
Proof Sketches: Verifiable Multi-Party Aggregation

Minos Garofalakis
Joseph M. Hellerstein
Petros Maniatis

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-20

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-20.html

March 1, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Proof Sketches: Verifiable Multi-Party Aggregation

Minos Garofalakis, Joseph M. Hellerstein, Petros Maniatis
Intel Research Berkeley and UC Berkeley

ABSTRACT
Recent work on distributed aggregation has assumed a benign pop-
ulation of participants. In modern distributed systems, it is now
necessary to account for adversarial behavior. In this paper we
consider the problem of ensuring verifiable yet efficient results to
typical aggregation queries in a distributed, multi-party setting. We
describe a general framework for the problem, including the threat
model for adversaries that we consider. We then present a mech-
anism called a proof sketch, which uses a compact combination
of cryptographic signatures and Flajolet-Martin sketches to verify
that a query answer is within acceptable error bounds with high
probability. When verification fails, we provide efficient mecha-
nisms to identify any participants responsible for the perturbed re-
sult. We derive proof sketches for count aggregates, and extend
them to proof sketches for verifiable random samples, which, in
turn, can be used to provide verifiable approximations for a broad
class of data-analysis queries, including quantiles and heavy hit-
ters. In addition to our specific proof sketches developed here, we
sketch a general framework for developing new proof sketches. Fi-
nally, we examine the practical use of proof sketches, and observe
that adversaries can often be reduced to much smaller violations in
practice than our worst-case bounds suggest.

1. INTRODUCTION
In recent years, distributed query processing has been a topic of

interest in a number of settings, including network and distributed
system monitoring, sensor networks, peer-to-peer systems, data in-
tegration systems, and web services. Many of these environments
depend upon the participation of multiple parties with varying de-
grees of mutual trust. An outstanding research challenge is to pro-
vide trustworthy query results in environments with mutually dis-
trustful or even adversarial parties. Note that even within a single
organization like a corporation, viruses and “bot nets” make the
presence of adversarial nodes a reality of modern computing that
needs to be addressed. The lack of trust in such settings is a signifi-
cant impediment to the adoption of distributed query technologies.

Trustworthy multiparty query processing is a problem with many
facets. In this paper we consider one basic building block: ensur-

ing verifiable but efficient computation of distributed multi-party
aggregation queries. We focus particularly on in-network aggrega-
tion, in which the query processing is pushed down into the net-
work and executed in a distributed fashion by multiple participants.
In-network processing is important in settings where centralized
data warehousing is undesirable, either due to technical considera-
tions like high data rates (as in network packet monitoring), or to
administrative concerns of policy and/or provisioning cost (as in
peer-to-peer systems).

The challenge we consider in this paper is to partition the aggre-
gate processing among the participants, without allowing faulty or
even malicious parties to undetectably perturb the correct compu-
tation and delivery of the result. Recent work has addressed the
problem of communication faults in this setting [7, 19, 20, 24], but
these techniques remain vulnerable to parties that tamper with the
computation. Such malicious misbehavior includes manufacturing
spurious data that were not provided by authentic data generators,
and suppression of data from the data generators; such activities
can perturb aggregate results arbitrarily.

In this paper we propose a family of certificates called proof
sketches that allow parties in a distributed aggregate computation
to prove that the final result could not have been perturbed by more
than a small error bound with high probability. A proof sketch can
either accompany complete aggregate results as a certificate, or can
be used standalone to provide verifiable approximate query results.

We target distributed single-table aggregation queries of the form
γ(σpred(R)), where γ is an aggregate function, σpred is a selection
operator, and R is a set of values. We develop logarithmic-sized
proof sketches for a broad class of count aggregates, and prove that
they detect tampering beyond a small factor of the true count. We
extend that scheme to develop compact proof sketches for verifi-
ably forming random samples, which can themselves be used to
give verifiable approximations for a wide variety of data-analysis
queries, including, for instance, quantiles and heavy hitters. Both
of these proof sketches work by combining the popular Flajolet-
Martin (FM) sketch technique [10] with compact signatures we call
authentication manifests. The authentication manifests ensure that
none of the data captured by the sketch was manufactured by adver-
sarial aggregators. To prevent aggregators from silently omitting
valid data from counts or samples, we form one additional proof
sketch on the complement of the query predicate. If the querier
knows the aggregate value γ(R) for the entire data set, she can check
that the combination of the basic proof sketch and the complement
proof sketch is close to γ(R).

In addition to presenting our FM-based proof sketches, we dis-
cuss a number of extensions. We describe techniques to hold aggre-
gators accountable for their computations, and to efficiently iden-
tify them when they cheat. We discuss the practical challenge of

maintaining γ(R) at the querier, and discuss approaches for relax-
ing that requirement. We also present general design guidelines
for the development of new proof sketches beyond those presented
here. Finally, we evaluate our count proof sketch empirically un-
der different adversarial models. Our results show that in practice,
adversaries must limit themselves to much smaller-scale tampering
to remain undetected.

Organization. In Section 2, we present a practical example sce-
nario that motivated our work, and which we use to explain our
ideas. We then present the distributed verifiable aggregation prob-
lem in terms of a threat model that includes two basic forms of
misbehavior: injection of spurious data in the aggregate, and sup-
pression of authentic data. We introduce proof sketches in Sec-
tion 3 and we use them to tackle verifiable probabilistic counting;
we follow that with a related scheme for verifiable random sam-
pling (Section 4). In Section 5 we address several extensions to the
assumptions and techniques we used in the previous sections. Sec-
tion 6 presents the results of our empirical study of proof sketches.
We conclude with related and future work.

2. PROBLEM SETTING
In this section, we introduce a motivating scenario in network

security, to place into context the problem of distributed verifiable
aggregation. We then describe the aggregation functionality with
respect to this scenario, and outline our threat model.

2.1 Motivating Scenario
A simple example scenario in corporate network security was

one of the original motivations for our research. It is common prac-
tice for most computers owned by a corporation to run a local host
intrusion detection (HID) agent such as BlackICE or SNORT. Typ-
ically the HIDs communicate over the corporate network with a
central management console, located at corporate IT headquarters.
HIDs generate events of the sort “I am under a NIMDA attack,” or
“Host A probed my unused TCP port x.”

The querier in our scenario is a network security engineer work-
ing at IT headquarters, who poses distributed aggregate queries on
the collection of HIDs, to understand the features of a suspected
emerging distributed worm or virus. One typical query might be
“how many HIDs identified exploit X?” (a distributed counting
query). We refer to this as a predicate poll of the HIDs, since it
essentially counts the predicate’s “yes votes” among the nodes in
the system. Another typical query would be “return the OS ver-
sion of k randomly chosen HIDs that identified exploit X” (a dis-
tributed sampling query). In both these scenarios, each HID needs
to contribute at most one data record to the aggregation; this is nat-
ural for minimizing bandwidth requirements and latency in these
time-sensitive queries1. However, one can also imagine queries for
which each HID produces multiple matches, e.g., “count all fire-
wall log entries that identify an instance of exploit X.”

Data warehousing solutions to this scenario have significant lim-
itations, since there may be thousands of globally distributed HIDs
in the corporation, some connected by slow links (WiFi or modem),
issuing events at sub-second time intervals. Results to queries may
be required within seconds to catch anomalies or other serious prob-
lems. Instead of warehousing, in-network aggregation may be more
appropriate, cutting down on the bandwidth and latency require-
ments for back-hauling data, by placing more of the computation
within the network. In addition, for several of the queries in our
example scenario, the querier may only be interested in detecting

1It is also the common case in sensor query systems that do on-demand
data acquisition [6, 19].

trends or interesting patterns, and not in answers that are precise to
the last decimal. Thus, techniques for fast, approximate answers
(e.g., approximate predicate polls) are often preferred, especially
if they can (a) drastically reduce the burden on the network infras-
tructure, and (b) provide approximation-error guarantees.

Note that while the end systems generating data may belong to
one company, the same might not be true of the aggregation in-
frastructure used. For instance, the aggregation functionality may
be hosted at appropriate points on the Internet by a third party –
e.g., a well provisioned distributed infrastructure like Akamai – us-
ing “edge side includes” [33] or similar technologies. As another
example, multiple organizations may want to pool their network
resources to compute the aggregates globally. In these cases, the
end users posing questions may require extra assurances that the
received aggregation results reflect accurately what the trusted data
sources (the HIDs) produced.

In the remainder of this paper, we assume that nodes in the sys-
tem are connected, and that queries from end users can be dissem-
inated to all relevant agents, including data generators and aggre-
gators. The details of how the query dissemination is performed
are not the topic of this paper, but are treated extensively in the
literature [17, 19, 30, 36]. In some environments, queries can be
disseminated along with the HID software (e.g., every HID reports
on a predetermined set of predicate polls or other queries periodi-
cally). Alternatively, queries can be cryptographicaly signed by the
querier to preserve integrity, and disseminated in batch (e.g., “the
queries for the next hour are X , Y , and Z”) to the relevant agents
via a slow but reliable means, such as gossip among HIDs.

2.2 In-Network Aggregation Functionality
In our discussion, we adopt the distributed aggregation terminol-

ogy of TAG [19] (which does not consider adversarial behavior or
approximation). TAG implements simple aggregate functions like
SUM, MIN, MAX, or AVERAGE via three functions: an initializer
I , a merging function M , and an evaluator function E . In general,
M has the form < z >= M (< x >,< y >), where < x > and < y >
are multi-valued partial state records (PSRs), computed over one
or more input data values, and representing the intermediate state
over those values that will be required to compute an aggregate.
< z > is the PSR resulting from the application of M to < x > and
< y >. The merging function M is required to be commutative
and associative so that the aggregate is well-defined with respect to
(unordered) relations. For example, if M is the merging function
for AVERAGE, each PSR will consist of a pair of values, SUM and
COUNT, and M is specified as follows, given two PSRs < S1,C1 >
and < S2,C2 >:

M (< S1,C1 >,< S2,C2 >) =< S1 +S2,C1 +C2 >

The initializer I is needed to specify how to instantiate a PSR for
a single input data value; for an AVERAGE over a data value of x,
the initializer I (x) returns the tuple < x,1 >. Finally, the evaluator
E takes a PSR and computes the actual value of the aggregate. For
AVERAGE, the evaluator E(< S,C >) simply returns S/C.

The actual process of in-network aggregation involves multiple
entities playing different roles, passing data from one to another.
We illustrate the roles in Figure 1 and describe them below:

• The querier is the agent that receives the final, fully merged
PSR. It runs the verification logic to check the PSR and, if
successful, it executes the evaluator function E to generate
the final query result (along perhaps with some appropriate
quality guarantees).

• Sensors are agents that produce raw data values for aggrega-

2

SensorSensor

Data
Generator

Raw data

Aggregator

Aggregator

Aggregator

Aggregator Aggregator

PSR PSR

PSR PSR PSR

PSR

PSR

Aggregator

2: PSR
Suppression,
Spurious PSR

Sensor

Data
Generator

Raw data

PSR

Data
Generator

Raw data

PSR PSR

1: Data
Manipulation

Querier

Result

Data
Consumer

PSR

3: Incorrect
Finalization

Figure 1: Dataflow among agents in the system, with potential
threats by each agent listed in the black ovals. Proof sketches
are used to thwart the threats within the gray trapezoid. In
each component, we indicate the aggregation functionality (I ,
M , E) performed.

tion, and invoke initializer functions I to generate PSRs. In
our scenario, the HID is a “sensor,” and HID measurements
or alerts are the data. We require that all the sensors are reg-
istered with an organization-wide public key infrastructure
(PKI) so that we can authenticate the data they produce.

• Aggregators combine multiple PSRs by applying the merg-
ing function M . Note that the PSRs handled by an aggrega-
tor may distill differing amounts of sensed data from each
input; the rather symmetric graph of Figure 1 should not
be taken to mean that all aggregation topologies are regular.
They can be trees [19], depth-based DAGs [7, 24], random
graphs [9] and hybrids of trees and DAGs [20]. In general,
we do not make any assumptions about these communication
patterns in our work.

2.3 Threat model
We turn now to the threat model we consider, by identifying the

tampering opportunities of the dataflow in Figure 1. First, the sen-
sor can suppress data, or insert spurious data into the system. Sec-
ond, an aggregator can take various actions to perturb the process-
ing of the merging function M ; these include suppression of PSRs
and introduction of spurious PSRs. Finally, the evaluation function
E at the querier may be performed inappropriately, yielding results
inconsistent with the input PSRs.

In this paper, we focus on defending vulnerabilities introduced

by the aggregators, corresponding to the gray trapezoid in Figure 1.
Before discussing those issues, we briefly discuss the other two
vulnerabilities. At the bottom of the figure (Vulnerability 1), the
actual generation of raw input data by sensors is hard to protect in
an application-independent manner. Although heuristics to verify
input data may exist in particular environments (e.g., if it is known
that a given HID is not powerful enough to register more than 1000
exploits per second), ultimately this task can only be performed
by hardware or software attestation of the data generators (see, for
instance, work done in the Pioneer project [32]). A wise choice
of aggregation function – e.g., a robust statistic like the “trimmed
mean” – can mitigate the effects of a small number of spurious
input data values [35]. For the purposes of our scenario, we focus
on ensuring that the desired aggregates are faithfully computed over
whatever raw data the sensors supply to the initialization function.

With regards to evaluation (Vulnerability 3), the querier can still
yield the wrong result even if aggregators are correct, by misap-
plying the evaluator function. Since our scenario assumes that the
querier is the entity interested in the result, we do not examine this
vulnerability further. If required, the operation of the evaluator can
be spot-checked, as with SIA [28].

With regards to aggregation (Vulnerability 2), the primary target
of our work, there are two possible attacks. Partial-state suppres-
sion (or, deflation) attacks are mounted by aggregators that omit
data from input PSRs during the merging function. The simplest
such attack is to suppress an entire PSR, but we will see examples
where a complex PSR object (e.g., a set of sampled tuples) may
have subparts that are suppressed. Spurious partial state (or, in-
flation) attacks introduce data into output PSRs that should not be
there. The simplest such attack is to manufacture an entire PSR,
but it is also possible to manipulate an existing PSR to reflect man-
ufactured inputs.

In sum, we focus in this paper on threats within the aggregation
infrastructure, and present the first results we are aware of for pre-
venting attacks in this context.

3. AM-FM PROOF SKETCHES
To begin our discussion of proof sketches, we consider the spe-

cial case of “predicate poll” queries discussed in Section 2; we will
relax this constraint in Section 5. Our goal is to count the number
of nodes that satisfy some boolean predicate. Without loss of gen-
erality, let [U] = {0, . . . ,U − 1} denote the domain of node identi-
fiers, and let pred be the specific predicate of interest; also, let Cpred
(≤ U) denote the answer to our predicate poll. First, consider the
standard trio of TAG functions for a COUNT aggregate that com-
putes Cpred:

I (t) =
{

< 1 > if pred(t) = true
< 0 > otherwise

;

M (< x >,< y >) =< x+ y > ; E(< x >) = x
(where t denotes a sensor’s local data record). A rogue aggregator
can perturb the count in one of two ways: by inflating the value of
a PSR during execution, or by deflating it. We treat these two cases
separately; our protection for the inflationary case will serve as the
basis for preventing deflation attacks as well.

3.1 Detecting Inflation via Authentication
To start, we need aggregators to prove that they did not inflate

the running sum during execution of the merging function. To fa-
cilitate exposition, we first present a simple but impractical solution
to the problem: aggregating by counting in a unary representation.
We modify the PSR for COUNT to be a bitmap of size U , with
one bit for each of the U sensors being polled. The aggregation
logic is modified accordingly (I (a, t) denotes the initializer at node

3

a ∈ [U]):

I (a, t) =
{

< 2a > if pred(t) = true
< 0 > otherwise

;

M (< p >,< q >) =< p OR q > ; E(< p >) = |p|
where |p| is the count of 1-bits in the bitmap p. To prove that the
result was not inflated, we require each 1-bit position to be cryp-
tographically signed by its corresponding sensor. We augment the
PSR with a set of digital signatures, one per 1-bit; we refer to the set
of signatures associated with a bitmap as its authentication mani-
fest (AM). The initializer I at sensor a ∈ [U] initializes the AM
to contain sensor a’s signature for bit a, and the merging function
unions the AMs in addition to OR-ing the bitmaps. Given a PSR
consisting of an AM and a bitmap, the querier can use the sensors’
public keys to verify that all the 1-bits in the bitmap are authenti-
cally signed, and hence that the count is not too high.

The obvious problem with this technique is that the size of the
AM is as large or larger than the collection of U “votes” being
counted, and the communication/performance benefits of in-network
aggregation are lost. This leaves us with a more focused challenge:
how can we form a compact AM for COUNT?

3.1.1 AM-FM: Approximate Inflation Detection
To achieve this, we relax our security requirement: instead of

requiring that we detect all inflationary attacks on the count, we
can settle for detecting “noticeable” attacks that overcount by more
than some small amount. This relaxation suggests the use of space-
efficient Flajolet-Martin (FM) sketches for approximately counting
the distinct values in a set [10]. By augmenting FM with an authen-
tication manifest, we develop our first proof sketch, which we call
AM-FM.

Quick Introduction to FM Sketches. The FM distinct-count esti-
mator [10] is a one-pass (streaming) algorithm that relies on a fam-
ily of hash functions H for mapping incoming data values from
an input domain [U] = {0, . . . ,U −1} uniformly and independently
over the collection of binary representations of the elements of [U].
(The algorithm does not need to know U exactly — an upper bound
on the domain size is sufficient.) The basic FM-sketch synopsis
(for a fixed choice of hash function h ∈ H) is simply a bit vector
of size Θ(logU)2. This bit-vector is initialized to all zeros and,
for each incoming value i in the input, the bit located at position
lsb(h(i)) is turned on. It is not difficult to see that, if h ∈ H and
lsb(s) denotes the position of the least-significant 1 bit in the bi-
nary string s, then for any i ∈ [U], lsb(h(i)) ∈ {0, . . . , logU − 1}
and Pr [lsb(h(i)) = l] = 1

2l+1 . To boost accuracy and confidence,
the FM algorithm employs averaging over several independent in-
stances (i.e., r independent choices of the mapping hash function
h ∈ H and corresponding FM sketches). A high-level description
of the FM estimator is depicted in Figure 2.

Intuitively, due to the randomizing properties of the hash func-
tions in H , we expect a fraction of 1

2l+1 of the C ≤U distinct values
in the stream to map to location l in each sketch; thus, we expect
C/2 values to map to bit 0, C/4 to map to bit 1, and so on. There-
fore, the location of the rightmost zero in a bit-vector synopsis is a
good indicator of logC. In fact, Flajolet and Martin proved that the
estimation procedure depicted in Figure 2 is guaranteed to return
an unbiased estimate for C (i.e., the expected value of the returned
quantity Ĉ is E[Ĉ] = C).

The analysis of Flajolet and Martin assumes ideal randomiz-
ing properties (i.e., full independence) for the hash-function family
H [10] that are impossible to guarantee in small space. More recent
work [4, 11, 13] has shown that simple variants of the FM-sketch-

2All logarithms in this paper denote base-2 logarithms.

procedure FMDistinctEstimator(S, {h1(), . . . ,hr()})
Input: Stream S of values in the domain [U] = {0, . . . ,U −1},

family of randomizing hash functions hi (i = 1, . . . ,r).
Output: Estimate Ĉ of the number of distinct values in S.
begin
1. for i := 1 to r do
2. fmSketchi[] := [0, . . . ,0] // bitvector of size Θ(logU)
3. for each j ∈ S do
4. for i := 1 to r do fmSketchi[lsb(hi(j))] := 1
5. for i := 1 to r do
6. for m := logU −1 downto 0 do
7. if fmSketchi[m] = 0 then rightmostZero := m
8. sum := sum + rightmostZero
9. endfor
10. Ĉ := 1.2928×2sum/r

11. return(Ĉ)
end

Figure 2: The Flajolet-Martin (FM) distinct-count estimator.

based estimator can rely on much simpler, limited-independence
hash functions (specified through concise, logarithmic-size random

seeds). Using only r = O(log(1/δ)
ε2) basic FM sketches, these tech-

niques give (randomized) (ε,δ)-estimators for the number of dis-
tinct values C; that is, the computed estimate Ĉ satisfies
Pr

[|Ĉ−C| ≤ εC
] ≥ 1−δ [4, 11, 13].

Adding Verifiability: AM-FM Proof Sketches. Assuming an
agreed-upon collection of hash functions {h1(), . . . , hr()} for FM-
sketch construction, it is not difficult to see that FM-sketch sum-
maries are naturally composable: simply OR-ing independently
built bitmaps (e.g., at nodes a1, a2) for the same hash function
gives precisely the sketch of the union of the underlying streams
(i.e., a1∪a2). This, of course, makes FM sketches ideally suited for
in-network computation schemes since they enjoy the properties of
set-union: their merging function is commutative, associative, and
“duplicate-insensitive” (that is, the sketches can be naturally prop-
agated and possibly unioned many times along different paths in
the network without affecting the final result) [19, 24]. From the
perspective of verifiability, an attractive aspect of FM sketches is
that each bit’s value is an independent function of the input domain.
Thus, assuming a pre-specified collection of hash functions (known
to querier and sensor nodes) for building FM sketches, each 1-bit
can be authenticated at the querier by a single signed value from the
sensor node that turns it on. Hence, we can construct an authentica-
tion manifest for a basic FM sketch with O(logU) (or fewer) signed
inputs of the form < t,a,sa(t) > (one per 1-bit in the sketch), prov-
ing that sensor a provided record t. We refer to the resulting sketch
structure as an AM-FM proof sketch.

Figure 3 outlines the in-network aggregation functions for our
AM-FM sketches; the predicate test in I is omitted for brevity.
Note that the FM hash function is applied to the < dataRecord,
sensorID > pair to ensure uniqueness across all polled data records
(of course, the total number of distinct values is still ≤U). Ap de-
notes the authentication manifest for FM bit-vector p: if p’s k-th bit
is set to 1, the k-th component of Ap has the form < k, t,a,sa(t) >,
and is correct (authentic) iff k = lsb(h(t,a)) and sa(t) is a valid
signature on t by data source a. The � operator forms a subset of
the union of its inputs, retaining for each distinct 1-bit in position
0 ≤ k ≤ logU − 1 any one input “exemplar” < t,a,sa(t) > such
that lsb(h(t,a)) = k3. Finally, the evaluator function executes a

3The merging function as defined is not strictly commutative, associative
or duplicate insensitive, because of the flexibility in the � operator’s choice
of exemplar. One can easily define � more carefully to achieve these prop-
erties via a total order on the exemplar domain, but for our purposes we can

4

I (t,a) =< 2lsb(hi(t,a)), {< lsb(hi(t,a)), t,a,sa(t) >} > (1)

M (< p,Ap >,< q,Aq >) =< p OR q, Ap �Aq > (2)

E({< pi,Api >: i = 1, . . . ,r}) = FMEstimate({p1, . . . , pr}) (3)

Figure 3: Definition of (basic) AM-FM proof sketches as an in-
network aggregate.

count-estimation procedure over the collection of FM bit-vectors
built (e.g., Steps 5–11 in Figure 2).

3.2 Deflation Detection
The authentication manifest in AM-FM sketches prevents inflat-

ing the count by turning 0-bits in the FM sketch into 1-bits. The
remaining possible attack is to turn 1-bits into 0-bits, and remove
the corresponding signatures from the AM. This attack could de-
flate the count in the FM sketch.

3.2.1 Redundant Communication
One natural approach to preventing this attack is to redundantly

route initialized PSRs along multiple aggregation paths between
the sensors and the querier. This was previously suggested for FM
sketch aggregation in order to tolerate faulty communication links
in sensor networks [7,20,24], and relies on the duplicate insensitiv-
ity of FM sketches to ensure correct results in the face of redundant
merging. That work assumed a benign aggregator population, and
was focused on improving answer quality in the face of an unreli-
able network fabric. In our setting, we have more stringent require-
ments: we need to provide strong guarantees that our verification
procedure bounds the amount of error an adversary can introduce.

To fully protect against a powerful adversary with as many as
k− 1 compromised aggregators, omissions can only be fully pre-
vented by routing each input PSR redundantly along k node-disjoint
paths through the aggregators to the querier. A simple approach is
to “flood” PSRs through the aggregator network. Then, the verifi-
cation logic at the querier can test whether the graph is k-connected;
this is a special case of finding the min-cut in a graph, which can be
done using, e.g., Goldberg and Tarjan’s distributed algorithm [14].
Unfortunately, that algorithm requires O(n2 logn) time for a net-
work of n nodes4 and is not itself verifiable; some extension would
be needed to detect adversaries that falsified link information.

Even if we could ensure k-connectivity, the verifiability is built
on an assumption about the adversary compromising fewer than k
nodes. This raises the bar for adversarial behavior, but does not
protect against it. Rather than make assumptions about the adver-
sary, we develop a new scheme that instead relies only on some
additional information at the querier.

3.2.2 Complementary Proof Sketches
Our next approach to deflation detection makes no assumptions

about either the aggregation topology or the adversary. It instead
relies on the querier knowing the total count U of the entire data set
(the “universe”). This seems like a very strong assumption, but in
our predicate poll scenario it is not at all unreasonable: since each
sensor produces only one value (“yes” or “no”), U is equal to the

simply gloss over this issue, treating all valid exemplars as being indistin-
guishable.
4Doing this more cheaply via incremental maintenance is difficult; in the
face of a fully dynamic network (with edges coming and going) this is an
active area of theoretical research even for the simple cases of k = 1 or k = 2
(see, e.g., [15, 26]. Constructive distributed protocols for maintaining k-
connectivity are similarly limited; typical results are for k = 2 or k = 3 [18].

number of sensors in the network. Tracking the arrival and depar-
ture of each sensor at a central query site is reasonably tractable,
and is in fact the common case in corporate HID scenarios like
the one in Section 2.1. For the moment then, we assume that the
querier can acquire the correct value for U at any time. We dis-
cuss the practicality of this assumption in more general settings in
Section 5.

The technique we use accompanies each predicate poll pred with
its complementary poll¬pred; the intuitive objective being to check
that their counts sum up correctly: Cpred +C¬pred = U . Since those
counts are only approximately known, the technique uses AM-FM
proof sketches to estimate the approximate counts Ĉpred and Ĉ¬pred
and prevent probabilistic inflation of either count. By preventing
the complement Ĉ¬pred from being inflated, we thereby prevent
Ĉpred from being deflated: if the adversary deflates Ĉpred , she must
inflate Ĉ¬pred to avoid being detected by the sum check. We fo-
cus on this scheme for the remainder of this section, and provide
bounds on the undetectable omission error an adversary can intro-
duce with complementary deflation detection.

3.3 Verification and Analysis
The AM-FM proof sketch allows deterministic detection of spu-

rious 1-bits in the FM sketch: the querier first verifies the authen-
ticity of each element of the authentication manifest via the verifi-
cation of element signatures by registered sensors, and then ensures
that the resulting decoded values can be used to reconstruct the FM
sketch. Given that the AM and the sketch match up, the remain-
ing question arises from the use of FM approximations: how much
“wiggle room” does the inaccuracy in these approximations give an
adversary interested in deflating the count?

To answer this specifically, assume FM-based estimators Ĉpred

and Ĉ¬pred that use O(log(2/δ)
ε2) independent AM-FM sketch instan-

tiations to estimate the Yes/No population counts (e.g., as discussed
by Ganguly et al. [11]). Our aggregate verification step checks the
condition Ĉpred +Ĉ¬pred ≥ (1− ε)U and flags an adversarial omis-
sion attack if the condition is violated. The following theorem and
analysis establish the (probabilistic) error guarantees provided by
our verifiable AM-FM aggregation scheme.

THEOREM 1. Using O(log(2/δ)
ε2) AM-FM sketches to estimate

Ĉpred (and Ĉ¬pred), and assuming a successful final verification
step, the Ĉpred estimate is guaranteed to lie in the range [Cpred −
ε(U +C¬pred), Cpred(1 + ε)] ⊆ Cpred ± 2εU, with probability ≥
1−δ. For predicate selectivities ≥ σ, this implies an (ε(2

σ −1),δ)-
estimator for Cpred.

Proof: Consider the final estimation step for Cpred at the querier.
Note that our AM-FM sketches are naturally composable and duplicate-
insensitive summaries. We begin by bounding the error on the
proof sketch in the absence of any tampering. If this is the case,

the summaries arriving at the finalizer are O(log(2/δ)
ε2) independent

FM sketches over the underlying data population. Thus, earlier
FM-based estimators (e.g., Ganguly et al. [11]) can be used to
give (ε, δ2) estimates Ĉpred and Ĉ¬pred for Cpred and C¬pred (respec-
tively); then, a simple application of the union bound implies that
Ĉpred + Ĉ¬pred ∈ (1± ε)U with probability ≥ 1− δ. Now, even in
the case of malicious tampering, the authentication manifest pre-
vents an adversary from inflating the sketch count. So, if verifica-
tion succeeds, the aggregate count Cpred can be no larger than the
upper bound of the FM estimation error, Cpred(1+ε). This demon-
strates the upper bound of our range for Ĉpred .

5

To prove the lower bound of our range, let θ ≥ 0 denote the to-
tal (additive) underestimation error in the final Ĉpred estimate, in-
cluding both FM estimation error and deflation error introduced by
the adversary (through, possibly, several aggregator nodes) during
the aggregation process. Thus, our verification step estimates U as
Ĉpred + Ĉ¬pred = Cpred − θ+ Ĉ¬pred . Then, if θ > ε(U +C¬pred),
with probability ≥ 1−δ,

Ĉpred +Ĉ¬pred < Cpred − ε(U +C¬pred)+Ĉ¬pred

≤ Cpred − ε(U +C¬pred)+(1+ ε)C¬pred

= (1− ε)U

which implies that our sanity check will detect the adversarial omis-
sion attack (with high probability). The stated (worst-case) additive
bounds for the final verified Ĉpred estimate follow immediately. For
the selectivity-based relative error bound, if Cpred ≥ σU , then sub-
stituting U −Cpred for C¬pred in the inequality for θ above gives
θ≤ ε(2

σ −1)Cpred.

In other words, with our verifiable AM-FM aggregation scheme,
any adversarial deflation attack can cause our final Ĉpred estimate
to underestimate the true count by at most ε(U +C¬pred) ≤ 2εU ,
or risk being detected with high probability. Thus, the error guar-
antees for verifiable AM-FM estimate are in terms of εU factors,
which are typically sufficient for predicates that represent signifi-
cant fractions of U . Specifically, for predicates with selectivity≥σ,
our algorithms can give ε(2

σ − 1)-relative error bounds with prob-
ability ≥ 1−δ. It is important to note here that the AM portion in
our sketches plays a crucial role in our error bounds, by essentially
forcing the adversary to inject only one-sided (omission) error —
otherwise, the adversary could arbitrarily inflate Ĉ¬pred while low-
ering Ĉpred (or, vice versa) thus making arbitrarily large errors es-
sentially undetectable.

4. VERIFIABLE RANDOM SAMPLING: THE
AM-SAMPLE PROOF SKETCH

We turn to the slightly more involved problem of constructing
a verifiable random sample of a given size k over the data tuples
residing at the leaf nodes (sensors) in our distributed aggregation
topology (Figure 1). As in our motivating scenario of Section 2.1,
we assume that there is one data record per node. We disseminate
the request to form a sample to all the nodes, and wish to ensure – as
in aggregation – that the message sent by each aggregator is small,
and the result at the top can be verified to be an unbiased random
sample of the data. Note that such a sample represents a general-
purpose summary of the sensor contents that can be employed at
the querier site to provide (verifiable) approximate aggregate an-
swers for a variety of different aggregation functions and selection
predicates (not known beforehand) over the underlying sensors.

A conventional random-sampling summary is simply a pair ({t1, . . . ,
tk},N) comprising (a) the subset of sampled records, and (b) the to-
tal count of the underlying population (sampling rate = k/N). Such
a sample can be dynamically generated moving up our aggregation
architecture, e.g., using a simple adaptation of reservoir random
sampling [34]. Unfortunately, it is not difficult to see that such a
scheme falls short of our verifiability goals. Specifically, consider
an aggregator node in our architecture (Figure 1) receiving two ran-
dom samples (s1,N1) and (s2,N2) from its children. Even though
it may be possible to authenticate individual tuples in s1 and s2
(e.g., through hash signatures), an adversarial aggregator can still
introduce arbitrary bias in the sample. Consider, for instance, the
above scenario with |s1| = |s2| = k (the target sample size) and
N1 � N2, and a malicious aggregator that deterministically outputs

(s2,N1 +N2) rather than sub-sampling s1 and s2 with the appropri-
ate rates; furthermore, even if N1 = N2, the adversary could bias the
sample towards specific data values (e.g., choose the k smallest sen-
sor readings in s1 ∪ s2) resulting in arbitrarily biased approximate
query answers.

The key problem with such conventional sampling schemes in
our setting is that they essentially offer no means to verify the
sampling procedure run at each aggregator (i.e., the validity of
each aggregator’s random coin flips). Instead, our proposed AM-
Sample proof sketches collect a random sample by employing hash
functions to map < dataRecord, sensorID > elements to buck-
ets with exponentially-decreasing probabilities, as in FM estima-
tion. The key difference with simple AM-FM sketches is that we
now retain authentication manifests for all exemplar elements map-
ping above a certain bucket level l (along with their respective
level) — these are exactly the elements in our sample. Our sam-
pling scheme is similar in spirit to Gibbons’ distinct-sampling tech-
nique [12] for approximating COUNT DISTINCT queries over data
warehouses; essentially, by forcing elements to be distinct (through
the addition of the sensorID field), we can use similar ideas to col-
lect a verifiable random sample over the underlying data tuples.

Formally, given a uniformly randomizing hash function h over
< dataRecord, sensorID > pairs and a target sample size k, an AM-
Sample proof sketch comprises a pair < L, S >, where

S = {(l1,< t1,a1,sa1(t1) >), . . . ,(lm,< tm,am,sam(tm) >)}
is a subset of m =Θ(k) tuple authentication manifests < ti,ai,sai(ti)>
with corresponding bucket levels li = lsb(h(ti,ai)). The seman-
tics of an AM-Sample sketch (assuming no tampering) is that it
stores exactly the authentication manifests (and bucket levels) for
< dataRecord, sensorID > elements at levels greater than or equal
to L (which, of course, implies the invariant li ≥ L for all i = 1, . . . ,
m). Since each element maps to a bucket level l with probability
1/2l+1, it is not difficult to see that each element in the AM-Sample
sketch is chosen/sampled with probability ∑i≥L

1
2i+1 = 1/2L.

A concise TAG-like description of our in-network aggregation
scheme for AM-Sample proof sketches is given in Figure 4. In
a nutshell, given a target sample size of k, our algorithm starts by
computing the authentication manifests (and bucket levels) for indi-
vidual sensors (Equation (4)). These manifests are then unioned up
the aggregation topology, by appropriately sub-sampling elements
at higher sampling rates (using the maximum level max{L1,L2} to
build the output sample); furthermore, to keep the sketch size under
control, our aggregation scheme drops the sampling rate by a fac-
tor of 2 (setting L = max{L1,L2}+1) when the sample size grows
beyond 2k(1+ ε) (Equation (5)), where ε < 1 denotes an error pa-
rameter determined by the target sample size. As we show, for large
enough k, this ensures that the size of our AM-Sample sketch never
grows beyond a range [(1− ε)k, (1+ ε)2k] (with high probability)
as the summary is propagated towards the querier node.5

4.1 Sample Verification and Analysis
Our AM-Sample proof sketches combat adversarial inflation of

the collected random sample in two ways. First, through the use
of authentication manifests for data tuples, the sketch prevents the
adversary from inventing new data, since all tuples come signed
by a trusted data source. Second, our technique also prevents the
adversary from migrating tuples across bucket levels of the sketch
(i.e., biasing random-sampling choices), since the level is contin-

5To simplify the exposition, our discussion here assumes full independence
for the hash function h(), similar to Gibbons [12] — our techniques and
results can be extended to the case of limited-independence hash functions
using known methods [11, 13].

6

I (t,a) =< 0, {(lsb(h(t,a)),< t,a,sa(t) >} > (4)

M (< L1,S1 >,< L2,S2 >) =< L, S(L,S1,S2) > (5)

where S(L,S1,S2) = {(l,< t,a,sa(t) >) ∈ S1 ∪S2 : l ≥ L}, and

L =
{

max{L1,L2} if |S(max{L1,L2},S1,S2)| ≤ (1+ ε)2k
max{L1,L2}+1 otherwise

E(< L,S >) = {t : (l,< t,a,sa(t) >) ∈ S},sampling rate = 2−L (6)

Figure 4: Definition of AM-Sample proof sketches as an in-
network aggregate.

gent on the signed content of the tuple (through the hash function
computation), which cannot be forged. In a sense, by using a hash
function h() for sampling, our AM-Sample sketches can verify the
coin flips of intermediate aggregators and ensure that no malicious
inflation or biasing of the sample has occurred through inappropri-
ate element selections.

As a side-note, observe that our technique – unlike the reservoir
sampling scheme alluded to above – is also naturally duplicate-
insensitive. Hence it is possible to use this scheme with an aggre-
gation topology that merges PSRs redundantly.

Of course, as with AM-FM sketches, it is possible for the adver-
sary to deflate the random sample (and the corresponding sampling-
based approximate answers at the querier) by removing element
signatures from the AM-Sample. This can be done by an aggre-
gator node either artificially increasing the bucket level (to discard
all lower-level elements), or by removing specific elements at the
current bucket level. We now quantify the verifiable deflation-error
guarantees provided by our AM-Sample proof sketches. We start
by asserting that, given a large enough target sample size, and as-
suming no malicious tampering, the final sample size at the querier
must be within a small factor of k; this, in turn, implies that the ad-
versary cannot hope to deflate the sample by a large factor without
being detected (with high probability).

THEOREM 2. For a target sample size of at least k = O(log(2/δ)
ε2),

and assuming no malicious aggregator deflations, the final sample
size |S | at the querier is at least (1− ε)k with probability ≥ 1−δ.

Proof: Let l denote the (unique) bucket level such that k <
U/2l ≤ 2k, and let X denote the (random) number of elements
mapped to buckets at levels ≥ l through our lsb(h()) hash map-
pings. Since we hash a total of U distinct elements, by Chernoff
bounds [23]

Pr [X ∈ [(1− ε)k,(1+ ε)2k]] < Pr
[
X ∈ (1± ε)

U

2l

]

< 2e−ε2U/2l+1
< 2e−ε2k/2 ≤ δ,

since k = O(log(2/δ)
ε2). Based on our aggregation scheme for AM-

Sample sketches (Figure 4), and assuming no malicious tampering,
all elements mapping to levels ≥ l should “survive” all the way to
the querier node; thus, the final sample size |S| satisfies |S| ≥ X
≥ (1− ε)k with probability ≥ 1−δ.

We now consider the error guarantees provided by a collected
AM-Sample proof sketch for predicate-poll queries at the querier
node. Let σ denote (a lower bound on) the selectivity of predi-
cate polls run over the final sample. Given a target sample size

of (at least) k = O(log(6/δ)
σ(1−ε)ε2) and the total number of sensors U ,

the querier can limit the potential impact of adversarial deflation
on the collected AM-Sample < L,S > by performing two simple

verification steps: (1) checking that the final sample size |S | sat-
isfies the condition |S | ≥ (1− ε)k (Theorem 2); and, (2) ensur-
ing that 2L · |S | ≥ (1− ε

√
σ)U . If either of the above conditions

is violated, the querier flags an adversarial deflation attack with
high probability (≥ 1− δ). The following theorem establishes the
verifiable deflation-error guarantees for poll queries over our AM-
Sample proof sketches.

THEOREM 3. Assume an AM-Sample proof sketch synopsis col-

lected with a target sample size of k = O(log(6/δ)
σ(1−ε)ε2), and that both

final verification steps at the querier are successful. Then, for the
cardinality Cpred of any given predicate poll pred with selectivity
≥ σ over the nodes, the estimate Ĉpred obtained from the AM-
Sample is guaranteed to lie in the range [Cpred(1− ε(2√

σ
+ 1)),

Cpred(1+ε)]⊆Cpred(1±ε(2√
σ

+1)) with probability ≥ 1−δ (i.e.,

to give an (ε(2√
σ

+1),δ)-estimator for Cpred).

Proof: A simple application of Theorem 2 shows that, assuming
no malicious deflations, the final sample size |S | at the querier node

is |S | ≥ (1− ε)k = O(log(6/δ)
σε2) with probability ≥ 1− δ

3 . Given

such a (non-deflated) AM-Sample sketch < L,S > with |S | ≥O(log(6/δ)
σε2),

it is not difficult to see that Û = 2L|S | is an (ε
√
σ, δ3)-estimate

for U (see, for instance, Gibbons [12]); this implies that, Û =
2L|S | ≥ (1− ε

√
σ)U with probability ≥ 1− δ

3 . Thus, if either of
our two verification checks fails, then we can declare that, with high
probability (> 1− δ), one (or more) adversaries in our aggregator
topology have deflated our collected AM-Sample.

Now, assuming that both verification steps are successful, the
querier estimates the predicate-poll cardinality Cpred as Ĉpred =
2L|Spred|, where Spred is the subset of elements in our AM-Sample

that satisfy the pred predicate. Given a sample size ≥ O(log(6/δ)
σε2)

where σ ≤ selectivity(pred), and assuming no deflation bias from
adversarial aggregator(s), we have Ĉpred ∈ (1±ε)Cpred with proba-

bility ≥ 1− δ
3 . But, from our bounds on the Û estimate (verification

step (2)), we know that any adversarial omissions in our aggrega-
tor topology cannot deflate the sample by more than 2ε

√
σU/2L

elements (in the worst case) without being detected at the querier
(with high probability). Of course, in the worst case for our Ĉpred
estimate, all the omitted elements will come from Spred . Thus, sum-
ming up the failure probabilities for our two verification steps and
good estimation of Cpred through the union bound, we have that,
with probability ≥ 1−δ

Ĉpred ∈ [Cpred(1−ε)−2ε
√
σU,(1+ε)Cpred]⊆Cpred(1±ε(

2√
σ

+1))

(since Cpred ≥ σU). This completes the proof.

4.2 Leveraging a Verifiable Random Sample
Based on the bounds in Theorems 1 and 3, it is easy to see

that, for a given predicate pred, AM-FM sketches offer a better
space/accuracy tradeoff than AM-Sample sketches (which, of course,
implies less communication for a given error guarantee for the Ĉpred
estimate). On the other hand, the final AM-Sample is a general-
purpose summary of the data content in the sensor population, that
can be leveraged to provide approximate answers for different classes
of data-analysis queries at the querier node.

For instance, a (verified) AM-Sample (of appropriate size) can be
used in a straightforward manner to construct approximate quantile
summaries [22] over different attributes in the sampled tuples, or to

7

discover heavy-hitters/frequent items [8, 21] in the attribute-value
space. A key property of such data-analysis queries is that their
error requirements are typically expressed in terms of ±εU fac-
tors, since they look for either value ranges (quantile intervals) or
individual values (heavy-hitters) that represent a significant frac-
tion of the overall population U . This implies that our deflation
error bounds for AM-Sample sketches (Theorem 3) can be natu-
rally translated into strong, verifiable error guarantees for approxi-
mate quantiles and heavy-hitters at the querier node. We defer the
detailed development to the full paper.

In addition, note that, by Theorem 2, our techniques guarantee
that the final collection of AM-Sample data records at the querier is
a random sample of the underlying sensor population from which
at most a small fraction of elements have been dropped (possibly
in an adversarial manner). Besides predicate poll queries, such a
guaranteed “low-omission” sample can have other potential uses,
e.g., for estimating different data-value statistics or for approximate
data visualization.

5. EXTENSIONS
Our discussion up to this point focused on verification in the

simple scenario of Section 2.1. In this section, we take a broader
view. First, we consider the universal knowledge requirements for
complementary deflation detection, and relax those requirements.
Then, we move beyond verification and discuss techniques for pin-
pointing faulty aggregators. Finally, we provide a basic template
for proof sketches that can be used as a guideline for new settings.

5.1 On Universal Knowledge
Our complementary deflation protection scheme requires addi-

tional knowledge to be maintained somehow at the querier. For
example, to protect AM-FM sketches for predicate polls, our pro-
tection requires that the querier know U , the total size of the “uni-
verse” of votes (Section 3.2.2). In this section, we argue that know-
ing the size of the universe is reasonable in many practical settings.
We also explore scenarios in which the requirement may be relaxed
while retaining the benefits of complementary deflation protection.

Consider first the running scenario, in which there is a single tu-
ple per sensor. The problem of knowing the size of the universe
breaks down into two parts: the size of the possible universe and
the subset of that currently operational. The former can be trivially
obtained from the sensor registry, which holds, among other things,
the sensor public keys required for verifying signatures. The latter
amounts to tracking the status (“up” or connected, vs. “down” or
inoperative) of each sensor. Thankfully, tracking the status of this
population accurately is already a high-priority task in our scenario.
HIDs run on a company’s firewalls and servers, which are closely
managed, and highly available devices; and they run on company
assets such as employee laptops, which are typically tracked via a
Virtual Private Network (VPN) gateway connection. As such, de-
vices operating sensors in our scheme have either well understood
availability properties (e.g., number of “nines” or half-life period),
or are closely – yet incidentally – tracked for connectivity purposes.
In any case, a querier can leverage this facility of the trusted infras-
tructure to obtain an accurate live-sensor count in a tractable fash-
ion, which it can then use to safeguard the query results that cannot
be tractably obtained via the same infrastructure.

Given a generally knowable live sensor population size, going
from single-tuple-per-sensor to multiple-tuples-per-sensor is an easy
step, as long as the universe of tuples has a well known mapping
to the universe of sensors. For example, predicate polls involv-
ing exactly the last 5 measurements from each sensor are trivial.
The situation is slightly more complicated when there is an arbi-

trary, unpredictable number of tuples per sensor. A rewrite of the
predicate in question to one that falls back on the single-tuple-per-
sensor setting may be the easiest solution. For example, instead of
the query “count the attack log entries across all sensors” one might
ask instead “count all sensors registering more than 5 attacks.”

When rewrites are not an option, or there is no clear mapping
from the tuple universe to the more knowable sensor population,
or when the sensor population size itself is hard to know (e.g.,
for less well managed sensors), approximate knowledge of the tu-
ple universe size may be a reasonable solution. For instance, the
querier can maintain deterministic bounds on the count using the
deterministic approximate-counting schemes provided by Olston
and Widom [25]. Since we require this task itself to be verifiable,
it may have to run over the sensor population itself, or in a cen-
tralized but infrequent fashion. Given the deterministic bounds of
such techniques (e.g., U − ε−U ≤ Û ≤U + ε+U), our bounds of Sec-
tions 3.3 and 4.1 are modified by simply replacing U by U − ε−U
in the lower bounds, and U + ε+U in the upper bounds. Trusted
probabilistic (εU ,δU)-estimates for U at the querier (e.g., obtained
through simple FM counting over trusted nodes) similarly intro-
duce ±εUU additive error in the bounds of Theorems 1–3, but also
increase the failure probability to δ+ δU by the union bound (this
is not a serious issue, since all our proof sketch space bounds have
weak logarithmic dependence on 1/δ).

In practice, the ability to provide a useful degree of verifiability
will depend on a number of variables, including the communication
budget for maintaining Û , the rate of change at the data sources, and
the application-specific tolerances for εU and δ. A thorough study
of all these variables is beyond the scope of this paper; we focus on
the predicate poll case in our experiments of Section 6.

5.2 Verification Failure and Accountability
Our verification tests for AM-FM sketches raise alarms when ei-

ther the authentication manifest does not match the sketch, or the
complementary deflation detection check fails. Taken alone, such
alarms are useful in flagging a result as untrustworthy. However, it
may be desirable to go a step further, to trace misbehavior where
it happens – this is useful not only for identifying malicious ag-
gregators, but also for identifying false alarms. We consider some
alternatives below.

Pinpointing inflation attacks is relatively simple. When the au-
thentication manifest does not match the sketch, we know that one
or more aggregators incorrectly performed the merge logic, e.g.,
turned on an FM bit without a corresponding signed data value. To
trace an unsupported FM bit, one can interactively follow the ag-
gregate computation backwards through the topology to the aggre-
gator that introduced the unsupported bit. Unfortunately, malicious
aggregators are likely to shed responsibility for their incorrect out-
put, for instance, by blaming it on one of their topology children.
To combat such misbehavior, we can require that aggregators sign
their messages to each other, each verifying the signatures on its
inputs (as correct, and coming from a fellow aggregator) before
computing and transmitting its output PSR. If each aggregator re-
tains the signed inputs to its local computation for a short while,
it can conclusively respond to traceback requests when asked by a
querier. To trace back a faulty bit in an authentication manifest, a
querier checks which input the faulty bit came from and then pro-
ceeds to the aggregator that issued that input PSR, asking it for its
inputs. The process will terminate either when the querier reaches a
faulty sensor (which we have assumed correct), an aggregator who
received correct inputs but produced an incorrect output signifying
misbehavior, or an aggregator that fails to respond. In any of these
cases, assuming a tree-like topology, a misbehavior can be detected

8

and dealt with, in O(logn) steps through the n aggregators.
When the correctness condition fails, on the other hand, pointing

to the possibility of a deflation attack, the situation is slightly trick-
ier. The reason is that, unlike an invalid authentication manifest,
a deflated PSR is not directly recognizable on its own; additional
information is required to identify it as deflated. One approach to
tracing back PSR deflations is to require more information about
the aggregation topology; specifically, extending the requirement
for the size U of the universe, we can require that for aggregator
i the size Ui of the tuple universe covered by that aggregator be
known. For example, in a tree topology, for aggregator i, Ui would
be the number of leaves in the subtree rooted at i. Given these
“sub-universe” sizes, the deflation criterion of Theorem 1 can be
applied to every aggregator individually. Consequently, the querier
may trace back the deflation by starting at the final aggregation
node, following it to its immediate children, applying the deflation
criterion, and following recursively that child aggregator (or aggre-
gators) on which the criterion fails, while verifying the correctness
of the merging function at every step (i.e., that no 1-bits were sup-
pressed by the aggregator). As with inflation trace back, deflation
trace back in this scenario can directly walk tree-like topologies to
malicious aggregators in roughly O(logn) steps. Note, however,
that there is a low probability that the deflation criterion may fail
even in the absence of adversarial tampering; in such false positive
cases, the trace back will follow failing deflation criteria down to
aggregators that do not fail the criterion or to the input sensors.

Enforcing accountability on individual aggregators can be help-
ful, but may be best reserved as an option for important queries
(e.g., those on which more complex views rely). Alternatives to
tracing back misbehavior that burden the querier less may be boost-
ing the query accuracy (by requiring more sketches) or boosting the
survivability of data (by submitting each sensor PSR to multiple ag-
gregators).

5.3 A Generalized Template for Proof Sketches
While both of the proof sketches we develop in this paper are

based on FM sketches, this is not a requirement of the approach,
and we expect that a variety of proof sketches could be constructed
beyond our initial ideas here. In general, the basic guidelines for
constructing a proof sketch for an aggregation function γ are as
follows:

Compact Manifest: A key challenge in designing a proof sketch
is to develop a compact authentication manifest. Compact mani-
fests are trivial to construct for sketches like FM where each bit
is independent of the others, and can be authenticated by a single
exemplar value. Otherwise, one must reason about the m-to-n rela-
tionship between input values and sketch bits: a subset (or possibly
multiple alternative subsets) of the input values may constitute a
“support” for an output bit, and each input value may influence
multiple output bits. In general, this leads to a combinatorial opti-
mization problem of choosing (from the input data) a minimal man-
ifest for a given output sketch. It would seem desirable to choose
sketches that not only have compact manifests, but avoid combina-
torial complexity in evaluating them.

Deflation Bounds: For aggregate γ, our complementary defla-
tion protection requires that the querier maintain γ(U), and that one
can derive tight bounds on the probability that γ(U)− (γ(Ĉpred)+
γ(Ĉ¬pred)) exceeds some threshold. Note that, in some cases, it
is sufficient to bound the approximation using a simpler aggregate
than the one being computed; for example, the deflation detection
bounds for our AM-Sample sketch depend on testing the count.
As of yet, we have no general rule for identifying such scenarios
or characterizing the “minimality” of the aggregate used for com-

plementary deflation detection. This is an open question of both
theoretical and practical interest.

Clearly these are neither formal characterizations of the require-
ments for “proof-sketchability,” nor are they turnkey guidelines for
developing new proof sketches. However, we believe they are of
use in developing new verifiability techniques.

As an example of using these criteria in a fairly different setting,
we briefly consider Bloom Filters [5]; for brevity we assume fa-
miliarity with their general construction and use. A Bloom Filter
can be formed via in-network aggregation in a straightforward way.
Like FM sketches, the bits in a Bloom Filter are independent func-
tions of the input domain. Hence a simple authentication manifest
for a Bloom Filter can maintain one exemplar per bit. Actually,
one can perhaps do better than this, since each input value maps
to multiple bits of the Bloom Filter. Minimizing the Bloom Filter
manifest size is an instance of the combinatorics we warn against
above, but is perhaps an unnecessary optimization of the simple
technique. With respect to deflation bounds, there is a scenario
with an appropriate analogy for set-membership tests. Assume that
the data set in the network contains tuples of the form (id, value).
We wish to form a Bloom filter for the set of ids of tuples that
satisfy a selection predicate σpred(value) (e.g., so that we can per-
form a semi-join with another table at the querier). In this case
we can prevent deflation attacks by also requiring a Bloom Filter
to be formed on σ¬pred(value). Assuming the querier knows the
universe of ids currently stored in the network, each membership
test it performs should succeed on at least one of the two Bloom
Filters (again, within the error guarantees of the filter(s)); if not, a
deflation attack occurred.

6. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate AM-FM to under-

stand its behavior during an attack as well as in the absence of an
attack. Furthermore, we explore some practical adversarial sup-
pression strategies to demonstrate that, in the average case, the
adversary has a low probability of getting away with deflating a
predicate count significantly.

6.1 Adversary Strategies
Though our worst-case analysis (Section 3.2) provides proba-

bilistic guarantees about the effects of adversarial behavior dur-
ing aggregation, in practice not many adversaries will be able to
achieve worst-case tampering, for at least two reasons. First, un-
less the adversary succeeds in compromising the “root” aggregator
in the network, she will not have access to the last PSR given the
querier. Instead she will be able to affect only PSRs further away
from the querier in the aggregation topology. This means that she
has only partial information on which to determine her suppres-
sion strategy; for example, some sketch bits that she suppresses
will be re-set by other, well behaved aggregators. Second, the ad-
versary does not control the hash functions used by the estimators.
Consequently, she cannot always achieve worst-case suppression
undetected if, for instance, Ĉ¬pred is underestimated by FM in a
particular query – this tightens the width of the range from Theo-
rem 1.

We examine below adversary strategies that approximate differ-
ent adversarial goals:

Targeted Strategy Given target count Cmalicious, suppress as many
sketch bits as will bring Ĉpred close to that target count.

Safe Strategy Suppress as many sketch bits as will deflate Ĉpred
without violating the verification condition (see Theorem 1).

9

 0

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1

A
la

rm
s

Predicate selectivity

 0

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1

O
ut

-o
f-

bo
un

ds

Predicate selectivity

 0

 0.05

 0.1

 0.15

 0.2

F
al

se
 n

eg
at

iv
es

 0

 0.05

 0.1

 0.15

 0.2
F

al
se

 p
os

iti
ve

s
0.1

0.12
0.14
0.16
0.18

0.2
0.22

Figure 5: Frequencies of alarms, out-of-bounds estimates,
alarms for in-bounds estimates (false positives) and undetected
out-of-bounds estimates (false negatives) for different selectivi-
ties (x axis) and different ε parameters (one per curve).

With each strategy we vary a coverage parameter 0 < G < 1 that
reflects the fraction of the universe aggregated via malicious aggre-
gators. For instance, in a tree aggregation topology, an adversarial
aggregator covers all data values ingested into the topology via the
subtree of which it is the root. Clearly, the greater the coverage, the
more likely it is that sketch bits suppressed by the adversary will
not be set again by another aggregator.

6.2 Results
The results presented below use 128 sketches — qualitatively

similar numbers were obtained for other summary sizes. Based on

the worst-case bound of O(log(1/δ)
ε2) for our FM estimator, this im-

plies that a worst-case error guarantee of ε = 0.15 can be achieved
with a probability of about 73% (ignoring constants in FM space
bound). For each datapoint, 50 independent runs were computed.
We fix the size of the universe to 100,000 and vary the cardinal-
ity of the polled predicate between 10,000 and 100,000 at 10,000
increments. We vary adversary coverage between 1/64-th of the
universe to 100%.

We raise an alarm when the verification condition fails (for given
ε parameter), and we claim a measurement/estimate Ĉpred “in-bounds”
when it satisfies the error bounds of Theorem 1. Alarms for which
the Ĉpred estimate was actually within the error bounds are conser-
vatively termed “false positives” below, whereas estimates that are
not “in-bounds” but fail to raise an alarm are termed “false nega-
tives”.

6.2.1 Benign Behavior
We begin with the behavior of AM-FM in the absence of adver-

saries. We wish to understand how frequently the verification con-
dition triggers and when it does, whether it is justified by the occa-
sional outlying estimate. Figure 5 plots the frequency of alarms and
out-of-bounds estimates, as well as the frequency of false positives
(alarms raised when the estimate is within bounds) and false nega-
tives (no alarm raised when the estimate is out-of-bounds). Given
the number of sketches (128), the out-of-bounds occurrences are
below 10% for ε ≥ 0.12, which is in practice much better than
the worst-case error and confidence probability described above
for 128 sketches. False negatives are also well below 10% for all

ε parameters but the smallest value (0.1). Therefore, our imple-
mented estimators perform well within the worst-case bounds of
our method. Note that even without the adversary around, the veri-
fication condition does catch some outlier estimates, especially for
high count cardinalities. Those appear as alarms that are not false
positives.

6.2.2 Targeted Strategy
The targeted strategy approximates an adversary who cares about

a particular count suppression at any cost, even if she is detected.
She can suppress the sketch bits at her disposal to achieve the target
estimated count Cmalicious < Ĉpred . To that effect, she suppresses as
many sketch bits as will cause the estimate (as she can compute
it locally) to reach Cmalicious. When she has limited coverage, her
attempts are thwarted as the remaining, non-malicious aggregators
merge their PSRs with those she has concocted.

Figure 6 explores this strategy for predicate polls of cardinalities
0.2, 0.5, and 0.7. Estimates of the selectivity are affected much
more dramatically when the adversary has high coverage (1/4-th
or more) and otherwise remain fairly close to the actual selectivity.
However, the dramatic suppressions incurred by the high cover-
age adversary necessarily trigger alarms at the querier. When the
querier applies a tight bound on the verification condition (ε= 0.15
in the second column), alarm frequency is greater as the adversary
strives for larger estimate deflation. Lower cardinality predicates
(higher rows) suffer less from those alarms, since there’s less wig-
gle room offered by our εU verification condition.

In terms of false positives, the two rightmost columns feature a
sharp drop in the high coverage curves; the x-axis point of the sharp
drop off is exactly the lower-bound of Theorem 1. For instance, in
the bottom right plot, the full coverage false positives curve (ma-
genta) drops sharply at target selectivity Cpred − ε(U +C¬pred) =
0.7− 0.25(1+ 0.3) = 0.375. The top row (predicate of selectivity
0.2) does not feature this sharp drop off because the lower bound
of our theorem falls below 0.

Alarm frequencies are lower for lower coverage, since lower
coverage results in much less dramatic estimate deflation (compare
the 1/4-th coverage blue curve to the full coverage magenta curve).
Note however that the 1/4-th coverage curve does not feature any
sharp drops. This is an artefact’s of our conservative definition of
“false positives.” Since the adversary (with lower coverage) can-
not suppress the estimate significantly, she can suppress it enough
to raise an alarm (for the 0.5 and 0.7 selectivities) but not enough
to violate a tight error bound (for ε = 0.15), thereby registering
as a false positive. For a more appropriate ε given our number of
sketches, this is not the case.

6.2.3 Safe Strategy
The safe strategy represents an adversary with varying levels of

coverage. This strategy’s primary goal is not to raise an alarm
while deflating the count as much as possible. To do so, the ad-
versary suppresses sketch bits that do not violate the verification
condition (evaluated as best as possible given the adversary’s cover-
age). We conservatively assume for this strategy that the adversary
knows her own coverage exactly, as well as the size of the universe
U .

Figure 7 plots the average deflation bias introduced by this adver-
sary, under two ε parameters, one very conservative (ε= 0.1) given
the number of sketches, and one more permissive that assumes a
relaxed querier (ε = 0.25). (The X = Y line represents the perfect
(i.e., zero-error) estimate.) At the timid setting, the adversary does
not succeed in biasing the estimate by more than εU , except under
very high coverage, a quarter of the universe and above. At the

10

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.05 0.1 0.15 0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.05 0.1 0.15 0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.05 0.1 0.15 0.2

Coverage
1/64
1/16

1/4
full

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.05 0.1 0.15 0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.05 0.1 0.15 0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

S
up

pr
es

se
d

se
le

ct
iv

ity
 e

st
im

at
e

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

A
la

rm
 F

re
qu

en
cy

 (
e=

0.
15

)
 0

 0.2
 0.4
 0.6
 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

A
la

rm
 F

re
qu

en
cy

 (
e=

0.
25

)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

F
al

se
 P

os
iti

ve
 F

re
qu

en
cy

 (
e=

0.
15

)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

F
al

se
 P

os
iti

ve
 F

re
qu

en
cy

 (
e=

0.
25

)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Target selectivity

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Target selectivity

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Target selectivity

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Target selectivity

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Target selectivity

Figure 6: The effects of the targeted strategy on three predicate polls of cardinalities 0.2 (top), 0.5 (middle), and 0.7 (bottom). All x
axes are the target selectivity of the adversary, from the predicate cardinality down to 0. On the left, we show the average suppressed
count estimate. The next two columns show the alarm frequency (with an aggressive ε= 0.15) and with a more conservative ε= 0.25.
The final two columns show the false positive frequency with the same two ε values. In each graph, we show different curves for four
levels of adversarial coverage.

more relaxed ε setting, the adversary hovers around εU for full uni-
verse coverage, but still remains fairly close to the correct count for
lower coverage values.

Note that, especially when the aggregation topology is beyond
the adversary’s control, the ability of the adversary to place herself
at high coverage positions can be kept low. As a result, the expected
deflation bias in this strategy is strongly weighted towards the low
coverage values. For instance, in a binary tree topology, half of the
aggregators cover only their own PSRs and the fraction of the value
universe corresponding to a single aggregator.

6.3 Discussion
At a high level, our experimental study demonstrates that our

techniques are quite robust: to get near our worst-case bounds un-
detected, an adversary needs both to compromise aggregators near
the root of the topology, and to get even luckier than our analysis
might suggest. The former issue can be mitigated by design; for in-
stance, by implementing multiple redundant aggregation trees for
the same query. Furthermore, to remain undetected, the adversary
need limit herself to much lower deflations than those tolerated in
the worst-case by our result. At the same time, our implementation
raises interesting issues with respect to fine-tuning our verifiable
sketching mechanisms in a real-life setting — we are currently ex-
ploring different techniques in that context.

7. RELATED WORK
Our work here was inspired by efforts in the SIA project for

verifiable (centralized) aggregation in the context of sensor net-
works [28]. In SIA, a single untrusted aggregator acts as an in-
termediary between (largely) trusted battery-operated sensors and
a querier. To verify aggregation results, the querier can spot-check
the requisite computations, by requiring samples of input data that
justify particular results, while ensuring that the sampling mecha-
nism remains untampered. We target a broader problem than SIA,
by involving multiple aggregators, making the computations we
seek to verify more complex. However, our work is intended for a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

B
ia

se
d

es
tim

at
e

(e
=

0.
1)

Predicate selectivity

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

B
ia

se
d

es
tim

at
e

(e
=

0.
25

)

Predicate selectivity

1/64
1/16

1/4
Full

X=Y

Figure 7: Average deflated estimate for an adversary of varying
coverage (different curves) using the safe interior strategy. On
the left, the strategy uses a timid ε = 0.1, while on the right the
strategy uses a more permissive ε = 0.25.

traditional computing environment, rather than the power-constrained
battery-operated sensors in SIA. Hence we can take advantage of
significant computational power at all the agents, including the sen-
sors.

Our other source of inspiration is the recent work on using duplicate-
insensitive FM-based sketches and redundant communication to
tolerate failures in sensor network aggregation [7, 20, 24]. Unfor-
tunately, as described in Section 3.2.1, it is unclear whether such
techniques can be made robust to adversarial suppression attacks.

Trustworthy multi-party aggregation is a problem with many facets,
ranging from robustness to external attack, to malicious data sources,
and to privacy leaks. We sample all three categories. Sanli et
al. [31] describe machinery for secure key distribution and aggregation-
aware encryption in sensor networks. They set encryption param-
eters so as to provide greater security (higher-quality encryption)
the closer an aggregator lies to the root of the aggregation topology
and, therefore, the greater fraction of the aggregated sensed values
that aggregator summarizes. Unlike proof sketches, this work does
not consider the problem of aggregators acting maliciously.

Wagner discusses the idea of “resilient” aggregation in sensor
networks [35], but his architectural model does not include in-network

11

aggregation. Instead, he ensures that an adversarial sensor node
maliciously generating false data cannot perturb the aggregate by
more than a small amount. In Wagner’s threat model, the count
aggregate is “resilient,” so he offers no specific defenses for it. He
proposes the use of robust statistics [16] (e.g., the trimmed mean
rather than the true mean) to bound this impact. Our verifiable
sampling technique here can be used in conjunction with robust
statistics like the trimmed mean, which are usually designed ex-
plicitly to work over samples. More generally, work on evaluating
the trustworthiness of data sources for query processing focuses
on techniques like watermarking [1] and reputation systems [27],
which again can in principle be carried through samples. Deeper
integration of any of these technologies with verifiable aggregates
other than sampling is an interesting open problem.

Moving further afield, we distinguish our efforts here from the
growing body of work on preserving the privacy of information
in databases. This literature includes query processing over dis-
tributed data, including aggregation queries (e.g., Agrawal et al. [2]
and the references therein). However, we are not aware of work on
privacy preservation for in-network aggregation. The combination
of verifiability and privacy preservation for distributed aggregation
appears to be a rich challenge for future work.

8. CONCLUSIONS AND FUTURE WORK
The work we present here on proof sketches represents an effort

to marry two historically disjoint technologies: cryptographic au-
thentication and approximate query processing. While this sounds
complex, our FM-based proof sketches provide a remarkably sim-
ple defense against the introduction of spurious data during aggre-
gation. Our complement technique for detecting suppression at-
tacks is also simple, but less generally applicable: it requires the
querier to track an aggregate function on the entire distributed data
set. While this is quite realistic in a number of important practical
settings, there are scenarios for which alternative suppression de-
fenses would be welcome. We believe this is an important area for
future research.

We are optimistic about a number of potential extensions to this
work. One direction is to combine our techniques with various
ideas in privacy-preserving query processing, in the hopes of de-
veloping a more multifaceted notion of trustworthy querying than
has been considered to date. Another interesting challenge is to
move beyond aggregation queries to provide verifiable “enumera-
tive,” non-aggregated queries – perhaps aiming to verify approxi-
mate [3] or “partial” [29] results. Finally, it would be interesting
to consider developing proof sketches for a wider variety of aggre-
gates without requiring the construction of a sample. To this end,
we hope to develop more formal algebraic characterizations of the
“proof sketchability” of various functions.

Acknowledgments
We are grateful to Aydan Yumerefendi for exploring many alterna-
tives to our approach at an early stage, to David Wagner and Dahlia
Malkhi for their helpful, insightful comments on earlier drafts of
this work, and to Satish Rao for his perspective on k-connectivity.

9. REFERENCES
[1] R. Agrawal, P. J. Haas, and J. Kiernan. A system for

watermarking relational databases. In ACM SIGMOD
International Conference on Management of Data, 2003.

[2] R. Agrawal, R. Srikant, and D. Thomas. Privacy preserving
OLAP. In ACM SIGMOD International Conference on
Management of Data, 2005.

[3] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample
selection for approximate query processing. In Proceedings
of the ACM SIGMOD international conference on
Management of data (SIGMOD), pages 539–550, San Diego,
CA, USA, June 2003.

[4] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivakumar, and
L. Trevisan. Counting distinct elements in a data stream. In
Proceedings of RANDOM, Cambridge, MA, USA, Sept.
2002.

[5] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[6] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor
database systems. In Proceedings of the Second International
Conference on Mobile Data Management (MDM), pages
3–14, Hong Kong, China, Jan. 2001.

[7] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate
Aggregation Techniques for Sensor Databases. In Proc. of
the International Conference on Data Engineering (ICDE),
2004.

[8] G. Cormode and S. Muthukrishnan. “What’s Hot and What’s
Not: Tracking Most Frequent Items Dynamically”. In
Proceedings of ACM PODS, pages 296–306, San Diego,
California, June 2003.

[9] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi.
Processing complex aggregate queries over data streams. In
Proceedings of the ACM SIGMOD international conference
on Management of data (SIGMOD), pages 61–72, Madison,
WI, USA, 2002.

[10] P. Flajolet and G. N. Martin. Probabilistic Counting
Algorithms for Data Base Applications. J. Comput. Syst.
Sci., 31(2):182–209, 1985.

[11] S. Ganguly, M. Garofalakis, and R. Rastogi. Processing set
expressions over continuous update streams. In Proceedings
of the ACM SIGMOD international conference on
Management of data (SIGMOD), pages 265–276, San Diego,
CA, USA, June 2003.

[12] P. B. Gibbons. Distinct sampling for highly-accurate answers
to distinct values queries and event reports. In Proceedings of
the 27th International Conference on Very Large Data Bases
(VLDB), pages 541–550, Rome, Italy, Sept. 2001.

[13] P. B. Gibbons and S. Tirthapura. Estimating simple functions
on the union of data streams. In Proceedings of the thirteenth
annual ACM symposium on Parallel algorithms and
architectures (SPAA), pages 281–291, Crete, Greece, July
2001.

[14] A. V. Goldberg and R. E. Tarjan. A new approach to the
maximum-flow problem. J. ACM, 35(4):921–940, 1988.

[15] J. Holm, K. de Lichtenberg, and M. Thorup.
Poly-logarithmic deterministic fully-dynamic algorithms for
connectivity, minimum spanning tree, 2-edge, and
biconnectivity. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing (STOC), pages 79–89,
Dallas, TX, United States, 1998.

[16] P. J. Huber. Robust Statistics. Wiley-Interscience, 2003.
[17] R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo,

P. Maniatis, T. Roscoe, S. Shenker, I. Stoica, and A. R.
Yumerefendi. The architecture of PIER: an Internet-scale
query processor. In CIDR, pages 28–43, 2005.

[18] W. Liang, R. P. Brent, and H. Shen. Fully dynamic
maintenance of k-connectivity in parallel. IEEE Trans.
Parallel Distrib. Syst., 12(8):846–864, 2001.

12

[19] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: A Tiny AGgregation service for ad-hoc sensor
networks. In Fifth Symposium on Operating Systems Design
and Implementation (OSDI), pages 131–146, Boston, MA,
USA, Dec. 2002.

[20] A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries and
deltas: efficient and robust aggregation in sensor network
streams. In Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, pages
287–298, Baltimore, MD, USA, 2005.

[21] G. S. Manku and R. Motwani. “Approximate Frequency
Counts over Data Streams”. In Proceedings of the 28th
International Conference on Very Large Data Bases (VLDB),
pages 346–357, Hong Kong, China, Aug. 2002.

[22] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. “Random
sampling techniques for space efficient online computation
of order statistics of large datasets”. In Proceedings of ACM
SIGMOD, June 1999.

[23] R. Motwani and P. Raghavan. Randomized algorithms.
Cambridge University Press, New York, NY, USA, 1995.

[24] S. Nath, P. Gibbons, Z. Anderson, and S. Seshan. Synopsis
Diffusion for Robust Aggregation in Sensor Networks. In
Proceedings of ACM SenSys, Baltimore, MD, USA, Nov.
2004.

[25] C. Olston and J. Widom. Offering a precision-performance
tradeoff for aggregation queries over replicated data. In
Proceedings of the 26th International Conference on Very
Large Data Bases (VLDB), pages 144–155, Cairo, Egypt,
2000.

[26] M. Patrascu and E. D. Demaine. Lower bounds for dynamic
connectivity. In Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing (STOC), pages 546–553,
Chicago, IL, USA, 2004.

[27] F. Perich, J. L. Undercoffer, L. Kagal, A. Joshi, T. Finin, and
Y. Yesha. In Reputation We Believe: Query Processing in
Mobile Ad-Hoc Networks. In International Conference on
Mobile and Ubiquitous Systems: Networking and Services,
Boston, MA, August 2004.

[28] B. Przydatek, D. Song, and A. Perrig. SIA: Secure
Information Aggregation in Sensor Networks. In
Proceedings of the 2nd ACM Conference on Embedded
Network Sensor Systems (SenSys), Los Angeles, CA, USA,
Nov. 2004.

[29] V. Raman and J. M. Hellerstein. Partial results for online
query processing. In Proceedings of the ACM SIGMOD
international conference on Management of data
(SIGMOD), pages 275–286, Madison, WI, USA, June 2002.

[30] R. V. Renesse, K. P. Birman, and W. Vogels. Astrolabe: A
robust and scalable technology for distributed system
monitoring, management, and data mining. ACM Trans.
Comput. Syst., 21(2):164–206, 2003.

[31] H. O. Sanli, S. Ozdemir, and C. Hasan ˙SRDA: secure
reference-based data aggregation protocol for wireless sensor
networks. In Proceedings of the Vehicular Technology
Conference, pages 4650–4654. IEEE, Sept. 2004.

[32] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. Khosla. Pioneer: verifying code integrity and enforcing
untampered code execution on legacy systems. In
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 1–16, Brighton, UK, Oct. 2005.

[33] M. Tsimelzon, B. Weihl, and L. Jacobs. ESI language
specification. Technical Report 1.0, Akamai Technologies

and Oracle Corporation, 2001.
http://www.esi.org/language spec 1-0.html.

[34] J. S. Vitter. Random sampling with a reservoir. ACM
Transactions on Mathematical Software, 11(1):37–57, 1985.

[35] D. Wagner. Resilient aggregation in sensor networks. In
ACM Workshop on Security of Ad Hoc and Sensor Networks
(SASN), Oct. 2004.

[36] P. Yalagandula and M. Dahlin. A scalable distributed
information management system. In Proceedings of the 2004
conference on Applications, technologies, architectures, and
protocols for computer communications (SIGCOMM), pages
379–390, Portland, OR, USA, Sept. 2004.

13

