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Chapter 1

Introduction

Claude Shannon introduced the problem of source coding with a fidelity criterion

in his 1959 paper [1]. In this problem, one is interested in specifying an encoding rate

for which one can represent a source with some fidelity. Fidelity is measured by a

fidelity criterion or distortion function. The minimal encoding rate for which one can

reconstruct a source with respect to a target distortion is called the rate-distortion

function. Because the source does not need to be reconstructed perfectly, this has also

been called the lossy source coding or data compression problem. For the setup shown

in Figure 1.1, Shannon reduced the solution to an optimization problem. Since his

work, rate-distortion theory has experienced significant development, much of which

has been chronicled in the survey paper of Berger and Gibson [2].

-- F
R

¡¡ G
Xn X̂n

Figure 1.1. Classical Source Coding

Recognizing that computing the rate-distortion function can be a hard problem
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for a particular source and distortion function1, Shannon computed upper and lower

bounds to the rate-distortion function for difference distortions. Since then, Blahut

[3], Arimoto [4], and Rose [5] have devised algorithms to help compute the rate-

distortion function.

When one moves beyond the classical source coding problem, new issues arise. To

motivate one such case, consider a monitoring or sensing system. In such a system,

the encoder may not have direct access to the source of interest. Instead, only a

corrupted or noisy version of the source is available to the encoder. This problem has

been termed the remote source coding problem and was first studied by Dobrushin

and Tsyabakov [6], who expressed the remote rate-distortion function in terms of an

optimization problem. Wolf and Ziv considered a version of this problem shown in

Figure 1.2, in which the source is corrupted by additive noise [7]. While the expression

for the remote rate-distortion function can be reduced to the classical rate-distortion

function with a modified distortion (see e.g. [8]), these expressions can be difficult

to simplify into a closed form, and the bounds provided by Shannon for the classical

problem [1] are not always applicable.

- ?e -- F
R

¡¡ G

Nn

Xn Zn X̂n

Figure 1.2. Remote Source Coding

In other cases, a general expression for the rate-distortion function or rate region

is unknown. This has primarily been the case for distributed or multiterminal source

coding problems. In these problems, there can be multiple encoders and/or decoders

1When Toby Berger asked Shizuo Kakutani for help with a homework problem as an undergrad-
uate, Kakutani purportedly responded, “I know the general solution, but it doesn’t work in any
particular case.”
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that only have partial access to the sources of interest. General inner and outer bounds

to such problems were first given by Berger [9], Tung [10], and Housewright [22]; an

improved outer bound was later developed by Wagner and Anantharam [11], [12].

Unfortunately, these bounds are not computable.

One extension of the remote source coding problem to the distributed setting

has been called the CEO problem, introduced in [13]. In the CEO problem, a chief

executive officer (CEO) is interested in an underlying source. M agents observe inde-

pendently corrupted observations of the source. Each has a noiseless, rate-constrained

channel to the CEO. Without collaborating, the agents must send the CEO messages

across these channels so that the CEO can reconstruct an estimate of the source to

within some fidelity. The special case of Gaussian source and noise statistics with

squared error distortion is called the quadratic Gaussian CEO problem and was intro-

duced [14]. For this case, the rate region is known [15], [16]. When these assumptions

no longer hold, not even a general expression for the rate region is not known.

..

.
..
.

g- -

g- -
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A
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?
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¡¡
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¡¡

£
£
£
£
££

- -g? -
R1

¡¡Zn
1

Nn
1

F1

Xn X̂n

Zn
M

Zn
2

Nn
2

Nn
M

G

F2

FM

Figure 1.3. CEO Problem

Rather than taking an algorithmic approach to address these problems, we take an

approach similar to the one considered by Shannon and derive closed form upper and

lower bounds to the remote source coding problems previously described above. In
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Chapter 2, we derive bounds to the remote rate-distortion function under an additive

noise model. We apply these bounds to analyze the case of a mean squared error

distortion and compare them with previously known results in this area. In Chapter

3, we derive bounds to the sum-rate-distortion function for CEO problem. We focus

on the case of additive white Gaussian noise and mean squared error distortion, and

we analyze an upper bound approach that relies on a connection between the gap

of remote joint compression and remote distributed compression. In Chapter 4, we

consider what happens as the number of observations gets large and present the

scaling behavior of the rate-distortion functions for both the remote source coding

problem as well as the CEO problem. We draw conclusions about these results in

Chapter 5 and consider future research directions.

The remainder of this chapter establishes preliminaries that will be useful in inter-

preting the results found in subsequent chapters. In the next section, we consider the

problem of minimum mean squared error (MMSE) estimation and its relationship to

remote source coding problems with a mean squared error distortion. The remainder

of the chapter establishes definitions and notation that are used in the rest of the

thesis.

1.1 Mean Squared Error and Estimation

A distortion that we will pay particular attention to in this work is mean squared

error. This also arises in problems in which one is trying to minimize the mean squared

error between an underlying source and an estimator given noisy source observations.

Note that such a problem is like the remote source coding problem with a mean

squared error distortion, except that we no longer require that the estimate is a

compressed version of the observations. Thus, the distortion obtained by any code in

the remote source coding problem must be at least as large as the MMSE given the

4



noisy observations. Indeed, this relationship exhibits itself in the bounds we derive,

so we study the behavior of MMSE under additive noise models.

Example 1.1. Consider a Gaussian random variable X ∼ N (0, σ2
X) viewed through

additive Gaussian noise N ∼ N (0, σ2
N) as Z = X + N . We assume X and N are

independent. For this problem, the minimum mean squared estimate is

X̂ =
σ2

X

σ2
X + σ2

N

Z,

and the corresponding minimum mean squared error is

E(X − X̂)2 = E

(
σ2

N

σ2
X + σ2

N

X +
σ2

X

σ2
X + σ2

N

N

)2

(1.1)

=
σ2

Xσ2
N

σ2
X + σ2

N

(1.2)

= σ2
X

1

s + 1
, (1.3)

where s is the signal-to-noise ratio, s = σ2
X/σ2

N .

Since we have only used the second order statistics of X and N to calculate the

mean squared error in this problem, we have the following well-known fact.

Corollary 1.2. Let (X ′, N ′) be random variables with the same second order statistics

as (X,N) ∼ N


0,




σ2
X 0

0 σ2
N





. Let Z = X + N and define Z ′ similarly. Then

E(X ′ − E[X ′|Z ′])2 ≤ E(X − E[X|Z])2. (1.4)

We have shown the above fact is true simply by using the linear estimator given

in Example 1.1. This raises the possibility that a non-linear estimator can allow the

MMSE to decay faster when the source and/or noise statistics are non-Gaussian. It

turns out that for a large class of source distributions and noise distributions, the

MMSE decays inversely with the signal-to-noise ratio (see Appendix A). However,

the following counterexample shows that it is not always the case.
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Example 1.3. Consider the same setup in Example 1.1, except now our source X =

±σX , each with probability 1
2
. We call this the BPSK source. An exact expression

for the minimum mean squared error (see e.g. [17]) is

σX
2

(
1−

∫
fZ(z)(tanh(s · z/σX))2dz

)
, (1.5)

where fZ(z) is the probability density function of Z and s = σ2
X/σ2

N . The following

bound shows that it scales exponentially with s. We will use the maximum likelihood

estimator, which decides +σX when Z is positive, and −σX otherwise. Notice that

the squared error will only be nonzero in the event that noise N is large enough to

counteract the sign of X. Using this fact, along with the symmetry of the two errors,

then for s > 1 we get that

E(X − E[X|Z])2 ≤ 4σX
2P (N > σX) (1.6)

< 4σ2
X exp{−s/2}. (1.7)

In fact, for s ≤ 1, (1.7) continues to hold since in this range, the error of the linear

estimator given in (1.3) is less than the right-hand side of (1.7).

While a considering the mean squared error for a discrete source might seem

strange, we can show that we can get a quasi-exponential decay with a continuous

source that sufficiently concentrates around its standard deviation.

Example 1.4. Now consider the case in which X has pdf

fX(x) =





1
4cε

(1− ε)c < |x| < (1 + ε)c

0 otherwise
, (1.8)

where c = σX√
1+ε2/3

. We call this the two pulse source because its pdf has the shape

shown in Figure 1.4. Using a similar ML approach to Example 1.3, we can show that

E(X−E[X|Z])2

≤ σ2
X

1 + ε2/3

(
ε2 + e

− (1−ε)2s

2(1+ε2/3) (2 + ε)2

)
(1.9)
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Note that while this source does show a quasi-exponential behavior, it decays inversely

with the signal-to-noise ratio asymptotically in s. Referring to Table A.1 and Theorem

A.3 in Appendix A, we find that for the two pulse source,

E(X − E[X|Z])2 ≥
8ε2

πe(2+ε2/3)
σ2

X

s + 1
. (1.10)

For a fixed s, however, we can make this bound arbitrarily small by choosing ε small

enough while extending the quasi-exponential behavior shown in (1.9).

6
fX (x)

Figure 1.4. Two Pulse Source.

We can combine the upper bound as a consequence of Corollary 1.2 and the lower

bound from Lemma A.2 to get the following result.

Corollary 1.5. Let (X, N) be independent random variables with covariance matrix


σ2
X 0

0 σ2
N


. Then

QX ·QN

QX+N

≤ E(X − E[X|Z])2 ≤ σ2
Xσ2

N

σ2
X + σ2

N

, (1.11)

where QX , QN , QX+N are the entropy powers of X,N, X + N respectively. Here, we

use entropy power of a random variable to refer the variance of a Gaussian random

variable with the same differential entropy.

It will turn out that the gap between our upper and lower bounds for the remote

rate-distortion function and the sum-rate-distortion function in the CEO problem will

be related intimately to the gap between the upper and lower bounds to the MMSE

in (1.11).
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1.2 Background, Definitions, and Notation

To provide adequate background for the remainder of this work, this section in-

troduces previous results, definitions, and notation that we will use in subsequent

chapters. We use capital letters X,Y, Z to represent random variables, and the calli-

graphic letters X ,Y ,Z to represent their corresponding sets. Vectors of length n are

written as Xn, Y n, Zn. We denote a set of random variables as HA = {Hi, i ∈ A}
for some subset A ⊆ {1, . . . , M}. Likewise, H̄A = 1

|A|
∑

i∈A Hi. For convenience, we

define H = {Hi}M
i=1 and H̄ correspondingly.

To avoid getting mired in measure-theoretic notation, we present the following

definitions for entropy and mutual information. While these definitions are not ap-

plicable to all cases presented in this work, the interested reader can find generally

applicable definitions in Pinsker [18] and Wyner [19]. In our notation, nats are con-

sidered the standard unit of information, so all our logarithms are natural.

Definition 1.6. Given a random variable X with density f(x), its differential entropy

is defined as

H(X) = −
∫

f(x) log f(x)dx. (1.12)

Further, its entropy power is

QX =
e2H(X)

2πe
. (1.13)

Definition 1.7. The mutual information between two random variables X and Y

with joint pdf f(x, y) is

I(X; Y ) =

∫
f(x, y) log

f(x, y)

f(x)f(y)
dxdy (1.14)

= H(X)−H(X|Y ), (1.15)

where

H(X|Y ) = −
∫

f(x, y) log f(x|y)dx.

8



We now consider the classical source coding problem.

Definition 1.8. A distortion function d is a measurable map d : X ×X̂ → R+, where

R+ is the set of positive reals.

Definition 1.9. A difference distortion is a distortion function d : R×R → R+ with

the property d(x, y) = d̃(x− y).

Definition 1.10. A direct code (n,N, ∆) is specified by an encoder function F and

decoding function G such that

F : X n → IN , (1.16)

G : IN → X n, (1.17)

E
1

n

n∑

k=1

d
(
X(k), X̂(k)

)
= ∆, (1.18)

where IN = {1, . . . , N} and X̂n = G(F (Xn)).

Definition 1.11. A pair (R, D) is directly achievable if, for all ε > 0 and sufficiently

large n, there exists a direct code (n,N, ∆) such that

N ≤ exp{n(R + ε)}, (1.19)

∆ ≤ D + ε. (1.20)

Definition 1.12. The minimal rate R for a distortion D such that (R,D) is directly

achievable is called the direct rate-distortion function, denoted RX(D).

The direct rate-distortion function is well known and, for an i.i.d. source, is

characterized by the following single letter mutual information expression [20], [8].

RX(D) = min
X̂ s.t.

Ed(X,X̂)≤D

I(X; X̂), (1.21)

Upper and lower bounds to the direct rate-distortion function are given by [8, p. 101]

1

2
log

(
QX

D

)
≤ RX(D) ≤ 1

2
log

(
σ2

X

D

)
, (1.22)

9



From the direct rate-distortion problem, we move to the remote rate-distortion

problem.

Definition 1.13. A remote code (n,N, ∆) is specified by an encoder function FR

and decoding function GR such that

FR : Zn
1 × · · · × Zn

M → IN , (1.23)

GR : IN → X n, (1.24)

E
1

n

n∑

k=1

d
(
X(k), X̂R(k)

)
= ∆, (1.25)

where X̂n
R = GR(FR(Zn

1 , . . . , Zn
M)).

Definition 1.14. A pair (R,D) is remotely achievable if, for all ε > 0 and sufficiently

large n, there exists a remote code (n,N, ∆) such that

N ≤ exp{n(R + ε)}, (1.26)

∆ ≤ D + ε. (1.27)

Definition 1.15. The minimal rate R for a distortion D such that (R,D) is remotely

achievable is called the remote rate-distortion function, denoted RR
X(D).

The remote rate-distortion function is known and, for an i.i.d. source with i.i.d.

observations, is characterized by the following single letter mutual information ex-

pression [8, p. 79].

RR
X(D) = min

X̂R∈X̂R
X (D)

I(Z1, . . . , ZM ; X̂R), (1.28)

X̂R
X (D) =

{
X̂ : X → Z1, . . . , ZM → X̂, E(X − f(X̂))2 ≤ D, for some f.

}

Since a direct code could always corrupt its source according to the same statistics as

the observations and then use a remote code, it should be clear that the remote rate

distortion function is always at least as large as the direct rate distortion function, or

RR
X(D) ≥ RX(D).

10



Definition 1.16. A CEO code (n,N1, . . . , NM , ∆) is specified by M encoder functions

F1, . . . , FM corresponding to the M agents and a decoder function G corresponding

to the CEO

Fi : Zn
i → INi

, (1.29)

G : IN1 × · · · × INM
→ X n, (1.30)

where Ij = {1, . . . , j}. Such a code satisfies the condition

E
1

n

n∑

k=1

d
(
X(k), X̂(k)

)
= ∆, (1.31)

where X̂n = G(F1(Z
n
1 ), . . . , FM(Zn

M)).

Definition 1.17. A sum-rate distortion pair (R, D) is achievable if, for all ε > 0 and

sufficiently large n, there exists a CEO code (n, N1, . . . , NM , ∆) such that

N1 ≤ exp {n(R1 + ε)}

N2 ≤ exp {n(R2 + ε)}
... (1.32)

NM ≤ exp {n(RM + ε)} ,

M∑
i=1

Ri = R, (1.33)

∆ ≤ D + ε. (1.34)

Definition 1.18. We call the minimal sum-rate R for a distortion D such that (R,D)

is achievable the sum-rate-distortion function, which we denote RCEO
X (D).

No single-letter characterization of the sum-rate-distortion function is known for

the CEO problem. In Chapter 3, we will examine inner and outer bounds to this

function.

The following definition will be useful when we consider the squared error distor-

tion.
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Definition 1.19. Let X be a random variable with variance σ2
X . TX is the set of

functions R+ ×R+ → R+ such that for all t ∈ TX ,

E(X − E[X|X + V ])2 ≤ t(s, σ2
X), (1.35)

where V ∼ N (0, σ2
X/s).

To show this set is not empty, we have the following lemma.

Lemma 1.20. Define the function tl : R+ ×R+ → R+ as

tl(s, σ
2
X) =

σ2
X

s + 1
. (1.36)

Then tl ∈ TX .

Proof. The result follows immediately from Corollary 1.2 and Example 1.1.

12



Chapter 2

Remote Source Coding

Although an expression for the remote rate-distortion function is given in (1.28),

this function is difficult to evaluate in general. In this chapter, we derive upper and

lower bounds for the remote rate-distortion function viewed in additive noise for the

model in Figure 2.1, and for the case of additive Gaussian noise for the model in

Figure 2.2.

- ?e -- F
R

¡¡ G

Nn

Xn Zn X̂n

Figure 2.1. Remote Source Coding with a Single Observation

We start with the case of the single observation. For our analysis, we assume an

additive noise model for an i.i.d. source process {X(k)}∞k=1, an i.i.d. noise process

{N(k)}∞k=1, the observation process is described as

Z(k) = X(k) + N(k), k ≥ 1. (2.1)

We then consider the case of multiple observations in which the noise is additive

13
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Figure 2.2. Remote Source Coding with M Observations

white Gaussian at each sensor and independent among sensors. For the M -observation

model, we have, for 1 ≤ i ≤ M ,

Zi(k) = X(k) + Ni(k), k ≥ 1, (2.2)

where Ni(k) ∼ N (0, σ2
Ni

).

We specialize these bounds for the case of mean-squared error and compare our

results to previous work related to this case [7], [21].

2.1 Remote Rate-Distortion Function with a Sin-

gle Observation

Recall the remote-rate distortion expression in (1.28). For the case of a single

observation, this specializes to

RR
X(D) = min

X̂∈X̂R(D)
I(Z; X̂), (2.3)

X̂R(D) =

{
X̂ : X → Z → X̂, Ed

(
X, f(X̂)

)
≤ D, for some f.

}

14



For the case of a Gaussian source and noise statistics and a squared error distor-

tion, the remote rate-distortion function RR
X,N (D) is known to be [8]

RR
X,N (D) =

1

2
log

(
σ2

X

D

)
+

1

2
log

(
σ2

X

σ2
X + σ2

N − σ2
N

σ2
X

D

)
. (2.4)

= RX,N (D) +
1

2
log

(
σ2

X

σ2
Z − σ2

Ne2RX,N (D)

)
, (2.5)

where RX,N (D) is the direct rate-distortion function for a Gaussian source and mean-

squared error distortion. The upper and lower bounds that we derive in this section

will have a similar form to the remote rate-distortion function for Gaussian statistics

and squared error distortion. In fact, the bounds will be tight for that case. We start

by stating and proving the lower bound.

Theorem 2.1. Consider the remote source coding problem with a single observation.

Then, a lower bound for the remote rate-distortion function is

RR
X(D) ≥ RX(D) +

1

2
log

(
QX

QZ −QNe2RX(D)

)
. (2.6)

Proof. The key tool involved is a new entropy power inequality (see Appendix B),

which considers remote processing of data corrupted by additive noise. By Theorem

B.1, we know that

e−2I(Z;X̂) ≤ e2(H(Z)−I(X;X̂)) − e2H(N)

e2H(X)
. (2.7)

Simplifying this equation, we get that

I(Z; X̂) ≥ 1

2
log

(
e2H(X)

e2(H(Z)−I(X;X̂)) − e2H(N)

)
(2.8)

≥ 1

2
log

(
e2H(X)

e2(H(Z)−RX(D)) − e2H(N)

)
(2.9)

= RX(D) +
1

2
log

(
e2H(X)

e2H(Z) − e2(H(N)+RX(D))

)
(2.10)

Since the above inequality is true for all choices of X̂, we conclude that

RR
X(D) ≥ RX(D) +

1

2
log

(
e2H(X)

e2H(Z) − e2(H(N)+RX(D))

)
. (2.11)

15



Normalizing the numerator and denominator in the second term of (2.11) by 2πe

gives the result.

Note that when the source and noise statistics are Gaussian and the distortion is

squared error, the lower bound in Theorem 2.1 is tight. We will find that the upper

bound described below also satisfies this property.

Theorem 2.2. Let the source and observation process have fixed second order statis-

tics. If a function t : R+ ×R+ → R+ satisfies

min
f

Ed (X, f(X + N + V )) ≤ t(s, σ2
X) (2.12)

for V ∼ N (0, σ2
X/s− σ2

N) and all s <
σ2

X

σ2
N
, then

RR
X(D) ≤ r +

1

2
log

(
σ2

X

σ2
Z − σ2

Ne2r

)
(2.13)

where r is the solution to D = t (e2r − 1, σ2
X) .

Proof. Let X̂ = Z + V . Then, for D = t(s, σ2
X), X̂ ∈ X̂R(D), so

RR
X(D) ≤ I(Z; X̂) (2.14)

= H(X̂)−H(V ) (2.15)

≤ 1

2
log

(
2πeσ2

X

1 + s

s

)
−H(V ) (2.16)

=
1

2
log

(
σ2

X

1 + s

σ2
X − sσ2

N

)
(2.17)

=
1

2
log (1 + s) +

1

2
log

(
σ2

X

σ2
X − sσ2

N

)
. (2.18)

Letting s = e2r − 1 completes the result.

For Gaussian source and noise statistics and a squared error distortion, the func-

tion f in the theorem is just the MMSE estimator. Then, for the set TX given in

Definition 1.19, any t ∈ TX satisfies the condition (2.12), so we use the function given

in Lemma 1.20 to get a tight result.
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2.2 Remote Rate-Distortion Function with Multi-

ple Observations

To handle upper and lower bounds, we restrict ourselves to cases in which the

noise statistics are Gaussian. For this case, the minimal sufficient statistic is a scalar

and can be represented as the source corrupted by independent additive noise. In fact,

this requirement is all that is necessary to provide a lower bound in this problem. Of

course, we can always give an upper bound, regardless of whether such a condition is

satisfied.

Using Lemma C.2, we can return to the framework of the single observation

problem as long as we can find an appropriate scalar sufficient statistic for X given

Z1, . . . , ZM . Lemma C.1 tells us that

Z̃(k) =
1

M

M∑
i=1

σ2
Ñ

σ2
Ni

Zi(k) (2.19)

= X(k) +
1

M

M∑
i=1

σ2
Ñ

σ2
Ni

Ni(k), (2.20)

is a sufficient statistic for X(k) given Z1(k), . . . , ZM(k) where σ2
Ñ

= 1
1
M

PM
i=1

1

σ2
Ni

. From

this, we can now use our single observation results to get upper and lower bounds for

the M -observation case.

Theorem 2.3. Consider the M-observation remote source coding problem with addi-

tive white Gaussian noise. Then, a lower bound for the remote rate-distortion function

is

RR
X(D) ≥ RX(D) +

1

2
log

(
MQX

MQZ̃ − σ2
Ñ

e2RX(D)

)
. (2.21)

Proof. Lemma C.2 states that using a sufficient statistic for a source given its obser-

vations does not change the remote rate-distortion function. Thus, by Lemma C.1

and Theorem 2.1, we have (2.21).
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Theorem 2.4. Consider the M-observation remote source coding problem with addi-

tive white Gaussian noise and a source with fixed second order statistics. If a function

t : R+ ×R+ → R+ satisfies

min
f

Ed (X, f(X + V )) ≤ t(s, σ2
X). (2.22)

for V ∼ N (0, σ2
X/s) and all s <

Mσ2
X

σ2
Ñ

, then

RR
X(D) ≤ r +

1

2
log

(
Mσ2

X

Mσ2
Z̃
− σ2

Ñ
e2r

)
, (2.23)

where r is the solution to D = t (e2r − 1, σ2
X) .

Proof. Simply form the sufficient statistic given in Lemma C.1 and apply Theorem

2.2.

Again, Theorems 2.3 and 2.4 are tight for Gaussian statistics and squared error

distortion. To see why, we rewrite the results in terms of entropy powers and variances

in the following corollary. Tightness follows for the Gaussian case since the entropy

power of a Gaussian is that same as its variance.

Corollary 2.5. Consider the M-observation remote source coding problem with addi-

tive white Gaussian noise and a source with fixed second order statistics and squared

error distortion d(x, x̂) = (x−x̂)2. Let t be a function in the set TX given in Definition

1.19. Then a lower bound to the rate-distortion function is

RR
X(D) ≥ 1

2
log

(
QX

D

)
+

1

2
log

(
MQX

MQZ̃ − QX

D
σ2

Ñ

)
, (2.24)

where σ2
Ñ

= 1
1
M

PM
i=1

1

σ2
Ni

. Further, an upper bound to the rate-distortion function is

RR
X(D) ≤ 1

2
log

(
σ2

X

Dl

)
+

1

2
log


 Mσ2

X

Mσ2
Z̃
− σ2

X

Dl
σ2

Ñ


 , (2.25)

where Dl is the solution to the equation D = t
(

σ2
X

Dl
− 1, σ2

X

)
.
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Proof. Applying the direct rate-distortion lower bound in (1.22) to Theorem 2.3, we

get (2.24) by noting that QÑ = σ2
Ñ

. From Definition 1.19, we know that t satisfies

(2.22), so applying Theorem 2.4 with r = 1
2
log

(
σ2

X

Dl

)
gives (2.25). Note that Lemma

1.20 implies D ≤ Dl.

2.3 Squared Error Distortion and Encoder Esti-

mation

Having established upper and lower bounds for the remote rate-distortion func-

tion, we now want to compare our results to previously known bounds. In this section,

we present such a set of upper and lower bounds for the case of squared error distor-

tion and additive white Gaussian noise. These bounds are based upon the arguments

provided by Wolf and Ziv [7] for the single observation case and by Gastpar [21] for

the multiple observation case . They amount to performing an MMSE estimate at

the encoder and then using the optimal squared error codebook for the case in which

the MMSE estimate is the source.

Theorem 2.6. Define

D0 = E

(
X − E

[
X

∣∣∣∣∣X +
1

M

M∑
i=1

σ2
Ñ

σ2
Ni

Ni

])2

, (2.26)

where σ2
Ñ

= 1
1
M

PM
i=1

1

σ2
Ni

. Then for the M-observation remote source coding problem,

upper and lower bounds to the rate-distortion function are [7], [21]

RR
X(D) ≤ 1

2
log

(
σ2

X

D

)
+

1

2
log

(
1− D0

σ2
X

1− D0

D

)
, (2.27)

RR
X(D) ≥ 1

2
log

(
σ2

X

D

)
+

1

2
log

(
1− D0

σ2
X

1− D0

D

)
− log

(
σ2

V

QV

)
. (2.28)
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Proof. The reasoning comes from the fact that we can modify the distortion (see [8]

for a detailed discussion) for d(x, x̂) = (x− x̂)2 in terms of the observations to get

d̃(z̃, x̂) =E[(X − x̂)2|Z̃ = z̃]

=E[(X − E[X|Z̃] + E[X|Z̃]− x̄)2|Z̃ = z̃]

=E[(X − E[X|Z̃])2|Z̃ = z̃] + (E[X|Z̃ = z̃]− x̂)2

+ 2E[(X − E[X|Z̃])(E[X|Z̃]− x̂)|Z̃ = z̃].

This simplifies further since X → Z̃ → X̂ and thus E(X−E[X|Z̃])(E[X|Z̃]−X̄) = 0.

This gives us an equivalent distortion of

d̃(z̃, x̂) = E[(X − E[X|Z̃])2|Z̃ = z̃] + (E[X|Z̃ = z̃]− x̂)2.

When Wolf and Ziv [7] considered this problem, they found that the direct rate-

distortion function for E[X|Z̃] shifted by E(X −E[X|Z̃])2 is the same as the remote

rate-distortion function for Z̃. To simplify notation, we let

V = E[X|Z̃].

Since we are now just considering a shifted direct rate-distortion for source V and

squared error distortion, we can apply our bounds in (1.22) to get

1

2
log

(
QV

D −D0

)
≤ RR

X(D) ≤ 1

2
log

(
σ2

V

D −D0

)
, (2.29)

where D0 = E(X − E[X|Z̃])2.

Since V is the MMSE estimate for X given Z, the orthogonality principle implies

that σ2
V = σ2

X −D0. This allows us to rewrite the upper bound as

RR
X(D) ≤ 1

2
log

(
σ2

X

D

)
+

1

2
log

(
1− D0

σ2
X

1− D0

D

)
. (2.30)

Note that QV does not depend on D. This fact implies that the lower bound is simply

a vertically displaced version of the upper bound. That is,

RR
X(D) ≥ 1

2
log

(
σ2

X

D

)
+

1

2
log

(
1− D0

σ2
X

1− D0

D

)
− log

(
σ2

V

QV

)
. (2.31)
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We now examine a few properties of these bounds. The first is the monotonicity

of D0.

Lemma 2.7. Fix σ2
X > 0 and 0 < D ≤ σ2

X . Then

1

2
log

(
1− D0

σ2
X

1− D0

D

)

is nonnegative and monotonically decreasing in D0 > D.

Proof. Nonnegativity follows immediately from how σ2
X and D are defined. To prove

the monotonicity, consider any 0 < δ ≤ D0. Then,

1

2
log

(
1− D0−δ

σ2
X

1− D0−δ
D

)
=

1

2
log

(
1− D0

σ2
X

1− D0−δ
D

+

δ
σ2

X

1− D0−δ
D

)
(2.32)

=
1

2
log

(
1− D0

σ2
X

1− D0

D

(
1− D0

D
+ δ

σ2
X

1− D0

D
+ δ

D

))
(2.33)

≤ 1

2
log

(
1− D0

σ2
X

1− D0

D

)
(2.34)

Thus, we can use Corollary 1.5 to give upper and lower bounds on D0, which

in turn will allow us to compare the bounds (2.28) and (2.27) to the ones in (2.21)

and (2.23). While the bounds in equations (2.27) and (2.28) are correct to within a

constant shift, in practice, computing the differential entropy of the conditional mean

of X given an observation Z̃ can be impractical. However, unlike our previous lower

bound (2.24), QV can be positive even when the QX is zero, which makes it useful

for studying discrete sources.
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2.4 Examples

We now plot these bounds for different source distributions observed in additive

white Gaussian noise and with a squared error distortion. The source variance is

σ2
X = 1 and the noise variances are σ2

Ni
= 1 for each observation, and there are a

total of M = 20 observations. We consider three source distributions: Gaussian,

Laplacian, and uniform. For the Gaussian source, as expected, the upper and lower

bounds are both tight. In computing the lower bounds for the Laplacian and uniform

sources, we use the maximum entropy bound for QZ̃ rather than compute it. While

this gives worse lower bounds, it makes these bounds easy to compute. This gives

the bounds shown in Figure 2.3.
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Figure 2.3. Plot of bounds for Gaussian, Laplacian, and uniform sources
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2.5 Discussion

In this chapter, we have established general upper and lower bounds for the remote

rate-distortion function when the observations are viewed in additive noise. For the

case of Gaussian source and noise statistics and a squared error distortion, our bounds

are tight. Further, the gap between the two bounds for non-Gaussian sources can be

expressed in terms of the gap between the entropy power and variance of non-Gaussian

sources. We then presented previously known results for the case of additive white

Gaussian noise and squared error distortions. Unlike those bounds, ours are easy to

evaluate for non-Gaussian source distributions.
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Chapter 3

AWGN CEO Problems

In the previous chapter, we studied the remote source coding problem, for which

the rate-distortion function can be characterized by a single-letter mutual information

expression. In this chapter, we consider the CEO problem, a distributed version of

the remote source coding problem, as seen in Figure 3.1. Except for special cases, the

rate region for this problem is unknown.

Our focus is on the case in which the observations are corrupted by additive

white Gaussian noise, which we call the AWGN CEO problem. Thus, we have, for

1 ≤ i ≤ M ,

Zi(k) = X(k) + Ni(k), k ≥ 1, (3.1)

where Ni(k) ∼ N (0, σ2
Ni

).

In the proceeding sections, we derive lower and upper bounds for the sum-rate

distortion function of AWGN CEO problems. While our arguments hold in greater

generality, we restrict our attention to the case of squared error distortion to give

better interpretations of our results. We begin by presenting well known inner and

outer bounds to the rate region of the CEO problem. Using the outer bound and

the entropy power inequality given in Appendix B, we derive an outer bound to
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Figure 3.1. AWGN CEO problem

the sum-rate-distortion function for AWGN CEO problems. We then consider two

upper bounds. The first upper bound follows from the maximum entropy bound.

The second follows from a novel technique that bounds the difference between the

sum-rate-distortion function for the CEO problem and the remote rate-distortion

function.

3.1 Background and Notation

The Berger-Tung region [9] [10] provides inner and outer bounds in terms of single-

letter mutual information expressions for discrete memoryless sources and bounded

distortion measures, which apply to the CEO problem. Results by Housewright show

that these bounds continue to hold for abstract alphabets and suitably smooth dis-

tortion functions [22]. The squared error distortion is one such case [19]. We rely

on the Berger-Tung inner bound to get an upper bound to the sum-rate distortion

function, which for U ∈ UCEO
X (D) is [23]

RCEO
X (D) ≤ I(Z;U), (3.2)
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UCEO
X (D) =

{
U : Ui → Zi → (X,Z{i}c , U{i}c),∃f, Ed (X, f(U)) ≤ D

}
.

For our lower bound, we use an outer bound introduced by Wagner and Anan-

tharam [11], [12] that subsumes the Berger-Tung outer bound.

Definition 3.1. If the set of random variables (X,Z,U, W, T, X̂) is in the collection

WCEO
X (D), then Ed(X, X̂) ≤ D and

(i) (W,T ) is independent of (X,Z),

(ii) UA ↔ (ZA,W, T ) ↔ (X,ZAc ,UAc) for all A ⊆ {1, . . .M},

(iii) (X, W, T ) ↔ (U, T ) ↔ X̂ , and

(iv) the conditional distribution of Ui given W and T is discrete for each i.

For (X,Z,U,W, T, X̂) ∈ WCEO
X (D), the outer bound is given by the following

collection of inequalities on subsets A ⊆ {1, . . . M} [12, p. 109]:

∑
i∈A

Ri ≥ I(X;U, T )− I(X;UAc |T ) +
∑
i∈A

I(Zi; Ui|X,W, T ) (3.3)

≥ I(X;U, T )− I(X;UAc |W,T ) +
∑
i∈A

I(Zi; Ui|X, W, T ), (3.4)

where Ri is the rate at which agent i. Condition (iii) implies that I(X;U, T ) ≥
I(X; X̂) ≥ RX(D), so we have the following lower bound on the sum-rate:

RCEO
X (D) ≥ min

U,W,T∈WCEO
X (D)

RX(D)− I(X;UAc |W,T ) +
M∑
i=1

I(Zi; Ui|X, W, T ). (3.5)

For convenience, we will use the following shorthand to refer to scalar sufficient

statistics for X given ZA.

Z̃A =
1

|A|
∑
i∈A

σ2
ÑA

σ2
Ni

Zi (3.6)

= X + N̂A, (3.7)
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where σ2
ÑA

= 1
1
|A|
P

i∈A
1

σ2
Ni

and N̂A = 1
|A|

∑
i∈A

σ2
ÑA

σ2
Ni

Ni. Note that the variance of

N̂A ∼ N
(
0, σ2

ÑA
/|A|

)
. We remove the subscript A when A = {1, . . . ,M}.

3.2 Lower Bound

By applying the outer bound given in the previous section and a new entropy

power inequality given in Theorem B.1, we can give the following lower bound to the

sum-rate distortion functions of AWGN CEO problems with a single source. Note

the similarities between it and the remote rate distortion lower bound in equation

(2.21).

Theorem 3.2. For the M-agent AWGN CEO problem for a source X, the sum-rate

distortion function is lower bounded by

RCEO
X (D) ≥ RX(D) +

M

2
log

(
MQX

MQZ̃ − σ2
Ñ

e2RX(D)

)
(3.8)

To prove the theorem, we start by considering the following lemma. This is a

generalization of the lemma proved by Oohama [16] that holds for non-Gaussian

sources, as well.

Lemma 3.3. Let ri = I(Zi; Ui|X, W, T ) and A ⊆ {1, . . . , M}. Then

e2I(X;UA|W,T ) ≤ e2H(Z̃A)

e2H(ÑA)
− e2H(X)

|A|
∑
i∈A

e−2ri

σ2
Ni

/σ2
ÑA

. (3.9)

Proof. Since (W,T ) is independent of (X,Z) when condition (i) holds, we know that

we preserve the Markov chain X → Z̃A → ZA → UA when we condition on any

realization of (W,T ), so Theorem B.1 implies

e2H(Z̃A)e−2I(X;UA|W=w,T=t) ≥ e2H(X)e−2I(Z̃;UA|W=w,T=t) + e2H(N̂A) (3.10)

=
e2H(X)

e2H(Z̃A)
e2H(Z̃A|UA,W=w,T=t) + e2H(N̂A). (3.11)
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Now,

H(Z̃A|UA,W = w, T = t)

=H(Z̃A|UA, X, W = w, T = t) + I(X; Z̃A|UA,W = w, T = t) (3.12)

=H(Z̃A|UA, X, W = w, T = t) + I(X; Z̃A,UA|W = w, T = t)

− I(X;UA|W = w, T = t) (3.13)

=H(Z̃A|UA, X, W = w, T = t) + I(X; Z̃A|W = w, T = t)

− I(X;UA|W = w, T = t) (3.14)

=H(Z̃A|UA, X, W = w, T = t) + I(X; Z̃A)

− I(X;UA|W = w, T = t), (3.15)

where (3.14) follows from the Markov chain X → Z̃A → ZA → UA and (3.15) from

(i). Now it’s simply a matter of bounding H(Z̃A|UA, X,W = w, T = t). However,

we note that we can write

e2H(Z̃A|UA,X,W=w,T=t) = e
2H

 
1
|A|
P

i∈A

σ2
ÑA

σ2
Ni

Zi

�����UA,X,W=w,T=t

!
(3.16)

≥
∑
i∈A

(
σ2

ÑA

σ2
Ni

)2
e2H(Zi|Ui,X,W=w,T=t)

|A|2 (3.17)

where (3.17) follows by (ii) and the entropy power inequality. But

H(Zi|Ui, X, W = w, T = t) = H(Zi|X,W = w, T = t)− I(Zi; Ui|X, W = w, T = t)

(3.18)

= H(Ni)− I(Zi; Ui|X, W = w, T = t). (3.19)

Combining (3.11), (3.15), (3.17), and (3.19) gives

e2H(Z̃A)e−2I(X;UA|W=w,T=t) ≥ e2H(X)

e2H(Z̃A)
· e2I(X;Z̃A)

e2I(X;UA|W=w,T=t)

·
∑
i∈A

(
σ2

ÑA

σ2
Ni

)2
e2H(Ni)−2I(Zi;Ui|X,W=w,T=t)

|A|2 + e2H(N̂A).

(3.20)
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Solving for e2I(X;UA|W=w,T=t), we get that

e2I(X;UA|W=w,T=t) ≤ e−2H(ÑA)

[
e2H(Z̃A) − e2H(X)e2I(X;Z̃A)

e2H(Z̃A)

∑
i∈A

e2H(N̂A)−2I(Zi;Ui|X,W=w,T=t)

|A|σ2
Ni

/σ2
ÑA

]

(3.21)

=
e2H(Z̃A)

e2H(ÑA)
− e2H(X)

|A|
∑
i∈A

e−2I(Zi;Ui|X,W=w,T=t)

σ2
Ni

/σ2
ÑA

. (3.22)

We complete the proof by taking the expectation over W,T and applying Jensen’s

inequality twice, once to the left-hand side and once to the right-hand side.

At this point, we can substitute this inequality into (3.4) to get

∑
i∈A

Ri ≥ RX(D)− 1

2
log

(
e2H(Z̃Ac )

e2H(ÑAc)
− e2H(X)

|Ac|
∑
i∈Ac

e−2ri

σ2
Ni

/σ2
ÑAc

)
+

∑
i∈A

ri. (3.23)

Optimizing over this set of inequalities gives us lower bounds on ri and substituting

these choices into (3.5) gives (3.8), thus proving the theorem.

Corollary 3.4. For the M-agent quadratic AWGN CEO problem for a source X, the

sum-rate distortion function is lower bounded by

RCEO
X (D) ≥ 1

2
log

(
QX

D

)
+

M

2
log

(
MQX

MQZ̃ − QX

D
σ2

Ñ

)
(3.24)

Proof. The result follows from (3.8) and the lower bound for the direct rate-distortion

function given in (1.22).

3.3 Upper Bounds

In this section, we consider upper bounds to the sum-rate distortion function.

We focus exclusively on the mean squared error case. The first bound follows from

a maximum entropy bound. The second bound takes advantage of the difference

between the AWGN CEO sum-rate-distortion function and the remote rate-distortion

function.
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3.3.1 Maximum Entropy Upper Bound

Our first upper bound requires one to know the MMSE performance of the source

through additive Gaussian noise.

Theorem 3.5. Let t be a function in the set TX given in Definition 1.19. Then an

upper bound for the sum-rate distortion function for the AWGN CEO problem is

RCEO
X (D) ≤ 1

2
log

(
σ2

X

Dl

)
+

M

2
log


 Mσ2

X

Mσ2
Z̃
− σ2

X

Dl
σ2

Ñ


 , (3.25)

where
σ2

Xσ2
Ñ

Mσ2
X+σ2

Ñ

< Dl ≤ σ2
X is the solution to

D = t

(
σ2

X

Dl

− 1, σ2
X

)
. (3.26)

Proof. We simply let the Ui = Zi + Wi, where the Wi are independent, jointly Gaus-

sian, independent of X and the Ni. Since our previous bounds have involved the

sufficient statistic Z̃ for X given Z, we select the Wi such that the sufficient statistic

for X given U is a noisy version of Z̃. Thus, we choose Wi such that Wi + Ni has

variance βσ2
Ni

. That is, we know that

D ≤ t

(
Mσ2

X

βσ2
Ñ

, σ2
X

)
, (3.27)

so set
σ2

X

Dl
− 1 =

Mσ2
X

βσ2
Ñ

and substitute it into future expressions in place of β. Finally,

taking advantage of the fact that the source has a second moment constraint, we

apply the maximum entropy theorem and Lemma E.1 to get the bound in (3.25).

By Lemma 1.20, we know that for any X, there exists a function t ∈ TX that

when applied to Theorem 3.5 gives D = Dl. Thus,

RCEO
X (D) ≤ 1

2
log

(
σ2

X

D

)
+

M

2
log

(
Mσ2

X

Mσ2
X + σ2

Ñ
− σ2

X

D
σ2

Ñ

)
. (3.28)
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However, this is just the sum-rate distortion function for the quadratic Gaussian CEO

problem [24]. One can also verify that for this case, the lower bound in Corollary

3.4 is tight. Thus, the quadratic Gaussian CEO sum-rate distortion function is an

upper bound for all sources. Notice that (3.28) is a valid bound for any source X with

variance σ2
X . Thus, Gaussian statistics are a worst case for the sum-rate-distortion

function, just as they are for estimation.
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Figure 3.2. Plots for the Laplacian and uniform source in AWGN CEO problem.

In Figure 3.2, we compare how closely the upper bound in (3.28) compares to

the lower bound given in Corollary 3.4. In particular, we consider the case of the

Laplacian and uniform source. Note that the lower bounds improve on the remote

rate-distortion lower bound for M -observations, which is also a valid lower bound for

the AWGN CEO problem. However, there is still a gap between the bounds since
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neither the Laplacian nor uniform source meet the maximum entropy bound. The

approach considered in the next section is one way to improve upon this weakness.

3.3.2 Rate Loss Upper Bound

We now restrict our attention to cases in which the noise variances are equal.

That is, σ2
Ni

= σ2
N . For such cases, that harmonic mean σ2

Ñ
= σ2

N . For convenience,

we will use the following shorthand for the right-hand side of (3.25).

R1(D) =
1

2
log

(
σ2

X

Dl

)
+

M

2
log


 Mσ2

X

Mσ2
X + σ2

N − σ2
X

Dl
σ2

Ñ


 . (3.29)

While the R1(D) is straightforward to calculate, maximizing the mutual informa-

tion under the assumption that the source is Gaussian makes it somewhat coarse. We

consider an alternate approach and rely on the fact that we can express the sum-rate

distortion function in the CEO problem as

RCEO
X (D) = RR

X(D) +
(
RCEO

X (D)−RR
X(D)

)
(3.30)

= RR
X(D) + L(D), (3.31)

where we define L(D) = RCEO
X (D)−RR

X(D).

Unlike RCEO
X (D), for which an information theoretic expression is unknown,

RR
X(D) is given exactly by (1.28) and can be computed in principle [5]. Otherwise,

we can use (2.30) as an upper bound. Thus, our second upper bound approach is to

find an upper bound to L(D) and either find an upper bound to RR
X(D) or compute

it exactly. We can bound L(D) as follows.

Theorem 3.6. Let t be a function in the set TX given in Definition 1.19. Then an

upper bound for the rate loss between the CEO sum-rate-distortion function and the
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remote rate-distortion function is

L(D) ≤ M − 1

2
log

(
Mσ2

X

MσX
2 − sσN

2

)

+
1

2
log

(
M · (D + 2

√
D · σ2

N)s + Mσ2
X

MσX
2 − sσN

2

)
(3.32)

where 0 ≤ s < Mσ2
X/σ2

N is the solution to

D = t
(
s, σ2

X

)
. (3.33)

Proof. By Lemma D.2 and Theorem D.4, we have that

RCEO
X (D)−RR

X(D) ≤ max
H∈H(D)

I(H; H + W ), (3.34)

H(D) =

{
H : ∃0 ≤ a ≤ 1,∃ − 1 ≤ b ≤ 1,

EHi
2 = aD + 2b

√
aDσ2

N + σ2
N ,

EHiHj = aD + 2b
√

aDσ2
N

}
,

where W can be any random vector independent of H,X,Z that satisfies

E(X − E[X|Z1 + W1, . . . , ZM + WM ])2 ≤ D. (3.35)

To make our expressions easy to evaluate, we will assume W is i.i.d. jointly Gaussian.

By the maximum entropy theorem [20, Thm. 9.6.5, p. 234], H1, . . . , HM will be

jointly Gaussian, and the optimal choices for a and b are a = b = 1. This simplifies

the right-hand side of (3.34) to

M − 1

2
log

(
1 +

σ2
N

σ2
W

)

+
1

2
log

(
1 +

M · (D + 2
√

D · σ2
N) + σ2

N

σ2
W

)
. (3.36)

All that is left is to select σ2
W to satisfy (3.35). Noting that our sufficient statistic

is just the sum
∑

Zi + Wi, all we have to do is set

D = t

(
Mσ2

X

σ2
N + σ2

W

, σ2
X

)
. (3.37)
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Defining s =
Mσ2

X

σ2
N+σ2

W
<

Mσ2
X

σ2
N

, solving for σ2
W , and substituting it into (3.36) gives us

our bound in (3.32).

3.3.3 Rate Loss Upper Bound vs. Maximum Entropy Upper

Bound
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Figure 3.3. When the curve crosses log(2), the rate loss approach provides a better
bound than the maximum entropy bound for the BPSK source and large enough M .

Instead of computing RR
X(D) exactly, we consider approaches to find an upper

bound for it. A maximum entropy bound on RR
X(D) results in a bound that is worse

than R1(D) (see Appendix). For this reason, the rate loss approach gives a worse

bound than R1(D) for the Gaussian case, for which the latter is tight. Thus, we move

away from bounds RR
X(D) that hold for all possible sources, and consider specializing
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it to specific sources. To see how good such bounds on RR
X(D) need to be, consider

what happens when we subtract (3.32) from (3.29).

R1(D)− L(D) ≥ 1

2
log

(
σ2

X

D + 2
√

D · σ2
N + Dl

)
. (3.38)

Thus, when RR
X(D) is smaller than (3.38) for some choice of D, then our second

bound will be strictly better than R1(D). Indeed, this turns out to be true for the

BPSK source (Example 1.3), as we now show.

Consider the following coding strategy for the BPSK source in the remote source

coding setting. First, the encoder averages its observations Zi(k), giving

Ẑ(k) =
1

M

M∑
i=1

Zi(k) = X(k) +
1

M

M∑
i=1

Ni(k). (3.39)

Next, we quantize these observations to +σX when Ẑ(k) is positive and to −σX when

it is negative. We call the quantized version Z̃(k). By the same arguments in Example

1.3, this gives

E(X(k)− Z̃(k))2 ≤ 4σX
2 exp

{
−Mσ2

X

2σ2
N

}
, (3.40)

which we get simply by replacing snr with
Mσ2

X

σ2
N

in the right hand side of (1.7). If

we now apply noiseless source coding to the sequence Z̃(k), it is clear that R = log 2

is sufficient to reconstruct Z̃(k) with arbitrarily small error probability as the block

length gets large, and that with small enough error probability, we can approach the

distortion on the right-hand side of (3.40) arbitrarily closely.

For large enough M , the right-hand side of (3.40) can be made arbitrarily small.

Thus, for all δ > 0 and for large enough M , (R,D) = (log 2, δ) is achievable in the

remote source coding problem for the BPSK source. Observing that the difference

curve in (3.38) does not depend on M , it is sufficient to show that for the BPSK

source and for some D > 0, this curve is larger than log 2. This is evident in Figure

3.3. We also plot an example for the rate loss approach in Figure 3.4

35



10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

2

4

6

8

10

12

14

BPSK SRDF Upper Bounds, M = 200,  σ
X
2  = 1, σ

N
2  = 1

D

R
at

e 
(n

at
s/

sa
m

pl
e)

Maximum Entropy Bd
Rate Loss Bd

Figure 3.4. The rate loss upper bound outperforms the maximum entropy upper
bound for the BPSK source for certain distortions.
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3.4 Discussion

We presented a lower bound and two upper bounds on the sum-rate-distortion

function for the AWGN CEO problem. The lower bound and the maximum entropy

upper bound are as tight as the gap between the entropy powers and variances found in

their expressions, respectively. To reduce this gap, our rate loss upper bound provides

an improvement on the maximum entropy bound for certain non-Gaussian sources

and certain target distortion values. One disadvantage of this approach is that there

is no simple closed form expression for such a bound, unlike the maximum entropy

bound. One might notice a relationship between the lower bound and maximum

entropy upper bound presented in this chapter with the bounds presented in Chapter

2. In Chapter 4, we explore this relationship in greater detail by considering what

happens as the number of observations gets large in both problems.
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Chapter 4

Scaling Laws

In this chapter, we examine what happens as the number of observations gets

large in the remote source coding and CEO problems. Recall that in Chapters 2 and

3, we assumed a finite number of observation M and for 1 ≤ i ≤ M ,

Zi(k) = X(k) + Ni(k), k ≥ 1, (4.1)

where Ni(k) ∼ N (0, σ2
Ni

). In this chapter, we examine what happens as we let M

get large. We will focus exclusively on the case of squared error distortion for both

models. That is, d(x, x̂) = (x− x̂)2.

In the next section, we provide definitions and notation that will be useful in

proving our scaling laws. We then present scaling laws for the remote source coding

problem and show that as the number of observations increases, the remote rate-

distortion function converges to the direct rate-distortion function. For the CEO

problem, we find that the sum-rate-distortion function does not converge to the clas-

sical rate-distortion function and that there is, in fact, a penalty. It turns out that

this penalty results in a different scaling behavior for the CEO sum-rate-distortion

function. As a cautionary tale on scaling laws, we consider a coding strategy for the

CEO problem that does not exploit the redundancy among the distributed observa-
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tions. This “no binning” approach ends up exhibiting the same scaling behavior as

the sum-rate-distortion function in the CEO problem.

4.1 Definitions and Notation

The following definition will allows us to state our scaling law results precisely.

Definition 4.1. Two functions f(D) and g(D) are asymptotically equivalent, de-

noted f(D) ∼ g(D), if there exist positive real numbers K1 and K2 such that

K1 ≤ lim inf
D→0

f(D)

g(D)
≤ lim sup

D→0

f(D)

g(D)
≤ K2. (4.2)

For convenience, we will use the following shorthand to refer to scalar sufficient

statistics for X given Z.

Z̃ =
1

M

M∑
i=1

σ2
Ñ

σ2
Ni

Zi (4.3)

= X + N̂ , (4.4)

where the harmonic mean σ2
Ñ

= 1
1
M

PM
i=1

1

σ2
Ni

and N̂ = 1
M

∑M
i=1

σ2
Ñ

σ2
Ni

Ni. Note that the

variance of N̂ ∼ N (
0, σ2

Ñ
/M

)
. We assume that the harmonic mean σ2

Ñ
stays fixed

as the number of observations M increases. One important case in which this holds

is the equi-variance case in which σ2
Ni

= σ2
N .

Since the number of observations M is no longer a fixed parameter in our analysis,

we now denote the M -observation remote rate-distortion function and CEO sum-rate-

distortion function as RR,M
X (D) and RCEO,M

X (D), respectively. Further, the notation

RR,∞
X (D) = limM→∞ RR,M

X (D) and RCEO,∞
X (D) = limM→∞ RCEO,M

X (D) will be useful

when stating our scaling laws.
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4.2 Remote Source Coding Problem

Upper and lower bounds for the remote rate-distortion function with squared error

distortion were given in Corollary 2.5. While one can take the limit of the upper and

lower bounds to derive our scaling law, we will show a slightly stronger result. Before

doing so, we establish the following result for the direct rate-distortion function.

Lemma 4.2. When QX > 0, the direct rate-distortion function behaves as

RX(D) ∼ log
1

D
. (4.5)

Proof. Recalling the upper and lower bounds to the direct-rate-distortion function in

(1.22), we know that

1

2
log

(
QX

D

)
≤ RX(D) ≤ 1

2
log

(
σ2

X

D

)
. (4.6)

From this, we can conclude that

lim sup
D→0

RX(D)

log 1
D

≤ 1, (4.7)

lim inf
D→0

RX(D)

log 1
D

≥ 1. (4.8)

This satisfies the conditions in the definition, so we have established the result.

Theorem 4.3. For the AWGN remote source coding problem with M-observations

and a squared error distortion, the remote rate-distortion function converges to the

direct rate-distortion function as M →∞. That is,

RR,M
X (D) → RX(D) (4.9)

as M →∞.

Proof. It is clear that the direct rate-distortion function for X is less than the remote

rate-distortion for X given Z1, . . . , ZM . That is, RX(D) ≤ RR,M
X (D) for all M .
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Thus, all we have to establish is that the remote rate-distortion function for X given

Z1, . . . , ZM converges to a function that is at most the direct rate-distortion function

for X.

By Lemma C.1 and Lemma C.2, we know that it is sufficient to consider the

remote rate-distortion function for X given the sufficient statistic Z̃ defined in (C.2).

By the Cauchy-Schwartz inequality, we know that if E(Z̃ − U)2 = δ, then

δ −
√

δ
σ2

Ñ

M
≤ E(X − U)2 ≤ δ +

√
δ
σ2

Ñ

M
. (4.10)

Similarly, if E(X − U)2 = δ,

δ −
√

δ
σ2

Ñ

M
≤ E(Z̃ − U)2 ≤ δ +

√
δ
σ2

Ñ

M
. (4.11)

Thus, by the single-letter characterizations for the direct and remote rate-distortion

functions given in (1.21) and (1.28), respectively, we can conclude that the remote

rate-distortion function for X given Z̃ converges to the direct rate-distortion function

for Z̃ (denoted RM
Z̃

(D)). That is, as M →∞,

∣∣∣RR,M
X (D)−RM

Z̃
(D)

∣∣∣ → 0. (4.12)

By the same argument, we know that the remote-rate distortion function for Z̃ given

X (denoted RR
Z̃
(D)) converges to the direct rate-distortion function for X. That is,

as M →∞,

RR,M

Z̃
(D) → RX(D). (4.13)

However, we also know that RR,M

Z̃
(D) ≥ RM

Z̃
(D). Thus, we can establish that

RR,M
X (D) converges to a function that is at most RX(D), which completes our

proof.

Theorem 4.3 implies that the scaling behavior of the remote source coding problem

is that same as in Lemma 4.2. We summarize this in the following corollary.
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Corollary 4.4. For the AWGN remote source coding problem with M-observations

and a squared error distortion, the remote rate-distortion function scales as 1
D

in the

limit as M →∞. That is,

RR,∞
X (D) ∼ log

1

D
. (4.14)

4.3 CEO Problem

We now establish a scaling law for the sum-rate-distortion function for the AWGN

CEO problem.

Theorem 4.5. When QX > 0 and the limit of the right-hand side of (3.24) exists as

M →∞,

RCEO,∞
X (D) ∼ 1

D
. (4.15)

In fact, the following upper and lower bounds hold.

1

2
log

(
QX

D

)
+

σ2
Ñ

2

(
1

D
− J(X)

)

≤ RCEO,∞
X (D) ≤

1

2
log

(
σ2

X

D

)
+

σ2
Ñ

2

(
1

D
− 1

σ2
X

)
. (4.16)

Proof. If we can establish (4.16), the scaling law result follows immediately since

lim inf
D→0

DRCEO,∞
X (D) = lim sup

D→0
DRCEO,∞

X (D) =
σ2

N

2
. (4.17)

Taking the limit in (3.24) as M →∞ gives

RCEO,∞
X (D) ≥ log

(
QX

D

)
+

σ2
Ñ

2

(
1

D
− J(X)

)
, (4.18)

Likewise, we can take the as M →∞ for the upper bound given in (3.28) to get

RCEO,∞
X (D) ≤ 1

2
log

(
σ2

X

D

)
+

σ2
Ñ

2

(
1

D
− 1

σ2
X

)
. (4.19)

Thus, we have shown the desired results.

42



Clearly, the above result holds for a Gaussian source. However, we are interested

in finding non-Gaussian sources for which we know this scaling behavior holds. The

following examples show it holds for a Laplacian source as well as a logistic source.

Example 4.6. Consider a data source with a Laplacian distribution. That is,

f(x) =
1√
2σX

e
−
√

2|x|
σX .

For this data source, the Fisher information is

J(X) =
2

σ2
X

and the differential entropy is

H(X) =
1

2
log 2e2σ2

X .

Thus, for this case, the limit exists for the lower bound in (3.24) and is

RCEO,∞
X (D) ≥ 1

2
log

(
eσ2

X

πD

)
+

σ2
Ñ

2

(
1

D
− 2

σ2
X

)
, (4.20)

where the inequality follows from (1.22). Thus, we can conclude that for the Laplacian

source, RCEO,∞
X (D) ∼ 1

D
. The gap between the direct and CEO sum-rate-distortion

function is shown in Figure 4.1.

Example 4.7. Consider a data source with a Logistic distribution. That is,

f(x) =
e−

x
β

β
(
1 + e−

x
β

)2 .

For this data source, the Fisher information is

J(X) =
1

3β2
,

the entropy power is [20, p. 487]

QX =
e3β2

2π
,
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and the variance is

σ2
X =

π2β2

3
.

Thus, for this case, the limit exists for the lower bound in (3.24), so we can conclude

that for the Logistic source, RCEO,∞
X (D) ∼ 1

D
. The gap between the direct and CEO

sum-rate-distortion function is shown in Figure 4.2. Notice that the gap is even

smaller than in Example 4.6.
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Figure 4.1. Scaling behavior for Laplacian source in AWGN CEO Problem

4.4 No Binning

As a cautionary tale about the utility of scaling laws, we consider a coding strategy

in which encoders do not exploit the correlation with observations at other encoders.
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Figure 4.2. Scaling behavior for Logistic source in AWGN CEO Problem
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We call this approach the “no binning” strategy and denote the minimal achievable

sum-rate-distortion pairs by the function RNB,M
X (D) for M -observations. It turns

out that for certain cases, the scaling behavior remains the same as the sum-rate-

distortion function. We consider two such cases. The first is for the case of the

quadratic AWGN CEO problem, which we have already considered. The second is

based on a different CEO problem introduced by Wagner and Anantharam [11], [25].

The strategies that we consider are closely related to special cases of robust coding

strategies considered by Chen et. al. [26].

4.4.1 Quadratic AWGN CEO Problem

Our first case involves the quadratic AWGN CEO problem. That is, the AWGN

CEO problem with a squared error distortion. The coding strategy simply involves

vector quantizing the observations and then performing an estimate at the decoder.

This is similar to the coding strategy we used in our upper bound for the AWGN

CEO sum-rate-distortion function, except now we have removed the binning stage.

Theorem 4.8. When QX > 0 and the limit of the right-hand side of (3.24) exists as

M →∞, then the minimal sum-rate distortion pairs achievable by this coding strategy

is

RNB,∞
X (D) ∼ 1

D
. (4.21)

Proof. The lower bound follows immediately from the previous lower bound in (4.18).

Thus, it is simply a matter of providing an upper bound on the performance of codes

with our structure. For such codes, we can show that random quantization arguments

give

R =
M∑
i=1

I(Zi; Ui), (4.22)

D = E(X − E[X|U1, . . . , UM ])2 (4.23)
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as an achievable sum-rate distortion pair for auxiliary random variables Ui satis-

fying Ui ↔ Zi ↔ X, U{i}c ,Z{i}c . Defining Ui = Zi + Wi where the Wi are inde-

pendent Gaussian random variables and applying the maximum entropy bound for

H(Z1, . . . , ZM) [20, Thm. 9.6.5, p. 234], we get that

RNB,M
X (D) ≤M

2
log

(
1 +

σ2
X

D
− 1

M

)

+
M

2
log


 Mσ2

X

Mσ2
X −

(
σ2

X

D
− 1

)
σ2

Ñ


 (4.24)

Taking the limit as M →∞ gives

RNB,∞
X (D) ≤ σ2

X + σ2
Ñ

2

(
1

D
− 1

σ2
X

)
. (4.25)

Thus, we have that

σ2
N

2
≤ lim inf

D→0
DRNB,∞

X (D)

≤ lim sup
D→0

DRNB,∞
X (D) ≤ σ2

X + σ2
N

2
, (4.26)

and we have proved the desired result.

While the above shows that we can achieve the same scaling behavior, the per-

formance loss can still be large in some instances. The following result bounds the

performance loss.

Theorem 4.9. Let DNB,∞
X (R) denote the inverse function of RNB,∞

X (D) and likewise

for DCEO,∞
X (R). Then, as R →∞,

10 log10 DNB,∞
X − 10 log10 DCEO,∞

X

≤ 10 log10

(
1 +

σ2
X

σ2
N

)
dB. (4.27)

Proof. We can bound the performance loss for this robustness by rearranging (4.25)
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and (4.16) to get, for large enough R,

10 log10 DNB,∞
X (R)− 10 log10 DCEO,∞

X (R)

≤ 10 log10

(
1 +

σ2
X

σ2
N

)
+ 10 log10


 R + J(X)

(
σ2

N

2

)

R + 1
σ2

X

(
σ2

X+σ2
N

2

)

 dB. (4.28)

Thus, at high rates (R →∞), the performance loss is upper bounded by

10 log10

(
1 +

σ2
X

σ2
N

)
dB. (4.29)

This completes the result

For Gaussian sources, the above bound is valid for any choice of R. A summary

for the performance loss for different SNR inputs at each sensor is given in Table 4.1.

SNR (dB) Loss (dB)
10 10.41
5 6.19
1 3.54
0 3.01
-1 2.53
-5 1.19
-10 0.41

Table 4.1. Performance loss for a “no binning” coding strategy in the quadratic
AWGN CEO problem.

4.4.2 Binary Erasure

For our second example, we consider a different CEO problem introduced by

Wagner and Anantharam [11], [25]. In this problem, the source X = ±1, each with

probability 1/2. Each of the encoders views the output of X through an independent

binary erasure channel with crossover probability ε. Thus, Zi ∈ {−1, 0, 1}. The
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distortion of interest to the CEO is

d(x, x̂) =





K À 1, x̂ 6= x, x̂ 6= 0

1 x̂ = 0

0 x̂ = x

.

It turns out that as K gets large, the asymptotic sum-rate-distortion function for this

binary erasure CEO problem is [25]

RCEO,∞
BE (D) = (1−D) log 2 + log

(
1

D

)
log

(
1

1− ε

)
. (4.30)

Theorem 4.10. For the binary erasure the sum-rate distortion pairs achievable by a

“no binning” strategy have the property

RNB,∞
BE (D) ∼ RCEO,∞

BE (D). (4.31)

Proof. Since RNB,∞
BE (D) ≥ RCEO,∞

BE (D), the lower bound is clear. By random quanti-

zation arguments, we can show that for an appropriately chosen f ,

R =
M∑
i=1

I(Zi; Ui), (4.32)

D = Pr (f(U1, . . . , UM) = 0) (4.33)

is an achievable sum-rate distortion pair for auxiliary random variables Ui satisfying

Ui ↔ Zi ↔ X,U{i}c ,Z{i}c . Defining Ui = Zi · Qi where Qi ∈ {0, 1} are Bernoulli-q

random variables, then D is just simply the probability that all the Ui are 0, which

is just

D = (1− (1− ε)(1− q))M . (4.34)

Taking the limit as M →∞ gives

RNB,∞
X (D) ≤ log

(
1

D

)
+ log

(
1

D

)
log

(
1

1− ε

)
. (4.35)

Thus, we have that

lim sup
D→0

RNB,∞
X (D)

RCEO,∞
BE (D)

≤ 1 +

(
log

(
1

1− ε

))−1

, (4.36)

and we have proved the desired result.
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4.5 Discussion

In this chapter, we have presented bounds for the remote rate-distortion function

and CEO sum-rate-distortion function as the number of observations increases. While

the remote rate-distortion function converges to the direct rate-distortion function,

there is still a rate loss asymptotically in the AWGN CEO problem. It turns out that

even significantly suboptimal coding strategies can yield the same scaling behavior,

leading one to question the sufficiency of scaling laws to characterize tradeoffs in such

problems.
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Chapter 5

Conclusion and Future Work

In 1959, Claude Shannon characterized the direct rate-distortion function and gave

closed-form upper and lower bounds to it [1]. In this thesis, we presented extensions

of these bounds to remote source coding problems. In particular, we considered the

case in which the observations were corrupted by additive noise and the distortion

was squared error.

We first gave bounds for the case of centralized encoding and decoding. Like Shan-

non’s bounds for squared error distortion, the upper and lower bounds had similar

forms with the upper bound matching the Gaussian remote rate-distortion function.

The lower bound met the upper bound for the Gaussian source and entropy powers

took the place of variances for non-Gaussian sources. Unlike previously known lower

bounds for this problem, the lower bound in this problem was easier to compute for

non-Gaussian sources.

We then gave bounds for the case of distributed encoding and centralized decoding,

the so-called CEO problem. The lower bound appears to be the first non-trivial lower

bound to the sum-rate-distortion function for AWGN CEO problems. We also consid-

ered two upper bounds for the sum-rate-distortion function. The second, while not as
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elegant as the first, proved to be more useful for certain non-Gaussian sources. Again,

for the sum-rate-distortion function, the upper bounds and lower bounds matched for

the case of the Gaussian source.

Using these bounds, we derived scaling laws for these problems. We found that

while the case of centralized encoding and decoding could overcome the noise and con-

verge to the direct rate-distortion function in the limit as the number of observations

increases, the CEO sum-rate-distortion function converges to a larger function that

has a different scaling behavior at low distortions. We also noted that one can still

maintain this scaling behavior even none of the encoders take advantage of correlation

among the different observations in the distributed coding scheme.

The results presented here pave the way for new research directions. One would

be to consider the case in which the source or noise processes have memory. One can

also consider how to handle different types of noise distributions as well as different

distortions. Further, the bounds presented about the CEO problem appear to are

related to the µ-sums problem considered by Wagner et. al. in [25]. Using the results

given here, one might be able to provide similar results for the case of Gaussian

mixtures.
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Appendix A

Lower Bounds on MMSE

In this appendix, we show that for a large class of sources corrupted by additive
Gaussian noise have mean squared error decaying as Θ

(
1

snr

)
where snr is the signal-

to-noise ratio of the source viewed in additive noise. The main conditions on the
sources are that they have finite variance and are continuous.

Although we specialize our proofs to cases in which the noise is additive Gaus-
sian, the same arguments work for any additive noise N with variance σ2 for which
1
2
log σ2−h(N) = K, where K is a constant that does not depend σ2. The only thing

that changes is the scaling constant. Table A.1 lists examples of sources for which
this is true.

Distribution Density Variance Entropy

Gaussian(0, σ2) f(x) = 1√
2πσ2

e−x2/2σ2
σ2 1

2
log(2πeσ2)

Laplacian(λ) f(x) = λ
2
e−λ|x| σ2 = 2

λ2
1
2
log(2e2σ2)

Uniform(−a, a) f(x) = 1
2a

1{x∈[−a,a]} σ2 = 1
3
a2 1

2
log(12σ2)

Two Pulse(c, ε) f(x) = 1
4cε

1{x∈[−c(1+ε),−c(1−ε)]
∪[c(1−ε),c(1+ε)]}

σ2 = c2(1 + ε2/3) 1
2
log

(
16ε2σ2

1+ε2/3

)

Table A.1. Distributions and their differential entropies.

In the sequel, we denote our source as the random variable X with variance σ2
X .

X is corrupted by independent additive noise N with variance σ2
X/s. This gives

the signal-to-noise ratio s. We are interested in the performance of the estimator
E[X|X + N ] as a function of s for fixed σ2

X .

Lemma A.1. Define m(s) = E(X − E[X|X + N ])2. Then

m(s) ≤ σ2
X

s + 1
. (A.1)

Proof. Using the linear estimator X̂ =
σ2

X

σ2
X+σ2

X/s
(X +N), we get a mean squared error
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upper bound of

E(X − E[X|X + N ])2 ≤ E(X − X̂)2 =
σ2

X

s + 1
. (A.2)

We have now established that the decay in MMSE is always at least as fast as
s−1. In fact, the bound in Lemma A.1 is tight for the Gaussian case. However, we
are still left with the following question. Are there sources for which this decay is
faster than s−1? The answer to this question is yes. For discrete sources, the MMSE
decays exponentially in s.

We now modify the question. Are there any continuous sources for which the
decay is faster than s−1? Consider the one in Figure A.1. While it is not discrete,
its probability is concentrated around two regions. Despite this fact, it will turn out
that even the source in Figure A.1 decays as s−1. The key observation is to note that
H(X), the differential entropy of X, is finite.

6
fX (x)

Figure A.1. Example of a source that decays as s−1.

The following lemma will help us obtain this result.

Lemma A.2. Let QX , QN , and QX+N be the normalized (by 2πe) entropy powers of
X, N , and X + N , respectively. Then

E(X − E[X|X + N ])2 ≥ QXQN

QX+N

. (A.3)

Proof. The result is related to a derivation of the Shannon lower bound for squared
error distortion (see e.g. [8]). That is,

I(X; X + N) = H(X)−H(X|X + N) (A.4)

= H(X)−H(X − E[X|X + N ]|X + N) (A.5)

≥ H(X)−H(X − E[X|X + N ]) (A.6)

≥ H(X)− 1

2
log

(
2πeE(X − E[X|X + N ])2

)
. (A.7)

However, since I(X; X + N) = H(X + N) − H(N), we can rearrange and recollect
terms in (A.7) to conclude the result.
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Theorem A.3. If H(X) > −∞, then for N ∼ N (0, σ2
X/s) independent of X, then

m(s) = E(X − E[X|X + N ])2 = Θ
(
s−1

)
. (A.8)

Further,

m(s) ≥ QX

s + 1
. (A.9)

Proof. We already established the upper bound in Lemma A.1. Further, by Lemma
A.2, we know that

≥ QXQN

QX+N

. (A.10)

Since N is Gaussian, its normalized entropy power QN = σ2
X/s. Further, by the

maximum entropy theorem under second moment constraints, QX+N ≤ σ2
X + σ2

X/s.
With these facts, we can conclude the lower bound in (A.9).

One can generalize the result easily to the following case.

Corollary A.4. If H(X|U) > −∞, then for N ∼ N (0, σ2
x/s) independent of X, U ,

m(s) = E(X − E[X|U,X + N ])2 = Θ
(
s−1

)
. (A.11)

Further,

m(s) ≥
1

2πe
exp{2H(X|U)}

s + 1
. (A.12)

Proof. The upper bound in Lemma A.1 continues to hold. We now have the bounds

H(X|U)− 1

2
log(2πem(s)) ≤ I(X; X + N |U) ≤ I(X, U ; X + N). (A.13)

where the lower bound follows as before. We get the upper bound by writing

I(X, U ; X + N) ≤ H(X + N)−H(X + N |X, U) (A.14)

= H(X + N)−H(N |X, U) (A.15)

= H(X + N)−H(N) (A.16)

≤ 1

2
log(1 + s). (A.17)

Now, by the same arguments given in Theorem A.3, we can conclude (A.12) and
thereby (A.11).

Suppose now we consider a source that is either discrete or continuous conditioned
on a random variable T . In particular, suppose a source X is 0 when T = d and X
has a pdf like the one in Figure A.1 when T = c. Can this scale faster than s−1? The
answer again turns out to be no.
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Corollary A.5. If H(X|T = c) > −∞ and V ar(X|T = c) = ασ2
X for some α < ∞,

then for N ∼ N (0, σ2
X/s) independent of X, T ,

m(s) = E(X − E[X|X + N ])2 = Θ
(
s−1

)
. (A.18)

Further,

m(s) ≥ P (T = c)
1

2πeα
exp{2H(X|T = c)}

s + 1
. (A.19)

Proof. This follows immediately from Theorem A.3 by conditioning on the event
{T = c}.
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Appendix B

Unified Entropy Power Inequality

We prove an inequality that specializes to the entropy power inequality in one case,
Costa’s entropy power inequality [29] in a second, and an entropy power inequality
used by Oohama to prove a converse to the sum-rate-distortion function for Gaussian
CEO problem in a third [16]. The generalization allows us to generalize his converse
approach to give lower bounds to the sum-rate-distortion function for non-Gaussian
sources in the AWGN CEO problem (see Chapter 3). It is also useful for new lower
bounds for the remote rate-distortion function (see Chapter 2).

In the next section, we state the main result and give some interpretations of
it. The remainder of this appendix is devoted to the proof. Our goal is to define a
function on the positive reals that is the ratio between the right- and left-hand side
of our inequality at 0 and show that it increases monotonically to 1, as in Figure B.1.
To do this, we find derivatives of the differential entropies in our expressions and then
establish inequalities about these derivatives. We then applies these inequalities on
the function we defined and show that it has a positive derivative at all points.

B.1 Main Result

In this section, we state the main result. We also briefly describe how one can get
other inequalities in this case.

Theorem B.1. X and N are independent random vectors in Rn. Let Z = X + N
and require that X ↔ Z ↔ W , where W is some auxiliary random variable. Then

e
2
n

H(Z)

e
2
n

I(X;W )
≥ e

2
n

H(X)

e
2
n

I(Z;W )
+ e

2
n

H(N). (B.1)

The original entropy power inequality follows when Z is independent of W . When
N is Gaussian and W = Z + N2, where N2 is additional Gaussian noise, we get
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Costa’s entropy power inequality [29]. Note that we can rewrite (B.1) as

e
2
n

H(X|W ) ≥ e
2
n

H(Z|W )

(
e

2
n

I(N;Z)
)2 +

e
2
n

H(N)

e
2
n

I(N;Z)
. (B.2)

For the special case when X and N are Gaussian, this becomes Oohama’s entropy
power inequality [16, eq. (48)]. It can be thought of as a “reverse” entropy power
inequality in the sense that one of the addends in the traditional entropy power
inequality is on the left-hand side of this inequality. Note that unlike his case, which
follows from the relationship between independence and uncorrelatedness for Gaussian
random variables, our result shows that the inequality holds simply by Bayes’ rule.
Another way of writing the inequality is

1

n
I(X; W ) ≤ 1

n
I(X;Z)− 1

2
log

(
e−

2
n

I(N;Z) + e−
2
n

I(X;Z)e2I(Z;W )

e−
2
n

I(X;Z)e
2
n

I(Z;W )

)
. (B.3)

This gives a tighter bound than the data processing inequality under additional struc-
ture assumptions.

B.2 Definitions and Notation

The proof follows along the lines of Blachman’s proof [27] of the original entropy
power inequality, except we treat the vector case directly. Before moving on to the
proof, we introduce Fisher information and provide a few basic properties of it.

Definition B.2. Let X be a random vector in Rn. If X has a pdf f(x), the trace of
the Fisher information matrix of X is

J(X) =

∫

Rn

‖∇f(x)‖2

f(x)
dx. (B.4)

This definition is based on the case in which one is interested in estimating means,
so it differs slightly from [28]. The relationship is described in [20, p. 194]

Definition B.3. Let X be a random vector in Rn and W a random variable. If X
has a conditional pdf f(x|w), the conditional Fisher information of X given W is

J(X|W ) =

∫
µ(dw)

∫

Rn

‖∇xf(x|w)‖2

f(x|w)
dx. (B.5)

One might recall de Bruijn’s identity [20, Theorem 16.6.2]. The following is a
statement of the vector version.

Lemma B.4. Let X be a random vector in Rn. We denote Xt = X+
√

tV, where V
is a standard normal Gaussian random vector. We denote the pdf of Xt with ft(x).
Then

d

dt
H(Xt) =

1

2
J(Xt). (B.6)
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Proof. See [29].

The following is a conditional version of the identity.

Lemma B.5. Let X be a random vector in Rn. We denote Xt = X +
√

tV, where
V is a standard normal Gaussian random vector independent of (X, W ). We denote
the pdf of Xt with ft(x). Then,

d

dt
H(Xt|W ) =

1

2
J(Xt|W ). (B.7)

Proof. Smoothing the distribution of X by a Gaussian
√

tV is equivalent to smoothing
the conditional distribution of X on any realization W = w by

√
tV. A formal argu-

ment requires applying Fubini’s theorem and the uniqueness of the Radon-Nikodym
derivative [30], but the observation should be intuitively obvious. From this fact, we
find that, for U independent of (X,V,W ),

0 ≤ H(Xt +
√

hU|W = w)−H(Xt|W = w) ≤ 1

2
log

(
t + h

t

)
≤ h

2t
, (B.8)

where the first inequality follows from the non-negativity of mutual information,
the second from the data processing inequality, and the third from the inequality
log(1 + x) ≤ x. Thus,

0 ≤ H(Xt +
√

hU|W = w)−H(Xt|W = w)

h
≤ 1

2t
, (B.9)

so by bounded convergence, we can swap the derivative and expectation over W to
conclude the result.

Lemma B.6. Let X be a random vector in Rn. We denote Xt = X +
√

tV, where
V is a standard Gaussian random vector independent of (X, W ). Then,

J(Xt|W ) ≥ J(Xt). (B.10)

Proof. Let U be a standard Gaussian random vector independent of (X,V,W ).
Then, by the data processing inequality,

I(Xt; W ) ≥ I(Xt +
√

hU; W ). (B.11)

Thus, for all h > 0,

0 ≥ I(Xt +
√

hU; W )− I(Xt; W )

h
(B.12)

=
H(Xt +

√
hU)−H(Xt)

h
− H(Xt +

√
hU|W )−H(Xt|W )

h
. (B.13)

Letting h → 0 and applying Lemmas B.4 and B.5 gives the desired result.

61



B.3 Fisher Information Inequalities

We now consider Fisher information inequalities that will allow us to show that
a function we define momentarily has a positive derivative at all points. The follow-
ing inequality is sufficient to prove the classical entropy power inequality shown by
Blachman [27].

Lemma B.7. Let X,N be independent random vectors and Z = X + N with differ-
entiable, nowhere vanishing densities fX(·), fN(·), and fZ(·). Then

1

J(Z)
≥ 1

J(X)
+

1

J(N)
(B.14)

Proof. See Blachman [27] for the scalar version. The vector proof is the same except
derivatives are replaced by gradients.

For our generalization of the entropy power inequality, we require an additional
inequality that we now state.

Lemma B.8. Let X,N be independent random vectors and Z = X+N with differen-
tiable, nowhere vanishing densities fX(·), fN(·), and fZ(·). If X ↔ Z ↔ W for some
random variable W and fX|W (·|w) fZ|W (·|w) are differentiable, nowhere vanishing
conditional densities, then

J(X|W )− J(X) ≤ J(N) (J(Z|W )− J(Z))

J(Z|W )− J(Z) + J(N)
. (B.15)

Note that when J(X|W ) > J(X) and J(Z|W ) > J(Z), we can rewrite (B.15) as

1

J(X|W )− J(X)
≥ 1

J(Z|W )− J(Z)
+

1

J(N)
(B.16)

Proof. We follow a similar argument in Blachman [27] for Lemma B.7. By a straight-
forward application of Bayes’ rule, we can write

fX|W (x|w) =

∫

Rn

fX(x)fN(x− z)

fZ(z)
fZ|W (z|w)dz. (B.17)

= fX(x)

∫

Rn

fN(x− z)

fZ(z)
fZ|W (z|w)dz. (B.18)

Since we have assumed differentiability, we can write the gradient as

∇fX|W (x|w) = (∇fX(x))

∫

Rn

fN(x− z)

fZ(z)
fZ|W (z|w)dz

+ fX(x)

∫

Rn

fZ|W (z|w)fN(x− z)

fZ(z)

∇fN(x− z)

fN(x− z)
dz. (B.19)
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Dividing (B.19) by (B.18) gives

∇fX|W (x|w)

fX|W (x|w)
=
∇fX(x)

fX(x)
+

∫

Rn

fZ|W (z|w)fN(x− z)fX(x)

fZ(z)fX|W (x|w)

∇fN(x− z)

fN(x− z)
dz. (B.20)

= E

[∇fX(X)

fX(X)
+
∇fN(N)

fN(N)

∣∣∣∣X = x,W = w

]
. (B.21)

Observing that the integral in (B.18) is simply a convolution, the same arguments
give us

∇fX|W (x|w)

fX|W (x|w)
= E

[∇f(X)

fX(X)
+
∇fZ|W (Z|W )

fZ|W (Z|W )
− ∇fZ(Z)

fZ(Z)

∣∣∣∣X = x,W = w

]
. (B.22)

We can combine (B.21) and (B.22) by the linearity of expectations to give

(a + b)
∇fX|W (x|w)

fX|W (x|w)
=E

[
(a + b)

∇f(X)

fX(X)
+ a

∇fN(N)

fN(N)

+b

(∇fZ|W (Z|W )

fZ|W (Z|W )
− ∇fZ(Z)

fZ(Z)

)∣∣∣∣X = x,W = w

]
. (B.23)

Conditional Jensen’s inequality implies that

(a + b)2

∥∥∥∥
∇fX|W (x|w)

fX|W (x|w)

∥∥∥∥
2

≤

E

[∥∥∥∥(a + b)
∇f(X)

fX(X)
+ a

∇fN(N)

fN(N)
+ b

(∇fZ|W (Z|W )

fZ|W (Z|W )
− ∇fZ(Z)

fZ(Z)

)∥∥∥∥
2
∣∣∣∣∣

X = x,
W = w

]
.

(B.24)

It is straightforward to check that

E

[〈∇fZ|W (Z|W )

fZ|W (Z|W )
,
∇fZ(Z)

fZ(Z)

〉]
= J(Z),

E

[〈∇fZ|W (Z|W )

fZ|W (Z|W )
,
∇fN(N)

fN(N)

〉]
= E

[〈∇fZ(Z)

fZ(Z)
,
∇fN(N)

fN(N)

〉]
,

E

[〈∇fZ|W (Z|W )

fZ|W (Z|W )
,
∇f(X)

fX(X)

〉]
= E

[〈∇fZ(Z)

fZ(Z)
,
∇f(X)

fX(X)

〉]
.

Taking the expectation of (B.23) and knowing these facts, we get

(a + b)2J(X|W ) ≤ (a + b)2J(X) + a2J(N) + b2 (J(Z|W )− J(Z)) . (B.25)

We can rewrite this as

J(X|W )− J(X) ≤ a2J(N) + b2 (J(Z|W )− J(Z))

(a + b)2
. (B.26)

When J(Z|W )− J(Z) = 0, we show that (B.15) holds by making b arbitrarily large.
When J(Z|W ) − J(Z) > 0, we simply set a = 1

J(N)
and b = 1

J(Z|W )−J(Z)
to give

(B.15).
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s(t)
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s(0)

Figure B.1. Desired behavior of s(t)

B.4 Gaussian Smoothing

To finish the proof, the idea is that since we know the result is Gaussian, we
smooth all the distributions until they approach a Gaussian, and then show that this
smoothing can only increase the ratio. We smooth X by a an iid Gaussian vector
U ∼ N (0, f(t)I) independent of (X,N,W ) and smooth N by an iid Gaussian vector
V ∼ N (0, g(t)I) independent of (X,N,W,U), where I is the identity matrix. This
induces smoothing on Z by an iid Gaussian vector of variance h(t) = f(t) + g(t).
We denote the smoothed random variables as Xf = X + U, Ng = N + V, and
Zh = Z + U + V, respectively. This will also result in smoothed the conditional
distributions. We now define

s(t) =
e2/n(H(Xf )−I(Zh;W )) + e2/nH(Ng)

e2/n(H(Zh)−I(Xf ;W ))
(B.27)

We let f(0) = g(0) = h(0) = 0. Thus, our goal is to show that s(0) ≤ 1, which we do

by showing that for f ′(t) = e2/n(H(Xf )−I(Zh;W )) and g′(t) = e2/nH(Ng), s′(t) ≥ 0 and
then showing that either s(+∞) = 1 or s(0) = 1 trivially.

Lemma B.9. Let f(0) = g(0) = 0, f ′(t) = e2/n(H(Xf )−I(Zh;W )), and g′(t) = e2/nH(Ng).
Then, for all t,

s′(t) ≥ 0 (B.28)

Proof. Taking the derivative,

e2/n(H(Zh)−I(Xf ;W ))s′(t) =e2/n(H(Xf )−I(Zh;W )) (f ′(t)J(Xf ) + h′(t)(J(Zh|W )− J(Zh))))
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+ e2/nH(Ng)g′(t)J(Ng)

−
[
e2/n(H(Xf )−I(Zh;W )) + e2/nH(Ng)

]

· (h′(t)J(Zh) + f ′(t)(J(Xf |W )− J(Xf ))). (B.29)

Applying Lemmas B.7 and B.8 to the final term and factoring yields

e2/n(H(Zh)−I(Xf ;W ))s′(t) ≥
(f ′(t)J(Xf )− g′(t)J(Ng))

(
e2/n(H(Xf )−I(Zh;W ))J(Xf )− e2/nH(Ng)J(Ng)

)

J(Xf ) + J(Ng)

+ (f ′(t) + g′(t))
(J(Zh|W )− J(Zh))

2e2/n(H(Xf )−I(Zh;W ))

J(Zh|W )− J(Zh) + J(Ng)

+
(
e2/n(H(Xf )−I(Zh;W ))g′(t)− e2/nH(Ng)f ′(t)

) J(Ng)

J(Zh|W )− J(Zh) + J(Ng)
(B.30)

Setting f ′(t) = e2/n(H(Xf )−I(Zh;W )) and g′(t) = e2/nH(Ng), this simplifies to

e2/n(H(Zh)−I(Xf ;W ))s′(t) ≥

(
e2/n(H(Xf )−I(Zh;W ))J(Xf )− e2/nH(Ng)J(Ng)

)2

J(Xf ) + J(Ng)
+

(
e2/n(H(Xf )−I(Zh;W )) + e2/nH(Ng)

) (J(Zh|W )− J(Zh))
2e2/n(H(Xf )−I(Zh;W ))

J(Zh|W )− J(Zh) + J(Ng)
≥ 0.

(B.31)

This establishes the result.

Proof of Theorem B.1. With Lemma B.9, all that is left is to establish that s(+∞) =
1 and when s′(t) = 0 for all t, then s(0) = 1 trivially. We establish the latter case
first. The cases in which s′(t) = 0 for all t happen when any differential entropy or
mutual information is infinite. Note that when any of H(N), H(X), and H(Z) are
infinite, the inequality is satisfied automatically if one appeals to the non-negativity
of mutual information (H(Z) ≥ H(N) H(Z) ≥ H(X)) and the data processing
inequality (I(X; W ) ≤ I(X;Z) and I(X; W ) ≤ I(Z; W )). Further, our inequality
is an immediate consequence of the data processing inequality when I(Z; W ) = ∞.
Thus, we only need to consider the case in which these terms are finite.

Since f ′(t) > 0 and increasing when I(Z; W ) < ∞, the Gaussian smoothing
eventually dominates. If the convergence is uniform, then 1

n
H(Xf )− 1

2
log 2πef → 0,

1
n
H(Ng)− 1

2
log 2πeg → 0, and 1

n
H(Zh)− 1

2
log 2πe(f +g) → 0. Further, 1

n
H(Xf |W )−

1
2
log 2πef → 0, so I(Xf ; W ) → 0, and by the data processing inequality, I(Zh; W ) →

0.

To show that we can get the result with absolute convergence, we rely on a trun-
cation argument. Consider a channel with independent input X(k) with density f(x)
and noise N(k) with density g(x) at each time k. The output of the channel is
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Z(k) = X(k) + N(k), then this output passes through another channel generating
W (k) at the output. The Markov chain X(k) ↔ Z(k) ↔ W (k) holds. The mutual
information rate for the first channel is I(X;Z) and the mutual information rate of
the second channel is I(Z; W ).

We now consider a second pair of channels that behave like the first, except now,
if at any time k, the values of any |Xi(k)|, |Ni(k)|, f(X(k)|W (k)), g(N(k)) exceeds a
value L, then the channels skip over time k without delay to time k + 1. We define
the probability that this event occurs as 1−P (L). For this pair of channels, we know
that the mutual information rates cannot exceed I(X;Z)/P (L) and I(Z; W )/P (L),
respectively, since it can convey no more information than the first channel, and in
P (L) times the original number of channel uses.

Note that the inputs and noise for the second pair of channels is bounded with
bounded densities. Here, we truncate smoothed versions of our random vectors. We
use the notation X̂f to mean that Xf is truncated. Our truncation enables uniform
convergence, so we get

e2/nH(Ẑh)

e2/nI(X̂f ;W )
≥ e2/nH(X̂f )

e2I(Ẑh;W )
+ e2/nH(N̂g) (B.32)

≥ e2/nH(X̂f )

e2/nI(Zh;W )/P (L)
+ e2/nH(N̂g) (B.33)

for any t ≥ 0. Since H(Ẑh) = I(X̂f ; Ẑh) + H(N̂g), we know that

H(Ẑh) ≤ H(Zh)−H(Ng)

P (L)
+ H(N̂g). (B.34)

and find that

e
2/n

h
H(Zh)−H(Ng)

P (L)
+H(N̂g)

i
e2/nI(X̂f ;W )

≥ e2/nH(X̂f )

e2/nI(Zh;W )/P (L)
+ e2/nH(N̂g) (B.35)

For any t > 0, we can let L → ∞, causing P (L) → 1, H(X̂f ) → H(Xf ), H(N̂g) →
H(Ng), and H(X̂f |W ) → H(Xf |W ), giving

e2/nH(Zh)

e2/nI(Xf ;W )
≥ e2/nH(Xf )

e2/nI(Zh;W )
+ e2/nH(Ng) (B.36)

Finally, letting t → 0, we get our result for the case in which the convergence is
absolute.
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Appendix C

Sufficient Statistics in Remote
Source Coding

In this appendix, we establish some basic results about sufficient statistics that
allow us to simplify remote source coding problems with multiple observations.

C.1 Sufficient Statistics in Additive White Gaus-

sian Noise

Lemma C.1. Consider the M observations of a random variable X. For 1 ≤ i ≤ M ,

Zi = X + Ni, (C.1)

where Ni(k) ∼ N (0, σ2
Ni

). Now define

Z̃ =
1

M

M∑
i=1

σ2
Ñ

σ2
Ni

Zi, (C.2)

where σ2
Ñ

= 1
1
M

PM
i=1

1

σ2
Ni

is the harmonic mean of the noise variances σ2
Ni

. Then, Z̃ is

a sufficient statistic for X given Z1, Z2, . . . , ZM .

Proof. Since this a well known result, we only sketch the proof. One can whiten
the noise, which makes the noise isotropic since the noise statistics are Gaussian.
Projecting in the direction of the signal then gives the sufficient statistic.

C.2 Remote Rate-Distortion Functions

We want to show that considering the sufficient statistic is equivalent to consid-
ering the original source give the same remote rate distortion function. That is, we
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want to show that we lose nothing in terms of the rate distortion sense by considering
a sufficient statistic in the remote source coding problem.

Lemma C.2. Given a sufficient statistic Ti(Zi) for a memoryless source Xi given
a memoryless observation process Zi (i.e., Xi → Ti(Zi) → Zi), then we have two
equivalent single letter characterizations of the remote rate distortion function for a
distortion measure d(·, ·).

RR(D) = min
U∈UR(D)

I(Z; U) = min
U∈U ′R(D)

I(T ; U), (C.3)

U ′R(D) =

{
U : X → T → U,Ed(X, U) ≤ D.

}

Proof. This proof can be split into two parts. First, we show that if our encoder is
a function on the f(T (Z)N) instead of f(ZN), the distortion can only be smaller.
Based on an argument by Witsenhausen in [31], this is equivalent to showing that the
conditional expectation of the distortion measure on ZN is equal to the conditional
expectation of the distortion measure on T (Z)N . To avoid hairy notation in the
below expression, we express everything in terms of the single letter terms. Since we
are making the assumption that the source is memoryless and the observations are
viewed by a memoryless channel, it is clear that this argument will continue to hold
over blocks of any length.

E[d(X, u)|Z = z] = E[d(X, u)|Z = z, T (Z) = t(z)] (C.4)

= E[d(X, u)|T (Z) = t(z)] (C.5)

= E[d(X, u)|T = t(z)]. (C.6)

Second, we show that considering the sufficient statistic will not change the rate.
This is equivalent to showing that I(Z; U) = I(T ; U) since we know both rate distor-
tion functions.

I(Z; U) = I(T (Z), Z; U) (C.7)

= I(T (Z); U) + I(Z; U |T (Z)) (C.8)

= I(T (Z); U) = I(T ; U). (C.9)

Thus, we can only do better with the sufficient statistic since it does not affect
the rate and can only improve the distortion. Since the sufficient statistic is just a
function of Z, this means that the rate distortion functions of the two problems are
the same.
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Appendix D

Rate Loss

Recall the model considered for the remote source coding problem with multiple
observations shown in Figure D.1 and the AWGN CEO problem in Figure D.2. In
particular, consider the case in which the noise variances were equal. We could then
describe the observation as

Zi(k) = X(k) + Ni(k), k ≥ 1, (D.1)

where Ni(k) ∼ N (0, σ2
N) and for 1 ≤ i ≤ M . We derived upper and lower bounds for

the (sum-)rate-distortion functions for these problems in Chapters 2 and 3. Clearly,
the sum-rate-distortion function in the CEO problem is always at least as large as
the remote rate-distortion function.
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Figure D.1. Remote Source Coding Problem

In this appendix, we want to characterize the “gap” between these two functions.
A simple way to find this gap or rate loss this is to take differences between the
bounds derived in previous chapters. The disadvantage to such an approach is that
the bounds are vacuous when the entropy power of the source is zero. We consider
a novel approach introduced by Zamir [32] to determine an upper bound to the rate
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loss between the sum-rate-distortion function for the CEO problem and the remote
rate-distortion function.
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Figure D.2. AWGN CEO Problem

D.1 Definitions and Notation

Our results will apply to all difference distortions, which are distortions of the
form d(x, u) = f(x−u). For our purposes, it will be sufficient to consider the squared
error distortion case.

Definition D.1. A weak constraint Eg(Z − X̂) ≤ K(ρ) for some functions g :
ZM → Rp and K : Rq → Rp and for some a,b ∈ Rq, is such that for all ρ ∈ Rq

satisfying ai ≤ ρi ≤ bi, Ed(X, X̂) ≤ D implies Eg(Z− X̂) ≤ K(ρ).

Lemma D.2. For d(x, x̂) = (x− x̂)2,

E(Zi − X̂)2 = aD + 2b
√

aD · σ2
N + σ2

N . (D.2)

E(Zi − X̂)(Zj − X̂) = aD + 2b
√

aD · σ2
N . (D.3)

are weak constraints for all i 6= j.

Proof. We can write E(X − X̂)2 ≤ D as E(X − X̂)2 = aD for some 0 ≤ a ≤ 1. The
Cauchy-Schwartz inequality implies

E(Zi − X̂)2 = E(X − X̂)2 + 2b

√
E(X − X̂)2 · σ2

N + σ2
N ,

E(Zi − X̂)(Zj − X̂) = E(X − X̂)2 + 2b

√
E(X − X̂)2 · σ2

N ,

where −1 ≤ b ≤ 1. Note that we use the same choice of b for all values since
∑

i Zi is
a sufficient statistic for X, and by symmetry of the Zi distributions all the b will be
the same. Lemma C.2 implies that

∑
i Zi will satisfy the same remote rate distortion

function as Z.
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Definition D.3. The minimax capacity with respect to a weak constraint Eg(Z−
U) ≤ K(ρ),ai ≤ ρi ≤ bi is

C(D) = min
W∈L(D)

C(D,W), (D.4)

where

L(D) =

{
W : W ⊥⊥ (X,U,Z), ∃f, Ed(X, f(Z + W)) ≤ D

}
,

C(D,W) = max
p(h),ρ:Eg(H)≤K(ρ),

ai≤ρi≤bi

I(H;H + W), (D.5)

where ⊥⊥ denotes statistical independence.

D.2 General Rate Loss Expression

We first find a bound on the rate loss in the CEO problem.

Theorem D.4. We are given an i.i.d. source X, and M observations Z1, . . . , ZM

viewed through a channel that is memoryless over time, and a difference distortion
d(·, ·). The remote rate distortion function for this problem is described by

RR
X(D) = min

U∈XR
X (D)

I(Z1, . . . , ZM ; U). (D.6)

Suppose there is a weak constraint Eg(Z− U) ≤ K(ρ) for Ed(X, U) ≤ D. Then,

RCEO
X (D)−RR

X(D) ≤ C(D). (D.7)

The rest of this section is concerned with the proof of this theorem.

We begin with a lemma that generalizes Zamir’s information inequality in [32].
This will lead to a general expression for the rate loss in the CEO problem. We then
equate the terms in this expression to rate distortion quantities to get our rate loss
bound.

Lemma D.5. For any joint distribution on (W, U,Z) such that W is independent
of (U,Z),

I(Z;Z + W)− I(Z; U) ≤ I(Z− U ;Z− U + W). (D.8)
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Proof.

I(Z;Z + W)− I(Z; U)

= −I(Z; U |Z + W) + I(Z;Z + W|U) (D.9)

≤ I(Z;Z + W|U) (D.10)

= I(Z− U ;Z− U + W|U) (D.11)

= I(Z− U,U ;Z− U + W)− I(U ;Z−U + W) (D.12)

≤ I(Z− U,U ;Z− U + W) (D.13)

= I(Z−U;Z− U + W) + I(U ;Z− U + W|Z− U) (D.14)

= I(Z− U ;Z− U + W) + I(U ;W|Z− U) (D.15)

= I(Z− U ;Z− U + W) + I(U,Z− U ;W)− I(Z− U ;W) (D.16)

= I(Z− U ;Z− U + W), (D.17)

where we justify the steps with
(D.9) the chain rule for mutual information;
(D.10) the non-negativity of mutual information;
(D.11) one-to-one transformations preserve mutual information;
(D.12) the chain rule for mutual information;
(D.13) the non-negativity of mutual information;
(D.14) the chain rule for mutual information;
(D.15) one-to-one transformations preserve mutual information;
(D.16) the chain rule for mutual information;
(D.17) our assumption about the joint distribution of (W, U,Z).

Our next step is to use this inequality to get a worst case upper bound on the rate
loss in the CEO problem. To do this, we will make the second term on the left-hand
side of (D.8) satisfy conditions to be the remote rate distortion function evaluated
at distortion D and then the first term satisfy conditions for an inner (achievable)
bound on the sum rate for distortion D.

We first choose U ∈ XR
X (D) to minimize I(U ;Z) in (D.8). This gives us the

remote-rate-distortion function in (1.28), and so

RR
X(D) = I(Z1, . . . , ZM ; U). (D.18)

With these constraints on U , we find from (D.8) that

I(Z;Z + W)−RR
X(D) ≤ I(Z− U ;Z− U + W). (D.19)

Notice that we have the constraint Ed(X, U) ≤ D. To simplify expressions, we want
a series of constraints on Z− U . To do this, we find a weak constraint by specifying
functions g(·), K(·), a, and b.

We now allow ourselves to choose any distribution for Z − U that satisfies the
weak constraints. This can be larger than the right side of (D.19), and so

I(Z;Z + W)−RR
X(D) ≤ C(D,W). (D.20)
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We now turn our attention to I(Z;Z+W). To satisfy the conditions for our inner
bound inequality in (3.2), we set Ui = Zi + Wi and require that (W1, . . . ,WM) are
mutually independent and independent of (U,Z1, . . . , ZM , X) to satisfy the Markov
chain condition and W “small enough” to satisfy the distortion condition. A fortiori,
this satisfies the assumption in Lemma D.5 for the information inequality to hold.
Observe further that for difference distortions, 0 ∈ L(D) whenever L(D) is nonempty,
so we can always find a W such that

RCEO
X (D) ≤ I(Z1, . . . , ZM ; Z1 + W1, . . . , ZM + WM). (D.21)

From this, we conclude

RCEO,X(D)−RR
X(D) ≤ C(D,W). (D.22)

If we minimize this mutual information over choices of W ∈ L(D), we have proven
the theorem.
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Appendix E

Linear Algebra

This appendix gives the determinant of a specific type of matrix that is of par-
ticular interest in computing the determinant of a covariance matrix. This is most
likely a well known result, so the derivation is provided here for completeness.

Lemma E.1. For a matrix of the following form:

An =




a0 + a1 a0 . . . a0

a0 a0 + a2
. . .

...
...

. . . . . . a0

a0 . . . a0 a0 + an


 .

Then, for n ≥ 2,

det An =
n∑

k=0

∏

i6=k

ai. (E.1)

Proof. Base case: n = 2,

det

[
a0 + a1 a0

a0 a0 + a2

]
= (a0 + a1)(a0 + a2)− a2

0 (E.2)

= a0a1 + a0a2 + a1a2. (E.3)

Induction hypothesis: Suppose this is true for some n and any choice of a0, . . . , an.
We will show it must hold for n + 1. Thus,

An+1 =

[
An a0

a0 . . . a0 a0 + an+1

]
. (E.4)
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The determinant is defined recursively, so we can write

det An+1 =(a0 + a1) det




a0 + a2 a0 . . . a0

a0 . . . a0
. . . a0 . . . a0

a0 . . . a0 a0 + an+1




− a0

n+1∑
i=2

(−1)2i det

[
a0 a0 . . . a0

a0 Bn,i

]
, (E.5)

where the second (−1)i comes from row swapping Bn,i is the same as An except we
replace all ak with ak+1 for k ≥ i. Note that all of these matrices are special cases of
the matrices covered by our induction hypothesis. Thus, we get that

det An+1 = (a0 + a1)
n+1∑

k=0,k 6=1

∏

i6=k,i6=1

ai − a0

n+1∑
j=2

∏

i 6=j

ai (E.6)

= a0

∏

i6=0,i6=1

ai + a1

n+1∑

k=0,k 6=1

∏

i6=k,i 6=1

ai (E.7)

=
∏

i6=1

ai +
n+1∑

k=0,k 6=1

∏

i6=k

ai (E.8)

=
n+1∑

k=0

∏

i6=k

ai. (E.9)

Thus, the formula is satisfied for n+1, and we conclude that it holds for all n ≥ 2.
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