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Abstract

Integration of Physical Design and Sequential Optimization

by

Philip Chong

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Robert K. Brayton, Chair

This work examines the interaction between the physical design of digital integrated circuits and se-

quential optimization techniques used for performance enhancement. In particular, the integration

of floorplanning and placement with retiming and clock skew scheduling is explored. A theoretical

result is given which addresses the computational complexity of circuit partitioning under con-

straints derived from sequential optimization; this motivates the need for heuristic approaches to

the related placement problem. Another theoretical result provides a characterization of the feasible

retimings of a sequential circuit; this result is used to motivate an effective method for floorplanning

integrated with sequential optimization. Practical techniques for using sequential slack to drive

standard-cell placement are shown here; experiments demonstrate significant improvement in fi-

nal design performance using these methods. Another part of this work examines how the role of

sequential optimization and physical design changes when the design allows for asynchronous or

latency-insensitive communication between modules. A theoretical result relating to the problem

of clock tree implementation for clock skew scheduling under process variation is given. Finally an

experimental technique for floorplanning using nonlinear programming is demonstrated.

Professor Robert K. Brayton
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Motivation

The progress of semiconductor fabrication technology is changing the impact of inter-

connect delay on the performance of digital integrated circuits. In the past, such delays were often

ignored during the design process, as they were considered negligible compared to the delays of the

gates in the circuit. However, today interconnect delay forms a substantial portion of the total circuit

delay. [SK99] suggests between 24 and 36 percent of total circuit delay comes from interconnects

in fabrication processes typically in use today.

Looking beyond today’s processes shows an expected trend of increasing impact of inter-

connect delay. Table 1.1 shows the predicted evolution of interconnect delay based on projections

from [ITR03]. The first row indicates the year of projection. The next three rows indicate the antic-

ipated RC delay associated with 1mm lengths of Metal 1 wire, intermediate-length wire and global

wire, respectively.

Of course, looking only at delay for a 1mm length of wire can be misleading, as this does

not account for any change in gate sizing. As gate sizes shrink, a fixed length of wire will span an

increasing number of gates and thus represent a more substantial interconnect. Put another way, if

a design is implemented in an smaller technology, wire lengths will shrink accordingly.

To put this in proper context, we use the personal digital assistant system-on-a-chip (PDA

SOC) design driver (also presented in [ITR03]) to normalize these figures. The PDA represents a

typical design one might wish to implement on an ASIC. The projected clock frequency and process

technology (feature size) for this application is indicated in the table. The last three rows of Table 1.1

shows the product of the RC delay constant (taken as ps/mm) for each of the three wire types with
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Year 2003 2006 2009 2012 2015 2018
RC, 1mm Metal 1 (ps) 191 355 595 963 1510 2679
RC, 1mm Intermed. Wire (ps) 105 224 358 552 908 1582
RC, 1mm Global Wire (ps) 42 87 139 220 354 618
PDA SOC Design Driver
Clock Freq. (MHz) 300 450 600 900 1200 1500
Process Tech. (nm) 101 90 65 45 32 22
RC-Size Product, Metal 1 0.0193 0.0320 0.0387 0.0433 0.0483 0.0589
RC-Size Product, Intermed. Wire 0.0106 0.0202 0.0233 0.0248 0.0291 0.0348
RC-Size Product, Global Wire 0.00424 0.00783 0.00904 0.00990 0.0113 0.0136

Table 1.1: ITRS interconnect technology projections. From [ITR03].

the feature size (in nm). Taking this product effectively normalizes the RC delay values in terms

of the feature size. Of course this is not exact, as wire delay is not exactly a linear function of

wire length. However, such a normalization is useful to roughly account for the expected decrease

in feature size. Here we see that this normalized delay is expected to increase roughly threefold,

looking forward to 2018.

On top of the purely physical effects of process scaling, designs are also being expected

to run at increasingly faster rates (see the clock frequency row in Table 1.1). Furthermore, designs

are growing larger and more complex as consumers demand more features in the products which

contain these ICs. The combined effect of all these trends is to make it increasingly difficult for

designers to achieve the circuit performance necessary.

This work focuses on two powerful techniques used by digital circuit designers for perfor-

mance optimization. Retiming [LS83, LS91] and clock skew scheduling [Fis90, DS95] are methods

which can be used to improve design performance. We call these sequential optimization tech-

niques, as they require changing the nature of the sequential elements within the targeted design.

Retiming involves changing the structural location of the sequential elements, while clock skew

scheduling involves changing the relative clock skews between the sequential elements.

Of course, performance optimization requires accurate modeling and prediction of in-

terconnect delays in the design. Since such delays are dependent on the length of the wires, this

means that the problem of sequential optimization and the physical implementation of the design

are closely interrelated. This indicates that an integration of physical design and sequential opti-

mization is necessary to achieve good results with these techniques.

Our work focuses on the floorplanning and placement aspects of the physical design prob-
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lem. Of course, other aspects of physical design, such as routing and clock tree implementation,

can affect sequential optimization greatly. However, these are not the focus of this work. This thesis

explores how sequential optimization can be integrated with floorplanning and placement tools, and

presents new techniques for performance optimization of digital synchronous circuits using these

ideas.

1.2 Existing Work

Placement and floorplanning are processes for determining non-overlapping locations for

circuit elements on a silicon die while minimizing a given cost function. Placement is distinguished

from floorplanning in that placement is the term generally used with objects at a fine-grained level

(e.g. standard cells each representing a single gate of logic), while floorplanning involves much

larger objects (e.g. macroblocks composed of hundreds of thousands of gates). A typical design

flow might utilize both floorplanning and placement techniques, especially if the design is large and

has been designed in a hierarchical fashion, or if the design is built from pre-existing macroblocks.

1.2.1 Placement

Placement is typically performed in two stages. The first, called global placement, con-

cerns finding general locations for the standard cells on the overall die. The result from global

placement may not have all overlaps between cells resolved, but the spreading of cells is sufficiently

uniform to allow the next step, detailed placement or legalization, which transforms the nearly-legal

result of global placement to a final legalized placement with no cell overlaps, to be performed with

less cost of computation. However detailed placement generally focuses on optimizations localized

to small areas of the die [DJS91, KMR04] or optimization with the objective to minimize total per-

turbation with respect to the global placement [BV04]. Therefore in this work we focus on global

placement, as the greatest optimization potential lies in this step.

Placement has been well-studied in the past for several interesting cost functions. The

most common cost function used in the literature is wirelength. Although wirelength by itself is not

a very useful metric, it has the advantage of being relatively easy to optimize, and does represent

a coarse measure of routing congestion [WS00]. Wirelength has also been observed to be roughly

correlated with timing of the design [CKM+99a].

Nearly all modern global placement techniques fall into two categories. The first category
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contains what are known as analytic placers. These formulate the placement problem abstractly as a

quadratic program as follows: Let G = (V,E) be a graph representing the circuit, where the vertices

represent the standard cells to be placed and the edges represent the interconnections between the

cells. The goal is then to find locations (x(v),y(v)) ∈ R
2 for all vertices v ∈V to minimize

∑
(u,v)∈E

(x(u)− x(v))2 +(y(u)− y(v))2

The cost function serves as a rough estimate for the wirelength. As the cell locations collapse onto

a single point if all vertices are unconstrained, additional vertices with fixed locations are added to

the problem. These extra vertices are typically taken to be I/O pins around the die boundary so that

the movable cells will lie within the convex hull of the fixed pins.

The main difficulty with the analytic approach is that the placement result tends to be clus-

tered in the center of the die and is insufficiently spread out for the subsequent detailed placement

step. This has resulted in a focus in the literature on techniques for spreading the cells. Com-

monly this is done iteratively, either through the addition of “spreading forces” or extra fixed points

[EJ98, HMS02, VC04] or using graph partitioning techniques to subdivide the die into disjoint areas

and force spreading by assigning cells to these areas [TKH88, TK91a, KSJ88].

The partitioning-based cell spreading techniques eventually developed into the second

category of global placement techniques, those known as partitioning-based placers. These forgo

the use of the quadratic program altogether, and instead make use of recursively partitioning the

netlist graph and assignment of partitions to disjoint die areas to enforce adequate cell spreading.

Typically some form of the mincut partitioning problem is used, which is as follows: Find a partition

(A,B) of the vertices V such that |A|= |B| and the size of the set of cut nets

|{(u,v) ∈ E : (u ∈ A∧ v ∈ B)∨ (u ∈ B∧ v ∈ A)}|

is minimized. Usually a variant of the Fiduccia-Mattheyses heuristic is used to solve the graph par-

titioning problem [FM82, KAKS97, CKM99b]. Partitioning-based placers have shown reasonably

good correlation between the use of the mincut partitioning heuristic and the wirelength of the final

result [A+99, CKM00].

1.2.2 Floorplanning

Floorplanning is chiefly distinguished from placement by the need to deal with large mac-

roblocks. Unlike standard cell gates, which for a particular design are all chosen from a library
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where all cells have uniform height, macroblocks can vary significantly in size, from thousands to

hundred of thousands of gates. Moreover, floorplanning tools must account for soft macroblocks,

which represent a subdesign of known logical structure, but without layout information. Such soft

blocks will have a fixed area, but their aspect ratio may vary.

The literature has mainly focused on floorplanning as an optimization problem where the

cost function is a linear weighted sum of the total die area (i.e. the sum of the macroblock areas

plus any wasted space due to packing inefficiencies) and total wirelength of the buses connecting

the macroblocks.

Numerous techniques have been presented in the literature for floorplanning. The oldest

of these use slicing tree structures to represent the relative positions of the macroblocks [Bre77,

Ott82, WL86]. A slicing tree is a binary tree graph where the leaves represent the modules to be

placed and the internal nodes represent horizontal and vertical cutlines at the appropriate level of

the hierarchy. Some newer approaches use non-slicing structures of various types to represent the

relative positions [MFNK96, NFMK96, GCY99, H+00].

The key feature of these floorplan representations is that they represent the layout of

the macroblocks in a compact, easily manipulated form. For all these floorplan representations,

efficient algorithms exist to convert the compact representation into actual locations and aspect

ratios for the macroblocks. Thus the search space of feasible floorplans is reduced. In the literature,

the optimization technique typically used is simulated annealing based on manipulations of the

underlying floorplan representation.

1.2.3 Sequential Optimization

We consider two techniques for sequential optimization. The first is retiming, which is

based on the observation that replacing registers located at the output of a gate with registers located

at the input of the gate does not change the functionality of the circuit [LS83, LS91]. By applying

such register movement operations, various optimizations can be achieved, such as minimizing the

total number of registers or minimizing the clock period of the design.

Clock skew scheduling is the second technique for sequential optimization which we con-

sider. This involves adjusting the delay (skew) of the clock signals to the individual registers of the

design, in order to improve the overall circuit performance [Fis90, DS95]. [Fis90] observes that

clock skew scheduling can be considered equivalent to retiming; instead of physically moving reg-

isters across gates, clock skew scheduling moves registers virtually by delaying their clock signal
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appropriately.

There have been some efforts to integrate retiming and placement. [CL00, Lim00] ad-

dresses the problem of “physical planning” (partitioning in the context of geometric layout) under

the freedom to perform retiming on the final design. There the notion of sequential slack is intro-

duced, and an iterative net weighting scheme is used during partitioning. [YMS03] avoids iterative

techniques by using slack budgeting. [SB02] demonstrates an approach to field-programmable gate

array design which accounts for retiming. These techniques have various difficulties associated with

them, and we contrast these with our work in Chapter 4.

1.3 Outline

Here we outline the structure of the subsequent chapters of this thesis and highlight the

contributions presented therein.

Chapter 2 shows the N P -completeness of a simple partitioning problem under sequential

timing constraints. This result provides theoretical justification for our heuristic approach taken

through the rest of the thesis. That is, this proof motivates the need to attack sequentially-based

physical design problems with heuristic techniques, rather than seek exact optimal solutions. This

key motivation was not provided in any of the existing works in this area.

Chapter 3 presents a novel proof for a theorem which characterizes all feasible retim-

ings of a circuit. While an equivalent theorem was previously proven in [SSBSV92], our proof is

significantly different, and provides a practical constructive technique for transforming a given re-

timing into any retiming compatible with the given one. This chapter also presents a retiming-aware

floorplanning application which takes advantage of this theorem.

Chapter 4 addresses some shortcomings of the technique given in Chapter 3. The concept

of sequential slack is presented, and sequential timing-aware placement techniques using heuristics

based on this metric are given.

Chapter 5 extends our ideas to the domain of asynchronously-communicating systems.

Here, adding latency to communication paths has no effect on the correctness of a design (unlike

with synchronous systems, where excessive latency leads to incorrect results). However, latency

does affect performance, resulting in a different optimization problem. We present a technique

for quickly estimating the performance impact for a given assignment of latencies along inter-

connect, and use this to create a performance-driven floorplanning algorithm for asynchronously-

communicating systems.
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Chapter 6 discusses the problem of realization of clock trees for synchronous digital cir-

cuits. A sufficient condition for the solution to the optimal clock scheduling problem in the face of

process variations is given.

Chapter 7 presents a new experimental technique for floorplanning using a general-pur-

pose nonlinear programming package. While the results are inconclusive, there is still hope that the

general optimization framework of nonlinear programming can allow more sophisticated modeling

of the flexibility introduced by sequential optimization.

Chapter 8 summarizes the contributions presented in this thesis.
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Chapter 2

On The Complexity Of Partitioning

Under Sequential Timing Constraints

2.1 Introduction

Graph partitioning techniques form a critical core for many placement algorithms cur-

rently in use today. Some algorithms rely on partitioning alone [CKM00, Lim00, A+99], others use

partitioning as a subproblem [KSJA91, TKH88]. In all cases, partitioning is used to subdivide large

intractable problems into smaller ones which can be more readily solved.

Partitioning is a graph-theoretic problem. In a circuit context, circuit elements (e.g. gates)

are represented by vertices of the graph, and interconnections (e.g. wires) between the elements are

represented by edges. Traditionally, partitioning has been applied in placement with minimization

of the number of cut edges in the graph as the cost function. Min-cut partitioning has been found

to be an effective heuristic for placement where the minimization of total wire length is the primary

metric used to evaluate the final placed design [CKM00, A+99]. Intuitively, this is due to how min-

cut partitioning separates a network into localized subnetworks. Interconnects which are cut by

the partition tend to become long global wires in the final design, whereas interconnects contained

within a single subpartition tend to be shorter local wires. Thus there is generally a good correlation

between the number of cut edges during partitioning and the total wire length in the final placement.

In practice, other considerations besides wirelength must be considered. Most notably,

performance of the final placed design is often a critical concern. Historically, much of the research

in performance-driven partitioning has been focused on combinational-timing driven placement.
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However, recent work has dealt with partitioning for performance in a sequential setting, allowing

for retiming and clock skew scheduling to take place [Lim00, PKL98].

A common approach for performance-driven partitioning is to use net weighting together

with the usual min-cut partitioning techniques, in order to prevent critical nets whose delays have a

large impact on performance from being cut by the partition. This heuristic net weighting technique

was developed for combinational timing-driven partitioning, but has been adopted by researchers

looking at sequential-timing driven partitioning as well [Lim00, PKL98]. However, the complexity

of partitioning under sequential flexibility was previously not made clear, and the justification for

adopting such a heuristic technique was not based on theoretical grounds.

In this chapter, we present a proof for the N P -completeness of partitioning under a se-

quential performance metric. This shows that the adoption of such heuristic techniques is well-

justified.

2.1.1 Definitions

In the following, let G = (V,E) be a finite directed graph.

Definition 2.1 (Partition). A partition (A,B) of the vertices V is a pair of subsets A ⊆ V,B ⊆ V

such that A∪B = V and A∩B = /0.

Definition 2.2 (Cut Edge). Edge (u,v) ∈ E is cut by partition (A,B) if either u ∈ A and v ∈ B, or

u ∈ B and v ∈ A.

Definition 2.3 (Cycle). A cycle ` in G is a nonempty ordered list of edges

` = 〈(u1,v1),(u2,v2), . . . ,(u|`|,v|`|)〉 (ui,vi) ∈ E, i ∈ {1, . . . , |`|}

such that vi = ui+1, i ∈ {1, . . . , |`|−1}, v|`| = u1, and all the ui are unique.

For simplicity, here the term cycle is used to refer to simple cycles (with unique vertices)

only. Define C (G) to be the set of all cycles in G.

Definition 2.4 (n-Cycle). An n-cycle is a cycle with n edges (equivalently, n vertices).

Let d : E → R be a labeling of the edges of G with real numbers. d represents the delay

for signals which travel across the edges.
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Definition 2.5 (Maximum Mean Cycle). The maximum mean cycle (MMC) of graph G under

labeling d is

MMC(G,d) = max
`∈C (G)

∑(u,v)∈` d(u,v)
|`|

Several algorithms are known for the efficient computation of the MMC in polynomial-

time [DIG98, Kar78].

2.2 Maximum Mean Cycle Partitioning

Consider the following model of a gate-level network: let G = (V,E) be a directed graph

where V represents the registers of the network, and E the paths connecting these registers (possibly

through combinational gates). The delay labeling d then represents the maximum combinational

delay between the registers of the design.

Under this model, the maximum mean cycle MMC(G,d) represents the minimum clock

cycle which can be achieved using clock skew scheduling techniques [Fis90, SBSV92, Szy92,

DS95]. That is, the MMC becomes the performance metric to be minimized for the design.

The impact of partitioning on the MMC is modeled here in a simple fashion. A fixed

extra delay is added to the the delay for every edge which is cut by the partition, while the delays for

the remaining edges are not changed. This is somewhat analogous to the use of the min-cut metric

for partitioning for wirelength; intuitively, the cut edges become global interconnects, and thus will

incur extra delay, whereas uncut edges will tend to be more localized and thus faster.

2.2.1 Problem Definition

Formally, we define the maximum mean cycle partitioning (MMCP) problem as follows:

Input: A directed graph G = (V,E) with edge delays d : E → R, bin size k ∈ Z, and cut

set delay δ ∈ R,δ 6= 0.

Output: A partition (A,B) of V , where |A| ≤ k, |B| ≤ k, which minimizes MMC(G,d ′),

where d′ : E→ R is defined as

d′(e) =











d(e)+δ if e is cut by (A,B)

d(e) otherwise

The equivalent decision problem is:
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Input: A directed graph G = (V,E) with edge delays d : E → R, bin size k ∈ Z, cut set

delay δ ∈ R,δ 6= 0, and target T ∈ R.

Output: 1 if there exists a partition (A,B) of the vertices where |A| ≤ k, |B| ≤ k, such that

MMC(G,d′)≤ T with d′ defined as above; otherwise 0.

From a practical perspective, using negative values for δ may not make sense, because,

as noted, the cut edges are generally physically interpreted as corresponding to longer global wires

which incur more delay, not less delay. However, from a theoretical standpoint, while the complexity

proof for the case where δ < 0 takes a similar general approach with the the case where δ > 0, there

are notable differences in the details. Therefore, for completeness, we present both cases in the

following section. As well, the case δ < 0 is somewhat simpler than the case δ > 0, so observing

the proof for the former may help understanding the proof for the latter.

2.3 Theoretical Results

2.3.1 MMCP With Negative Cut Set Delay Is NP-Hard

Theorem 2.6. For δ < 0, MMCP is N P -hard.

Proof of Theorem 2.6. N P -hardness can be shown by reduction from 3SAT. The 3SAT problem is

[PS98]:

Input: A set

X = {x1, . . . ,x|X |}

of boolean variables and a set

W = {w1, . . . ,w|W |}

of boolean clauses, such that

wi = (yi1∨ yi2∨ yi3) i ∈ {1, . . . , |W |}

where each yi j is either a boolean literal xki j ∈ X or its negation xki j , and {ki1,ki2,ki3} are distinct for

any given i.

Output: 1 if there exists an assignment of the binary values {0,1} to the variables of X

such that the boolean expression

w1∧ . . .∧w|W |

evaluates to 1; otherwise 0.
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Given an instance of 3SAT, an equivalent MMCP instance with δ < 0 can be constructed

as follows. Here vertices of the graph are identified with tuples of set elements to facilitate identifi-

cation of the MMCP graph vertices with elements from the original 3SAT instance.

Let XP = X ∪{1}; 1 represents the constant boolean value 1. Let XN = {x : x ∈ XP} be

the set of literals generated by taking the negations of the elements of XP. The negation of 1 is

the constant boolean value 0. Assume WLOG that 0 and 1 are distinct from all other elements of

XP∪XN . For the directed graph G = (V,E), take V = (XP∪XN)×W . That is, there is a vertex in V

associated with every combination of literal (either positive or negative) and clause from the 3SAT

instance.

Create a set of edges

E1 = {(u,v) : u = (xk,ws) ∈V,v = (xk,wt) ∈V}

E1 consists of all edges created by connecting each vertex u to all vertices v where the literal asso-

ciated with v is the negation of the literal associated with u.

Create a second set of edges E2 where

E2 = E2
1 ∪ . . .∪E2

|W |

where for all i ∈ {1, . . . , |W |}

E2
i = 〈(ri1,ri2),(ri2,ri3),(ri3,ri4),(ri4,ri1)〉

ri1 = (yi1,wi) ∈V

ri2 = (yi2,wi) ∈V

ri3 = (yi3,wi) ∈V

ri4 = (0,wi) ∈V

That is, each E2
i consists of a single 4-cycle, each of which is associated with the clause wi; the

vertices are chosen to be among those which correspond to the 3 literals which appear in clause wi

along with a vertex corresponding to the literal 0. The order the vertices appear in the cycle is not

relevant here; simply take them in order of their appearance in the given clause. E 2 is then the union

of all E2
i .

Now take E = E1∪E2. Take d(e) = 1 for all e ∈ E, take k = |V |
2 , take δ = −1, and take

T = 1− 1
|V | . This is now an instance of the MMCP decision problem.

An example is shown in Figure 2.1. Here the 3SAT formula (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨

x3)∧ (x1∨ x2∨ x3) has been converted to an MMCP instance graph using the above procedure. To
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simplify the figure, double-headed arrows indicate pairs of vertices which are mutually connected

by edges (2-cycles) in E1. Solid lines indicate edges from E1 while dashed lines indicate edges from

E2. The reader may find it instructional to identify the cycles in E2 in the figure which correspond

to the clauses in the 3SAT instance.

Note that the above reduction of 3SAT to MMCP is polynomial time, since the size of

the MMCP input graph G is polynomially bounded by the size of the 3SAT instance; |V |= (2|X |+

2)|W | and |E|= |E1|+ |E2|= (2|X |+2)|W |+4|W |. Therefore it only remains to be shown that the

reduction is valid; that is, it must be shown that the MMCP instance gives a result of 1 iff the 3SAT

instance gives a result of 1.

Suppose the 3SAT instance has a satisfying assignment of variables; that is, there is an

assignment so that the output of the 3SAT problem is 1. Construct a partition (A,B) of V where A

contains those vertices whose corresponding literal has boolean value 1 under the given assignment,

and B contains those vertices whose corresponding literal has boolean value 0. Note that |A|= |B|=
|V |
2 = k.

Lemma 2.7. Every cycle in G either contains an edge from E1 or consists solely of edges from a

single cycle E2
i for some i ∈ {1, . . . , |W |}.

Proof of Lemma 2.7. If a cycle in G does not contain any edge from E1, then it can only contain

edges from a single E2
i , as the vertices of E2

i form disjoint sets.

Lemma 2.8. Suppose (A,B) is a partition derived from a satisfying 3SAT assignment as described

above. For every cycle ` ∈ C (G), the partition (A,B) cuts some edge in `.

Proof of Lemma 2.8. All edges of E1 are cut by (A,B), since all such edges connect vertices associ-

ated with a literal to another vertex which is associated with the negation of that literal. Also, each

E2
i contains at least one cut edge; if this were not the case, then all vertices of E 2

i would lie in B,

a contradiction, as at least one literal from the 3SAT clause wi must have boolean value 1. Using

Lemma 2.7, every cycle must have at least one cut edge.

Lemma 2.9. For every cycle ` ∈ C (G),

∑(u,v)∈` d′(u,v)
|`|

≤ T
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Proof of Lemma 2.9. From the choices of d and δ,

d′(e) =











0 if e is cut by (A,B)

1 otherwise

Then
∑(u,v)∈` d′(u,v)

|`|
= 1−

c(`)
|`|

where c(`) is the number of edges of ` which are cut. The result then falls from Lemma 2.8.

By Lemma 2.9, MMC(G,d′)≤ T , so the partition (A,B) satisfies the the MMCP instance,

and the MMCP instance generated from the 3SAT instance gives a result of 1.

Now for the converse; that is, if some partition (A,B) of V satisfies the constructed MMCP

instance, then a satisfying assignment exists for the 3SAT instance.

Lemma 2.10. Suppose (A,B) is a partition which satisfies all the conditions of the MMCP problem.

For every cycle ` ∈ C (G), the partition (A,B) cuts some edge in `.

Proof of Lemma 2.10. Again

d′(e) =











0 if e is cut by (A,B)

1 otherwise

Now since (A,B) satisfies the MMCP instance,

∑(u,v)∈` d′(u,v)
|`|

≤ T < 1

so some edge in ` must be cut by (A,B).

Lemma 2.11. For all y∈XP,wa ∈W,wb ∈W, the vertex u = (y,wa) lies in A iff the vertex v = (y,wb)

lies in B.

Proof of Lemma 2.11. From Lemma 2.10 and the fact that the edges

(u,v) ∈ E1 and (v,u) ∈ E1

form a cycle.
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Lemma 2.11 shows how to use the partition (A,B) to derive a satisfying assignment for

the 3SAT instance. WLOG, assume the vertex (1,w1) ∈ A. Then for every vertex in A associated

with some positive literal, set the corresponding boolean variable to 1, and for every vertex in A

associated with some negative literal, set the corresponding boolean variable to 0. By Lemma 2.11,

this assignment is consistent: that is, if a variable is set to 1, all vertices associated with that variable

in its positive sense must lie in A, and all vertices associated with that variable in its negative sense

must lie in B. Likewise, for variables assigned to 0, all vertices associated with that variable in its

positive sense must lie in B, and all vertices associated with that variable in its negative sense must

lie in A.

Lemma 2.12. The given assignment of variables satisfies the 3SAT instance.

Proof of Lemma 2.12. Consider the cycle E2
i . By Lemma 2.10, this cycle contains some cut edge.

But by construction E2
i contains the vertex (0,wi), which lies in B (since (1,w1) ∈ A, and Lemma

2.11 holds). Thus some vertex v in E2
i must lie in A, so the given 3SAT assignment must give the

literal corresponding to v the boolean value 1. Therefore the 3SAT clause wi is satisfied.

From Lemma 2.9 and Lemma 2.12, the reduction from 3SAT to MMCP with δ < 0 is

shown to be valid. 3SAT is known to be N P -complete [CLR90]. Therefore, under the restriction

δ < 0, MMCP is N P -hard.

2.3.2 MMCP With Positive Cut Set Delay Is NP-Hard

Theorem 2.13. For δ > 0, MMCP is N P -hard.

Proof of Theorem 2.13. Again by reduction from 3SAT. The construction of the MMCP instance

differs in this case, however. Let Y = X ∪ {x : x ∈ X} be the set of literals (both positive and

negative) for all variables in X . Now define sets

W 1 = W ∪{na,nb,ny,nz} and W 2 = (W ×{1,2,3})∪{na,nb}

where {na,nb,ny,nz} are symbols distinct from the elements of W ∪ (W ×{1,2,3}). These new

symbols are used to introduce vertices which are not associated with any clause from the 3SAT

instance. Also note the Cartesian product W ×{1,2,3} is used to create a vertex associated with the

individual literals in every 3SAT clause.

Construct two sets of vertices

V 1 = Y ×W 1 and V 2 = {0,1}×W 2
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where again 0 and 1 represent the boolean constants 0 and 1, respectively. Let V = V 1∪V 2.

Construct two sets of edges

E1 = {(u,v) : u = (y,ws) ∈V 1,v = (y,wt) ∈V 1,ws,wt ∈W 1,ws 6= wt}

E2 = {(u,v) : u = (y,ws) ∈V 2,v = (y,wt) ∈V 2,ws,wt ∈W 2,ws 6= wt}

E1 joins every vertex u∈V 1 with every other vertex v∈V 1 which is associated with the same literal

as u, and likewise E2 joins every vertex u ∈ V 2 with every other vertex v ∈ V 2 which is associated

with the same literal as u.

Now construct a third set of edges

E3 = E3
r1∪ . . .∪E3

r|X |∪E3
s1∪ . . .∪E3

s|X |

where
E3

r j = 〈(r j1,r j2),(r j2,r j3),(r j3,r j4),(r j4,r j1)〉 j ∈ {1, . . . , |X |}

r j1 = (x j,ny) ∈V 1 j ∈ {1, . . . , |X |−1}

r j2 = (x j+1,na) ∈V 1 j ∈ {1, . . . , |X |−1}

r j3 = (x j,ny) ∈V 1 j ∈ {1, . . . , |X |−1}

r j4 = (x j+1,nb) ∈V 1 j ∈ {1, . . . , |X |−1}

r|X |1 = (x|X |,ny) ∈V 1

r|X |2 = (1,na) ∈V 2

r|X |3 = (x|X |,ny) ∈V 1

r|X |4 = (1,nb) ∈V 2

and
E3

s j = 〈(s j1,s j2),(s j2,s j3),(s j3,s j4),(s j4,s j1)〉 j ∈ {1, . . . , |X |}

s j1 = (x j,nz) ∈V 1 j ∈ {1, . . . , |X |−1}

s j2 = (x j+1,na) ∈V 1 j ∈ {1, . . . , |X |−1}

s j3 = (x j,nz) ∈V 1 j ∈ {1, . . . , |X |−1}

s j4 = (x j+1,nb) ∈V 1 j ∈ {1, . . . , |X |−1}

s|X |1 = (x|X |,nz) ∈V 1

s|X |2 = (0,na) ∈V 2

s|X |3 = (x|X |,nz) ∈V 1

s|X |4 = (0,nb) ∈V 2
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E3 is the union of 2|X | disjoint 4-cycles of two types, E3
r j and E3

s j. Each cycle E3
r j is either an alterna-

tion between particular vertices from V 1 associated with the variable x j in both positive and negative

literal form and particular vertices associated with the positive literal x j+1 (for j ∈ {1, . . . , |X |−1}),

or E3
r j is an alternation between particular vertices from V 1 associated associated with the variable

x j in both positive and negative literal form and particular vertices from V 2 associated with boolean

constant 1 (for j = |X |). The cycles E3
s j are similar to the cycles E3

r j, except that they contain vertices

associated with the negative literal x j+1 instead of the positive literal x j+1 (for j ∈ {1, . . . , |X |−1}),

or constant 0 instead of 1 (for j = |X |). The vertices chosen for these cycles are associated with the

elements na,nb,ny,nz so that each 4-cycle is on a set of vertices disjoint from any other 4-cycle in

E3.

Construct a fourth set of edges

E4 = E4
1 ∪ . . .∪E4

|W |

where, for all i ∈ {1, . . . , |W |},

E4
i = 〈(ui1,vi1),(vi1,ui2),(ui2,vi2),(vi2,ui3),(ui3,vi3),(vi3,ui1)〉

ui j = (yi j,wi) ∈V 1, j ∈ {1,2,3}

vi j = (1,(wi, j)) ∈V 2, j ∈ {1,2,3}

E4 is the union of disjoint 6-cycles E4
i which connects vertices associated with 3SAT clause wi.

Each cycle alternates between vertices from V 1 associated with the literals which appear in wi and

vertices from V 2 which are associated with the boolean constant 1.

Finally, let E = E1 ∪E2 ∪E3 ∪E4. Take k = |V |
2 , take d(e) = 0, take δ = 1, and take

T = 1− 1
|V | .

An example is shown in Figure 2.2. The figure shows the MMCP instance graph con-

structed from the 3SAT formula (x1∨ x2∨ x3)∧ (x1∨ x2∨ x3)∧ (x1∨ x2∨ x3) using the above pro-

cedure. To simplify the figure, the edges from E1 ∪ E2 are not drawn; instead these edges are

represented by the shaded regions. For each such region, every pair of vertices contained therein is

connected in a 2-cycle with edges from E1∪E2. Solid lines indicate edges contained in E3, while

dashed lines indicate edges contained in E4. As with the previous example, the reader may find

it instructional to identify the cycles in E4 the figure which correspond to the clauses in the 3SAT

instance. Examination of the two cycles of E3 which connects vertices associated with the variable

x1 to those associated with x2 may also be useful for edification.
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It is easy to see that this reduction from 3SAT to MMCP can be done in polynomial time;

the size of the generated graph is |V |= 2|X |(|W |+4)+2(3|W |+2) and |E|= |E1|+ |E2|+ |E3|+

|E4| = 2|X |(|W |+ 4)(|W |+ 3)+ 2(3|W |+ 2)(3|W |+ 1)+ 4(2|X |)+ 6|W |. Now it only remains to

be shown that this reduction is valid.

Suppose the 3SAT instance has some satisfying assignment. As before, construct a par-

tition (A,B) of V where A contains those vertices whose corresponding literal has boolean value 1

under the given assignment, and B contains those vertices whose corresponding literal has boolean

value 0. Note that |A|= |B|= |V |
2 = k.

Showing that this partition satisfies the MMCP instance is generally similar to the corre-

sponding portions of the proof of Theorem 2.6, although the details differ.

Lemma 2.14. Every cycle in G either contains an edge from E1 ∪E2 or consists solely of edges

from a single cycle from E3∪E4.

Proof of Lemma 2.14. If a cycle in G does not contain any edge from E1 ∪E2, then it can only

contain edges from a single cycle from E3∪E4, as E3∪E4 is the union of disjoint cycles.

Lemma 2.15. Suppose (A,B) is a partition derived from a satisfying 3SAT assignment as described

above. For every cycle ` ∈ C (G), the partition (A,B) does not cut some edge in `.

Proof of Lemma 2.15. All edges of E1 ∪ E2 are not cut by (A,B), since all such edges connect

vertices associated with a literal to another vertex associated with the same literal.

Now each cycle in E3 must have some edge which is not cut. Suppose this were not the

case; that is, for some cycle ` in E3, all edges of ` are cut. Since ` is a 4-cycle, there are two vertices

in ` which lie on the same side of the partition, where one vertex is associated with some literal

y ∈Y and the other is associated with y, a contradiction since such vertices must have been assigned

to different sides of the partition.

Finally, suppose some cycle E4
i ⊆ E4 has no edge which is uncut. Since E4

i is a 6-cycle

with every second vertex associated with the boolean constant 1, all other vertices of E 4
i not asso-

ciated with the boolean constant 1 must lie in B. But this means all literals in the 3SAT clause wi

were assigned the value 0, a contradiction, since this clause would then not be satisfied, and the

assignment must satisfy the 3SAT formula.

From the above and Lemma 2.14, every cycle must have some edge which is not cut by

(A,B).
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Lemma 2.16. For every cycle ` ∈ C (G),

∑(u,v)∈` d′(u,v)
|`|

≤ T

Proof of Lemma 2.16. From the choices of d and δ,

d′(e) =











1 if e is cut by (A,B)

0 otherwise

Then
∑(u,v)∈` d′(u,v)

|`|
= 1−

c(`)
|`|

where c(`) is the number of edges of ` which are not cut. The result then falls from Lemma 2.15.

Therefore the partition derived from the satisfying assignment for 3SAT is a satisfying

partition for MMCP.

For the converse, suppose a partition (A,B) of V is given which satisfies the MMCP

instance. The following shows that a satisfying 3SAT assignment can be derived from (A,B).

Lemma 2.17. Suppose (A,B) is a partition which satisfies all the conditions of the MMCP problem.

For every cycle ` ∈ C (G), the partition (A,B) does not cut some edge in `.

Proof of Lemma 2.17. Again

d′(e) =











1 if e is cut by (A,B)

0 otherwise

Now since (A,B) satisfies the MMCP instance,

∑(u,v)∈` d′(u,v)
|`|

≤ T < 1

so some edge in ` must not be cut by (A,B).

Lemma 2.18. For all y ∈ Y,wa ∈W 1,wb ∈W 1, the vertex u = (y,wa) ∈ V 1 lies in A iff the vertex

v = (y,wb) ∈ V 1 lies in A. Also, for all y ∈ {0,1},wa ∈W 2,wb ∈W 2, the vertex u = (y,wa) ∈ V 2

lies in A iff the vertex v = (y,wb) ∈V 2 lies in A.

Proof of Lemma 2.18. Directly from Lemma 2.17 and the fact that E1 ∪E2 contains the 2-cycle

〈(u,v),(v,u)〉.



22

So far, this proof has been generally similar to that of Theorem 2.6. However, unlike the

previous proof, we have not yet demonstrated that a consistent assignment of SAT variables can be

obtained. The following lemma shows that the vertices associated with any given literal must lie on

the opposite side of the partition from the vertices associated with the negation of that literal, due to

the particular structure of the cycles in E3.

Lemma 2.19. For all y ∈ X ,wa ∈W 1,wb ∈W 1, the vertex u = (y,wa) ∈ V 1 lies in A iff the vertex

v = (y,wb) ∈ V 1 lies in B. Also, for all wa ∈W 2,wb ∈W 2, the vertex u = (0,wa) ∈ V 2 lies in A iff

the vertex v = (1,wb) ∈V 2 lies in B.

Proof of Lemma 2.19. First consider variable x1 ∈ X , and suppose u = (x1,wa) ∈ V 1 lies on the

same side of the partition v = (x1,wb) ∈V 1 for some wa,wb ∈W 1. WLOG, suppose u,v ∈ A. Then

by Lemma 2.18, the vertices

u1 = (x1,ny) ∈V 1 and v1 = (x1,ny) ∈V 1

must both lie in A as well.

Now consider the 4-cycle E3
r1. This cycle contains the vertices

u1∗ = (x2,na) ∈V 1 and v1∗ = (x2,nb) ∈V 1

In particular,

E3
r1 = 〈(u1,u1∗),(u1∗,v1),(v1,v1∗),(v1∗,u1)〉

Since both u1 ∈ A and v1 ∈ A, then by Lemma 2.17, either u1∗ ∈ A or v1∗ ∈ A. But then by

Lemma 2.18, {(x2,wa) : wa ∈W 1}⊆ A. A similar argument using E3
s1 yields {(x2,wa) : wa ∈W 1}⊆

A.

Now vertex u2 = (x2,ny) ∈ A and v2 = (x2,ny) ∈ A. Examining E3
r2 and E3

s2 with the same

argument as above yields the conclusion {(x3,wa) : wa ∈W 1} ⊆ A and {(x3,wa) : wa ∈W 1} ⊆ A.

Continuing this reasoning, eventually the conclusion is that A = V , which is a contradiction, since

(A,B) is a satisfying MMCP partition and |A| ≤ k = |V |
2 . Thus the original supposition that u and v

lie on the same side of the partition must be false.

Now induction can be used. Given that the lemma is true over all vertices corresponding

to variables x j, j ∈ {1, . . . ,m}, the lemma must also be true for vertices corresponding to xm+1, since

assuming otherwise yields the contradiction |A| > k using the same argument as above. Similarly,

the lemma must hold true for the vertices in V 2.
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Lemmas 2.18 and 2.19 show that a consistent variable assignment for the 3SAT problem

can be obtained from the given partition (A,B). WLOG suppose vertex (1,na) ∈ A. Then choose

the 3SAT variable assignment such that the literal y takes on the value 1 iff (y,na) ∈ A.

Lemma 2.20. The given assignment of variables satisfies the 3SAT instance.

Proof of Lemma 2.20. Suppose some 3SAT clause wi is unsatisfied. Then the cycle E4
i must alter-

nate between vertices in A and vertices in B, since all literals yi j, j ∈ {1,2,3} for that clause take on

the value 0. But then every edge in the cycle E4
i is cut, which contradicts Lemma 2.17. Therefore

all 3SAT clauses must be satisfied.

Lemma 2.16 and Lemma 2.20 show that the reduction from 3SAT to MMCP is valid,

therefore, under the restriction that δ < 0, MMCP is N P -hard.

2.3.3 MMCP Is NP-Complete

Theorem 2.21. MMCP is N P -hard.

Proof of Theorem 2.21. Directly from Theorem 2.6 and Theorem 2.13.

Strictly speaking, only one of Theorem 2.6 or Theorem 2.13 is necessary to prove Theo-

rem 2.21. However, since the two cases have different physical interpretations, and the graphs used

for each case differ significantly, both are presented here for completeness.

Theorem 2.22. MMCP is in N P .

Proof of Theorem 2.22. For the decision problem of MMCP, if the output is 1 the partition (A,B)

which satisfies MMC(G,d ′) ≤ T serves as a certificate which can be checked in polynomial time,

since the labeling function d ′ can be computed in polynomial time given (A,B), and MMC(G,d ′)

can be computed in polynomial time as well.

Theorem 2.23. MMCP is N P -complete.

Proof of Theorem 2.23. From Theorem 2.21 and Theorem 2.22.
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2.3.4 Generalizations

Recall that the circuit model used in this chapter has registers represented by the vertices

of G, and combinational gates abstracted into the delays represented by the labeling d. That is, the

MMCP problem considered here was only that of partitioning the registers of the circuit. However,

it is possible to extend the above result for the case where the combinational elements are also to

be included in the partitioning problem. For this, the maximum profit-to-time ratio metric can be

substituted for the MMC in the above. Suppose the edges of G are labeled with the function τ : E→

R which represents the number of registers associated with that edge. Purely combinational circuit

elements would have a corresponding τ(e) = 0, while individual registers would have τ(e) = 1. The

maximum profit-to-time ratio is then

max
`∈C (G)

∑(u,v)∈` d(u,v)

∑(u,v)∈` τ(u,v)

This metric is a generalization of the MMC and it is straightforward to extend the analysis in this

chapter to use this more general circuit model instead [DG98, DIG98, CTCG+98].

It is also a straightforward extension to consider the case where the vertices have weights

s(v) : v ∈ V associated with them (i.e. corresponding to the sizes of their respective cells), so that

the partition balance conditions become

∑
v∈A

s(v)≤ k and ∑
v∈B

s(v)≤ k

However, the model using unweighted vertices provides some interesting insight into where the

complexity of MMCP originates. The N P -completeness of the traditional integer partitioning prob-

lem [GJ79] comes about because of the varying sizes of the elements to be partitioned. With equal

element sizes, integer partitioning can be solved trivially. This suggests that the source of complex-

ity of the MMCP problem arises fundamentally from the delay constraints, rather than the partition

balance conditions.

It should be noted that the delay model used in the above analysis is very simplistic, in that

cut edges are uniformly given a fixed additional delay δ. Certainly more sophisticated delay models

such as the geometric embedding model proposed in [Lim00] would be more realistic. Although no

straightforward extension of the above analysis to use such delay models is known, it is reasonable

to believe that using a more complex delay model will not simplify the partitioning problem.
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2.4 Summary

In this chapter, an optimization problem combining partitioning with sequential timing

constraints was shown to be be N P -complete. This motivates the need to develop heuristics for

physical design under sequential timing constraints.
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Chapter 3

Floorplanning With Retiming

Constraints

3.1 Introduction

Retiming has the well-known property that, for any retiming, the number of registers in

any structural cycle in the circuit must remain constant. The converse of this is not generally true,

however. That is, given an original circuit and a target circuit which is both structurally identical and

preserves the number of registers in every cycle in the underlying graph, it is not always possible to

generate the target circuit from the original in a manner which preserves functionality. However, this

converse property does hold for a specific class of circuits, in particular, circuits whose underlying

graphs are strongly-connected.

In this chapter, a novel proof of this converse property is presented. A practical application

of this theorem is shown in a non-iterative approach to combining retiming and die-level floorplan-

ning for deep-submicron designs. Experimental results show notable improvement in clock cycle

times achievable using this technique.

3.1.1 Definitions

For this chapter, we model designs using directed graphs with edge labels. The semantics

of the graphs in this chapter differ from that of Chapter 2. Here, the edge labels count the number

of registers or sequential elements present on the communication paths between the other circuit

elements, which are represented by the vertices.
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Let G = (V,E) be a finite strongly-connected directed multigraph.

Definition 3.1 (Path). A path P of length |P| in G is a nonempty ordered list of edges

P = 〈(u1,v1),(u2,v2), . . . ,(u|P|,v|P|)〉 (ui,vi) ∈ E, i ∈ {1, . . . , |P|}

such that vi = ui+1, i ∈ {1, . . . , |P|−1},

Definition 3.2 (Cycle). A cycle in G is a path which begins and ends at the same vertex; that is,

v|P| = u1 using the notation above.

The strongly-connected property of G is equivalent to asserting that every edge in E par-

ticipates in at least one cycle.

Definition 3.3 (Self-Intersecting Cycle). A cycle which contains some edge more than once is said

to be self-intersecting.

Note that here we use the term cycle to generally include self-intersecting cycles. This is

in contrast to Chapter 2, where the term referred to simple (non-self-intersecting) cycles only. We

will later see that we can actually ignore self-intersecting cycles for our purposes.

For any subset V ′ ⊆V , define

α(V ′) = {(u,v) ∈ E : u 6∈V ′,v ∈V ′}

β(V ′) = {(u,v) ∈ E : u ∈V ′,v 6∈V ′}

That is, α(V ′) is the set of edges which enter V ′ and β(V ′) is the set of edges which leave V ′.

Let S : E→ Z and S′ : E→ Z be labelings of the edges of G with integers.

Definition 3.4 (Retiming Operation). For all V ′ ⊆ V,x ∈ Z, we define the retiming operation

Φ(V ′,x) to be the function Φ(V ′,x) : S→ S′ such that

S′(e) =























S(e)+ x if e ∈ α(V ′)

S(e)− x if e ∈ β(V ′)

S(e) otherwise

Our notion of retiming here is a somewhat generalized restatement of the original defi-

nition of retiming proposed in [LS91]. The original definition is equivalent to the above with the

additional restriction |V ′|= 1.
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Definition 3.5 (Compatible Cycle). A cycle ` in G is cycle compatible with respect to S and S′ iff

∑
e∈`

S(e) = ∑
e∈`

S′(e)

Definition 3.6 (Compatible Labelings). S and S′ are said to be compatible labelings iff all cycles

in G are compatible with respect to S and S′.

For simplicity of notation, we make use of a particular labeling T : E→ Z of the edges of

G with integers. We call T the target labeling for reasons which will become clear later.

Definition 3.7 (Edge Satisfaction). An edge e ∈ E is edge satisfied by S iff S(e) = T (e).

Definition 3.8 (Path Satisfaction). A path P is path satisfied by S iff

∑
e∈P

S(e) = ∑
e∈P

T (e)

Note that the concatenation of two satisfied paths is also a satisfied path.

Definition 3.9 (Cycle Satisfaction). A cycle ` is cycle satisfied by S iff

∑
e∈`

S(e) = ∑
e∈`

T (e)

Note that cycle satisfaction is simply the same as cycle compatibility with S′ = T .

In the following, we will simply use the terms compatible and satisfied whenever the

referred type is already clear from the context.

3.2 Theoretical Results

Claim 3.10. If V ′ = {v1, . . . ,v|V ′|}, then

Φ(V ′,x) = Φ({v1},x)◦ . . .◦Φ({v|V ′|},x)

That is, the retiming operation Φ(V ′,x) can be formed by applying retiming on the individual ver-

tices in V ′.

Proof of Claim 3.10. Consider any edge e = (u,v) ∈ E. If u 6∈V ′,v ∈V ′, then e ∈ α(V ′) and

{

Φ({v1},x)◦ . . .◦Φ({v|V ′|},x)
}

(S)(e) = Φ({v},x)(S)(e)

= S(e)+ x

= Φ(V ′,x)(S)(e)
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If u ∈V ′,v 6∈V ′, then e ∈ β(V ′) and

{

Φ({v1},x)◦ . . .◦Φ({v|V ′|},x)
}

(S)(e) = Φ({u},x)(S)(e)

= S(e)− x

= Φ(V ′,x)(S)(e)

If u ∈V ′,v ∈V ′, then

{

Φ({v1},x)◦ . . .◦Φ({v|V ′|},x)
}

(S)(e) = {Φ({u},x)◦Φ({v},x)}(S)(e)

= S(e)− x+ x

= S(e)

= Φ(V ′,x)(S)(e)

Finally if u 6∈V ′,v 6∈V ′, then

{

Φ({v1},x)◦ . . .◦Φ({v|V ′|},x)
}

(S)(e) = S(e)

= Φ(V ′,x)(S)(e)

Claim 3.10 shows the equivalence of our notion of retiming with that of [LS91], in that the

retiming operation Φ can be decomposed into the retiming transformations proposed in that work.

Let S : E→ Z and S′ : E→ Z be labelings of the edges of G with integers.

Claim 3.11. If S is compatible with S′, then Φ(V ′,x)(S) is a labeling compatible with S′ as well.

Proof of Claim 3.11. Consider any cycle ` in G. |`∩α(V ′)|= |`∩β(V ′)|, so

∑
e∈`

S(e) = ∑
e∈`

Φ(V ′,x)(S)(e)

Thus S is compatible with Φ(V ′,x)(S). Compatibility of labelings is an equivalence relation, so

Φ(V ′,x)(S) must be compatible with S′.

Claim 3.11 shows that the retiming operation preserves compatibility of all cycles. This

result also falls out from the decomposition of retiming operations into single-vertex retiming oper-

ations (Claim 3.10) and [LS91].

Theorem 3.12. Labelings S and S′ are compatible iff all non-self-intersecting cycles ` in G are

compatible with respect to S and S′.
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Proof of Theorem 3.12. One direction (“only if”) is trivial. For the other direction (“if”), use in-

duction on the length of a given cycle. For the base case, let ` be any cycle of length 2. ` cannot

be self-intersecting, so ` must be compatible with respect to S and S′. Now consider a cycle ` of

length |`|> 2, and suppose all cycles of length less than |`| are compatible with respect to S and S′

(induction hypothesis). If ` is non-self-intersecting, ` must be compatible with respect to S and S′.

If ` is self-intersecting, there is an edge ei which is visited at least twice, so we can write

` = 〈e1, . . . ,ei−1,ei,ei+1, . . . ,e j−1,e j = ei,e j+1, . . . ,e|`|〉

for some j 6= i. We can then decompose ` into two cycles

`1 = 〈e1, . . . ,ei−1,ei,e j+1, . . . ,e|`|〉

`2 = 〈ei+1, . . . ,e j−1,e j = ei〉

so that

∑
e∈`1

S(e)+ ∑
e∈`2

S(e) = ∑
e∈`

S(e)

∑
e∈`1

S′(e)+ ∑
e∈`2

S′(e) = ∑
e∈`

S′(e)

But `1 and `2 are cycles of length less than n, so by the induction hypothesis

∑
e∈`1

S(e) = ∑
e∈`1

S′(e)

∑
e∈`2

S(e) = ∑
e∈`2

S′(e)

and so ` must be compatible with respect to S and S′.

Theorem 3.12 indicates that we can ignore self-intersecting cycles in our analysis, as

compatibility of all simple cycles implies compatibility of all cycles, including self-intersecting

cycles.

Theorem 3.13. Let S and T be compatible integer labelings of the edges of G. Then there exists a

finite sequence of successive retiming operations which satisfies all edges (i.e. transforms S to T ).

Proof of Theorem 3.13. For the following discussion, we introduce two auxiliary definitions.

Definition 3.14 (σ-Path). A σ-path of length n from v1 to vn with respect to S is an ordered list of

vertices 〈v1, . . . ,vn〉, vi ∈ V , such that, for all 1 ≤ i ≤ n−1, there exists some edge ei ∈ E which is

satisfied by S, where either ei = (vi,vi+1) or ei = (vi+1,vi).
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Note that if P is a σ-path exists from v1 to vn, this does not imply that P is a satisfied path

with respect to S. Moreover, the existence of P does not even imply there exists a directed path from

v1 to vn in the original graph G. However, P does correspond to a path in the underlying undirected

graph between v1 and vn, where all the corresponding directed edges are satisfied by S.

Definition 3.15 (σ-Closure). For any v ∈V , define the σ-closure of v with respect to S to be the set

of vertices

K(S,v) = {v}∪{v′ ∈V : there exists an σ-path from v to v′ with respect to S}

Given these definitions we now proceed with the proof.

If S satisfies all edges, then S = T and we are trivially done. Otherwise there exists some

edge e∗ = (u∗,v∗) ∈ E for which S(e∗) > T (e∗). Let V ∗ = K(S,v∗).

Lemma 3.16. u∗ 6∈V ∗.

Proof of Lemma 3.16. Suppose u∗ ∈V ∗. Then by definition of σ-closure there exists an σ-path from

v∗ to u∗

P = 〈v1 = v∗, . . . ,vn = u∗〉

in G with respect to S. Now consider the construction of an ordinary directed path P′ from v∗ to u∗

by examining every pair of vertices (vi,vi+1), 1≤ i≤ n−1 in the order they appear along P. Since

P is an σ-path, there must exist some edge ei ∈ E, 1 ≤ i ≤ n− 1, where ei is satisfied by S and for

which one of the following two cases must hold:

• Case 1: ei = (vi,vi+1). In this case we append the edge ei to P′.

• Case 2: ei = (vi+1,vi). Since every edge participates in at least one cycle, there is a cycle

`i containing ei. Since S and T are compatible, `i is cycle-satisfied by S. Since ei is edge-

satisfied as well, then the path `i \ 〈ei〉 (that is, the path obtained by removing the single edge

ei from `i) must also be satisfied. Instead of appending ei to P′, we append the path `i \ 〈ei〉.

Since P′ is constructed by adjoining satisfied edges and satisfied paths, P′ must be path-

satisfied. Now appending e∗ to P′ gives a cycle `′, and `′ must be satisfied since S and T are

compatible. But then `′ \P′ = 〈e∗〉 must be satisfied as well, since both `′ and P′ are satisfied. This

is a contradiction, as e∗ was chosen to be an unsatisfied edge. Thus u∗ 6∈V ∗.
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From Lemma 3.16, u∗ 6∈ V ∗. But v∗ ∈ V ∗, so e∗ ∈ α(V ∗). Now take x = T (e∗)− S(e∗).

Note that

Φ(V ∗,x)(S)(e∗) = S(e∗)+ x = T (e∗)

so applying Φ(V ∗,x) to S yields a labeling where e∗ is satisfied.

Now we consider the other edges of E.

Lemma 3.17. If edge e′ ∈ E is satisfied by S, then e′ is also satisfied by Φ(V ∗,x)(S).

Proof of Lemma 3.17. Suppose e′ = (u′,v′) ∈ α(V ∗). By definition of α, u′ 6∈ V ∗ and v′ ∈ V ∗. But

since v′ ∈V ∗ and e′ is satisfied by S, u′ ∈V ∗, by definition of σ-closure. This is a contradiction, so

e′ 6∈ α(V ∗). A similar argument shows e′ 6∈ β(V ∗). Thus Φ(V ∗,x)(S)(e′) = S(e′) = T (e′).

By Lemma 3.17, the number of edges satisfied by Φ(V ∗,x)(S) must be strictly greater

than the number of edges satisfied by S. Also, Claim 3.11 shows that Φ(V ∗,x)(S) is compatible

with T , since S is compatible with T . Therefore, the sequence

S0 = S

S1 = Φ(V ∗0 ,x0)(S0)

S2 = Φ(V ∗1 ,x1)(S1)

...

converges to T in a finite number of steps, where V ∗i and xi are the values of V ∗ and x∗ computed

according to the analysis above under the labeling Si. That is, we can successively apply the retiming

operation Φ(V ∗,x) to S in order to obtain T .

Theorem 3.13 indicates that, if a target retiming preserves the number of registers for

every cycle in G, then there exists a finite sequence of retiming operations which can generate this

target. Moreover, as the proof of this theorem is constructive in nature, we have a procedure to

obtain the desired sequence of retiming operations. Thus, the constraint that the number of registers

remain constant for all cycles in G is both necessary and sufficient for any valid retiming of G.

3.2.1 Existing Work

This theory was initially developed in the belief that it was a completely novel result

in the area of retiming. However, it was subsequently found that the same result was derived in

[SSBSV92]. Our proof of the necessary and sufficient conditions for valid retimings differs from
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that given in [SSBSV92], most notably in two ways. First, [SSBSV92] only shows that the tem-

porality (i.e. sequential behavior) of a circuit is maintained given the number of registers in any

cycle is fixed. However, in that work it was not shown that a sequence of valid retiming operations

exists which transforms a circuit into a target temporally-equivalent circuit. The proof presented

here shows such a sequence does indeed exist. Second, our proof is constructive, so this sequence

of retiming operations is explicitly determined. Our proof thus provides a more insightful view of

this characterization of valid retimings.

3.2.2 Practical Considerations

One might argue that the condition that G be strongly-connected may be too restrictive

in practice. However, note that in a design with no redundancies, every edge must reach some

primary output by some path in G; edges which do not connect to a primary output can be removed

without affecting the circuit behavior. Additionally, G can be easily modified so that all edges can

be reached from some primary input. Thus, with suitable modification to G, edges which do not

participate in a cycle must lie on some path from a primary input to a primary output. Hence, adding

registers on such edges only contributes to the overall latency of the circuit, and does not change

the sequential behavior of the circuit in other ways. By ignoring these edges during retiming (i.e.

if we perform retiming on each strongly-connected component of G independently, we thus allow

the overall latency to grow unbounded, but do not affect the functionality of the circuit beyond its

latency.

An alternate approach to dealing with the condition that G be strongly-connected is to

introduce an additional vertex vext as a “host node” in the graph, representing the environment

external to the circuit. Additional edges from vext to the primary inputs of the circuit, and from the

primary outputs of the circuit to vext are also added. Now in this new graph, all edges participate in

some cycle with vext. This host node approach is commonly used in the literature, e.g. [SSBSV92,

CL00].

Recall in the proof of Theorem 3.13 that the construction of the first retiming operation

in the sequence which transforms the labeling S to the labeling T begins with the selection of some

edge e∗ such that S(e∗) > T (e∗). By using this selection criterion, this ensures that the corresponding

retiming operation Φ(V ∗,x) which satisfies e∗ has x < 0. This corresponds to a forward retiming op-

eration, where registers are removed from the inputs of V ∗ and added to the outputs of V ∗. Forward

retiming operations are generally preferred in practice, as these can be easily realized. On the other
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hand, backward retiming operations, where registers are removed from the outputs of V ∗ and added

to the inputs of V ∗, may not be implementable without modifying reset behavior [TB93, ESS96].

This criterion on the selection of e∗ thus avoids the problems associated with backward retiming

operations.

3.3 Floorplanning Application

Here we describe an application of our retiming theory to the generation of die-level

floorplans under deep-submicron physical conditions. Under current technology trends, wire delays

are predicted to grow such that multiple clock cycles will be required for die-level interconnects

[Ass97]. Thus, the task of generating a feasible floorplan is tightly coupled with retiming, as the

flexibility of placement of modules is directly related to the assignment of registers to the intercon-

nects. That is, interconnects with more registers may be made longer than interconnects with few

registers.

3.3.1 Problem Formulation

Designs are modeled as a directed multigraph G, where the nodes of the graph represent

large macroblocks, possibly millions of gates each. Here, the blocks represent sequential logic,

though we ignore the registers internal to the blocks, as we are only concerned with retiming the

registers on the block-to-block interconnects.

Each macroblock n has an associated layout area An, though the aspect ratio (width/height)

of each block may be flexible. As typical, we assume rectangular blocks only, for simplicity. The

edges represent the interconnect between blocks; each edge may be a bus consisting of many wires,

though for our purposes we abstract this detail away. We are also given the edge labeling S(e),

representing an initial assignment of registers to the interconnects; this represents an initial de-

sign/retiming which satisfies the functionality required by the system.

Our problem is thus: find a location (xn,yn) and width and height (wn,hn) for each mac-

roblock n, and retiming T (e) compatible with S(e) such that

• wnhn ≥ An

• No macroblocks overlap
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• For edge e = (m,n), T (e)≥ bd(m,n)/φc, where d(m,n) is the interconnect delay from block

m to block n, and φ is the clock period

We estimate the interconnect delay d(m,n) using a number of assumptions. First, we as-

sume interconnect delay is linearly related to distance, given optimally buffered lines as in [OB98].

Optimal buffering is a reasonable assumption at this level, given the long chip-level interconnect we

are dealing with here. Second, we use the Manhattan distance D(m,n) between the centers of the

macroblocks as an estimate for the length of the interconnect. Third, we assume the macroblocks

are all Moore machines, with registered outputs. This assumption is made to ensure that each inter-

connect can be treated independently; in the presence of combinational paths which span multiple

chip-level interconnects, the inequality constraint for T (e) given above does not necessarily hold.

Given the large size of the macroblocks, it is reasonable to assume they will be designed in some

regular fashion, so the Moore machine assumption seems to be justified. For simplicity, we assume

our registers have no intrinsic propagation delays associated with them, although we can easily

model such effects by subtracting such a delay from the clock period φ. Finally, we assume there

is a combinational delay t(m,n) associated with the inputs to block n coming from block m; this

models the fact that, for a general Moore machine, there may be combinational logic between an

input and a register. Based on this we have:

d(m,n) = κD(m,n)+ t(m,n)

for some constant κ relating distance to time; κ depends on the physical technology used for the

chip itself.

3.3.2 Procedure

Given that retiming constraints (the number of registers around each cycle in G) are suf-

ficient to describe all valid retimings of G, one might hope to translate these into placement con-

straints which are amenable for a floorplanning or placement tool to use. If the placement obeys

such placement constraints, the end result will be guaranteed to have a valid retiming. Here we pro-

pose a heuristic method to try to satisfy the retiming constraints; as it is a heuristic, the final result

may not satisfy all the constraints properly. However, note that we may always reduce the clock

frequency in order to satisfy the retiming constraints; increasing the clock period allows violated

constraints to become met. Thus, for our methodology, the maximum clock frequency (or minimum

clock period) at which the retiming constraints are satisfied becomes a metric for the quality of the

floorplan.
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Our floorplanning procedure generates a slicing structure derived using recursive mincut

partitioning [Bre77, Ott82, WL86]. The implementation for our algorithm uses HMetis [KK99]

as the core mincut partitioner. We build the slicing tree recursively, using mincut partitioning to

determine the structure of the tree at each level. Using mincut partitioning in this manner acts

effectively as a heuristic for minimization of wirelength; as a minimum number of edges are cut at

each stage, we expect that relatively few wires will have long lengths. This technique effectively

implements the same wirelength minimization goals commonly used by other floorplanners.

To heuristically apply our retiming constraints to floorplanning, we adjust the weights on

each of the edges in G in order to promote clustering of cycle within a single partition, rather than

spreading cycles across partitions. Moreover, intuitively some cycles are more “critical” than others,

in the sense that cutting such cycles during partitioning may lead to problems when generating the

floorplan. We thus wish to avoid cutting edges which:

• Participate in many cycles

• Participate in cycles which have few registers

• Participate in cycles which have few modules

Empirical observation shows that the following formula gives good results in practice when used

for the weighting of edge e:

w(e) = ∑
`∈L(e)

M(`)/N(`)

where L(e) is the set of all cycles in which edge e participates, M(`) is the number of modules in

cycle `, and N(`) is the number of registers available in cycle `.

In our experiments, we generate two different floorplans. First we use the wirelength-

driven floorplanning technique (i.e. using unweighted edges) to obtain a floorplan. Then we use

the edge-weighted method to obtain a second floorplan. Comparing the two results thus give an

indication of the improvement possible when using our retiming constraint-driven technique, as a

measure of the merit of our method.

3.3.3 Related Work

[CL00, Lim00] proposes a method for simultaneous partitioning, floorplanning and re-

timing. Their algorithm GEO effectively interleaves timing analysis and retiming in a recursive

top-down partitioning approach. While our technique shares a common goal, we differ primarily in
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that we strive to fully decouple retiming from the task of floorplanning. In [Lim00], it is noted that

retiming and timing analysis can be computationally expensive, and so its application is limited.

Our work attempts to generate a viable floorplan independent of an explicit retiming, hence doing

away with these costly procedures within floorplanning.

3.4 Experiment

Here we describe an experiment to validate our approach for floorplanning under retiming

constraints.

3.4.1 Synthetic Benchmarks

Unfortunately, there are no freely available benchmark designs which reflect the large-

scale system-on-a-chip designs which we are targeting. To remedy this, we have developed a syn-

thetic benchmark generation technique suitable for the designs which we would like to see. There

have been several attempts at generation of realistic synthetic benchmark circuits [DD96, HRGC98,

SDC99], but all of these methods use particular features which reflect gate-level designs, rather than

the macroblock examples we would like.

We have thus taken the method of [HRGC98] and modified it to reflect our goals. As in

the original method, distributions of various quantitative metrics are extracted from a “seed” design,

and these parameters are used to randomly generate new designs which have similar characteristics.

Our method differs, though, in that the characteristic distributions we considered to be important are

the number of output pins per block, degree of fanout per output, block size, and the size of cycles

in the design. All but the last characteristic is generated directly from the seed design; in order to

generate designs with the correct distribution of cycles, we use a ripup-and-retry technique similar

to [HRGC98]. Algorithm 3.1 shows the algorithm we use for this process.

In assigning block sizes, we first obtain the distribution of block sizes from the seed

design and fit a binomial distribution curve to these statistics. Block sizes for the generated circuits

are generated randomly using this binomial distribution. This curve fitting is done so that the block

sizes for our generated circuits have a “smoother” distribution over the full range of the possible

sizes.

For each block, we assign it a random fanout count based on the distribution of fanouts

from the initial seed design. We do not fit this to a binomial distribution as the fanout counts tend
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Algorithm 3.1 Synthetic Benchmark Generation
1: Input: initial seed design and target design size n

2: Obtain block size, fanout and cycle count statistics from seed

3: Generate n blocks with random sizes and fanout counts

4: repeat

5: for i = 2 to max cycle size do

6: if too many cycles of size i then

7: Choose an edge e of some cycle of size i

8: Randomly change target of e to some other vertex

9: else if too few cycles of size i then

10: Choose a random vertex u

11: Find a path of length i−1 from u to some vertex v

12: Choose a fanout edge of v and change its target to u

13: until no change

to be small, discrete values, unlike the area statistics. The target block for the fanouts are initially

assigned randomly.

After the initial block generation, the algorithm iterates over all sizes of cycles (i.e. rang-

ing from 2 to the size of the largest cycle in the design). For each cycle size, a target range is

obtained by using the number of cycles of that size present in the seed design and allowing for up

to 10% variation. If the number of cycles of the given size lies above this range, edges in the graph

are modified to remove a cycle of this size. Likewise, if the number of cycles of the given size lies

below this range, edges in the graph are modified to add a cycle of this size. In either case, the

fanout characteristics of the generated design are not changed.

Although there is no guarantee of convergence with this algorithm, since adding or re-

moving a cycle by modifying an edge can change other cycles in which that edge participates, we

found in practice this approach worked well enough for our purposes; runs which failed to terminate

in reasonable time could simply be ignored. The 10% variation in the target cycle size distribution

can be increased if faster termination is desired, or decreased if closer fidelity to the original seed

design is a goal.

Note that the process for generating synthetic designs does not account for S(e), the ini-

tial retiming labeling. We generate S(e) for the synthetic circuit by generating a slicing structure

floorplan using recursive mincut partitioning, then assigning registers to edges in proportion to their
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corresponding edge lengths in the resulting layout. This was done to approximate how such a sys-

tem might be designed in real life; communication overhead between tightly-coupled blocks would

tend to be minimized for performance reasons.

3.4.2 Technology Assumptions

An abstract top-level description of the Alpha 21264 processor was used as the seed

design for our experiments in this paper. Although we do not possess an actual Alpha design,

high-level architectural descriptions provided information about the basic blocks (functional units,

caches, etc.) and their interconnectivity, and a chip micrograph provided information about the rel-

ative areas of the blocks [Kes98, Alp00]. A description for this design is shown in Table 3.1. Note

the intent here is not to produce an exact replica of the Alpha processor, but rather to provide an

abstract but generally realistic model of a modern IC design. We believe that the interconnectivity

between blocks for this design will be similar to the high-level designs we will face in the next

decade.

Eight benchmarks were synthesized from the Alpha design, ranging from 24 to 32 mac-

roblocks in the generated designs; the original design had 24 blocks. Areas for the blocks were

scaled so that the final designs would fit on a square die approximately 24mm per side. Note that the

relationship between distance and delay is dependent on the physical characteristics of the die; here

we need to make some rough estimates for future technology. We assume that the linear propaga-

tion constant for long optimally-buffered interconnect is 16µm/ps; note that this yields a delay from

corner-to-corner on the die of 3000ps (6 clock cycles at 2GHz). We also assume t(m,n) = 100ps as

the input-to-register delay, uniformly for all macroblock inputs.

3.4.3 Results

Table 3.2 shows the results obtained from the eight synthetic benchmark designs generated

as described above. The columns labeled Normal indicate the layout results using an ordinary

floorplanning technique which generates a slicing structure using mincut partitioning. The mincut

heuristic used here emulates the wirelength minimization goal typical of current state-of-the-art

floorplanning tools. The φ column indicates the minimum clock period obtained using the normal

technique. The wlen column indicates the total length of the macroblock interconnects, estimated

using the half-perimeter bounding box model for the nets. The columns labeled Cycle indicate the

same results using the retiming constraint edge-weighting method described in Section 3.3.2. The



40

M
od

ul
e

E
st

im
at

ed
A

sp
ec

t
N

am
e

Si
ze

R
at

io
N

et
So

ur
ce

N
et

Si
nk

s
N

et
So

ur
ce

N
et

Si
nk

s
IC

1
2.

9M
0.

73
PC

1
IC

1
IT

B
1

IR
F2

IU
2

D
C

1
2.

8M
0.

82
IC

1
IM

1
FP

M
1

A
L

U
1

IR
F1

FP
M

U
L

1
72

5k
0.

61
IM

1
IC

1
IR

F1
A

L
U

1
IQ

1
61

7k
0.

50
FP

M
1

IC
1

A
L

U
2

IR
F2

L
SR

U
1

61
2k

0.
78

IC
1

IN
T

1
IR

F2
A

L
U

2
IN

T
1

59
6k

0.
79

IN
T

1
IM

1
FP

M
1

A
L

U
1

M
B

1
M

B
1

58
6k

0.
61

IM
1

IQ
1

A
L

U
2

M
B

1
FP

Q
1

51
5k

0.
81

FP
M

1
FP

Q
1

IR
F1

IR
F2

FP
M

1
51

5k
0.

81
IT

B
1

PC
1

IR
F2

IR
F1

PC
1

48
8k

0.
91

B
P1

PC
1

M
B

1
IR

F1
IR

F2
FP

R
F1

IM
1

43
2k

0.
71

IQ
1

IU
1

IR
F1

M
B

1
FP

A
D

D
1

42
9k

0.
97

IQ
1

IU
2

IR
F2

M
B

1
D

T
B

1
41

9k
0.

74
IQ

1
A

L
U

1
FP

R
F1

M
B

1
D

T
B

2
41

9k
0.

74
IQ

1
A

L
U

2
M

B
1

D
T

B
1

D
T

B
2

L
SR

U
1

A
L

U
1

40
4k

0.
54

FP
Q

1
FP

A
D

D
1

D
T

B
1

M
B

1
A

L
U

2
40

4k
0.

54
FP

Q
1

FP
M

U
L

1
D

T
B

2
M

B
1

B
P1

33
7k

0.
53

FP
Q

1
FP

D
IV

1
L

SR
U

1
M

B
1

FP
R

F1
29

6k
0.

67
FP

A
D

D
1

FP
R

F1
M

B
1

IN
T

1
IU

1
29

0k
0.

75
FP

M
U

L
1

FP
R

F1
IN

T
1

M
B

1
IU

2
29

0k
0.

75
FP

D
IV

1
FP

R
F1

D
C

1
M

B
1

IT
B

1
28

4k
0.

56
IU

1
IR

F1
M

B
1

D
C

1
FP

D
IV

1
25

2k
0.

57
IR

F1
IU

1
D

C
1

IN
T

1
IR

F1
21

7k
0.

91
IU

2
IR

F2
IN

T
1

D
C

1
IR

F2
21

7k
0.

91

Ta
bl

e
3.

1:
A

bs
tr

ac
te

d
A

lp
ha

21
26

4
de

si
gn

st
at

is
tic

s.
M

od
ul

e
si

ze
s

(t
ra

ns
is

to
rc

ou
nt

)e
st

im
at

ed
fr

om
ar

ea
s

m
ea

su
re

d
fr

om
ch

ip
m

ic
ro

gr
ap

h.
N

et
lis

td
er

iv
ed

fr
om

fu
nc

tio
na

ld
es

cr
ip

tio
n.



41

Improvement column gives the percentage improvement (reduction in clock period or wirelength)

from the normal layout scheme to the cycle-constrained method.

Normal Cycle Improvement
φ wlen φ wlen φ wlen

Design (ps) (mm) (ps) (mm) (%) (%)
1 913 388 609 402 33.3 -3.6
2 589 544 530 582 10.0 -7.0
3 584 602 568 633 2.7 -5.1
4 814 543 675 597 17.1 -9.9
5 611 398 562 432 8.0 -8.5
6 657 568 625 623 4.9 -9.7
7 579 608 768 685 -32.6 -12.7
8 766 807 688 935 10.2 -15.9

Average 689 557 628 611 8.9 -9.7

Table 3.2: Results for edge-weighted floorplanning using retiming constraints. Normal indicates
unweighted floorplanning results, Cycle indicates edge-weighted floorplanning results, Improve-
ment indicates the improvement seen. φ indicates the cycle time of the floorplanned design, wlen
indicates the wirelength.

On average, our edge-weighting technique decreases the clock cycle for the floorplanned

designs by 8.9%, while wirelength increases by 9.7%. The wirelength increase is, of course, ex-

pected, as our optimization goal differs from the traditional wirelength metric. These results show

that the wirelength penalty is roughly commensurate with the performance improvement.

Note that, for all but Design 7, using the edge-weighting heuristics improves the clock

period obtained for the design. For this particular circuit, we found that the critical cycle (i.e.

the cycle which constrains the clock period) is broken early in the slicing tree, and hence overly

lengthened, using our heuristics. As well, this critical cycle has no extra registers available for

retiming, which further constrains the clock period.

One difficulty with the heuristic edge weighting presented here is that it depends on enu-

merating all simple cycles of the design. The number of cycles is potentially exponential in the

number of edges in the graph. For high-level floorplanning tasks, this may not be a problem, as

there are relatively few macroblocks and hence relatively few edges. Additionally, typical designs

are expected to have fewer cycles than the theoretical worst case. This is demonstrated by the syn-

thetic benchmarks generated here; these designs only have several thousand cycles in their structural

graphs apiece. However, the potentially large number of cycles may pose a problem for a standard-

cell placement algorithm which must be able to deal with thousands or millions of placeable objects.
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One possible way to avoid enumerating all simple cycles is to only consider the funda-

mental cycles of the graph, a technique suggested in [SSBSV92]. Since the number of fundamental

cycles is generally much smaller than the number of simple cycles in a graph, this may be an effec-

tive technique for avoiding this problem. However, we would have to adjust our weighting heuristic

somehow, as we currently use the number of simple cycles in which an edge participates as an im-

plicit part of the weighting function. We address the potential explosion in the number of cycles in

Chapter 4. There, heuristic techniques for placement using physical cycle constraints which do not

require explicit enumeration of all cycles in the design are given.

3.5 Summary

In this chapter, a new proof for the characterization of valid retimings was given. This

proof motivates a heuristic edge weighting technique for floorplanning which captures the flexibility

of retiming along global interconnects. Experimental results show these heuristics can be used to

yield a tradeoff between design performance and total wirelength.
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Chapter 4

Placement Driven By Sequential Timing

Analysis

4.1 Introduction

Chapter 3 presented a heuristic technique for incorporating retiming constraints into a

floorplanning tool. As previously noted, a potential drawback with the proposed heuristic is its

reliance on enumerating all simple cycles in the structural graph representing the design. While

this may be acceptable for floorplanning techniques which deal with relatively small numbers of

objects, for standard cell placement such a heuristic becomes intractable. This chapter presents

two approaches for dealing with placement in the context of sequential optimization which avoids

the problem of cycle enumeration. Experimental results on academic and industrial designs indi-

cate these techniques yield significant performance benefits for the final designs after sequential

optimization.

4.1.1 Background

Sequential optimization techniques have the potential to significantly improve the perfor-

mance, area, and power consumption of a circuit implementation to a degree that is not achievable

with combinational synthesis methods. The goal is to balance the path delays between registers and

thus to maximize the circuit performance without changing its input/output behavior.

Practical sequential optimization methods of interest are retiming [LS83, LS91] and clock

skew scheduling [Fis90]. Retiming is a structural transformation that moves the registers in a circuit
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without changing the positions of the combinational gates. Retiming, although algorithmically

well studied, has gained only limited use because of its impact on the verification flow and the

inability to accurately model the load changes caused by register moves. When applied before

placement, retiming can perform a coarse balancing of paths delays using wiring estimates. In-

place retiming is applied after physical placement and incrementally repositions individual registers

based on a precise evaluation of the timing impact including the change of interconnect delays.

In-place retiming is limited to local perturbations of the placement and cannot correct for global

problems.

Clock skew scheduling preserves the circuit structure by applying non-zero delays to the

register clocks — thus virtually moving them in time. In recent years, clock skew scheduling has

gained practical acceptance in multiple design flows, typically applied as a post-placement optimiza-

tion technique. Implementation strategies vary from clock tree topology construction [HKM+03,

KF99] to clock tree routing algorithms [XD97]. Recent work on multi-domain clock skew schedul-

ing [RKS03] has demonstrated that even with a very limited number of skew possibilities, almost all

of the benefits can be realized; implementing a non-zero clock skew schedule in hardware may be

easier than commonly believed. For the purposes of this work, however, we remain implementation

independent.

The optimization potential of retiming and clock skew scheduling is bounded by the crit-

ical cycle, which is among all structural cycles of a circuit the one with the maximum value for

φcycle = total delay/number registers. If the combinational delays of all paths along this cycle are

perfectly balanced by retiming or clock skew scheduling, then the design can be clocked with a

period φ≥ φcycle.

Traditional timing-driven placement (e.g. [SCK92]) minimizes the overall wire-length

with the additional constraint that no combinational path is timing critical, i.e. the sum of the gate

and interconnect delays on every path between two registers does not exceed the clock period φ.

This notion of timing criticality is confined to the paths between single sets of registers and does

not adequately capture the timing picture of the circuit when registers positions can be moved. A

cyclic set of paths may be non-critical with respect to a flexible register clocking even if some of

the individual paths significantly exceeds the cycle period. Likewise, combinational paths that have

significant combinational slack may be part of the critical cycle. The combinational delay view of a

design does not reveal much information about its true sequential criticality and may easily mislead

the placer with respect to the overall optimization problem.
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4.1.2 Existing Work

Previous work has addressed the integration of selective sequential optimization tech-

niques and placement, but these attempts remain incomplete. [CL00, Lim00] presents a partitioning

and floorplanning approach which considers retiming moves for registers on long interconnects.

There, the concept of sequential slack is used to express the sequential mobility of a register. These

slacks are used as weights in the partitioning algorithm to approximate the sequential criticality of

an edge. This work is extended in [CY03] for a multilevel placement algorithm using simulated

annealing. However, as discussed in Section 4.3, the sequential slack may dramatically underes-

timate the edge criticality in the presence of multiple critical regions and thus lead to suboptimal

placements; the version of sequential slack computation using the reference point of [CL00] entirely

misses the critical cycle in several of our examples. The first version of our algorithm presented in

Section 4.4.1 builds on this notion of sequential slack. Unlike the work in [CL00], we guarantee that

the most critical cycle will always be identified, since we choose a register which lies on this cycle

as the reference point for the sequential slack computation. The second version of our algorithm

presented in Section 4.4.2 corrects the problem for all potentially critical cycles by introducing

explicit wire-length constraints for circuit loops that are near critical. We use Lagrangian relax-

ation to handle these constraints in an analytical placement phase similar to the approach presented

in [SCK92]. Repeating the timing analysis after each placement iteration additionally improves the

odds that such cycles are identified and algorithmic convergence is achieved.

In [YMS03] a budgeting algorithm is presented that computes delay bounds for a tradi-

tional placement algorithm under the assumption that retiming can be applied. In contrast to our

work, this approach separates the budgeting and placement phases and as a result cannot take the

dynamic interaction between placement, wire delays, and sequential optimization into account. A

tight integration of sequential timing and placement is needed to capture this complex interaction.

Work on integrating retiming and placement for field programmable gate arrays is de-

scribed in [SB02]. There, the authors also extend the sequential slack computation technique found

in [CL00]. However, they attempt to overcome the shortcomings of [CL00] through a process of

random sampling of reference points. While this is certainly better than choosing a single arbitrary

reference, this will still be ineffective in identifying the critical cycle if the sampling process does

not happen to choose a register which lies on that cycle. [SB02] also demonstrates good results using

a net weighting heuristic similar to our technique. However, given their framework of annealing-

based placement, it is unclear how to efficiently include explicit cycle constraints, described here in
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Section 4.4.2. Our use of a quadratic programming-based formulation allows easy addition of these

powerful constraints through Lagrangian relaxation.

4.2 Motivating Example

Timing-driven placement makes possible performance improvements over the pure min-

imization of wire-length. The portions of interconnect that have been identified as being timing

critical can be given increased weight or attention to further reduce their lengths. This objective

may come at the expense of other wires, but the slack available on these non-critical nets allows the

wire delay increase to not affect the final clock period.

With the availability of in-place retiming or clock skew scheduling, the wires that limit

the achievable clock period after sequential optimization are not necessarily the ones that limit the

clock period beforehand. Figure 4.1 shows a simple sequential circuit. It is clear that without any

changes to the clocking, the path from b to x is period-limiting. However, if the relative arrival of

the clock at registers a and b can be moved by 1 delay unit backward and 3 delay units forward,

respectively, the paths between x, y, and z will limit the period. The information from static timing

analysis is essentially meaningless when register boundaries can be moved.

x y

ba

zin

out

4
6

1

2

4

6

Figure 4.1: An example of two sequential cycles. Combinational gates are labeled with their delays.
The lower set of registers {x,y,z} forms the critical cycle and will limit the clock period after
sequential optimization. However, a static timing-driven tool will incorrectly target the path from b
to x, likely at the expense of other paths.

Experimental observation suggests that the failure of static timing analysis to give an

accurate picture of the post-sequential optimization timing can be significant in industrial designs.

Figure 4.2 plots the distribution of combinational path slack above the distribution of true sequential
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path slack in one typical industrial design. It is immediately apparent that they offer very different

versions of the timing criticality of the circuit. True sequential slack, described in more detail in

Section 4.3.3, measures the amount of delay that can be added to a path before it becomes critical

during post-placement retiming or clock skew scheduling. There is clearly more flexibility when

sequential optimization techniques are considered; because slack can accumulate across multiple

register boundaries, most of the paths in this design see more than one clock period of slack.
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Figure 4.2: Combinational slack and true sequential slack for design Ind08. Combinational slack
distribution shown on top, true sequential slack distribution shown on bottom. Horizontal axis
indicates slack value after optimal clock skew scheduling, in multiples of clock cycle φ. Vertical
axis shows number of combinational paths between registers.

The use of inappropriate timing information to guide the placement process can reduce

the final design performance. If we again consider the example in Figure 4.1, a decision to shorten

the path from b to x at the expense of the path from y to z appears to be beneficial from a static

timing standpoint. However, doing so would actually result in an increase in the clock period af-

ter sequential optimization. Experimental results, shown in Table 4.1, indicate that this effect is

demonstrably present during placement of several industrial designs; timing-driven placement in-
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deed yields a design with a smaller clock period before sequential optimization, but such placements

have a larger final clock period after sequential optimization, in some cases even worse than what

could be achieved without any timing optimization at all. This research addresses this problem.

Instead of simply trying to correct the results of combinational timing analysis after placement is

finished, however, we attempt to fully exploit the potential of in-place retiming and clock skew

scheduling.

Figure 4.3(a) illustrates a placement generated using a traditional QP placement tool based

on GORDIAN [KSJ88, KSJA91], with the set of paths that are limiting the post-sequential optimiza-

tion timing highlighted. Figure 4.3(b) shows the same circuit placed using a timing-driven placer

which uses combinational static timing analysis. Figure 4.3(c) shows again the same circuit placed

using CAPO, a state-of-the-art placement tool developed at UCLA [CKM00].

In these three cases, the tools have done a visibly suboptimal job of minimizing the wire

segments that are timing-critical; many of them nearly cross the width of the die. Even with reg-

ister movement through in-place retiming, it is not likely that the severe mislocation of the critical

registers in this particular layout could be fully corrected. In contrast, Figure 4.3(d) is the resulting

placement from our own sequential placement tool. The critical elements are much more localized,

and the contribution of interconnect delay to the clock period is dramatically reduced. In this exam-

ple, the integration of sequential timing analysis into the physical design process has significantly

boosted the utility of clock skew scheduling or in-place retiming.

4.3 Sequential Timing Analysis

Given a circuit with timing information, we are interested in the minimum clock period

achievable under sequential optimization to evaluate its fitness, and to characterize the sequential

criticality of each component. There are three phases of this analysis: construction of the sequen-

tial timing graph, identification of the minimum feasible clock period, and the determination of

sequential slacks.

4.3.1 Constructing The Sequential Timing Graph

The sequential timing graph G = (V,E) is extracted from a circuit as follows. Take V to

be the registers of the design, together with an additional vertex vext representing the primary inputs

and outputs. Add an edge (u,v) to E iff there exists a timing path from u to v in the original circuit.
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(a) GORDIAN Placement (b) Combinational Timing-Driven Placement

(c) CAPO Placement (d) Cycle-Constrained Placement

Figure 4.3: Placements for design Ind08. Critical cycles shown in black; standard cells in gray.
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Every edge e = (u,v) is labeled with d(e), the maximum delay between u and v in the circuit. During

placement, the estimated wire delays are included in d(e).

4.3.2 Finding The Critical Cycle

Finding the critical cycle is equivalent to computing the maximum mean cycle (MMC) for

G, which is given by max`∈C ∑e∈` d(e)/|`|, where C is the set of all cycles in G. The MMC is equal

to the minimum clock period which may be obtained using unconstrained clock skew scheduling. In

our implementation, we use Howard’s algorithm [CTCG+98] to compute the MMC. This is shown

in Algorithm 4.1. [DIG98] suggests that Howard’s algorithm is the fastest known algorithm for

computing MMC. Our own empirical observations concur with those of [DIG98].

Algorithm 4.1 Howard’s Algorithm For Computing MMC
1: for all u ∈V do {initial guess}

2: π(u)← e for some e = (u,v) ∈ E

3: repeat {main loop}

4: find all cycles Cπ in Gπ = (V,{π(u) : u ∈V} ⊆ E)

5: for all u ∈V do {in reverse topological order}

6: if u = LOOPHEAD(Lu) for some Lu ∈ Cπ then

7: η(u)←MEANCYCLETIME(Lu),x(u)← 0

8: else {defined recursively}

9: η(u)← η(v) where π(u) = (u,v)

10: x(u)← x(v)+d(π(u))−η(v)

11: for all e = (u,v) ∈ E do {modify π}

12: if η(u) < η(v) then

13: π(u)← e

14: if π unchanged then

15: for all e = (u,v) ∈ E do

16: if η(v) = η(u) and x(u) < x(v)+d(e)−η(v) then

17: π(u)← e

18: until no change in π

19: return maxu∈V η(u)

The general idea behind Howard’s algorithm is to maintain a small set of edges π which
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starts as an initial guess of the critical cycle in the graph. The set π then has edges added and

removed iteratively to monotonically increase the delays seen at the nodes in its induced subgraph

(i.e. the subgraph obtained by discarding all edges except those edges in π). When the delays in

the induced subgraph are maximized and can no longer be increased by changing π, then we know

that π must contain the critical cycle, and thus we obtain the MMC. More details and a proof of

correctness of Howard’s algorithm can be found in [CTCG+98].

Note that not only is the MMC a lower bound on the clock period for the design, but also

that it is always possible to find a clock skew schedule for the registers which achieves the MMC,

by linear programming duality. We therefore use the MMC as a metric to evaluate the fitness of a

design, since we are assured that, given the freedom of clock skew scheduling, the final clock period

will be equal to the MMC.

4.3.3 Assigning Sequential Criticality

Once the critical cycle has been identified, the relative sequential criticality of the other

vertices can be determined. We use a variant of the sequential timing analysis proposed in [CL00].

There, the concepts of sequential arrival and required times and sequential slack are presented.

Given a target clock period of φ, the sequential arrival and required times at all vertices v ∈ V

with respect to a reference vertex vref can be computed from equations (4.1) through (4.3) using a

modified version of the Bellman-Ford algorithm.

Aseq(v,vref ) = max
(u,v)∈E

Aseq(u,vref )+d((u,v))−φ (4.1)

Rseq(v,vref ) = min
(v,w)∈E

Rseq(w,vref )−d((v,w))+φ (4.2)

Aseq(vref ,vref ) = Rseq(vref ,vref ) = 0 (4.3)

The sequential slack is Sseq = Rseq−Aseq.

Aseq and Rseq represent respectively the earliest and latest relative position in time to which

a register can be moved (by retiming or clock skewing) while still meeting timing with respect to the

reference point. Sseq measures the feasible range of temporal positions for v relative to the reference

node. Intuitively, sequential slack represents a metric for quantifying sequential criticality, but we

note that this criticality is only with respect to the given vref . A different choice of vref will impose

different constraints. Figure 4.4 shows an example where the given choice of vref gives an incorrect

value for the criticality of other vertices in the graph.
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10 10 10 10

5

5 Aseq =−5,Rseq = 5

Aseq =−5,Rseq = 5

Sseq = 10

Sseq = 10Sseq = 0
Aseq = 0,Rseq = 0

Aseq = 0,Rseq = 0
Sseq = 0

Figure 4.4: An example register timing graph. Clock period φ = 10. Sequential arrival times Aseq,
required times Rseq and slacks Sseq are computed with respect to the shaded vertex vref . The true
sequential slack Strue for every vertex is zero; ordinary sequential slack does not offer an accurate
picture of sequential criticality.

We define the true sequential slack as

Strue(v) =− max
(u,v)∈E

Aseq(u,v)+d((u,v))−φ (4.4)

Strue(v) gives the true sequential flexibility of v, in that this value is the maximum delay which can

be added to the outputs of v without violating the cycle time φ. Although the definition is straight-

forward, in practice computing Strue can be prohibitively expensive; using the above equations, this

is equivalent to the all-pairs longest path problem on the sequential timing graph. Thus we use

the ordinary sequential slack Sseq to approximate Strue as an estimate of criticality. Note, though,

that the potential difference between Strue and Sseq can be large; we must choose vref carefully to

minimize the potential error. [CL00] takes vref = vext, but this seems to be a poor choice, as it may

completely miss the actual critical cycle. The nodes most likely to impose tight constraints on other

nodes are those that are themselves highly constrained, i.e. nodes on the critical cycle itself. We

thus use Sseq(v,vref ) | vref ∈ CRITICALCYCLE(G) to measure sequential criticality.

4.4 Placement Driven By Sequential Timing

We introduce a placement algorithm that uses sequential timing information to maximize

the potential of post-placement retiming or clock skew scheduling. The general procedure outlined

in Algorithm 4.2 involves three phases: sequential timing analysis, the assignment of weights based

on sequential criticality, and the introduction of explicit cycle constraints. The algorithm is to some

measure independent of the method used to generate placements; the ability to weight nets and to

include inequality constraints are the only specific requirements.
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Algorithm 4.2 Sequential Slack Weighting
1: sequential timing analysis

2: assign net weights w(i)

3: partition P0← allcells

4: while ∃P(|P|> m) do {GORDIAN main loop}

5: solve global constrained QP

6: bipartition all P where |P|> m

7: solve final global constrained QP

8: (optional) do placement with cycle constraints (Algorithm 4.4)

9: legalize placement into rows

We have implemented a modified version of GORDIAN [KSJ88, KSJA91]. In this pro-

cedure, phases of global optimization are interleaved with bipartitioning. A quadratic programming

(QP) problem is constructed to minimize the total weighted quadratic wirelength

∑αi j
[

(xi− x j)
2 +(yi− y j)

2]

subject to a set of linear constraints. This problem is solved for the entire chip, and the positions

of all cells are updated. Based on this information, the cells in every subregion that contains more

than m members are bipartitioned to minimize the total number of wires across the cut and maintain

reasonably balanced halves.

We utilize two different partitioning techniques. At the topmost levels, where the parti-

tioning is coarse and the information from the QP solution is less useful to guide the partitioning,

we use hMetis [KAKS97, KK99] to partition the hypergraph without regard to geometry. For finer

divisions, we choose a cut-minimizing spectral partition based on the QP solution, similar to the

techniques described in [TKH88, TK91a].

The coordinates of the center of each subregion are computed and a linear center-of-

gravity (COG) constraint is imposed on its members. The QP is updated to include these new

constraints and the global optimization is repeated. GORDIAN is ideally suited to the requirements

described above; nets can be easily weighted in both the global optimization and bipartitioning

phases, and additional constraints can be imposed on the solution of the QP.
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4.4.1 Sequential Slack Weighting

Each net is assigned a weight proportional to its relative sequential criticality. This is done

to give priority to minimizing the lengths of the most critical wires as they are the most likely ones

to limit the achievable clock period. After the sequential timing analysis described in Section 4.3,

we have a function Sseq that gives an approximation of the sequential flexibility at each timing point;

this is the inverse of sequential criticality. We use the following equation to compute the net weight

w(i):

w(i) = 1+
β

γ+Sseq(i)/φ

The constants β and γ are chosen to tune the distribution of weights between the most and least

critical nets. This is then applied to every connection αi j, in addition to scaling based on fanout.

This weighting alone is enough to produce layouts with improved sequential timing char-

acteristics, but its limitations should be recognized. Like their combinational counterparts, sequen-

tial slacks are inherently incompatible. Also, without computing the true sequential slacks, the

problems described in Section 4.3.3 can also arise. Both of these problems can be solved with the

introduction of cycle constraints. Our iterative algorithm to handle these constraints helps ensure

that we catch all critical cycles.

4.4.2 Explicit Cycle Constraints

Assuming complete flexibility in assigning skew to all registers, for a cycle ` in the circuit

to satisfy a target clock period φ, we must have

tg(`)+ tw(`)≤ |`|φ

where tg(`) is total intrinsic gate delay around ` and tw(`) is the total wireload delay around `.

Suppose we have an existing placement P′ in which the above constraint is violated. Let

t ′w(`) be the wireload delay around ` for P′, and let d(`) be the total delay around ` for P′. Then we

have

tg(`)+ t ′w(`) = d(`) and
tw(`)

t ′w(`)
≤
|`|φ− tg(`)
d(`)− tg(`)

, µ(`)

which defines the wireload delay reduction factor µ(`) necessary for ` to have a valid clock skew

schedule for the target period.

Let (x′,y′) be the locations of the cells for the given placement P′. We wish to derive a new

placement P = (x,y) which satisfies the above given delay constraints. As an approximation, we
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take the wire delay for a cycle as being proportional to the sum of the squared Euclidean distances

between cells in that cycle. That is,

tw(`) = η∑(u,v)∈` (xu− xv)
2 +(yu− yv)

2

where η is a constant. Thus the physical placement constraints are

∑(u,v)∈` (xu− xv)
2 +(yu− yv)

2

∑(u,v)∈` (x′u− x′v)
2 +(y′u− y′v)

2 ≤ µ(`) (4.5)

The denominator in inequality (4.5) as well as µ(`) are completely determined from the given place-

ment and timing information. Thus inequality (4.5) contains only quadratic terms in (x,y). Also

note that these constraints are convex.

We justify approximating total wire delay with the sum of square Euclidean distances by

our use of an iterative algorithm to solve the constrained system. We aim to make only small changes

to the layout during each iteration, so that any error in this approximation can be subsequently

corrected. Details may be found below.

Lagrangian Relaxation

To realize the placement constraints, we use Lagrangian relaxation, a standard technique

for converting constrained optimization problems into unconstrained problems. For brevity, we

only present a simplified description of this approach here. More information about Lagrangian

relaxation can be found in [PR02, GT96, SCK92].

Let f (x,y) be the sum of square wirelengths over all wires in the design for the placement

(x,y). Recall that the classical analytic placement formulation is simply the unconstrained problem

minx,y f (x,y). Our constrained problem is then

minx,y f (x,y) such that g(x,y)≤ 0 (4.6)

where the vector g represents the placement constraints. For each cycle in the design, there is a

single element in g which corresponds to the constraint inequality (4.5) for that cycle. We create

the Lagrangian L(x,y,k) = f (x,y)−k · g(x,y), where k is a vector of Lagrangian multipliers; k

can be thought of as “penalties” which serve to increase the value of the cost function whenever a

constraint is violated. The Lagrangian dual problem is

maxk≥0 minx,y L(x,y,k) (4.7)
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Our interest in the dual problem lies in the fact that, for convex problems such as ours,

a solution for (4.7) corresponds directly to a solution for the original problem (4.6). We use the

standard technique of subgradient optimization to solve the dual; see Algorithm 4.3.

Algorithm 4.3 Subgradient Optimization For Lagrangian Dual
1: k← 0

2: x,y← argminx,y L(x,y,k)

3: while KKT conditions are not satisfied do

4: k←max(0,k+ γ ·g(x,y))

5: x,y← argminx,y L(x,y,k)

Note that for a fixed k, minx,y L(x,y,k) can be solved as an ordinary unconstrained

quadratic program. Subgradient optimization works by starting with an initial arbitrary k, solv-

ing the resulting unconstrained QP, then adjusting k based on the violated constraints which are

found. If a constraint is violated, the corresponding penalty in k is increased, so that subsequent

iterations will move to reduce the violations, since the objective function, including the penalty

terms, is to be minimized. Heuristics are available to determine an appropriate step size γ to adjust

k; e.g. [SCK92, PR02]. The Karush-Kuhn-Tucker (KKT) conditions for stopping the algorithm are

described fully in [PR02]. Roughly speaking, the procedure stops once the penalty multipliers grow

large enough to force all constraint violations to zero.

Of course, the design may have many cycles, and thus there may be many constraints

involved. We propose an iterative technique, given in Algorithm 4.4, which reduces the number of

cycles under consideration by ignoring non-critical cycles.

In each iteration, we add the critical cycles found in the current placement to the con-

straint set S. A clock period T is chosen which we use as a target period for determining the cycle

constraints for S. T is decreased slowly from Tc, the feasible clock period for the current placement,

down to Tf , the final overall target clock period for the design. A slow adjustment of T helps ensure

that we do not overconstrain the current constraint set S while ignoring other cycles. That is, we do

not wish to “squeeze too hard” on those cycles which are currently critical, as this may cause some

other cycle not under consideration to violate its timing constraint. Also, as noted before, we wish

to perturb the placement only by small amounts, so that any error in our quadratic approximation of

the wire delays can be corrected.

A significant benefit to using the iterative technique proposed in Algorithm 4.4 is that we

are able to correct errors in our estimate of the true sequential slack so that subsequent iterations
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Algorithm 4.4 Placement Using Cycle Constraints
1: input: an initial placement

2: Tc← current MMC,S←{critical cycles}

3: while Tc > Tf do

4: choose target clock period T,Tf ≤ T < Tc

5: for all cycles ` ∈ S do

6: add cycle constraint for ` with target T

7: remove all cells in S from COG bins

8: solve QP with cycle constraints (ALGORITHM 4.3)

9: reassign all cells in S to nearest COG

10: solve QP with cycle constraints (ALGORITHM 4.3)

11: Tc← current MMC,S← S∪{critical cycles}

may have a better estimate of the sequential flexibility of each gate. Recall from Section 4.3.3 that

we use Sseq(v,vref ) to approximate Strue(v), the true sequential slack, by choosing vref to be a vertex

on the critical cycle. As the set of critical cycles tends to change with each iteration, this helps to

ensure that we compute Sseq with respect to several different choices of vref , so that if we mistakenly

identify a critical vertex as non-critical, we will likely correct the mistake in subsequent iterations.

In contrast, [CL00] always takes vref = vext, and so has no opportunity to correct such errors.

COG constraints are commonly used with analytic placement techniques to ensure that

the cells are spread out relatively evenly over the entire die area. We also wish our constrained

placement to be appropriately spread out over the die area, but we do not wish the COG constraints

to overconstrain our solution. We approach this problem using Steps 7–10 in Algorithm 4.4, which

allows critical cells to “migrate” to appropriate locations on the die to avoid violation of timing

constraints.

As a practical point, we also introduce cycles which are near-critical during each iteration,

instead of only the critical cycles, to help reduce the number of iterations performed. Also, the

main loop is terminated whenever either of the constrained QPs indicate that the problem may have

become overconstrained, as no further improvement becomes possible in such case.

Our approach shares some similarity with that of [SCK92], which also uses Lagrangian

relaxation in an analytic placement framework to resolve timing constraints. However, there are

several key differences between our work and that of [SCK92]. First, and most important, is that we

deal with the cyclic timing constraints which arise during clock skew scheduling, rather than simply
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path constraints. Second, we do not use the analytic placement step itself to perform timing anal-

ysis. The practical effect of this is twofold: our approach allows us to use general, nonlinear (and

nonconvex) wire delay models, and we also do not encounter the degeneracy problems inherent in

the constraints which come from timing analysis, as mentioned in [SCK92]. Finally, we enjoy much

greater computational efficiency, as our Lagrangian function can be seen as simply augmenting the

weights of edges between cells by k. Solving the Lagrangian dual for fixed k requires no more

computation than solving an unconstrained QP for our circuit.

4.4.3 Row Legalization

We use a greedy approach to detailed placement and legalization of the standard cells into

rows. Such an approach has the prime benefit of speed. However, instead of direct minimization of

wirelength as the search goal, as is typical of most other placement tools, our legalization technique

instead seeks to minimize the total perturbation of the final placement with respect to the solution

of the last QP obtained during placement (Step 7 of Algorithm 4.2, or Step 10 of Algorithm 4.4).

We do this because we wish our placement to be timing-aware. Since the placement obtained by

solving the QP respects the timing requirements of the circuit, we wish to deviate from such an ideal

solution as little as possible.

Algorithm 4.5 Standard Cell Row Legalization
1: input: a placement solution from QP

2: Sort cells by their y-axis

3: Place cells into nearest rows with overflow into adjacent rows

4: for all rows R do

5: Solve LP for R to minimize perturbation from QP

6: while not done do

7: Sort cells in decreasing order of perturbation

8: for all cells c do

9: Move c to minimize perturbation

10: for all rows R do

11: Solve LP for R to minimize perturbation

Algorithm 4.5 outlines our legalization technique. We first find an initial legal placement

solution by putting cells into the nearest rows. Cells are spilled into adjacent rows wherever row

capacities are exceeded. Then, for each row, a linear program is formulated and solved to obtain
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the placement of each cell in the row. The cost represents the sum of the displacements of each cell

from its ideal location (as given by the QP solution), while constraints are added to forbid overlap

of adjacent cells within the row.

Once the initial legalized solution is found, we then proceed to make individual cell moves

to improve the solution greedily. The cells are sorted in order of descending perturbation from the

QP solution; this helps ensure that cells which stand the most to gain are moved first. For each cell,

we determine a legal nonoverlapping placement location which minimizes the perturbation from

the QP solution, and move the cell to that location. After all cells are moved in this fashion, we

compact all rows using the same linear programming technique used to obtain the initial solution.

This process is iterative; empirically we find only a small fixed number of iterations is required

before most cells find a stable location.

4.5 Experiments

We ran our design flow on a set of thirteen industrial benchmark circuits as well as four-

teen synchronous designs freely available for academic use, including the largest designs from the

ISCAS89 benchmark suite. The academic circuits were technology mapped using an industrial

synthesis tool into a standard cell library chosen arbitrarily from the industrial benchmarks.

The industrial libraries provided with the designs used interpolated lookup-table based

models to characterize the cells. Both capacitive load and slew rate dependencies were incorporated

in our timing model. The design technology files gave the electrical characterization for the wires;

in all cases, we assumed the use of metal layer 3 for routing. We used the half-perimeter bounding

box metric as our estimate of the wirelength, noting that our algorithms are actually independent of

the wireload estimation technique used, unlike other works, e.g. [SCK92].

Currently, our placement tool can only handle single-row cells, so for the purpose of our

experiments, it was necessary to convert larger circuit elements to single-row instances. Double-

row cells were given a different aspect ratio, keeping the same area. Large macros were given an

arbitrary size so as to fit in a single row. I/O pads were assigned randomly around the die perimeter.

Limitations in our timing analysis tool required some design changes to be made. Trans-

parent latches were treated as ordinary registers, and combinational cycles were broken arbitrarily.

Some hard macros did not have timing information associated with them, so for the purpose of

timing analysis hard macros were treated as if they were I/Os for the overall circuit. Some designs

used multiple clock domains. As we had no additional information regarding the relative phases and
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clock frequencies of such, we uniformly regarded the circuits as having only a single clock domain.

We note, however, that the techniques described in this paper can be easily extended to multiple

clock domains.

Experimental results are shown in Table 4.1. The Size column indicates the number of

placed instances for the design. The NW MMC column gives the MMC for the design when no

wireload is taken into consideration. This is the minimum feasible clock period and serves as a

lower bound on the post-placement timing, though any real placement with non-zero wirelengths

will be greater. The REG MMC column shows the MMC achieved for a completely placed design

using our placement flow with equal weights attached to the wires; effectively, this is a placement

tool similar to GORDIAN. The COM MMC column shows the MMC achieved after placement

using a combinational slack-based weighting function for the nets.

The SEQ MMC column indicates the MMC achieved after placement using the sequential

slack-based weighting for the nets as described in Section 4.4.1. The percentage figure indicates the

reduction in wire delay for the SEQ MMC result compared with the COM MMC result. We choose

this as a better figure of merit than the absolute reduction in clock period, since no placer can ever

hope to reduce the clock period below the no wireload MMC. The Run column indicates the run

time for this algorithm, in seconds.

The CYCLE MMC column indicates the MMC achieved after placement using the cycle

constraint technique described in Section 4.4.2, again with the percentage indicating reduction in

wire delay compared to the combinational-weighted technique, and the Run column indicating the

run time in seconds.

We also compare our tool against Capo, a leading-edge placer which focuses on wire-

length minimization [CKM00]. As the two placers have very different objectives, we certainly do

not expect either one to be competitive in the other’s problem domain. However, this comparison

quantifies the benefit of using a sequential flexibility-aware placer, rather than choosing an placer

which is best-suited for another task. The CAPO MMC column in Table 4.1 shows the MMC ob-

tained after placement using Capo, the Run column indicates the run time for Capo in seconds, and

the CYvsCA column indicates the percentage improvement in wire delay of our cycle constraint-

based technique compared to the placement from Capo.

We show significant improvement in achievable clock period through application of our

algorithm. For the industrial benchmarks, we achieved an overall improvement in wire delay of

23.5% over a combinational slack-weighted placement technique, and 28.3% improvement over the

results of Capo.
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Note that overall the benefits of using the cycle constraints, compared to simply using the

sequential slack-weighting heuristic, was lower for the academic benchmarks than for the industrial

circuits. Our observation is that, for smaller circuits, adding cycle constraints tends to draw the

cells close together, causing significant cell overlap in the QP solution. Such heavy overlap makes

legalization more difficult, and all of the performance gains made from drawing the critical cycles

close together are lost when legalization spreads the overlapping critical cells apart. We have added

some simple heuristics to halt the addition of cycle constraints whenever sufficient overlap is seen.

However, more work needs to be done in this area.

We note that such excessive cell overlap tends to happen more often with small designs

rather than large ones. We conjecture that large designs tend to have more I/O pins on their pe-

riphery, which gives rise to more spreading of cells in the QP solution. One may therefore wish to

avoid the use of cycle constraints, and only utilize the sequential slack weighting heuristic for small

designs.

The wirelength-optimizing version of our tool was 10.7% worse in total wirelength com-

pared to Capo. With the addition of cycle constraints, an 18.8% increase was measured over the

wirelength-optimizing implementation. One certainly expects that a final layout which meets the

timing constraints of the design will have longer wirelength than a layout which is done purely with

minimization of wirelength as a goal. The key feature is that even with this wirelength penalty, the

timing still improves. We also note that our tool currently does very little to control the total wire-

length of the final placed design. As there are many nets in the design which are not critical, there

is much opportunity for us to further reduce wirelength, especially during row legalization. Recall

our legalization procedure seeks only to minimize the perturbation of the QP solution. For non-

critical sections of the design, it makes sense to ignore the QP solution and focus on the traditional

approach of wirelength minimization instead. Additionally, more modern partitioning techniques,

such as those found in Capo, can replace our existing partitioning algorithm we use, especially at

the coarsest levels of partitioning where the information provided by the QP solution is limited.

Run times are measured in CPU seconds on a 2GHz Pentium 4 processor. Although it

may seem that our run times are significantly worse than the excellent Capo tool, one must note

that our design flow includes timing analysis and additional physical constraints for performance

optimization, which are completely lacking in Capo.
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4.6 Discussion And Future Work

Retiming and clock skew scheduling offer significant opportunities for improving design

performance, but current physical design tools do not yet exploit these techniques to their fullest po-

tential. By optimizing the placement of the most sequentially critical components, we have demon-

strated that it is possible to significantly improve the post-sequential optimization timing.

Another benefit from sequential-driven placement is that the aggressive reduction of in-

terconnect length in the most sequentially critical cycles will result in their spatial localization. This

greatly simplifies the complexity of the distribution problem for clocks with multiple skews. Ta-

ble 4.2 suggests that most registers will not even require any skewing. In a traditional placement,

the relative locations of the most critical combinational paths are unconstrained and can be uni-

formly distributed across the chip, thereby necessitating the need for a clock network with tightly

controlled skew across the die. Since the registers with zero or near-zero slack will be grouped, the

effort to accurately distribute multiple clock domains can be concentrated on this region.

Clock Offset Fraction of Registers
20% or more 0.04
10% to 20% 0.01
5% to 10% 0.01
2% to 5% 0.01

-2% to 2% 0.90
-2% to -5% 0.00
-5% to -10% 0.00

-10% to -20% 0.01
-20% or less 0.03

Table 4.2: Clock skews necessary to implement MMC for cycle-constrained placement across aca-
demic designs. Clock offset is as a percentage of the final clock period.

Much can be done to improve our current tool. As noted before, addressing total wire-

length is an important consideration and we have already formulated several ways to approach this

challenge. The weighting of nets by their criticality is admittedly somewhat ad hoc, so we may

use the ideas of [TK91b] to provide a stronger mathematical basis for our weighting function. Im-

plementation improvements will allow us to run on larger designs and to present more datapoints

by which to judge our work; runtime can also be improved. Future work includes addressing the

actual implementation details of retiming and clock skew scheduling, adding in-place resynthesis

optimizations during the placement procedure, and extending the sequentially-aware timing model
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to other aspects of the synthesis flow.

4.7 Summary

In this chapter, two techniques for incorporating sequential timing analysis in a placement

framework were shown. One uses a heuristic net weighting technique, while the other uses explicit

cycle constraints in a Lagrangian relaxation framework. These techniques yield considerable im-

provement in final design performance compared to conventional placement techniques.
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Chapter 5

Floorplanning Of

Asynchronously-Communicating

Systems

5.1 Motivation

The problem of timing closure in deep submicron design has motivated recent research

in the area of what we call asynchronously-communicating systems. Purely synchronous designs

generally cannot tolerate arbitrary insertion of registers, as the delaying of signals for even a single

clock cycle may change the functionality of the circuit. However, it is possible to design systems

where the correct behavior of the circuit is independent of the delays for at least some of the com-

munication between circuit elements. This has an advantage in making the design process simpler,

as the designer can then ignore the delay for such interconnects and still maintain correct behavior

of the final circuit. This is especially true for today’s design flows, where the logical functionality

is often designed far in advance of the physical implementation. The early-stage logic designer’s

task is greatly simplified by being able to ignore the additional delays which will be incurred in the

physical implementation.

In the literature, asynchronously-communicating systems are known by various names.

For instance, they are called latency-insensitive systems in [C+99, CSV00] and wire pipelined

systems in [CM05]. To avoid varying terminology, we will use the moniker asynchronously-

communicating uniformly throughout this work.
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We note that asynchronously-communicating systems need not be implemented in a strict-

ly asynchronous design methodology. The communication between circuit elements can be imple-

mented with synchronous logic using handshaking techniques [C+99]. However, the fundamental

nature of the communication remains asynchronous even with such a synchronous implementation;

correct operation of the circuit is guaranteed regardless of the actual delay of the communication

channel.

The use of asynchronously-communicating design techniques poses a different challenge

for retiming and physical design. In contrast to the purely synchronous case, we have extra de-

sign flexibility, since the length of the wires for asynchronously-communicating interconnects is no

longer bounded by the clock cycle time of the design. Such wires can generally be made longer

than they could be made in a purely synchronous system. However, the extra delay incurred by ex-

tending these wires does impact the performance of the design. Essentially, use of asynchronously-

communicating design techniques relax the timing constraints into a timing cost instead.

5.2 System Performance Estimation

Because of the effects of wire delay on performance, we must utilize techniques to es-

timate the performance of our system in order to predict the impact of our physical design. Most

straightforward is cycle-true discrete event simulation, which simply takes the system and a set of

typical inputs and simulates the system running on the given input. The drawback of this technique

is that it is relatively slow.

Queuing theory has been used to a great extent in performance prediction of computer

systems [All80, BCMP75]. Computation elements are modeled as service centers with queues; data

flow in the system is represented as “customers” moving between the queues. The appeal of using

queuing networks for performance estimation is that analytic solutions for system performance can

be obtained under certain assumptions. However, one primary assumption is that queue lengths

are allowed to grow unbounded. This may be a reasonable approximation for simulation of larger

computer systems, where the service centers represent objects such as disk caches and computer

systems with large amounts of memory, but for low-level integrated circuit design where buffers

tend to be small and of fixed size, the assumption of unbounded queue length is not justified.

Petri nets have often been used in the asynchronous design community for modeling and

performance estimation. An excellent overview of this area can be found in [Mur89]. For simple

Petri nets analytic solutions for performance estimation can be obtained, however the systems found
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in practice give rise to structure not amenable to a closed-form solution.

5.3 Existing Work

Recently a number of approaches to integrating floorplanning with performance esti-

mation for asynchronously-communicating systems have been proposed. Both [EMW+04] and

[CM05] propose using a cycle-true discrete event simulation to profile the relative utilizations of

each interconnect, then use net weighting in floorplanning to keep those nets which are used most

often shorter. This approach does not account for the relative criticality of the nets, however. A

highly-utilized net may not have any impact on the overall performance of the system, if other nets

are the real limiters of performance. [CM05] mentions this shortcoming in their assumption that the

net utilizations are independent.

[LSLH04] proposes a trajectory-based approach, which uses a single cycle-true discrete

event simulation to obtain a piecewise-linear model of the system performance as a function of the

interconnect delays. This model is used to guide the floorplanning process. While [LSLH04] cites

reasonably good fidelity of the model in their experiments, it is not clear how well this approach will

scale. With the increasing impact of interconnect delay, floorplanning will have a greater effect on

the delays, and thus there is an increasing need to evaluate the system performance model at points

further away from the initial characterization.

5.4 Our Approach

There are two key ingredients to our approach to floorplanning of asynchronously-com-

municating systems. The first ingredient is the use of a simplified simulation model for performance

estimation. Use of a simplified model avoids the costly computation incurred with cycle-true simula-

tion. For this purpose, we choose to use a timed Petri net to model the operation of the macroblocks

to be floorplanned. We use simulation on the Petri net to obtain the performance estimation rather

than seek a likely non-existent closed-form solution. Non-determinism is introduced using weights

on the Petri net transitions which give the relative probabilities of the transitions firing.

To model the flow of data through the system, a token source (i.e. a transition with no

incoming edges) is used to simulate an input to the system, and a token sink (i.e. a transition with

no outgoing edges) is used to simulate an output. The rate of arrival of tokens at the token sink

becomes the throughput of the system.
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The second ingredient in our approach is to use net weighting based on the sensitivity

of the system performance on the interconnect delays. That is, we consider a linearization of the

performance as a function of the interconnect lengths about some given intermediate floorplanning

solution.

Using the Petri net model of our system, we can obtain the sensitivities by labeling the

tokens of the Petri net with two pieces of information, the time of arrival at the place where the

token currently resides, and a list of positive integers, one element per transition, representing the

number of times the token was involved in the firing of each transition. During the simulation of

the Petri net, when a transition fires the latest arriving token among those removed by the firing is

used to provide the labeling of the tokens added to the system by the firing. This reflects the fact

that it is the latest arriving token which lies on the critical path and is the bottleneck for the system;

all other tokens have freedom to be delayed without affecting system performance. The new tokens

are labeled with the list of firing counts taken from the critical token with the count for the just-fired

transition incremented.

Tokens arriving at the token sink are thus labeled with the number of times the token

passes through the transitions which restrict the throughput. If we sum all these figures for the

tokens arriving at the token sink, we then obtain the relative sensitivity of the system to the delays

for each transition.

To see this, consider the following formalization: Let S be the set of tokens in the system

and T be the set of the transitions. Let g : S→ R be the labeling of arrival times on the tokens, and

let f : S×T → Z
+ be the function which defines the labeling of the firing counts on the tokens; that

is, f (s, t) is the the number of times token s was associated with transition t. Suppose the delays of

the transitions are given as h : T → R. Then we have the relationship

g(s) = ∑
t∈T

f (s, t) ·h(t)

since the arrival time of a token is simply the sum of all the transition times associated with that

token. The sensitivity of the arrival time with respect to the transition delay of t is then

∂g(s)
∂h(t)

= f (s, t)

While the set of labelings on the tokens may seem like a lot of data to manipulate, consider

that the number of tokens is relatively small. For the Petri nets representing a macroblock, usually

there will only be a single token representing the internal state of the macroblock in a one-hot en-

coding scheme. For interconnects, there will be one token representing the presence of data on that
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interconnect. Additionally, we only need to label the tokens with only the subset of transitions asso-

ciated with the interconnects; transitions internal to the macroblocks can be ignored for the purpose

of sensitivity. Under these assumptions, for a system containing m macroblocks and n interconnects

between macroblocks, we expect there to be at most m + n tokens, each labeled with n + 1 inte-

gers. As typical high-level floorplanning problems operate on perhaps dozens of macroblocks and

hundreds of interconnects, the size of this data is relatively small.

Algorithm 5.1 shows our proposed floorplanning flow for asynchronously-communicating

systems. We use the same slicing tree-based floorplanning framework described in Chapter 3. The

key difference is that instead of weighting nets based on the criteria described in Chapter 3, we

instead use the sensitivities derived from the simulation step.

Algorithm 5.1 Asynchronously-Communicating Floorplanning Flow
1: Simulate unfloorplanned system and obtain net sensitivities

2: Use recursive bipartitioning to obtain slicing floorplan

3: Low-temperature annealing on slicing tree

4: Re-simulate floorplanned system to obtain new performance and net sensitivities

5: repeat

6: Low-temperature annealing on slicing tree

7: Re-simulate floorplanned system to obtain new performance and net sensitivities

8: until no improvement

We use an iterative solution so as to incorporate the changes in the floorplan solution to

the performance estimation. In other words, we re-linearize our performance estimate about the new

operating point. Termination of the iterations occurs when there is no improvement in the solution.

5.5 Experiment

Due to the proprietary nature of such information, we encountered difficulty in obtaining

real floorplanning design examples with detailed architectural descriptions. To work around this, we

constructed a system based on the description of the Intel Pentium 4 processor with hyperthreading

technology as described in [MBH+02, MPS02].
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5.5.1 Model Description

While not complete, the description from [MBH+02] was sufficient to determine a set of

macroblocks, their rough functionality as a Petri net implementation, and the interconnects. The

resulting design had 32 macroblocks and 46 interconnects. An illustration of the processor pipeline

is shown in Figure 5.1.

We chose the relative probabilities of the transitions in the instruction dispatch unit to

reflect a workload of 10% floating point operations, 80% integer operations and 10% load/store

operations. The figures which should be used here are actually dependent on the workload to be

simulated, but we believe this distribution gives a reasonable workload. The token source was set to

generate one token (i.e. one instruction) per clock cycle, so that the throughput of the system would

be one token per cycle if there were no pipeline stalls.

Figure 5.2 illustrates some examples of the Petri net modules composing the processor

design. Figure 5.2(a) shows the Instruction Fetch module. The place marked with a token acts as the

token source for the overall design. The place labeled OUT TC represents the output interconnect

going to the Trace Cache (the level 1 instruction cache); this is a signal indicating the instruction

fetch was found in the trace cache and can be read immediately without decoding. The place labeled

OUT TLB represents the output interconnect going to the Translation Lookaside buffer; this is a

signal indicating a trace cache miss so that the instructions must be loaded from the L2 Instruction

Cache. The numbers on the transitions before and after the slash indicate the weighting given to

the transition and the delay of the transition, respectively. For this instruction fetch unit, we assume

95% (19/20) of instructions are hits from the cache and can be fetched in one clock cycle, while

5% (1/20) are cache misses. These assumptions are, of course, dependent on the workload being

simulated; if one wishes to use different assumptions, one can change the model appropriately. In

either case, the determination of whether the instruction resides in the TC can be done in a single

cycle.

Edges marked with bubbles indicate inhibiting edges [Mur89]. These edges have the

semantics that if a token is at the place connected to by the edge, the corresponding transition may

not fire. We use this mechanism to prevent multiple tokens from appearing at any given place. This

effectively emulates the notion that a register may only contain a single value, and the inhibiting

edge emulates the handshaking signal from the asynchronous communication channel.

The L2 Instruction Cache itself (including the cache controller) is modeled as shown in

Figure 5.2(b). This is also an example of how conflicts for resources are generally modeled in our
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Figure 5.1: Example processor pipeline. Modules replicated for hyperthreading support are labeled
with A/B.
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Figure 5.2: Example Petri net models for processor modules. Numbers indicate transition
weights/delays.
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system. The controller accepts cache read requests from the two separate TLBs. The cache con-

troller must respond to requests from the TLBs as they arrive, however if both TLBs have pending

requests for data, the cache controller alternates between the two for fairness. Two places (one

containing an initial token, the other directly below that) represent the internal state of the cache

controller; that is, which TLB is to be next serviced in case of a conflict. The topmost and bottom-

most transitions labeled 1/8 fire when a token arrives at the input which is to be next served; the

middle two transitions labeled 1/8 correspond to the case where there is a request from the TLB

which was last served, but there is no request from the other TLB. In this latter case the controller

must accept the request even though it breaks the alternation between TLBs.

The delay of 8 on the transitions in the L2 Cache are used to model the delay of fetching

from the cache itself. Again, the value one chooses here depends on the actual cache behavior one

wishes to model.

Figure 5.2(c) shows part of the Instruction Scheduler module, which separates the types of

instructions (integer, floating point and memory access) into separate queues. Input to the scheduler

is represented by the presence of a token at the place marked IN. The relative weights given to the

transitions yield the distribution of instruction types.

Queues make up a significant portion of the Pentium 4 processor design. Figure 5.2(d)

illustrates the Petri net representation for a queue which can hold up to three elements (the queues

used for our example processor were all 64-element queues). The token represents the state of the

queue (the number of elements in the queue). Any transition which removes a token from the input

place increments the state, while adding a token at the output place decrements the state. The delays

of 1 on the increment transitions ensure that the queue can only consume one token from the input

place per clock cycle. The delays of 0 on the decrement transitions allow tokens to be both added

to the queue and removed from the queue in a single clock cycle; since the queues all feed modules

which consume at most one token per clock cycle, the inhibiting edges on the decrement transitions

ensure that only one token can be removed from the queue per clock cycle, as should be. The

exception to this is the integer unit instruction scheduler, which can issue two integer instructions at

once. Here this is modeled using two possible token consumers in parallel.

The model we use for interconnect is shown in Figure 5.2(e). Here there is a single

transition with an inhibiting edge, representing an asynchronous communications channel of delay

x with end-to-end handshaking. If one wishes to model a pipelined interconnect strategy, several

such stages can be placed in series, and each given a delay of 1.

We chose the factor relating wire length to delay to yield an 8 cycle delay for a wire con-
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Figure 5.3: Floorplans for example processor.

Wirelength Throughput Time
Sensitivity Weighting 37254 0.71 3494

Uniform Weighting 18456 0.63 383
Mixed Weighting 23766 0.67 3546

Table 5.1: Results for asynchronously-communicating floorplan experiment. Throughput in instruc-
tions per cycle. Time is execution time in seconds on a 450 MHz Pentium 2 machine.

necting opposite corners of a square die of sufficient area to contain the entire Pentium 4 design. For

the simulation runs, 10 million simulated machine cycles were used to derive the net sensitivities.

5.5.2 Experimental Results

We compare the results from our asynchronously-communicating system floorplanner

with the same tool with uniform net weighting (i.e. without any simulation or sensitivity analy-

sis) in Table 5.1. In the latter case there is no need for iteration in the algorithm. Figure 5.3 shows

the floorplan results.

We can see that, as expected, using the net weights based on sensitivities degrades the

wirelength, albeit more substantially than we would like. We also show results for a “mixed” weight-
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ing scheme, where we take the largest sensitivity among all interconnects and add that figure to all

net weightings. This essentially provides an even weighting between the performance optimization

metric and the wirelength optimization metric. Such a mixed weighting scheme allows the designer

to balance between the wirelength and the system performance as desired.

5.6 Summary

We have demonstrated a system for the floorplanning asynchronously-communicating

system which takes advantage of simplified modeling to allow performance estimation within an

iterative improvement scheme. We use sensitivities of performance with respect to interconnect

delays as a net weighting approach to optimize for performance.

The primary difficulty with this approach lies in obtaining adequate architectural models

for the system. However, in the real world, an architectural level design is typically developed before

designers commence work on a more detailed level. We believe an abstract model can be developed

readily starting from this. Alternatively, we may seek techniques for developing an abstract model

from a cycle-true simulation, possibly similar in nature to the techniques proposed in [LSLH04]. It

remains to be seen how accurate such an approach would be, however.
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Chapter 6

Clock Skew Scheduling Under

Variability

6.1 Introduction

The manufacturing process inevitably introduces differences between the idealized design

generated by the circuit designer and the final manufactured product. A goal of circuit design is to

create a final design which is robust to such process variation. A natural approach to dealing with

this problem is to design conservatively; given estimates as to how large the process variations are,

the designer can consider the worst-case variations, and account for these during the initial design

process.

Process variation affects the problem of clock skew scheduling. Variability of the delays

present in the clock tree distribution network of a synchronous digital circuit can change the timing

of registers, and hence can affect the performance of the design. Conservative design in this case

means that the clock skew scheduling, or assignment of latency to the registers, should account for

the worst-case clock tree variability.

In this chapter we present the problem of clock skew scheduling given the presence of

uncertainty in the delays associated with the clock distribution tree in a digital synchronous circuit.

A model for this problem and a sufficient condition for its optimal solution is presented. This

condition can be used as a stopping criterion for an iterative algorithm for this problem.
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6.2 Notation

Let G = (VL ∪VC,EL ∪EC) be the directed graph representing our circuit, where VL is

the set of leaf nodes in the clock tree (registers), VC is the set of internal nodes in the clock tree,

EL ⊆VL×VL is the set of edges representing combinational delay paths between the leaf nodes, and

EC ⊆ VC× (VL ∪VC) is the set of edges representing the clock distribution from the internal nodes

of the clock tree. All edges are directed in the direction of the signal or clock flow.

Let δi j ∈ R be the delay associated with each combinational delay edge (i, j) ∈ EL. Let

µi j ∈ R be the minimum delay associated with each internal clock tree edge (i, j) ∈ EC.

Let T ∈ R be the clock period.

Let ε ∈ [0,1] be the factor of uncertainty in delay in the clock tree. A nominal delay of d

corresponds to an actual delay in the range [(1− ε)d,(1+ ε)d].

We require the clock tree subgraph GC = (VL ∪VC,EC) be a tree. That is, there is a

distinguished vertex v0 ∈ VC called the root which has no incoming edges, and, for every other

vertex v ∈ (VL ∪VC) \ {v0}, there is a unique path in GC from v0 to v. Equivalently, every vertex

except the root must have exactly one incoming edge in EC.

For each edge (i, j) ∈ EL, there is an associated vertex in VC representing the lowest com-

mon parent between the endpoints of that edge. Take the vertices which appear both in the path

from v0 to i and in the path from v0 to j. Among these vertices, the one which is furthest away from

v0 (has a path from v0 with the greatest number of edges) is the lowest common parent of (i, j). Let

Pi j ∈VC denote the lowest common parent of (i, j) ∈ EL. It is easy to show that Pi j is unique given

(i, j).

6.3 Problem Formulation

We wish to find latency assignments for all vertices which minimizes the clock period

while satisfying the timing requirements for the graph. Ignoring the clock distribution tree and the

uncertainty in delay, this is equivalent to finding (T,x) with xi ∈ R, i ∈VL which satisfies

minT

xi +δi j−T ≤ x j, (i, j) ∈ EL

This is recognizable as the LP dual of the ordinary maximum mean cycle problem.

When the clock distribution network is added with uncertainty in the associated delays,
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we introduce additional variables xi ∈ R, i ∈VC, and the problem becomes

minT

xi + ε(xi− xPi j)+δi j−T ≤ x j− ε(x j− xPi j), (i, j) ∈ EL

xi +µi j ≤ x j, (i, j) ∈ EC

which can be rewritten as

minT

−(1+ ε)xi +(1− ε)x j +2εxPi j +T ≥ δi j, (i, j) ∈ EL

−xi + x j ≥ µi j, (i, j) ∈ EC

(6.D)

We denote this problem (6.D) to indicate that this is the dual of the maximum mean cycle

problem with clock tree latencies.

Note that (6.D) has one constraint for every edge in G. Given an assignment for (T,x)

which is feasible in (6.D), we say an edge is critical iff the corresponding constraint is satisfied

strictly at equality.

Claim 6.1. (6.D) has a feasible solution.

Proof of Claim 6.1. One can easily construct a feasible solution. Assign latencies xi in topological

order starting from v0, according to the inequalities corresponding to the edges in EC. After all

latencies have been assigned, compute T to satisfy all inequalities corresponding to the edges in

EL.

Claim 6.2. (6.D) has an optimal solution where all latencies xi are non-negative.

Proof of Claim 6.2. If (T,x) is feasible in (6.D), then (T,x + θ ·1) is also feasible in (6.D), where

θ ∈ R and 1 is the vector with all elements equal to 1. Let (T,x) be optimal in (6.D), and choose

θ =−minxi.

6.4 Fundamental Theorem Of Markov Chains

Here we state the Fundamental Theorem Of Markov Chains, which we make use of later.

First, however, we present some definitions.

Definition 6.3 (Stochastic Vector). A vector p∈R
m is said to be stochastic iff each entry pi ∈ [0,1]

and ∑m
i=1 pi = 1.
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Definition 6.4 (Column Stochastic Matrix). A matrix B is column stochastic iff every column of

B is stochastic.

Theorem 6.5. (Fundamental Theorem Of Markov chains) If B is a square column stochastic matrix,

then there exists a stochastic vector p such that Bp = p.

Proof of Theorem 6.5. Given in [Mon]. As this source is no longer generally available, we briefly

reproduce the salient points of the proof here. Let K be the set of all stochastic vectors in R
m. Let B

be a square column stochastic matrix. We make the following observations:

Observation 6.6. K is bounded. That is, there exists M ∈ R,M > 0 such that the Euclidean norm

‖x‖ ≤M for all x ∈ K.

Observation 6.7. K is closed.

Observation 6.8. K is convex.

Observation 6.9. For all x ∈ K, Bx ∈ K.

Lemma 6.10. (Markov-Kakutani Theorem) Let T be an affine transformation and K a non-empty

compact convex subset of R
m. If T maps K into K them T has a fixed point in K.

Proof of Lemma 6.10. Choose any z ∈ K and define xn = 1
n(z + T z + T 2z + . . . + T n−1z) where

T k = T ◦ T k−1 and T 1 = T . By convexity of K, xn ∈ K. By compactness of K, there exists a

convergent subsequence (xn j)
∞
j=1 with limit x ∈ K. Since (xn j)→ x and T is continuous (since T is

affine), then (T xn j)→ T x. By the Heine-Borel theorem, K is bounded so there is an M > 0 such

that ‖a‖ ≤M for all a ∈ K. Therefore

‖xn−T xn‖= ‖
1
n
(z+T z+T 2z+ . . .+T n−1z)−

1
n
(T z+T 2z+T 3z+ . . .+T nz)‖

= ‖
1
n
(z−T nz)‖

≤
1
n
(‖z‖+‖T nz‖)

≤
1
n
(M +M)

Replacing n by n j we get 0≤ ‖xn j−T xn j‖ ≤
2M
n j

and letting j→∞ we conclude 0≤ ‖x−T x‖ ≤ 0.

This means x = T x. Thus x is a fixed point of T .

Now let T be defined as the affine transformation T (x) = Bx. By Observation 6.9, T

maps K into K. By Observation 6.6 and Observation 6.7, and using the Heine-Borel Theorem, K is

compact. By Lemma 6.10, T has a fixed point p ∈ K.
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6.5 Theoretical Results

In this section, we present a sufficient condition for optimality in the latency assignment

problem with uncertainty.

Theorem 6.11. Let (T,x) be a latency assignment feasible in (6.D). If every vertex in (VL∪VC) has

at least one outgoing edge which is critical, then (T,x) is an optimal solution of (6.D).

Proof of Theorem 6.11. Let EZ be the set of edges which are critical for (6.D) under the assignment

(T,x). Let E ′L = EL∩EZ and let E ′C = EC ∩EZ . Consider the following linear program:

minT ′

−(1+ ε)x′i +(1− ε)x′j +2εx′Pi j
+T ′ ≥ 0, (i, j) ∈ E ′L

−x′i + x′j ≥ 0, (i, j) ∈ E ′C

(6.RD)

We denote this problem (6.RD) to indicate that this is the restricted dual problem for

(6.D) under the assignment (T,x). The restricted dual has the interpretation that a feasible solution

to (6.RD) indicates a direction in which we can move from (T,x) so as to remain feasible in (6.D).

That is, given a feasible solution (T ′,x′) to (6.RD), we can find some θ ∈ R,θ > 0 such that (T +

θT ′,x+θx′) is feasible in (6.D).

Note that 0 is feasible in (6.RD), so at optimality we must have T ′ ≤ 0.

Lemma 6.12. (T,x) is not optimal for (6.D) iff the optimal solution for (6.RD) has T ′ < 0.

Proof of Lemma 6.12. Suppose (T,x) is not optimal for (6.D). Let the optimal solution of (6.D) be

(T ∗,x∗). Now take (T ′,x′) = (T ∗−T,x∗− x). (T ′,x′) must be feasible in (6.RD), and T ′ < 0, so

the optimal solution for (6.RD) has T ′ < 0.

Now suppose the optimal solution for (6.RD) is (T ′,x′), where T ′ < 0. Then we can find

θ ∈ R,θ > 0, such that (T + θT ′,x + θx′) is feasible in (6.D). But T + θT ′ < T , so (T,x) is not

optimal for (6.D).

Consider the following linear program derived from (6.RD):

min−1

−(1+ ε)x′i +(1− ε)x′j +2εx′Pi j
≥ 1, (i, j) ∈ E ′L

−x′i + x′j ≥ 0, (i, j) ∈ E ′C

(6.RD′)

Lemma 6.13. (6.RD) has T ′ < 0 at optimality iff (6.RD′) has a feasible solution.
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Proof of Lemma 6.13. Suppose (6.RD) has an optimal solution (T ∗,x∗), where T ∗ < 0. Then x′ =

−x∗/T ∗ is feasible in (6.RD′).

Now suppose (6.RD′) has a feasible solution x′. Then (T ′ =−1,x′) is feasible in (6.RD),

so (6.RD) has T ′ < 0 at optimality.

The dual of (6.RD′) is

−1+max ∑
(i, j)∈E ′L

yi j

(1− ε) ∑
(i,v)∈E ′L

yiv− (1+ ε) ∑
(v, j)∈E ′L

yv j + ∑
(i,v)∈E ′C

ziv = 0, v ∈VL

∑
(i,v)∈E ′C

ziv− ∑
(v, j)∈E ′C

zv j +2ε ∑
Pi j=v,(i, j)∈E ′L

yi j = 0, v ∈VC

yi j ≥ 0, (i, j) ∈ E ′L

zi j ≥ 0, (i, j) ∈ E ′C

(6.RP′)

Lemma 6.14. (Farkas’ Lemma) (6.RD′) is infeasible iff (6.RP′) has some feasible solution for

which ∑yi j > 0.

Proof of Lemma 6.14. Consider the case where (6.RP′) has no feasible solution for which ∑yi j > 0.

Note that 0 is a feasible point in (6.RP′), so the optimal value of (6.RP′) is -1. By duality, the optimal

value of (6.RD′) is -1 as well, and hence (6.RD′) is feasible.

Now consider the case where (6.RP′) has some feasible solution for which ∑yi j > 0.

Observe that if (y,z) is feasible in (6.RP′), then for all θ ∈ R,θ > 0, (θ · y,θ · z) is also feasible in

(6.RP′). Thus the value of (6.RP′) is unbounded, so by duality (6.RD′) is infeasible.

Suppose every vertex v ∈VL∪VC has at least one outgoing edge which is critical. Take an

arbitrary subset of the critical edges E ′Z ⊆ EZ so that the graph GZ = (VL∪VC,E ′Z) has exactly one

outgoing edge for every vertex. Consider the following problem generated by adding constraints to
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(6.RP′):

max ∑
(i, j)∈E ′L

yi j

(1− ε) ∑
(i,v)∈E ′L

yiv− (1+ ε) ∑
(v, j)∈E ′L

yv j + ∑
(i,v)∈E ′C

ziv = 0, v ∈VL

∑
(i,v)∈E ′C

ziv− ∑
(v, j)∈E ′C

zv j +2ε ∑
Pi j=v,(i, j)∈E ′L

yi j = 0, v ∈VC

yi j ≥ 0, (i, j) ∈ E ′L

zi j ≥ 0, (i, j) ∈ E ′C

yi j = 0, (i, j) 6∈ E ′Z

zi j = 0, (i, j) 6∈ E ′Z

Since the above problem is a restriction of (6.RP′), any feasible solution for this problem

is also feasible for (6.RP′). Let E ′′L = E ′L ∩E ′Z and E ′′C = E ′C ∩E ′Z , and let e : (VL ∪VC)→ E ′Z be

the bijective mapping from the vertices of G to their corresponding outgoing edges in E ′Z . Also,

we can perform the substitution y′ = (1+ ε)y. Simplifying the above problem yields the following

equivalent problem:

max
(

1
1+ ε

)

∑
(i, j)∈E ′′L

y′i j

(

1− ε
1+ ε

)

∑
(i,v)∈E ′′L

y′iv− y′e(v) + ∑
(i,v)∈E ′′C

ziv = 0, v ∈VL

∑
(i,v)∈E ′′C

ziv− ze(v) +

(

2ε
1+ ε

)

∑
Pi j=v,(i, j)∈E ′′L

y′i j = 0, v ∈VC

y′i j ≥ 0, (i, j) ∈ E ′′L

zi j ≥ 0, (i, j) ∈ E ′′C

(6.RP′′)

Note that there is exactly one equation in (6.RP′′) corresponding to each vertex in VL∪VC.

For every v ∈VC, define

Rv =
{

u ∈VC : (u = v)∨ ((u,w) ∈ E ′′C,w ∈ Rv)
}

That is, u ∈ Rv iff there exists a path from u to v whose edges are all contained in E ′′C.

Lemma 6.15. Given (6.RP′′), for all v ∈VC,

ze(v) =

(

2ε
1+ ε

)

∑
u∈Rv



 ∑
Pi j=u,(i, j)∈E ′′L

y′i j
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Proof of Lemma 6.15. We use induction on |Rv|. If |Rv| = 1, then Rv = {v}, and v must have no

incoming edge in E ′′C. Rearranging the equality in (6.RP′′) corresponding to v gives

ze(v) =

(

2ε
1+ ε

)

∑
Pi j=v,(i, j)∈E ′′L

y′i j

as required.

If |Rv| > 1, then v must have exactly one incoming edge (w,v) ∈ E ′′C. Also, by definition

of Rv, Rw = Rv \{v}. By the induction hypothesis,

ze(w) =

(

2ε
1+ ε

)

∑
u∈Rw



 ∑
Pi j=u,(i, j)∈E ′′L

y′i j





Rearranging the equality in (6.RP′′) corresponding to v yields

ze(v) = ze(w) +

(

2ε
1+ ε

)

∑
Pi j=v,(i, j)∈E ′′L

y′i j

=

(

2ε
1+ ε

)

∑
u∈Rw



 ∑
Pi j=u,(i, j)∈E ′′L

y′i j



+

(

2ε
1+ ε

)

∑
Pi j=v,(i, j)∈E ′′L

y′i j

=

(

2ε
1+ ε

)

∑
u∈Rv



 ∑
Pi j=u,(i, j)∈E ′′L

y′i j





as required.

Now consider only the system of linear equalities in (6.RP′′), ignoring the inequality

constraints. We can rewrite this system in matrix form by letting

p =





y′

z





where y′e(u) and ze(v) lie in the same row in p as the constraint corresponding to vertices u and v,

respectively, so that Ap = 0, where A is the matrix representing the linear equalities in (6.RP′′).

Lemma 6.16. If a stochastic vector p is feasible in (6.RP′′), then ∑y′i j > 0.

Proof of Lemma 6.16. Suppose ∑y′i j = 0. By Lemma 6.15, every zi j can be expressed as the sum

of a subset of the y′i j, times a constant. Hence zi j = 0 as well, so p = 0. But p is stochastic, a

contradiction. Thus some y′i j > 0, so ∑y′i j > 0.

Let B = A+ I, where I is the identity matrix. We now have Bp− Ip = 0, or Bp = p.
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Lemma 6.17. B is a column stochastic matrix.

Proof of Lemma 6.17. The variable yi j,(i, j) ∈ E ′′L appears exactly three times in the linear system

of equalities: once with coefficient −1 in the equality corresponding to the vertex i, once with

coefficient 1−ε
1+ε in the equality corresponding to the vertex j, and once with coefficient 2ε

1+ε in the

equality corresponding to the vertex Pi j. Note that these coefficients sum to zero. The variable

zi j,(i, j) ∈ E ′′C appears exactly twice: once with coefficient −1 in the equality corresponding to the

vertex i, and once with coefficient +1 in the equality corresponding to the vertex j. Again, these

coefficients sum to zero. Thus the columns of A must each sum to zero, so by construction the

columns of B must each sum to 1. Since ε ∈ [0,1], all the elements of B lie in [0,1] as well.

Now we complete the proof of Theorem 6.11. For the latency assignment (T,x), we can

construct the linear program (6.RP′′) given the critical edges. Now from Lemmas 6.17 and 6.5,

we know there exists a feasible solution to (6.RP′′). In particular, the fixed point p = [y′;z] of

Bp = p satisfies the equality constraints, and since p is stochastic, it must also satisfy the inequality

constraints p≥ 0 of (6.RP′′) as well.

By Lemma 6.16, this feasible solution of (6.RP′′) must have ∑y′i j > 0. But by construction

of (6.RP′′), the point (y = 1
1+ε y′,z) must be feasible in (6.RP′), and ∑yi j > 0.

By Lemma 6.14, (6.RD′) is infeasible, so by Lemma 6.13, the optimal solution of (6.RD)

has T ′ = 0. By Lemma 6.12, (T,x) is optimal for (6.D).

6.6 Summary

While we do not propose a particular iterative solution for the latency assignment problem

here, we hope to modify one of the many such algorithms for variation-free optimal latency assign-

ment to a procedure which accounts for variations. In this respect, Theorem 6.11 becomes valuable

in that it gives a stopping criterion for an iterative solution to the latency assignment problem. If a

given assignment is such that every vertex has at least one outgoing edge which is critical, then we

know an optimal solution has been reached. This can also be used to guide the choice of how to

modify the clock network during each step of the iterative latency assignment algorithm.

The analysis presented in this chapter assumes a fixed clock tree topology. Of course, a

designer may have flexibility in the clock tree design, in order to minimize the impact of variability

on the final performance. However, treatment of such design techniques is outside the scope of the

work presented here.
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Chapter 7

An Experimental Nonlinear

Programming Technique For

Floorplanning

7.1 Introduction

In the past, formulation of EDA problems in terms of general nonlinear programs had

limited use. Software packages capable of tackling such problems were quite limited in the size of

the problems which they could handle. However, modern nonlinear program solvers have reached

a state of maturity where they have the potential to be useful in many applications. For example,

LANCELOT [CGT92], a large-scale general-purpose optimization package, has been used success-

fully to solve nonlinear circuit optimization problems for designs over 1500 gates [VC99]. With the

ability to tackle problems with over 9000 variables and 10000 constraints, it is worth examining the

application of LANCELOT to other EDA problems of similar size.

In this chapter, we describe an experimental technique to use LANCELOT in a floor-

planning context. The floorplanning problem is formulated and an algorithm which uses nonlinear

programming at its core is proposed.
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7.2 Problem Formulation

We consider the problem of floorplanning rectangular soft modules (i.e. modules with

fixed areas but whose aspect ratios may be modified) to minimize a linear combination of total die

area and wirelength.

Formally, we are given a graph G = (V,E), with V representing the modules to be floor-

planned, and E representing the interconnects. We are also given areas Av ∈ R for all modules v,

and parameters γ ∈ R, αA ∈ R and αL ∈ R, representing the maximum allowed aspect ratio for any

module, the cost weighting factor for area and the cost weighting factor for wirelength, respectively.

The goal is then to find W ∈R, H ∈R, the overall width and height of the die, respectively, and, for

each module v, module locations xv ∈R, yv ∈R, widths wv ∈R
+ and heights hv ∈R

+, such that all

of the following conditions hold:

• All modules fit on the die: For all v ∈V

xv−
1
2

wv ≥ 0 and xv +
1
2

wv ≤W

yv−
1
2

hv ≥ 0 and yv +
1
2

hv ≤ H

• Modules fit in their allocated areas: For all v ∈V

wvhv = Av (7.1)

• No modules overlap: For all u ∈V,v ∈V,u 6= v

|xu− xv|>
1
2

(wu +wv) or |yu− yv|>
1
2

(hu +hv) (7.2)

• Modules respect the aspect ratio limit: For all v ∈V

1
γ
≤ wv/hv ≤ γ

• A weighted sum of total area and wirelength is minimized. Here we use the sum-of-squares

metric for wirelength, measured from the module centers. For the cost function we take

αAWH +αL ∑
(u,v)∈E

(xu− xv)
2 +(yu− yv)

2
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Note that some simplification is possible; we may eliminate the area constraints (7.1) and

substitute hv = Av/wv in the above. Also note that W and H are completely determined given the

above constraints.

The floorplanning problem is nonlinear. Moreover, the problem is not smooth: the non-

overlap constraints (7.2) are not continuously differentiable in the region of interest. We take a

two-phase approach to dealing with the non-smoothness of the problem. We first use a smooth

approximation to the floorplanning problem to derive a layout which may contain some violations

of the above constraints, but is close to a legal floorplan. Given this approximate solution, we apply

a legalization procedure which resolves the violations to produce a valid floorplan.

7.3 Existing Work

In nearly all existing works in high-level floorplanning, the resolution of the non-overlap

constraints is performed through the generation of topological constraints for the modules. A com-

mon representation of these topological constraints is an HV-constraint graph pair, which is a pair

of acyclic directed graphs, where each graph contains a vertex for each module. In the H-constraint

graph, a directed edge (u,v) represents the constraint xv > xu + 1
2 (wu +wv) (an H-constraint), while

in the V-constraint graph, a directed edge (u,v) represents the constraint yv > yu + 1
2 (hu +hv) (a V-

constraint). Additionally, for every pair of modules {u,v}, there is exactly one edge between those

modules (either (u,v) or (v,u)) in the HV-constraint graph pair.

Given an HV-constraint graph pair, the non-overlap constraints can be simplified to linear

constraints. Moreover, it is easy to see that any solution to the floorplanning problem corresponds

to at least one (that is, not necessarily unique) HV-constraint graph pair. Based on this observa-

tion, most of the existing floorplanning works approach floorplanning as a discrete search problem

through the space of possible HV-constraint graph pairs, typically using simulated annealing as the

core algorithm. Examples of this approach include the sequence-pair technique [MFNK96], the

bounded sliceline grid [NFMK96], the O-Tree representation [GCY99], and the corner block list

[H+00]. Discrete search techniques are problematic to implement in a general nonlinear program-

ming framework, however.

A number of works address the nonlinearities arising from the area constraints (7.1).

[CK00] uses a linear programming approach to approximate these constraints. [MK98] uses a trans-

formation technique to construct a convex optimization problem with convex constraints. Although

these techniques are useful in simplifying the area constraints (7.1), they require an HV-constraint
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graph pair be provided as input, and so are not complete solutions to the floorplanning problem

in themselves. That is, they must be augmented with a strategy to search the space of feasible

HV-constraint graph pairs.

7.4 Technique

Here we present our proposed nonlinear floorplanning technique.

7.4.1 Overall Flow

Algorithm 7.1 gives the overall flow for the nonlinear floorplanning technique. The pro-

cedure is iterative, and alternates between two subroutines, PACK and SMOOTH. PACK finds a legal

packing for the modules given their current locations and aspect ratios as a guess as to their relative

placements. SMOOTH formulates a nonlinear program for a smoothed version of the floorplanning

problem and solves it using the current locations as the starting point for LANCELOT. PACK and

SMOOTH are described in Sections 7.4.2 and 7.4.3, respectively.

Algorithm 7.1 Overall Nonlinear Floorplanning Algorithm
1: Input: initial module locations and aspect ratios

2: PACK (Algorithm 7.2)

3: Measure wirelength

4: repeat

5: SMOOTH (Algorithm 7.3)

6: PACK (Algorithm 7.2)

7: Measure wirelength

8: until no improvement

The starting point for the algorithm is arbitrary and need not be legal. We initially choose

module locations randomly and set aspect ratios to 1. A call to PACK is made prior to the first call

to SMOOTH in order to resolve any initial overlaps among the modules. This is in order to provide

good initial positions to LANCELOT for the smoothed floorplanning procedure.
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7.4.2 Packing Algorithm

The packing algorithm is shown in Algorithm 7.2. The goal here is to take the current

module locations and aspect ratios, which may violate some of the floorplanning constraints, and

derive a legal floorplan within the die boundary with minimally perturbation. First, topological

constraints are extracted from the current module locations. Given these additional constraints, a

nonlinear program is formulated for the new constrained floorplanning problem. LANCELOT is

then invoked to solve this problem.

Algorithm 7.2 Packing Algorithm
1: Input: current module locations

2: Extract topological constraints from module locations

3: Generate nonlinear program for packing using topological constraints

4: Invoke LANCELOT to solve nonlinear program

We use the following technique to derive an HV-constraint graph pair from the current

module locations. For every pair of modules {u,v}, we must choose whether to add an H-constraint

edge or a V-constraint edge between u and v, and we wish this choice to fall naturally from the

current locations and aspect ratios of the modules. Assume for the moment xu < xv and yu < yv

and the modules do not overlap in their current placement. We are particularly interested in the

following properties:

• If there exists a horizontal line which passes through both modules u and v, we must add

a constraint in the H-constraint graph between the modules. Figure 7.1(a) illustrates this

situation. In this case, adding a V-constraint between the modules does not make sense, as

the current placement would already violate such a constraint.

• If there exists a vertical line which passes through both modules u and v, we must add a con-

straint in the V-constraint graph between the modules. Figure 7.1(b) illustrates this situation.

This is analogous to the previous property.

• If neither a vertical nor horizontal line exists which intersects both modules, we have flex-

ibility to choose add either an H-constraint or V-constraint between the modules. See Fig-

ure 7.1(c) for an example.

We propose the following technique for extracting suitable topological constraints be-

tween the modules. Suppose we could scale the modules (that is, increase their sizes) uniformly
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u

v

(a) H-constraint

v

u

(b) V-constraint

v

u

(c) Either H or V

Figure 7.1: Examples for topological constraint determination. Desired constraint types indicated.

and continuously until u and v abut along some edge. The abutting edge indicates a natural con-

straint between the modules. If the abutting edge of the scaled modules were horizontal we add a

vertical constraint between the modules. Likewise, if the abutting edge were vertical, a horizontal

constraint is natural. This procedure captures the properties for the constraints as described above

and can also be easily computed. We formally determine the relative constraint between modules u

and v by computing the following sizing factors:

kx
u,v =

2|xu− xv|

wu +wv
and ky

u,v =
2|yu− yv|

hu +hv

We observe the following properties of these sizing factors:

Observation 7.1. If the modules u and v are kept in their current locations but resized by the sizing

factor kx
u,v simultaneously, the resulting floorplan will have the right edge of u collinear with the left

edge of v; that is, xu + kx
u,v(

1
2 wu) = xv− kx

u,v(
1
2 wv). Likewise, if the modules are scaled by ky

u,v, then

the top edge of u becomes collinear with the bottom edge of v.

Observation 7.2. If the modules u and v are resized by some factor s which is less than kx
u,v, then

the right edge of u will lie to the left of the left edge of v; that is, xu + s( 1
2wu) < xv− s( 1

2wv). An

analogous situation arises in the y-direction.

Observation 7.3. The modules u and v can be scaled up to a factor of max(kx
u,v,k

y
u,v) before overlap

results between the modules.

Based on these observations, we add an H-constraint between u and v if ky
u,v > kx

u,v, other-

wise we add a V-constraint.
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Note that the calculation of kx
u,v and ky

u,v do not depend on the previous assumptions that

xu < xv and yu < yv; that is, regardless of the relative locations of the modules, the comparison of

kx
u,v and ky

u,v still generates the proper constraints between u and v. Moreover, we can also remove

the assumption that the current module locations do not overlap. We thus determine the direction

of the constraint edge between u and v by the relative locations of the modules. For instance, if we

must add an H-constraint edge, this edge is chosen to be (u,v) if xu < xv, else we choose edge (v,u).

In theory, degenerate situations may arise where xu = xv and yu = yv, i.e. the modules are

exactly coincident, or when kx
u,v = ky

u,v. In such cases, the physical information provides no useful

guide to the constraint addition process, and we can only choose a constraint arbitrarily.

Once we have generated an HV-constraint graph pair, the non-overlap constraints are

simplified to become linear inequalities. The resulting system is passed to LANCELOT to be solved.

7.4.3 Smoothed Floorplan Algorithm

The packing algorithm of Section 7.4.2 is limited in that it is useful for resolving violations

of the floorplanning constraints described in Section 7.2, but does not explore larger movements of

modules. We propose using the smoothed floorplanning algorithm here as a method for generating

global movements of modules. This algorithm is shown in Algorithm 7.3.

Algorithm 7.3 Smoothed Floorplan Algorithm
1: Generate smoothed version of non-overlap constraints

2: Invoke LANCELOT to solve nonlinear program

Recall the non-overlap constraints are (7.2):

|xu− xv|>
1
2

(wu +wv) or |yu− yv|>
1
2

(hu +hv)

These constraints are non-smooth due to the disjunctive or. Our goal is to relax these

constraints so that the problem given to LANCELOT is smooth and more readily solvable. Since

we can use the packing algorithm (Algorithm 7.2) to resolve overlaps in the final solution, we do not

need to consider module overlaps at this stage. Note that for a fixed (xu,yu), the constraints define a

“keepout” rectangle which constrains the placement of module v.

The non-overlap constraints can be written in terms of the `∞-norm as:

∣

∣quv(pu−pv)
T
∣

∣

∞ > 1
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where

pu =





xu

yu



 , pv =





xv

yv



 , quv =





2/(wu +wv)

2/(hu +hv)





The idea we use here is to replace the non-smooth `∞-norm with the smooth `2-norm.

This smoothing yields
∣

∣quv(pu−pv)
T
∣

∣

2 > 1

or
4

(wu +wv)2 (xu− xv)
2 +

4
(hu +hv)2 (yu− yv)

2 > 1 (7.3)

The keepout region becomes an ellipse under this relaxation as shown in Figure 7.2.
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Figure 7.2: Smoothing of non-overlap constraints. Shading indicates feasible region for module v
relative to module u.

In theory, higher-order norms (`4, `6, etc.) yield smooth approximations which are closer

to the original non-overlap constraints. In practice, we found the `2-norm gave just as good results

using LANCELOT with much faster run times.

7.5 Experiments

To illustrate the algorithm, Figure 7.3 shows the results of our nonlinear programming

floorplanner when run on the abstracted Alpha design described in Section 3.4. Figure 7.3(a) shows

a floorplan generated by starting with a random arrangement and applying the packing algorithm.

Figure 7.3(b) shows the result after the first application of the smoothed floorplanning procedure;

modules are shown as ellipses to illustrate the effects of the smoothing on the overlaps of the mod-

ules. Figure 7.3(c) shows the result after packing this placement.
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(b) Smoothed (wlen = 17201)
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(c) Packed (wlen = 25221)

Figure 7.3: Nonlinear programming floorplan for abstract Alpha 21264 design. Nets are shown
in black lines, and sum-of-square wirelength metrics indicated. Visualizations are independently
scaled so that absolute sizes may not be comparable between figures.
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Figure 7.3(b) illustrates the prime shortcoming of our floorplanning algorithm. There

tends to be much wasted area as the smoothed constraints fail to spread the modules evenly over the

die area. The poor spreading in the solution to the smooth floorplan carries forward to the packing.

Figure 7.3(c) shows much wasted space in the top right corner of the die. This poor utilization

remains regardless of the weighting factors αA and αL chosen for the nonlinear cost function.

We show results for our nonlinear floorplanning algorithm applied to problems derived

from the ISCAS85 circuit benchmarks [Yan91]. The unmapped designs were considered as floor-

planning instances, with the nodes from the original netlist representing the modules to be floor-

planned. The connectivity between modules was taken as the nets between the nodes, and the sizes

of the modules was taken as proportional to the number of minterms in the original BLIF represen-

tation. We took the maximum aspect ratio parameter γ = 4. For this experiment, we arbitrarily took

αA = αL = 1, noting that for real floorplanning problems these factors would have to be considered

more carefully, based on the needs of the designer.

The results of our algorithm are shown in the columns labeled Nonlinear in Table 7.1. We

compare these results to a solution based on simulated annealing using the sequence-pair technique

[MFNK96]. We chose an annealing schedule which resulted in the same run time as was taken

for our nonlinear floorplanning algorithm. This makes the comparison “fair”, in the sense that

both techniques would be given the same amount of computing resources. The results from the

annealing method are shown in the columns labeled Annealing in Table 7.1. We note that the

nonlinear algorithm yields consistently better results in both wirelength and area than the annealing

technique when executed for the same amount of time.

Nonlinear Annealing Long
Design Size Wlen Area Time Wlen Area Wlen Area
cm150a 37 1020 472 872 1198 584 994 362
cm151a 21 325 320 426 465 380 298 214
cm152a 12 107 96 128 120 122 98 84
cm42a 17 769 236 376 1125 301 741 212
cm82a 11 103 134 173 153 311 112 118

Table 7.1: Results for nonlinear floorplanning. Size indicates number of modules. Wlen indicates
total wire length using sum-of-squares metric. Area indicates total die area. Time indicates run time
in seconds. Nonlinear indicates the method described in this chapter, Annealing indicates quick
annealing, Long indicates long annealing.

Of course, setting the annealing schedule for the same run time as the nonlinear floor-
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planner is an artificial restriction on the annealer. As a further comparison, we used an annealing

schedule which ran for 3 hours on each of the designs. The results of this are shown in the Long

columns of Table 7.1. This yielded consistently better results than our nonlinear floorplanning. Al-

though our experiments were not exhaustive, we could find no technique to readily improve the

nonlinear floorplanning results.

7.6 Summary

We have developed a new, nonlinear programming-based technique for for floorplanning.

For the same amount of run time, our technique compares very favorably to the annealing-based,

sequence-pair technique proposed by [MFNK96]. However, our method compares poorly against

the annealing-based method, given additional run time for the annealer.

Visual inspection of the floorplans resulting from our nonlinear programming-based tech-

nique suggest that there are problems with the spreading of modules over the die. This could perhaps

be alleviated by borrowing techniques from placement, e.g. the dissection technique from GOR-

DIAN [KSJ88]. However, it is not clear that further exploration along this avenue will be fruitful,

given the relatively good results obtained from using the annealing technique of [MFNK96].

Here we have not explored the interaction of this floorplanning technique with retiming

or clock skew scheduling, having limited our study to wirelength and area optimization for now.

However, net weighting approaches such as those presented in Chapter 3 and Chapter 4 can be

applied in a straightforward manner. Whether other useful techniques for introducing timing or

sequential flexibility in our nonlinear floorplanning framework exist remains an open issue.
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Chapter 8

Conclusions

The progress of technology has highlighted the need to work towards the goal of integrat-

ing previously disparate design and optimization techniques. To this end, we have shown theoretical

results to justify our approach to the problem of integration of physical design and sequential op-

timization, and successfully applied a number of sequentially-aware floorplanning and placement

techniques to various benchmark designs.

There are still a number of open questions and avenues of research left to explore in

this area. While our placement techniques have been validated on industrial design examples, we

do note that more experimental results would be beneficial in demonstrating the benefits of our

floorplanning approaches. Also, there are other design goals, such as routability and congestion,

that can be explicitly addressed to further extend this work. However, our work demonstrates that

the integration of physical design and sequential optimization can be successful for physically-aware

timing optimization of digital circuits in today’s wire-dominant technologies.
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