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Abstract

Designing, Implementing, and Analyzing a System for Virus Detection
by

Blaine Nelson

Master of Science in Computer Science

University of California at Berkeley

Professor Anthony D. Joseph, Research Advisor

In spite of advances in viral detection, the rapid proliferation of novel mass-
mailing worms continues to pose a daunting threat to network administration. The crux
of this problem is the slow dissemination of the up-to-date virus signatures required
by traditional systems to effectively halt viral spread. Such signatures are primarily
generated manually after samples of the novel worm are submitted to the anti-virus
company for analysis - a process that leaves most systems open to attack for hours
or days. In modern high-speed systems, this response time is becoming increasingly
inadequate to prevent devastating viral epidemics that waste value network resources.

In this thesis, we present and evaluate a statistical learning system for ad-
dressing the mass-mailing worm threat. We propose a multi-tiered learning system that
learns user’s emailing characteristics. By monitoring the behavior of outgoing email, our
system was empirically able to differentiate between normal behavior and novel worm
outbreaks. In our experiments on six email-born viruses with varying characteristics,
our system achieved 99% accuracy in most cases, demonstrating the effectiveness of our
approach. We also look beyond the current state-of-the-art in viral techniques by devel-
oping a naive model for analyzing the effectiveness of our statistical classifiers against

threats poised by unforeseen viral adversaries determined to subvert our deterrents.
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Chapter 1

Introduction

Electronic mail has become one of the most ubiquitous methods of communi-
cation. In 2002, the information technology research firm IDC predicted email usage
would reach 60 billion messages daily [24] while the Radicati group estimated 2004 daily
levels to have already reached 76.8 billion [51]. However, the rapid proliferation of this
Internet communications medium has lead to the emergence of wide-spread abusive
behaviors. According to several surveys, unsolicited marketing messages, or spam, ac-
count for more than half of the total daily message traffic [24, 51]. Meanwhile, phishing
attacks, all but unheard of in 2003, rapidly increased in the last half of 2004 making up
18 million of 12 billion messages scanned by MessageLabs [46].

Of these abuses, viruses, designed specifically to wreak havoc on businesses
and the Internet infrastructure, remain as the largest security problem for most busi-
nesses with 70% of UK businesses citing viruses as their worst security incident [16].
A conservative measure of worm impact is given by a joint survey of 269 responding
companies conducted by the Computer Security Institute (CSI) and the US Federal
Bureau of Investigation (FBI) in 2004. Their survey found that viruses caused an es-
timated $55 million in damages, surpassing “cybertheft” as the primary cost factor in
computer security incidents for the first time in 5 years [21]. Similarly in a study of 200
British business, the UK’s National Hi-Tech Crime Unit (NHTCU) found that 83% of
interviewed companies had been attacked by viruses, worms, or Trojans and estimated

L as well as £676 million to

that these programs caused £70 million to small business
large businesses?. The survey found that, on average, companies were subject to virus

attacks seven times a day with large businesses encountering infections once every three

1100 — 1000 employees
2> 1000 employees



Product Detected | Lag Product Detected | Lag
ClamAV 22:02 00:00 AntiVir 06:09 08:07
Sophos 23:00 00:58 Tkarus 06:29 08:27
Trend Micro | 00:05 02:03 Dr. Web 07:03 09:01
Fortinet 00:18 02:16 Proland 07:19 09:17
F-Prot 00:43 02:41 Panda 07:41 09:39
McAfee 00:52 02:50 RAV 07:43 09:41
eTrust-CA 01:30 03:28 BitDefender | 07:56 09:54
Symantec 02:06 04:04 Norman 08:20 10:18
Command 02:44 04:42 Dr. Web 08:54 10:52
Virusbuster 02:58 04:56 AVG 10:05 12:03
Trend Micro | 03:12 05:10 Kaspersky 12:18 14:16
Quickheal 04:11 06:09 F-Secure 14:46 16:44
eTrust-VET 05:31 07:29 Avast 15:23 17:21

Table 1: The amount of time, in hours, between the appearance of the MyDoom.BB
worm in Asia sometime during February 16th, 2005, and its successful detection for
26 common anti-virus products. The first successful detection of the worm by any
anti-virus software is assumed as its emergent time [42, 67].

days [5]. However, a third 2004 survey by the DTT of the UK provided more conserva-
tive estimates® that an average large business only received a virus once per week and
incurred an infection once a month [37].

While most of the above studies group all self-propagating malicious code as
viral and do not differentiate the methods of infection (email, network exploit, physical
media, etc.), mass-mailing worms (those that spread via infected emails) are one of
the more malignant variants of malicious code. At least eight out of the ten computer
worms most frequently reported during 2004 to a prominent anti-virus company spread
via email [70]. Moreover, in the DTI study 75% of the worst virus outbreaks were
caused by Blaster, Sobig, and Bugbear; the last two being mass-mailing viruses. Thus,
while viruses that exploit network vulnerabilities (e.g., Code Red, Blaster and Slammer)
spread faster [49], mass-mailing viruses continue to be prevalent, perhaps because they
require no special exploits and still achieve success.

Protecting against mass-mailing viruses is an active research area; however, the
traditional signature-based anti-virus defenses deployed in the field have not changed
significantly over time. Unfortunately, while these methods generally benefit from high

accuracy, recent research (and empirical observation) has demonstrated that in the one

3Discrepancies between these surveys may be due to the fact that the NHTCU survey only interviewed
businesses with more than 100 employees while more than 50% of the DTI survey was of businesses of
fewer than 100 employees [5, 37].



hour to one day it takes to receive a new virus sample, analyze its behavior, generate new
signatures, and distribute updates to anti-virus scanners, widespread infection among
vulnerable hosts can already occur [72]. As was shown in a study of the proliferation
of the MyDoom.BB virus [44], anti-virus vendors took as long as 17 hours from the
time the virus was first detected with a mean and median response time of above 7
hours [42, 67]. The results of this study are shown in Table 1. Moreover, the damages
cited in the FBI survey [21] happened in spite of the fact that 99% of the total 488
companies surveyed used anti-virus software, and 98% used firewalls with similar results
for both the NTHCU and DTT of the UK [5, 37].

Thus, traditional signature-based methods alone are insufficient for containing
the spread of modern email worm outbreaks. As pointed out in the 2004 security report
of Messagelabs, virus writers exploit the “window of vulnerability”, the lag between
virus release and email signature generation, in order to infect machines [46]. A key
to stopping worm outbreaks is to quickly choke off avenues for infection. Furthermore,
while statistical learning techniques have been applied to such problems as spam and
virus detection, in the virus domain, a single false negative (i.e., viral email classified as
normal) could have dire consequences compared to a false negative in the spam domain.
Hence, in designing a learning system for virus detection, it is not necessarily sufficient
to simply reduce the number of viral emails.

We take a reactive approach to the problem; rather than detecting the incoming
viral messages, we attempt to detect infected machines sending out mass-emails. In this
extrusion detection paradigm, we assume that novel virus infections are an inevitability.
While progress has been made for proactive novel virus detection on incoming email [45],
it only takes a single false negative to cause an infection. Even if perfect virus prevention
were deployed at the network level, mobile hosts could become infected outside of the
network and unknowingly bring the infection inside the network defenses as has been
seen with firewall defenses. Moreover, many mass-mailing viruses have multiple modes
of infection so an infection can occur even while monitoring incoming email. Thus,
our system aims at controlling an infection once it occurs in order to minimize the
damage caused by mass-mailing activity. This methodology can be effective due to
the modern strategy of worms to propagate quickly in order to leverage the window of
vulnerability of traditional detection mechanisms; that is, any level of detection success
would dampen a virus’ chance of success. Finally, by applying a solution at the network
level, quarantining the activities of an infected machine has the potential to reduce

damage to mail-servers caused by an overwhelming stream of viral emails.



Our network solution to detecting viral activity in out-going email traffic uses
modern statistical learning techniques to monitor for sufficient deviations from normal
email behavior. This design incorporates a set of features used to represent the current
state of email behavior. Using feature selection techniques, we chose a robust set of
features that can accurately distinguish between normal and viral behavior. These
features are used to characterize the email behavior of a machine using a classification
approach that employs a coarse model of user behavior. Novelty detection is used as a
filter to isolate most normal email, and a classification layer leverages past viral behavior
to reduce false positives seen in traditional novelty detection. The resulting system is
capable of quarantining users believed to be exhibiting viral behavior.

Finally, given the apparent arms race between spam detection and spam obfus-
cation, we also began to consider the long-term ramifications of deploying an automated
virus detection system. While extensive work has been done to quantify the “capac-
ity” of learning techniques [31], relatively little work has considered malicious scenarios.
This is due in part to the fact that worst-case scenarios in machine learning are quite
dire. However, as these techniques are deployed in security sensitive environments, it
is inevitable that malicious users will attempt to subvert them. Thus, it is becoming
increasingly important to isolate attack scenarios and design learning approaches that
make subversion difficult. Along this line, we examines a specific attack scenario relevant
to the viral detection system we implemented.

This thesis is the result of collaborative and individual efforts on the part
of its author and draws from both. In particular, much of our system design and
experiments for viral detection were the results of joint research efforts with Steve
Martin, Anil Sewani, Karl Chen, and Dr. Anthony Joseph, which are also presented in
a publication [40] and the theses of Anil and Steve [41, 68]. I also collaborated with
Marco Barreno and Russell Sears in considering adversarial learning, but the analysis
presented in Chapter 5 was my own contribution. In addition, the development of the
learning hierarchy presented in Appendix A was largely my design and implementation.

The remainder of this thesis is organized as follows. We begin by examining
the previous work that has been done in this field in Chapter 2. Then in Chapter 3
we introduce the set of features that we collected in email and motivate why these
features can discriminate between user and viral behavior. Chapter 4 introduces the
system itself, followed by an analysis in Chapter 5 of a simple attack scenario against
the sort of statistical learning techniques utilized in our approach. Finally, Chapter 6

summarizes our work by discussing the lessons learned and how we plan to move ahead.



Chapter 2

Background

In the past decade, a variety of work has emerged on automated statistically
founded approaches to networking problems such as intrusion, spam, and virus detec-
tion. These approaches have provided several successes, but have also been met with a
variety of criticism. This chapter discusses some of the notable approaches that have
influenced our considerations for implementing a virus detection system.

The major arena of applied statistical learning in the systems/networking do-
main has been in spam detection. With spam consuming more and more system re-
sources [24, 51|, there has been an increasing need for reliable spam filtering. In fact,
according to Steve Ballmer of the Microsoft Corporation, the company has had to de-
velop special technology and devote several employees to filtering mail to Bill Gates, who
receives around four million unsolicited messages per day [1]. The common approach
to spam filtering has been a direct application of Bayesian techniques to the corpus
of words contained in email’s body [22, 60]. Moreover, Bayesian and other techniques
have been directly incorporated in commercial spam filters such as SpamAssassin [65],
SpamBayes [47], and Mozilla’s Spam Filter [71].

One interesting alternative method of examining messages is the construction
of social networks [4, 52]. In these models, users within a network are considered
as nodes of a graph, and communication between any two nodes is indicated via an
edge between the nodes. Cliques of nodes form a social network, indicating common
communication patterns. Communication that violates these behavioral patterns is
considered abnormal.

Meanwhile, outside of the spam domain, there have been several notable efforts
at applying similar techniques to virus and intrusion detection. However, in the spam

domain, detection failures do not result in the system being compromised. Hence,



statistical techniques have been faced with more criticism in security sensitive arenas.
Moreover, in spam there is a clearly defined goal of advertising a product that results
in highly characteristic messages. The goals in virus and intrusion detection are less
well-defined although certainly characteristic.

Recently, a number of papers have examined the behavior of worms. The
behavior of scanning worms such as Code-Red and Slammer were used as case studies
in examining the propagation patterns of these worms [49, 50, 72]. Similarly empirical
behavior of the mass-mailing worms Mydoom and SoBig was examined in the study by
Wong et. al. [88]. From observation, virus detection systems have been built around
the following characteristics: fast propagation rates, sending patterns, and the presence
of malicious executables.

One effective approach to virus detection is based on the characteristic of
viruses to propagate at rates only limited by the bandwidth of their host’s network.
Several researchers have explored email virus/worm containment strategies based on
this behavior. Williamson et. al. present a method that throttles the frequency at
which email can be sent to previously unseen recipients [85]. Similarly, Ganger et. al.
used abnormal DNS lookups to detect behavior indicative of scanning worms [19] while
Chen et. al. used the correlation between an increased rate of failed connections and
viral behavior for this purpose [8].

Other approaches using statistical analysis of outgoing email include moni-
toring the frequency of communication events between clients and their mail server for
anomalies [25]. The authors obtain a near 100% accuracy rate for their simulation-based
experiments, but they do not discuss the consequences of their fundamental assumption
that all virus traffic goes through a central SMTP server that is observable. We have
found that several viruses install their own SMTP engines on infected hosts and propa-
gate with lists of known open relays [81]. In addition we believe that there are features
other than those based on frequency that indicate worm activity.

Another characteristic of viruses is that their sampling of recipients from the
host’s address book (or from other sources) exhibits a pattern not seen in normal email
traffic. Leveraging this behavior, social network analysis detects virus emails as well as
spam by creating network models where users are represented as nodes in a graph, and
communication between users as edges [20, 52]. Clusters of nodes in the graph form a
social network, and messages that violate these behavioral patterns are considered sus-
pect, e.g., spam or virus. While worms can easily bypass social networks by intelligently

choosing recipient lists (e.g., by using recent emails in the user’s ‘Sent Email’ folder),



such graphs can offer valuable insight into email behavior. Stolfo et. al. combine a
variant of social network analysis with several features calculated on sent email (e.g.,
frequency and quantity of emails with attachments) to detect abnormal user behavior
indicative of a viral infection [74, 75]. While our classification methods do not use social
networks, we do include several similar features.

The final viral characteristic is the presence of a malicious executable attached
to an email message. Schultz et. al. use a Naive Bayes classifier trained over con-
secutive byte sequences and printable strings in email attachments to detect malicious
executables [63, 64]. Maloof et. al. extended this idea to decision trees, Support Vec-
tor Machines, k-nearest-neighbors and Term Frequency Inverse Document Frequency
(TFIDF) models [35]. These attachment analysis techniques are effective, but they
cannot detect email worms that spread via other exploits, such as scripts embedded
in HTML or links to pages that infect vulnerable web browsers (e.g., BubbleBoy and
some variants of Mydoom [43, 76]). In addition, binary file analysis can be prevented
by cryptographic code obfuscation techniques [18].

Novel virus detection has begun to emerge in the commercial setting although
is not currently as prevalent as spam detectors. Solutions such as Panda’s Truprevent(c)
are deployed on individual machines and attempt to thwart unknown infections by
analyzing behaviors using heuristics [53]. Similarly MessageLabs’ Skeptic(C) program
employs adaptive heuristics at the mail server leveraging a large corpus of viral and user
behavior to prevent novel infections [45]. However, as these companies have made their
methodologies proprietary, it is hard to evaluate the effectiveness of their techniques
other than through empirical results.

Although attacks against learners have been not been widely reported to date,
several researchers have discussed methodologies for doing so. Wittel and Wu suggest
the concept of ‘strong statistical attacks’ against spam filters [86], in which emails are
specifically designed to subvert statistical techniques. One such attack was proposed by
John Graham-Cumming that used a spam filter to learn a set of words that would cause
a targeted learner to misclassify spam messages [23]. While the proposed attack was
restricted! it shows the vulnerability of learners and how attackers could use machine
learning techniques against their targets.

As mentioned at the beginning of this chapter, the primary theoretical learning

result for malicious situations was provided by Kearns and Li [30]. In particular, under

!The success of the attack depended on feedback from the filter and would only be feasible against
network-wide filters



the PAC framework, a learner is characterized as ‘e-good’ if has a false-positive and
false-negative rate of less than e¢ with a probability of 1 — § for parameters € and 9.
Kearns and Li use this theoretical construct of PAC learning to derive bounds? on the
maximal fraction of malicious error, which describe the degree of training pollution that
learners can be expected to tolerate. The bounds are applicable in the general setting,
but do not describe attacks in which the adversary is limited in choosing malicious data
to insert.

Recent work has begun to address specific attack scenarios and propose coun-
termeasures for preventing such attacks. Dalvi et. al. propose a game-theoretic approach
to the problem of adversarial classification [12], in which they examine the effect of an
attacker in a cost-sensitive learning environment. In particular, they assume that the
attacker wishes to misclassify ‘negative’ points (e.g., spam) by altering some subset of
that point’s features with minimal cost. The cost is some measure of the attacker’s
utility for that feature; e.g., time required to alter the feature or decrease in value of the
point due to the altered feature. The attacker’s objective is quantified in terms of solving
an optimality problem that leads to minimal incurred cost for maximal profit gained.
Based on the attacker’s optimal course of action, Dalvi et. al. develop a technique for

detecting points likely to have been altered.

2The general bound derived by Kearns and Li is that the maximal malicious error for a representation
class C'is Emar(C) < 1. and they derive more specific results for particular classes of algorithms and
error [30].




Chapter 3

Email Feature Analysis

The first step in developing a system for detecting virus email is the selection
of a set of features used to describe an individual email. While the term feature has
several possible interpretations, in this document it will be used exclusively to describe a
statistic that represents a measurement of some aspect of a given user’s email activity or
behavior. Each email is represented as a set of features, which represent various aspects
of the user’s behavior that produced that email. Hence, in comparing the emails by
means of these feature sets, novelty detection algorithms attempt to identify sufficiently
deviant behaviors.

In seeking to distinguish normal from viral email, we proposed and imple-
mented tools to extract features thought to be relevant for this task. The features were
considered based upon our observation and intuition of the differences between the
two types of email behavior. Underlying these choices were the following observations
of email viruses: they must have an infection medium, they often attempt to avoid
detection, they often have some degree of repetition between emails, and they have
traditionally sent email at extraordinary rates. Thereby, implementing features that
captured these behavioral differences allowed us to detect the kinds of abnormalities
indicative of viral infections.

The remainder of this chapter describes the features that were considered in
our study and the process of choosing features which were most relevant to the detection
of viruses. For an in-depth description of the implementation of the feature extraction
architecture refer to Steve Martin’s thesis [41]. The design of the remainder of the

system is discussed in detail in Chapter 4.
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3.1 Features Extracted from Email

We selected and implemented two dozen separate features with the underlying
goal of obtaining a set of statistics that accurately distinguishes between normal and
abnormal email activity. While the features are ostensibly a representation of a single
email’s state, this is not entirely the case; some features are derived entirely from the
current email, while others are composite features calculated over a fixed-size window of
the most recent emails. The per-email based statistics are straightforward descriptions
of the email. However, the window-based features represent the current state of the
email-flow at the point the current email is sent (these are empirical averages, variances,
or frequencies). By allowing both categories of features into the email description, we
blurred our definition of what a set of features represents (some strange blend of an
email and an email flow) and we introduced unusual temporal dependencies between
email instances. These temporal dependencies weaken the independence assumptions
of our Naive Bayes model as is discussed in Section 4.4.4. However, in analyzing the
relevance of our features in Section 3.3, features from both categories were found to be
highly relevant to distinguishing between viral and normal email traffic.

Our features also were classified by the domain of their values. While all were
non-negative, some had support over RO*, while others were strictly integer (Z°%), and
still others were restricted to a finite set of values (often {0,1}). As an example, a
frequency calculation returns a real-valued number, whereas a feature involving types
of email attachments is represented as an array of bits, where each bit represents the
presence of a specific type of attachment. Features with finite domains were treated
as multinomials, for which we sought to calculate the probability of each of their val-
ues occurring. The remain features were treated as continuously-valued features. The
continuously valued features were fit to distributions, however, often the user and vi-
ral distributions substantially differed. The distributions of the features is discussed in
section 4.4.2.

The features discussed below were implemented in Java under a framework
that allowed features to be extracted either from live email streams or from saved
emails stored on disk. The features were implemented in an extensible fashion for
ease in selecting features or adding new ones. Moreover, the architecture was designed
to process email in real-time without saving the actual message but rather only the
necessary state statistics. For a more thorough discussion on how this email-extraction

architecture provides speed, security, and privacy, refer to the thesis of Steve Martin [41].



11

The following sections briefly describe our feature choices and why they are
included. We revisit the question of the importance of each feature in distinguishing

between separate users in Section 3.2.

3.1.1 Features based on a Single Email

The following sections describe numerical values calculated on a per-email

basis.

Single Email Multinomial-Valued Features

Features in this category represent their output as one or more bits. Multino-
mial return values are in the form of a bit string.

Whether or not the message is a reply or forward: This feature is
determined from the email text itself, and not from the subject. A truly sophisticated
worm could attempt to generate replies to sent email that would fool a user, but current
worms do not do this.

Presence of HTML: This feature is helpful because there are exploits re-
sulting from buggy HTML parsing by mail user agents, such as those used by the Kak
worm to propagate [77].

Presence of HTML script tags/attributes: This is split into a feature
indicating the presence of script tags and a feature for indicating the presence of scripting
attributes in other HTML tags. These statistics are particularly useful in detecting
emails that are potential security risks from their embedded HTML code alone. As an
example, the VBS.Bubbleboy virus contains an embedded VBS script in the email it
sends [76].

Presence of embedded images: Embedded images are often used by spam-
mers to verify address lists through logging requests by the mail user agent’s HTML
renderer for the image on the web server. Also, images could be used to exploit buggy
image processing, such as the well-documented Microsoft JPEG vulnerability [48].

Presence of hyperlinks: Several worms propagate by emailing links to in-
fected web pages that then infect the machine through browser security holes. An
example is the Bubbleboy virus [76].

MIME types of file attachments: The MIME type of a file is assigned by
the sending mail user agent either using magic numbers (see below), or through querying

a local table with the filename extension. Each binary value represents the presence of
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a specific type of file. Attachments are the most prevalent infection method for email
worms.

Presence of binary, text attachments: This multinomial statistic is cal-
culated in a similar manner to the previous feature. It is particularly important in the
case where an email has a binary or text file attached whose type is corrupt or unknown.

UNIX “magic number” of file attachments: Worms often assign mis-
leading MIME types to fool virus scanners. An example of a worm that uses such a
MIME exploit is the Nimda virus [78]. The magic number is an accurate method of de-
termining the true file type, and if an attachment’s magic number does not correspond

to its MIME type, it is possibly malicious.

Per-Email Continuous Features

Total size of email, including attachments: Most worms send similarly
sized emails due to limited polymorphism in text and identical attachments. This feature
leverages these similarities.

Total size of files attached to the email: Many worms send infected
messages with fixed-size attachments repeatedly, while using polymorphic subjects and
bodies.

Number of files attached to the email: Most people do not attach many
files to their email, whereas the majority of worms require opening an attachment to
propagate.

Number of words/characters in the subject and body: These features
help build a basic profile of the user’s writing characteristics. Most text used by preva-
lent worms is randomly chosen from a fixed number of strings either contained within
the worm code or from the victim’s machine. In addition, spam emails have been found

to share certain wording characteristics [22].

3.1.2 Features based on a Window of Emails

We now describe numerical values calculated over a window typically consisting
of the user’s last twenty messages. All statistics are continuous.

Number of emails sent: Worms and active spam machines tend to send
emails more frequently than the average user.

Number of unique email recipients: This feature counts addresses in the

To:, CC:, and BCC: (if available) headers. The frequency with which one sends mail
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to distinct users captures an important aspect of email behavior, i.e., sending frequent
emails to large numbers of distinct users might indicate worm or spam-bot activity.
Another method for representing this information is social networks [4, 20, 52].

Number of unique sender addresses: Many users have multiple active
accounts on the same machine. However, a single machine sending email with a large
number of unique addresses in the From: header field at a high rate is indicative of
obfuscation techniques used by many viruses.

Average number of words/characters per subject, body; average
word length: These features capture trends in email wording that separates spe-
cific user characteristics, and likewise could also separate normal email from malicious
activity.

Variance in number of words/characters per subject, body; variance
in word length: These types of features have been used in previous work with some
success to detect the behavior of email viruses [74, 75]. We apply then here for the same
reasons.

Ratio of emails with attachments: Most users do not send many emails
with attachments — 4.e., over all emails sent previously, the number of messages with
attachments is typically low. Most worms, however, spread via attachments. This fact
coupled with the typically high sending rate of viruses makes this feature extremely
useful. Note that this feature does not include email agents that send HTML message
portions as attachments normally, as our implementation attempts to account for this.

Ratio of emails with replies or forwards: This feature captures whether a
user on average is more likely to write replies to queries or initiate original conversations.
In addition, as was mentioned previously, most current worms do not try to represent
infected messages as replies to emails from the user, as it could be difficult to successfully

fool someone who is familiar with their email correspondents.

3.2 Feature Analysis

Our feature set is designed to capture specific elements of user email behavior
that separate normal from abnormal (worm propagation) activity. To better understand
the individual contributions of each feature to the overall effectiveness of our technique,
we next present an analysis of the ability of each to capture information specific to

individual behavior.
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Moreover, examining the distributions of features for viruses and normal users
provided a glimpse of the specific role that the feature plays in classification. Our
analyses showed that certain features are quite discriminative between the two groups
while others provide little insight to the difference between the two classes. Finally our

analyses support the idea that our features provide a coarse model of email behavior.

3.2.1 Feature Distributions

In order to gain a better understanding of the contribution of our individual
features to the decision of our classification system, we performed a small empirical
study of the email produced by a single user (an EECS graduate student at Berkeley)
and six well-known viruses. The details of the study are presented more thoroughly in
Chapter 4.6 along with a more comprehensive description of the viruses in Table 3. We
examined the individual features’ empirical distributions and used them to estimate the
distributions for our Naive Bayes model as discussed in Chapter 4.4.2. A few of the
more ‘successful’ features’ distributions are presented in Figure 1. These histograms
show the potential for separating users and viruses based on our set of features.

To get a more comprehensive understanding of the contribution of our feature
set to distinguishing between users and viruses, we performed the covariance analysis
discussed in Chapter 3.3.1 and used that analysis to determine which features were
generally most relevant to the desired classification. The first part of this analysis
focused on identifying characteristics of each virus that made it unique from other viruses
as shown in Figure 2(a). As can be seen, Bubbleboy.F is by far the most distinctive virus
as it has a different infection mechanism that involves embedded scripts rather than a
malicious executable. It also has a fixed body and subject unlike the other polymorphic
worms. As such, this virus differed in features involving scripts, word counts, and
attachment presence. The remainder of the information from the first analysis yielded
little insight, but the second analysis yielded far more information.

The second part of the analysis identified viral characteristics that best distin-
guished the virus from the user in our study as shown in Figure 2(b). Again, this figure
shows that Bubbleboy.F was quite distinctive from the other viruses. Bubbleboy dif-
fered mostly in features involving its HTML and script content as well as the fact that it
has an enlarged body due to its embedded script. The other viruses were clearly distin-
guished by features involving their deviant attachment behavior. Surprisingly though,
these viruses also seemed distinctive in a number of features involving the subject of the

email. Also, it was surprising that the number of emails sent in a window only seemed
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Figure 1: Diagrams of the histograms of features for a set of emails differentiating
between the ‘normal’ email of an EECS grad student and the ‘virus’ email generated
from the virus Bagle.F [79]. The figures show the normalized histograms (normalized to
sum to one across all email) for the features ‘Number of Emails Sent’, ‘Mean Words in
the Body’, ‘Number of Attachments’, and ‘Ratio of Attachments’. The clear separation
of viral and normal traffic across these features made them good candidates for our final
feature set.
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to play a secondary role according to the analysis when empirical results have shown
this feature to be quite distinctive. Nonetheless, the results showed the potential of the
feature set to the problem and motivated the feature selection process in the following

section.

3.2.2 User Models that Capture E-mail Behavior

To motivate the idea of models of email behavior, we also analyzed the fea-
tures across a large data corpus of the Enron dataset that has been made publicly
available [33]. This corporate dataset provides insights into the email behavior at an
enterprise level although the dataset lacked attachments (thus limiting the features we
could examine). For the following analysis, we used data for all users in the Enron data
set that had sent-mail folders. There were a total of 126,078 emails between 148 users,
with each user having between 3 and 8926 emails. Most users (53.4%) had between 100
and 1000 emails with 22.3% below 100 and 24.3% above 1000.

Figure 3 demonstrates the similarities we found between users in this dataset.
We performed the maximal covariance analysis to distinguish users in the Enron dataset
generating a “signature” for each user based on their distinguishing features. This sig-
nature is depicted as a single column in Figure 3. By clustering the users based on these
signatures we were able to identify groups of users with similar behavioral characteris-
tics as shown in the figure. The clusters indicate that several canonical behaviors can
account for the majority of individual user behaviors making the deployment of systems

based on per-user models feasible.

3.3 Feature Selection

The problem of optimally selecting statistical features can be categorized as
feature extraction and feature selection. Feature extraction creates a smaller set of fea-
tures from linear combinations of the original features, while feature selection simply
chooses a subset of the original features (in essence a boolean version of feature extrac-
tion). As indicated by the title, we have concentrated on the task of feature selection
since it is important to preserve the feature distributions for Naive Bayes and selection
provides insight into individual feature relevance [34, 60].

The task of feature selection, a concept that has been well studied in the
statistics and machine learning literature [2, 26], is the process of choosing a subset of

a feature space that best represents the problem at hand while minimizing the amount
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Figure 2: Comparisons of how the viruses under study differed in their behaviors. For
each virus we used the covariance analysis discussed in Chapter 3.3.1 to determine the
unit direction in feature space that maximally distinguishes the virus. These figures
show that direction for each virus as the squared contribution of each feature to it.
The shading is indicative of the strength of the covariance between the random variable
indicating the virus type and the features. Figure 2(a) is a covariance analysis comparing
the viruses against each other. Thus it demonstrates the features that best distinguish
each virus from the others. Figure 2(b) is a covariance analysis comparing each virus
to the user we studied. This demonstrates the features most salient for the detection of
each.
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Figure 3: A plot of the direction of maximal covariance for each user in the Enron data.
The users are clustered based on these directions to emphasize the similarity between
users. The obvious clusters are demonstrated by circles around their most prominent
features for clarity.

of lost information. Choosing the subset of features that optimally predicts the desired
function is computationally infeasible - the number of subsets of a set grows exponen-
tially with the set size. As such, greedy methods are often employed. We now present
a simple method for using the results of covariance analysis to reduce the feature set
by concentrating on the features that contribute the most covariance with the desired
target labels Y.

The approach we chose for feature selection actually leverages methods of fea-
ture extraction to provide a ‘relevance score’ for each feature. The common approach
uses Principal Component Analysis (PCA) to find directions in feature space that max-
imize variance. Classical PCA determines such directions, but fails to find individual
features that maximize variance. Instead, it determines linear combinations of the fea-
ture set. Nailve greedy selection of features by choosing the dominant feature in each
principal component is effective, but fails to account for redundancy in the feature set.
The selectivity of PCA can be enhanced by modifying the optimality criterion to favor
sparse directions of maximum variance by imposing either an L1 constraint on the prin-
cipal components [90] or a sparsity constraint through Semi-Definite Programming [14].

These PCA-driven approaches could be incorporated in a framework for Directions of
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Maximum Covariance [69] to discover directions in the data that maximize variation in

labels.

3.3.1 Covariance Analysis

While PCA is useful in many settings, its choice of directions in feature space
do not necessarily lead to good discrimination since class labels are not used. Instead,
we apply a similar method of data analysis, referred to as maximum covariance by
Shawe-Taylor and Cristianini [69]. This technique determines the directions in feature
space that maximize the covariance between observations and their class labels (correct
classifications). This is accomplished through a singular value decomposition of the
covariance matrix Cy, = cov [X,Y], or the correlation matrix cor [X,Y] where Y is the
corresponding set of labels for each observation.

To apply the directions of maximum covariance technique, consider X to be
an m-dimensional random variable representing the features of a given observation and

Y to be an k-dimensional random variable corresponding to the label of X. Given a set

n
=1

of n observations of pairs {(X;,Y;)} the empirical covariance matrix is given by

Coy = E[(X-E[X])- (Y —E[Y])]

- E[X-YT] ~E[X] E[Y]"
= LY x-S XYY

The singular value decomposition decomposes Cyy by Cpy = U YVT where U is a m xm
unitary matrix of z-principal components, ¥ is a diagonal matrix of covariances, and V is
a k x k unitary matrix of y-principal components. By computing directions of maximum
covariance, the resulting principal components maximize the covariance between the

random variable X and Y.

3.3.2 Feature Selection by Covariance Analysis

The simplest method to perform feature selection via covariance analysis is
a greedy approach in which features are ranked according to their contribution to the
first principal component of the covariance matrix. Suppose that the first principal
component is given by u; = <u1,1, U1,2,...,U1,m). Then we simply rank the i-th feature
according to its corresponding squared contribution, uii. However, this naive selection
mechanism entirely ignores the possibility of redundancy between features. This tech-

nique is similar to a method of linear regression referred to as principal components
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regression in Chapter 6.7 of Shawe-Taylor and Cristianini [69]. However, in our ap-
proach we greedily select a single feature based on the weighting of the first principal
component.

To remove some degree of feature redundancy, we can deflate the covariance
matrix as features are chosen. In this technique, features are selected in a greedy
fashion, but after each selection, the covariance matrix is deflated by the basis vector

corresponding to the selected feature. The result of this operation is
’ Y T
Coy < (Im — eje; ) Cay (Ik — ooy )

where ¢; is the i-th basis vector, I,,, is the m x m identity matrix, , Iy, is the k x k identity
matrix, and o; = Cyyei/ ||Cyyei||. This technique is equivalent to iteratively selecting
the most prominent feature of the first principal component, removing the contributions
of the selected feature from the covariance, and recomputing the first principal compo-
nent. By recalculating the principal components from the deflated covariance matrix,
covariance captured by the selected feature is removed so that subsequent selections
concentrate on portions of the covariance not captured by initial choices. By deflat-
ing, redundancy can be reduced, but the selection process is still greedy so the optimal
subset of features is not necessarily chosen.

The greedy approach presented here suffices for our demonstration of feature
selection. In particular, in analyzing the features most relevant for distinguishing be-
tween a user and our test viruses, we found the following partial ranking:

1. Ratio of emails with attachments

Binary attachment

MIME type application/octet-stream

Magic type application/x-ms-dos-executable
Unclassified binary magic type

Frequency of emails in window

Number of attachments

Mean words in body

© e N ;e W

Mean characters in subject
10. Magic type application/zip

Not surprisingly, the dominant features personify the fact that viruses’ behav-
ior deviates primarily in the number and type of attachments used as well as the rate
at which they send email. This list demonstrates the redundancy problem in that three

of the top five features are related to whether an executable attachment is present.
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In the future, more judicious pruning of redundant features is warranted to capture
the essential information. Preliminary feature selection based on Fisher discriminant

analysis [69] produced results similar to our method.

3.3.3 Choosing Features for Virus Detection

We next demonstrate the effectiveness of our feature selection by evaluating
the performance of classification models in detecting viral traffic using artificial email
traces. To this end, we captured real email worm messages from the Bagle.f, Netsky.d,
Mydoom.u, Mydoom.m, and Sobig.f email worms by infecting VM Ware virtual machines
and using a transparent SMTP proxy setup to intercept all SMTP traffic on port 25.
We chose these worms both due to their virulence and because each behaves in a slightly
different manner with regards to our features. For more details on the behavior of these
viruses, refer to Table 3.

Having collected samples of virus emails, we created a set of simulated email
traces meant to mimick the behavior of a computer as it becomes infected. We con-
structed these artificial traces by combining clean and infected email data. The clean
email trace was obtained from one of the investigators’ ‘Sent mail’ folder. To simulate
worm activity, we interleaved viral emails into the clean email corpus to simulate infec-
tions. The dates of the infected messages were corrected to maintain consistency, but
inter-arrival times were kept the same so that frequency information was retained.

This process of infection simulation was used to create a set of training and
test sets!. The training set consisted of 800 normal emails and 800 viral emails from
2 different viruses (400 emails from each virus). The test set consisted of 3000 normal
emails and 1200 viral emails from 3 different viruses. In both training and test data
sets, data was interleaved to simulate periods of normal activity followed by a burst of
activity due to an infection. In the case of the training data this consisted of 400 normal
emails, 400 emails for the first infection, 400 normal emails, and the 400 emails from the
second infection?. Similarly, in the test data normal and viral emails were interleaved
in periods of 1000 normal followed by 400 viral messages. Moreover, the training and
test viruses were disjoint and ten such pairs of disjoint sets were created.

Having applied feature selection, we used several well-know statistical models

to evaluate the performance of our feature set as the features were incrementally added

!These sets can be obtained from the investigators upon request.
2The pattern of alternating between normal and infected periods of activity is somewhat artificial,
but does exhibit the fundamental behavior of bursts of viral emails after long intervals of normal traffic.
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Figure 4: (a) Change in model accuracy as more features are greedily added to an SVM
model. (b) Change in model accuracy as more features are greedily added to a Naive
Bayes Classifier. In the key, the first two specify the viruses trained against, and the
last three the viruses tested against.

according to their ranking. In particular, we used a one-class Support Vector Machine
(SVM) with a Gaussian (RBF) kernel and a Naive Bayes model. For the SVM, the data
was standardized via a PCA transformation and the one-class SVM was trained to allow
only a small fraction, 0.1%, of outliers during training. Meanwhile, the Naive Bayes
model is the standard two-class probabilistic model widely used in spam detection [47,
66]. These models were selected as they are the models deployed in the actual virus

detection system and are discussed in more detail in Section 4.3 and 4.4 respectively.

3.3.4 Results and Discussion

For each dataset, the models were trained on the training data. However,
as discussed in Section 4.3, since the one-class SVM is an outlier detector it was only
trained on the ‘normal’ training email. Once trained, each model was assessed on the
corresponding test set. The results of testing the SVM and Naive Bayes models with a
variable number of features are shown in Figure 4 as plots of the overall classification
accuracy. While not shown in the figure, the false positive rate generally started high
due to the lack of generality caused by fewer features and decreased as more features
were added. The false negative rates generally increased due to overfitting as extraneous
features were added (although a few experiments initially had high false negative rates
due to the lack of generality of a limited number of features).

It is also evident in Figure 4 that the degradation in performance of the Naive
Bayes and SVM models differ. The step-like performance of Naive Bayes is attributable
to the thresholding of the posterior probability in determining the classification of an

email. Meanwhile, the more erratic behavior of the SVM is likely due to its instance-
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based nature. The SVM’s classification boundary is supported by representative emails
which may change substantially as the feature set is altered.

These experiments reflect well known guidelines; too few features are insuffi-
cient for generality while too many features cause over-fitting. In addition, the curse of
dimensionality, which says that the size of the training set necessary to learn the clas-
sification function grows exponentially with respect to the dimensionality of the data,
further deters a bloated feature set. However, these guidelines are not necessarily appli-
cable to the one-class SVM, which has the ability to limit overfitting through appropriate
selection of model parameters - a technique known as ‘regularization’. Similarly, the
amount of training data required for SVM generalization is not necessarily governed
by the data’s dimensionality, but rather by the ‘kernel matrix’. While these topics are
beyond the scope of this discussion, further information is available in Shawe-Taylor

and Cristianini [69].
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Chapter 4

User-based models as a Virus

Detection System

Our system is designed to prevent novel email-borne worms from spreading
before detection signatures are deployed by restricting propagation via extrusion detec-
tion as discussed in the introduction. The prominent statistical method for detecting
novelties is aptly referred to by novelty, anomaly, or outlier detection [39]. A novelty
detector learns a boundary around normal data in feature space by first being trained
on known non-viral data, and then uses the boundary to classify unseen email as either
normal or anomalous. Novelty detection is a well-suited classification paradigm for our
problem since it is easy to observe the behavior of a single user, while inter-virus be-
havior may differ dramatically and future novel viruses could be designed specifically
to deviate from typical viral characteristics.

However, novelty detection also has several drawbacks. Since a novelty detec-
tor is trained solely on “normal” data, standard approaches fail to exploit information
gleaned from available data known to be anomalous. Moreover, implementing incre-
mental novelty detection is problematic. The problem is that novelty detection is an
unsupervised technique that assumes that anomalies are rare. In the case of virus detec-
tion, while infections may be rare, once an infection occurs, the virus will generate emails
at a rate far higher than a typical user. Moreover, were the algorithm to autonomously
select data to retrain on, it would bias the training distribution as is discussed in Sec-
tion 5.6.1. As such, we decided to employ a multi-layered approach to virus detection
that uses both novelty detection as well as two-class classification.

The overall architecture of the multi-tiered approach is motivated in Sec-

tion 4.1. After discussing our design decisions, the individual components of the ar-



25

Feature | Novelty | Parametric .| Threshold
Calculation Detector Classifier Module

Figure 5: The classification pipeline. Calculated outgoing message features pass through
a global novelty detector, and the results are filtered through a per-user parametric
classifier, with any possibly infected messages reported.

chitecture are laid out sequentially: feature calculation (Section 4.2), novelty detection
(Section 4.3), parametric classification (Section 4.4), and our quarantining strategy (Sec-
tion 4.5). Finally, Section 4.6 presents an empirical analysis of this system followed by

a discussion of its utility.

4.1 Our Multi-tiered Approach to Virus Detection

Unfortunately, a significant drawback of using novelty detection is the difficulty
in selecting a sensitivity that is sufficiently high to yield a low false negative rate (i.e.,
viral messages classified as non-viral), while also yielding a low false positive rate (i.e.,
non-viral messages classified as viral). Too many false negatives would allow an outbreak
to propagate, while too many false positives could result in alerts being ignored by
human supervisors, rendering the system useless. This selection problem is a common
one for adaptive intrusion detection systems [57].

In contrast, the classification framework provides the ability to incorporate
both normal and viral data into the training of the decision boundary. That is, since
a classifier can incorporate viral information, it can leverage knowledge from previous
viruses to provide a stronger boundary. In fact, empirical studies have shown that two-
class classifiers often outperform novelty detectors by creating a second ‘novel’ class
from sampling from a reference measure [73].

To improve performance, we implemented a two-layer classification pipeline
in which novelty detection plays a secondary role of isolating suspicious traffic for fur-
ther inspection by the classifier as depicted in Figure 5. All outgoing email from local
machines is directed through a parsing module to compute statistical features (see Sec-
tion 4.2), which are then passed through a novelty detector to eliminate messages that
have a high probability of being non-viral (see Section 4.3). Suspicious messages are
then passed on to a secondary classifier stage to determine whether they are false pos-

itives from the novelty detector or actual infected email (see Section 4.4). Messages
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Type Return Value

Feature Description

Multinomial

Per-Email ‘ Per-Window Continuous

HTML in the Email? Vv
Number of Attachments Vv
Email has Binary Attachment Vv vV

Ratio of Emails w/wo Attachments
Email Frequency

Mean Words in Body

Variance of Words in Email Body

LK
L

Table 2: A summary of the 7 features used in the implementation of the complete email
infection detection system. The first column describes the statistic being calculated,
followed by whether each feature is calculated on a per-email or per-window basis, and
the type of value returned.

labeled as viral by the pipeline will be used to classify individual machines as infected,

at which point they will be quarantined and reported to a network administrator.

4.2 Feature Calculation

The first step in classifying an outgoing email message is computing statistical
features that describe attributes of both individual messages and sender activity. Fea-
tures are calculated in two ways: on a per-email basis (e.g., the number of words in the
body of a message), and over a window of email traffic (e.g., the rate at which email is
sent over a set of messages). Each feature is represented as either a continuous value or
a multinomial vector: an example of a multinomial feature is the type of attachments
sent with an email, where each entry indicates the presence or absence of a specific type
of attachment. For a more thorough discussion of these distinctions refer to Chapter 3.1.

In order to accommodate this wide variety of features and to process emails
efficiently, feature modules were implemented in Java. These modules were made to
interact with live or stored streams of email traffic and extract the necessary feature in
an efficient way to make real-time analysis realistic. For more details on this architecture
refer to the thesis of Steve Martin [41].

In the end, we implemented 24 features calculated on outgoing email behavior.
However, as discussed in Chapter 3.3.3, using too many features causes over-fitting
of both the novelty detector and the parametric classifier, which reduces accuracy by
increasing the false positive rate. To select the set of features used for the results in this

paper, we analyzed combinations of features for their contribution to model accuracy; a
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process detailed in Chapter 3.3. The resulting seven statistics are described in Table 2.

Each feature value is part of a data point that is passed on to the novelty detector.

4.3 Novelty Detection for Virus Detection

The fundamental process of novelty detection involves estimating a classifica-
tion boundary in feature space such that data generated by the training data’s distri-
bution is likely to be classified as normal while excluding regions of feature space that
are unlikely to contain data from the training distribution. For the most part, novelty
detection has been accomplished through density estimation (the process of estimating
the probability density function of the training distribution [27, 29]) by thresholding the
estimated density function to create a boundary. In fact, in our initial project, we used
a Gaussian Mixture Model to estimate the density and applied extreme value statis-
tics to estimate the probability that a point was extreme (novel) given our model [59].
However, our current implementation uses a different approach to novelty detection.

One of the primary criticisms of using density estimation to solve novelty
detection problems is that solving the more general problem goes against a simplicity
principle often credited to Vapnik [61]. Instead, the technique we employed was that of
the one-class support vector machine (SVM), which solves a simpler problem. Namely,
the one-class SVM estimates the support of the distribution [61, 62]; that is, the smallest

region whose complement has zero probability.

4.3.1 The One-Class SVM for Novelty Detection

The one-class SVM is able to create non-linear boundaries in feature space by
means of kernel functions (discussed later in this section). It is one of several linear-
pattern algorithms' that estimate a distribution’s support. Several such methods at-
tempt to bound the distribution within a hypersphere with a minimal radius [69] while
one-class SVMs attempt to maximally separate the training points from the origin via
a hyperplane. While the latter idea seems less like novelty detection and has been crit-
icized for using this prior assumption of origin-separability [6], the one-class SVM has

been shown to correspond to the minimally enclosing hypersphere under appropriate

!Linear-pattern algorithms should not be confused with algorithms that run in linear time. Rather,
linear-pattern algorithms are pattern analysis algorithms that estimate a function f(x) solely in terms
of inner products: f(x) = (x,w) + b
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conditions on the kernel functions 2. Moreover, there has been extensive work done on
the efficient implementation of support vector machines both in terms of their running
time and the sparsity of their solution as is discussed in Appendix A.2. To the best of
our knowledge, no such efficient implementation exists for the hyperspheres although
their solutions are still sparse.

Essentially, the one-class SVM is a slight modification of the well-known two-
class SVM that attempts to maximally separate a single ‘normal’ class from the origin
rather than maximally separate two distinct classes. As with its counterpart, this sepa-
ration is done by a hyperplane which forms a boundary; all points that fall on one-side
of the boundary are classified as ‘normal’ while those on the other side are ‘novel’.
Both techniques employ a ‘maximal-margin’ argument that attempts to maximize the
distance of training points to the separating hyperplane. Allowing some of the training
data to fall on the wrong side of the hyperplane provides a more flexible approach and
often provides better separating boundaries.

The dual objectives of maximizing the margin and minimizing the ‘slack’ (de-
gree of misclassification) lead to a trade-off that is often personified by the ‘v-soft SVM’
in which v serves as an upper bound on the fraction of outliers [62, 69]. The v-soft
one-class SVM is represented by the following quadratic optimization [61, 62]:
win g+ 3 E

'S

(4.1)
st. Vi (w,x3) >p—&, & >0

where the training points are the set {x;}, w is the tangent vector of the hyperplane,
& are the slack variables, and p is the displacement of the hyperplane. The above
minimization is a quadratic program that has a dual formulation and a global optima
that can solved for efficiently using the SMO algorithm [32, 55, 56].

A downside to the SVM approach is that SVMs are instance-based learn-
ers; that is, their boundary is a function of the training points?, thus making it more
expensive to do queries once the SVM is trained. Nonetheless, the so-called primal
optimization program in Eq. (4.1) offers insight from the KKT-Conditions [54]. In this
case, these conditions show that either a training point is on (or beyond) the boundary,

or that training point does not contribute to the decision function used to classify new

2The one-class SVM is equivalent to the minimally enclosing hypersphere for a kernel x such that
Je Vx€x k(x,x) = c¢ [61]. Currently, all of the kernels considered in this work have met this
condition.

3For a linear kernel Klinear (T,y) = xy, the decision boundary is efficiently parameterized in the
original space, but this kernel restricts the SVM to linear separation.
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queries. Hence, this provides sparsity in the training data such that only the so-called
‘support-vectors’ (data-points on or beyond the boundary) are required to compute the
decision function.

Finally, the one-class SVM that has been discussed up-to this point is linear
in the original space but this approach can be made non-linear by an implicit mapping

4 via a special kernel function. As was seen in

into a higher dimensional ‘kernel space’
the primal and similarly for the dual program and the decision function, the data points
only were used in inner products; essentially a measure of similarity. By generalizing
this notion of dot-product, the kernel function computes the inner product in a high-
dimensional space achieved by some mapping ¢ without explicitly using the mapping.
In fact, given certain conditions on the kernel® we are guaranteed that it represents the
inner product between some mapping of the points. In this way, the kernelization of the

one-class SVM allows this technique to be applied in a high-dimensional kernel spaces,

which corresponds to non-linear separation in our feature space.

4.3.2 Novelty Detection as a Filter

As mentioned in Section 4.1 we employed a one-class SVM to filter data points
to identify messages that have a very high probability of being normal. As with the
feature selection procedures, a simple Gaussian (RBF) kernel was applied to PCA-ed
data. This simple approach to the kernel was done as a matter of convenience and a
tailored kernel designed for email is being studied.

We fit our one-class SVM so that it is oversensitive by selecting parameters for
a 25% false positive rate, which empirically results in a false negative rate under 2%. By
excluding a large portion of the fringe normal email, the novelty detector can report,
with high confidence, that certain messages are not anomalous. Thus, the novelty
detector acts as a filter to a classifier by isolating common email behavior without
creating a model for anomalous message characteristics. As shown in Anil Sewani’s
thesis, this technique is effective at reducing the false positive rate [68].

In our design, the one-class SVM also acts at a global level; that is, the same
SVM is used for all users in order to gain a generalized view of what constitutes ‘normal’
message activity. By having a single SVM, there is ample data for training whereas

single users may have a relatively limited outgoing mail history. However, while the

4While traditionally called the feature space, I'll refer to the implicit space by kernel space to avoid
confusion with earlier usage of the term feature.
5Mercer’s Theorem shows that a kernel s is positive semi-definite if and only if there exists some

mapping ¢ such that Vz,y rz,y = (¢(x), ¢(y)) [69]
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SMO algorithm makes SVM learning feasible for large data sets, an enterprise system
of mailboxes would make training a global SVM challenging and almost certainly an
off-line task. Moreover, as discussed in Chapter 5.6.1, an improper retraining could
bias the SVM. For the time being, the SVM is a static model that is only trained at

inception.

4.3.3 Kernel Selection

Although we used a Gaussian (RBF) kernel for the actual system tests, the
following section examines the effect of kernel choice for our data by looking at a poly-
nomial kernel® of the form x, (z,y) = ((x,y) + R)? where d € Z* is the degree of the
polynomial and R € R%" is a displacement [69]. Higher values of R decrease the relative
weight on the higher degree polynomials. This kernel was chosen to present how the
“learning capacity” expands as the degree of the kernel space is increased; in particular,
higher order polynomial kernels have higher dimensional kernel spaces [69].

The following experiment demonstrates the performance of a one-class SVM
using a polynomial kernel r, described above. Thus there are three variables: v, d,
and R. The experiment consisted of a training set of 400 normal emails and training
sets of 1200 normal and viral emails from 6 viruses. For each set of parameters, the
training and testing was performed 20 times to remove random variations. The variables
were sampled over various ranges (v € {0.05,0.1,0.15}, d € {1,2,...,19}, and R €
{0.1,0.2,...,9.9}).

The results of this kernel selection experiment is presented in Figure 6 in
terms of the false positive rate F'P, false negative rate F'N, and a composite metric
max(F P, FN) which is one of several ways to represent the trade-off between the two
quantities. As can be seen, lower values of R are preferred regardless of the value of
v. However, what is salient is the degree of the polynomial. For v = 0.05 and v = 0.1
low degree polynomials do not have the capacity necessary to properly separate the
training data resulting in underfitting the model (a high false-negative rate). However,
there is a sudden drop in the false-negative rates at about d = 8 and continue to drop
from there. Conversely, the false positive rates steadily increase with the degree of
the kernel; indicative of overfitting. This effect is not as apparent for v = 0.15 as the

false negatives are much less pronounced. Nonetheless, these tests show that as the

rp(@,y)

vV kp (z,@) Kp (Y,y) '

5The kernel was actually normalized to x,’(z,y) =
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Figure 6: Plots of the false positive/false negative performance of a one-class SVM
using a polynomial of the form «, (z,y) = ((z,y) + R)d where the z and y axes are
the parameters R and d respectively. The v parameter is an argument to the SVM
discussed in Section 4.3.1. The leftmost column shows the false negative rates of the
kernels over 20 tests on the PCA-ed data and the rightmost column shows their false
positive rates. The central column shows the maximum of the two rates; one of many
possible measures. In general, increasing the degree of the polynomial gives lower false
negative rates but progressively overfits yielding higher false positive rates. Thus, kernels
must be judiciously selected to prevent such overfitting effects.
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dimensionality of the kernel space is increased, the SVM overfits the data but a certain
amount of complexity is required to capture the required separation.

This fact is reinforced by a second experiment that examines the degree exclu-
sively in Figure 7. At one extreme, for small degrees of d < 18, the kernel doesn’t have
adequate complexity and thus underfits. At the other, large degree polynomials have
progressively higher false positive rates due to overfitting. However, for degree d > 150
the behavior becomes erratic and eventually results in SVMs that classify all space as
normal. This seems to be due to numerical precision errors that result in a saturated
kernel matrix (the kernel is a constant function).

The conclusion of these tests is that the performance of our outlier detector
could be improved by restricting the complexity of the simple polynomial kernels we
have considered to reduce overfitting. For the Gaussian kernel used in our design,
this analysis is not applicable. The dimensionality of this kernel is infinite, but many
directions have minuscule weight. Nonetheless, this analysis suggests that one must be
careful in kernel selection. Ideally, one should use a kernel tailored to the structure of

data. Kernel selection for our email detection project is still under consideration.

4.4 Parametric Classification

The next pipeline stage is a parametric classifier to differentiate between nor-
mal and viral traffic. While many methods could be applied to this task, we chose
to implement a Naive Bayes model that uses both labeled and unlabeled messages to
approximate the joint distribution of normal and infected email.

Naive Bayes models classify by applying Bayes rule to observed data via class-
conditional distributions. The probability of the data is given by the distribution’s fit
to known infected data. The simplifying assumption made by Naive Bayes models is
that the features of an observation are independent given its classification. While this
assumption is often violated, the model is widely used in spam detection [47, 66] and
suffices for our purposes.

In contrast to the novelty detector, the classifiers are per-user models capturing
the individual user’s email behavior. Thus, after an email has been deemed suspicious
by the novelty detector, a personalized model compares the email’s characteristic to the

user’s previous behavior and to that of known viruses. Moreover, since Naive Bayes
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Figure 7: The false positive and false negative for a polynomial kernel s, with varying
degrees of freedom and two values of R chosen from the results of Figure 6. In this test,
we perform 20 tests on the PCA-ed data for each set of parameters to the kernel. The
classifier trained is a one-class SVM with v = 0.05.
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Per-Email Window-based

Figure 8: Our Naive Bayes model represented as a graphical model [29]. The unob-
served parent variable E is the email state — whether the email was viral or not. All
child nodes F; represent feature variables and they are observed. These feature vari-
ables are partitioned between ‘Per-Mail’ and ‘Window-Based’ features as discussed in
Chapters 3.1.1 and 3.1.2 respectively. Moreover, all feature variables are over finite enu-
merations except for the continuously-valued features represented by nodes with double
circles ©. The directed arrows of the graphical model represent the model’s dependency
structure; e.g., the arc from E to F represents the distribution Pr (F;|E). Finally, the
root node E has a prior distribution Pr (E).

models generally require little training data’”, there is less concern about the size of
individual’s training set than there was for SVMs.

Finally, the Naive Bayes learners fit in nicely to our system goals paradigm as
they are light-weight (a small constant amount of state per model) and provide quick
classification — both requirements for deployment on a mail server. The remainder of

this section details the Naive Bayes algorithm and how we used it in our pipeline.

4.4.1 Naive Bayes Classification

More specifically, Naive Bayes models use Bayes rule to calculate label prob-
abilities, with an important simplifying assumption that the features of an observation
are independent given its classification; a dependency structure that is captured by the

graphical model in Figure 8. This simplification means that the joint distribution of the

"Naive Bayes and other parametric probabilistic models require little data when the appropriate
model is used [29].
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model can be factored into individual class-conditional densities:

Pr(Xi, Xo,..., X,,,Y)=Pr(Y) ﬁPr (X;|Y)
i=1
where X; is the i-th feature, Y is the class label, Pr(Y) is the prior distribution of Y,
and Pr (X;|Y) is the class conditional probability of X; given the label Y.
This joint probability is applied to classification via Bayes rule which allows
us to calculate the posterior probability of the class label:
Pr (X1, Xo,..., X,,Y)

Pr (Xl,XQ, ce 7Xn)
x Pr (Xl,XQ, e ,Xn,Y)

Pr (Y‘Xl,XQ, ce ,Xn) =

where the proportionality constant is simply the sum of the above probabilities over
all values of Y (due to the fact that the conditional probability must sum to 1). This
concludes a basic overview of the Naive Bayes classifier we used but a more in-depth

explanation of the implementation is provided in Appendix A.3.

4.4.2 Feature Distributions used in the Model

By choosing a Naive Bayes classifier we choose the generative approach to
classification, i.e., we explicitly modeled the probability distributions of each feature
conditioned on the latent variable that indicated whether or not an email was viral.
Thus, we had to describe the distributions of each of our features based on empirical
evidence. If a good model of the data is available, generative models can leverage the
information inherent in the condition distributions to produce accurate predictions with
relatively little data. However, the difficulty lies in producing a good model of the data.

For data confined to finite outcomes, this process was relatively simple. Each
feature was modeled as a multinomial distribution and each class was assigned its em-
pirical probability observed from the training data; this process is automatically done
as part of the EM algorithm for partially labeled data. Moreover, simple smoothing was
used to boost the probabilities of rare events by ensuring all probabilities were at least
a small constant.

The process was more difficult for features with non-finite support. Empiri-
cally, we examined the distributions of our continuously-valued email data and fit distri-
butions to it. The goodness of the fit of a particular distribution was accessed visually
by means of quantile-quantile (QQ) plots. However, rather than consider a rich set of

distributions, we found that fitting the data to Gaussian or Exponential distributions



36

produced good enough fits for our purposes. However, future work could produce better
results by considering a wider spectrum of distributions.

While our distributions of choice were sufficient for the user data, they did not
correspond well to the viral data at all. As seen in Figure 1, the viral data is often
distributed in a spiky fashion as compared to the smooth distributions seen for user
data. In part, these discrepancies are due to the fact that an individual user exhibits a
broad range of behavior while a single virus has almost no variance. However, between
different viruses features can differ substantially. This discrepancy was the motivation
for novelty detection, but it is not necessarily a good fit for generative models. Thus,
it remains to be seen if more accurate modeling of viral behavior could yield a better

classifier.

4.4.3 Training User Models

We train our parametric classifier on a per-user basis so that the distributions
learned for clean email are specific to each author, enabling more accurate classification
of worm infection based on message sending behavior. Messages classified as worm
propagation are passed on for quarantine and use in determining if the sending machine
is infected.

An individual’s Naive Bayes model is constructed by training on messages
extracted from the user’s ‘Sent-Mail’ folder in order to obtain an initial sample of the
user’s behavior. Meanwhile, a repository of viral messages is used to construct the viral
distributions. Initial training is fully supervised (all email labels are known) resulting
in maximum-likelihood (ML) estimates of the model parameters. However, the system
is also designed to support retraining on unlabeled email.

In a typical scenario, as a user sends email, we want to incorporate the changing
behavior of that user in retraining the model, but we lack an authority to label the
messages. Fortunately, the Naive Bayes models we use can be retrained with partially
labeled data by means of the famous Expectation Maximization (EM) algorithm [29].
At one extreme, if all the data were entirely unlabeled, training with EM would amount
to clustering, while EM training with fully labeled data is ML-estimation. Hence, in the
partially labeled case, EM is performing guided clustering (some data points are known
to belong to a particular cluster) in which unlabeled points have partial membership
in clusters. The unlabeled points contribute to the parameter estimation for each class

according the degree of their partial membership to that class’ cluster. For a more
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thorough discussion on the implementation details of training with EM see Appendix A.3
or Jordan’s book on probabilistic graphical models [29].

Retraining with partially labeled data is effective, but we also have considered
using a labeling mechanism to provide more labeled data as the system ages. In particu-
lar, we would like to leverage the information provided by traditional virus scanners. Of
course, as mentioned in the introduction there is a potentially substantial lag between
when a new virus appears and the release of signature for that virus. As such, we pro-
pose using a virus scanner to do delayed tagging; that is, email data remains unlabeled
until a sufficient time has elapsed for the scanner to be updated and provide a more re-
liable label®. However, even virus scanners have false positives (though extraordinarily
rare) and there is a potential that such mis-labeled emails could bias the distribution.
For our purposes, the rarity of such events made them irrelevant for our current study.

Finally, although the EM algorithm learns the prior distribution of the class
variable, in practice, this parameter was manually adjusted. This is due to the fact that
in training our models, we wanted to train over a large sample of viral email from our
viral repository. However, by using a large set of viruses the model would also learn
that the prior probability of a virus was artificially higher than one would expect in

reality.

4.4.4 Temporal Dependencies

As mentioned in the discussion of our feature set in Chapter 3.1, our features
violate several of the assumptions of a Naive Bayes model. Clearly there are correlations
between a number of our features (e.g., the total size of an email and the number
of attachments in the email are probably correlated) that Naive Bayes models fail to
capture. However, perhaps the most notable of these violations are correlations between
features and themselves over time; e.g., the value of ‘Average Words in Body’ clearly
depends on its previous values as this feature is computed over a window of email. This
temporal dependency raises several questions.

One of the more obvious aspects of virus infection that our Naive Bayes model
fails to capture is temporal dependencies. Clearly, individual emails are not identi-
cally drawn from a distribution but rather are instances of a sequence of “email state”.
Moreover, the concept of infection is itself a temporal concept (once infected, the dis-

tributions inherently change until a machine is disinfected). This observation has lead

8The paranoid may also consider never allowing a scanner to label an email as clean, but rather only
able to label identified viral emails as such.
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us to consider sequential models that incorporate time dependency. In particular, we’ve
been considering using a Hidden Markov Model (HMM) [29] to model the changing
state over time. In such a model, the current state of an email depends on the previous
email’s status.

The presence of temporal dependencies has also been disquieting. As men-
tioned in Chapter 3.1, the identity of the state variable E in Figure 8 is unclear since
some features are based on a single email while others are characteristics of the email
traffic. Initially, we attempted to build a more precise interpretation through a more
complex graphical tree-structured graphical model that separated flow-based and state-
based features into separate components. However, this more complex model actually
caused a slight degradation in performance. As such we used the Naive Bayes model

for its performance, but a lack of a clear interpretation for the state remains.

4.5 Thresholding and Quarantine

The final phase of the pipeline is the thresholding module which is designed
to alleviate the potential for false positives but at the cost of introducing a few false
negatives when infections do occur. Even a well-tuned detection system will have oc-
casional false positives, so it would be overly intrusive to quarantine a system from
the network on the basis of a single email classified as viral. Such a policy would
interrupt users regularly thus making the system unreasonably disruptive. Moreover,
when modern mass-mailing infections occur, the success of the infection depends on its
ability to exploit the ‘window of vulnerability’ before traditional anti-virus scanners are
updated [46]. Thus, we expect that infections will produce long streams of infected mes-
sages quickly making a policy of quarantining after a sufficient stream of viral-classified
messages viable.

The basic quarantining strategy we have considered applies a threshold to the
percentage of emails classified as infected over a sliding window of messages. Thus
when that threshold is exceeded, it would be possible to report, with high confidence, a
user as infected and take actions to quarantine them. We present an initial analysis of
thresholding on our pipeline, which motivates its usage. Figure 9 describes how quickly
our model reacts to a user infected with the Netsky worm. As an example of how such
a threshold could be chosen, the horizontal dotted dashed line in the bottom graph of
Figure 9 shows the point at which 30% of a window of 10 emails are actually infected,

and the point at which 30% are classified as infected. Application of the 30% threshold
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Figure 9: Reaction time in messages for our method to detect the propagation of
W32.Netsky.D. The top graph shows the per-email results of our classifier with the
test set, while the bottom graph shows the proportion of infected emails in a sliding
queue as the infection commences, with the horizontal dotted dashed line marking the
30% mark. In both, the solid line is from the actual infection, and the dashed line from
the classifications made by our method.

to our test runs shows the pipeline classifying users as infected for each worm we test
on between 2 to 18 seconds from the actual time of infection. In addition, if the user
is quarantined upon reaching this threshold, no worm in our evaluation set would be
able to send more than 8 infected emails. Thus, our approach significantly reduces the
worm'’s ability to propagate and in fact can reduce the propagation rate of the infection
globally based on the level of deployment. For detailed analysis of the effect our system,
see Anil Sewani’s Thesis [68]

The other side of thresholding is the intent to reduce the possibility that false
positives could cause a user to become falsely quarantined. The scheme discussed up
to this point was meant to absorb small spikes of anomalous behavior by a legitimate

user. However, the effectiveness of this policy depends partially on the assumption that
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each normal email is independently drawn from an identical distribution. However, as
mentioned in Chapter 4.4.4, such an assumption is violated by the temporal nature
of email. In fact, empirical examination of the false positives of our system found that
false positives occur in bursts demonstrating a tendency for users to behave anomalously
over a period of time. One such burst occurred when a user sent out a sequence of the
same email to a number of users. Evidently, the user copied the same email multiple
times and sent it quickly, causing the user to deviate over several successive emails.
Moreover, bursty behavior is common among laptop users who queue up numerous
outgoing messages between connections. These types of behavior, while not prevalent
in our limited data, necessitate proper thresholding techniques.

The standard thresholding model discussed above can deal with bursts to some
extent. However, by increasing the size of the threshold to deal with larger bursts, it
also allows more viral messages to be released before an infected machine is quarantined.
We are considering more advanced schemes to deal with bursts, however, we have yet
to conduct an in-depth study on the size and probability of this bursty behavior to
quantify the problem. For more on thresholding in viral detection and its effect on viral

propagation refer to the thesis of Anil Sewani [68].

4.6 System Evaluation

To demonstrate the utility of our system for virus classification, we simulate
email activity on the classification architecture. These tests demonstrate the accuracy of
the predictive components of our architecture in identifying viral emails. However, these
experiments do not assess the performance of the thresholding module for quarantining;;

its impact is discussed in Anil Sewani’s Thesis [68].

4.6.1 Evaluation Methodology

For the results shown in this paper, we train and test on email traces con-
structed from real user activity and worm messages captured from actual infections on
virtual machines. All clean email is from the outgoing mail of a single user; we used the
sent mail from one of the investigators, a graduate student in the EECS department at
UC Berkeley. The corpus of uninfected email spans an uninterrupted period of about
two years, and is comprised of roughly 4,600 messages.

To capture worm email, we infected VMware virtual machines running Mi-

crosoft Windows 2000 and Windows 98 Second Edition with a variety of worms. Each
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Characteristics Email Worms
BubbleBoy ‘ Bagel.F ‘ Netsky.D ‘ Mydoom.U ‘ Mydoom.M ‘ SoBig.F
Infection Techniques
Attached .exe File vV V4 Vv v v
Attached .zip File vV vV
Script Embedded In Email v
Uses Own SMTP Engine Vv vV vV v vV
Uses Peer-to-Peer Apps V
Polymorphism
Body Variants 1 43 26 19 11 9
Subject Variants 1 26 6 31 Many 2
Attachment Name Variants 0 29 22 10 10 9
Attachment Type Variants 0 3 1 6 7 1
Anti-Scanner Mechanisms
Uses No Attachment vV
Email Header Spoofing Vv Vv Vv Vv Vv
27 Attachment Extension vV
Can Send Decoy Messages vV
Can Encrypt Attachments Vv
Can Compress Attachments vV
Virulence
# Vulnerable Win32 OS’s 3 6 5 6 7 6
Installs Backdoor vV vV vV
Distribution Low High High High High High
Damage Low Med Low Med Med Med

Table 3: A description of some of the widely varying properties of the six viruses used in
our testing: VBS.Bubbleboy, W32.Bagle.F, W32.Netsky.D, W32.Mydoom.U (referred
to by Symantec as W32.Mydoom.T), W32.Mydoom.M, and W32.SoBig.F. The infection
techniques, degree of polymorphism, unique anti-virus scanner mechanisms, and viru-
lence of each worm is compared. Most of this information is reported by Symantec [80].
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virtual machine contained the address book used by the author of all the clean email.
We trapped all outgoing email from the virtual machines, regardless of the SMTP server
used to send it, by networking the host machine behind an instrumented transparent
proxy. All traffic from the host machine was then dropped to ensure epidemic contain-
ment.

In this manner, we captured infected email from the VBS. BubbleBoy, W32. Mydoom.M,
W32.50Big.F, W32.Netsky.D, W32. Mydoom.U, and W32.Bagle.F mass-mailing worms.
Table 3 lists several characteristics of each virus and shows that each one exhibits unique
traits that test the flexibility of our techniques, such as spreading via multiple infection
methods, using built-in SMTP engines, generating polymorphic emails that vary in both
subject and body, and avoiding detection through strategies such as spoofing the sender’s
From address, sending out uninfected decoy messages, and encrypting or compressing
attachments. As an example, unlike the other worms we captured, VBS.BubbleBoy uses
Microsoft Outlook to spread as opposed to its own SMTP engine. It also infects users
via a script embedded in the email that, when viewed by a buggy version of Outlook or
Outlook Express, saves the worm script to the Windows startup folder.

To simulate deployment in a local area network, we construct training and
test sets from clean and infected email data. Clean emails from our corpus are inserted
untouched in each trace. To simulate worm activity, viral emails are then inserted into
this message stream at specific “infection” points. The dates of the infected messages are
corrected to maintain consistency in the trace, but time intervals between the inserted
emails are kept the same so that frequency information is retained.

From the available viruses, we created six training and test set pairs using a
leave-one-out validation strategy. Each training set is made up of 400 clean emails and
1000 worm emails, where the block of infected messages is made up of 200 examples
from each of five different worms. The sixth virus is then included by itself in the test
set, which contains 1200 clean emails and 200 infected messages. The messages from a
simulated infection are placed at the end of the test set because most of the worms we
use send email continuously at a high rate, and it would be unrealistic to arbitrarily cut
off their activity to fit clean emails into the trace. Unfortunately, due the time-sensitive
nature of many of our features, it would be inappropriate to randomly sample messages
to create new training and test sets so this limited the number of tests we were able to

conduct.
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. ‘Novel’ Email Worm Tested
Experiment
BubbleBoy ‘ Bagle.F ‘ Netsky.D ‘ Mydoom.U ‘ Mydoom.M | Sobig.F
SVM Only
Num. False Positives 198 219 219 215 222 222
Num. False Negatives 0 1 0 0 0 4
Num. Correctly Classified 1201 1179 1180 1184 1177 1173
% False Positives 16.50 18.25 | 18.25 17.92 18.50 18.50
% False Negatives 0.00 0.50 0.00 0.00 0.00 2.01
% Total Accuracy 85.85 84.27 | 84.35 84.63 84.13 83.85
Naive Bayes Only
Num. False Positives 33 17 17 17 20 17
Num. False Negatives 8 4 4 4 4 5
Num. Correctly Classified 1358 1378 1378 1378 1375 1377
% False Positives 2.75 1.42 1.42 1.42 1.67 1.42
% False Negatives 4.02 2.01 2.01 2.01 2.01 2.51
% Total Accuracy 97.07 98.50 | 98.50 98.50 98.28 98.43
Two-Layer Model
Num. False Positives 9 10 10 10 12 10
Num. False Negatives 8 4 4 4 4 )
Num. Correctly Classified 1382 1385 1385 1385 1383 1384
% False Positives 0.75 0.83 0.83 0.83 1.00 0.83
% False Negatives 4.02 2.01 2.01 2.01 2.01 2.51
% Total Accuracy 98.78 99.00 | 99.00 99.00 99.00 98.93

Table 4: Evaluation results. See Section 4.6.1 for details on the training and test
data. Fach experiment was run three times: first with only the one-class SVM, then
using only a Naive Bayes parametric classifier, and finally with the two-layer system
described in Section 4.1. We report the number of false positives, false negatives, and
correctly classified emails. The percentage of false positives [negatives| is the percent
of the ‘normal’ [viral] email misclassified. Note that W32.Mydoom.U is referred to by
Symantec Inc. as W32.Mydoom.T.
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4.6.2 Results and Discussion

Table 4 provides the results of our evaluation, showing the effectiveness of
detecting novel worms by using the one-class SVM by itself, the Naive Bayes classifier by
itself, and our two-layer approach with both classifiers integrated into a single prediction
mechanism. For the two-layer system, the false negatives are combined from the SVM
and the classifier. All false positives, however, result from the classifier, as all email
that is identified by the SVM as infected is further filtered through the classifier.

The one-class SVM (using a tuned RBF kernel), which is parameterized to be
sensitive at detecting anomalies, captures almost all of the infected email with a very
low false negative rate (0% in all but two experiments). However, this is at the cost of
a high false positive rate of more than 16%. As shown in Table 4, filtering all infected
emails from the SVM through the classifier eliminates most false positives at the cost of
slightly increased false negatives. We observe that all false negatives from the classifier
occur immediately after the user is infected due to the time needed for window-based
features to reflect viral activity. For a window size of 10 emails, the classifier produces
between 4 and 8 false negatives in all experiments. It should be noted that since all
false negatives occur at the beginning of an infection, increasing the number of infected
emails in our test sets would artificially reduce our false negative rate. Thus, it is not
the percentage of false negatives we are concerned with, but rather the actual number
of infected emails misclassified.

From the experiments presented here, it might seem that using the classifier
alone would produce performance as good as the combined two-layer model. This is not
true in general as suggested by Table 4. While it is desirable to have a large training
corpus to correctly train the classifier, eliminating mundane data can produce a better
classifier trained only on the “difficult” data. This technique is empirically validated
in Table 4 by observing the increase in performance obtained with the two-layer model
especially on the viruses W32.Bagle.F, W32.Netsky.D, and W32. Mydoom.U. Thus, the
presence of a novelty detector that correctly filters the majority of the normal email
improves performance of the whole model. However, by filtering, we alter the distribu-
tions of features, which further undermines the generative model’s fit as discussed in
Section 4.4.2.

Another important aspect of performance for a real network deployment is
the number of emails required for training each parametric classifier before accuracy

reaches acceptable levels. To evaluate this metric, we ran experiments in which the
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parametric classifier is trained and tested with increasing amounts of training email.
After running each experiment 100 times, we found that on average no more than 50
clean emails are required to train a model that classifies messages with a false positive
rate of around 0.1%. Most of the worms we use require around 20 infected emails to train
a model with a false negative rate of around 2%. However, W32.Mydoom.M, requires a
substantially larger training set before the model becomes accurate. As demonstrated
in Figure 10, this virus required several hundred training examples before the false
negative rate was acceptable - a large number of emails to collect for a single user. The
results of these tests indicate that a deployed classifier generally will not require a large
corpus of “clean” email to correctly classify a user. However, due to highly polymorphic
worms like Mydoom.M, we envision our system being deployed with pretrained viral
distributions that capture a wide variety of worms.

Overall, we believe that these findings are promising, and show the feasibility
of our techniques for rapidly detecting novel worms. Our approach was able to learn
characteristics from training viruses that allowed the resulting classifier to accurately
predict the presence of novel test viruses. Moreover, the two-layer strategy proves to be
effective at filtering out normal traffic with a novelty detection algorithm so that the
classifier learners features from “difficult” examples. This results in an overall better

classification accuracy than either technique produced individually.
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Figure 10: The false negative performance for the W32.Mydoom.M worm as the number
of training emails increases.
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Chapter 5

Attack Strategy Amnalysis

As techniques in statistical learning have matured, they have been applied to-
ward a more and more diverse set of applications. Of particular interest to this study,
statistical learning is being employed in security-sensitive applications such as spam
filtering [47, 66], virus detection [74, 75], adaptive intrusion detection [38], fault detec-
tion [89], and fraud detection [17] systems. In such environments, there is a potential
and very real threat of malicious users attempting to subvert these statistical learning
techniques in order to compromise or disrupt the service of the system that incorporates
them.

The field of learning theory is a mature research area that has led to many
advanced techniques for pattern analysis. Many textbooks have been published on the
subject; for example, see Jordan [29, 31, 69]. However, the vast majority of statistical
learning theory is based on stationary distributions. This theory is not well-suited to
situations in which an otherwise ordinary distribution is being affected by a malicious
user. This issue was first addressed under the PAC! learning framework by Kearns
and Li [30], in which they give bounds for the amount of ‘malicious error?’ that can
be tolerated by learning systems. These bounds are applicable in the case where an
adversary has the ability to arbitrarily manipulate data in the training set (polluting
the training set) but do not apply to all attack scenarios as is discussed in the next
section.

The goal of this chapter is to present the problem of learning in the face of
an adversary and present an analysis of the effects of an adversary on a simple outlier

detection scheme. The resulting analysis describes an optimal strategy the adversary

!The Probably Approximately Correct (PAC) model introduced by Valiant [83].
2Malicious error is a term used to describe the fraction of the training set that can be maliciously
manipulated.
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can use for altering the state of the learner. Moreover, it gives insight into the behavior
of the naive learning schemes discussed here.

This chapter begins with a general discussion of the idea of adversarial learning
in Section 5.1 and suggests potential attacks against a naive novelty detector in Sec-
tion 5.2. A particular directed attack is formalized in Section 5.3 and a general attack
strategy for the attacker is presented in Section 5.4. This attack’s real-world feasibility
is examined in Section 5.5. Finally, we discuss the potential for countermeasures against

such attacks in Section 5.6.

5.1 Methodology for Attacking Statistical Learners

As research has only recently began to examine the effects of an adversary on
learning, we have sought to categorize attacks based on the characteristics that they
exhibit. There are a number of considerations that need to be made with regards to
the security of a system. To begin with, it is important to quantify the knowledge
the adversary has. In some cases, the adversary might only know what our system is
designed to do, essentially acting like a black-box that the attacker can query. However,
the attacker may know a great deal about our system — e.g. reverse engineering and
insider attacks. Unfortunately, all too often system security of learning techniques has
relied heavily on the secrecy of their classification techniques [45, 53] without providing
any sort of security analysis. Historically, such obscurity can be overcome by determined
attackers.

To avoid the pitfalls of obscurity, we’ve assumed the attacker has complete
omnipotence with respect to our learning system; that is, potentially the attacker knows
everything — the feature set, the training data, the learning technique, and even the
learned function itself. Instead of limiting the attacker’s knowledge, our approach has
been to limit the attacker’s potential actions. As long as such limitations are achievable
and enforceable, this approach is far more practical for providing security guarantees.
Dalvi et. al. similarly assumed that the attacker had knowledge of the classification
technique and how it would behave. They initially assume the attacker doesn’t realize
the learner has been altered to be robust against attacks, then analyzed a repeated game
of the attacker trying to fool the learner and the learner adapting to the new attack
strategy.

Another aspect of attacks is the goals of the attacker. With respect to this

facet, we have conceived criteria to characterize the attack in terms of a broad sense of
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possible attack goals. The following enumeration details the characteristics we consid-

ered3:

1. Does the attacker want to alter the learning process or find flaws in it?

- Alter the Learner (Active)

This category of attacks depends on the attacker being able to influ-
ence or modify the training set during initial training or subsequent
retrainings. In such situations, the data distribution is at least par-
tially malicious - a scenario that has been considered by several pre-
vious researchers. Kearns and Li [30] consider a situation where the
adversary can maliciously control some percentage of the training
data, Eprar, and they construct a bound on this quantity based on
the desired accuracy, € of the learner. Meanwhile, Dalvi et. al. [12]
consider a specific situation in which the attacker can alter data, but
is constrained by the cost required to make the alterations.

- Find Flaws (Passive)

These attacks occur when a learner has been trained and the attacker
wants to probe the learner to discover errors in the learned function
that could be used to fool it. In this case it is also relevant to
define what level of feedback is provided by the attackers queries.
An example of such an attack is the spam attack by John Graham-
Cumming which requires feedback as to whether or not a query spam
was accepted by the target [23].

2. What class of points does the attacker want to misclassify?

- False Negatives

Attackers often want positive points,e.q., spam, viruses or fraud, to
be classified as negatives — false negatives. Thus the attacker wants
parts of the portions of the feature space that are wrongly labeled
as negatives. The attacker can either search for such points that
exist in a learned function or actively attempt to cause the learner
to make these mistakes.

- False Positives (Denial of Service)

Conversely, when the attacker wants normal or negative points to
be tagged as positive, the attacker is causing false positives. Typ-
ically, this would be an active attack in which the attacker wants
the learner to become confused to the point where normal usage can
no longer function due to faulty classifications. If successful, such
attacks can cause detection systems to be disregarded or discarded,
thus removing the protection layer.

3The categorization discussed here is thought to layout the relative details of different attacks. This
hierarchy was conceived by Marco Barreno, Russell Sears, and myself and is still under consideration
as are the names of different classes of attacks.



50

- Either/Both

Finally, there may be cases where the attacker is indifferent or wants
the learner to make both types of mistakes. As with denial of service
attacks, this category would make the learner useless for its intended
purpose.

3. Does the attacker want particular points to be misclassified?

- Yes (Targeted Attack)

This case applies when the attacker has a particular goal point to
be misclassified. More specifically, the goal point cannot be altered.
Hence, the attacker must attempt to mislead the learner by inserting
points that will cause the goal point to be mislabeled as desired. An
example of such an attack would be attempting to get a specific
viral message through a filter by sending out other decoys meant to
confuse the learner.

The attacker has a more flexible goal that allows for an entire class
of points, any of which the attacker wants to be misclassified. Even
in the passive case, the attacker may have a non-trivial task of de-
termining which points are misclassified; a process that can be sig-
nificantly hindered by only providing limited feedback. In the active
version, we refer to this as a numbing attack. A common example of
non-specific attacks are denial of service attacks in which the attack
is only concerned with causing massive numbers of misclassifications
without regard for which data items are misclassified.

Having laid out a framework for qualifying attacks, we now describe how to
analyze attacks. Analyzing an attack typically attempts to quantify the effectiveness of
the attack and the degree of difficulty required to achieve success. The attacker may
have a variety of goals ranging from denying service to legitimate users to infiltrating a
secured system, so the success of an attack must be defined with respect to a particular
scenario. In terms of difficulty, one may choose to use a variety of metrics such as the
amount of computational complexity, the required resources, or perhaps the degree of
knowledge that must be known about the learner.

The remainder of this chapter focuses from this general setting to attacks on
novelty detection. As discussed earlier in Section 4.3 we use a form of novelty detection
in the pipeline of virus detection. In this chapter, we consider a far simpler approach
to novelty detection involving hyperspheres that bound the normal data. These sim-
plifications allow for an in-depth analysis of a particular attack scenario and provide a

starting point for future analyses of this nature.
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5.2 Attacking a Naive Novelty Detection Algorithm

As presented throughout the earlier chapters, the overall goal of this project
is viral infection detection. To this end, we have presented a pipeline for accurate viral
detection utilizing a novelty detection scheme for reducing false positives and classifi-
cation to accurately identify viruses from other suspicious email traffic. However, this
scheme does not consider the potential for an attack, while an attacker could potentially
attack any stage of our classification pipeline. We now focus on the threat of an attack
at the first stage, novelty detection.

As mentioned in the previous section, in analyzing an attack, it is essential to
lay out the capabilities and goals of a potential attacker. In general, a characteristic
of modern mass-mailing viruses is their need to spread quickly to exploit the ‘window
of vulnerability’ in virus scanners [46]. Secondly, a mass-mailing infection delivers the
malicious code embedded in the email. Finally, the message itself is composed of some
degree of social engineering designed to trick the recipient into opening the message and
initiating the infection. These are the constraints we have assumed about the virus?.

As far as resources, we must assume that the virus knows its adversary, our
novelty detection system; thus, the remainder of this work proceeds assuming a worse-
case scenario. Clearly, the virus can potentially do the same sort of behavioral analysis
we have done of the infected user as long as the virus has access to the host’s ‘Sent-
Mail’ folder. The following analysis gives the virus the benefit of the doubt and assumes
the virus knows exactly what the learner has learned and the methodology by which
it adapts. Finally, we must assume the virus can potentially control all future email
traffic from the infected host since the host is compromised. Moreover, since viruses can
compose messages orders of magnitude faster than humans, it is safe to assume that the
virus can dominate email traffic on the entire network. We now proceed to the goals of
the virus.

In the virus domain, an attacker (possibly the virus itself or a separate third
party) has a general goal of defeating our virus detection scheme. This could be done
in a number of ways. First, the attacker could simply search for flaws in the system by
means of a passive attack. Unfortunately, any statistical learning system can only learn
from empirical data so its decision function is prone to flaws. However, the discussion

of passive attacks is put off for future work.

4To be fair, these constraints are limited as one can imagine future viruses evolving to avoid such
characteristic behaviors. However, these constraints are not central to our analysis technique.
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A more interesting possibility would be active attacks. Ideally, in an eventual
deployed detection system, the system would have to adapt to changing behaviors over
time. Thus, an attack could potentially be mounted against the retraining process by
introducing points that would mislead the learner and cause it to adapt in a manner
inconsistent with the actual behavior of normal and viral email. One such attack would
be a denial of service attack in which the attacker would try to cause an untenable
number of false positives by causing the learner to mislabel normal email as viral. Such
an attack could cripple normal email system usage and thus cause administrators to
disable the viral detection opening the door for an actual viral attack.

The other interesting form of an active attack would attempt to subvert the
learning algorithm causing viral emails to be flagged as normal — the focus of the re-
mainder of this study. As mentioned in Chapter 4.1, our classification pipeline begins
with a novelty detection meant to identify emails that are deemed ‘certainly normal’.
If the attacker could mislead this stage of the pipeline into mislabeling viruses as ‘cer-
tainly normal’, the attack has succeeded since no further inspection of such messages
takes place. The attack would work by inserting specially tailored messages into the
detector’s training set so that the retraining of the novelty detector would eventually
mislabel viral email. As mentioned in Section 4.3 there currently is no retraining of the
SVM for reasons discussed in Section 5.6.1. However, as a deployable system should
incorporate retraining, we discuss the implications of it here.

As discussed in Chapter 4.3, the novelty detection algorithm deployed in our
virus detection system is a one-class SVM [61]. However, this chapter focuses on a
simpler scheme for novelty detection. The naive approach depicted in Figure 11(a) uses
a hypersphere whose center is the mean of the data and with a fixed radius specific to the
problem — an approach that can be kernelized. While better schemes for hypersphere-
based outlier detection exist, this scheme is simple to analyze and thus is the focus of
this project. A goal of this project is to use the resulting analysis as a basis for more
complex analyses in future work.

Currently, we focus on situations where the attacker is restricted. These re-
strictions are based on the idea of only retraining on points that exhibit pseudo-normal
behavior. In the next section, we begin to discuss such an attack applied to novelty

detection.
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(a) Hypersphere Outlier Detection (b) Attack on a Hypersphere Outlier Detector

Figure 11: Depictions of the concept of hypersphere outlier detection and the vulnera-
bility of naive approaches. In Figure 11(a) a bounding hypersphere centered at X,ncan
of fixed radius R is used to encapsulate the empirical support of a distribution excluding
outliers. Samples from the “normal” distribution being modeled are indicated by *’s
with 2 outliers on the exterior of the hypersphere. Meanwhile, Figure 11(b) depicts
how an attacker with knowledge about the state of the outlier detector can shift the
outlier detector toward the first goal G. However, it could take several iterations of
attacks to shift the hypersphere further to encompass the second goal G’.

5.3 A Directed Attack

As mentioned in the Section 4.3.1 outlier detection can be done by bounding
data in a hypersphere. One naive implementation uses a mean-centered hypersphere
of fixed radius R to bound the support of the underlying distribution as depicted in
Figure 11(a). Thus, one can imagine several situations in which a malicious user wants
to mislead the outlier detection algorithm. If the outlier detector is only retraining
on points falling within this hypersphere, this attacker could attempt to displace the
bounding hypersphere by inserting points near the boundary. Moreover, if the attacker
had a certain goal point G outside the hypersphere, the attacker could judiciously place
these “attack points” along the line between the mean of the hypersphere and G in
order to maximize the effect the “attack points” had in displacing the mean of the
hypersphere in the desired direction. This situation is depicted in Figure 11(b). The
following is a list of the fundamental assumptions made in this analysis as discussed

throughout the remainder of this section:
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1. Novelty Detection Scheme

(a) The novelty detector is a naive mean-centered hypersphere of fixed radius

(possibly in a kernel-space).

(b) The novelty detector uses a bootstrapping retraining policy — only add points

classified as non-novel to the training set.

(c) Points in the training set are never removed — no aging of data.
2. Attacker Capabilities

(a) The attacker is omnipotent — he/she knows:.

e The state of the novelty detector.
e The policies of the novelty detector.

e How the novelty detector will change on retraining.

(b) The attacker controls all data inserted once the attack commences.
3. Attacker Goals

(a) The attacker wants the novelty detector to classify a point G as normal with

possible limitations on:

M The total number of points the attacker can use in the attack.

T The total time (number of retraining iterations) of the attack.
Under these simple assumptions, the attacker’s objective is simple. Clearly

the optimal strategy involves placing “attack points” at the boundary in the desired
direction. Thus the problem is in fact uni-dimensional since it is assumed that the
attacker has exact knowledge of the desired direction. The only complexity in the
attack is choosing the number of points to place at each moment of the attack.

The naive scheme for novelty detection uses a mean-centered hypersphere of
fixed radius R to create a boundary around the normal data. The radius R is chosen
to tightly bound the training data while having a low probability of false positives.
Choosing the radius to meet these constraints is discussed in Chapter 5 of Shawe-Taylor
and Cristianini [69], but for this work we assume the radius has been chosen a priori.
Calculating the mean of a training set {x;};_, in a kernel space under the mapping ¢

is given by:

bo=—>"60x)
=1
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To measure the distance between the center in kernel space and a query point x in
feature space we use the following:

n

6c 6 GIB = (e + 5 S (xtxg) = = (i, %)

3,j=1 =1

3

where, as introduced in Section 4.3.1, « is the kernel corresponding to the mapping ¢:
k(x,y) = (¢ (x),¢(y)). Thus, this scheme classifies a query point x as an outlier if
lpc — 6 (x)]13 > B2

We assume that the outlier detector is a mean-centered hypersphere of fixed
radius R that is incrementally retrained only on points previously classified as normal
over the course of T iterations. Once classified as “normal”, points are always considered
in the retraining while any point classified as “outlier” is immediately discarded and
no longer used in retraining; a naive strategy that will be called bootstrapping (As
mentioned in the introduction, this strategy has some undesirable consequences, but is
simple to analyze). As a result of retraining, the hypersphere has a sequence of means
{Xt}tT:O that describe new mean of the hypersphere after the ¢-th retraining starting
from an initial state, X.

As for the attacker, the attacker inserts a; points in between the ¢t — 1-th
and {-th retraining iteration. Moreover, it is assumed in this naive model that the
attacker is the only actor generating points. Thus, the naive attacks described above
can be completely described by the sequence A = {at}?zl where T is the duration of
the attack. Thus, the progress of an attack at time ¢ can be described by the current
state of mean X; due to placing a sequence of aq, ..., attacks at the hypersphere’s
boundary. This yields the following recursion for the shift of the mean at time ¢:
(ZE;% ai) - Xpq + (Xt—l + R) Cy

X, = (5.1)
Z';:l o

_ oy

= X4 1+R ————

Zﬁ:l o7

Fortunately, this recursion is trivially unwrapped. Moreover, by reorganizing

terms we get the following:

= = T
Xr—X
===y o (5.2)
— D=1

This formulation concisely represents how far the mean is shifted relative to its radius

R during the attack.
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Remark 5.3.1 A deeper insight into the nature of this problem is revealed by
Eq. (5.2). In particular, it shows that the change in the mean after T' iterations
of the attack relative to the radius of hypersphere R is a sum of “cumulatively
penalized gains”. That is the contribution of the t-th iteration of the attack is

weighed down by the sum of the “weight” used in iterations up-to and including

the current iteration.

5.3.1 Formal Description of the Attack

Having described the problem and the assumptions made under it, a formal
analysis can be conducted in order to reveal optimal attack strategies. This formal
analysis begins with a formalization of the problem space and of the objective.

In order to avoid confusion, we introduce the following notation. We will denote
the whole numbers as Z%t = {0, 1,2, ...}, the natural numbers as Z* = {1,2,...}, the
non-negative reals as R%" = {z € K|z > 0}, and the positive reals as R = {x € R|x > 0}.
Furthermore, we will often refer to the number of “attack points” used at the t-th re-
training iteration by «; and the “optimal” number of “attack points” to be used at the
t-th iteration (optimal under prescribed conditions) as «f. Unless specifically mentioned
otherwise, ay, af € Z%F although later in the text I'll be considering sequences in the
non-negative reals, which I'll differentiate by x;, x; € RO, respectively.

Along with «a; and x;, we also define the space of possible attack sequences.
Formally, we define the space 2 as any legitimate sequence of attack points; that is,
A = {ay € ZOJF};ZI (where trailing terms after the attack would be 0). Similarly,
several more constrained attack spaces are defined; A7 = {at € ZO+}?:17 A(M) =
{oy € Z°7} 2 such that S =M, and AT (M) = {oy € ZOJ“}tT:l such that 7| a; =
M. Finally, the analogous continuous versions of these spaces are denoted x, x*, x(M),
and x7 (M) respectively with corresponding definitions to 2 replacing a; € Z%F with
x; € ROT.

Now that the attack strategy has been isolated, one can formalize the notion
of optimal strategies by examining the objective of the attacker. In particular, since
the attacker wishes to maximize the displacement of the hypersphere, the objective is
defined in terms of Eq. (5.2). Thus, the objective function is defined with respect to an
attack sequence A € 2,

o
ay

DA =Y — "
t=1 ZZ:I oy

(5.3)
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In this objective function, we also develop a notion of the “individual contribution” of

at
Zf{:l Qy

The goal of the attacker is to maximize this objective function with respect to

an iteration of the attack as ¢ (ay) =

constraints on the size and duration of the attack.

Definition 5.3.2 Optimality An attack sequence A* € A(M) is an optimal
strategy that uses a total of M attack points if VA € A(M) D (A) < D (A¥).
The optimal distance achieved by such a sequence is denoted by D* (M). This
optimality can be achieved by the attacker by solving the following program for

A" ={at}:
maxD (A*) = i _o
t=1 22:1 O‘z
s.t. Z af =M (5-4)
t

of € 70

5.3.2 Characteristics of the Optimal Solution

In order to properly understand the problem at hand, it is important to char-
acterize its properties and the properties of optimal solutions to it. These observations
provide the foundation for the further analysis of the problem. To begin with, in this at-
tack formulation, there are no initial points, so no matter how many points the attacker

places in the first iteration, the same displacement is achieved.

Lemma 5.3.3 The optimal initial attack iteration is given by o = 1.

[e51 — Qa1
Z%:l ay a1

1. But since 6 (o) = 1 for ag € Z* (0 is excluded since it results in a division by zero),

Proof The contribution of the first attack iteration is given by § (o) =

it is optimal to use as few points as possible so a] = 1.
QED

Next, it seems fairly obvious that the location of zero elements (o = 0) is
irrelevant to the sequences distance and therefore can be essentially discarded. This

notion is captured by the following theorem:
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Proposition 5.3.4 Any sequence of attack points A € AT can be rewritten as
another sequence A' = {a}}1_, such that 3t € Z°F such that Vt < T o} > 0
and ¥t > 1 o} = 0 and most importantly D (A) = D (A’). Thus, any (optimal)
sequence can be rewritten as a sequence partitionable into a strictly positive

subsequence followed by a subsequence of all zeros with identical distance to the

original sequence.

Proof The proof is intuitive. Consider the terms of the distance function:

T
Qi

= ¢
— D=1 Qe

This is a sum of cumulatively penalized gains as discussed in Remark 5.3.1. Any zero-

D (4)

element always contributes 0 to this sum regardless of its position. Furthermore, since
the denominator of each contribution is a sum of all previous elements and the current
one, zero-elements before (or after) any non-zero element do not alter the denominator.
Hence, only the ordering of non-zero elements determines DA; zero elements can be
arbitrarily placed. Thus, there is a sequence A’ in which all non-zero elements of A are
before all zero elements of A’ while maintaining the non-zero element’s relative ordering.

Moreover, this permutation of A has the same distance: D (4) = D (4).
QED

In fact, it should be obvious that zero elements can be arbitrarily inserted
into any optimal attack sequence to form a new optimal attack sequence with the same
distance since zero elements neither add distance nor add “weight” to the subsequent
denominators. Thus, Proposition 5.3.4 in effect suggests disregarding such elements
since they do not contribute to the effectiveness of the attack. Moreover, pushing all
zero elements to the end of the sequence corresponds to the notion that the attacker
probably wants to minimize the time required for the attack. Finally, the fact that zero
elements can be disregarded suggests the possibility of redefining a; € Z* rather than
70+,

Having shown the irrelevance of zero elements, we now look at the properties of
the salient non-zero elements. In particular, the notion of cumulatively penalized gains
from Remark 5.3.1 is critical. There are two “forces” at work here. On the one hand,
placing many points (large ay) during iteration ¢ improves the contribution of the term

Qi

Sy to the overall distance D (A). On the other hand, a large a; will be detrimental
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to subsequent terms since it will increase the size of the denominator. This effect can
be likened to having the mean of the points becoming heavier (harder to move) as more
points are utilized. It seems intuitive that one doesn’t want to place too much “weight”
too quickly as it will cause the mean to become too “heavy” toward the end of the
attack, thus making the latter efforts futile. Thus, it seems intuitive that any optimal
attack sequence should be monotonically increasing. This intuition is captured in the

following theorem:

Theorem 5.3.5 Any optimal sequence of attack points, A* = {af}iTzl,
must be monotonically increasing (though not necessarily strictly); that is,
Vie{l,...,T -1} af < aj,,. Since the monotonicity is not strict, constant

subsequences are feasible in an optimal sequence. Essentially, this result says

that an optimal sequence must be sorted in ascending order.

Proof See Appendix C.

Note that the fact that Theorem 5.3.5 does not require strict monotonicity
makes it consistent with Proposition 5.3.4.

While it has been shown that any optimal attack sequence should be monoton-
ically increasing in size, the intuition that the mean becomes “heavier” as more points
are utilized seems to suggest more than just monotonicity. In fact, this notion will lead

us to a unique optimal solution.

5.3.3 Unconstrained Optimal Attack: The Stacking Blocks Analogy

As it turns out, there is indeed an optimal integer strategy for the optimization
in Definition 5.3.2. In fact, this optimal strategy can be derived by thinking of this
problem as a center of mass problem.

Recall that in Remark 5.3.1 the distance achieved by the attack was likened to a
sum of cumulatively penalized gains. We can think of this as a sequence of contributions

attributable to each iteration of the attack; that is, the t-th iteration of the attack

contributes ¢ (ay) = Zii o which is the “amount of weight” used at time ¢ relative to
the total weight used up to that time. This is analogous to a center of mass problem.
In particular, if we think of the attack points «; as units of mass that are placed at a
distance of R from the current center of mass X;_1, & (c) is the amount by which the

center of mass X; is shifted relative to R. Thus, since viable attack points cannot be
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placed beyond distance R, this is analogous to placing a set of identical blocks below
the current stack of blocks that was created at time ¢ — 1 such that the stack does
not topple (the structure being stable corresponds to the constraint that viable attack
points cannot beyond the radius R). Since the attack is constrained to only place points
at the boundary, this analogy only holds when the stacking is done optimally or some
of the blocks are vertically grouped (corresponding to placing several attack points in
a single iteration, a notion that will be revisited in Section 5.4). Figure 12 depicts
the correspondence between attacks on mean-centered hyperspheres and the stacking of
blocks on the edge of a table.

Having likened the attack strategy to a high school physics demonstration, the
optimal strategy emerges from latter’s solution. As is shown by induction in [15], the
blocks can be optimally stacked by extending the first by % the second by % and the
t-th by % Moreover, as is mentioned in Figure 12 since the blocks are of length 2R we
get the harmonic series exactly. Thus, the optimal integer strategy is given by placing a
single point per iteration. This strategy achieves a displacement of D* (M) = O (In M)
as was predicted by the asymptotic analysis done in Appendix B.

5.4 Imposing Time Constraints on the Attack

In the previous section, optimality was achieved by simply placing a single
point on the boundary at every iteration. However, while this strategy achieves maximal
displacement of mean relative to the hypersphere’s radius, it fails to capture the entire
objective of the attacker. Namely, the goal of an attack is to achieve an objective
(displace the mean a desired amount) but do so in minimal time 7" or with minimal
effort (fewest possible points). As the analysis in the preceding section and Appendix B
show, the prescribed attack achieves maximal distance of ~ log M but does so in time
T = M and thus, the attack’s effect is only logarithmic in the time required to mount
the attack. Thus, it seems advantageous to consider a more realistic version of the
optimization of the attack sequence, in which the attacker achieves a goal with minimal

effort.
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Transform j]i ~
—) & —

a;=3 blocks

~
D({a1,0.2})

Figure 12: A figure depicting the physics analogy between the attack sequence A =
{a1 = 3,a2 = 4} and the concept of optimally stacking blocks on the edge of a table
to extend beyond the edge of the table. From top to bottom, the original effect of the
attack A on the naive hypersphere outlier detector is transformed into the equivalent
balancing problem. In this analogy, blocks of length 2R with a starting edge at X; are
equivalent to placing an attack point at the ¢ retraining iteration of a hypersphere with
mean X; and radius R. This strange equivalence encapsulates the idea of a point of
unit mass being placed at a distance R from the former mean. Vertical stacks can be
interpreted as placing several points at time ¢ and time (oddly enough) flows down the
blocks to the table. Also depicted are the individual contributions § (1) and 0 (ag)
along with their overall effect D ({1, a2}).
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Definition 5.4.1 Constrained Optimality An attack sequence A* € A(M)T is
constdered optimal with respect to M total available attack points and a given
duration T if VA € A(M)T D (A) < D (A*) and the optimal distance achieved
by such a sequence is denoted by DY (M). This optimality can be achieved by
the attacker by solving the following program for A* = {aj}:

T *

a
maxD (A¥) = 7t*
tz_; -1 0]
T
5.5
s.t. Zaf =M (5:5)
¢

o € 20T

Note that an equivalent formulation of constrained optimality would take a
desired distance d as an input and attempt to minimize the duration T required to
achieve the desired distance with a total of M attack points. Similarly, another alter-
native would be to minimize M with respect to fixed d and T. However, Eq. (5.5) is a
natural way to think about this optimization in terms of the attacker’s goal.

As was shown in Section 5.3.3, the original problem is equivalent to the problem
of optimally extending a stack of identical blocks over the edge of a table — a reduction
to a solved problem. Not surprisingly, the time-limited version of the attack on the
hypersphere is also analogous to a problem in physics. Naturally, it’s a constrained
version of the stacking blocks problem.

In this version, we have M points corresponding to M identical blocks. These
points must be placed into T ordered bins. Since all points in a given bin are placed
in the same (horizontal) location, this can be thought of as binding the blocks together
into a vertical stack. Thus, the i-th vertical stack contains co; € Z°F blocks of unit
weight and thus has a combined weight of a;. Thus, we want to choose a grouping of
M blocks such that the resulting 7" stacks can be optimally stacked beyond the edge of
the table; this problem is shown in Figure 14(b). Clearly this problem is more difficult
since we must not only optimally extend the stacks beyond the table’s edge, but we
must also choose the size of the stacks as to achieve the desired optimal.

It should be noted that in the limit when M = T, the constrained problem
becomes the original problem since there are as many buckets as there are blocks.
Moreover, following the argument in Section 5.3.3, if it were optimal to place more than

one block in any of those buckets (and thus 0 in others) one could do better by simply
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nudging the vertically stacked blocks a bit away from the edge. However, this nudging
action would correspond to moving a block to a different bucket. Thus, as expected, the
optimal solution when M = T is to place exactly 1 block in each stack. Furthermore,
by this same argument the optimal number of buckets to maximize extension distance
isT =M.

Despite being just a constrained form of the original physics balancing blocks
analogy, having the integer buckets (stacks) makes this an integer program, for which
no clear answer has emerged in the prior work or further analysis of the properties of the
problem. One way to address this difficulty is to relax the constraint that the buckets
contain an integer number of elements. This leads to a new formulation: we have T
blocks of equal size but variable weight that we want to stack optimally. Moreover, we

have M total mass in the system. This is the continuous variant of the problem.

5.4.1 Stacking Blocks of Variable Mass

By moving into the continuous realm, we have continuous sequences X € x
where X = {x1,z2,...} with 2, € R%*. Thus, for a given T and M we want to find X*
such that VX € x D (X*) > D (X). Many of the observations of the original problem
carry over to the continuous realm. In particular, it is clear that the location of zero-
elements is irrelevant as was shown in Proposition 5.3.4 and thus the zero-elements can
be effectively discarded with respect to optimality. Moreover, the proof of Theorem 5.3.5
made no use of the fact that a; were integers, only that oy > 0. Hence, the same line
of reasoning can be applied to z; € R’ and thus the optimal continuous solutions can
be shown to be monotonically increasing.

Similarly, the optimization problems presented in Eq. (5.4) and (5.5) are per-
fectly valid shifted into the continuous context. Moreover, as with the integer variant,
the variable mass blocks problem is a physics analogy for an attack sequence, in this
case, where the attacker can place fractional points. However, while the original physics
problem is a well know example of center of mass calculation with a well published
solution, the variant of optimizing variable masses was not addressed in any of the texts
examined by the authors. However, as was observed in simulations and as intuition
suggests, it seems that exponentially increasing the mass with ¢ is optimal. An argu-
ment for this intuition is made in the following subsection, however, an actual optimal
solution will be also be discussed in Section 5.4.4.

While most results carry over from Z°F, it should be noted that Lemma 5.3.3

does not hold since, in real space, one can choose any ¢ > 0 for a; = € and thus use
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fewer initial points but still achieve the optimal §(c;) = 1. This fact will provide for an

interesting discussion in later sections.

5.4.2 An Intuition of Exponential Optimality

As pointed out by Brighten Godfrey, there is good reason to believe that an
exponentially increasing sequence achieves optimality in the constrained optimization
setting. This is due to the fact that exponential sequences make a constant contribution
at each iteration thus achieving linear progress over time as is pointed out in Appendix B.
Moreover, since there is M total mass to be distributed in an exponentially increasing
fashion, this implies that 7' = O (log M). Thus, as with the optimal unconstrained
solution, an exponentially increasing sequence is linear in O (log M). Moreover, an
exponential sequence has the advantage that the number of points inserted at time ¢ are
a fixed multiple of all previous points. Hence, progress is constant regardless as there
is a balance between not placing too many points too quickly and in making up for the
previous points that are “weighting down” the mean.

Given the hypothesis that exponentially increasing attacks achieve optimality,
let’s analyze the strategy more closely. As shown in Table 5 the exponential strategy
A;xp has an asymptotic behavior of D (A;xp ) ~ % -T in T iterations. Now, since we

are trying to achieve optimality given M total mass in T iterations, we can solve for (:

T
Zﬁt—le
t=1
6T -1 _
o1 M
BT —M-B+M—-1=0 (5.6)

Now by solving Eq. (5.6) for § will yield the desired value of 3 such that the sequence
{ g1 }thl sums to M. Unfortunately, it’s not obvious whether this 7" order polynomial
has a form with simple solutions. However, in the case that T = M the only solution
is given by 6 = 1 which corresponds to the optimal unconstrained solution given in
Section 5.3.3. In the case T = 1 the solution § = 1 corresponds to the fact that in
the first iteration, it is optimal (in the integer scheme) to only place a single point
since, in this attack formulation, all initial points achieve the same displacement as is
demonstrated in Lemma 5.3.3. It is surprising that the integer constraint holds for this

continuous strategy since the lemma does not hold in continuous space. Finally, in the
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case T' = 2, B = M — 1 thus suggesting the sequence {1, M — 1} which is certainly
optimal from Lemma 5.3.3. Thus, in these 3 cases, the exponential strategy yields the
known optimal strategies!

Moreover, it should be noted that Eq. (5.6) always has 2 solutions for even T’
and 3 for odd T. Regardless of T’s parity, one solution is always § = 1. Except in a
few cases noted above, this is suboptimal, and occurs due to the division by 8 — 1 used
in the above derivation. The other solution (positive one in odd case) is the optimal
value of #. In the odd case, the 3rd solution is the (negative) pair of the optimal 3.
Interestingly, this negative solution yields an alternating series suggesting an unusual
notion of inserting negative mass to smile about for a moment.

Having looked at the properties of exponential attack sequences, it is time to
rethink the problem. It turns out that a slight paradigm shift will yield a convincing

result.

5.4.3 An Alternate Formulation

In the continuous mass setting, little traction has been made in proving an
optimal strategy A7} although the exponential sequence examined in Section 5.4.2 was
promising. It turns out that it is difficult to solve for optimality in the program given in
Eq. (5.5) even in the continuous case. In examining the Lagrangian [3, 54, 69], it turned
out that % [D ({o1,2,...,ar})] = § for all 7 where \ is the Lagrangian multiplier.
However, this provided little insight since an initial examination strongly suggested that
the objective function D (-) was non-convex.

However, a slight shift in the way the problem is expressed yields significant
insight that leads to conditions for optimality. This alternative formulation begins with

a simplifying notation:

Definition 5.4.2 Total Mass The total mass M; is the sum of all mass used

up to and including iteration t:
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Originally introduced to simplify notation, the fact that x;y = My — M;_; allows

us to rewrite the entire objective function in terms of M; which results in,

T
M

My, Ms, ..., M =T —
DT({ 1, 2 ) T}) Mt

t=2

(5.7)

However, unlike the original a-formulation, the total mass variables are interdependent.
In particular M7 = 1 < My < ... < My = M due to the fact that total mass is
cumulative (hence the ordering constraints) and the final amount of mass used must be
M. Moreover, we also reintroduced the constraint M7 = a3 = 1 from the integer variant.
Thus optimality can be achieved by the attacker by solving the following program for
M* = {M;}:

T *
t—1

maxD (M*) =T — M

t=2
st.Mf=1<M;<...<M;p=M

M} e RT
5.4.4 The Optimal Relaxed Solution

Technically, reformulating the problem has not made the problem easier to
solve. The total mass constraints still capture every aspect of the problem so this was
not a relaxation of constraints. Nonetheless, the reformulated version of this problem
captures the structure better, in the sense that it allows us to derive an optimal solution.
First we see that in the program described in Eq. (5.8) the maximization is equivalent to
minimizing Zfzz % However, unlike the original objective function in Eq. (5.3) each

of the variables M; are involved in at most 2 terms of the summation. Thus, consider

setting the derivative of the objective function with respect to M; for 2 <t < T — 1:
oM, — M,

]:0
M,y 1

Mg B MT+1

These equations do not hold for My or My since these two variables are only
involved in a single term. However, we already have conditions for those two variables:

M; =1 and M7 = M. Thus, we have the following set of optimality conditions:
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M, =1 (5.9)
l<t<T M} = M; 1 M (5.10)
My = M (5.11)

This leads to the following lemma that generalizes for any starting value N°:

Lemma 5.4.3 The general optimal strateqy M* given the constraints that
M} = N and M; = M where 0 < N < M must satisfy those conditions
as well as Fq. (5.10).

Proof By definition, V¢ M; > 0 since M; is monotonically increasing (or constant)

by definition and M; = N > 0. Thus, the optimal solution can be characterized as a

positive-valued vector M € (0, oo)T. On this domain, the objective function given in
Eq. (5.7) is continuous, its first partial derivative D]&M) = 1+ o MAZEI is also continuous,

and its second partial derivatives are also continuous (proofs of continuity are not shown
here).

Now, since Eq. (5.10) is derived from setting the partial derivative with respect
to M; to zero, any sequence satisfying that condition along with the boundary conditions
is a critical point of the objective function. Moreover, the global optima attained at
M?* is either a critical point or on the boundary of the allowed space. However, in the
total mass formulation, the boundary of allowed solutions is formed by the following
constraints; M{ = N, Mj = M, and for all 0 < j < T we have N < M;_l < M; <M
since the sequence must be nondecreasing.

Thus, boundary conditions only occur when two or more consecutive elements
in the total mass sequence are equal, or rather, in the original formulation, there is
an element x; = 0. By Proposition 5.3.4, such a boundary sequence is equivalent to
a sequence of length T'— 1. However, it can be shown that the function D} (M*) is
increasing in ¢, and thus, no boundary point of the total mass formulation is an optimal

sequence. Thus, the optimal sequence is a critical point described by Eq. (5.10).

QED

5The initial constraint is particularly important since, in the continuous domain, Lemma 5.3.3 does
not hold
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Now confirming our notion of the optimality of exponential strategies we have

the following theorem:

Theorem 5.4.4 The sequence of masses described by the total mass sequence

t—1 171
M* = {Mt* = Mﬁ} 1s the unique solution to the optimality equations

in Eq. (5.9), (5.10), and (5.11) and thus is the global optima of the continu-
ous version of the constrained optimization program in Eq. (5.5). Moreover,
this total mass sequence results in an optimal center of mass displacement of
D5 (M)=T-(T-1)- M7, Finally the actual optimal sequence of mass

placements {x}} can be described by:

k= (5.12)

Proof See Appendix D.

Also note that Zthl xy = M as expected. Now recall that in Section 5.4.2
we hypothesized that z; = 3'~!. Using the definition of 8 = M 71 used in the above
proof, the attack strategy instead suggests placing z; = 32 - (3 — 1) which is close to
the exponential strategy for large 5. However, when 8 = M 1 is close to 1 (the case
when M ~ T'), the two strategies diverge. Just to be sure, we’d like to know which is

better; a result hypothesized in the next proposition:

Proposition 5.4.5 The exponential strategy A°*P of x{™F = =1 (B3 > 1) is
dominated by the optimal strategy M*.

Proof We assume that A°®P of z{"" = B¢~1 for 8 > 1 is optimal and thus, must satisfy
the optimality conditions.

As stated by Lemma 5.4.3, an optimal sequence would have to meet the condi-
tions stated in Egs. (5.9), (5.10), and (5.11). First, we consider the sequence {ﬁtfl}thl,
which clearly satisfies 277 = 3° = 1, the first condition. However, in order to satisfy

Eq. (5.11), § must satisfy Eq. (5.6).



69

Now, given the A®*P strategy, the total mass variables of this strategy are given
by M = % Using these total mass variables, we can examine the final optimality
condition Eq. (5.10):

(M) = MpT- MEY
N AR N
(5-1)° (5 -1)°

B2 98t 41 = g _pgl_pgitl

F—28+1 = 0

= 8=1

Thus, the AP strategy can only satisfy Eq. (5.10) if 3 = 1. However, this can only
meet the mass requirement that M7" = M if M = T, which is not the case for the
time-constrained scenario given in Definition 5.4.1. Thus, the hypothesis that AP

meets the optimality conditions is a contradiction.
QED

Despite the fact that the original exponential strategies are empirically dom-
inated by the optimal strategy M™, exponential strategies seem to match well with
integer solutions as was suggested in Section 5.4.2. The “optimal” strategy does not
produce integer strategies at all except in the rare cases where M = k71 for some
k € Z°*. Perhaps more disturbing, as T'— M, M* is no longer monotonically increas-
ing and thus by Theorem 5.3.5 is no longer optimal. This is due to the fact that M*
enforces a constraint that M = 1. However, in continuous mass space, it can clearly be
beneficial to consider masses less than 1. Thus, M* exploits this fact when there is little
mass on average per block— that is when T — M — in order to optimally distribute the
mass. Unfortunately in this case, the constraint M| = 1 is artificial in the continuous
case since Lemma 5.3.3 no longer holds.

In fact, in the continuous case the true constraint should be M; > 0 since
any such initial mass would be valid. An initial thought is to solve the conditions of
optimality in Egs. (5.10) and (5.11) with the new initial condition, but such an analysis
blows up as M; goes to 0. There is an intrinsic problem underlying this issue. The
problem is that the initial hypersphere centered at Xj is assumed to have no initial
mass. Thus, the first mass placed by the attacker on the boundary displaces the mean

to X1 = R regardless of the size of the first mass placed by the attacker. In the integer
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case, this assumption has little effect on the outcome due to Lemma 5.3.3, but in the
continuous case, it allows for an unbounded progression of smaller masses. To counter
this, we can adjust the model by adding an initial mass N as input to the problem.

This leads to the “e-formulation” in Definition 5.4.6.

Definition 5.4.6 The e-Formulation The e-Formulation is a modification of
the original attack scenario presented in Section 5.3 in which an initial mass

of zo = N or equivalently an initial total mass of Mo = N is introduced.

As with the previous problems, the e-Formulation is analogous to a block
stacking of T' blocks of M total mass with the modification that a (small) point mass
N is placed on the outer edge of the top block where typically one would imagine
0 < N < M. In fact, for the purposes of approximating the original problem we can
use a small fixed N = € > 0 as depicted in Figure 14(d). This formulation yields the

following optimal choices of total mass at iteration ¢:
My = NCF) p(7) (5.13)

In addition the distance yielded by this formulation is,

/
Di(M,N)=T (1 - <J\]\;)1 T) (5.14)

where the derivations for Egs. (5.13) and (5.14) were obtained in a manner similar to
the proof of Theorem 5.4.4.

A quick observation shows that as ¢ — 0 the optimal distance achieved by
Eq. (5.14) approaches D}, (M, N) = T. This again shows the unrealism of the contin-
uous approach since an optimal distance achieved in T iterations is obtained by using
negligibly small (but exponentially increasing) masses for the first T — 1 iterations fol-
lowed by using the nearly M remaining mass at the last iteration; a strategy that only
bodes well in the continuous setting since its integer equivalent (either {0,0,...,M} or
{1,1,...,M — T + 1}) is suboptimal for non-trivial M, T.

In spite of being a poor approximation for integer solutions, the e-formulation
allows for a useful extension. By allowing N to be specified as an input parameter, we
can model attack situations in which the initial state of the hypersphere was determined

by N initial non-malicious points.
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5.5 Implementing the Hypersphere Attack

Having examined the theoretical aspects of optimality in this problem domain,
the following section details the practical implications of such attacks against the naive
novelty detection algorithm presented throughout this chapter. Until this point, we
have thought of the novelty detector as an abstraction: a sphere in some feature or

kernel space. Now we look at the practicality of the attack.

5.5.1 Practical Attack Strategy

To begin with, we never solved the integer version of the constrained opti-
mization problem given in Definition 5.5. While we presented a solution to the relaxed
(continuous) version of the problem in Section 5.4.4, this does not necessarily yield an
integer solution. We have not been able to find an exact solution to the integer version
of the constrained optimization given in Eq. (5.5). Since Eq. (5.5) is an integer program
(NP-Hard), it is possible that this program is also NP-Complete, but no such proof has
emerged yet. Nonetheless, the continuous solution provides a good deal of insight into

the integer solution:

Remark 5.5.1 Nonetheless, the solution to the continuous version of the pro-
gram provide are an optimistic estimate of the distance achievable by the integer

version. That is, the distance achieved by the optimal continuous strategy is an

upper bound on the distance achievable by the optimal integer strategy.

It should be noted that when the continuous solution does yield an integer
solution, that solution is an optimal integer solution as well; a product of the fact that
the continuous solution is an upper bound for the integer one. In fact, this does happen

on the occasion when the following condition is met:
M7 €7 (5.15)

Thus, it is feasible that the attacker could tailor their attack to meet this condition
either by manipulating M or T

However, as mentioned in Section 5.4.2, the exponential strategy given by
A;xp = {ﬁt_l}z;l (where (3 satisfies Eq. (5.6)) seems close to optimal. Hence, it seems

reasonable to use this as a guide for creating optimal strategies.
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5.5.2 Empirical Study of Attack against Viral Detection

The following is an empirical study of the feasibility of the attack suggested in
this chapter in the domain of virus detection. Using data gathered from the virus study
discussed in Section 4.6 and the set of features laid out in Table 2, we gathered statistics
for the mean-centered fixed-radius hypersphere. The study gathered the false positive
and false negative rates of the classifier for a normalized polynomial kernel as discussed
in Chapter 4. The degree of the polynomial was allowed to vary while the parameter
R was chosen to be 1 based on the earlier results from Section 4.3.3. In addition the
degree of the polynomial the radius of the hypersphere p was allowed to vary.

The study also collected the minimum and maximum relative distance® of any
virus data point from the edge of the hypersphere. This gives us an idea of how much
effort would be required by an attacker. If the attacker only wants to get some point
misclassified, the minimum distance is most relevant. However, if the attacker wants all
viruses to be misclassified, the maximal distance is the relevant metric.

The results of the study are presented in Figure 13. One thing that becomes
evident in the plots is that, as the degree of the polynomial increases, all points seem
to be falling within a progressively narrower band that appears to approach a distance
of 1 from the mean of the hypersphere. This is consistent with the fact that in high
dimensional spaces, the vast majority of the volume of a hypersphere is at its boundary.
Due to this fact, it would be difficult to chose a radius p for the hypersphere that has a
small number of false positives and is a significant distance from any viral data. Hence,
in terms of security, this experiment shows that it is important to chose the kernel
with the smallest kernel space still able to capture the desired classification — in this

experiment a polynomial of degree greater than 3 but less than 10.

5.6 Countermeasures to Attacks on Statistical Learners

In this chapter, we have thoroughly explored how an attacker can exploit
a naive hypersphere boundary. As a final thought, we discuss the inevitable future
direction of this work: the countermeasures that can be employed to prevent or diminish
attacks against learners. This aspect of our research is still in its preliminary phase, so
this section focuses on the issues and techniques we have identified as salient directions

for future exploration.

Srelative to the radius p of the hypersphere
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Figure 13: An empirical study of the feasibility of the attack on naive hyperspheres
in the virus detection domain. In the above plots, the x-axis is the radius p of the
hypersphere novelty detector and the y-axis is the degree of the polynomial kernel used
in the test. Figures 13(a) and 13(b) display the false positive and false positive rates of
the naive classifier respectively. Meanwhile, Figures 13(c) and 13(d) show the logarithm
of the minimal and maximal distance of viral points from the edge of the hypersphere
relative to the hypersphere’s radius p.
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5.6.1 Bias of Bootstrapping

An obvious method to deter attacks on learning algorithms is to consider more
sophisticated learning algorithms. Throughout this chapter, we have focused on a naive
outlier detection scheme using a mean-centered hypersphere of fixed radius. An obvious
improvement would be to bound the training data in the smallest enclosing hypersphere
(SEH), thus eliminating the mean-centered and fixed radius constraints (for more details
see Chapter 7 of Shawe-Taylor and Cristianini [69]). In fact, for a certain class of kernels,
the SEH is equivalent to the one-class SVM discussed in Section 4.3.1 and Appendix A.2.

The SEH is ideal for preventing the directed attack discussed throughout this
chapter. The core idea of the directed attack was to place a large mass of points at
one point on the boundary in order to shift the mean of the data thereby shifting the
boundary in the desired direction. However, since the SEH is not mean-centered, but
rather the best enclosing boundary, the original hypersphere boundary would also be
optimal for the new attack points since they already are within the boundary. Thus,
the directed attack would not shift the learned boundary toward the goal.

The astute reader should be disconcerted by an unsupervised technique that
cannot be misled. The problem is our scheme for filtering new examples for retraining
of the learner — our bootstrapping assumption. As indicated by the title of this section,
the bootstrapping strategy is introducing a bias to the learner by artificially reinforcing
its hypotheses. These biasing effects were present in the naive hypersphere approach as
well, but were masked by fixing its radius.

The bootstrapping assumption affects the learner even when it is not under
attack as exemplified by the SEH detector. Consider a minimally enclosing hypersphere
H; that is ‘v-soft’, which allows at most v-percent outliers in the training set. At
each time ¢, we retrain on the new dataset composed via bootstrapping resulting in
a new hypersphere H; i that is v-soft. Since bootstrapping only adds points that
are within H;, the percentage of data outside the hypersphere decreases with each
retraining iteration. Thus, the new hypersphere H;y; can only restrict the support

from the previous iteration resulting in a perpetually shrinking bounded support.

5.6.2 Beyond Bootstrapping

To eliminate biasing effects, the bootstrapping policy must be replaced by a
more realistic retraining policy. At one extreme, we can bootstrap the boundary and at

the other we can accept all observed data for retraining. We seek to restrict the attacker
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without unduly damaging the function learned. To this end, we have been exploring

statistical censoring and active learning, briefly explained below.

Censoring

In statistics, censored data occurs in studies of limited duration and is ad-
dressed through survival analysis. More specifically, a study is conducted in which
some data points exceeded the duration of the study; these are the censored data items.
Thus, survival analysis seeks to exploit the censored data as well as the non-censored
data in estimating statistics [11].

Censoring is being extended to the classification framework by Guillaume
Obozinski as a mechanism to deal with adversarial data in classification tasks. In
this case, the censoring mechanism is used to model partially labeled data (unlabeled
data being censored). This framework is incorporated into a two-class SVM yielding
a variation of that learner. Thus, censoring is a promising mechanism for estimating
statistics when part of the data is missing. However, this approach does not suggest

which data points should be labeled.

Active Learning

Active learning is the field of machine learning that addresses learners that
select data to train on. As the learner builds its hypothesis, it attempts to select new
training points that will provide the most information to the learner for improving the
hypothesis. The goal of this selection procedure is to reduce the number of training
points required to achieve a given generalization error with high probability. Work
done in this area includes a number of theoretical results on these bounds [9, 13].

In our framework, such techniques and analysis would be useful in the context
of trying to minimize the number of points that need to be labeled by the user of our
system. As we have discussed, our system collects unlabeled email data, but is also
vulnerable to attacks. One way we have considered to address this is by providing some
amount of labeling in the training set, but each email that needs to be labeled is a
burden on the user of our system. Thus, we’d like to find the smallest set of emails that
can provide the most benefit from being labeled. Of particular interest to our work is
the idea of pool-based learning [13] where a learner can select the data to have labeled

from a pool of unlabeled data at a cost for each label made.
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Figure 14: In the above diagrams are a series of solutions to variants of the block stack-
ing problem with 7' =4 and M = 14. In all the variants the objective is to maximize
the stack’s horizontal displacement from the edge of the table. Subfigure 14(a) depicts
the globally optimal solution when no constraint is placed on the number of “vertical”
stacks allowable. The displacement of each successive block follows the harmonic series
thus giving a cumulative displacement following the logarithmic-like curve depicted. In
subfigure 14(b), the constrained integer version of the stacking problem attempts to
maximize displacement with a limit of T = 4 vertical stacks. This yields the depicted
optimal solution. By relaxing the integer constraint, subfigure 14(c) depicts the situ-
ation where each “vertical” stack is condensed into a single block. Thus, the optimal
solution partitions the overall mass into T' = 4 chunks that maximize displacement with
a constraint that the top block has mass 1kg. Finally subfigure 14(d) depicts the con-
tinuous situation where the top block is no longer constrained. Instead, it is assumed
that there is a negligible initial mass € = 0.01kg placed at the edge of the top stack.

Game-Theoretic Approaches

Due to the fact that we are considering adversarial data, a well-tested approach
is the subject of game-theory - a formalization of accessing the strategies of players in
a variety of (competitive) game environments. This theory has been successful applied
to machine learning in considering adversarial classification tasks [7, 12]. In general, we
feel that a game-theory approach or analysis will need to be part of any countermeasures
we propose in an adversarial domain, although our work to date has not incorporated

it.
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Chapter 6

Conclusion and Future Work

In this thesis, we demonstrated the many considerations that went into the
design of a novel virus detection system as a fast-reaction system to address the threat
posed by modern mass-mailing worms. In particular, we discussed in detail our feature
selection process and the design decisions that lead to our multi-tiered classification
pipeline of Section 4.1. This system was designed to adapt to changing email behavior to
effectively detect novel worms with minimal inconvenience to the users. We also began to
consider the implications of using statistical learning in security-sensitive environments
by building a model for a particular adversarial attack strategy that could be deployed
against our novelty detector.

The primary motivation of our system design was based on the idea of detecting
infected machines by identifying deviations from normal user behavior. The first step
in this process was choosing email features thought to capture viral behavior. After
a process feature selection, the list of candidate features was winnowed down to those
most salient to the virus detection task. As was shown in Section 3.3.4, judicious feature
selection was effective at improving the performance of the novelty detection and Naive
Bayes classifier used in our system. These improvements are attributable to the fact
that irrelevant features only provide extraneous information generally leading to the
overfitting of the resulting classifier.

Our current work focused on statically selecting from a set of simple statistics
calculated from email. Future approaches could potentially incorporate richer sets of
features. Ideas such as social networks or bag-of-words could be incorporated into future
models to develop a finer grained model of normal user behavior that could increase
the accuracy of our system. Ideally, these features could be integrated into a combined

kernel for use in the one-class SVM, thus, building a more sophisticated email kernel.
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The second step was to choose a classification mechanism; we chose a multi-
tiered approach in an effort to produce effective novelty detection with few false-positives.
Thus, as discussed in Section 3.3.4, we motivated using a novelty detector for filtering
(with high probability) normal traffic in conjunction with a Naive Bayes classifier to pro-
duce accurate identifications. As empirically verified in Table 4, this pipeline produces
significant improvements over the application of these techniques in isolation. Overall,
it quickly identifies new viral threats with minimal impact on normal user activity.

While we covered classification extensively, several aspects of the overall system
have been largely neglected in this thesis but covered in more detail in the theses of
Steve Martin and Anil Sewani [41, 68]. The details of the implementation of our feature
gathering architecture and overall system architecture are discussed in Steve Martin’s
thesis [41]. Steve also goes on to do a detailed benchmark of the performance of our
system under various work loads in order to motivate the feasibility of wide-spread
deployment. Meanwhile, the thesis of Anil Sewani [68] does an in-depth analysis of
the effect our system would have on the spread of mass-mailing worms using common
propagation models.

There are several future directions we feel could provide improvements to the
virus detection scheme we developed. To begin with, email streams have well-defined
temporal behavior; exploiting this transitory nature could prove to be more robust to
error as discussed in Section 4.4.4. Another deficiency was our poor modeling of email
distributions. As discussed in Jordan [29], the success of generative models depends
largely on how well the data fits to the model; in our system, the data models were fit
in an ad-hoc fashion as discussed in Section 4.4.2. The poor models were due, in part, to
a lack of sufficient viral training data (virus emails tend to have little variance for a single
virus but vary substantially between viruses). Generally, the ability to produce samples
from a wide variety of viruses could be instrumental to future successes. Finally, our
two-layer system was not ideal; in the future, we would like to develop a single novelty
detector capable of training on the kind of semi-supervised data that is available.

Besides the potential shortcomings of our models, the system design itself has
several drawbacks. First, since it is focused on outgoing email, it requires network-
level deployment to be effective at limiting worm propagation. Users must still rely on
established anti-virus methods to prevent external attacks from producing infections.
Second, the model is built on a strictly per-user basis with no sharing of information
among multiple users. We believe that for our technique to be successfully applied to a

diverse population, models should share information, both to improve initial accuracy
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and to better identify abnormal activity.

Moreover, despite promising success on the analysis of past viruses, our current
system was not designed to account for the adversarial nature of the viral domain. Our
system was based largely upon the behavior of current viruses but these characteristics
could change radically as viruses evolve. First, we can expect to see more sophisticated
and personalized email content as the general public becomes accustomed to ignoring
simple viral messages. Secondly, if the goals of the virus authors change, the behavior
of the future viruses could be made radically different. Modern viruses have been
primarily designed to vandalize global resources or to bring prestige to their authors;
hence, we have seen fast spreading pandemics. However, it is conceivable that future
virus designers could be motivated to create a “stealth worm”; e.g., a virus designed
for monetary gains could be clandestine. Finally, as virus detection mechanisms are
deployed, virus authors will inevitably adapt their designs to avoid detection. These
conjectures motivate the necessity for analyzing the success of statistical learners in
adversarial environments.

The secondary focus of this thesis was based on anticipating such adversar-
ial reaction to potentially widely deployed learning systems intended to thwart their
activities. The threat of unforeseen future viral behavior motivates the need to more
fully address adversarial scenarios in statistical learning. In this thesis, we developed
a preliminary model of an adversarial attack against novelty detection as a starting
point for further research - introduced in Chapter 5. A thorough analysis of the system
presents the behavior of an attacker determined to fool a naive novelty detection system
through its retraining mechanism. This leads to our main result of revealing the optimal
behavior of such an attacker.

While the results of Chapter 5 are promising, the analysis needs to be ex-
tended to more general settings. The simple model considered needs to be augmented
to encompass entire classes of learning techniques and scenarios more complex than the
analyzed directed attack. It remains to be seen how the categorization presented in
Section 5.1 will translate into interesting attacks, and how such attacks can be realized
in specific learning environments. Finally, the overall goal of developing attacker models
is developing algorithms that are robust against attacks. We are currently exploring the

possibility of developing these algorithms using the techniques discussed in Section 5.6.2.
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Appendix A

Implementation of Learning

Models

In order to accommodate a variety of potential models and algorithms, we
constructed an inheritance hierarchy of learning models in Java. While Java is not the
most ideal language for many learning models’ matrix-centric operations, the availabil-
ity of the numerics package COLT [28] along with the implementors’ experience in Java
made it the language of choice. While initially made to accommodate several candidate
learning algorithms with a minimal amount of rewritten code, the hierarchy also facili-
tated the implementation of the multi-tiered approach to virus detection by providing
a single interface by which to interact with the various models.

Another core concept underlying this package of learning models was the sep-
aration of the learning model from the training algorithm. In many learning packages
such as WEKA [84, 87] learning is focused around the training algorithms used to learn
model parameters. However, our learning package separated the model from the algo-
rithms used to train them in order to add flexibility and minimize the need for rewriting
code. For instance, in designing the neural network implementation, there was the clas-
sic back-propagation training algorithm [58] but there was also a lesser-known algorithm
called Alopex [82]. Similarly, the EM-algorithm could be potentially used for training a
variety of different models. Thus, models inherited from the class LearningModel that
encapsulated the concept of applying “learned” parameters to make a prediction for a
data point. Meanwhile, the algorithms inherited from TrainingModule, which takes a
model and a training data set as input and trains the model’s parameters to implement

a prediction function based on the training instances.
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Also, the authors wanted to provide a learning package that was not tied to par-
ticular data types or a particular kind of learning. While most learning algorithms oper-
ate exclusively on numeric data, some algorithms allow for a more diverse range of data
types. For instance, the kernel paradigm [69] implements a variety of pattern algorithms
via a “kernel function”. This approach allows the kernel to be constructed to compare
a particular type of data independent of the pattern analysis algorithm. Initially, dif-
ferent data types were accommodated by using the all-encompassing class “Object” for
abstract methods’ argument types and casting the instances to the appropriate type in
the implementing class. However, in a recent revision, the authors used Java generics
to provide this flexibility (e.g. Classifier is parameterized by generic data < D >. Lo-
gisticRegression is a Classifier that requires numeric data while TwoClassSVM is also a
Classifier but it can use any data type given the appropriate Kernel for it).

There are also many different learning tasks including density estimation, clas-
sification, novelty detection, and regression. Each of these pattern analyses are used
for estimating different kinds of functions. For instance, regression attempts to map
data points to a real-value while classification tries to map them to a discrete value
representing the “category” to which the point belongs. As with data types, the return

type of various abstract methods was also made generic to provide this flexibility.

A.1 Model Hierarchy

To implement learning models, we designed a Java type hierarchy that at-
tempts to capture relationships between various kinds of learning models. This hierar-
chy is shown in Figure 15. The main connecting thread between these different models
is the concept of prediction, which is realized in the common method predict. The pre-
dict method, in general, takes a generic data type D and returns a generic data type
R. However, specific learning algorithms are not, in general, this flexible. Instead, most
require specific data types (typically numeric) for training, which fits well into the Java
Generics framework.

At the top of the inheritance hierarchy was the abstract class LearningModel
which provides the method predict, but only an abstract specification of it given that
prediction is done differently in each learning model. Particularly, the algorithms that
extend from NoweltyDetector implement a method isOutlier that returns a boolean value.
This method is used in turn to implement the predict method for NoweltyDetector, which

is a class whose return value is defined as Boolean. Thus, the framework of novelty
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ProbabilisticModel

o . TwoClassSVM . GaussianMixture KemelD?ns'ty OneClassSVM
LogisticRegression LearningNet Function
<D> Model <D> <D>

Figure 15: The class inheritance hierarchy of the learning models. As with all Java
classes, this hierarchy exhibits single inheritance only which is represented by an arrow
from the child to the parent class. Abstract classes are represented as grayed-in boxes
while the realized models are clear boxes. The <> notation represents the generic object
types used by a class; in particular a D indicates the data that can be handled is generic
and a R indicates the return type of prediction is generic.
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GMMEMTrainer KDFTrainer LogisticRegression OneClassSMOTrainer || TwoClassSMOTrainer
<L> <D> IRLSTrainer <D> <D>
ALOPEX BackPropagator_1D
<M> <M>

Figure 16: The class inheritance hierarchy of the training modules. As with all Java
classes, this hierarchy exhibits single inheritance only which is represented by an arrow
from the child to the parent class. Abstract classes are represented as grayed-in boxes
while the realized models are clear boxes. The <> notation represents the generic object
types used by a class; in particular, the model type trained by a trainer is specified by
M, the data-type of those models is specified by D, the return type of the model’s
predict method is specified by R, and the type of the labels is specified by L.

detection is captured via the hierarchy of LearningModel and Java Generics. Thus,
the specifics of predict (or more meaningfully named methods such as isQutlier are
implemented according to the specification of a particular model, but the hierarchy is
used to enforce the typing so that instances of LearningModel can be used somewhat
interchangeability!.

The interchangeability of our classes that inherit from LearningModel allows us
to consider combining learning algorithms with little to no code. For instance, boosting
(building a strong learner from a sequence of weak ones) or wvoting schemes could be
implemented almost trivially. For the purposes of our project, this notion really meant

that little work was required to try several different models once the models were written.

A.1.1 Training Learning Models

One should immediately notice that, while prediction was a central theme in

our LearningModel hierarchy, there is no mention of training. In fact, training was

!The notion of making interchangeable learning algorithms was first implemented using Java’s Object
in place of Generics, but the latter provides stronger type enforcement. In fact, replacing Objects with
Generics revealed a few minor bugs in our code.
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implemented in a separate hierarchy as shown in Figure 16. While most learning model
implementations couple training algorithms with learning models, this implementation
separates the concepts for two reasons. First, occasionally there are multiple ways
to train models. For instance, while most neural network training is done via back-
propagation (implemented by class Backpropagator_1D, but the Alopex algorithm [82]
is an alternative training mechanism implemented in ALOPFEX. Secondly, there are also
instances when a single training algorithm could train several learners. For instance,
both one and two class SVMs use the SMO algorithm discussed in Appendix A.2,
although the current code-base doesn’t unify their trainers due to slight technicalities.

As with LearningModel the core of TrainingModule was a single method; in
this case, the train method?. This method takes a LearningModel and a DataSet of ap-
propriate types and returns the corresponding LearningModel after training is complete.
In actuality, this is generally a destructive method that modifies the model it receives
and returns it as a convenience.

As with the concept of training, we also implemented a separate hierarchy for
“Meta-Learning” based on the idea of using multiple training/validation iterations to
tune certain “meta-parameters” of a learner. However, this concept has not been em-
phasized in the development of our learning algorithms and remains in an experimental

phase.

A.2 Implementing the One-Class SVM

The implementation of the One-Class SVM followed the adaptation of the
Sequential Minimal Optimization (SMO) technique developed for Two-Class SVMs [32,
55, 56] to their single class counterparts [61, 62]. Other techniques such as the improved
cache replacement policy suggested in Li et. al. [36] were also critical for achieving fast
training on potentially large corpora. Following the algorithms presented in these works,
an implementation of the SMO algorithm was crafted under the training hierarchy as
the class OneClassSMOTrainer. The implementation proved highly effective as shown
empirically in Anil Sewani’s thesis [68].

Our hierarchy was tailored to incorporating kernel-based algorithms such as
those suggested in Shawe-Taylor and Cristianini [69]. In particular, the specifications
of our learning algorithms was specifically made to handle generic data through the

recent addition of “generics” to Java 1.5 (originally the specification was done in terms

2This method is actually specified by the interface Trainable for technical reasons.
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AllSubsetsKernel

LinearComboKernel

ChiSquaredKernel

NormalizedKernel

GaussianKernel <T>

LinearKernel | PolynomialKernel

GeneralGaussianKernel

Figure 17: The class inheritance hierarchy of the kernels. As with all Java classes, this
hierarchy exhibits single inheritance only which is represented by an arrow from the
child to the parent class. Abstract classes are represented as grayed-in boxes while the
realized models are clear boxes. The <> notation represents the generic object types
used by a class; in particular, the data type handled by the Kernel is denoted either D
or T.

of Objects, but Java generics have allowed for a higher degree of type safety within
the hierarchy). In particular the approach of kernel methods suggests modular design,
where the learning technique is implemented independent of the data’s structure, while
structure is captured by a kernel — a specially defined function that measures the simi-
larity between two objects (the specific properties of this function are beyond the scope
of this appendix; for more details see Shawe-Taylor and Cristianini [69]). Thus, the
kernel methods developed under our hierarchy were generics specified by the type of
input data and the kernel designed to compare objects of that type.

The kernel functions were also developed in a hierarchy rooted from the ab-
stract object Kernel. Thus, implemented kernels inherited from this function and de-
fined the specifics of the abstract function kernel to handle a pair of objects of the type
specified by the class, and return a non-negative real value specifying the similarity be-
tween those objects (an implicit inner-product in some high-dimensional space defined
by the kernel). A variety of kernels of common kernels were implemented to work with

common object classes especially vectorial data [69]. A number of kernels also operated
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on the results of other kernels; for instance, the NormalizedKernel implementation takes
a Kernel in its constructor and returns the result equivalent to the normalized inner
product for the original kernel. Similarly, the LinearComboKernel takes a set of Ker-
nels and positive weights to implement the resulting linear combination of the original
kernels.

In most cases, the implementation of each kernel was straightforward requiring
only a few lines of Java. However, as with most Java applications, there was quite a bit
of overhead since the Java “class” is being used to provide functions that can be passed
as arguments. Moreover, as with most kernel implementations, there was no attempt to
verify that an implemented kernel obeyed the positive semi-definite property required

of kernels [69].

A.3 Implementing the Probabilistic Model

As with the one-class SVM, Naive Bayes was implemented in Java as a special
case of the more general class of models known as probabilistic tree models. These
models can be represented as tree structure (directed) graphs that represent the inde-
pendence assertions about a set of random variables. The graph for Naive Bayes is the
simple tree shown in Figure 8 with a single unobserved (latent) variable that represents
the label of the email as viral or non-viral. As mentioned in Section 4.4.1, this structure
represents the fact that all features are independently conditioned on the latent variable
- an assumption discussed in that section. To implement tree structures in general, we
made a generic message-passing algorithm.

Graphical models express the independence structure between random vari-
ables, but we are interested in the probability that the random variables take on certain
values given that we have evidence; a process known as inference. To infer information
for a specific query from a probabilistic graphical model, we must be able to perform
certain operations on the graph: summation and multiplication. This pair of operations
allow us to collect information from the adjacent random variables and marginalize the
effect an unknown random variable has on the query. In trees, these operations can be
done directly on the original structure by means of a simple algorithm known as the
“sum-product algorithm”. This a two phase message-passing algorithm consisting of
collecting information from children followed by disseminating the results from the root
back down to the children. These operations are made efficient through matrix mul-

tiplications which implicitly performed the sums over products required to propagate
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information. For more detailed information on the sum-product algorithm, see Chapter
3 and 4 of Jordan [29].

The message-passing scheme was also used in training using the expectation-
maximization algorithm [29]. Without going into the detail of the algorithm, the
message-passing protocol allows us to estimate the parameters of the latent variables.
This process was simplified by only considering internal nodes of finite support. More-
over, the message-passing protocol also made it easy to estimate the maximum a-
posteriori (MAP) estimates from the model; that is, the most likely assignment of latent
variables given the observed data. This simple modification was done by implementing
the max-product algorithm in the message-passing protocol. For more details on the
specifics of such algorithms for probabilistic tree models, refer to Jordan’s textbook on
the subject, “An Introduction to Probabilistic Graphical Models” [29].

Unfortunately, as Naive Bayes was added after the original design of the
project, it hasn’t been fully integrated into the LearningModel framework. It didn’t
fit as cleanly into the framework as previous models due to the fact that it was imple-
mented as an after thought with time constraints. Moreover, unlike our other models,
training is integrated directly into the underlying representation of the tree-structure
since message-passing is so closely knit with it. In the future, we’d like to integrate this

class of models into a single unified hierarchy under the class ProbabilisticModel.
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Appendix B

Asymptotics of Attack Strategies

Having formally defined the space of attacks on the hypersphere, a simple
analysis of the objective function in Eq. (5.3) yields a good deal of insight into the
problem. First, we note that the denominators of each term in the summation are
summations themselves 2221 ay - summations of non-negative elements. If ay can be
described by a monotonic nonnegative continuous function f such that oy = f(¢), then
from Appendix A of “Introduction to Algorithms” [10] we have the following bound on
the denominator:

t+1

Ve <y (@) < Sl > /Of<x>d:c§2;1fw>s @

t+1
Ve <y, f(z)>f(y) = f(=z dx<z Fu /f

1

Using these bounds, the objective function can be bounded for monotonic sequences:

T
Z ((t (B.1)

.’L‘

T

Vo <y, f(@) < fly) = Z#

t=1 J1 r)dx

I
T T
Ve <y @) > fl) = 3 (’“‘)) <DT<A>sZ# (B.2)

tlfo x)dx =1 )i f(z)dz

The bounds in Eq. (B.1) and (B.2) allow us to describe the asymptotic behavior of most
simple functions. Table 5 presents estimations of the behavior of a few simple functions.

Several interesting results can be seen in Table 5. To begin with, it is interesting
that there is a monotonically decreasing strategy of f(t) = % that approaches strategies
that still achieve unbounded progress as T' — oo even if this result cannot be reproduced
with integers. Also, it is interesting that a constant number of attack points C' achieves
unbounded progress as 7' — oco. Moreover, an exponential strategy only achieves linear

progress. Furthermore, polynomial strategies only seem to perform a constant factor
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f(t) H Lower Bound ‘ Upper Bound ‘ Asymptotic Behavior
T
C > 2 InT+ O (1)
i=1 i=1
T T
C-t 2Y o5 231 2(InT+0(1))
i=1 i=1
T
C -2 3;1’*“5”3 3;% 3(InT+0(1))
3 T t2 T 1
T—1 T—1
- In g Bt Bt -1
C- ,Bt Ls.t. 6>1 3 t;o B—1 In 3 t;() Bi—1 B T
T—1 T—1
t—1 Ik In 3 g 1— 1 (1=6)In(1-8)
C-ptltst. 0<p<1 lnﬂt;) 51 N = ,61 <1 5T“)T>>o
c d 1 A 1
T > tIn(t)+1 t; Tn(t+1) In (InT)

Table 5: This table describes the behavior of several simple (monotonic) strategies of
placing attack points as functions of the current iteration ¢ where C > 0 and ( are
constants. Upper and lower bounds are based on Eq. (B.1) for increasing functions
and Eq. (B.2) while asymptotic behavior was determined by more detailed analysis
not described here. It should be noted that several of these strategies occur in x and
thus do not represent actual attack strategies. Some, for instance the last two, cannot
be accurately reproduced as integer solutions since they are monotonically decreasing

toward 0.
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better than the constant strategy! In fact, this result is true of all simple monomial

strategies.

Theorem B.0.1 A simple monomial strateqy oy = tF for k € RY* yields
Dr({au}) =0 ({(k+1)-InT).

Proof Since k € R%F, a; = f(t) = t* is monotonically increasing (although certainly

not strictly for £ = 0) and thus Eq. (B.1) applies. Therefore,

(t
Dr(A) <
) t:lf (z) dx
T tk
- (k+1);$k+1’8

= (k+1)

WE
&+ | =

I
—

~ o+

= (k+1)(In(T)4+0O(1))

Hence, Dy ({a4}) = O ((k+1)-InT).
QED

Now, given that we have bounds in terms of T" in Table 5, it is tempting to solve
for what 7' is in terms of M in order to rank the above strategies in terms of optimality.
For f(t) = 1 it is clear that T'= M and thus, the strategy achieves D (M) ~ In M. For a
k-order monomial strategy, the constraint that Zthl a; = M yields T ~ MY *+1) Now
given the results from Theorem B.0.1 we find that D (M) = O (InM). Similarly, for
the exponential strategy with base 3 > 1, the time is 7' = logz [M (8 — 1) + 1] which
again yields D (M) = O (InM). The above analysis was not rigorous, but certainly
discouraged me from this approach; everything is O(In M). Nonetheless, it does suggest

that In M is a reasonable upper bound on the progress.
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Appendix C

Proof of Theorem 5.3.5

Proof (By Contradiction): Assume not; that is, assume the following:

JAopt = {O‘It:}gzl (C.1)
st. VAeA D (Ao) <D(A) (C.2)
Je{l,...., T —1}] >af+1 (C.3)

Now consider the alternative sequence that switches the i-th and 7 + 1-th
element of A*: A’ = {ﬁk}gzl where Vk # i,i+1 (¢ = af and 3; = of | and Bi11 = aj.
Comparing the difference in the distances achieved by these two sequences we see the

following:
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The only obscure step is the third step where the first and last sum were
declared to be 0. The first sum is 0 since Vk <i o) = B¢. Thus, both the numerator
and denominator were identical for each pair of terms (since the denominators only
sum the first k£ terms) and the pairs of terms canceled. Similarly, for the last sum,
Vk>i+1 af = [ made the numerators of opposing terms equal. Moreover, since by
definition §; = o, and B;11 = o, this swapping still results in the same denominator
since addition is commutative.

Now let ¥ = ZE 1 @;. Then we can combine terms by finding the greatest
common denominator. Note, we can disregard the resulting denominator of (X + o) -
(X +ajy ) (X +af +af, ) since it is strictly positive and this proof only relies on the
sign of the above. Thus, we continue examining only the denominator of the combined

terms:
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x af (B4 o) (Z+af +ajy)
—ai (B4 af) (Z+af +aii)
+(ai —af) (B+a)) (B+aiy,)
= (of)af — (@)’ afyy
= oo, (o, —0af) <O
af,, <aiby Eq. (C.3)
Note that I spared the reader the expansion and cancellation of terms from the
original numerator. Also, it is implicit in this proof that all terms «; are non-negative

as defined in the definition of an attack sequence. This fact allowed us to discard several

terms. Thus, we have

D (Aopt) <D (4) (C4)

But Eq. (C.4) contradicts our assumption Eq. (C.2) thus proving the hypoth-

esis. Hence, any optimal attack sequence must be monotonically increasing.

QED
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Appendix D

Proof of Theorem 5.4.4

Proof Suppose that an arbitrary but particular total mass sequence, M, is an op-
timal solution to the program in Eq. (5.8). Thus, according to Lemma 5.4.3, the
Egs. (5.9), (5.10), and (5.11) must be satisfied for M. To reiterate, this means that

the total mass sequence M = {M;} must have the following conditions:

My, =1
l<t<T M} = M1 M
Mr = M
corresponding to the Egs. (5.9), (5.10), and (5.11). However, according to the program

in Eq. (5.8), we also must have M} € R, which means we can safely take the logarithm

of these variables. Thus, the above equations are equivalent to the following conditions:

M, = 0 (D.1)
l<t<T 2-4M; = EMt—1+€Mt+1 (D2)
My = (M (D.3)

where /M, = log M; and /M = log M.



Thus, we have a set of linear equations' which can be written as,

oM,
M,
(Ms
(M,

M7 _o
(M1 _y

LM

o o o O

0
‘M
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Due to the repetition along the diagonal, this system of equations can be solved

generically for T' by Gaussian elimination and yields the solution ¢M; = :tp;_ll - LM ; the

t—1
unique solution to this linear system. This corresponds to the solution M; = M7T-T.

Thus, for a sequence M to satisfy Eqs. (5.9), (5.10), and (5.11), M; = MT=T which is

equivalent the the sequence M*. Thus, M* is the unique sequence that satisfies those

conditions. Moreover, since we showed in Lemma 5.4.3 that any optimal solution must

satisfy Egs. (5.9), (5.10), and (5.11), M* is the unique optimal solution.

Having established optimality, it is easy to derive the optimal distance achieved

from the alternate objective function Eq. (5.7):

as was to be shown.

Finally, using the definition of total mass in Definition 5.4.2, we see that for

t > 1 we have:

t—1 t—2
af =M — M} =MT 1 — M7

1=2 1
= MT-1 (MT—l _1)

This completes the proof.

! Another approach to solving this problem would be to solve it as a difference equation.

QED
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