate one Exabyte (1EB = 1018 Bytes) during the next decade.  

CERN’s LHC data store consisted of several Petabytes in 2005, with staggering growth 

expectancy to about 100 Petabytes by 2008.  The HEP is the biggest research effort on earth in 

terms of data and computation sizes. Efficiency in moving and accessing the data associated with 

this research could be the networking quandary of the millennium. This thesis work attempts to 

make significant steps toward addressing and overcoming a small portion of the networking 

challenges for this type of project.   

• Astrophysics- Of the many experiments in National Virtual Observatories, the NVO 

[16] project, generated 500 Terabytes of data in 2004. The Laser Interferometer Gravitational 

Wave Observatory (LIGO) [17] project generated 250 Terabytes, and the VISTA project 
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generated 250 Terabytes. By 2015, the VISTA project alone will generate several Petabytes of 

data annually.  

• Environment Science – The European center for Medium Range Weather Forecasting 

(ECMWF) holds about 330 Terabytes of data. The Eros Data Center (EDC) [18] holds about 

three Petabytes of data, the Goddard Space Flight Center (GSFC) [19] holds about 1.5 Petabyte 

of data, and it is estimated that NASA will hold about 15 Petabytes of data by 2008.  

• Life Science – Protein Data Bank (PDB) [20], protein sequences, Bioinformatics 

sequence databases, and Gene Expression Databases compose a tiny portion of the many 

growing databases in life science. Gene expression experiments are conducted by hundreds of 

institutes and laboratories worldwide. The data range in 2005 was several Petabytes, 

approximately. The National Institute of Health (NIH) [21] is helping to fund a handful of 

experimental facilities with online accessibility, where experiments will generate data sets 

ranging from hundreds of Terabytes to tens of Petabytes. Bioinformatics research requires 

massive amounts of computation in the order of approximately hundreds of Petaflops per second.  

The computation required in the gene sequencing of one gene takes the work of about 800 

computers for one year.  

As one digests the size and scope of these projects, it is obvious that the current 

networking technologies are inadequate. There are great efforts towards middleware 

advancements in various research fields. Many middleware projects [22] [23]  have adopted Grid 

technologies, Workflow, and Web Services [24].   These projects require solving tough problems 

in regards to collaboration, distribution, sharing resources, access to specific data, sharing 

results, and accessing remote computation or storage.  Ultimately, middleware is the key to the 

success or failure of Grid technologies in Data Intensive Applications and Compute Intensive 
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Applications. There are substantial efforts aimed at middleware development in this new era of 

research. Projects like ENLIGHTENED [25] , Tera Path, and Oscars focus on some aspects of 

Grid network middleware. Our contribution to this effort as presented in this work is as follows: 

The building of middleware and architecture for the orchestration of network resources that are 

plugged into the broader scope middleware development effort, interact between application 

middleware and network middleware, allowing scientific research communities to work 

efficiently with large data sets. 

1.5 Dissertation Overview 

This dissertation provides an architecture, design, evaluation, and prototype 

implementation for wide-area data sharing across optical networks of the 21st century.  It  

provides the middleware services necessary to orchestrate optical network resources in 

conjunction with other resources. Today, Grid Computing applications and Workflows used by 

e-Science applications can allocate storage, data, computation, unique sensors, and visualization. 

This work will enable the orchestration of optical services as an integral part of Scientific 

Workflows and Grid Computing middleware. As this work progressed, it was prototyped and 

presented at GlobusWorld [26] in San Francisco, GGF-9  Chicago, Super Computing [27] in 

Pittsburgh, and GlobusWorld in Boston.   

Each demonstration received enthusiasm, comments, and suggestions from the research 

community, inspiring further work, and resulting in a more advanced prototype for each 

convention. Each progressive prototype highlighted the expanded capabilities for the technology.  

The first prototype in San Francisco demonstrated the basic proof of concept between four 

nodes, mounted on two separate racks, over a distance of about 10 meters. At GGF-9, we 
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showed the basic architecture with implemented Grid Services, which dynamically allocated 

10Gbs Lambdas over four sites in the Chicago metro area, covering a distance of about 10km. 

This was significant because it showed the core concept on a small scale. We demonstrated how 

an application expresses a need for service via Grid Service. This prototype of basic network 

intelligence supported the mechanisms. More important was the novelty of interaction between 

application and network to accomplish a common goal.   

Further and enhanced architecture resulted in the Pittsburgh’s prototype, in which we built 

the Grid middleware for the allocation and recovery of Lambdas between Amsterdam and 

Chicago, via NY and Canada, over a distance of about 10,000km. Real-time output results and 

measurements were presented on the floor at Super Computing [27] in Pittsburg. This prototype 

demonstrated the reservation and allocation of Lambda in about 100 seconds compared to the 

manual allocation of about 100 days (phone calls, emails, personnel scheduling, manual network 

design and connection, organizational priorities, legal and management involvement).  The 

computational middleware was able to reduce the allocation time from months to seconds, 

allowing integration of these interfaces to Grid Computing applications and e-Science 

Workflows. Shifting from manual allocation to an automated computational reservation system 

and allocation via the Grid Web Services model opens the door for endless advancements in 

scientific research.   

1.6 Preview: Three Fundamental Challenges  

In this section, we will preview three fundamental challenges that this dissertation 

addresses. The nature of new e-Science research requires middleware, Scientific Workflows, and 

Grid Computing in a distributed computational environment. This necessitates collaboration 

between independent research organizations to create a Grid Virtual Organization (VO) [28] [29] 
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. Each VO addresses organization needs across a large scale geographically dispersed area, and 

requires the network to function as a fundamental resource. The Grid research community has 

been addressing many challenges in computation, storage, security, and management, but has 

failed to successfully address some of the inherent insufficiency of today’s public network, as we 

will show in chapter 3. In this work, three challenges became evident:   

1) Limitations in packet switching for Data Intensive Applications and Compute 

Intensive Applications, over a distant network such as WAN. 

2) The Network Resources need for allocation, scheduling and management by Grid 

Computing middleware rather than statically by network administrators.  

3) The transfer management of multi-terabytes of data, in a specific time window, at 

requested locations.   

In this thesis, we analyze these problems in detail and solve some of them by building a 

new network middleware that is integral to Grid middleware to manage dedicated optical 

networks. In simple terms, we built a special network just for e-Science. The following is a 

summary of the problems and a discussion of our solutions.  

1.7 Challenge #1: Packet Switching – an Inefficient Solution for 

Data Intensive Applications 

1.7.1 Elephants and Mice 

 Packets are appropriate for small amounts of data like web pages and email.  However, 

they are far from optimal for e-Science applications similar to Visual Observatories, for 

example, that will generate Petabytes of data annually in the next decade. Basic Ethernet frame 

size is 1.5KB or 9KB in the case of Jumbo Frames. L3 data transfer of 1.5TB will require one 
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billion (109) identical packet header lookups. Moving a data repository of 100TB is one trillion 

times greater than moving a web page of 100KB. This would be much like CANARIE’s [30] 

analogy of transferring a herd of elephants compared to a family of mice. It is simply impossible 

to transfer elephant-sized data on the today’s public Internet using L3 packet switching. Such an 

attempt would vastly destabilize Internet traffic. It is necessary to question the usefulness of 

current methodologies when dealing with nine-orders of magnitude difference in transfer size. 

1.7.2 Lightpath Cut-Through 

The evolution of e-Science and its demand for the transfer of bulk data challenge us to 

examine the scalability of data transfer at the core of the Internet. Effective cut-through methods 

are relevant. The integrity of end-systems and the edge devices must remain intact, but the 

underlying optical core demands rethinking. Upper level L3 packet switching infrastructure 

continues to serve as the main method for small traffic transfers, while a separate underlying 

optical channel is necessary for scalable transfer. One of the significant challenges is the 

interoperability of these two systems. The underlying optical infrastructure is based on lightpath, 

similar to the L0-L1 circuit switching mechanisms, while the functionality at L3 is based on 

packet switching/routing.  In the OSI model [6], Layer 1 or the physical layer, conveys the bit 

stream through the network at the electrical and mechanical level. Layer 0 represents the photon 

stream in optical media on a single Lambda. We have built a system that diverts e-Science bulk 

traffic via a cut-through over an underlying, dedicated, optical network instead of the public 

Internet.   

1.7.3 Statistical Multiplexing  

Statistical multiplexing can work for many-to-many small traffic patterns, as found in 

today’s Internet. For few-to-few bulk traffic patterns, as seen in astrophysics research, statistical 
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multiplexing loses its benefits. Distribution of traffic flow is most effective for many small 

flows. The assumption that the network is always available for the transmission of minute flows, 

compared to its overall capacity, is reasonable. Roughly, an average of 50%-60% utilization of 

the network capacity is desirable for network transmission and can maintain peak-time traffic 

that edges towards 100% capacity. Higher average utilization places the network at risk. In the 

case of very large data transfers, the network requires 100% of capacity for a period of time.  For 

the traffic pattern represented in large data transfers as required by e-Science, average utilization 

cannot be more than a few percent. To handle multiplexing of “elephant” sized data flow in an 

acceptable time, substantial additional capacity is required, where utilization must be very low to 

handle the traffic. 

1.7.4 Availability Expectations  

For normal use of the public internet, the users assume constant availability. In most cases, 

there are no mechanisms to regulate when to use the network, under what conditions, and how 

much data to transmit. This is efficient because the “normal” transfer data size is a tiny fraction 

of the available bandwidth at the core. Conversely, for the HEP applications, the requirements 

are to use 100% of the capacity of the line at a specific time, without sharing the network, and 

with no multiplexing. This changes the assumption of network availability such that the network 

will be available and scheduled upon request, and transmission approved only upon permission 

granted.  

1.7.5 Bandwidth and Bottlenecks 

In the last 30 years, the research and the industry have held the fundamental design 

principle that bandwidth is limited and conservation is necessary.  Substantial research efforts 

have looked at ways to optimize bandwidth and conserve traffic, for example, by using data 
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compression. Extensive work has been devoted to applications and protocol stacks to 

compensate for restrictions in bandwidth. Advances in optical networking and its associated low 

transmission errors raise a new series of questions:  Why do we need so many applications 

optimized to conserve bandwidth? Can we build these types of Data Intensive Applications 

differently if bandwidth is free? [31] Is optimization of the network still necessary?  

1.7.6 Why not Lightpath (circuit) Switching?   

The nearly universal decision to use packet switching rather than circuit switching was 

arrived at for a variety of good reasons. However in optical switching, utilization, bandwidth 

optimization, conservation and transmission costs, are not primary goals.  With new tradeoffs for 

large data sets, Lightpath is the optimized solution. Lightpath is actually an implementation of 

circuit switching in wavelengths.  Another approach is Optical Burst Switching (OBS) , which 

functions under a  similar concept of dedicated circuit, but with an extremely fast set-up and for 

short durations.   

1.8 Challenge #2: Grid Computing Managed Network Resources 

Typical Grid applications require the management of highly distributed resources within 

dynamic environments. Basic problems related to these requirements are common to almost all 

Grid environments, e.g., matching multiple and potentially conflicting application requirements 

to diverse, distributed resources within a dynamic environment. Other problems are more 

specific to addressing the complexity of utilizing methods for data provisioning for large-scale 

data flows [32]. 

1.8.1 Abstract and Encapsulate 

To satisfy various complex patterns of application demands as seen in Section 1.3, it is 

necessary to abstract and encapsulate the network resources into a set of Grid services that can 
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provide scheduling, monitoring, and fair-shared usage within a service platform. Understanding 

these application requirements and providing the intelligence to respond to them are all standard 

issues that can be addressed within the context of Web Services Resource Framework (WSRF) 

Grid middleware [33].  A network resource service is a key component that we implemented to 

realize abstraction and encapsulation of network resources.  

1.8.2 Grid Networking  

Common architectures that underlie traditional data networks do not incorporate all of the 

capabilities required by Grids.  They are generally designed to optimize the relatively small data 

flow requirements of consumer services and the managed services of enterprises on a common 

core infrastructure oriented to the requirements of general common communication services.  

Many Grid applications are data-intensive, requiring specialized services and infrastructure to 

manage multiple, large-scale data flows of multiple Terabytes and even Petabytes, in an efficient 

manner. Such capabilities are not effectively possible in traditional routed packet data networks.  

1.8.3 Grid Middleware for Dynamic Optical Path Provisioning  

It is necessary to provide applications with a direct, flexible access to a wide range of 

optical infrastructure services, including those for dynamically provisioned optical path channels 

within an agile optical network. There is a need to design network architectures that can support 

Grid applications in association with emerging optical networks. The architectures must integrate 

network requirements with optical control utilizing new techniques for dynamic optical path 

provisioning. Such networks have the potential to provide instantaneously provisioned, high 

performance bandwidth with capacity several orders of magnitude beyond that of today’s 

networks.   
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1.8.4 Virtual Organization As Reality 

Of primary importance is the creation of a technology that allows Virtual Organization 

(VO)[1] to access abundant optical bandwidth using Lambda on demand to Data Intensive 

Applications and Compute-Intensive Applications. This provides essential networking 

fundamentals that are presently missing from Grid Computing research and overcome bandwidth 

limitations to help make VO a reality [2].    

1.9 Challenge #3: Manage BIG Data Transfer for e-Science 

To function effectively, e-Science researchers must access massive amounts of data in 

remote locations. From massive, one-of-a-kind, real-time remote sensors, or from immense 

remote storages, researchers must filter the data, and transfer minuscule portions for their use. 

The challenge is to get the right data to the right location, at the right time.   

Much of science is experimental, with data being gathered using increasingly sophisticated 

and expensive instruments. These may range from electron microscopes to distributed arrays of 

seismometers to astronomical interferometric arrays of radio telescopes to high-energy physics 

particle colliders and their detectors to space-based remote sensing satellites to nuclear fusion 

facilities, and so on. Heretofore, a scientist wishing to conduct experiments would need to go to 

a particular facility, directly control the apparatus, gather data, return to the home institution for 

the analysis phase, decide on the focus for follow on experiments or observations, and repeat the 

cycle.  An added complication to this process is the competition for scarce resources.  

If network connectivity were available to access the right data, and to transfer it to the right 

location at the right time, then the experimental control could be done from the home institution.  

In addition, the data could be gathered at real time from the facility to the home institution where 
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the emerging Grid paradigm of fast and distributed computation could facilitate early 

preliminary analysis and visualization. This would guide modifications to the experimental 

setup, greatly shorten the cycle time, and increase the efficiency of specialized facilities.  

In the world of scientific research, collaboration and sharing information is crucial for 

scientific advances. Limitations in technology and the inability to orchestrate resources prohibit 

the usability of one-of-a-kind facilities and/or instruments by the wider community of 

researchers.    

Further, non-experimental work could benefit from very high capacity networking. 

Consider, for example, interlinked models used for climate simulation. There might be an 

atmospheric model that interacts with an oceanic model as well as with a solar model to address 

how radiation flux and solar storms affect the upper atmosphere. Econometric models could look 

at how climate will affect land use patterns, agriculture, etc. and how it might feed back into 

atmospheric effects. Each simulation would run at its own center of expertise, requiring high-

speed data connections to communicate at each time step. 

1.9.1 Visualization Example 

One of the primary means of image appreciation and integration of data sets is through 

visualization, with its trend toward higher and higher resolution displays and real-time 

interaction with multi-dimensional data. These displays may be driven by arrays of special 

purpose rendering computers working in parallel and sending pixels to a set of display devices 

also working in concert, to provide a large-scale unified environment, such as a CAVE or wall 

sized display. 
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What are the data rates needed for this, even within a single laboratory? Consider a 100 

Mega pixel display, which is already available as a prototype[2]. Calculation of bandwidth 

requirements for this visualization device shows the need for 72 Gbps in the OptIPuter [34] 8 

nodes cluster, or 576Gbps for 64 nodes cluster.  This is over half a Terabit per second.  

This is clearly beyond the range of today's standard 1-10 Gigabit Ethernets but is 

achievable [35] using display technologies by EVL. These technologies can also allow the user 

to view all or parts of this display from a remote site, given the local display hardware. That is, 

the engines that analyze the data and create the visualization can be remote. 

1.10 Major Contributions    

1.10.1 Promote the Network to a First Class Resource Citizen 

• The network is no longer a pipe, but rather a part of the Grid Computing 

instrumentation. In addition, it is not only an essential component of the Grid computing 

infrastructure but also an integral part of Grid applications. This is a new design principle for 

Grid and high-throughput Computing. The proposed design of VO [36] in a Grid Computing 

environment is accomplished with Lightpath as the vehicle, allowing dynamic Lightpath 

connectivity while matching multiple and potentially conflicting application requirements, and 

addressing diverse distributed resources within a dynamic environment.  

1.10.2 Abstract and Encapsulate the Network Resources into a Set of Grid 
Services 

• Encapsulation of Lightpath and connection-oriented, end-to-end network resources into 

a stateful Grid service, while enabling on-demand, advanced reservation, and scheduled network 

services. This works within a schema where abstractions are progressively and rigorously 
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redefined at each layer.  This helps to avoid propagation of non-portable implementation-specific 

details between layers. The resulting schema of abstractions has general applicability. 

1.10.3 Orchestrate End-to-End Resources 

• A key innovation is the ability to orchestrate heterogeneous communications resources 

among applications, computation, and storage, across network technologies and administration 

domains.     

1.10.4 Schedule Network Resources 

• The assumption that the network is available at all times, to any destination, is no 

longer accurate when dealing with big pipes. Statistical multiplexing will not work in cases of 

few-to-few immense data transfers.  We have built and demonstrated a system that allocates the 

network resources based on availability and scheduling of full pipes.      

1.10.5 Design and Implement an Optical Grid Prototype 

• We were able to demonstrate dynamic provisioning of 10Gbs in 100 seconds, replacing 

the standard provisioning of approximately 100 days. This was shown in a connection from 

Amsterdam to Chicago during Super Computing and on the conference floor in Pittsburg. For 

technology demonstrations, Cees De Latt [37] described the previous standard process of 

provisioning 10Gbs from Amsterdam to Chicago in general terms as follows: “It took about 300 

emails, 30 conference and phone call and three months to provision the link”. Provisioning has 

vastly improved thanks to new Lambda service, which takes only a few dozen seconds to create 

an OC-192 coast-to-coast, compared to the three to six months it takes commercially.  

1.11 Thesis Organization 

The rest of this thesis is organized as follows:  
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Chapter 2 discusses the background material in the area of Grid Computing, Service 

Oriented Architecture (SOA), Web Services Resource Framework (WSRF), and related work 

over middleware for e-Science applications.  

Chapter 3 analyzes bulk data transfer and optical networking, in view of limitations for 

geographically dispersed research collaboration in e-Science. This chapter discusses the 

limitations of packet switching, routing, Layer 3 technologies and the public Internet for 

collaborative research, and overviews the need for Lambda Data Grid as part of Cyber-

Infrastructure.  

Chapter 4 presents a bird’s eye view of Lambda Data Grid as a network solution for the 

scientific research targeted in this thesis. The network needs of some e-Science projects are 

discussed along with the Lambda Data Grid solution as part of orchestration network resources 

over GLIF.   

Chapter 5 looks at Lambda Data Grid Architecture, and our service orchestration 

framework. Specifically the Data Transfer Service (DTS) and the Network Resource Service 

(NRS) is outlined. A correlation is built between Grid Layer Architecture and our layer 

architecture. Our middleware design is presented as an easy interface between scientific 

middleware packages, and Scientific Workflows.  

Chapter 6 introduces two new concepts: “time-window” and “time-value” for Lightpath 

scheduling. The data is analyzed, reflecting on the need for Lightpath allocation and reservation 

for Data Intensive Applications and Compute Intensive Applications. 

Chapter 7 conceptualizes time-window and time value through a distributed algorithm for 

network path allocations. Time-window requests by the applications, the time proposal/response, 
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along with feedback is used to determine a time-value per proposal. Two new entities are 

presented as part of our middleware: Segment Reservation Authority (SRA) and Path 

Reservation Authority (PRA).  These are designed to fulfill requests within presenting 

constraints.   

Chapter 8 explains our testbeds, public demonstrations, and the experimental networks 

used in this work. The results of several experiments demonstrating the value of Lightpath 

allocation is described, along with an evaluation of our results.  Also presented is the dynamic 

allocation of bandwidth on demand, and the radical improvement in trans-Atlantic traffic 

recovery, from months to minutes. This new capability is analyzed within the context of remote 

collaboration and federation enabling for e-Science applications.    

Finally, Chapter 9 is a summary of our work, quantitative results, and its contributions. 

The conclusion of the chapter and this thesis is a discussion of general lessons learned about 

orchestration of network resources in conjunction with other resources; the interaction between 

network middleware and Grid middleware as used in Scientific Workflows, and an outline of 

some directions for future research. 
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2 Background and Related Work 

This chapter introduces the background and related work concerning the investigation 

areas of this thesis: e-Science applications and resource requirements, Grid computing 

infrastructure, Grid services orchestration [32], optics-based agile Grid networks, and end-to-end 

transport mechanisms for data intensive applications. 

2.1 Introduction 

Important advancements are underway to accommodate scientific research and new e-

Science computation technologies. Collaborations among geographically dispersed research 

groups is possible by new computation technique that allow new types of research applications 

to be utilized. This chapter summarizes a variety of requirements of e-Science applications that 

involve data intensive transportations and communications. 

The completion of the Human Genome Project (HGP) [38] in 2003 was the triggering 

event for the life science revolution of the 21st century. Molecular and cellular biologists have 

been working to uncover how living system works. The understanding of the genome, DNA, 

proteins, and enzymes is prerequisite to modifying their properties and building Systematic 

Biology. Computation and information technologies are the major tools for these scientific 

discoveries. The Mouse BIRN project [39] discussed in this thesis is one example of research in 

this area.   

New service architectures have been proposed and developed for Grid computing to 

support these new types of e-Science applications. OGSA (Open Grid Service Architecture) [28] 

under the Globus Grid Forum (GGF) [29] is implemented as a service architecture by the Globus 
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Project [40], and offers a number of rich features that previous service architectures do not. This 

chapter provides a brief overview of OGSA and its associated services. These features include 

standardizing processes such as advertising what capabilities a computer has or the governing of 

who has permission to use a certain service on the network. 

Also discussed are Grid computing limitations, e-Science applications and services, and 

state of the art developments. We further discuss related work and point out how our research on 

the DWDM-RAM project is distinguished from previous work. I was the Principal Investigator 

for this DARPA funded project, and the inspiration for many of the significant innovations 

contained in this thesis.  

2.2 Mouse BIRN – explosive data generation 

The Mouse BIRN [39] aims to share and analyze multi-scale structural and functional data 

and ultimately to integrate them with genomic and gene expression data in the mouse brain. 

Ongoing collaborations between six institutions in the US are looking at neurological disorders 

in mice to determine relevancy to schizophrenia, Parkinson's disease, brain cancer, substance 

abuse, and multiple sclerosis.  
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Require fat unidirectional pipes

Tight QoS requirements (jitter, delay, data loss)

Simultaneous connectivity to multiple sites
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Table 2.1 – Potential Mouse BIRN requirements 

Table 2.1 illustrates some of the challenges in incorporating data across the different 

geographically disperse institutes.  The first application scenario presents point-to-point data 

transfer of multi-TeraBytes data sets, in unpredictable lengths of time. The main challenge arises 

from dynamic access of multiple remote databases. This requires synchronization of software 

modules, information components, data locations, storage management and computation 

modules, working harmoniously where the network is part of the underlying infrastructure.   

Multi-scale collaboration between different scientific disciplines is required. The 

interaction between the biology images, Vivo Microscopy images, and neuro-imaging present a 

fundamental data exchange challenge. Incorporation analysis and processing of data must be 

done across computation models including chemistry and genomics, and across levels: 

molecular, nuclear, cellular, tissue, and organs. Each discipline uses unique computation models, 

software, packages, analysis, and tools. It is not enough to simply move the data. The line 
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between computation and communication must be blurred. Dynamic network allocation as part 

of Grid Workflow allows for new scientific experiments that are not possible with today’s static 

allocation [41]. 

The Mouse BIRN research is experiencing limitations in its computation/ communication 

model:  

• Tradeoff between computation, communication and data is not always clear 

•  Delays preclude interactive research: copy, then analyze 

•  Uncertain transport times force a sequential process  

• Must schedule processing after data has arrived 

•  No cooperation/interaction among storage, computation and network middleware 

To address these issues The BIRN research community utilized Service Oriented 

Architecture (SOA).   

2.3 Network, not Computers - Central to e-Science Applications 

High Energy Physics (HEP) is a major research effort sponsored by the United States 

Department of Energy (DoE). The HEP community in general, supports a vast portfolio of 

applied and basic research in the physical sciences, as well as ancillary research and 

development activities that support primary scientific endeavors. The planning, execution and 

analysis of these research programs require the coordination of large, distributed teams of 

individuals and institutions. The archetypical enterprise is the HEP program, although other DoE 

sponsored areas [2], such as those listed in Table 2.4, present many of the same issues.  
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2 PB/YearComputational fluid dynamics

1 PB/yearMagnetic fusion

5 PB/YearPlasma physics

3 PB/YearNuclear physics

1 PB/yearSLAC (BaBar experiments)

10 PB/yearCERN LHC (Higgs boson search)

5 PB/yearRHIC (Quark-gluon plasma experiments)

<10 PB/yearCEBAF (Hadron structure experiments)

Estimated 2008 Data Generation

 

Table 2.3 : DoE Sponsored data intensive research areas [2] (theoretical and experimental). 

Consider the Compact Muon Solenoid (CMS) experiment built as part of the Large Hadron 

Collider (LHC) at CERN. This project involves 31 nations, 150 institutions, and over 1800 

scientists. The Atlas detector at the LHC, expected to come on line with the CMS in 2007, 

should generate 10 petabytes (1 PB = 1015 bytes) of data in its first year of operation, and grow 

to about 1 exabyte per year (1 EB = 1000 PB = 1018 bytes) by 2015. These requirements are for 

highly distributed teams and huge data requirements.   

This massive volume of raw data must be buffered at the experimental facility, then 

shipped to a hierarchy of centers for data analysis. A number of distributed regional computing 

centers in the U.S, Europe and Asia have intermediate storage and processing facility. These feed 

large tier-two centers, each of which feeds data to a sizable number of institutes for local 

processing.  From here, the data can be sent to workstations and compute farms of individual 

researchers. Many different teams may analyze the data sets of the same event. The results of the 

initial analyses may also generate large derived data that is transported, and ultimately shared, 
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among central locations for statistical and other analyses. In addition to this experimental raw 

run data, there are large volumes of derived simulation data, estimated to run a factor of three 

times greater in volume than the former sets. Simulations are crucial for understanding the nature 

of the Large Hadron Collider (LHC) detectors and modeling the underlying physics, to enable a 

comparison between what is seen and what is expected to be seen. Experiments search for 

unknown facts derived from only a few events of interest a year.  Original data must be 

reanalyzed a number of times as the analyzing algorithms improve and new understanding of the 

emerging physics materializes. 

This implies the need to move and manage enormous quantities of data, as well as to 

manage and coordinate storage and computational resources. Since each LHC detector event is 

independent of all other events, the analyses can be performed in a highly parallel and distributed 

fashion, which fits perfectly with the emerging concept and reality of Grid computing. Grids 

provides a way of marshalling and sharing resources for distributed processing, using “divide-

and-conquer” to tackle computational problems that are too large to be dealt with by one single 

computer or even an institution alone. Grids enable coordinating the use of distributed and 

heterogeneous resources across multiple organizations by providing a uniform set of middleware 

in terms of web services to allow authentication, authorization, accounting, resource discovery 

and scheduling, remote job execution, and feedback to the applications. Table 2.3 represents size 

estimation of annual data generation of e-Science disciplines [2].  
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Table 2.3 : Annual Scientific Data generation by 2008 . 

Heretofore, the network has been a bottleneck in this scenario. Using a "fast" 100 Mbps 

network, it would take almost a day to move a 1 TB data set, or 2 1/2 years to move a Petabyte, 

assuming that the full bandwidth were available for this period. However, the packet routed IP 

network is shared, has its own overhead, and cannot provide QoS.  

2.4 Service Oriented Architecture (SOA) 

SOA has been proposed to build cooperation between data and process components within 

different systems. It supports reusability and interoperability of components using Internet Web 

infrastructure. Initial Grid Computing models started to embody an SOA that lead to the 

definition and creation of OGSA. Further work realizes the benefits of the reusing features of 

Web Services and hence Web Services Resource Framework (WSRF) was born as an 

amalgamation of OGSA and Web Services. 

This leads to an increase in the efficiency of assembly and a decrease in the cost of 

development. A typical SOA example is WS (Web Services), which provides a set of standards 

and protocols including the platform independent Web Service Definition Language (WSDL). In 

recent years, the need for tools for accessing scientific data and executing complex computations 

Discipline  Annual 

Data Generation 

Climate studies >10 PB/year 

Bioinformatics(Genomics, proteomics, 
metabolomics) 

>20 PB/year 

Astrophysics 8 PB/Year 

Sloan Digital Sky Survey 15 TB 

Chemistry 4 PB/year 

Materials Science (neutrons and photons) 0.35 
PB/year 
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and analyses on the data has increased in a variety of disciplines. Such analyses can be modeled 

as scientific workflows in which one step is connected to another by description in a formal 

workflow language. The above components of Grid Computing are discussed in more detail 

below.  

2.5 Grid Computing and its Infrastructure 

Web Services - Web services use simple XML-based messages for machine-machine 

messaging. Web services do not necessarily involve web browsers; rather, we can view web 

services as XML-based APIs. They use standard internet technologies to interact dynamically 

with one another with a well-understood security model. Web Services are loosely coupled, can 

be combined to form complex services, and open agreed standards connect disparate platforms. 

Middleware based on web services has enjoyed tremendous success in the past five years. 

Examples are eBay, PayPal, Amazon and Google, all big users of web services. 

Built upon the Internet and the World Wide Web, Grids or the Grid network is a new 

overlay network infrastructure. By providing scalable, secure, high-performance mechanisms for 

discovering and negotiating access to remote resources, Grids promise to make possible 

scientific collaborations that share resources on an unprecedented scale. Geographically 

distributed groups can potentially work together in ways that were previously impossible. (Ref: 

The Grid: A New Infrastructure for 21st Century Science by Ian Foster). 

The concept of sharing distributed resources is not new; however, a combination of 

technology trends and research advances make it feasible to realize the Grid vision: to put in 

place a new international scientific infrastructure with tools that, together, can meet the 
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challenging demands of 21st-century science. (Ref: The Grid: A New Infrastructure for 21st 

Century Science by Ian Foster). 

A Grid network can be thought of as a distributed computing infrastructure that supports 

the creation and operation of Virtual Organizations (VO) by providing mechanisms for cross-

organizational resource controlling and sharing. 

According to Foster [28], a Grid system must possess three properties:  

• It coordinates resources that are not subject to centralized control, 

• it must use standard, open, general-purpose protocols and interfaces, and 

• it must deliver nontrivial qualities of services. 

2.6 Middleware and Grid Orchestration 

In Grid architecture, a Resource Management Architecture for Meta-computing Systems 

[42] is proposed to deal with the co-allocation problem where applications have resource 

requirements that can be satisfied only by using resources simultaneously at several sites. 

Usually that allocation of computation is co-allocated with the allocation of storage. There is no 

need to allocate the computation if the storage is not available.  However, this architecture, does 

not address the issue of advance reservations of the network, and more specific the 

heterogeneous resource types that are necessary for realizing end-to-end quality of service (QoS) 

guaranteed in emerging network-based applications [23].  To address this problem, the Grid 

Architecture for Reservation and Allocation (GARA) was proposed [43] by GGF.  By splitting 

reservation from allocation, GARA enables advance reservation of resources, which can be 

critical to application success if a required resource is in high demand.  One limiting 

characteristics to GARA is its assumption that the network is constantly available.  Our 

architecture goes a step further by addressing one of the most challenging issues in the 
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management of resources in Grid environments: the scheduling of dynamic and stateful Grid 

services where negotiation may be required to adapt application requirements to resource 

availability, particularly when requirements and resource characteristics change during 

execution.  Recently, a WS-Agreement negotiation model was proposed [44] by GGF that uses 

agreement negotiation to capture the notion of dynamically adjusting policies that affect the 

service environment without necessarily exposing the details necessary to enact or enforce the 

policies.  

There are a number of prior works that address monitoring, discovery scheduling and 

allocation for Grids. They include such projects as GARA, GRAM, DUROC, MDS, and Condor 

[45]. Globus Toolkit 3 (GT3) [40] brokering architecture, GRAM, includes computation 

scalability but lacks network scalability.  

GARA - Globus Architecture for Reservation and Allocation – GARA [43] was first 

proposed by Ian Foster and Carl  Kesselman in the Grid 1999 .   The concept differs from 

existing Grid schedulers like Condor with advanced reservation, multiple resource types, co-

reservation, and support for multiple administrative domains. GARA was demonstrated with 

CPU and network schedulers using DiffServ for network QoS. GARA included a Java API for 

advanced reservations on a single resource, and co-reservation was implemented as separate “co-

reservation agents” that interfaced to GARA and had their own API. Work seems to have tapered 

off or stopped on GARA; it was not included in Globus Toolkit 3 (GT3) or the newly released 

GT4.  

GARA had significant limitations.  Its brokering was based on the scheduling of 

computation and storage resources using sequencing, without considering the network 

dimension. This solution did not give the network equal value to computation and storage. While 
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GARA’s task queuing mechanism was appropriate at the time for computation and storage, it 

failed to meet communication needs; integrated architecture was needed to better serve 

applications with large volume data transfer demands. For example, GARA was proposed to 

match computing jobs to Grid nodes according to CPU resource requirements and availability; 

however, it did not extend naturally to allocating network resources. 

GRAM - Globus Resource Allocation Manager - GRAM is the job submitter and job 

manager for Globus Toolkit, first implemented in GT2.  GRAM provides an interface for clients 

to request resources.  In GT2, clients code requests in Resource Specification Language (RSL) 

that had a keyword equal to a value grammar. In GT3, clients can also use RSL2, which uses 

XML to accomplish the same thing. In GT3, GRAM is a collection of OGSI [46] services: MJS, 

MJFS, and MMJFS. GRAM uses an associated service called Resource Information Provider 

Service (RIPS) to get information about host resources and job status. RIPS reports but does not 

allocate, and is not intended for generalization to other resources. In GT 4.0 the main interface 

switched from OGSI to WSRF [33].  

Limitations for GRAM are related to its inability to perform network advanced reservation 

or scheduling. Neither RSL nor RSL2 includes the syntax to specify network resources. In GT-

4.0, job submission moved to an XML based interface to allow simplicity and better accessibility 

to the data.  

GASS - Globus Access to Secondary Storage - Globus Toolkit provides services for file 

and executable staging and I/O redirection that work well with GRAM. GASS uses GSI-enabled 

HTTP as the protocol for data transfer, and a caching algorithm for copying data when 

necessary. The GASS APIs provide programmer access to staging capabilities, which are 

integrated with the GRAM job submission tools. 
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DUROC - Dynamically Updated Request Online Co-allocator – DUROC allocates 

computation resources using multiple GRAM instances. It uses a slightly extended RSL as input 

and communicates with GRAM using RSL.  Intended for jobs distributed across multiple 

systems, it requires code in each job fragment to “sync up.”  Two major limitations of DUROC 

are that it is not included in the standard GT package and it does not support network allocation. 

Therefore, it is an unsatisfactory solution for the applications that are targeted in this thesis.   

MDS - Monitoring and Discovery Service – MDS aggregated “service data” from OGSA 

services and made the data available for query. This OGSI is in transition to WSRF. MDS started 

in the early days of GT2 and consisted of GRIS instances, which reported resources from both 

single sources and an index service (GIIS), and aggregated them into LDAP indexes. Data could 

be presented as a single data item or an XML document. Intent included resource location, but 

GRAM did not use it; the GRAM client was expected to provide resource location. The MDS 

concept worked for job allocations on computation resources, even for a large number of jobs 

and resources, with a concise enough description to be published. However, this approach is too 

complicated to manage network resources even on a small topology. It is not scalable, making it 

nearly impossible to advertise all possible host-to-host paths in even a medium-sized network. 

Condor – Condor functions as a remote job submitter [45], primarily in Grid High Energy 

Physics research where vast amounts of computation allocation is necessary for  research. Prior 

to computation large amounts of data must be available for allocated computation. Condor can 

stage files locally or makes them available remotely. Considered a fault-tolerant middleware, 

Condor monitors running jobs and restarts them when necessary. It can relocate a job from one 

computer to another, can submit to GRAM, but is not part of Globus. It utilizes a ClassAd 

system to advertise resources and match jobs to resources. Simply stated, it is a way to match 
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jobs to the computers that will run them. ClassAd is symmetric, in that resource descriptions are 

the same whether they come from the supplier or the consumer. It attempts to avoid the 

monolithic model of centralized, scheduled resource management, and moves to a decentralized 

system with opportunistic scheduling. Matchmaker identifies possible matches but leaves it to 

the parties involved to negotiate and allocate by categorizing them as either “Matching” or 

“Claiming.”   

Enlightened – The Enlightened project is a grid framework that allows application to 

dynamically request computing, storage and network resources. The framework provides a set of 

tools and protocols to enable fast network reconfiguration and on-demand or in-advanced 

provisioning. The project views the network as a grid resource similar to compute and storage 

resources and abstracts the networks resources as distributed network intelligence among 

network control plane, management plane, and grid middleware.  

This section described several grid middleware software packages in the area of resource 

managements, allocation and co-allocation of resources with specific focus on two data-intensive 

projects. 

2.7 Current Efforts at Globus Grid Forum (GGF) Working 

Groups: 

This section describes some of the current efforts by GGF working groups in the areas of 

distributed resource management, agreement protocol, definition language, and high 

performance networks.  

• DRMAA - Distributed Resource Management Application API – DRMAA is a 

multi-host job submission API, with recommendation includes no network parameters, just an 
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API with no scheduler component. The target is to unify “legacy” environments, making apps 

portable.  

• GRAAP - Grid Resource Allocation Agreement Protocol – GRAAP is an 

agreement-based peer-to-peer negotiation protocol, based on OGSA services, supporting  any 

kind of agreement. It is extensible, so can be extended to network resources. GRAAP appears to 

be a complex, heavyweight interface, treating each agreement as a new OGSI service instance, 

and it was not implemented or supported.   

• JSDL - Job Submission Definition Language – The JSDL working group at GGF is 

attempting to standardize the description of a job so that any scheduler can accept the same 

description.  JSDL may take the place of RSL in Globus. This GGF working group is explicitly 

avoiding the entire resource description issue and trying to build it from scratch. JDSL is based 

on XML syntax. 

• GHPN – Grid High Performance Network – As part of the Global Grid Forum 

(GGF), the GHPN Research Group focuses on the relationship between network research and 

Grid application and infrastructure development. The objective of GHPN-RG is to bridge the gap 

between the networking and grid research communities.  

All of the above mechanisms emphasize functionality from the application middleware, 

whereas this thesis emphasizes functionality from the network middleware. Computation, data 

and storage middleware have substantially different characteristics from network middleware, 

such that full integration with network resources is prohibited. Being based on the network 

application, allows greater ability to manipulate network functionality. Most of the above assume 

constant network availability, using shared networks, packet switching, and QoS mechanisms. 

By contrast, our approach uses a dedicated unshared network, virtual circuit switching, with no 
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need for QoS mechanisms. By working from the application middleware, it was necessary to 

install agents on computers at the edge of the network, while we were able to install the agents 

inside the network directly attached to the network devices along the path.  

Characteristics  Application Focused Network Focused  

Agents 

location  

Edge of the network  Inside the network  

Agent installed  Computers Network devices 

Manage and 

allocate 

Computers, clusters, storage, data, 
DB, visualization devices, unique sensors  

Routers, switches, 
optical devices, links 

Topology End-to-end Segment oriented  

Representation   Point(s) (physical resources)  Point-to-point    

   Distribution  Resource on a specific location  Multiple routs 
between locations 

   View The network is a cloud  The network is a 
complex system  

Table 2.4: Distinguishing features between application and network middleware  

 

2.8 View of Overall Architecture for e-Science   

Cyber-Infrastructure for e-Science consists of many elements that can be represented in a 

very high view in Diagram 2.2. The work on this thesis and the specific contribution is 

represented in the yellow rectangle. As part of the Grid Layered Architecture proposed by Foster 

and Kesselman [28], we position the Lambda Data Grid as part of the Collaborative and the 

Resource layers. Lambda Data Grid can be viewed as part of the framework that supports e-

Science.  
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Figure 2.2 – Lambda Data Grid as part of Cyber-Infrastructure Layered Architecture 
 
 

2.9 Optical Networks Testbeds 

 The majority of initial research and development efforts related to Grid networking 

focused on integrated Grid services with enhanced L3-L4 protocols [47]. Many early efforts 

were focused on managing QoS traffic characteristics, for example, using layer-3 approaches to 

obtain QoS in packet switching networks [48] [49] [50] [51]. One of such Globus projects is 

GARA. Previously stated limitations to GARA prohibited it from maturing. Some efforts 

focused on integrating Grid services with enhanced L3-L4 protocols  [51] [47] [52]. 

More recently, it has been recognized that some data-intensive Grid computing requires the 

handling of extremely large data sets, shared and distributed over multiple sites with such 

demanding high performance and service level guarantees that their requirements cannot be met 

by packet switched networks.   This recognition has been presented in research workshop 



 

                                                             56 

reports, in Grid standards development efforts (a draft describing issues related to optical 

network architecture for Grid services has been submitted to the GGF ) [53, 54], and in special 

issues of scholarly publications. 

Today, a number of research initiatives are focusing on integrating Grid services with 

emerging optical network capabilities [54]. Optical networks based on wavelength switching can 

be considered circuit switched and are able to provide high-bandwidth and layer-2 QoS easily, 

providing an additional resource option for data-intensive Grid computing. Furthermore, a 

number of optical testbeds have been established to support the research and development of 

these new architectures and platforms. They include OMNInet [55], the OptIPuter, a distributed 

Cyber-infrastructure designed to support data-intensive scientific research and collaboration 

[34], I-WIRE, [56], and DRAGON [57]. Additional experimental testbeds supported by 

CA*net4 [58] have introduced an innovative method for “User Controlled Lightpaths (UCLP) 

[30] and the Ultra Science Network [1]. These new concepts are being demonstrated [59] [60]at 

national an international conferences, at iGRID2005, SC-2005, and GGF.  

It is important to note that these initiatives are directed at creating and implementing 

architecture for networks based on dynamic wavelength utilization controlled at the network 

edge, not within a centralized environment. In part, this concept of edge access represents a 

fundamental migration away from the legacy idea of managed network service within a 

heterogeneous, centrally managed network to one that allows for highly distributed access to 

core network resources. These concepts are beginning to appear in national and international 

infrastructure, including in the TransLight [35], an innovative international network, the Global 

Lambda Integrated Facility (GLIF) [61], Ca*net4 [30], StarLight [62], NetherLight [63], 
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UKLight [64], and others.  It is expected that this architecture will also become part of large-

scale distributed computational infrastructure such as the TeraGrid [65]. 

TeraGrid [65] connects a grid network of super-computers distributed in four remote 

locations from the Midwest to the West coast, and exchanges data at 40Gbps transport rate 

(4xOC-192 10Gbps Lambdas).  However, these are static Lambda connections while DWDM-

RAM provides a dynamic setting of Lambdas [31].  TeraGrid requires L3 routing while DWDM-

RAM provides dedicated optical path(s) to the destination [32].  Therefore, the data transfer in 

Globus is done mainly in an L3 environment, and specifically in GridFTP [66].  These L3 

routing limitations require specific optimization to the data transfer.  In comparison, DWDM-

RAM provides lightpath in the optical domain and not in L3 and layers above. 

The OptIPuter [34] research program designed a new type of infrastructure based on a 

concept of enabling applications to dynamically create distributed virtual computers [67]. This 

architecture will provide a close integration of various resources, high performance 

computational processors, mass storage, visualization resources, and dynamically allocated 

distributed backplanes based on optical networks using advanced wavelength switching 

technologies. The first prototype is currently being implemented between StarLight [62] and 

NetherLight [63]. Other, more extensive, implementations should be more widely available in 

approximately 2008. In contrast, DWDM-RAM [68] has a narrower scope, high performance 

data services over dynamic Lightpath within metro areas, and a shorter timeline toward more 

general implementations. 

GLIF [61] - Global Lambda Integrated Facility (GLIF) is an international virtual 

organization that promotes the paradigm of Lambda networking. GLIF participants include 

National Research and Education Networks (NRENs) and other institutions working with 
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Lambdas. The GLIF community shares a common vision of building a new grid-computing 

paradigm in which the central architectural element is optical networks, not computers. GLIF's 

links are made available for manual reservation and scheduling for scientific experiments.  

In this thesis, we built an innovative technology for network service orchestration. It 

allows automated interaction among grid middleware, the scientific domain middleware and 

scientific workflows. It utilizes network resources as vital elements in the scientific process. 

2.10  Summary of Related  Work 

In this chapter, we discuss the background and related work as they relate to this thesis. 

Vital elements include key distributed computing technologies such as Service Oriented 

Architecture (SOA), Open Grid Service Architecture (OGSA), Web Services Resource 

Framework (WSRF), Global Grid Forum (GGF) Grid High Performance Networks (GHPN), and 

intrinsic resource-scheduling mechanisms such as GARA [43], GRAM, DURAC, Condor [45], 

and GRIS. Next, we create a picture of what exists for e-Science architecture and reference my 

work within it. Additional topics discussed include some research networks such as OptIPuter, 

TeraGrid, UCLP, and BIRN.  

What follows is a discussion of limitations inherent in bulk data transfer via current 

networks and the details of our solution, including how we accomplished the construction of a 

Grid Virtual Organization.   
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3 Bulk Data Transfer and Optical Networks 

This chapter analyzes the fundamental features of optical networking and discusses its 

relevance to OGSA service architecture. It reviews earlier efforts in developing schedulers that 

handle Grid applications and points out the need for a network resources scheduler. Finally, this 

chapter discusses a number of end-to-end Grid transport protocols. This chapter provides 

analysis of technology directions and limitations that are necessary to understand the solutions 

provided by our Lambda Data Grid.   

3.1 Introduction 

Rapid development of agile optical networking transport technology has provided huge 

bandwidth capacity to e-Science applications. Presently, a single strand of optical fiber can 

provide hundreds of distinct 10 or 40 Gbps data channels (Lambdas), with a capacity of over 

6Tbps, which is approximately the amount of traffic circulating in the Internet backbone. This 

innovation in optical networking technology has changed the communication paradigm from one 

of a narrow bottleneck to that of a fire hose.  

An optical connection between two or more nodes provides data transport capability, 

which can be used at one time by a single user, or shared by multiple users. Time-based resource 

utilization and sharing requires network scheduling. A scheduled, dedicated, circuit switched 

connection provides a guaranteed Quality of Service and avoids many of the issues of packet 

switched connections, such as collisions and recovery, so that the full bandwidth is available to a 

single user at a time.  
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Without enhancements, data transport over the conventional TCP results in about 20Mbs 

over the cross-Atlantic optical network. New transport protocols have been proposed to improve 

TCP in order to cope with extreme high-speed transport by data intensive applications [51, 52, 

66].  

3.2 Bulk Data Networks  

3.2.1 Outdated Assumptions for e-Science Applications 

The Internet has evolved over the last thirty years. Internet Design Principles [51] have 

been based on the latest technology at any given time. New technology advances in silicon, 

computation, bandwidth, optical, and storage, occurred after these principles were designed. 

Accordingly, the cost structure has changed dramatically at many levels.   As we look at the 

assumptions driving the original Internet Design Principles, we see that the assumptions are not 

applicable to our targeted e-Science applications.  

3.2.2 Size Limitations  

Current Internet architecture can handle applications like Web, Telnet, and email. Yet, it 

has fundamental limitations with new Data Intensive Applications that require access to multi-

TeraBytes or PetaBytes of data. The task of moving 10KB compared to10TB, nine orders of 

magnitude greater, presents vastly different requirements. The requirements by High Energy 

Physics (HEP), for example, cannot be addressed by the current Internet architecture, and as 

such, necessitates changes in architecture and design.     

3.2.3 Bandwidth   

The handling of a transmission of 1Mbs compared to one of multi-10Gbs is different. This 

is four orders of magnitude greater. When dealing with small pipes in the range of 1-100 Mbs, 

we can do some optimizations in the protocol stack. However, when dealing with large pipes in 
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the range of multi-10Gbs, protocol stack and application optimizations may hinder processing. 

Radical changes in bandwidth requirements call for innovative solutions that will distinguish 

between small flows and big flows.   

3.2.4 WAN: Neither Expensive, nor a Bottleneck 

Historically, WAN traffic has been the bottleneck of the network and has been relatively 

expensive. The introduction of optical transmission counteracts these constraints. Analyzing the 

total cost of electrical forwarding compared to optical transmission, per-bit transmission in L3 is 

several times more expensive than in L0. Router ports are more costly than optical ports and 

have been the source of some bottlenecks.  In other words, the transmission of photons compared 

to the transmission of electrons is relatively inexpensive.   

3.2.5 Optical Transmission Faster than Disk Transfer Rate 

Advanced and efficient storage architectures have been built for fast data access of large 

data sets. These deployments are unique and very expensive. In the past, disk transfer rate was 

assumed to be faster than WAN. Recently, optical transmission has become much faster than the 

internal computer bus or cluster interconnects. The timing assumptions for seek-time and 

transfer-time of small buffers are different from very large data sets. Copying data to local 

storage may be less efficient than working on remote memory over a dedicated, small delay, 

large optical link. As such, these advancements have paved the way for Remote Direct Memory 

Access (RDMA) instead of copying to a local disk.  This provides the opportunity to move the 

data to the computation, to move the computation to the data, or to allow remote access to the 

data. 
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3.2.6 Changing the Nature of Technology 

Decreases in computation and storage prices have prompted a change in architecture 

considerations.  Low price points are driving enormous use and phenomenal growth. New 

technologies are available that include disk, storage, memory, computation, communication, and 

last mile access. These technologies require a change in design assumptions and considerations 

for architecture capabilities.  

3.3 Limitations of Packet Switching for DIA 

3.3.1 Inefficiency in Forwarding Decisions  

Internet architecture cannot realistically move tens of Terabytes or Petabytes. Packet 

switching is a proven efficient technology for transporting burst transmission of short data 

packets, e.g., for remote login, consumer oriented email, and web applications.  It has not been 

sufficiently adaptable to meet the challenge of large-scale data. Making forwarding decisions on 

Ethernet frames every 1500 Bytes is sufficient for emails or 10k -100k web pages. This is not the 

optimal mechanism if we are to cope with data sizes six to nine orders of magnitude greater.  For 

example, in the transmission of 1.5TB files via packet switching, the exact same forwarding 

decision may be made one billion times, resulting in an extremely ineffective process.    

3.3.2 Packet Size and Switching Time 

Setting circuit switching over optical links is a more effective multiplexing technique. 

Packets of 1500 bytes, or a minimum of 64 bytes, are adequate for slow traffic like T-1, 10Mbs 

and 100Mbs. However, high bandwidth optical links can transmit three to six orders of 

magnitude more bandwidth.  

 1500 

Byte 

64 

Byte 

1Mbs 10ms 500µs 
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10Mbs 1ms 50 µs 

100Mbs 100 µs 5 µs 

1Gbs 10 µs 500ns 

10Gbs 1 µs 50ns 

40Gbs 250ns 12ns 

100Gbs 100ns 5ns 

Table 3.1: Switching time. 

While silicon can easily handle the switching time of slow bandwidth, limited time budgets 

present a problem for silicon, as Table 3.1 illustrates.  When looking at optical advances 

compared to silicon advances, it is difficult for silicon to keep up with the required switching 

time for high-bandwidth by optical transmission systems. 
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Table 3.2: Time for data transfer. 

 Table 3.2 illustrates bandwidth and storage in relation to how long it takes to transfer this 

data. Different applications have different time requirements. In life science, experiments are 

scheduled 60 days in advance to accommodate the transfer of data, while in environmental 

science, and specifically weather prediction, data received days later is unusable.  NASA’s 

scheduling of space launches cannot tolerate the delay of data transmission. Further, accessing 

remote super computing centers has proven to be a powerful tool to affect better and more 

accurate weather prediction.   The amount of time it takes to transmit data is an important 

characteristic of the application type. The Internet bandwidth limitations prohibit these types of 

applications from transmitting data in the required time. 
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3.3.3  L3 Limitations 

While Internet architecture has served its purpose for the past 30 years, attempting to run 

Data Intensive Applications might push it beyond its limits.  

3.3.4 Not targeted for Large Data Sets 

The existing L3 architecture is not targeted to move multi-Terabytes of data over multi-

10GE Lambdas, over large round-trip-delay networks.  Slow Start, Congestion Control, and 

Congestion Avoidance mechanisms work for multiple small streams, but are not optimized for 

dedicated, point-to-point, long duration, large bandwidth pipes. New improved L4 mechanisms 

allow higher bandwidth transmission. These greedy mechanisms do not perform well on public, 

shared, congested L3 links. They function best on dedicated optical links [53].  

3.3.5  Forwarding decisions   

During the last few years, point-to-point transmission has been mainly through optical 

links. Bit-Error-Rate in L3 routing is greater by several orders of magnitude than in L0-L1 

optical technologies [59]. Thus, there is an increased probability of information loss in Data 

Intensive Applications that will force retransmissions.  

3.4 Optical Grid networks 

With recent advances in Wavelength Division Multiplexing (WDM), and Ultra Long Haul 

(ULH), transmitting data over thousands of kilometers of optical networks can be achieved 

without signal regeneration. This growth of two orders of magnitude in optical transmission 

distance means four orders of magnitudes less regeneration points in a given geographic area. 

When comparing this L1 transmission to L3 routing and next hop decision points, forwarding 

decision points are significantly reduced. 
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This is a fundamental change in data transport. With transmission over a very long 

distance, there is no need for every IP router to make the decision about the next hop. Instead, 

the optical transmission can be done in one, or a few, hops. The fundamental difference is that 

edge devices will make destination decisions on the edge of the cloud, instead of the L3 core 

routers making next hop decisions in the core of the cloud. For many short-range data transports, 

routing works well. However, for a long-range or dedicated data transport with a few edge 

decisions, optical transport is more effective.  

Recent advances in bandwidth availability of optical networking technologies and rapid 

optical control have created a radical mismatch between the optical transmission world and the 

electrical forwarding/routing world. End-systems, which run data-intensive applications, do not 

have access to the abundant bandwidth of optical networks. Furthermore, even though disk costs 

are attractively inexpensive, the feasibility of transmitting huge volumes of data is limited. The 

encumbrance lies in the limited transmission ability of the IP architecture. Currently, the Internet 

architecture cannot effectively transmit PetaBytes or hundreds of TeraBytes, and has impeding 

limitations in providing fast transport service to high-end data-intensive applications.  

In theory, the problem is no longer the inability of the network to move massive quantities 

of data in a timely manner, but rather how to take advantage of this capacity and "fill the pipe.” 

In most practices, optical connections have been statically provisioned and dedicated to a 

few users. For a dedicated user, the lead-time for getting such a connection is often several 

months, the cost quite high, and the efficiency of use low. On the other hand, a shared switchable 

dynamic optical network can be instantaneously available to a user who would pay for, and get, 

only the capacity needed for the time needed. 



 

                                                             66 

In the DWDM-RAM [32] project, we designed novice architecture to enable Grids to take 

advantages of a dynamic, schedulable high capacity optical network, in support of data intensive 

applications. We built a prototype system that demonstrated some key features and capabilities 

of the DWDM-RAM project. The architecture, described in more details in several papers 

published in conferences and journals [3, 4, 5], provides two layers between the users and their 

applications and the underlying dynamical optical networks.  

3.5 E2E Transport Protocol for Data Intensive Applications 

In the case of narrow bandwidth, network delay is not critical; whereas, in large bandwidth 

pipes with significant delay, the network cannot function effectively.  

Responsiveness - TCP works well in small Round Trip Time (RTT) and small pipes. It 

was designed and optimized for LAN or narrow WAN. TCP limitations in big pipes and large 

RTT are well-documented [47] [66]. The responsiveness is the time it takes to recover from a 

single loss. It measures how quickly it goes back to using a network link at full capacity after 

experiencing a loss. Packet dropping is an imperative mechanism for fairness in packet switched 

networks. Packets loss is detected by the end-systems as a signal to slow down. This mechanism 

is embedded in the TCP congestion control and was designed for multi-streams sharing the same 

networking infrastructure. It measures how quickly it goes back to using a network link at full 

capacity after experiencing a loss.  For example, 15 years ago, in a LAN environment with RTT 

= 2ms and 10Mbs, the responsiveness was about 1.7ms. In today’s 1Gbs LAN with RTT of at 

most 2ms, the responsiveness is about 96ms. In a WAN environment, the RTT is very large, e.g., 

the RTT from CERN to Chicago is 120ms, to Sunnyvale is 180ms, and to Tokyo 300ms. In these 

cases, the responsiveness is over an hour [66]. In other words, a single loss between CERN and 
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Chicago on a 1Gbs link would take the network about an hour to recover. Between CERN and 

Tokyo on a 10GE link, it would take the network about three hours to recover [66]. OptIPuter 

experiments [34] using dedicated channel of 1Bbs between Chicago and Amsterdam show 

bandwidth of 4.36Mbs, using un-modified TCP protocol.  New UDP based protocols show 

bandwidth of 700Mbs-920Mbs. Dedicated pipe utilization in un-modified TCP is less than 1% 

compared up to 92% utilization in new UDP based transport protocols. In dedicated optical links, 

there is no sharing, and fairness is consequently not an issue. There is no competition for 

network resources, and fairness can be achieved with advanced reservation, scheduling, and 

allocation of networking resources. For this reason, responsiveness is not a problem.  

New Transport Protocols - Many new protocols were designed to address network 

limitations, among them are GridFTP [41] , FAST [69], XCP , Parallel TCP, and Tsunami, 

SABUL/UDT [47]. These research projects, along many other similar projects provided 

enhancements for the basic transport mechanisms by providing effective utilization of large 

bandwidth pipes. The enhancements in these protocols are achieved via three mechanisms: 1) 

tuning the TCP and UDP knobs; 2) transmitting over many streams; and 3) sending the data over 

UDP while the control is done in TCP. 

When using long-range 1Gbs connection, findings showed that GridFTP achieved 512Mbs 

[66], and Tsunami achieved 700Mbs [66] . SABUL achieved 910Mbs [66], and FAST achieved 

930Mbs from CERN to SLAC. New experiments show multiplexing of 1Gbs of FAST and 

SABUL [47] into 10Gbs Lambdas achieves better link utilization.   

Fairness - In packet switching, Congestion Control and Congestion Avoidance 

mechanisms provide some level of fairness among different sessions on the same pipe. 
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Conversely, this work contains is a dedicated link; thus, fairness is not an issue. There is no 

competition for network resources on the same pipe. 

Shared vs. Dedicated Links – Many of these new protocols are assumed greedy and 

present fairness challenges to competing streams in a shared media. In designing a protocol on a 

dedicated link, the fairness is not important because the optical link allocation is from the entire 

media capacity without competing traffic on the same link. In dedicated links (Lightpath, circuit) 

there is no sharing and the link is granted for a period of time. 

3.6 Recent Developments 

The OGSA architecture is much richer than many of its predecessors and holds much  

promise, but in its current state it does not  handle networks well either. The time seems ripe for 

OGSA extensions that would make it easy to fit network allocations into the Grid environment. 

As a result, it is necessary to build this newfound capacity into the Internet architecture that 

evolves. The challenges that arise are two-fold: 1) user access to bandwidth, and 2) effective 

operator management of the resources. 

At present, the applications do not have access to this abundant bandwidth because the 

current Internet architecture does not accommodate bandwidth requirements. 

3.6.1 Dynamic Optical Control 

Recent advancements in Agile Optical Control make reality the dynamic configuration of 

optical links.  These advancements separate the optical control plane from the optical 

transmission plane. The optical transmission plane is responsible for handling enormous amounts 

of data, while the control plane is responsible for decisions concerning data paths to the final 

destination. Among these advancements are Advanced Switched Optical Networks (ASON) 
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[58], Advanced Switched Transport Networks (ASTN), and Generalized Multi-protocol Label 

Switching (GMPLS). These are suites of protocols that perform  signaling, resource discovery, 

and link management. One of the goals of these optical control schemes is to determine the 

optical path between source and destination, to allow a higher level of network management or 

operator to select and set optical links along the path, and to configure the optical switches. 

We use dynamic optical control as a mechanism to manage the movement of large amounts 

of data between source and destination, and to build the interface from the middleware. For 

example, an application that must move multi-TeraBytes or PetaBytes of data across distance 

can ask the network to provide the lightpath between the two ends. The network will create this 

lightpath between these end-points. Thus, the reservation of a connection-oriented link simplifies 

the routing overhead, and provides better service and higher bandwidth capacity. In many cases, 

the link is not on the public Internet; hence, it provides better security. Dynamic optical control 

mechanisms like GMPLS have started to evolve. This provides a connection oriented mechanism 

(circuit) of very large pipes. Examples that can use these types of connections can be found in 

Grid Computing, SAN, and large volume replications. 

In many cases, protocol stacks are a significant overhead for the efficiency of the network.  

Experiments performed at the OptIPuter project [32] between San Diego and Chicago, 

demonstrated the ability to transmit 1Gbs non-stop, over a dedicated optical link, with almost 

zero packet loss, over several days. These results bring into question the efficacy of complex 

protocol stacks. 
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3.7 Change in Cost Structure 

Recent cost structure changes have generated new economic considerations that drive 

fundamentally different architecture principles. 

• Inexpensive Optical Bandwidth - The appearance of DWDM has provided many 

Lambdas, each one accommodating high bandwidth over a long distance.  Thus, transmission 

costs per data unit are extremely low, encouraging the research community to consider 

transmission of bandwidth to be almost cost free. This is in direct opposition to the “bandwidth 

is expensive” assumption prevalent for the past 20 years.  That bandwidth is almost free makes it 

necessary to rethink the research challenges and the design considerations, and look beyond our 

older assumptions.  

• Optical Costs - IP routing architecture in OC-192 costs nearly ten times  more than the 

optical transmission equivalent. Specifically, an OC-192 router port costs nearly five times as 

much as the Optical Cross Connect (OXC) equivalent. Furthermore, at intermediate nodes, the 

router ports are additional to optical costs. 

• Connectivity Costs - Until recently, it cost about $1 million for a OC-192 connection, 

coast-to-coast. The design of the new optical ultra-long-haul connection reduces the economic 

restraints of big-pipe, long-haul connections. 

• Last Mile Costs - Previously, the last-mile connections were expensive and very 

narrow. Due to recent economic restructuring, the Optical Metro service has changed the 

principles of the access. Therefore, big-pipe last mile connections are affordable to enterprises. 

• Broadband Costs - Now, like never before, broadband access is affordable. Millions 

of people are taking advantage of this technology, resulting in a substantial increase in data 

transfer. 
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• Free LAN Bandwidth - At a new price point of $49., Gigabit Ethernet (GE) NICs 

have become extremely cost effective. GE has become a commodity for servers and desktops. 

This will drive a domino effect into 10GE. With this price point per bit in the LAN, bandwidth is 

almost free in these areas. 

• Storage Costs – Today, 1 TB costs about $500. This affordability has encouraged the 

use of large amounts of data. In particular, a 1-PetaByte storage system costs approximately two 

to three million dollars, which is within the budget of large organizations. With this new 

economic cost structure and affordability, more organizations will build large data storage. 

• Computation Costs - The computation power on our desks is larger than a super 

computer of 20 years ago, and at an unfathomably low price point comparatively. Moreover, the 

powerful supper computers of today are financially feasible for large organizations. This 

phenomenon drives massive amounts of computation at low prices.  

3.7.1 Summary 

This chapter analyzes the fundamental features of optical networking and discusses its 

relevance to OGSA service architecture [46] [36]. It reviews earlier efforts in developing 

schedulers that handle Grid applications and points out the need for a network resources 

scheduler. Further, it discusses a number of new end-to-end Grid transport protocols, dynamic 

optical control, and the change in cost structure of bandwidth as fundamental elements in 

building networks as part of scientific Cyber-infrastructure.    

What follows is a bird’s eye view of Lambda Data Grid as part of Cyber-infrastructure for 

building networks for e-Science. Establishing the network as the central entity presents some 

challenges and are discussed in this chapter. To further illustrate the concept, we will present an 
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e-Science scenario as it relates to the GLIF globe-wide topology, along with my cut-through 

solution for data management.  
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4 Lambda Data Grid - Building Networks for e-Science  

This chapter presents a bird’s eye view of Lambda Data Grid as part of Cyber-

infrastructure for building network for e-Science.  Scientific research is discussed demonstrating 

how Lambda Data Grid provides solutions for collaborative research over a geographically 

dispersed area using Grid technologies to build a Virtual Organization (VO) [70]. Further, we 

explain how Lambda Data Grid middleware can dynamically build an optical cut-through over 

GLIF. This high-level view provides the framework for Lambda Data Grid architecture 

presented in Chapter 5.    

4.1 Introduction  

The innovative concepts of this thesis are inspired by a number of key challenges in Grid 

computing and optical networking. An evident challenge exists to match the requirements of e-

Science applications that generate vast amounts of data, with the potential of optical transport 

that has the ability to transmit the data effectively across the globe. There are unsatisfied 

requirements for scientific research programs to achieve productive results. As an example, 

GLIF is a global optical infrastructure that allows manual cut-through of dedicated connectivity 

between scientific institutes to establish multiple isolated network connectivity graphs. The 

notion of this “few-to-few” connectivity reflects a significant difference from the notion of 

current Internet that functions as “many-to-many.” The operation of establishing connectivity is 

currently performed manually with emails, phone calls, reminders, and physical reservations. 

These inefficient methods inspired me to build an architecture that automatically orchestrates 

network resources in conjunction with other resources, as an integral part of the Grid middleware 

and the scientific workflow.  
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Virtual Organization (VO), or Grids, pioneered a new era of computation, but the 

connectivity between distributed VOs is a vital issue, which has not been successfully resolved. 

One of the contributions of this thesis is to complement the VO concept with necessary network 

solutions.  

4.2 Examining the Gaps in Collaborative Research  

A characteristic of new e-Science applications is that they generate vast amounts of raw 

data, intermediate results from computations, and those data need to be relayed between 

geographically dispersed scientific organizations. This indicates a significant conceptual shift 

from local super-computer centers to a globe-wide computing network, where optical networks 

function as a backplane of a truly global distributed computing system. The amount of available 

bandwidth facilitated by the DWDM technology can support the transmission of the vast amount 

of data generated. However, how to make the solution scalable and cost effective results in a 

number of issues reflecting some the research gaps, which are addressed in this thesis.   

4.2.1 Data size 

Large-scale scientific experiments generate huge amounts of data. Many super-computer 

centers have the storage and computation capabilities to process these immense amounts of data, 

but do not have the capability to transmit the data effectively.  

4.2.2 Super-networking Transforming Super-computing  

Bringing intelligence to the optical network control system changes the nature of the 

optical transport network. It is no longer a simple data transport system, but rather, a integral part 

of a large-scale data distributed system. Figure 4.1 presents the optical network as a backplane 

for a globe-wide distributed computation system.  In the past, computer processors were the 

fastest components while the peripherals were the bottlenecks.  Now the reverse is true. The 
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network powered by the optical transport is faster than processors, and other components such as 

storage, software and instrumentation, are becoming the slower "peripherals.”  

 

Figure 4.1 – Optical network – A backplane for a globally distributed computation system. 

The ambitious vision depicted above cannot be realized due to a fundamental missing link. 

While the optical capacity has been enhanced at a fast pace, the method to set up the optical 

network remains static, for point-to-point connectivity. Hence, the ambitious vision of releasing 

a super-network has not yet been fulfilled.  Intelligence is required to utilize this capacity of the 

optical networks where and when it is needed. Dynamic optical networks can become a 

fundamental Grid service in data-intensive applications, to schedule, manage and coordinate 

connectivity supporting collaborative operations. However, the integrated software that provides 

the intelligent control of a globe-wide distributed system is missing. A suite of software services 

can serve to ‘glue’ the optical network backplane to the other resources. Also missing is a global 
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address space that supports the global file system with a global access in a way similar to 

random access memory (RAM).   

4.2.3 New Optimization to Waste Bandwidth  

During the last thirty years, a large body of work has been directed towards bandwidth 

conservation. Many software systems were optimized to conserve network bandwidth rather than 

computing power. See figure 4.2. While some of Gilder’s optical predictions have proven wrong 

because of the downturn in the technology industry in 2000, his concept of bandwidth 

conservation remains valid.   

 

 

 

 

Figure 4.2– Design to waste of bandwidth - Excerpt  from George Gilder Telecosm (2000) 

 

The emergence of optical networks brought a paradigm shift, and now the new focus calls 

for fully exploiting bandwidth instead of conserving it, with a new balance among storage, 

computation, and network. Therefore, there is a need to redesign software stacks and protocols 

so that the central element of a system is the network, not computers. For example, Grid 

computing can benefit from this new design because Grid services can take advantage of highly 

available network resources and maximize the capability of computing and data storage.  Grid 

computing has brought a new era of computation, but lacked the network as an essential element 

without treating the network as an equivalent to computation and storage. While those 

components such as computation, storage, visualization, are viewed as single independent nodes 

“A global economy designed to waste transistors, power, and silicon area and 
conserve bandwidth above all is breaking apart and reorganizing itself to waste 
bandwidth and conserve power, silicon area, and transistors." 

George Gilder Telecosm (2000) 



 

                                                             77 

on a graph, communication is the link between nodes.  The effectiveness of Grid computing 

must take this necessary link characteristic into account. While building the Cyber-infrastructure 

of Grid computing, it is necessary to add intelligence to the network and to frame the network as 

a Grid service for scientific workflow and scientific middleware.  

4.2.4 Transmission availability 

The creation of DWDM initiated a paradigm shift where multiple wavelengths can be 

transmitted on a single fiber strand, each at a different frequency or color band. Erbium-Doped 

Fiber Amplification (EDFA) is considered complementary innovation, where amplification is 

done on the entire waveband without extracting each wavelength separately. These radical 

phenomena revolutionized communication systems and will soon revolutionize computation 

systems.  Optical networks have seen major advancement in bandwidth and capacity. Currently, 

a commercial DWDM system can provide as much as 6.2Tb/s of bandwidth, while the 

bandwidth has reached 26 Tb/s in lab prototypes. DWDM provides parallel Lambdas to drive 

distributed computation during this decade similar to the way parallel processors drove 

datacenters in the 1990s.   

4.2.5 Impedance Mismatch  

DWDM increases the data transport capability of optical networks significantly; however, 

this leads to impedance mismatching in the processing capacity of a single processor. As is 

illustrated in Figure 4.3, a network can transfer more data than an individual computer usually 

receives. While optical transmission consists of many Lambdas at 10Gb/s or 40Gb/s, NICs 

processing capacity are mostly at 1Gb/s. Therefore, clusters are a cost-effective means to 

terminate fast transfers because they support flexible, robust, general N-to-M communication. 

Grid computing provides the means for parallelism in distant computation, while DWDM 
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provides parallelism in distant transmission. One goal of this Lambda Data Grid research is to 

overcome the impedance mismatch and to bridge the gap between massive amounts of 

computation and transmission.  

•Terabit/s

•100Gb/s

•10Gb/s

1Gb/s

Fiber transmission

Edge computer 

limitations

 

Figure 4.3 - Transmission impedance mismatch – End System Bottleneck. 

4.2.6 Affordability and cost 

Deployment of new Trans-Atlantic Lambdas has created a new economy of scale.  Forty 

years ago, 300 bits/second between the Netherlands and the USA cost $4.00/minute. Now, an 

OC-192 (10Gbs) between NetherLight and the USA costs $0.20/minute, with thousands of fibers 

available: A 600,000,000 times cost reduction per bit. 

4.2.7 Cost Prohibitive   

Network requirements for our targeted e-Science applications are guaranteed high 

bandwidth links. Connections around the country would need to have a VPN of 10Gbs by OC-

192, and would incur substantial costs for having this service provisioned permanently. A couple 

of years ago, a coast-to-coast OC-192 service cost about a million dollars per month. 

4.2.8 100 Trillion Dollar Investment - Non-scalable 

This situation clearly does not scale well with respect to resource utilization, even with a 

budget at a national level. As illustrated in Figure 4.4, the C x S x V connections of computation-
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end, storage-end, and visualization-end makes for a meshed network topology that is not feasible 

in the foreseeable future. Fully meshed static connections among C=50 compute-ends, S=40 

storage-ends, and V=100 visualization-ends will require 100 million static connections. Utilizing 

OC-192 at a cost of $0.5M a year will require an outrageous budget of 100 billion dollars a year. 

For larger deployment of C=500, S=400, and V=1,000, the investment is about 100 trillion 

dollars. This is not a scalable solution.  

 

Figure 4.4 – Fully meshed static connectivity is not a scalable solution. 

This cost is for the links only and no technology exists to allow dynamic switching of fully 

meshed network on the edge. The cost of fully meshed technology could be even more than the 

links calculated above.  The limited scalability of this mesh illustration makes it even more 

prohibitive. With this comparably small setup, adding storage, computation or visualization to 

the mesh, would require thousands of connections per site making it impractical. 
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4.2.9 Few-to-Few vs. Many-to-Many 

The network requirements of e-Science applications are different from the public internet 

as described in Table 4.1.  From an architectural perspective, this is a few-to-few network 

compared to many-to-many network. While the public internet has billions of small connections, 

e-Science topology is comprised of hundreds of large connections, reflecting a completely 

different topology.  The expectation by the public Internet user is continuous connectivity, 

whereas in e-Science networks the connectivity is expected only for the duration of any scientific 

experiment. This shift in network availability necessitates a change in user expectations and is 

approached with dynamic network scheduling.  In the public Internet, the connectivity is shared 

via packet scheduling lasting milliseconds, contrasted to few-to-few networks scheduled for 

hours or days with full-time, unshared, very large connections. 

 

 

 

 

 

 

 

Table 4.1 – Few-to-few vs. many-to-many. 

 e-Science 

Networks 

Public Internet  

Topology  Few-to-few Many-to-many 

Connectivity 

expectation  

Per scheduling  Any time  

Duration  Hours-days  Milliseconds - 
seconds 

Switching 

technology  

Circuit switching  Packet switching  

Core bandwidth   Same as edge Aggregated   

Edge bandwidth  Dozens gigabits-
Terabits/second 

Megabits-
gigabits/second 

Use  Scientific  Consumers/resid
ential/business 

Data size Terabytes –
Petabytes  

Megabytes-
Gigabytes  

Pipe utilization  Full capacity  Multiplexing  

Computation  Teraflops Megaflops 
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4.3 DNA Scenario 

A new era of biology is dawning as exemplified by the Human Genome Project. The raw 

data of DNA sequence information deposited in public databases doubles every six months. In 

comparison, Moore’s Law predicts doubling silicon density every 18 months. As time passes, 

this difference is enormous as Table 4.2 illustrates. It is estimated that DNA data generation will 

grow about 64 times more than computation growth by the year 2010. The growth will be about 

16,000 times greater by the year 2015, and will be about one million times greater by 2020.  

 

Years 1.5 3 4.5 6 7.5 9 10.5 12 

Year   2010    2015  

Moor’s 
Law 2 4 8 16 32 64 128 256 

DNA 
Data 8 64 512 4,096 32,768 262,144 2,097,152 16,777,216

Diff 4 16 64 256 1,024 4,096 16,384 65,536 

         

Table 4.2: Growth of raw DNA data vs. Moore’s Law. 

In the example of protein folding, 30,000 protein structures would require about 800 years 

of computer time on a high-end personal computer, based on the currently availability in a  

public database. This can be computed within several weeks if several super-computing centers 

work with parallel teraflops computing, and with massive data exchanges.  

With the explosion of DNA data, the conventional solution that all the data is copied to a 

local storage in a super-computer center is no longer practical. To function effectively, only the 

relevant data is copied and staged into the local storage, on demand, and only when it is needed. 

As part of the computation, the application does not know the exact location of the DNA data 

needed in advance. The application can reference the data using the bioinformatics middleware, 
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and translate the data structure needed to the right location. When dealing with computation of 

small data sets, the data can be copied to local memory from a local disk, from local storage 

attached to the cluster, or from a SAN. When dealing with a large amount of distributed data, 

new approaches can be developed like Storage Resource Broker (SRB) at UCSD and SDSC. 

However, when dealing with the anticipated DNA data, SRB over public network will not be 

able to satisfy the storage, computation and network needs. In our approach, the Lambda Data 

Grid can be extended to be part of the addressable data storage over a distributed system.   

The interaction between the BIRN middleware and the Lambda Data Grid is presented in 

Figure 4.5. The architecture consist of four layers: the transmission plane, the optical control 

plane, the network service plane, and the grid data service plan.  The Data Transfer Service 

(DTS) and the Network Resource Service (NRS) are interacting with the BIRN middleware, 

workflow, NMI, and the resource manager to orchestrate the resources based on the 

requirements.   
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Figure  4.5–Preview for layered interaction between BIRN and Lambda Data Grid. 
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4.4 Lambda Data Grid Middleware  

 
In Lambda Data Grid (LDG) architecture, the Resource Middleware layer provides OGSA-

compliant services that satisfy the resource requirements of the application, as specified or 

interpreted by the Application Middleware layer services. This layer contains interfaces and 

services that initiate and control sharing of the underlying resources, including scheduling and 

reservation services. 

 

Figure  4.6–Functional interaction between Lambda Data Grid layers. 

 

A high-level view of a Lambda Data Grid is presented in Figure 4.6. The Data Grid service 

plane sends Grid Service requests to the Network Service plane. The Network Service plane 

sends the requests to the Optical Control plane, which sends connection control messages to the 

Data Transmission plane. The scientific workflow is creating the Service Control between the 
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Data Grid service plane and the scientific applications at remote scientific institutes. Figure 4.7 

depicts Compute Grid, Data Grid and Network Grid interaction with scientific applications.  

 

Figure 4.7 – Compute Grid, Data Grid and Network Grid interactions. 

In this thesis, we have designed and built architecture that allows applications to interface 

directly with optical networking control, and entirely bypasses the networking layer architecture. 

Today’s L3 networking approach for Grid Computing is not optimal for high-transport systems.  

For very large data transfer applications, packet switching architecture has major limitations. 

Dedicating Lambda in the core of the underlying transmission will be of great benefit to the 

Grid. In existing Grid architecture, networking is one of the limiting factors.  Data must be 

copied to local storage in the computation machine room before processing. If it were possible to 

allocate on-demand Lambda, we could avoid this copy, and it would be possible to work on the 

data in a true distributed fashion. The data could be on one side of the globe, while the 

computation could be on the other. Providing an on-demand, dedicated, high-bandwidth, low-

latency link could dramatically change the distributed mechanisms of Grid Computing 
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applications.  Dedicated Lambda on-demand for applications opens a new frontier to new types 

of applications and research that is not available today with L3 limitations. 

4.5 Requirements  

 

 

 

                           Table 4.3 – 

Requirements for e-Science applications. 

Given the massive amounts of data, e-Science applications require dedicated high 

bandwidth optical links to specific data-intensive peers, on demand. It is necessary for the 

network to be transparent for the applications.  Applications and scientific workflow need not 

undergo major changes in the networking design; they should be network independent.  

Likewise, no major changes are needed in networking requirements by end-systems or the 

aggregation of edge-device L3. Rather, changes happen in the underlying optical core transport 

with lightpath granularity. In this thesis, the focus is granularity of dedicated Lambdas, but this 

approach can be extended to different granularity like nx STS-1 or nx STM-1 [71]. The edge of 

this network aggregates traditional L3 IP at 1Gbs and multiplexes them into 10GE.  These 10GE 

aggregations are mapped to the right lambdas towards the destinations.   

Due to the enormous amounts of data processed by the applications targeting, this Lambda 

service is on a separate private network. To address some problems related to the limitations of 

L3 and routing, an optical forwarding plan of dedicated point-to-point links is a viable solution. 

Available  Requirement

s  

Static Dynamic 

Silo Shard 

Physical Virtual 

Manual Automatic 

Applications Service 
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L3 QoS/SLA [72] was originally considered; however, this solution neither meets the network 

requirements associated with projected increases in amounts of data, nor addresses the issue of 

the expanded traffic expected from reduced computation and disk costs. 

4.6 GLIF and Optical Bypass for e-Science Apps 

Deploying optical infrastructure for each scientific institute or large experiment would be 

cost prohibitive, depleting any research budget. For temporary, scheduled use of the network, a 

shared system is necessary. Therefore, many organizations around the world, mainly government 

sponsored scientific network organizations, with ownership of optical links collaborated to build 

the Global Lambda Integrated Facility (GLIF) [61] consortium.  

Figures 4.8 and 4.9, depict the GLIF network topology as of August 15, 2005. The world 

Lambda topology depicts the hub-and-spoke network model. It can be best described as dual-

hubs in Amsterdam and Chicago, with many spokes to the rest of the globe. Among the second 

hub tiers are NY, Geneva (CERN), Seattle, Sunnyvale, Los Angeles, San Diego and others in 

East Asia. In the US, the topology is very simple and consists of several fiber rings with a major 

hub in Chicago. Unlike the Internet topology of “many-to-many,” in GLIF topology there are 

only a few dozen nodes, and is considered to be “few-to-few” architecture.  

Lambda Data Grid architecture proves to perform best in relation to a “few-to-few 

topology.” GLIF partners are optimistic about the design and the effectiveness of the concepts 

presented in this thesis because the concepts are seen as valuable solutions to GLIF 

requirements. Chapter 7 describes several demonstrations [73]  done over GLIF trans-Atlantic 

Lambdas between Chicago and Amsterdam, with collaboration with StarLight [62], OMNInet 

SURFnet [63], NetherLight, Internet-2, and CANARIE [30].  
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Figure 4.8 – The GLIF Lambda connectivity map (August 15, 2005). 

 

Figure 4.9 – North America GLIF (August 15, 2005) 

 

The natural place to install the Lambda Data Grid Fabric Layer middleware is on network 

servers in close proximity to GLIF [61] nodes. Upper layers are installed in close proximity to 

the scientific computation and storage facility. What follows is a discussion of the topology and 

the network architecture, and specifically optical bypass as an underlay network for bulk 

connectivity and collaboration between scientific organizations. 
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4.6.1 Cut-through   

As part of the overall architecture, the Lambda Data Grid acquires knowledge of the 

communication requirements from applications, and builds the underlying cut-through 

connections to the right sites of an e-Science experiment. Optical Bypass for IP traffic is an 

alternative mechanism to off-load capacity from L3 routers in case the required capacity exceeds 

the available router capacity.  The Lambda Data Grid does this at the edge devices, without 

requiring application-level changes to end-systems.  It is understood  that once router traffic 

grows tremendously, IP becomes inefficient and optical bypass is a preferred method for high-

throughput data transport.  While IP services are best suited for the many-to-many paradigm, 

optical bypass service is ideal in the peer-to-peer occurrences of large data transfers between 

application peers.  

The development of optical transport has brought a huge supply of network bandwidth. 

The cost per bit is about one order of magnitude more expensive for IP traffic than for optical 

transport.  Optical Bypass can be realized by a network service that sets up an L1 optical shortcut 

directly between designated end-points or edge devices, and directs data traffic over the shortcut 

to bypass the IP cloud.  An optical shortcut, for example a point-to-point wavelength, provides a 

large bandwidth pipe for high-throughput data transport in Grids. Grid applications can utilize 

Grid resource brokerage services to negotiate with an Optical Bypass service to satisfy the 

requirements and network characteristics of high-throughput file transfer.  It is assumed that the 

bypass negotiation can use some level of resource policy and Authentication Authorization and 

Accounting (AAA).  
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Figure 4.10 – Optical bypass - Mice and a herd of elephants. 

An optical shortcut is neither a fixed optical network, nor a leased optical link.  It is 

dynamically created to satisfy high-throughput data transfer for a certain period. It is torn down 

when the data transfer ends.  A Grid application first makes a request of a large data transfer, 

then a middleware service sets up the optical bypass and causes the traffic to flow via the optical 

network instead of the IP cloud. The data transfer can be transparent with no changes in the 

applications, end-systems, or the IP network. The new bypass capabilities are installed at the 

edge devices.  The Optical Bypass service mechanisms and the edge device must conform to the 

end-to-end design principle and the fate-sharing design principle, and must not add any 

requirement on the application side. The network control plane, application-aware intelligence, 

and the Grid middleware are integrated to determine the right path out of the edge device, either 

the IP cloud or the optical bypass. The optical control plane discovers, identifies and sets up the 

lightpath when necessary.  
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In some cases, the lightpath setup is provided by a different entity or administrative 

domain, or via the user who owns the fibers; hence, the data transfer bypasses the public 

network. With the help of intelligent network services in both Grids and optical networks, an 

optical bypass will be created, with sufficient bandwidth between the source and destination to 

support the requested transfer.  Moreover, the data traffic of the file transport is routed via the 

edge device to the optical bypass. Once the data transport completes, the optical bypass is 

released or redirected for other Grid uses.  

4.6.2 Control Challenge  

Figure 4.11 illustrates our Control Challenge demonstration at the SuperComputing 

conference, using GLIF optical connection and some aspects of Lambda Data Grid. While in 

many other demonstrations the focus was the throughput, our focus was the control. We 

addressed the challenge of how to finesse the control of bandwidth across multiple domains 

while exploiting scalability and intra-domain and inter-domain fault recovery through layering of 

a novel SOA upon legacy control planes and NEs. The details of this experiment and 

demonstration will be discussed in Chapter 7, while the architecture will be discussed in Chapter 

5.  
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Figure 4.11 – Lambda Data Grid Topology 

4.7 Summary   

This chapter presented a bird’s eye view of Lambda Data Grid as part of Cyber-

infrastructure for building network for e-Science and depicting the use for the BIRN project 

using cut-through mechanism over the GLIF.  Some important concepts that inspired the 

innovation of Lambda Data Grid have been discussed in this chapter. Key enabling technologies 

for transforming local super-computers to globe-wide super-computing networks are presented 

in terms of Lambda Data Grid (LDG). The topology of the global fiber plant is introduced with 

GLIF and the cut-through topology to bypass scientific traffic. The concept of the few-to-few 

Lambda Data Grid (LDG) connectivity is compared to many-to-many Internet connectivity. The 

trans-Atlantic demonstrations between Amsterdam and Chicago have been realized through 

experiments.  A major focus in this chapter was the bird’s view and the grid’s topology.  In the 

next chapter, the focus will be on the service orchestration architecture that supports this few-to-

few topology.     
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5 Lambda Data Grid  Architecture 

The previous chapter presented a bird’s eye view of Lambda Data Grid as part of Cyber-

infrastructure for building network for e-Science.  We discussed some of the fundamentals for 

the realization of planetary scientific collaboration and the GLIF as a global optical connectivity 

of few-to-few topology for scientific experiments. It also presented the availability of data 

transmission capabilities in these networks, and the vast amount of data to be processed in e-

Science research. The missing link is the ability to provide the effective transmission capabilities 

of these networks to the right scientific research when needed. Chapter 5 presents the Lambda 

Data Grid architecture that provides the missing link to allow network orchestration for e-

Science applications.  

5.1 Service Orchestration  

The following is an introduction of service architecture that closely integrates a set of 

large-scale data services with those for dynamic wavelength allocation through a network 

resource service. The architecture provides means for applications to use data services to capture 

the benefits of the vast and adaptive bandwidth capacity of the underlying dynamic optical 

networks. The work described in this chapter takes advantages of closely integrating Grid 

services, large-scale data flow capabilities, and agile optical networks.  In particular, the Lambda 

Data Grid architecture addresses the complex issues related to orchestrating and integrating 

application requirements, large-scale data services, and agile optical provisioning services, based 

on dynamic optical path provisioning.  The architectural services components presented includes 

mechanisms for application resource requests, resource discovery, and a specific set of defined 
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data and optical path provisioning services, with options for both on-demand and scheduled 

implementations.  Scheduling requirements introduce difficult issues relating to variants in 

provisioning timeframes, from instantaneous to lengthy, among resources, e.g., data, optical 

paths, and edge devices. Such scheduling also suggests a means to predict future utilization 

among such resources.  

The network resource service allows the orchestration of complex application requirements 

on resources, data services and dynamic optical path services in a changing environment. 

Furthermore, the network resource service is compliant with the Web Services Resource 

Framework (WSRF), allowing large classes of Grid computing applications access to much 

needed network resources. 

5.2 Life-science Scenario 

The “BIRN Workflow” addresses the challenges of large and distributed data. The research 

of the Alzheimer disease requires details of brain analysis over distributed institutions with 

computations, storages, databases, and visualization tools.   

Each brain scan comprises large amounts of data, and comparisons must be made between 

many scans in disperse geographic locations. A typical brain size is 1,500 cm3.  .  Table 5.1 

represents the amount of data involved in building a brain model. A high-resolution color model 

with voxel size of 1 µm, requires 4.5 Petabytes for a single brain data.  

Voxel Size B&W (1B/p) High Res (2B/p) Color 

(3B/p) 

cm 1.5KB 3KB 4.5KB 
mm 1.5MB 3MB 4.5MB 
0.1mm 1.5GB 3GB 4.5GB 
10µm 1.5TB 3TB 4.5TB 
µm 1.5PB 3PB 4.5PB  

                              Table 5.1 – Data size for brain model analysis. 
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With the assumption of analyzing distributed data across the US of from 1,000 brains, the 

data staging is a big challenge. For voxel size of 0.1mm, color data size for single brain is 

4.5GB, and total analysis of 4.5TB for the set of 1,000 brains. For 10µm total size is 4.5PB, and 

for voxel of 1µm total size is 4.5 ExaByte. This is a challenging problem for itself and cannot 

scale to a million brain samples in the near future. Clearly, we can see that no existing 

technology can handle these amounts of data and computation. The storage alone and the 

computation alone can be handled in the next several years, but clearly not the orchestration that 

bring these data to computation or the computation to the data.  

The BIRN Workflow requires extracting data from remote sites, moving the brain data, 

analyzing the information, and comparing it to other brain data. The data is in dispersed 

geographically locations, and on distributed collaborative infrastructures.  Each brain data 

requires vast amounts of computation and involves comparison to many others. BIRN 

networking over WAN is unpredictable and characteristically has a major bottleneck.  The nature 

of the data in biomedical research prevents true Grid Virtual Organization (VO) research 

collaboration. The existing network model does satisfy needs associated with the “BIRN 

Workflow” model, and as such, it is not an integral resource of the BIRN Cyber-Infrastructure.  

5.3 Basic Service Architectural Support 

The proposed Lambda Data Grid (LDG) architecture, integrated with the underlying 

optical network, supports:  

• both on-demand and scheduled data transmission,  

• a meshed wavelength switched network capable of establishing an end-to-end 
lightpath dynamically,  

• bulk data-transfer facilities using Lambda-switched networks, and  

• out-of-band utilities for adaptive placement of data replicas.  
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The distributed component services control a variety of resources, including datasets 

residing on data nodes, computing power on compute nodes and storage capacity on storage 

nodes. Those nodes are connected by a set of access and optical networks.  The topology of 

network is unconstrained.  Given any two points, the optical network can be asked to reserve or 

construct an end-to-end path on demand, including lightpath, with some parameters, such as QoS 

parameters.  To perform the schedule optimizations discussed later, it is necessary that the 

optical network has the intelligence to take some inputs and to choose a path when multiple 

paths are possible. The data-intensive service architecture handles all aspects of resource 

orchestration: discovering and acquiring appropriate resources regardless of locations, 

coordinating network resource allocations and data resource allocations, making plans for 

optimal transfer, initiating and monitoring the execution of the resources and the transfer, and 

notifying the client of the status of the task. 

5.4 Architectural Platform 

To orchestrate service, it is necessary to deploy next generation optical networks as a   

“first class” resource, similar to computation and storage resources in the grid resource allocation 

mechanisms, and use them to support Grid applications. Furthermore, Grid middleware must 

have the ability to allocate and schedule these resources. As noted, this is a complex issue, and 

many research projects exist that are directed toward addressing one or more aspects of the 

problem.  Our work addresses both data services and dynamic transport issues based on a set of 

transcontinental experiments and research results; we have designed an architectural platform to 

orchestrate resources for data-intensive services, through dynamic optical networking. 
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Figure 5.1 – A plane view of the architecture. 

This platform separates two sets of concerns: one deals with the application data and user 

requests, and the other deals with the underlying resources.  

As shown in Figure 5.1, the architecture identifies two distinct planes over the underlying 

dynamic optical network: 1) the Data Grid Plane that speaks for the diverse requirements of a 

data-intensive application by providing generic data-intensive interfaces and services, and 2) the 

Network Grid Plane that marshals the raw bandwidth of the underlying optical network, exposes 

it as a set of network services that are OGSA compliant and are implemented using WSRF, and 

matches the complex requirements specified by the Data Grid Plane. 

We designed these layering services to allow abstraction of the different functionality of 

the service. Each layer provides a different set of services and mechanisms and each set interacts 

with a different set of middleware and components. Additionally, the actual physical location 

will be determined by optimization of the specific distributed system during deployment. It is 

possible that different components in different layers in different states or even continents.   
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Figure 5.2 – Distinct boundaries between elements. 

The interaction between the requirements and the mechanisms and policies is shown in 

Figure 5.2.  At the top level, the scientific workflow requirements will interact with the DTS 

through and API where the DTS will perform the mechanisms and policies.  

Figure 5.3 is a generalized illustration of the middleware system architecture. Two service 

layers, the application middleware layer and the resource middleware layer, lie between an 

application and the underlying optical network. The application middleware layer presents a 

service interface to users/applications and understands the requirements of the application. This 

layer also shields the application from all the complexities of sharing and managing the required 

resources. At this layer, low-level services offered by Grid resources in the resource middleware 

layer are orchestrated into high-level services such as Workflow, service discovery, replication, 

and data transfer. 

The resource middleware layer provides services that satisfy the resource requirements of 

the application, as specified or interpreted by the application middleware layer. This layer 

presents a service interface which abstracts the details concerning the specific underlying 

resources and switching technologies to the layer above. This layer contains capabilities that 

initiate and control sharing of the underlying resources as well as service components for 

Requirements  

Mechanisms + Policies  

API 
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managing Grid resources such as network, processing, storage, and data handlers. The 

underlying network and its associated protocol provide the connectivity and fabric for the 

application. 
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Figure 5.3 – A generic middleware system architecture. 

 

The architecture is flexible such that it can be implemented as layers or modules via an 

object-oriented approach. As layer architecture, its components can be realized and organized 

hierarchically according to the service layer.  A component at a lower layer provides services to 

a component at the layer immediately above it.  As modules via an object-oriented approach, the 

architecture provides a more flexible interaction among its modules.  Each module is a service, 

which can be composed of other services. A Grid Services interface between services was 

implemented to insure well-defined interaction. 
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Conceptually, the architecture supports data-intensive services by separating itself into 

three principal service layers: a Data Transfer Service layer, a Resources Service layer and a 

Data Path Control Service layer, over a Dynamic Optical Network as shown in Figure 5.3. 

The role of network services in a scheduled transport of data between application 

endpoints is a concern. We implemented a Lambda Data Grid architecture that addresses the 

complex integrated issues concerning mainly scheduling network resources and data transfers. In 

Figure 5.4, we present a simplified view of my architecture, with select components of the 

general architecture. We have designed the layering of the middleware and the APIs between the 

layers to encapsulate the different functionality of the middleware components. Each of the 

middleware layers is responsible for a different functionality and interacts with different 

components of the computation storage and networking of scientific experiments. It is more 

effective to deploy the specific layer to be physically co-located with the other resource of the 

interaction. For example, in some of the experiments, the optical control middleware was in 

Chicago, while the Data Transfer Service (DTS) was collocated near the data in the SARA 

supercomputing center in Amsterdam.    

 



 

                                                             100 

Data
λλλλ1

λλλλn

λλλλ1

λλλλn

Data

Data-Intensive Applications

Dynamic Lambda, Optical Burst,

etc., Grid Services

Dynamic Optical Network 
OMNInet

Data

Transfer 

Service

Basic Network

Resource 

Service

Network

Resource 

Scheduler

Network Resource 

Service

Data

Handler

Services

In
fo
rm
a
tio
n
 S
e
rv
ic
e

Application 

Middleware

Layer

Network Resource

Middleware

Layer

Connectivity

and

Fabric Layers

λ λ λ λ OGSI-ification API

NRS Grid Service API

DTS API

Optical Path Control 

Data
λλλλ1

λλλλn

λλλλ1

λλλλn

λλλλ1

λλλλn

Data

Data-Intensive Applications

Dynamic Lambda, Optical Burst,

etc., Grid Services

Dynamic Optical Network 
OMNInet

Data

Transfer 

Service

Data

Transfer 

Service

Basic Network

Resource 

Service

Network

Resource 

Scheduler

Network Resource 

Service

Data

Handler

Services

In
fo
rm
a
tio
n
 S
e
rv
ic
e

Application 

Middleware

Layer

Network Resource

Middleware

Layer

Connectivity

and

Fabric Layers

λ λ λ λ OGSI-ification API

NRS Grid Service API

DTS API

Optical Path Control 

 

Figure 5.4 – Lambda Data Grid System Architecture. 

5.4.1 Application Middleware Layer 

At the application middleware layer, the Data Transfer Service (DTS) presents an interface 

between the system and an application.  It receives high-level client requests, policy-and-access 

filtered, to transfer named blocks of data with specific advance scheduling constraints. It 

employs an intelligent strategy to schedule an acceptable action plan that balances user demands 

and resource availabilities.  The action plan involves advance co-reservation of network and 

storage resources. This middleware layer shields the application from lower level details by 

translating application-level requests to its own tasks of coordinating and controlling the sharing 

of a collective set of resources.  
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Figure 5.5 – NRS and DTS Internal Architecture and Interfaces. 

5.4.2 Network Resource Middleware Layer 

The network resource middleware layer consists of three services: the Data Handler 

Service (DHS), the Network Resource Service (NRS) and the Dynamic Lambda Grid Service 

(DLGS). Services of this layer initiate and control the sharing of resources. The DHS deals with 

the mechanism for sending and receiving data and effectuates the actual data transfer when 

needed by the DTS. A central piece of this layer, the Network Resource Service (NRS), makes 

use of the Dynamic Lambda Grid Service in encapsulating the underlying optical network 

resources into an accessible, schedulable Grid service.  The NRS receives requests from the 

DTS, as well as requests from other services such as external Grid services, both scheduled and 

on-demand.  It maintains a job queue and allocates proper network resources according to its 

schedule.  To allow for extensibility and reuse, the Network Resource Service can be 

decomposed into two closely coupled services: a basic Network Resource Service and a Network 



 

                                                             102 

Resource Scheduler.  The Basic Network Resource Service handles multiple low-level services 

offered by different types of underlying networks and switching technologies and presents an 

interface to the Data Transfer Service for making network service requests. The Network 

Resource Scheduler is responsible for implementing an effective schedule that facilitates 

network resources sharing among multiple applications.  The Network Resource Scheduler can 

be deployed independent of the Basic Network Resource Service. The Dynamic Lambda Grid 

Service receives resource requirement requests from the NRS and matches those requests with 

the actual resources, such as path designations. The Dynamic Lambda Grid Service can 

establish, control, and deallocate complete paths across both optical and electronic domains. 

5.4.3 Data Transfer Scheduling (DTS) Service 

The DTS service is a direct extension of the NRS service. The DTS shares the same back-

end scheduling engine and resides on the same host.  It provides a higher level functionality that 

allows applications to schedule advance reservations for data transfers without the need to 

directly schedule path reservations with the NRS service.  The DTS service requires additional 

infrastructure in the form of services living at the data transfer endpoints. These services perform 

the actual data transfer operations once the network resources are allocated.  As with the NRS, 

the DTS started with an Open Grid Service Interface (OGSI) and moved into the new Web 

Services Resource Framework (WSRF). Globus Architecture for Resource Allocation (GARA) 

integration is a planned avenue for future development.  As an extension of the NRS, the DTS 

also employs under-constrained scheduling requests to accommodate new requests and changes 

in resource availability. For further discussion of this, see Chapter 6. 

It is important to note that in the Lambda Data Grid design the application at the endpoints 

drives the state and decisions by DTS, NRS, and ODIN; thus, is in full compliance with the end-
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to-end argument. The NRS retains a copy of the network topology, technology and capacity and 

maintains the local state of the resources. These intervening layers never attempt to reconstruct 

nor second-guess an application's intent from traffic. Instead, they follow the explicit command 

and control from the application. These layers are best positioned to appreciate both application's 

commands and network status, while bridging meaningfully between the two. 

 Additionally, Lambda Data Grid complies with the so-called fate-sharing principle. This 

design principle argues that it is acceptable to lose the state information associated with an entity 

if at the same time the entity itself is lost. In this case, DTS, NRS, and ODIN will make a point 

of reclaiming resources once an application is terminated, or is found to be unresponsive for a 

configurable time interval. 

5.4.4 Network Resource Scheduling (NRS) Service 

The Resource and Connectivity protocol layers form the neck of our “hourglass model” 

based architecture. The NRS is essentially a resource management service, which supports 

protocols that offer advance reservations and QoS. It maintains schedules and provisions 

resources to support these schedules. It is OGSA compliant and is implemented using a WSRF 

compliant interface to request the optical network resources. It has complete understanding of 

dynamic lightpath provisioning and communicates these requests to the Fabric Layer entities. In 

this architecture, the NRS can stand alone without the DTS (see Collective layer).  GARA 

integration is an important avenue for future development.  A key feature is the ability to 

reschedule reservations that satisfy under-constrained scheduling requests, to accommodate new 

requests and changes in resource availability. Requests may be under-constrained through 

specification of a target reservation window, which is larger than the requested duration, through 

open-ended specifications, such as "ASAP,” or through more sophisticated request specifications 
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such as client-provided utility functions for evaluating scheduling costs. Models for priorities 

and accounting can also be incorporated into the scheduling algorithms. 

5.4.5 Grid Layered Architecture  

Our architecture is illustrated on the left side of Figure 5.6. It parallels the Layered Grid 

Architecture proposed by Ian Foster [44] shown on the right side of Figure 5.6. These two-

layered architectures are depicted side by side to illustrate the differences and the similarities of 

functions in each layer. While the Grid Layered architecture is general to all components of Grid 

Computing including storage and computation, The Lambda Data Grid Layered Architecture is 

geared specifically towards optical networking. Our DTS is adjacent to the Collective Layer, 

coordinating multiple resources. Our NRS/DLGS is parallel to the Resource Layer, controlling 

the sharing of single-network resources. Our Optical Path Control is adjacent to the Connectivity 

Layer, for connectivity provisioning. Our Lambda Layer functions similarly to the Fabric Layer. 

The architecture is sufficiently flexible and can be implemented as layers or modules via an 

object approach. The focus in the Grid Layered Architecture is the computation, storage, and 

scientific collaboration with minimal control of the network. Foster’s approach reflects full 

control of the local computation, storage, middleware and application in the data centers, 

whereas the network is managed by the service provider. In this case, the Grid does not have 

control of the network resources.  In our approach, the Grid has control of the optical network, as 

it is a local resource similar to other local resources.  
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Figure 5.6 – Lambda Data Grid vs. Layered Grid Architecture (adapted from [29]). 

5.4.6 Allocating Bandwidth On-Demand 

For wavelength switching to be useful for Grid applications, a network service with an 

application level interface is required to request, release and manage the underlying network 

resources. Previous work has been done in defining the OGSA compliant and implemented using 

OGSI based network service interface for network resources. CANARIE’s UCLP, for example, 

is geared towards the ownership of fibers by the scientific institute, and allows Lambda 

allocations by the user instead of the service provider. Our approach follows a similar model 

with the addition of a comprehensive schedule and reservation-based Network Resource 

Scheduling (NRS) service, which provides user applications with access to underlying optical 

network resources. This service should guarantee dedicated access to the optical links, which 

may be requested on-demand or by advance reservation. Advance reservation requests can be 

under-constrained, which means the request can be satisfied by more than one possible time slot.  

This allows the service to reschedule reservations as needed to satisfy future requests and 

changing conditions. 
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The NRS also attempts to provide an interface with different levels of detail. Some 

coordinating and scheduling clients may need only high-level facilities like those for individual 

applications. For these applications, the interface should allow the request of Lightpaths, but 

these clients do not need to have knowledge of the details of the underlying network topology or 

management protocols. However, clients that attempt to optimize network resource use may 

need a richer interface, e.g., they may need to be able to schedule individual optical segments. 

For these clients, the interface should allow the request of individual segments. Although these 

clients may need knowledge of the network topology, they should still be insulated from the 

network management protocols. 

The NRS interface suggests likely properties for a service that might implement this 

interface. Such a service can be implemented in a way that does not maintain any session or 

context information for any particular client between calls.  The only necessary context 

information is the allocated path identifier, which the client is required to supply to deallocate a 

path. The service must maintain this information about these allocated paths so, in this sense, it 

is not “stateless,” but each client call can be treated as a self-contained unit and processed 

entirely in a single message exchange.  Thus, the interface fits the service-oriented architecture 

of Web Services [74] quite closely. 

At the same time, we believe that it is important to conform to the emerging Open Grid 

Services Architecture (OGSA) Grid standard to be accessible to Grid applications that use this 

architecture. Hence, the NRS interface also conforms to the Web Services Resource Framework 

(WSRF) specification. This interface, in its basic form, is a Web Service interface with some 

additional conventions from the original OGSI standard. Although client access is via a normal 

Java interface as described above, internally, the client-service interface is a Web Service 
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implemented using SOAP and the JAX-RPC API. The user of the NRS service is spared any 

direct contact with this underlying middleware. 

So far, in this chapter discussed DTS, NRS, NRM, and DHS, the interaction between them 

as part of the Application Middleware Layer (AML) and the Resource Middleware Layer 

(RML).  What follows is a description of the Workflow Service, and specifically the Scientific 

Workflows as part of our overall architecture for orchestration.  

5.5 Workflow Integrated Network Resource Orchestration 

Scientists have the need to access scientific data and perform sophisticated analyses on that 

data. Such analyses can be described as “scientific workflows” in which the flow of data from 

one analytical step to another is expressed in a formal workflow language. In this work, we 

expand on scientific workflow management systems, which can be incorporated on top of 

Lambda Data Grid, using a number of technologies including Web and Grid services, relational 

databases, and local applications implemented in various programming languages. 

Through dynamic organization of scientific processes and adequate resources, workflow-

based Web Services provide a flexible solution to the success of e-Science applications. As a key 

enabling technology of Web Service compositions, the Grid community moves forward in 

enhancing workflow processing capability and orchestrating heterogeneous resources among 

computing, storage, and other resource providers, across network administrative domains. 

Challenges arise in effectively realizing the workflow-oriented resource orchestration across 

administrative domains. This problem is compounded when a process uses inter-service data-

intensive communications, and has the need for reliability and timeliness. The foremost issues lie 

in harnessing network resources into schedulable services for composing workflow processes to 

support service providers. Additionally, these services, along with a number of network-related 
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activities for resource orchestration, must fit the needs of a variety of service-enabling 

technologies, including Grids, beyond workflow engines. In this work, we tackle the complicated 

problem from the network middleware perspective instead of the application middleware 

perspective. We treated the network as a Grid Service with characteristics of allocation, 

scheduling, and re-scheduling resources that are in conjunction with the availability of other 

resources and are within application requirements, as part of a scientific workflow.  

To meet the needs discussed above, “Workflow INtegrated NEtwork Resource 

orchestration” (WINNER) was developed.  This exposes the method by which network resources 

can be orchestrated intelligently for workflow applications. The goal of WINNER is to solve 

issues of two complementary components: workflow processes that provide the activities, and 

services that realize the activities in such processes. The workflow activities of WINNER are 

geared toward both workflow applications and network resources. Applications can deploy 

activities such as resource allocation, reallocation, release and accounting, while network 

resource providers can utilize resource creation, destroy, and update. Activities common to both 

include registry, query and secure operations of customers, and network resources. Furthermore, 

WINNER combines activities with the network services provided by network resource providers. 

As a result, WINNER allows network elements, and/or network domains, to serve their resources 

seamlessly for workflow applications. WINNER represents a revolutionary network resource 

management system that provides the predictable and optimized system performance that is 

valuable in Grid Computing. It addresses crucial resource issues and dynamic exception-

handling workflow architecture, and is  applicable to any critical resource management system. 

Our approach is built on a unique synergetic relationship between the advanced results in 

application disciplines (e.g., workflows), operating system disciplines (e.g., real-time value-
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based scheduling), and networking disciplines (e.g., scalable hierarchies of services).  In this 

approach, we extract application information, communicate with the scientific process workflow, 

feed this information to the network scheduler, synchronize the network scheduler and the Grid 

scheduler, and reserve the right communication channel for the right time. The goal is to create a 

network setup that builds the right network topology, at the time it is needed. 

The novelty of the converged WINNER system is such that its quantitative analysis holds 

potential to be innovative in its own right, with new metrics sought along the dimensions of 

complexity, scalability, and adaptability. 

Along with the workflow process, the workflow services for registration, query, resource 

administration, job submission, and security enforcement, are essentially Web Services. 

Moreover, the realization of workflow services can be based on the recent development of 

WSRF and other Globus technologies. WINNER envisions the use of the appropriate 

encapsulation of workflow services corresponding to various service-enabling technologies. 

Consequently, WINNER makes network resources available to workflow applications, whether 

they work directly with workflow engines or indirectly through Grids, Web Services, and other 

service environments.  

WINNER achieves these goals by defining a workflow process for network resources that 

features a set of essential activities (e.g., resource allocation, renewal etc.) and by providing the 

workflow services that support these activities. The activities are designed for applications, 

network resource providers, or both. Along with the workflow process, the Web Services-based 

workflow services consist of registration, query, resource administration, and job submission.  

Another challenge is in incorporating services that WINNER employs within network 

resource providers. These services perform resource orchestration through a number of existing 
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and newly introduced network services. These network services can discover available resources 

in network domains, bind adequate resources dynamically for workflows, and conduct proactive 

network configurations and resource allocations with resource smarts in SLA, policy, 

optimization and security. The intersection of application-driven provisioning, constraint-based 

routing, and scheduling of optical resources warrant further research. A chief goal is to mitigate 

line-blocking effects while maximizing user satisfaction and network utilization.  Furthermore, 

with the recent advances in workflow language technologies and semantic composition of 

workflows comes the possibility of  greatly enhancing the dynamic binding between applications 

and the network  

5.6 Scientific Workflows  

Scientific workflows usually operate on large, complex, and heterogeneous data, integrated 

by scientists prior to computations.  As a result of these computations, complex data is created as 

input to other workflows. Hence, the academic community is using workflows as a means of 

orchestrating complicated tasks over a distributed set of resources.  More scientific organizations 

are realizing the benefits of sharing their data and computational services, and are contributing to 

a distributed data and computational infrastructure. The Lambda Data Grid mechanism provides 

seamless access remotely to large databases, which allows the opportunity of an integration of 

the field of scientific logic and Workflows. Some of basic requirements of this new system that 

need to be addressed are: 1) Seamless access to resources, 2) Scalability and Service reuse, and 

3) Reliability and fault-tolerance.  

 This chapter discussed the Lambda Data Grid layered architecture, including the DTS and 

NRS. We presented the middleware, service architecture, and Scientific Workflows and provided 
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an example of how these components work to orchestrate network resources as part of scientific 

experiments. What follow is the implementation details, testbeds and analysis.  

6 Testbed, Experiments, Evaluation  and Results 

In Chapter 5, we discussed the Lambda Data Grid architecture, the service orchestration, 

and the interaction with Scientific Workflows. Specifically, we described the Data Transfer 

Service (DTS) and Network Resource Service (NRS), and the interaction of these elements with 

Grid middleware. This chapter describes our major experiments and demonstrations, with details 

of the technical architecture, inherent challenges, evaluation of results and analysis. It begins 

with an explanation of the dynamic provisioning of a 10GE Lightpath across a distance of 10 

meters in a lab, using one experimental Micro-Electro-Mechanical Systems (MEMS) switch. 

Next is a description of the OMNInet testbed connecting multiple network sites in Chicago 

metro area, using four MEMS switches over a distance of about 10km. Lambda scheduling and 

dynamic allocation is stated and followed by a presentation of measurements and analysis.  In 

the following section, the concept of dynamic provisioning is applied to alternate Lambda fail-

over the cross-Atlantic fiber connections, across a distance of about 10,000km, using the 

CANARIE and I2, connecting SARA Supercomputing Center at Amsterdam and the Argonne 

National Lab at Chicago. Another significance in this experiment is the automated and dynamic 

process as it compares with the conventionally manual and static process, and its ensuing result 

of an extreme reduction of provisioning time: from about 100 days to 100 seconds. The final two 

demonstrations show the relevance of this technology to e-Science through intelligent 

middleware and workflow automation, thereby enabling the scientific process to advance to a 

new level of possibilities.  
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6.1 Dynamic allocation of metro network bandwidth 

This section describes an early conceptual experiment [41] [75] of dynamic allocation of 

metro network bandwidth. This early experiment of service platform [76] showed the capability 

of dynamic allocation of bandwidth using early implementation of Resilient Packet Ring (RPR) 

assembling a metro network in one rack. Success in implementing this model led to the birth of 

Lambda Data Grid. Figure 6.1 shows the architecture of the demonstration presented at Globus 

World [40] in San Francisco.  

 

 

 

 

 

 

 

 

Figure 6.1: Service platform for Dynamic bandwidth allocation over RPR metro network 
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were able to set and remove a connection between any two points in the metro network. The 

bandwidth for the connection can be dynamically set to any value between 1Mbps-1Gbps in 

increments of 1Mbps. The task involved setting and enforcing the allocated bandwidth for the 

end-to-end path, involving both the electrical side and the optical side. 

For the Metro demo, the service platform, the Optera Metro 3400 with OPE were utilized. 

This device allows configuration of fine-grain Ethernet bandwidth limits on top of Resilient 

Packet Ring (RPR). RPR was defined by IEEE as 802.17. RPR Metro network is not on the 

public Internet; it is a secured, isolated, L2 network, without the limitations of L3 and packet 

switching. The connection bandwidth is guaranteed. The distance limitation of this RPR is 

120km, but this distance can be extended to reach a RPR in a different geographical area via a 

DWDM point-to-point connection. The purpose of this demonstration was to show the feasibility 

of the concept with manual reservations.  

6.1.1 Service Platform  

In this demonstration, we built a service platform to provide a network provisioning 

service to an application. Examples of the applications include: granting X Mbps for the duration 

of a videoconference request; allocating Y Mbps for Z minutes for a backup application between 

a San Francisco location and a San Jose location; and advising and provisioning most 

economical backup for price sensitive applications. In this case, the provisioning took 4.5 

seconds and the signaling setup took 30 seconds. This might be seen as a lengthy setup time 

compared to traditional packet switching; however, this is a single preparation with no need to 

evaluate every packet. This may appear as an expensive time expenditure, but in the transferring 

of large amounts of data it is time effective. This early demonstration used RSVP as signaling, 



 

                                                             114 

on a small network, without any optimization for large signaling time. Our primary goal was to 

build a proof of concept.  

This early proof of concept led to another demonstration using OMNInet testbed that will 

be described in the next section. In this demo, we were able to show that we can dynamically set 

the network configuration of the all-optical switches based on application requirements, 

employing an intelligent traffic filtering property of the platform. 

6.2 OMNInet Testbed and Setup  

This section describes the OMNInet testbed and the Optical Dynamic Intelligent Network 

(ODIN). Some of the demonstrations described in this chapter were built on top of the OMNInet 

testbed with interaction with ODIN. For part of this work, we collaborated with Northwestern 

University in Chicago. While OMNInet and ODIN are an essential part of the experiments in this 

thesis, these two components were the responsibility of a different group. This thesis does not 

claim credit for the development of these components. To fully understand Lambda Data Grid 

experiments the following is a description of OMNInet and ODIN.  

6.2.1 The OMNInet testbed  

The testbed for the DWDM-RAM was implemented on a next-generation large-scale 

Metro/LAN dynamic optical network, which is known as the OMNInet. The OMNInet project is 

a multi-organizational partnership, which was established to build the most advanced metro area 

photonic network testbed. OMNInet uses metro dark fiber infrastructure, which has been 

provided by SBC to connect locations sponsored by Northwestern University in Chicago, and a 

mix of product and research equipment from Nortel Networks.  
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Figure 6.1:  OMNInet Topology over Chicago Area Map  

OMNInet consists of four photonic nodes and has been deployed at four separate locations 

in the Chicago metro area. It is configured in a partial-mesh 10GE DWDM network. These 

nodes are interconnected as a partial-mesh, with lightpaths provisioned with DWDM on 

dedicated fiber. Each node includes a MEMS-based (Micro-Electro-Mechanical Systems) 8 x 8 

Wave Division Multiplex (WDM) photonic switch, an Optical Fiber Amplifier (OFA) and 

optical transponders/receivers (OTRs), and high-performance L2/L3 switches. The core photonic 

nodes are not commercial products, but unique experimental research implementations, 

integrating state of the art components. The OMNInet configuration is shown in Figure 6.2. 

 

Figure 6.2 – OMNInet Testbed Configuration. 
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The OMNInet control plane is separated from a data plane, and provisioned out-of-band, 

using completely separate fiber. Such control planes could also reside on a supervisory lightpath. 

This control plane enables User-to-Network Interface (UNI) control signaling via a UNI 

interface to the optical transport network and bi-directional signaling to the connection control 

plane. A 10GigE trunk interface using  1500nm DWDM wavelengths have been implemented, 

with a specialized set of protocols that allows for enhanced optical network intelligence, 

including a lightpath signaling protocol, a lightpath routing protocol, and an optical link 

management protocol. To provide for reliability and optimal L1 performance, OMNInet is 

provisioned with sophisticated pre-fault detection mechanisms, which monitor network 

conditions and adjust resources in response to specific detected characteristics.  

6.2.2 Optical Dynamic Intelligent Network Services (ODIN) 

Optical Dynamic Intelligent Network Services (ODIN) was developed by Northwestern 

University. This architecture provides for receiving communication service requests from 

higher-level processes and translating those requests into network resources, primarily 

dynamically provisioned paths, lightpaths and extensions of those lightpaths, to edge devices 

through VLANs. 

Optical Dynamic Intelligent Network1 (ODIN) is implemented as a software suite that 

controls the OMNInet through various lower-level API calls. ODIN server software is comprised 

of components that, a) accept requests from clients for resources (the client requests a resource, 

i.e., implying a request for a path to the resource – the specific path need not be known to the 

client); b) determine an available path, possibly an optimal path if there are multiple available 

paths; c) create the mechanisms required to route the data traffic over the defined optimal path 

                                                 
1 ODIN research was made possible with support from the National Science Foundation: award - ANI-0123399 
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(virtual network); and d) notify the client and the target resource to configure themselves for the 

configured virtual network. 

The dynamic lightpath provisioning of the OMNInet is provided by the ODIN services 

module, which manages the optical network control plane and resource provisioning, including 

path allocation, deletion, and setting of attributes. The technological breakthrough in the design 

of the OMNInet photonic switches, coupled with the tight integration of the control software, 

brings down the provisioning time from months to a few seconds. This is the critical enabling 

factor in on-demand provisioning. 

We initiate processes by accepting requests from clients for network resources. The client 

requests activity that implies a request for a path or paths to resources. Given request attributes 

and complete knowledge of available network resources, ODIN designates appropriate paths. 

ODIN also creates the mechanisms required to route the data traffic over the defined optimal 

path (virtual network), and transmits signals that notify the client and the target resource to 

adjust in order to match the configured virtual network. An implementation of ODIN has 

successfully been used for large-scale experiments with science data on the OMNInet testbed. In 

the ODIN research the focus was the optical and the physical layers; whereas, my work was a 

collaboration with them to provide the upper layers of intelligence, including scheduling, 

network services, network middleware, and application interaction as part of my Lambda Data 

Grid research.  

OMNInet was the testbed for some of the Lambda Data Grid demonstrations interacting 

with ODIN to dynamic allocate Lambda over the Chicago metro area. The results from these 

experiments were the input for the analysis described later in this chapter.  
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6.3 Prototype Implementation 

An early proof of concept for Lambda Data Grid is that the DWDM-RAM was 

implemented [32] in a metro area, on top of OMNInet and with interaction with ODIN. The 

DWDM-RAM architecture is shown in Figure 6.3. This service architecture closely integrates a 

set of large-scale data services with those for dynamic wavelength allocation [68] through a 

network resource middleware service [73]. Several layers mediate between the former and latter, 

while abstracting out low-level resources, and yielding opaque "tickets" to upper layers. Early 

standardization work in OGSA has shaped some of the layers' interfaces. The architecture 

provides means for applications to use data services to capture the benefits of the vast and 

adaptive bandwidth capacity of the underlying dynamic optical networks. This architecture 

leverages the Globus Toolkit 4’s functionality. 

The network resource service allows the orchestration of complex application 

requirements, data services and dynamic Lambda services. Furthermore, the network resource 

service is fully OGSA compliant, and presents a WSRF to external applications, allowing large 

classes of Grid computing applications access to much needed network resources. 
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                                    Figure  6.3: The Lambda Data Grid  architecture. 

The service implementation includes the Network Resource Service (NRS), the Data 

Transfer Service (DTS), and the Data Handler Service (DHS). The primary goal of our 

implementation was to test the architectural concepts described in Chapter 5 on a real metro-area 

optical network. In this implementation, we have:   

1) Implemented a suitable application-level interface to the Network Resource Service 
for allocating bandwidth to applications  

2) Developed a resource scheduling infrastructure suitable for optical networks and other 
resources  

3) Implemented a platform that can interoperate with Grid applications and services 
using OGSA/OGSI standards 

4) Collected experimental data and analyze Grid data-intensive service over a metro area 
network 

 

6.3.1  Network Resource Service  

The implementation of the NRS provides client applications and services with an interface 

for advanced reservation of lightpaths with guaranteed bandwidth. The description and the 

architecture of the NRS were overviewed in Chapter 5. Lower-level details related to the optical 

network are hidden from the application. 

To request a lightpath reservation, a client application specifies: 

1) Two hosts requesting  connection  

2) Connection duration  

3) Time window in which the connection can occur as specified by the starting and ending 
time of the window   

 

The NRS returns a “ticket” describing the resulting reservation, if it is possible to make a 

reservation meeting the given requirements. This ticket includes the actual assigned start and end 

times, as well as the other parameters of the request. The ticket can be used in subsequent calls to 
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// Bind to an NRS service: 

NRS = lookupNRS(address); 

//Request cost function evaluation 

request := ≤pathEndpointOneAddress, 

           pathEndpointTwoAddress, 

           duration, 

           startAfterDate, 

           endBeforeDate≥; 

ticket = NRS.requestReservation(request); 

// Inspect the ticket to determine success, and to find 

the currently scheduled time: 

ticket.display(); 

change, cancel, or obtain status on the reservation. The NRS will allocate the indicated lightpath 

at the agreed-upon time, as long as the reservation has not been canceled or changed since it was 

made. Sample pseudo code for a client calling the NRS is shown in Figure 6.4. 

 

 

 

 

 

 

 

 

 

 

 

                                       

Figure 6.4 – NRS client pseudo-code. 

6.3.2 Data Transfer Service 

The Data Transfer Service (DTS) is a middleware service above the NRS. It provides an 

interface for applications to request the transfer of named data sets from one location on the Grid 

to another location. The implementation source host and path name are explicitly required. With 

the use of a replica location service, only an abstract source data set name is required and DTS 
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chooses an appropriate physical source location. Data transfer requests can also specify 

scheduling parameters such as window start and end times, and transfer duration. 

DTS processes the request before calling on the NRS scheduling facility. This includes 

finding the appropriate data source; verifying its existence, size, and accessibility; coordinating 

with the destination system storage scheduler, and the like. The client's request, possibly 

modified by these additionally discovered constraints, is passed to the NRS scheduler, and the 

received job ticket is passed back to the client. A cron-like entry is made for DTS to wake up at 

the scheduled network allocation and data transfer time. 

At the scheduled transfer time, the DTS sends a message to a Data Handler Service (DHS) 

running on the destination host, which then opens a connection to the source host and transfers 

the data. Status is sent back to the DTS and is available to client queries and for registered client 

callbacks. 

6.3.3 Resource Allocation Agent  

We have implemented a resource allocation agent implementing a Grid Network Service 

(GNS). Each participating network domain had one or more instances of the GNS running. In 

case multiple instances of GNS are running in a single domain, a master instance is elected. This 

GNS master instance manages the domain and the inter-domain connectivity through peer 

messaging.   
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Figure 6.5 : GNS Coupling API 

As depicted in Figure 6.5, GNS exposes a coupling API allowing coupling with 

applications. The interface to applications is bi-directional, enabling network performance and 

availability information to be abstracted upwards toward the application. Applications can 

request network services through this API. Applications can, for example, request a “cut-

through” (high bandwidth, low latency) service allowing applications to bypass Layer 3 and 

directly transfer data over Layer 1 connections. Applications can further specify if they want this 

service on demand or via a time-of-day reservation. This kind of functionality is deemed 

especially valuable for the data-intensive applications used in research networks. 

6.4 Network Service Interface Implementation Details  

We have implemented a network service with a simple application-level interface. This 

service is able to allocate dynamically dedicated end-to-end lightpaths requested on demand. The 

service interface reaches the following objectives: 

1) It is usable by Grid applications 

2) It is network-accessible from any authorized host 

3) It is standards-based and does not require any proprietary technology 

4) It allows the application to specify parameters of the desired optical path that are 
relevant at the application level 
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5) It hides the details of the underlying network topology and network management 
protocols  

6) It supports the immediate allocation of bandwidth and is easy to extend to 
incorporate future scheduling 

7) At the highest level, the interface described here is wrapped in a Java 

implementation that shields the caller from the details of the application-level protocols that are 

needed to communicate with the service. The service itself hides various lower level network 

topology and management protocols from the caller. 

This interface exposes two methods to the user: allocateNetworkPath and 

deallocateNetworkPath. 

 The allocateNetworkPath method requests that an optical path be allocated. The 

path allocated should meet the criteria specified in the parameter object passed to the method. 

These parameters include the network addresses of the hosts to be connected, the minimum and 

maximum acceptable bandwidths, and the maximum duration of the allocation. The 

allocateNetworkPath method returns to the caller an object containing descriptive 

information on the path that was allocated.  This object also serves as a handle for the 

deallocateNetworkPath request. By adding parameters representing earliest and latest 

acceptable start times, this interface can be extended to accommodate under-constrained advance 

reservations 

6.4.1 Prototype Grid Integration 

This platform anticipates access to resources within the context of the Open Grid Services 

Architecture (OGSA). This platform will be interoperable with Grid applications that can utilize 

WS-Agreements to negotiate services to satisfy the requirements and network characteristics of 

high throughput file transfer. 
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Therefore, the first implementation was based on fully-OGSI compliant Grid Service 

interfaces for use by Grid applications. These interfaces were implemented using Version 3 of 

the Globus Toolkit [40], with SOAP and the JAX-RPC API. Additionally, the interfaces are 

wrapped in Java classes that effectively hide the OGSI middleware from the applications that 

call them. Further implementation was migrated to GT4 and WSRF.  

These interfaces are intended to provide the applications that call them with the basic 

functionality they need, but without requiring any knowledge of the underlying networks or 

network control and management protocols. 

6.5 Experiments and Results 

The primary objective of these experiments was to demonstrate that the underlying 

connection-oriented end-to-end network resources can be encapsulated within a network 

resource service that offers both on-demand and scheduled network services to Grid 

applications. Here, the Lambda Data Grid architecture was deployed to demonstrate data-

intensive file transfer and memory transfer services over a high-speed optical networking testbed 

to requesting applications. The purpose of this thesis was to show the feasibility of adding 

intelligence to the network middleware from a systems and architecture perspective, with 

minimal focus on the exact algorithms. Future research can concentrate on fine-tuning the 

algorithms and optimization.  

6.5.1 Memory-to-Memory Transfer 

To measure effective bandwidth without overhead of the file systems, caches, hard disk 

and driver, a memory-to-memory transfer in Chicago metro area over the OMNInet was 

performed. The purpose of these experiments was to isolate side effects and to provide results for 

the analysis section presented later in this chapter.  The results are presented in Figure 6.6. The 
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smooth curve is the average effective data transfer rate, including the startup costs of allocating 

the lightpaths, which was about 25 seconds. The jagged curve, averaging around 440 Mbps, is 

the “instantaneous” throughput, measured in 0.1-second intervals on the receiving machine. This 

periodically jumped to about 530 Mbps for a sustained period of about 100 seconds. For the 30 

GB data transfer, the startup costs begin to be more or less fully amortized after about 230 

seconds or 12.2 GB. The reason for the lower than expected maximum bandwidth and 

oscillations are believed to be measurement artifacts, in part. Figure 6.7 shows the results of 

transferring 10GB memory to memory on the Santa Clara testbed. In this experiment, RAID 

devices were used as end systems; a throughput of about 900Mbs memory-to-memory transfer 

was achieved and the measurement artifacts were eliminated by sampling at the larger interval of 

1 second.  

 

Figure 6.6–Instantaneous and average throughput for a 30 GB memory-to-memory transfer over OMNInet. 
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Figure 6.7 –  Instantaneous and average throughput for a 10GB memory-to-memory transfer over the one-

rack testbed. 

6.5.2 End-to-End File Transfer (Non-optimized) 

This section demonstrates that by deploying our service platform, connection-oriented end-

to-end data-intensive file transfer operations can be set up and executed on-demand, easily and 

effectively. 

The preliminary file transfer results presented in Figure 6.8 were obtained from 20GB file 

transfer experiments performed in Chicago metro are on the OMNInet testbed and were 

demonstrated during GGF-9, in Chicago, and SuperComputing, in Phoenix.  The bandwidth 

oscillation is due to end-systems' performance, file system behaviors, and the measurement 

method. With simple optimization, the oscillation can be reduced.   The demonstrations were run 

on dual PIII 997 MHz machines, running Red Hat Linux 7.3 (Kernel: 2.4.18-3smp) and using 1 

GigE NIC cards. 

 

 

 

 

 

Figure 6.8 – The throughput recorded for a 20 GB file transfer. The effective file transfer rate measured over 

OMNInet was 920 Mbps using ftp. 

Table 6.1 shows the breakdown of times measured for all the steps in the process. The bulk 

of the time was taken in the actual file transfer, but there was a significant cost of about 25 
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seconds to configure, and 11 seconds to tear down the lightpaths. It is important to note that only 

a minuscule fraction (approximately 20 milliseconds) of this delay is actually due to the setting 

up of the path within the optical switch. The major portion of the delay is contributed by 

switches at the edge of the optical network, which switch the data to and from the end hosts. This 

is an artifact of the current network setup.  Another contributor to this setup delay is the disk 

access time when reading configuration files, and when writing updated switching tables to the 

disk.  

The path tear down is 11 seconds, which is due to the centralized path update from all 

optical nodes. Through fine-tuning, we expect to substantially reduce the network configuration 

and the path release overheads.  The purpose of this experiment was to demonstrate feasibility 

and to illustrate the range of time required to this time of preparation.  

Event Seconds 

Start : File transfer request arrives 0.0 

Path Allocation request 0.5 

ODIN server processing 3.6 

Path ID returned 0.5 

Network reconfiguration 25 

FTP setup time 0.14 

Data transfer  (20GB file) 174 

Path deallocation request 0.3 

Path tear down  11 

Table 6.1. Breakdown of end-to-end file transfer time. 

6.5.3 Scheduling 

An early prototype scheduling service was also demonstrated at the SuperComputing [27] 

conference in Phoenix, Arizona. Several applications may request data transfers that involve the 

use of the same network segment for durations that may overlap. Figure 6.8 illustrates how the 

use of under-constrained requests and rescheduling works by considering requests for a single 

segment. In Figure 6.9-a, initially, a request has been made for a 70 minute block (A), sometime 
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between 4:00 pm and 8:10 pm. Since there were no previous requests, it was granted for the first 

70 minutes in this time window. 

In Figure 6.9-b, a second request (B) was made. The resource requested was in the 4:15 to 

7:00 pm range, for 105 minutes. In order to meet B’s request, the Scheduler placed it at the 

beginning of its time window and moved A, the first request, to immediately follow the second 

request’s completion. The first request, A, still satisfied its under-constrained window. 

 

Figure 6.9a, 6.9b, 6.9c – Behavior of the scheduling algorithm as three successive requests are made to use 

one segment. 

In Figure 6.9c, a third request (C) was made between 4:45 and 7:00 pm, for 30 minutes. 

Again, request A was rescheduled to accommodate C, and B was left at its original allocated 

time. 

The results demonstrated that with the network resource service, application requests can 

be scheduled and rescheduled to make efficient use of network resources. 

6.6 Analysis of Lambda Scheduling and Dynamic Allocation 

Rapid-prototyping was developed to demonstrate the proof-of-concept, whereby a high-

speed optical networking testbed was able to provide on-demand lightpath allocation to 
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requesting applications. The objective was not to achieve bit blasting, but to demonstrate the 

availability and efficacy of a bandwidth rich network resource, especially in the case of 

applications requiring bulk-data transfers. The technology does come, however, with its own 

processing overhead and is not meant to be a one-size-fits-all solution. Several experiments were 

performed on data sets of varied sizes to ascertain the threshold at which the benefits of using 

this network infrastructure are evident. It would be overkill for transaction oriented, low volume 

traffic. However, at any transfers of more than a few GB, the throughput gains are enormous. 

Relatively low setup times were recorded, even when using off-the-shelf software and 

commodity storage components.  

In the past, circuit switching has been criticized for its long path setup time. In spite of the 

time taken for the setup, circuit switching, and optical networks for that matter, are the perfect 

solution for non-transaction oriented Grid computing. In reality, the time taken in the 

transference of the huge amounts of data generated by Grid applications amortizes the time spent 

in the setup. The graphs in Figures 6.10, 6.11, and 6.12 illustrate this fact. Each graph shows the 

amount of time spent in the path setup as a percentage of the total transfer time versus data 

transfers of different sizes. These numbers were used to motivate the usage of optical networks 

in different scenarios. In each graph, the knee of the curve indicates the point in which the setup 

time, i.e., the overhead, is amortized and becomes insignificant. 

In Figure 6.10, we assume a setup time of 2s and a bandwidth of 100Mbps. In this case, the 

knee of the curve is at 1GB. In Figure 6.11, we assume a setup time of 2s and a bandwidth of 

300Mbps. In this case, the knee of the curve is at 5GB. In Figure 6.12, we assume a setup time of 

48s and a bandwidth of 920Mbps. In this case, the knee of the curve is at 500GB. Since Grid 
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applications usually transfer terabytes or even PetaBytes of data, it is clear that the time for the 

path setup is negligible in Grid computing. 

The 48-second and 2-second path setup time are current practical upper bounds and desired 

lower bounds. Of equal importance is the time required to deallocate resources to enable 

subsequent usage. Again, this does not prove to create any major bottleneck and has been 

observed to be around 11s, as discussed in Chapter 5. 

Setup time = 2 sec, Bandwidth=100 Mbps
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Setup time = 2 sec, Bandwidth=300 Mbps
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Setup time = 48 sec, Bandwidth=920 Mbps
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Fig 6.10: Overhead is insignificant at 1 GB Fig 6.11: Overhead is insignificant at 5 
GB 

Fig 6.12: Overhead is insignificant at 
500 GB 

 

Figures 6.13 and 6.14 compare the efficiency of packet switching with Lambda switching, 

executing with different amounts of bandwidth, by plotting the amount of data transferred 

against the time taken in seconds. 

These two graphs were generated synthetically. In Figure 6.13, the path setup takes 48 

seconds while, in Figure 6.14, the path setup takes 2 seconds. The path setup time includes the 

time required to request a path, allocate the path, configure the layer 1 and 2 components of the 

network and persist this information in the relevant tables. The 48 sec was observed average 

setup time  
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Optical path setup time = 48 sec
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Figure 6.13: Packed Switched vs. Lambda Network -- Setup time tradeoffs. 

Optical path setup time = 2 sec
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Figure 6.14: Packed Switched vs. Lambda Network -- Setup time tradeoffs. 

The important information obtained by these graphs is the crossover points at which the 

optical network becomes a better option than the packet switched network. Note that when the 

path setup takes 48 sec, the crossover point can be at files as small as 2.5GB up to 4.5GB. When 

the path setup takes 2 sec, the crossover takes place between 75MB and 200 MB. These graphs 

affirm the enormous advantage of the DWDM-RAM system over other packet switching systems 

when transferring large data sets, and present an exciting option for the Grid community. 
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Figure 6.15 compares the time to transfer data using OMNInet and the public Internet. The 

times shown in this graph represent the time measured to transfer data sets of different sizes over 

the optical network and the public Internet. Note that the optical network does a better job even 

for files as small as 1GB. The graph shows that the difference increases significantly as the file 

gets larger, and that the larger the file the greater the benefits provided by the optical networks. 
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Figure 6.15: File transfer time. 

Note that, for transferring smaller amounts of data, the traditional packet switching 

approach is a better option. The appropriate network to use, in each case, should be decided by 

co-allocation services, as defined in NMI. These co-allocation scheduling services use 

information about the resource’s capabilities and the application’s requirements to allocate a 

performance-efficient set of resources for the application. 

It should be emphasized that the focus of the experiment is not on exploring various 

schemes for maximizing the data transfer throughput, rather it focuses on encapsulating the 

underlying network resources and offering network scheduled services according to an 

application request. For this reason, only the standard TCP based networking protocol stack 

readily available in the Linux kernel was used. The OMNInet testbed network guarantees high 
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bandwidth channels since the network setup allocates a Lambda of 10Gbs to each data flow. In 

spite of the network supporting this very high bandwidth, it was observed that the end-to-end 

data flow between hosts did not fully utilize this bandwidth. 

As the OMNInet is inherently reliable with extremely low bit error rates and fairness is not 

an issue (dedicated lambda per flow), it is an overkill using the reliable TCP as the transport 

protocol for such data-intensive applications. Rather, a performance tuned transport protocol like 

FAST [69] tailored to benefit from a circuit switching path with no L3 routing, would be more 

effective in achieving high throughput over the 10Gbps pipe. 

We observed that consistent oscillations in the instantaneous throughput severely affected 

the aggregate throughput.  Two possible areas could be further explored to yield better 

performance.  One of these areas is the transport protocol used. The standard TCP based 

networking protocol stack available in the Linux kernel has been used. The OMNInet testbed 

network is inherently reliable and guarantees high available bandwidth and low bit error rates. 

Sharing of channels is not an issue, so fairness concerns do not apply.  As such, the reliability-

oriented functionality for the data transfer is unnecessary baggage. Moreover, the network setup 

allocates Lambdas of 10Gbs. In spite of the network supporting this very high bandwidth, it was 

observed that the end-to-end data flow between hosts does not fully utilize this bandwidth. A 

performance tuned transport protocol like FAST [69] or SABUL/UDT [47], tailored to benefit 

from a circuit switching path with no L3 routing, would help to fill the 10Gbps pipe. 

Another candidate for optimization is the peripheral equipment (on the hosts), which is not 

tuned to handle extremely high data rates. For instance, the access to secondary storage is clearly 

a bottleneck. It was observed that striping data to multiple secondary storage media, deployed in 

a RAID configuration, helps to gain much better performance. Experiments on our Santa Clara 
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testbed with a RAID system, with the source and sink machines connected directly with a 1 GE 

link, gave us 350 Mbps throughput. This was achievable on two Pentium IV 2.8 GHz machines, 

each with a 1 Gbps copper interface, connected by using the Reiser file systems on source and 

sink RAID machines, as well as disabling hyper-threading in the Linux kernel. However, this 

was still far from utilizing the full 10Gbs of available bandwidth. With a memory-to-memory 

direct transfer on this same hardware, better results were achieved. 

6.7 Network Scheduling   

A Grid Scheduled Network Service is just like any other Grid service; it has to expose its 

service through a Grid Service Port Type. For example, an interface for requesting lightpath 

connectivity should be rich enough to allow applications to express their own flexibility via 

under-constrained (or loose-constrained) requests. This allows for optimal scheduling, and for 

automatic rescheduling if necessary. The scheduling network service considers the flexibility in 

the requests, the flexibility inherent in any conflicting current reservations, and other factors 

such as job priorities or predictive load balancing. It provides guarantees or advance reservations 

for channel availability between specific endpoints, with certain constraints. The reservations 

may be periodic, and may be many days in advance. They may be policed by various resource 

reclamation policies, such as periodic application resiliency requirements. When rescheduled 

within the bounds of the under-constrained request to meet new requests, these changes are 

reported via a middleware query or notification mechanism.  

6.7.1 A New Provisioning Model 

Grid users are accustomed to allocating and relinquishing some virtualized sets of 

computational, storage, and/or visualization resources. They do so with a high degree of 
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automation, using software feedback loops and schedulers taking the place of GUI portals and 

operators. 

In many Grid scenarios, the network element turns out to be a resource as important as 

computation and/or storage. As such, Grid users require the same level of control towards 

subsets of well-defined amounts of network resources for the duration of a specific Grid task. 

A chief goal of this service plane is to turn the network into a virtualized resource that can 

be acted upon and controlled by other layers of software, for example applications or Grid 

infrastructures. In other words, the network becomes a Grid managed resource much as 

computation, storage, and visualization are layered upon the optical network control plane  

The service plane is typically concerned with path allocation, optimization, monitoring, 

and restoration across two or more domains. A service plane must be designed to be extensible 

from the ground up. It should allow adaptation of various control plane interfaces and abstract 

their network view, or element set, into the service plane. Examples of underlying control planes 

are: ASTN, GMPLS, JIT, etc. Each control domain has exclusive control of its resource and is 

typically able to signal neighboring domains to create end-to-end paths on behalf of the involved 

Service Providers. 

The Grid Network Services agent is a key ingredient of the service plane. A Grid Network 

Service (GNS) agent advertises network capabilities to its neighbors. As such, each agent is able 

to generate a complete topology view in order to construct future optical end-to-end paths. Our 

agent can optionally support source based routing to select a preferred path through the 

individual optical clouds. 
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6.7.2 Grid Network Service Agent 

We implemented the Grid Network Service agent as part of multiple instances of Lambda 

Data Grid (LDG). The Grid Network Service agent was implemented as an extension of the 

basic NRS presented in chapter 5. When multiple agents are running in a single domain, a master 

instance is elected. This LDG master instance manages the domain and the inter-domain 

connectivity through peer messaging. LDG core framework includes services like a policy 

engine, a topology discovery engine, workflow utilities, inter-domain routing facilities and smart 

bandwidth management fixtures. 

LDG exposes an API allowing coupling with applications. The interface to applications is 

bi-directional, enabling network performance and availability information to be abstracted 

upwards toward the application. Applications can request network services through this API. 

Applications can for example request a “cut-through” (high bandwidth, low latency) service 

allowing applications to bypass Layer 3 and directly transfer data over Layer 1 connections. 

Applications can further specify if they want this service on demand or via a time-of-day 

reservation. This kind of functionality is deemed especially valuable for the data-intensive 

applications used in research networks. 

   

6.8 Applications Drive Secure Lightpath Creation across 

Heterogeneous Domains 

 In this section, we describe how the above components were integrated into a system-wide 

platform preformed on transatlantic model between Amsterdam and Chicago [37]. In Fig. 6.16 

the testbed is depicted showing the three optical networks, each considered as a single 
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administrative domain. 

This demonstration realized an open, programmable paradigm for application-driven 

network control by way of a novel network plane the, “service plane,” layered above legacy 

networks. The service plane bridges domains, and exposes control to credited users/applications, 

and is part of the Lambda Data Grid. We have experimented with such service plane in an 

optical, large-scale testbed featuring two hubs (NetherLight in Amsterdam, StarLight [62] in 

Chicago) and attached network clouds, each representing an independent domain. The dynamic 

interconnection of the heterogeneous domains occurred at Layer 1. The interconnections 

ultimately resulted in an optical end-to-end path (lightpath) for use by the requesting Grid 

application. This experiment was done in collaboration with University of Amsterdam, this 

section focuses on my contribution and it relevancy to this thesis.   
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Figure 6.16: Transatlantic Lambda failover architecture. 

In Grid networks, users and applications need to gain greater control of network resources 

for them to exploit their atypical traffic patterns and meet their throughput/latency requirements. 

A domain is an independently managed network cloud exposing a set of ingress and egress 

points associated with Service Specifications. Provisioning an optical end-to-end path while 

crossing different domains is quite a challenge [2].   The optical control planes may differ among 

the multiple domains. It becomes crucial to establish common syntax and semantics for 

accessing network resources. This section presents a provisioning architecture that has the ability 

to integrate different network allocation approaches, as well as different styles of control over 

network resources. We reduce this architecture to practice via a “service plane” — a new 

software layer that resides on top of control planes such as ASTN, GMPLS, and JIT.  The 

service plane uses Grid Network Services (GNS) software agents. These agents allow users and 

applications on their behalf, to negotiate on-demand network services such as low latency 

connection, high throughput transport, network knowledge services, and third party services.  
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6.9 Transatlantic Lambda Failover 

The purpose of this experiment was to show Lambda failover between Amsterdam and 

Chicago.   We demonstrated this provisioning model during the Super Computing Conference 

[27] held in Pittsburgh, PA, USA. Three optical domains, NetherLight, StarLight, and OMNINet 

were part of the experimental testbed, representing Domain 1, 2 and 3 respectively in Figure 

6.16. NetherLight is the optical infrastructure in Amsterdam and the University of Illinois at 

Chicago manages StarLight. The inter-domain lambdas are a collection of optical entities 

necessary to establish a connection between peer networks. For instance, the connection between 

NetherLight and StarLight is a collection of SONET based optical Exchange Points [9] and 

transit provider links for long distances. 

In each domain, a single agent was given responsibility for the setup of intra-domain 

connections. It also connects ingress points to egress points in the domain under its control. In 

this testbed, we simulated a link failure by switching off a port on one of switches providing 

inter-domain connectivity, thus generating an inter-domain failure event. We then measured end-

to-end link restoration times across the three domains shown in Fig. 6.16. The elapsed time for 

both detection and restoration of the inter-domain failure was in the order of a minute. Although 

there are several ways to optimize such times, this is already a vast improvement of the usual 

hours to days required to restore a connection using conventional means such as phone or email. 

6.9.1 Experiment Analysis  

The Grid middleware was rebuilt for resource allocation and automatic failover of 

Lambdas between Amsterdam and Chicago, via NY and Canada, over a distance of about 

10,000km. This experiment measured the reservation and allocation of lightpath in about 100 

seconds, compared to the manual allocation of about 100 days.  Unlike a commercial model with 
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thousands potential links, this experiment used two Lambdas with much less complexity. This 

initial experiment demonstrated the potential to automate the initial concept into larger 

experiments with automatic provisioning and failover.   

The computational middleware was able to reduce the allocation time from months to 

seconds, allowing integration of these interfaces to Grid Computing applications and e-Science 

Workflows. Shifting from manual allocation to an automated computational reservation system 

and allocation via the Grid Web Services model opens the door for significant advancements in 

scientific research. 

With a novel provisioning architecture built upon a service plane, we have shown that it is 

possible to perform programmable, application-driven network control in an open fashion. The 

model has a minimal reliance on adjacent clouds implementing the same control plane standards. 

We have latched our open approach onto the software evolution curve (Web Services, Service 

Oriented Architecture) to best exploit dynamic service discovery and feature introspection across 

domains, without extensive code rewrites. Through a layered approach, we have shown how 

restoration can be fine-tuned to occur at the different places — i.e. the control plane for intra-

domain failures and the service plane for inter-domain failures.  



 

                                                             141 

 

Fig. 6.17: The current throughput line (top) shows the time interval at [140, 210] seconds that is required for the service plane to detect 

and recover the simulated inter-domain failure. The bottom line represents the overall throughput. 

 

 

Fig. 6.18: Similar to the above setup with the addition of getting back to the original Lambda from Amsterdam to Chicago.  
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6.10 Conclusion  

In this chapter, we presented the implementation of Lambda Data Grid and some 

measurements and analysis. Setting lightpath takes a longer time them traditional routing. The 

measurements showed that it may take longer in orders of magnitude in setup time; however, for 

large files the importance of time for setup is reduced in relation to  overall efficacy.   

The demonstrations and prototype systems described in this chapter have shown the value 

of provisioning a dynamic network through a Grid service platform. The system presented here 

overcomes limitations of traditional implementations and facilitates on demand optical channel 

(lightpath) provisioning. The Grid service implementation is OGSA compliant and is 

implemented using OGSI interface developed to ease the usage of the OMNInet by Grid 

applications. The service interfaces presented meets the needs of many user applications, and 

could be extended to include other features required by scientific applications. What follows is 

the introduction of Time Value and Time Window as part of network scheduling, an essential 

component in building scientific Cyber-infrastructure.   
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7 Scheduling – Time Window and Time Value 

In the previous chapter, we discussed the testbed, the experiments and analyzed some of 

the results. In this chapter, we will present scheduling service in terms of a multi-dimensional 

model.  No longer is it satisfactory to use computation job scheduling or prioritization of 

resources and availability.   The number of necessary services and the interactions between them 

complicates scheduling. Orchestration must take place in the scheduling of other services 

including computation, storage, visualization, and unique sensors, e.g. the telescope array field in 

the Netherlands.  

Constant availability is a present day Internet assumption. In reference to massive amounts 

of data comprising e-Science research, this assumption is not valid. Unlike the constant 

connectivity of the pubic Internet, scientists build dedicated small virtual topology for each 

experiment. The topology consists of a small span point-to-point topology, built for one 

experiment alone, used for the duration of the experiment, and is torn down at its conclusion. A 

typical experiment consists of three to seven connections between scientific equipment or 

institutes. As such, there are new challenges that arise. In this chapter, we will discuss these 

challenges along with proposed solutions.  

The following is an introduction of two new concepts: Time Window and Time Value. 

Connectivity is required in a specific time window and for a specified duration, accomplished as 

part of the Scientific Workflow in conjunction with the availability of other resources. Further, 

there is an inherent value associated with the connectivity based on time. For example, there 

would be no value in having a dedicated Lambda from Osaka’s massive microscope if the 
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computation at UCSD were not available, and/or if the visualization at Chicago’s EVL were not 

ready for presentation.  

In this chapter, we introduce a new concept devised to build a system of cooperation 

between the network middleware, the scientific middleware, and the Grid middleware.    

7.1 Scheduled Connectivity Service  

Network elements such as routers/switches, end devices, and physical links are essential 

for creating connections between end- users. A Grid network infrastructure is essentially an 

overlay network over physical networks for connecting end systems belonging to a Virtual 

Organization. As such, connectivity between end systems is an essential resource that glues the 

infrastructure together. 

With packet switched networks, connectivity is assumed always available under best-effort 

service and statistical multiplexing. A connection is never denied, but quality of the connection 

degrades progressively depending on the traffic conditions at the time of the connection. With 

most circuit-switched telecommunications networks, a connection can be denied or blocked if its 

QoS requirements are not met or network resources are not available. 

To provide a degree of stability and predictability for Grid applications, connectivity 

should be treated as a scheduled service, a Grid Scheduled Connectivity Service. With Grid 

Scheduled Connectivity Service, Grid applications can utilize a WS-Agreement service to 

negotiate connectivity resources that satisfy their QoS requirements before their actual 

deployment. Furthermore, the Grid Scheduled Connectivity Service allows network resources to 

be utilized flexibly and efficiently. 
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Connectivity services can be classified into several types depending on the specific type of 

service provisioning: DS-MPLS, pure DiffServ, and Lightpath provisioning, to name a few. In a 

dynamic optical network environment, connectivity between end systems can often be 

established by concatenating lightpath segments between two endpoints. In a DiffServ network, 

connectivity can be established by concatenating logical hops of the same class or DS codepoint. 

A Grid Scheduled Connectivity Service is just like any other Grid service; it has to expose 

its service through a Grid interface. For example, an interface for requesting lightpath 

connectivity should be rich enough to allow applications to express their own flexibility via 

under-constrained or loose-constrained requests. This allows for optimal scheduling, and for 

automatic rescheduling if necessary. The scheduling connectivity service considers the flexibility 

in the requests, the flexibility inherent in any conflicting current reservations, and other factors 

such as job priorities or predictive load balancing. It provides guarantees or advance reservations 

for channel availability between specific endpoints, with certain constraints. The reservations 

may be periodic and may be many days in advance. They may be policed by various resource 

reclamation policies, such as periodic application resiliency requirements. When rescheduled 

within the bounds of the under-constrained request to meet new requests, these changes are 

reported via a middleware query or notification mechanism. 

Once a WS-Agreement service is created for the connectivity resource, higher level 

scheduled services such as data transfer, storage, computation, instrumentation and visualization 

can be activated to support an application. 

As an example of use of the Grid Scheduled Connectivity service, a File Transport service 

can be scheduled between end systems by deploying a scheduled storage service and a Grid 

connectivity service. Often data-intensive applications require the transfer of a massive amount 
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of data sustained over a considerable period. For this reason, a Grid Scheduled Connectivity 

service is essential, and some form of high throughput transport protocol is required. GridFTP is 

often used to provide high-throughput file transport. Alternatively, an optimized transport 

protocol like SABUL/UDT [47] can also be used. 

 

7.2 Scheduling Service Scenario 

Consider an environment in which a client requests a certain large file to be transferred to 

its site under certain constraints related to the actual time of the transfer operation. For example, 

a High Energy Physics group may wish to move a 100TB data block from a particular run or set 

of events at an accelerator facility to its local or remote computational machine farm for 

extensive analysis. An application client issues requests related to data named in an abstract 

namespace. In this model, a client may be associated with a unique data store node on the 

network, and the request is to obtain a copy of the data to that node. It is important to ask, "Is the 

copy the 'best' copy?" The determination of "best" depends on, a) the content, b) the network 

connectivity/availability, and c) the location in the context of the process. The client issues the 

request and receives a ticket in response describing the resultant scheduling, including a method 

for modifying and monitoring the scheduled job. The client does not know, or care, about the 

actual source of the data, which may come from any of the nodes of the network; indeed, the 

source might be any one of a number of replicas of the original data file, chosen by the Data 

Transfer Scheduling Service, in interaction with other Grid services. The replica can be 

constructed out of data slices on several sources similar to some of the P2P concepts.  

Client requests include scheduling specifications. A typical scheduling specification is, 

"Copy data X to the local store, on machine Y, after 1:00 and before 3:00.” At the application 
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level, the Data Transfer Scheduler Service creates a tentative plan for data transfers that satisfies 

multiple requests over multiple network resources distributed at various sites, all within one 

Administrative Domain. The scheduled plan is formed based on knowledge of the requirements 

of the requests, the existence of data and its size, its locations and availability. At the middleware 

level, a network resource schedule is formed based on the understanding of the dynamic 

lightpath provisioning capability of the underlying network and its topology and connectivity. 

Co-reservation of network resources occurs at this level. At the resource provisioning level, the 

actual physical optical network resources are provisioned and allocated at the appropriate time 

for a transfer operation. Finally, a Data Handler Service on the receiving node is contacted to 

initiate the transfer. At the end of the data transfer process, the network resources are deallocated 

and returned to the pool. 

In the above scenario, there is a variety of procedural possibilities: Network resources may 

be unavailable, better plans can be scheduled, a better agreement can be negotiated, and a firm 

schedule will eventually be executed within the predetermined time window. Job requests that 

cannot be accommodated within the context of a current schedule may result in callbacks to 

clients asking them to reschedule their allocated jobs to better satisfy all current requests, or to 

satisfy newer, higher priority requests. In all, the system tries to satisfy all data transfers and 

network bandwidth requests, while optimizing the network usage and minimizing resource 

conflicts. 

7.3 Time Window Example  

  We developed a time window model that allows facilitation of scheduling under-

constrained requests. Figure 7.1 illustrates how the use of under-constrained requests and 

rescheduling works by considering requests for a single segment. In Figure 7.1a, a request has 
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been made for a 30-minute block (W), sometime between 4:00pm and 5:30pm. Since there were 

no previous requests, it was granted for the first 30 minutes in this time window. 

 

Figure 7.1a, 7.1b, 7.1c – Behavior of the scheduling algorithm as three successive requests are made to use one segment. 

In Figure 7.1b, a second request (X) was made. It was in the 3:30 to 5:00pm range, for 60-

minute slot. The time-window to satisfy the (X) does not meat (X) constrains if placed after the 

end of (W), this is in addition to waste of resources for the time between 3:30 and 4:00.   

In Figure 7.1c, the scheduler needs to shift the request to the beginning of the time window 

(3:30) and move (W), the first request, to immediately follow the second request’s completion. 

Both requests (W) and (X) are satisfied their under-constrained windows. 

The model presented above is a simplified view of time window and duration. An 

enhancement of this model was done by DTS requesting the data size instead of the time; e.g the 

request is to transfer a terabyte of data between 4pm and 8pm. This can be done in time X if we 

allocate one Lambda, or in X/2 if DTS allocates two Lambdas. This DTS enhancement gives the 
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scheduler more flexibility and another dimension for the allocation of dynamic durations instead 

of static time windows.  

During the waiting time for the data transfer, DTS keeps the Handler for callbacks from 

NRS for potential new proposed schedules within the time window. During each of the new 

proposed schedules, DTS, DHS and NRS exchanged information to synchronize the right sliding 

window for the right data transfer. The window is a floating window that could change based on 

the availability of managed service and in contrast to the always-available transmission concept.   

7.4 Time-Value and Time-Value Curves 

When looking at scheduling of network services it is important to look at the value of 

scheduling as a time function. With the shift from network on demand to scheduling, we 

introduce Time-Value and time value curves as functions to measure the total value of a network 

service at a specific time. The value of the data over time to enable non-functional requirements 

is to be taken into account when ranking service offerings to select which of several service 

offerings should be used to define the best value for the specific scientific experiment. For 

example, the value of a specific experiment may be extremely important and the value of the 

data might be extremely high if it is able to be executed within the next 24 hours.  After that 

time, the value of the data may be of significantly less value, since other events that could 

benefit from completion of the experiment may, by that time, have already occurred. The value 

of the information is different at different stages.    

The time-value information may be implemented as time-value curves that which may 

allow the value of the data process to increase over time, decrease over time, remain constant 

over time, or otherwise change over time.  For example, we can look the time-value curves in 

Figure 7.2.  The workflow may specify that the value of the network increase for a given period, 
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plateaus for a given period, and then decreases over time.  Figure 7.2 illustrates several graphs of 

different time-value curves that may be implemented.  Possible time value curves, including: 

• a linear increase in value over time 

• an asymptotic increase in value over time 

• a linear decrease in value over time 

• an asymptotic decrease in value over time 

• a level value over time 

• a plateau shaped curve in which the value increases linearly, remains constant, 
and then decreases linearly 

• a step value curve in which the information value is initially at one value and 
then drops to a second value at a particular point in time 

Other time/value curves may be used as well and the invention is not limited to an 

implementation in which one of these particular illustrated time/value curves is used to specify 

and/or adjust the priority of an experiment over time. 
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Figure 7.2 -  Time-Value Curves. 

  

7.5 Time-Value Curve Evaluation and Data Stream Transfer Adaptivity 

This work describes an architecture that makes use of an effective but relatively simple 

model for calculation of priorities from time-value curves.  These were then utilized to determine 

data stream transfer decisions involving transfer initiation.  We present some alternate advanced 

mechanisms for implementing such adaptivity which can augment the versatility of advanced 

scheduling tools.  

• A time-value curve library can include a variety of predefined curves suited 

for particular task requirements.  Curves would support non-linear as well as linear piecewise 

components. 
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• Weighted task system allows changing field circumstances to be fed back to 

the scientific workflow in the form of weights to be applied to the calculated priorities.  This 

allows scientists to have input based on experiment results, for example.  

• Integrated models for calculating value: past, current, and predicted 

future.  Rather than taking a point value in time for the time-value curve calculation, the total 

value through the current time can be used for the calculation.    

• Statistical prediction - Integrated models for calculating values: past, 

current, and predicted future could utilize statistical information from previous similar missions 

for time-value curve calculation and decision making.    

• Adaptation rezoning – sampling interval, window size, sliding window.  

These are modifications and refinements to calculation of the priority from an integral of time-

value curve up to the present time. 

• Experiment can have “Importance Level”.  This is similar to a weighting 

system for the time-value curves.   

• Black box Time-Value-Priority curve functions.  This allows “plug-and-

play” functions of arbitrary complexity and assignment to be utilized depending on experiment 

requirements.  These could be deployed at any time during the computation to support changing 

experiment requirements. 

• Predicted future value can be used for intelligent scheduling and also in the 

absence of sufficient current information for decision making. 
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7.6 Scheduling Service Architecture  

The Scheduling Service Architecture is a realization of the general architecture and was 

demonstrated at Super Computing in Pittsburg. Figure 7.3 illustrates the architecture. 

Applications can interact directly with either the Network Resource Service (NRS) or the Data 

Transfer Service (DTS) or both, as well as with other Grid services. Important to note is the 

separation of network services from file transfer services. The latter depends on the former, but 

network services may be requested on-demand or via advance scheduling, independent of any 

file transfer request. 

 

Figure 7.3 – The Scheduling Service Architecture. 

A request for network bandwidth to NRS may be satisfied by its own network scheduling 

and routing modules.  Both end-to-end and segment-by-segment requests are allowed. NRS 

decides which underlying networks to use to satisfy a request.  In the OMNInet [55] testbed 

described in Chapter 7, resources are controlled by ODIN [55] software developed under an NSF 

grant at Northwestern University.  Other networks might also be available and NRS can hide 

their implementation details from upper layers and present a uniform interface to the application 

layer. A request is authenticated in terms of security, and may be integrated with a policy server.  

Then the source data is verified according to certain criteria: Does the data exist?  Is it readable 
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to this user? How big is it?  Data set size determines how long the transfer operation should take, 

given expected network speeds over the segments chosen for the transfer, as well as IO 

capabilities of the end-point machines. At the scheduled time of a data transfer, the NRS 

allocates the segment-by-segment path.  The DTS then sends a request to the DHS running on 

the destination machine.  When the transfer is complete, DHS informs the DTS, which then tells 

the NRS to deallocate the path and return those resources to the pool available to service other 

requests. Results of the prototype implementation were presented at Super Computing at GHPN. 

7.7 Design of the Network Resource Service 

There are three primary goals for the design of the Network Resource Service: 1) to 

provide a high-level interface for applications and services to allocate bandwidth; 2) to provide 

transparent interfaces to a variety of underlying network control mechanisms; and 3) to provide 

reservation and scheduling functionality.  

A usable application-level interface is essential to making dynamically provisioned high-

bandwidth optical network resources available to a wide variety of applications, while hiding the 

complexities of the underlying network and network control mechanisms. Unlike packet 

switched networks, a dynamically provisioned wavelength is dedicated to only one user at a 

time. Thus, efficient utilization of dynamic wavelength provisioning requires scheduling, both to 

optimize the utilization of the underlying resources, and to provide applications with predictable 

and reliable bandwidth. 
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7.7.1 Scheduling Services 

Although the Network Resource Service supports both on-demand and scheduled 

allocations, scheduling is perhaps its most significant feature, and scheduling is an integral part 

of the design. 

The interfaces for requesting bandwidth should be rich enough to allow clients to express 

their own flexibility via under-constrained requests.  This allows for optimal scheduling, and for 

automatic rescheduling as well.  The network scheduling authority considers the flexibility in the 

requests, the flexibility inherent in any conflicting current reservations, and other factors such as 

job priorities or predictive load balancing.  It provides guarantees or reservations for channel 

availability between specific endpoints, with certain constraints.  These reservations are 

controlled and accessed through tickets, which can be shared between applications many days in 

advance.  They may be regulated by various resource reclamation policies.  The reservations 

may be periodic, following periodic application resiliency requirements.  When rescheduled 

within the bounds of the under-constrained request to meet new requests, these changes are 

reported via a client query or notification mechanism. 

Middleware services, such as data transfer services, must coordinate their activities very 

precisely with network allocations.  Therefore, the underlying scheduler used as the network 

authority can also be used to drive schedules exposed by other services.  These services may add 

their own request language and do initial pre-processing of the request before translation to the 

network layer.  For example, a data transfer service may receive requests that specify data in 

some abstract fashion.  The data transfer service may consult a replica location service to 

determine the actual endpoints, and it computes the length of the requested network reservation 

based on the requested file size.  
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For network scheduling purposes, each lightpath on each network segment is viewed as a 

sharable resource that can be dedicated for only one use at a time. The scheduler can also link 

these lightpath segments into scheduled end-to-end lightpaths. Generally the bandwidth provided 

by these end-to-end lightpaths is of interest to applications, so the interface hides the underlying 

segment-level scheduling from callers that do not need it. 

The scheduling of network paths requires coordination of multiple resources with 

heterogeneous constraints.  For example, different segments may lie in different domains of 

administrative control.  Some segments may have constraints such as limited windows of 

availability or high costs.  When multiple paths are possible, the choice of segments allows a 

further area of optimization.  All of this may be reconsidered as the system attempts rescheduling 

to satisfy new requests.  The extension of the scheduling problem to higher-level services such as 

data transfer introduces additional constraints for optimization.   

 

Some application services that use the network scheduler may allow additional avenues for 

optimization.  To take advantage of this, the network scheduler allows clients to request that they 

be included in a voluntary rescheduling protocol.  Via this protocol, a client is requested to 

consider rescheduling a previously granted reservation.  For example, a data transfer service may 

be able to source data from a different location to free up a network segment that is needed by 

some other service during the currently reserved time.  

7.8 Prototype Design 

We designed and implemented prototypes of the Network Resource Service (NRS), the 

Data Transfer Service (DTS), and the Data Handler Service (DHS). The primary goal for this 

implementation was to test the architectural concepts described above on a real metro-area 
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optical network. In particular, we wanted to 1) implement a suitable application-level interface to 

the Network Resource Service for allocating bandwidth to applications; 2) develop a resource 

scheduling infrastructure suitable for optical networks and other resources; 3) provide for 

interoperability with Grid applications and services using emerging standards; and 4) collect 

meaningful test data using the prototype implementation on a real network. 

7.8.1 Network Resource Service Interface and Functionality 

The design of the NRS presents client applications and services with a Java interface that 

represents advanced reservation requests in application-level terms. Lower-level details 

including the underlying optical network control and management protocols, the network 

topology, and the OGSI / Web Services interface are hidden from the application. 

To request a bandwidth reservation, a client application simply specifies the two hosts it 

wants to connect, the duration of the connection, and the time window in which the connection 

can occur, specified by the starting and ending time of the window. As an enhancement to this 

approach, the DTS takes the data size and optimize the duration and bandwidth required for 

transferring this data size.  

The NRS returns a “ticket” describing the resulting reservation, meeting the given 

requirements. This ticket includes the actual assigned start and end times, as well as the other 

parameters of the request. The ticket can be used in subsequent calls to change, cancel, or obtain 

status on the reservation. The NRS will allocate the indicated lightpath at the agreed-upon time, 

as long as the reservation has not been canceled or changed since it was made. 

There is no requirement in this implementation for the client application to “reconfirm” or 

“claim” the reservation, although the application can do this by checking status at the time it uses 
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the allocated lightpath. The NRS considers the reservation confirmed when it is made, but 

external events could intervene, for example a network outage, which would make it impossible 

for the NRS to honor the reservation. 

Because the current underlying network lacks an interface to provide topology information, 

our initial implementation does no dynamic topology discovery; instead it relies on tables to 

describe the network topology. 

7.8.2 Data Transfer Service 

The Data Transfer Service (DTS) is a middleware service built on top of the NRS and its 

scheduling facilities. It provides an interface for applications to request the transfer of named 

data sets from one location on the Grid to another. In the initial implementation, the source host 

and path name are explicitly required. In the future, with the use of a replica location service, 

only an abstract source data set name will be required and DTS will choose an appropriate 

physical source location. Data transfer requests can also specify scheduling parameters for the 

transfer, using the same syntax as those to NRS: window start and end times, and transfer 

duration.  

DTS may do some processing before calling on the NRS scheduling facility.  For example, 

it might find the appropriate data source, verify its existence, size and accessibility, and interacts 

with the destination system storage scheduler. The client's request, perhaps modified by 

additionally discovered constraints from this process, is passed to the NRS scheduler, and the 

received job ticket is passed back to the client. A cron-like entry is made for the DTS to wake up 

at the scheduled network allocation and data transfer time. 
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At the scheduled transfer time, the DTS sends a message to a Data Handler Service (DHS) 

running on the destination host, which then opens a connection to the source host and transfers 

the data. Status is passed back to the DTS and is available to client queries and for registered 

client callbacks.  

7.8.3 Grid Integration 

The choice of designing framework of the prototype was in large part dictated by the fact 

that the wealth of distributed, data-intensive Grid applications are very likely candidates for 

using the network and data services described here. In short, we chose to implement our services 

within the OGSA framework [29], as OGSI Grid Services [44]. The current trend is to 

implement using Web services, follow OGSA standards, and be part of WSRF. 

Our first implementation represents fully-OGSI compliant Grid Service interfaces for use 

by Grid applications. Because OGSI is an extension of Web Services, our implementation is also 

accessible via standard Web Services methods. In their current form, our services fit the stateless 

connection model of Web Services. We have not made use of OGSI provisions that provide for a 

more stateful, object oriented model, such as service data and transient service instances, nor 

have we implemented any callback facilities.  

We implemented these interfaces using Version 4 of the Globus Toolkit [40], using SOAP 

and the JAX-RPC API. Additionally, the interfaces are wrapped in Java classes that effectively 

hide the OGSI middleware from the applications that call them. In later experiments, we 

advanced the system from an OGSI base to comply with WSRF. 
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These interfaces are intended to provide the applications that call them with the basic 

functionality they need, but without requiring any knowledge of the underlying networks or 

network control and management protocols.  

Overall, our work has confirmed our initial optimism and opened up many possible 

approaches to exploiting the network infrastructure as an always available and easy to use first 

class resource. 

7.9 Scheduling Future Work 

The rich and complex nature of the issues of providing architecture for interfacing the Grid 

to the dynamic optical network as a service provides fertile ground for further work, especially 

as middleware and reference applications mature and further experience with the behavior and 

implications of this work is gained. We can separate the ideas, more or less, into first step 

elaborations or extensions of the prototype we have described in this chapter, second step, of a 

grander vision in a  third step of long term directions, although there is much overlap in the 

categories. 

In the first step, it is necessary to flash the initial concepts demonstrated in the early 

functionality discussed here. This includes exploring more complex topologies, mechanisms to 

route through them, and the interaction of this facility with scheduling in relation to the 

underlying optical network; creating and exposing interfaces for various administrative client 

services; optimizations previously noted in the ODIN and OMNInet circuit allocation and 

deallocation; and other items that would allow a better characterization of the architecture and its 

implications for the Grid. 

In the second step, some areas of improvement will continue to evolve. These include data 

persistence and restart capabilities for the various services; enhancements to the scheduling 
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modules to allow for a richer request language, including job priorities, event based start times, 

user-specified cost/utility functions, network/segment cost models, an application resiliency 

protocol, and the ability to interface to various types of client callbacks; enhancements to the 

topology routing components to perform re-routing as needed and to use the cost models and 

utility functions in their figure of merit calculations; a privileged administrative client allowing 

control of the services from a remote application; and other reference applications, oriented both 

towards e-Science and towards possible future commercial uses of this infrastructure. 

Although the current interfaces to the DTS and NRS provide applications a way of 

allocating network and data resources, we believe that in many circumstances it would be easier 

for the user, and make more efficient use of resources, if Grid job schedulers and resource 

allocators could also allocate and co-allocate these resources in conjunction with other resources 

needed by a job. For example, a job might need to run after certain very large files had been 

staged via an optical link, or in a compute environment where and when a dedicated optical path 

was available to another location. Substantial work remains to be done to define and implement 

the necessary interfaces to provide these facilities. 

Third step areas include extensions of many of those mentioned in the previous paragraphs, 

as well as exploring the use of, and by other Grid services, such as: 

• replica location services, security services, other schedulers, both as clients and as 

services used;  

• enhancements to the Grid services model, as discussed above, to allow the indexing 

and advertising of services by something as simple as serviceType/host/port; negotiations 

between services, running on multiple administrative domains;  
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• use of predictive models of network and other resource use to inform scheduling 

and routing activities;  

• multiplexing multiple Lambdas to create "fatter pipes" for even greater throughput;  

• and exploring ways of filling these "fat pipes" through collaboration with others in 

the Grid community addressing these issues. 

There are truly great opportunities here from the highest application level, through the 

interaction of Grid middleware services, down to the various optical networking layers, to add to 

the functionality and usefulness of this architecture that weds the needs of the Grid to the 

network as a service. 

7.10 Summary 

In this chapter, we discussed network scheduling, introduced the new concepts of time 

value and time window, and elaborated on the need to embed these concepts into a Cyber-

infrastructure. We designed and implemented prototypes of the Network Resource Service 

(NRS), the Data Transfer Service (DTS), and the Data Handler Service (DHS). Within the 

framework of building the new NSF Middleware Initiative (NMI) for revolutionizing science 

through Cyber-infrastructure, my goal is to incorporate the innovations into the broader scheme, 

which to date is missing these vital elements. In case of multiple under-constrained requests, we 

may face a situation where the system cannot meet all requests. In this case, the final decision 

and the priority are determined by the Scientific Workflow. The network resource information is 

shared with the scientific domain middleware across the vertical infrastructures.   

What follows in Chapter 8 are algorithms and sets of sub-algorithms to support the 

scheduling presented in this chapter.
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8 Scheduling Algorithms for Network Path Allocations 

In Chapter 7, we described scheduling service architecture, Time-Window and Time-

Value. We now shift from the service to the algorithms. The algorithms reflect the multi-

dimensional nature of the environment, and illustrate the complexity on a very small optical 

topology. It is necessary for the network domain to hide the internals and simultaneously to 

expose its ability to adapt, while maintaining the network authority. Complexity arises from the 

impedance mismatch across technology domains and administration domains.   

In reference to the public Internet, it is possible to look at network scheduling as a one-

dimension problem, and as such, it appears highly solvable. However, when data requirements 

are thousands of times greater than typical Internet cases, the scope of the problem dramatically 

increases. 

Previous research work tends to treat network scheduling as a one-dimensional problem. 

We do not address network scheduling as a self-contained entity, but rather, as a process that 

must exist within the context of network reservation and allocation inside the big e-Science 

workflow picture, and as part of the Cyber-infrastructure. We address the interaction, 

collaboration, and negotiation between the network middleware and the scientific workflow, 

scientific middleware, and grid middleware.   

The assembly of a unique network topology for each scientific experiment requires an 

orchestration of resources.  This can only occur if the network “intelligence” software 

completely understands the requirements and can adapt to all other components 
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What follows is a description of a simple topology within a simple scenario, and a 

schematic that addresses challenges that arise. We introduce two new ideas of Segment 

Reservation Authority (SRA) and Path Reservation Authority (PRA), and show how to discover 

a set of candidate paths, construct proposals for satisfying the reservation request, evaluate all 

proposals, and select and implement the best proposal. All of this is done with PRA and several 

SRA negotiations in order to contract the right path proposals. Furthermore, we explain how the 

information is communicated to the Cyber-infrastructure middleware such as the National 

Partnership for Advanced Computational Infrastructure (NAPACI) and NSF Middleware 

Initiative (NMI)], and how the resources negotiate and align according to the availability of other 

resources.    

8.1 Resource Scheduling  

An optical connection between two nodes is one that can only have a single user at a time; 

thus, the concept of network scheduling comes into play. A scheduled, dedicated, circuit-

switched connection could be an essential tool for e-Science application transferal of immense 

amounts of data. In practice, optical connections have been statically provisioned and dedicated 

to a single user. The proposed shift is from statistical multiplexing to a plane with an 

orchestrated, dedicated connection allocated for a period of time.  

Another differentiation is that a Lambda Data Grid provides a knowledge plane that 

understands the application requirements and allocates network resources. Unlike traditional 

packet switching networks, the forwarding decision moves from packet headers in L3-L4 to 

external intelligence that interacts with L7 and L0.  
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Figure 8.1 represents a scheduling reroute. In the upper Figure, a “red” route was allocated 

between “A” and “B”; a new “blue” request comes in for “X”, the segment in use. In the bottom 

Figure, first the “red” route can be altered to use a different path to allow the “blue” route  to also 

be serviced in its time window. 

A

D

B

C

X

7:00-8:00

A

D

B

C

X

7:00-8:00

Y

 

Figure 8.1 – Scheduling via alternate route for the same Time-Window. 

Figure 8.2 is a screenshot for running the algorithm with three time windows and no 

conflicts. The algorithm is running on a simple case of four nodes and possible six connections 

as depicted on the bottom of the screen. The top section, each of the six lines represent single 

link, where we can see in narrow line the time window requested and in the wide line the time 

allocated.  

Figure 8.3 is a screenshot for the results after adding the conflicted requests, meaning 

additional request for the same segment for the same time-window. For example segment 3-4 

shifter - 
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Figure 8.2 – Simple time-window requests with no conflicts. 

 

Figure 8.3 – Adding new requests will be resolved to avoid conflicts. 

What follows is a discussion of, 1) overview and terminology, 2) distributed scheduling 

algorithm, 3) simple scenario of  durations with windows, and we conclude with, 4) future work 

and current limitations. 

8.2 Overview and Terminology 

We consider networks as consisting of multiple segments, with special nodes termed 

endpoints and paths constructed between those nodes.  The network may have dynamic 

topology, the segments may have special qualities such as variable channel number, and there 
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may be many types of cost functions associated with network loading.  Our work focuses on the 

general problem of optimizing a schedule of advance reservations for paths between two given 

endpoints. There may be multiple sets of segments that qualify as a path between the two 

endpoints, and the advance reservation generally does not specify the segments that will be 

involved.  Of particular interest is the case of reservations that may be rescheduled within 

associated bounds, because this case allows for a significant degree of optimization, regardless 

of the cost model in use. 

In general, segments are assumed to be independently scheduled, each with its own 

advance reservation agent termed a "Segment Reservation Authority,” or SRA.  The primary 

client of an SRA is a "Path Reservation Authority,” or PRA.  A PRA is a higher-level service 

that provides advance scheduling of paths; that is, it reserves network paths between two 

endpoints by getting segment reservations from the SRAs.  The client of a PRA can be an end 

application, or a further middleware service.  In the following discussion, we assume only one 

global PRA, and no other clients of the SRAs.  However, this algorithm can be extended to allow 

multiple PRAs sharing some SRAs as needed, as in the case of multiple administrative domains. 

SRAs issue fixed reservations, while the PRA issues reservations that could possibly be 

rescheduled within certain requested bounds.  Such functionality is important for achieving 

optimal usage of network resources, but requires client applications to work with a reservation-

ticket model in which the reservation may be moved unless it is locked down. The PRA attempts 

to satisfy client requests for advance reservations of paths between endpoints.  Optionally, the 

client-requests may contain other attributes, such as number of channels.  In general, requests are 

under-constrained, i.e. they allow some flexibility in how they are satisfied. This creates an 
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optimization problem, a challenge to satisfy requests in the most globally cost-efficient manner.  

If previously scheduled reservations may be shifted within the bounds of their requests, better 

global solutions may be realized. The client request language for path reservations may be 

considered in general terms.  The simplest case is treated in more detail below, and reflects a 

request for a path between endpoints End A and End B, to last a given duration D, with a 

specified "start after" time SA and "end before" time EB, with all network segments having a 

single available channel.  However, the high-level algorithm described here could apply to much 

richer scenarios, such as a request for a given total aggregate throughput within a certain time 

frame, with soft boundaries, or "utility functions," supplied as part of the request, and with more 

than one possible channel per segment. 

The issue of concurrency and synchronization deserves a special note.  This high-level 

algorithm can be applied in multiple situations that may require various notions of 

synchronization.  At one extreme, the entire system can be synchronized at the request level, so 

that multiple client requests are queued and executed sequentially.  This is feasible if using a 

single monolithic service for all SRAs and the PRA.  At another extreme, multiple SRAs and 

even multiple PRAs can be coordinated to allow concurrent request processing using a 

transaction protocol.  The design of such a transaction protocol is a significant project in its own 

right, one that is not being attempted here. 

8.3 Distributed Scheduling Algorithm 

By assuming certain provided services, it is possible to present a high-level algorithm for 

the basic scheduling problem as described above in a general setting.  This is a framework for 

specific low-level algorithms that are adapted to the needs of a particular implementation.  The 

purpose is to find good-enough solutions, not necessarily the ultimate ideal ones.  This is a 
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distributed algorithm, with essential elements of computation performed by potentially 

independent entities.   

8.4 High-Level View 

At the highest level, the algorithm consists of four steps.  Given a request for a path 

reservation as described above, the PRA attempts to create a reservation as follows:  

1) Discover a set of candidate paths between the two endpoints, exclusive of 

reservations. In a large network, it may not be feasible to discover all paths. 

2) Construct proposals for satisfying the reservation request, which may 

involve changing other existing reservations.  If so, the proposal includes the reservations to be 

changed and the exact way in which they should be changed; e.g., this may involve using a 

different path for an existing reservation.  Proposals are guaranteed to be “correct” in that all 

proposed reservations may be implemented without a conflict with any existing reservation. 

3) Evaluate all proposals and select the one that best maximizes utilization, 

balancing all costs. 

4) Implement the chosen proposal, beginning with any required changes to 

existing reservations. 

From a high-level point of view, each of these steps is straightforward, except for step two.  

Topology discovery and proposal evaluation may use complex heuristics in any specific low-

level implementation; this is not of concern here. 
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The bulk of the algorithm discussed here is concerned with the construction of plausible 

reservations.  If rescheduling of previously issued reservations is not allowed, a very 

straightforward algorithm suffices to find a suitable open window of time shared by each 

segment in the path, with optimization of any utility functions supplied with the request, for each 

candidate path. If no window can be found, the request is added into a waiting list with 

notification to the application. The system is constantly changing and optimization is on going. 

A waiting list is taken into considerations during this optimization. When a window is found, the 

application is notified specifying the available future window.   

If rescheduling is allowed; however, significant optimization in total network usage can be 

achieved.  This algorithm is concerned with the problem of identifying proposals that may 

involve rescheduling, while satisfying all reservation constraints, prior and current. 

Reservation proposals, including reservation change proposals, are constructed via a 

recursive interplay between the PRA and the “segments” (SRAs).  In brief, the PRA asks the 

segments for proposals.  In turn, the segments ask the PRA about the feasibility of changing 

existing path reservations with conflicting segment reservations.  The PRA checks on this by 

effectively removing the reservation in question and then attempting to schedule it again as a 

new request, using the original reservation request.  This, in turn, calls back into the segments, 

and the recursion continues.  The recursion must take care that the reservation is never actually 

removed, and also to pass a context of presumed reservation changes in order to allow changes 

involving multiple reservations.  This algorithm permits multiple points at which recursion depth 

is controlled, e.g. through cost functions. This would most likely be a tunable parameter, 

assuming different values appropriate for different network sizes. 
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The remainder of this section describes this more precisely, as depicted in Figure 8.4.  The 

top-level of the “four-step algorithm” is “CreateReservationFromRequest,” executed by the PRA 

given a client request.  This makes use of a sub-algorithm “ConstructProposals.”  The recursion 

between segments and paths enters through the SRA function “GetWindowsForRequest,” which 

calls back to the PRA “ProposeReschedule.”  ProposeReschedule effectively executes steps 1 

through 3 of the top-level CreateReservationFromRequest, and in so doing may recurse.  

PRA

CreateReservationFromRequest

SRA1

SRA2

SRA3

(ConstructProposals)

GetWindowsForRequest

ProposeReschedule

etc.

ConstructProposalForWindow

 

Figure 8.4 – Four-step algorithm. 

8.5 PRA: CreateReservationFromRequest 

Definitions:  

SegmentReservation –  an advance reservation for the use of a segment, with specific attributes 

such as bandwidth, associated with an ‘owner’ PathReservation, with a specified reservation 

authority and reservation ticket in the case of multiple PRAs. 

 PathReservation – an advance reservation for network resources between two endpoints, with 

specified start and end times, using a specified list of segments and associated 

SegmentReservations, all of which share the same attributes.  Every PathReservation is 

associated with a unique PathReservationRequest. 
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PathReservationRequest – a request for a PathReservation specifying the endpoints but 

with no reference to the choice of segments.  The request contains “Constraints” that affect the 

possible satisfaction of the request.  This is typically a temporal constraint, but it could have 

other qualities as well, such as number of channels, or a request that the reservation not be 

rescheduled once issued.  Although referred to generically, there is a simple procedure to 

determine if a given proposed PathReservation satisfies a given PathReservationRequest. 

Optionally, this procedure may produce a "score" or "cost" rather than a binary satisfied/not 

satisfied distinction.  

PathReservationProposal(PRP) –  a proposal for satisfying a PathReservationRequest 

contains a list of segments, a start and end time, other attributes such as number of channels, and 

a PathReschedulingPlan for existing path reservations as described below. 

PathReschedulingPlan – an ordered list of existing PathReservations along with possibly 

new paths and new start/end times.  A PathReschedulingPlan can be executed by first deleting all 

of the existing PathReservations referenced by the plan, and then recreating each reservation 

using the new segment list and new start/end times.  Optionally, a PathReschedulingPlan may 

contain an associated cost computed during its construction. 

NetworkResourceReporter (NRR) – a service encapsulating knowledge of the network 

resources (topology, channels, etc.), including schedules of availability.  The NRR reports 

known network resources independent of the SegmentReservations managed by the SRAs, 

possibly consulting outside entities or other hardware-level schedules.  The NRR provides a 

single function: 

[path_records] = ReportPaths 
(  endpoint1,  
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  endpoint2,  

  timewindow ) 

 

Given a pair of endpoint nodes and a specific time interval, it reports a set of paths between these 

two nodes that  is valid during this time interval. Alternatively, it may report paths that  are 

available for only some sub-interval, along with the available sub-interval.  Note that if the 

network is too large to construct all possible paths, the NRR produces a list of plausible 

candidates, and only these are considered by the scheduling algorithm.  This functionality is 

treated as a “black box” by the algorithm. 

 Given:   

– a network of segments with named endpoint nodes, an NRR as defined above, and associated 

SRAs 

– an existing set of PathReservations, each PathReservation consisting of a set of 

SegmentReservations and an associated PathReservationRequest 

– a new PathReservationRequest for a path between Endpoint1 and Endpoint2, with associated 

Constraints 

Problem:  Construct a PathReservation that satisfies the PathReservationRequest while 

minimizing the costs of the request constraint satisfaction and the associated ReschedulingPlan, 

or report that no satisfaction is possible. The nature of the cost is determined by many factors. 

The input to this algorithm is a linear number that is the result of a function of a vector of many 

parameters. In this algorithm, we did not determine the exact value of each parameter, nor the 

exact function. The value is based on the time value described in Chapter 7, application 

requirements, negotiation and renegotiation with the applications, predicted network availability 

at a given time in the future, and the cost of other resources required in the co-scheduling.   The 
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goal is to minimize the cost of an individual reservation and to maximize the utilization of the 

entire system.  

Step 1 (Topology):  Obtain a set of possible paths ≤P≥ 

        1a.  Invoke the NRR service's ReportPaths function to get a set of possible paths ≤P≥ 

from the PathReservationRequest’s  Endpoint1, Endpoint2, supplying a time-window large 

enough to cover all possible times that would satisfy the request Constraints. Open bounds can 

be represented by arbitrarily large values. 

       1b. (optional) Compare the subinterval reported with each possible path to the request 

Constraints, and remove any paths from ≤P≥ which could not satisfy the Constraints. 

At this point ≤P≥ is a set of paths known to satisfy the physical resource constraints of the 

request.  The required resources will be physically available, but may be otherwise reserved.  In 

simple scenarios with small networks, this step may consist of nothing more than a table lookup, 

assuming all possible paths between all endpoint pairs are pre-computed. 

Step 2 (Proposal Generation):  Obtain a (possibly empty) set of possible 

PathReservationProposals, ≤PRP≥.  For each path P in ≤P≥, with optional constraints reported 

by the NRR, get a (possibly empty) set of PRPs by invoking the PRA ConstructProposals 

function with the path P (see below).  Accumulate these sets for all paths in ≤P≥ to generate the 

set ≤PRP≥. 

Step 3 (Proposal Evaluation):  Assign global costs to each proposal in the set ≤PRP≥, by 

computing the satisfaction measure of the proposed reservation against the request Constraints, 

and optionally adding the reported ReschedulingPlan costs or any other cost measure.  This step 

is dependent on the exact client-request language and cost models. 
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Step 4 (Proposal Execution):  Select the minimal cost proposal from the ≤PRP≥ set.  

Execute the associated ReschedulingPlan, changing existing reservations as specified in the 

indicated order (see ReschedulingPlan definition above).  Create the new proposed 

PathReservation, creating new SegmentReservations as specified. 

END CreateReservationFromRequest 

This algorithm obtains the topology, propose set of possible path reservations, evaluates 

the proposals, and selects one with minimal cost. It assumes a simple and small topology, on a 

single domain, with full control, and equal bandwidth on all links. This is not the case on a 

typical network, but provides an initial view of the needs of a real network. Without any 

optimization, the algorithm runs for minutes on a standard PC before selecting a minimal cost 

proposal on a small network. The complexity will grow substantially with a real network. The 

assumption is that this type of computation is done in the background during hours and days 

prior the path reservation.   

 

8.6 PRA: ConstructProposals 

Define: 

SegmentReservationRequest – identical to PathReservationRequest, but with a single 

specified segment instead of endpoints. 

SegmentReservationAuthority (SRA) – a service providing low-level advance reservations of 

a particular segment.  In practice, many or all segments may be serviced by the same “meta” 

SRA service.  The SRA provides the following functions, which are described as sub-algorithms 

below in Figure 8.5. 
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≤[currentWindow, largestWindow]≥ = GetWindowsForRequest 

(  PathReservationRequest,  

   ≤allowedWindows≥    ) 

PRP = ConstructProposalForWindow 

(  window,  

   priorReschedulingProposal  ) 

 

Figure 8.5 – SRA sub-algorithms. 

Given: a path P of segments and an existing set of path and segment reservations and a 

new ReservationRequest as described above. 

Problem: construct a set of PathReservationProposals (PRPs) that employ this particular 

path and satisfy request constraints.  

Step 1:  Pick any segment, S1, and call the associated SRA:GetWindowsForRequest 

function, with an allowed window constructed from the request large enough to cover all 

possible reservation satisfactions. 

Step 2:  Iterate the above for all segments in the path, using the resulting set of windows as 

the AllowedWindows parameter for the next segment. 

If the window set becomes empty, return an empty set from ConstructProposals. 

Step 3:  The final window set is now a set of possible windows for a PRP.  For each 

window in turn: 

3a: Construct a specific reservation time within the window chosen to optimally satisfy the 

original request Constraints. 
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3b: Call ConstructProposalForWindow on the SRA associated with any segment, with null 

ignoredPathReservation and no prior rescheduling proposal. 

3c:  Iterate the above for all segments in the path, using the result PRP from the previous 

segment as the prior PRP for the next.  If this method fails (returns null) for any segment, 

advance to the next tested window. 

3d:  If all segments pass, add the final PRP to the ConstructProposals result set, and 

advance to the next tested window.  

END ConstructProposals 

This sub-algorithm constructs a set of path reservation proposals that employ this particular 

path and satisfies request constraints. 

8.7 SRA:  GetWindowsForRequest 

Given: a path P of segments and an existing set of path and segment reservations and new 

path request as described above. 

Problem: construct a set of pairs of windows that represent possible reservation times for 

this segment that match the conditions of the request.  Each window pair consists of an existing 

window and a maximum window size. The maximum window is obtained by allowing 

rescheduling of existing path reservations. 

Step 1:  Examine the existing SRA schedule to identify all possible windows that intersect 

the request constraints. 

Step 2:  For each window identified in step 1, identify the PathReservations corresponding 

to bounding SegmentReservations that constrain the window size.   
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Step 3:  Perform sequential selective winnowing based on the existing schedule: 

Step 3a:  For each PathReservation identified in step 2, call the PRA ProposeReschedule 

function with an exclusion window calculated to cover the maximum useful window for the 

original request Constraints.   

Step 3b:  Use the results from the ProposeReschedule calls to compute a maximum resized 

window for this window, and append the “window/maximum window” pair to the return set, or 

exclude this window if the ProposeReschedule fails to construct a large enough improvement. 

END GetWindowsForRequest 

This sub-algorithm adds another new dimension of time-window selection to the 

previously presented path selection. Selecting the right time-window for the right path selection 

is a complicated problem. For the tested assumptions presented in Section 8.6, and the time-

window presented in Section 8.7, we found additional complexity in the order of about a 

magnitude.   

8.8 SRA: ConstructProposalForWindow 

Given:  a path P of segments and an existing set of path and segment reservations and a 

new path request as described above, a specific set of reservation times, and a prior rescheduling 

proposal of reservation changes to assume.  The specific reservation times were previously 

reported as possible by the GetWindowsForRequest function. 

Problem:  Construct a new rescheduling proposal that incorporates the prior proposal and 

adds new rescheduling as needed to allow a reservation for this segment at the specified times. 

Step 1:  Identify the PathReservations corresponding to bounding SegmentReservations 

that interfere with the requested reservation times. 
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Step 2:  For each PathReservation identified in step 1, call the PRA ProposeReschedule 

function with an exclusion window equal exactly to the requested reservation window.  Return 

the accumulated rescheduling proposal, or null if the ProposeReschedule fails. This may happen 

due to rescheduling interactions that could not be detected during the GetWindowsForRequest 

procedure.   

END ConstructProposalForWindow 

For a small network, this looks like a linear extension of path selection.  

8.9 PRA: ProposeReschedule 

Given: a path P of segments, an existing set of path and segment reservations, an existing 

path reservation, a supplied “exclusion window” that the reservation should avoid, and a prior 

rescheduling proposal of reservation changes to assume.  

Problem: construct a PathReschedulingPlan that reschedules this path reservation to avoid 

the exclusion window as much as possible.  This may entail a choice of a different segment list 

for the path. 

8.9.1 Schema:  

 ProposeReschedule follows a parallel execution track to the top-level 

CreateReservationForRequest.  However, it uses variants of each of the functions above 

(ConstructProposals, GetWindowsForRequest, ConstructProposalForWindow) that take 

additional parameters “ignoreReservation” and a prior rescheduling proposal, then the original 

client request language is extended with the exclusion window.  The “ignoreReservation” 

parameter is used to specify the reservation being rescheduled, and it effectively means that the 

particular reservation should be ignored for purposes of schedule planning for its successor. 
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END ProposeReschedule 

This sub-algorithm does not guaranty to construct a new reschedule proposal. Similar to 

the results of  this sub-algorithm, after several simple manual analytical or graphical exercises 

with pencil and paper, we could not find a window for a rescheduling solution. For future work, 

we suggest to enhance this algorithm to guaranty a solution.  

8.10  Simple Scenario:  Durations with windows 

This section describes a specific implementation of a simple case.  The client request 

language is for reservations of a specified duration, with a specified “start after” and “end 

before” time and no bandwidth information.  The client cost function returns a simple success or 

failure to satisfy these constraints.  The same monolithic server implements all reservation 

authorities and path reservation authority.  

In this scenario, the function of the NRR (step 1 of the main algorithm) is performed by a 

simple table lookup, and proposal evaluation (step 3) picks the proposal with the fewest required 

reschedulings.  It is assumed that there are no other sources of network allocations. 

ConstructProposals, GetWindowsForRequest, ConstructProposalForWindow, and 

ProposeReschedule all “slide” reservation windows forward or backward in time, respecting the 

requested “start after” and “end before” constraints of all reservations and doing all the recursive 

bookkeeping.  This greatly simplifies the recursion logic, and guarantees recursive termination 

since reservation changes are always in the same direction.  The first proof-of-concept prototype 

does not change the order of path reservations, but simply moves them forward or backward 

while retaining their relative order. 
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8.11 Summary 

This chapter presents a four-steps algorithm that, given a request for a path reservation the 

PRA, attempts to create a reservation as follows:  

1) discover set of candidate paths,  

2) construct proposals for satisfying the reservation request,  

3) evaluate all proposals and select the one that best maximizes utilization, balancing 

all costs, and  

4) implement the chosen proposal, beginning with any required changes to existing 

reservations.  

The four-step algorithm reflecting the multi-dimensional nature of the environment and 

illustrate the complexity on a very small optical topology. It was necessary for the network 

domain to hide the internals and simultaneously to expose its ability to adapt, while maintaining 

the network authority. Complexity arises from the impedance mismatch across technology 

domains and administration domains. 
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9  Summary and conclusion 

 
In this thesis, we describe the building of a new network middleware that is integral to 

Grid middleware to manage dedicated optical networks. In simple terms, we built an 

orchestration for specifically dedicated networks for e-Science use only. We believe this research 

represents one of the pioneer efforts in encapsulating the network resources into a Grid service, 

accessible and schedulable through the enabling architecture. As such, it opens up several 

exciting areas of research discussed in the future work section. 

The nature of new e-Science research requires middleware, Scientific Workflows, and Grid 

Computing in a distributed computational environment. This necessitates collaboration between 

independent research organizations to create a Virtual Organization (VO). Each VO addresses 

organizational needs across a large scale geographically dispersed area, and requires the network 

to function as a fundamental resource. We have built a technology that allows access to abundant 

optical bandwidth using Lambda on demand. This provides essential networking fundamentals 

presently missing from Grid Computing research, overcoming bandwidth limitations, to help 

make VO a reality.    

Essential to e-Science research is the ability to transfer immense amounts of data, from 

dozens to hundreds of TeraBytes, and even PetaBytes, utilizing Grid Computing as the 

fundamental platform to conduct this big-science research. Vast increases in data generation by 

e-Science applications, along with advances in computation, storage and communication, have 
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changed the nature of scientific research. During this decade, we will continue to see 

advancements, including crossing the “Peta” Lines: Petabyte, Petaflop, and Petabit/s.    

In the next decade, e-Science requirements will be for a network with a capacity millions 

times greater than today’s public Internet. The distribution of large amount of data is limited by 

the inherent bottleneck nature of the public Internet architecture and packet switching 

technologies. Bandwidth limitations inhibit the advancement and utilization of new e-Science 

applications in Grid Computing. These emerging e-Science applications are evolving in data 

centers and clusters; however, the potential capability of the globally distributed system over 

large distances is yet to be realized.   

Current network orchestration is done manually, in a labor-intensive manner via multi-

party conference calls, emails, yellow sticky notes, and reminder communications, all of which 

rely on human interaction for outcome, crossing organizational boundaries. The work in this 

thesis automates the orchestration of networks with other resources, better utilizing all resources 

in a time efficient manner. Automation allows for a vastly more comprehensive use of all 

components and removes human limitations from the process.  The network becomes a first-

class managed resource akin to computation, storage, data, unique sensors, and visualization. 

Together with computation and data, scientists can co-allocate and co-schedule resources for 

greater utilization. 

This thesis reports automated Lambda provisioning from Chicago to Amsterdam in 70-100 

seconds, compared to approximately three month it takes for manual scheduling and allocation.  

Automation allows for a vastly more comprehensive use of all components within the Scientific 

Workflow, to achieve results not possible by manual allocation. Albeit, this is a small-scale 

model using only two transatlantic Lambdas and is minute compared to the millions of lambdas 
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provided, it is one step toward the solution of managing globally distributed data in enormous 

amounts.   

Lambda Data Grid provides the knowledge plane that allows e-Science research to allocate 

Lightpath. This will enhance e-Science research by allowing large distributed teams to work 

efficiently, using simulations and computational science as a third branch of research.  

The following is a summary of the three fundamental challenges this thesis addresses.   

9.1.1 Challenge #1: Packet Switching – the wrong solution for Data Intensive 

applications 

 Packets are appropriate for small amounts of data like web pages and email.  However, 

they are not optimal for e-Science applications similar to Visual Observatories, for example, that 

will generate Petabytes of data annually in the next decade. It is impossible to transfer large-

sized data on today’s public Internet using L3 packet switching. Such an attempt would grossly 

destabilize Internet traffic. When dealing with nine-orders of magnitude difference in transfer 

size, questioning the usefulness of current methodologies is necessary. Intrinsic to the packet 

switching challenge are the following considerations:  

• The demand for the transfer of bulk data challenges us to examine the 

scalability of data transfer at the core of Internet.  

• The  kind of cut-through methods that could be effective. The integrity of 

end-systems and the edge devices must remain intact, but the underlying optical core demands 

rethinking.  
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• Statistical multiplexing can work for many-to-many small traffic patterns, as 

found in systems like today’s Internet. For few-to-few bulk traffic patterns, as seen in 

astrophysics research, statistical multiplexing loses its benefits.  

• For normal use of the network, constant availability is assumed. In most 

cases, there are no mechanisms to regulate when to use the network, under what conditions, and 

how much data to transmit. This is efficient because the “normal” transfer data size is a tiny 

fraction of the available bandwidth at the core. However, this is not expected in data intensive 

applications.  

• During the last 30 years, we followed the fundamental design principle of 

bandwidth conservation. Advances in optical networking brought forth the concept of wasting 

bandwidth rather then conserving it.   

The nearly universal decision to use packet switching rather than circuit switching was 

arrived at for a variety of good reasons. However, in optical switching, utilization, bandwidth 

optimization, conservation and transmission costs, are not primary goals.  With new tradeoffs for 

large data sets, lightpath is the optimal solution. Lightpath is actually an implementation of 

circuit switching.   

9.1.2 Challenge #2: Grid Computing Managed Network Resources 

Typical Grid applications require the management of highly distributed resources within 

dynamic environments. A basic problem is matching multiple and potentially conflicting 

application requirements to diverse, distributed resources within a dynamic environment. Other 

problems include methods for network allocation of large-scale data flows, and co-allocation 

with other resources like computation and storage. Abstraction and encapsulation of network 

resources into a set of Grid services presents an additional challenge.  Future related unmet 
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challenges include scheduling, co-scheduling, monitoring, and fair-shared usage within a service 

platform. 

Common architectures that underlie traditional data networks do not incorporate 

capabilities required by Grids.  They are designed to optimize the small data flow requirements 

of consumer services, enterprise services, and general common communication services. Many 

Grid applications are data-intensive, requiring specialized services and infrastructure to manage 

multiple, large-scale data flows of multiple Terabytes and even Petabytes, in an efficient manner. 

Such capabilities are not effectively possible on the public Internet or in private routed packet 

data networks. For this type of traffic, the standard Internet or even QoS mechanisms on the 

public Internet will not accommodate the quantity of data. The underlying principle of constant 

availability and a shared network is not affective for this type of traffic. Further, scheduling of 

network resources and co-scheduling with other resources is not part of the existing mechanisms. 

Negotiation and interaction between the network and the applications regarding requirements 

and availability does not exist today. 

It is necessary to provide applications with direct, flexible access to a wide range of optical 

infrastructure services, including those for dynamically provisioned optical path channels within 

an agile optical network. There is a need to design network architectures that can support Grid 

applications in association with emerging optical networks. 

9.1.3 Challenge #3: Manage Data Transfer for Big Science 

In the world of scientific research, bringing together information and collaboration is 

crucial for scientific advances. Limitations in technology and the inability to orchestrate 

resources prohibit the usability of these one-of-a-kind facilities and/or instruments by the wider 
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community of researchers. To function effectively, e-Science researchers must access massive 

amounts of data in remote locations. From massive, one-of-a-kind, real-time remote sensors, or 

from immense remote storages, researchers must filter the data and transfer minuscule portions 

for their use. The challenge is to get the right data, to the right location, at the right time.   

Further, non-experimental work could benefit from very high capacity networking. 

Consider for example interlinked models used for climate simulation. There might be an 

atmospheric model that interacts with an oceanic model as well as with a solar model to address 

how radiation flux and solar storms affect the upper atmosphere. Econometric models could look 

at how climate will affect land use patterns, agriculture, etc. and how it might feed back into 

atmospheric effects. Each simulation would run at its own center of expertise, requiring high-

speed data connections to communicate at each time step. 

9.2 Our main contributions are:   

9.2.1 Promote the network to a first class resource citizen 

• The network is no longer a pipe; it is a part of the Grid Computing 

instrumentation. In addition, it is not only an essential component of the Grid computing 

infrastructure but also an integral part of Grid applications. This is a new design principle for 

Grid and High-throughput Computing. The proposed design of VO in a Grid Computing 

environment is accomplished and lightpath is the vehicle, allowing dynamic lightpath 

connectivity while matching multiple and potentially conflicting application requirements, and 

addressing diverse distributed resources within a dynamic environment.  
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9.2.2 Abstract and encapsulate the network resources into a set of Grid 
services 

• Encapsulation of lightpath and connection-oriented, end-to-end network 

resources into a stateful Grid service, while enabling on-demand, advanced reservation, and 

scheduled network services. In addition, a schema where abstractions are progressively and 

rigorously redefined at each layer.  This helps to avoid propagation of non-portable 

implementation-specific details between layers. The resulting schema of abstractions has general 

applicability. 

9.2.3 Orchestrate end-to-end resource 

• A key innovation is the ability to orchestrate heterogeneous communications 

resources among applications, computation, and storage, across network technologies and 

administration domains.     

9.2.4 Schedule network resources 

• The assumption that the network is available at all times, to any destination, 

is no longer accurate when dealing with big pipes. Statistical multiplexing will not work in cases 

of few-to-few immense data transfers.  We have built and demonstrated a system that allocates 

the network resources based on availability and scheduling of full pipes.      

9.2.5 Design and implement an Optical Grid prototype 

• We were able to demonstrate dynamic provisioning of 10Gbs in 100 seconds, 

replacing the standard provisioning of at least 100 days. This was shown in a connection from 

Amsterdam to Chicago during Super Computing and on the conference floor in Pittsburg. 

Currently, these types of dedicated connections must be performed manually, and must take into 

consideration all possible connections. We have automated this process, in a small conceptual 

model of two connections with alternate routes. For technology demonstrations, Cees De Latt 



 

                                                             189 

[43] described the previous standard process of provisioning 10Gbs from Amsterdam to Chicago 

in general terms as follows: It took about 300 emails, 30 conference and phone call and three 

months to provision the link. This lengthy process is due to complications associated with 

crossing boundaries: organizational, domain, control, administrative, security, technology, and 

product interoperability. These boundary challenges are in addition to issues such as cost 

structure, billing, policy, availability, and priority.  Provisioning within boundaries has vastly 

improved thanks to new Lambda service, which takes only a few dozen seconds to create an OC-

192 coast-to-coast, compared to the three to six months it takes commercially.  

9.3 Future Work 

There are a number of interesting directions future work can take. Some are extensions of 

work in this dissertation while others address more general problems of integrating dynamic 

Lambdas as part of scientific research. The addition of other underlying file transfer protocols is 

one area to explore. Our work presents simple scheduling with a limited topology. More 

complex scheduling algorithms on larger topology should be investigated, including the ability 

to query the network for its topology and the characteristics of its constituent segments and 

nodes, to be able to route over the topology and to do segment-level scheduling, allocation and 

de-allocation.  

More complex will be the development of cooperative protocols for interacting with other 

Grid resources (such as replica location services and local storage management services) and 

schedulers, both providing services to them and using them to provide inputs into the schedules 

and connectivity we provide. 
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 But most of all, we believe that the greatest learning will be achieved by working with a 

user community with pressing needs, real networks, and large amounts of data, to be sure that 

Lambda Data Grid solves the right problems in ways that are immediately useful and transparent 

to the user community. To that end, work must be done with potential users to fully understand 

how they can use the Grid middleware services presented here. We must work together to 

address the important issues about using these services, which promote the network to a higher 

capacity, and functions as a reliable, schedulable entity. 
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