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ABSTRACT

Many analysis applications require the ability to repeatedly
execute sophisticated modeling functions, which can each
take minutes or even hours to produce a single answer. Be-
cause of this expense, such applications have largely been
unable to directly use such models in queries, with either on-
demand or continuous query processing technology. Query
processors are hindered in their ability to optimize expen-
seive modeling functions due to the “black box” nature of
exisiting user-defined function (UDF) interfaces. In this pa-
per, we address the problem of querying over sophisticated
models with the development of VAOs (Variable-Accuracy
Operators). VAOs use a new function interface that exposes
the trade-off between compute time and accuracy that ex-
ists in many modeling functions. Using this interface, VAOs
adaptively run each function call in a query only to an accu-
racy needed to answer the query, thus eliminating unneeded
work. In this paper, we present the design of VAOs for a set
of common query operations. We show the effectiveness of
VAOQOs using a prototype implementation running financial
queries over real bond market data.

1. INTRODUCTION
1.1 Motivation

Many important applications require the repeated use of
expensive analysis functions. For example, power compa-
nies use models that predict power usage based on vari-
able inputs such as weather conditions. These companies
need to run queries using analysis functions to determine
the weather conditions that would cause different parts of
their grids to become overloaded [5]. As another example,
consider securities traders who use numerical models to price
securities based on market data. In order to monitor contin-
uous query results involving these prices, traders must re-
run the models as the underlying market data changes. A
further example of such applications is in the area of supply
chain management (SCM), where users will soon be able to
run inventory replenishment models in real-time in response
to data provided by emerging RFID technology [12].

Unfortunately, such sophisticated applications often have
serious performance problems. In many of these applica-
tions, the models require minutes or even hours to compute
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a single data point, even on modern processors (e.g. [28,
11]). Thus, function execution can easily become a bottle-
neck. For streaming systems where the function arguments
are data streams, the problems are exacerbated; A system
may not have the processing power to keep up with the in-
coming stream updates. At present, analysts have to choose
between using less complex (and hence, less accurate) mod-
els and running the models less frequently. Neither option
is optimal.

If these functions are run in the context of a query, the
query processor may be able to reduce the compute cost.
While today’s query processors attempt to avoid expensive
function calls by either predicate re-ordering [23, 3, 22, 21]
or caching [20, 8], such work fails to address the remaining
problem of optimizing the execution of the function calls
that still have to be run. As a result, the applicability of
those solutions is limited. In this paper, we address this
problem via a new query processing approach called VAOs
(Variable-Accuracy Operators). VAOs are based on the in-
sight that many modeling functions, (such as those imple-
menting certain numeric functions) allow a trade-off between
compute time and accuracy. VAOs are built upon a new in-
terface to User Defined Functions (UDFs) that provides the
system with finer-grained control over function execution,
and thus more opportunity for optimization. That is, in
contrast to current systems, where UDFs export a “black
box”, all-or-nothing interface, VAOs are able to adaptively
vary the compute time in functions where if more work is
applied, a more accurate answer is obtained.

VAOs perform common query operations (e.g. predicate
evaluation, aggregates) that require the execution of expen-
sive functions. In a query plan, VAOs replace both the mod-
ule that executes a function, as well as the operator that
evaluates the result. For the example query plan in Fig-
ure 1 for a MAX aggregate over a function result, a single
"MAX VAQO” operator would replace both the function exe-
cution and aggregation modules shown. Using the new UDF
interface, the VAO adaptively adjusts the amount of work
done by the function according to the accuracy needed by
the given operation. In our figure, the VAO needs to allo-
cate work so that it accurately determines the largest value
produced without performing unneeded work on function
executions that ultimately produce smaller values. As we
will show later, these VAOs often yield drastic performance
improvements.

1.2 Example Application

To both demonstrate the need for VAOs and illustrate the
VAOs approach, we detail the bond trading application from
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Figure 1: An example system running a simple MAX
query. A MAX VAO combines the function execution
with the aggregate calculation, enabling adaptive, incre-
mental execution of the expensive function.

above, which we will use as a running example throughout
the paper. As mentioned above, traders often use bond mod-
els to find a price for a given bond. For bonds that do not
trade on an open market, pricing data is often not made
public, and traders must use models to obtain prices. These
models output a bond price based on input data about the
bond and current economic data such as interest rates. As
economic and bond data changes, bond traders may want to
run models on each bond in real-time, and answer queries
such as:

Q1: Find all bonds priced above $100.

Q2: Find the value of my bond portfolio, which is a
weighted sum of bond prices.

Q3: Find the best performing (i.e. highest valued) bond.

In these queries, models must execute quickly because
traders need to run a model for each bond issue each time an
input changes. In the case of interest rate inputs, the rate
is typically calculated using the price of a U.S. Treasury
Bond, which changes every 2 minutes on average'. There-
fore, models must be run quickly in order to be practical.

Unfortunately, many bond models such as [28, 11] can
be computationally expensive, requiring time on the order
of minutes or even hours. These models require numerical
solutions for partial differential equations (PDEs) that can-
not be solved analytically. These numerical PDE solvers
return approximate prices, where the accuracy of the result-
ing price depends on the amount of compute work used in
the solver. While we concentrate on bond models in this
example, the same PDE solvers are used in fields as varied
as fluid mechanics [29], semiconductor process design [13],
and high-energy physics [24]2.

Similar to the processing shown in Figure 1, queries Q1-
Q3 can be run in CQ engines with the models supplied as

!Determined by observing real-time interest rate data on
Yahoo! Finance from 10/13/04 to 11/09/04.

2While a survey of PDE solvers can be found in Chapter 12
of [2], we discuss PDE solvers in more detail in Sections 2
and 4.

UDFs. Given this architecture and “black box” UDF inter-
face, however, CQ engines cannot control the accuracy of
UDF calls. Therefore, these engines must always run mod-
els so all answers are accurate enough to answer any query.
In financial applications, this means running all models with
an error of less than $.01. Since prices can only be accurate
to $.01 anyway, models can effectively report a price as a
single real number.

In many cases, these systems often do too much work to
process a query. For instance, consider a system running
query Q3 over 2 bonds which are worth $105 and $95, re-
spectively. Suppose that a model call reports both bond
values within $.01 accuracy. In this case, the system could
determine the max value without running the lower valued
bond to as high of accuracy, thus requiring much less work.

1.3 Overview

To deal with this problem, we present VAOs, which are
operators that combine the function execution and the oper-
ations over the results. By combining these two operations,
the VAO can change the function execution based on the
operations performed on the results.

VAOs use a UDF interface which lets them control the
work-accuracy trade-off inherent in many functions. Using
this interface, functions return upper and lower bounds, not
single values. The initial bounds from a function are initially
very coarse, as they result from the minimal amount of com-
pute work for the function. If the bounds are not accurate
enough to produce an answer for the operator, the VAOs
can use the new interface to refine the bounds, which also
requires more CPU cycles. A wide variety of numeric func-
tions have an inherent work-accuracy trade-off, and we have
modified a variety of numeric algorithms to accommodate
the VAO interface.

For a VAO MAX operator in the above example, suppose
the functions provide initial bounds of [$98, $110] and [$90,
$101]. Since these bounds overlap, the operator must re-
fine the bounds so that a) maximum value is found, and
b) the value is within a certain error tolerance (e.g. $.01
for bonds). As the VAO can make refinements over either
(or both) bounds, each VAO needs a refinement strategy
that attempts to conserve work by considering both query
operation the data involved.

We have designed VAOs for selection predicates and 4
aggregates. To evaluate our designs, we implemented pro-
totype VAOs and ran experiments using real bond data
and models. Under realistic market conditions, these ex-
periments show that VAOs run functions up to two orders
of magnitude faster than traditional operators. In addi-
tional experiments on synthetic data, we found that VAOs
are robust in many experiments explicitly designed to stress
VAOs.

1.4 Contributions and Roadmap

The contributions of this paper are as follows:

e We describe a new UDF interface which exploits the
trade-off between work and accuracy inherent in many
expensive functions.

e We discuss our modifications to a large class of numeric
algorithms which allows them to be implemented with
the VAO interface.



e We present a new class of continuous query operators,
the VAOs, which use the new interface. VAOs ad-
just the work in a function according to the accuracy
needed by the query.

e We discuss experimental results with VAO prototypes.
In experiments using real bond data and models, VAOs
provide up to two orders of magnitude improvement
over traditional operators. With synthetic data, VAOs
exhibit robust performance in many experiments de-
signed to stress VAOs.

The rest of this paper is as follows. Section 2 presents
related work. Section 3 gives a general overview of query
processing with VAOs, as well as a detailed description of
the new UDF interface. Section 4 describes the modifica-
tions needed for numeric algorithms implemented with the
VAOs interface, and Section 5 discusses the designs of spe-
cific VAOs. Section 6 discusses performance results, and
Section 7 concludes the paper.

2. RELATED WORK

While previous database research deals with expensive
function optimization, this prior work attempts to avoid
function calls instead of optimizing the execution of calls
that must be made. Therefore, most of this work is com-
plementary to VAOs. Work on static queries concentrates
either on predicate re-ordering[3, 22, 21] or caching [20].
Most continuous query research [14, 15, 16] does not con-
centrate on expensive predicate evaluation. The work in
the TCQ system [16, 23], however, uses a query processing
mechanism called an Eddy, which can potentially re-order
predicates to avoid expensive function calls.

Our work in [8] presents CASPER, a caching system for
expensive functions in continuous query systems. CASPER
caches predicate result ranges, which are ranges of param-
eters where the results of expensive predicates are known.
To compute these predicate result ranges, CASPER uses a
new UDF interface. We view the integration of VAOs with
CASPER, which entails integrating their UDF interfaces, to
be interesting future work.

In addition to UDF optimizations, the database commu-
nity has done significant work on using approximate an-
swers to reduce the cost of expensive operations, which is
the general approach of VAOs. Much of this work, how-
ever, uses probabilistic techniques which require specialized
assumptions about the data and the expensive operations.
For example,the approzimate predicates presented in [27] are
cheaper versions of exact predicates with known false posi-
tive and false negative probabilities. VAOs function in situ-
ations where neither such predicates nor the corresponding
probabilities exist. Other approximation techniques [4, 9,
10] require probability distributions over the data. To adapt
these techniques to the queries presented here, a probability
distribution would be needed that relates both the underly-
ing data and the outputs of the functions. VAOs require no
such distribution.

The online aggregation work in [19] uses a principle sim-
ilar to VAOs of continually refining error bounds until the
answer has similar accuracy. The online aggregation system
computes probabilistic error bars for aggregates by sampling
relational data, and does not support user-defined functions.
In contrast to this probabilistic approach, the systems in [26,
25] compute approximate aggregation queries by using de-

terministic error bounds. This work deals with aggregates
over data coming from a large number of distributed data
sources, and is focused on reducing communication cost of
data transfer rather than compute cost.

In the scientific computing literature, there is a wide body
of work on efficient solvers for expensive numerical functions.
Many of these solvers, including those for PDEs, ordinary
differential equations, and numerical integration problems,
have the VAOs property that more work gives more accurate
answers. As mentioned above, these solvers are used in fields
as disparate as fluid mechanics [29], semiconductor process
design [13], and high-energy physics [24]. A survey of these
solvers and their applications can be found in any numerical
analysis textbook (e.g. [2]), and the literature is much too
vast to cite here.

In the scientific computing literature, the most related
work to VAOs is Adaptive Mesh Refinement for PDEs [1].
As we explain later in Section 4, many PDE solvers require
the creation of a mesh, or multidimensional grid, of values
which determines both the accuracy and compute time of a
solution. Adaptive mesh refinement iteratively changes the
mesh size in order to find a solution of acceptable accuracy
while conserving compute cycles. These techniques are de-
signed primarily to optimize the solution to a single numer-
ical function, and do not address the execution of multiple
functions needed by a declarative continuous query.

3. GENERAL OVERVIEW

In this section, we give an overview of both VAOs and
the new UDF interface that they use. VAOs change the
processing of queries with any UDF that a) returns a real
number, and b) has an inherent trade-off between work and
accuracy. In this section, we first describe traditional op-
erators processing UDFs with “black box” interfaces, and
then show how VAOs improve upon these operators using
the new interface.

3.1 Traditional Operators

Figure 2 shows how traditional operators process results
of UDFs. In this figure, we show a system processing a se-
lection predicate “model(IR.rate, BD) > 100”, which would
be a predicate similar to that found in Q1 from Section 1.
In this predicate, BD is a relation containing a tuple for
each bond in the market, and IR is a stream that contains
the interest rate in the field I R.rate. model() is a function
that takes an interest rate and a BD tuple, and returns a
price for a bond at the given rate. In this example, model()
is based on PDE solvers which require more compute time
for higher accuracy. Section 4 provides more information on
PDE solvers commonly used in bond models.

In this figure, the system first executes model() in a func-
tion execution module, and then evaluates the result with
a selection operator. For simplicity, we assume the absence
of caching; function caches as described in [20] can be used
with both traditional operators and VAOs, and do not affect
our discussion of function execution.

Note that the selection operator is separate from the ex-
ecution module, and has no control over UDF execution.
Therefore, the function call costs are completely dependent
on the function itself and its arguments. A function always
runs with the same accuracy, which must be sufficient to
answer any predicate. In our example, model() determines
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Figure 2: Evaluation of model(IR.rate, BD) > $100 for a
sample tuple pair with traditional operators.

each price to an accuracy within $.01. Since any error below
$.01 in a price is effectively irrelevant, the price returned can
be used in any operator evaluation.

In many cases, however, model() does not need to return
a value with such high accuracy. For the model() value of
$105 in Figure 2, model() could have been run with any ac-
curacy within $5, and the predicate would still evaluate to
true. Since the selection operator has no control over func-
tion execution, model() always runs with $.01 accuracy and
the corresponding cost. Even if the operator could change
function accuracy, the operator does not know the accuracy
needed a priori for each set of input tuples. While an accu-
racy of $5 may be enough for the model() result in Figure
2, results for other IR, BD tuple pairs may be closer to the
predicate constant and require higher accuracy.

3.2 VAOs

Figure 3 shows a system with VAOs executing the same
predicate described above. Here, the inputs to the function
flow into the VAO, which is responsible for executing the
function and applying the predicate. With this architec-
ture, the VAO can use the selection operator to influence
the function execution.

To control the function execution, VAOs take advantage
of an iterative interface for user-defined functions. With
this interface, VAOs can iteratively increase the accuracy of
function results by using more CPU cycles. For many func-
tions, particularly those of numerical nature, this interface
works quite well. For example, many numerical solutions
for root finding and integration® are based on iterative tech-
niques, and thus can be implemented in this interface. Even
for functions that are not iterative in nature, such as PDE
solvers, we can often still use the VAO interface. Section 4
details how such solvers can be implemented with this in-
terface.

3Elementary iterative root finders are surveyed in Chapter
2 of the textbook [2]. The same book also covers iterative
numerical integration techniques in Chapter 4.

Output/True
VAO VAO

(¢
model(IR.rate, BD) > $100

[¢)
model(IR.rate, BD) > $100

iterate()

(a) [$98,$110] (b)

result object

[$101, $108 ]

result object
(new bounds)

execute
model(IR.rate, BD)

execute
model(IR.rate, BD)

Figure 3: Evaluation of model(IR.rate, BD) > $100 for a
sample tuple pair with VAOs. (a) shows the function re-
turning a result object, and (b) shows the VAO iterating
over the object to refine the bounds.

With the iterative interface, the first call to a UDF returns
a result object to the VAO instead of a value. Each object
provides:

e H and L: Numeric data members which are high and
low error bounds, respectively, for the function value.

e iterate(): A member function which the VAO can call
to refine the bounds, at the cost of more CPU cycles.

e minWidth: A numeric data member which indicates
the bounds width (H — L) under which the answer is
considered as accurate as possible and no more iter-
ate() calls should be run.

Unlike traditional operators, VAOs operate over result ob-
ject bounds instead of single values, and they can iteratively
refine these bounds in order to obtain an answer. All result
object processing is encapsulated in VAQOs, unless function
results or result aggregates are in the operator output. In
this case, the query also needs to specify a precision con-
straint, which is a maximum bounds width for the output.
Precision constraints have been used in other query process-
ing work, such as [26, 25].

Figure 3(a) shows initial bounds for an example result
object. Each object initially provides very coarse-grained
bounds that require the minimal compute time for a func-
tion. In this case, the bounds encapsulate the predicate con-
stant, and the predicate result is unknown. In this case, the
VAO sends the object back to the executor, which iterates
over the object to get more accurate bounds.

A selection VAO iterates until either a) the bounds no
longer contain the selection constant, or b) the bounds width
falls below minWidth. The latter condition is a stopping
condition needed by most iterative techniques. Without
this, a VAO could iterate over an object infinitely many



times, eventually resulting in infinitely small error bounds
1. Here, the minWidth for all model() results is $.01. If
the bounds still contain the constant and have width less
than minWidth, the operator considers the function value
equal to the constant, and produces the appropriate result.

In Figure 3(b), we show the result of an iteration over
our example object. The new bounds are both greater than
$100, so the operator knows that the predicate is true. Note
that the error bounds are still much larger than $.01, which,
as we show in our experiments, often results in a drastic
compute time savings over “black box” function execution.

VAO UDFs obviously have a much different cost model
than traditional UDFs. Consider f({(args)), which denotes
a function call with argument value list (args). If f is im-
plemented as a traditional UDF, assume the call has an ex-
ecution cost® costiraa(f, (args)). Now consider the function
implemented in the VAOs interface. For iteration i where
FFilargs)i s the state of the system immediately before the
ith iteration, the cost of the iteration is:

costiter (f7 <g/rgs>7 ff,(aTgS),i) _
getstate(f, (args), FHlaroshiy 4
execimr(ﬁ <args>7ff,(args)7i) T
storestate(f, <a7‘g5>7]-‘f»(args),i)

Here, exec;ier is the cost of the actual iteration execution.
In addition, the iteration must also get and store state in the
result object, which is represented by getsiate and storesiate,
respectively. If a function requires N iterations, the system
will save work using VAOs if:

COSttrad(f, (args>) >
Zéil coStiter (f7 <args> , Ff7<0«7“gs>,z)

Our explanation of VAOs above holds for simple operators
such as selection, where the operator considers one result
object at a time. VAOs that consider sets of result objects,
such as the MAX operator discussed in Section 1, are more
complicated. For example, iterating over any result object
comprising an aggregate value may affect the error of the
aggregate. Such VAOs must choose iterations from among
the objects in the set in order to obtain an answer. Each of
these VAOs requires an iteration strategy, which chooses it-
erations that compute an answer without excessive compute
work.

A VAO with an iteration strategy requires two changes
to our VAOs description above. First, the VAO must
choose each iteration according to its strategy, which
takes some amount of compute time. To account
for this, we add the cost of choosing an iteration,
chooselter(f,args), F9(er95):4)  to the cost of each itera-
tion. We will discuss this cost in Section 5 for each operator
for completeness, but this cost is not significant in our ex-

4 Actually, enough iterate() calls on a limited-precision ma-
chine would eventually result in round-off error for many
numerical methods. In many cases, this error could signif-
icantly change the answer. See Chapter 1 of [2] for further
information on round-off error.

5We assume this cost includes argument and output value
marshaling. The work in [21] provides a more detailed
breakdown of UDF' cost, but this level of detail is not nec-
essary here.

periments. Second, these VAOs require information on the
relative costs and benefits of different iterations in order to
choose between them. Result objects supply this informa-
tion with the following additional data members:

e e¢stCPU: The estimated CPU cost of the next call to
iterate()

e estL and estH: Estimates on the L and H bounds that
would result from the next call to iterate()

A result object must update these estimates each time an
iteration is run. In the next section, we discuss how each
VAO uses this information to choose iterations. In Section 4,
we discuss how this information can be easily obtained for
a large class of numerical functions.

4. VAO FUNCTIONS

As discussed earlier, VAOs can be used to process queries
with UDF's where there is a trade-off between accuracy and
compute time. While many numeric functions exhibit this
quality, current solvers must be modified to accommodate
the VAO interface. We have designed such modifications
for a wide variety of solvers, including partial and ordinary
differential equation solvers, numerical integrators, and root
solvers.

4.1 Partial
Solvers

In this section, we first give a brief statement of the PDE
problem, as well describe a common solver technique. We
then show our modifications to the solver that enable its use
in VAOs. In many UDFs such as bond models, the output
is the solution to a function which does not have a closed
form. A partial differential equation may be known, which
describes the change in function value with respect to the
changes in parameter values. For example, consider a bond
model where a price depends on the result of a function
F(z,t), where z is the interest rate and t is the time. Here,
time is measured from 0 (the current time) to time tmaz
(the time that the bond matures). In many cases, we do
not know F'; but we do know a PDE describing F'; Figure 6
shows a PDE used in a real bond model [28]. In this PDE, all
variables are known a priori except for x, t, F, and the partial
derivatives of F. In addition to the PDE, we often know the
value of F' at specific boundary conditions. For example,
we know that the value of a bond is 0 at maturity, so F(z,
tmat) = 0 for all z. Given a PDE and a set of boundary
conditions, we need a solver that numerically approximates
the value of F' for a given set of parameters. For a bond
model, we typically want the value F(Zcur,0), where Zeyr is
the current interest rate and 0 is the current time.

PDEs such as the one shown in Figure 6 are solved us-
ing finite differencing. Finite differencing solutions involve
finding a mesh of function solutions at different parameter
values. The mesh contains the solution at the desired pa-
rameters, as well as the solutions known from the boundary
conditions. Figure 7 shows a mesh of F' solutions from our
example bond model at different  and ¢ values. In this fig-
ure, there is an entry for the needed solution, F(zcur,0), as
well as a whole column of solutions for the boundary condi-
tion t = tma+. In our example mesh, the entries are equally
spaced on the x and ¢ dimensions, with adjacent entries sep-
arated by step sizes of Az and At, respectively.

Differential Equation (PDE)
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Figure 5: Mesh of solutions at different = and t for our sam-
ple PDE, with step size Az and At and boundary conditions
filled in.

To solve this mesh, a finite differencing solver first fills in
the values known from the boundary conditions. In our ex-
ample, all mesh entries are 0 in the column where t = t,4¢-
Using these values, the solver then incrementally computes
mesh entries with the PDE, using finite difference estimates
for the partial derivatives. In our example, the solver works
backwards from the values where ¢t = t,,4+, and continues un-
til it has the solution for the needed mesh entry, F'(0, Zcur).
The finite difference estimates depend on the solver used,
and a survey can be found in Chapter 12 of [2].

Like many numerical techniques, PDE solvers provide ap-
proximations to the true answer, and both the error and
compute work needed depends on the step sizes. The com-
pute work is proportional to the number of mesh entries,
which is inversely proportional to the step sizes. As the step
sizes decrease and more work is added, however, the error
typically goes down. For our example PDE, the solver used
in our experiments yields error of the form O(At + Az?).
Unfortunately, we often only have a form for the error, which
is difficult to determine exactly. Since we need real-valued
error bounds for the VAOs interface, we estimate the error
using extrapolation techniques®, which use the big-O error
form and solutions at different step sizes to derive a function
for the error.

Since these extrapolation techniques vary based on the
form of the error, we explain them in terms of our example
PDE. Given the error form above for our PDE, we approx-
imate the function for the error with K1 At + Ko Ax2,
where K7 and K> are constants. This formula ignores any
higher order terms hidden by the big-O form, but it pro-
vides a starting point for estimating the error. To estimate
K1 and Ks, we compute the same PDE solution multiple
times with different step sizes. Suppose we compute three
solutions to our PDE (F;-F3) with the same z and ¢ values,

See Chapter 4 of [2] for a discussion of extrapolation tech-
niques.

but using different step sizes as shown in Table 1. While
F is computed with step sizes At and Az, F» and F3 are
computed with one of the two step sizes cut in half, making
them more accurate.

Value| At | Ax | formula

Fy At. | Az. | A+ Ki1At. + KoAx?
Fp | &= | Az, | A+ KAt + KoAz?
Fy | At. | 222 | A4 KAt + 1 KoAc?

Table 1:

formulas used in extrapolation.

PDE solutions, with associated step sizes and

For each value we compute, we can express the value as
the sum of the accurate answer A and our estimated error
formula. These formulas are shown for each value in Ta-
ble 1. Of course, we do not know A, but we can estimate
K1 and K3 using these formulas and the solutions that we
have computed. Simple arithmetic tells us that Fi — F> =
% K1 At, and thus K1 = 2 FlA_tFQ. Similarly, K2 = % %’*.

If the formula K1 At + K2 Az? characterized the error
exactly, we could compute K; and K> exactly, and subtract
off the error terms from the solution to obtain A, the accu-
rate answer. Unfortunately, the formula does not consider
terms hidden in the big-O form. Therefore, the formula only
yields an approximation on the error, and the extrapolation
technique will compute different K7 and K2 values at differ-
ent step sizes. After running each bond in our experiments
at different time and space steps, we found that K7 and Ko
can vary in magnitude by a factor of 2-3. Since K is always
positive and K2 was always negative in our experiments, we
know the accurate answer A is bounded conservatively from
below by F1 — 3K; At and from above by Fi — 3K Az?.

With such extrapolation techniques, we can easily imple-
ment the entire VAO interface for these PDE solvers. When
a new result object is created, it finds L and H as described
above, using very coarse (i.e. large) step sizes. On each it-
eration, the result object halves one of the step sizes, finds a
new solution, and updates the error bounds by updating the
error formula. The compute work is directly proportional to
the grid size, so each iteration requires twice the work of the
previous iteration. Note that this error formula can also es-
timate the error for other step sizes. The object uses this
formula to both a) ensure that it halves the step size that
yields the most error reduction on each iteration, and b)
update after each iteration the estL and estH fields, which
predict the bounds after the next iteration. The only other
field provided by a result object is estC PU, which estimates
the CPU cost of the next iteration. For most solvers, the
CPU cost in terms of floating point operations can be calcu-
lated as a function of the step sizes, so the object can easily
keep estC PU up to date.

In most cases, the cost of this result object compares fa-
vorably to running the PDE solver in a traditional UDF
with high accuracy. If a function call f({args)) is running
the solver, Section 3.2 gives us general equations for the




cost using both the traditional UDF and VAO interfaces.
The cost of the traditional UDF, which is costiraa(f, (args))
in Section 3.2, is the cost of running the PDE solver
at a fine enough grid to give a result within $.01. On
the other hand, the cost of a VAO iteration, which is
costiter (f, (args),ff‘<args>’i), has several components. In
our experiments, the work done in choosing an iteration
is trivial, so we will assume that chooselter is negligible.
Also, retrieving and storing result object state (getstate and
storestqte) is only a few CPU operations, so we assume that
costiter is roughly the cost of executing the solver (execiter).
We can thus characterize costiter by doubling the work done
in the previous iteration, as shown below:

costiter (f, (args), .7-—f’<‘"gs>’i) ~
execier(f, (args), FHT997) ~
2 costiter (f, (args),]-—f’mrgS)’Z_l)

Suppose a result object requires IV iterations to obtain an
answer within $.01. On the last iteration, the VAO will do as
much work as the traditional UDF PDE solver. Therefore,
the previous iterations add extra overhead compared to the
traditional UDF. Assuming that the initial iteration requires
a relatively small amount of work, the doubling of the work
on each iteration means that:

Zf\;l COStiteT(f7 <a1”gs>,.7‘—f’<args>’i) ~
2 costiraa(f, (args))

Since the last iteration requires approximately the same
compute time as the traditional UDF, the following equation
also holds:

SN costiser (f, (args), FH 91 &
costiraa(f, (args))

Therefore, if a VAO requires less than N — 1 iterations
for a function, it will save work compared to a traditional
UDFs. In the experiments presented in Section 6, we show
that this is usually the case.

4.2 Ordinary Differential Equation Solvers

Ordinary differential equations (ODEs) are related to
PDEs, and are often solved in a similar manner. Put sim-
ply, ODEs are PDEs where the equation contains the rate of
change with respect to one variable. For example, consider
the following equation:

2 xT
4 (z) = Frw(e) + F57(x - 1)

This equation finds w, the amount of deflection on a beam
as a uniform stress is applied to the beam. While we would
like to find a closed form for w with respect to x, the position
on the beam, the equation is expressed in terms of the rate
of change in w with respect to x. While there are many
techniques for solving ODEs (see [6] for a survey), a large
class of ODEs must be solved via finite differencing methods
very similar to those described for PDEs. For these solvers,
we can make VAO modifications similar to those described in
Section 4.1. In our ODE example above, the only difference
is the presence of only one dimension in the grid (z instead of
z and t), which makes the extrapolation techniques slightly
simpler.

4.3 Numerical Integration

Given our discussion of PDEs and ODEs, we now move
onto a significantly different type of solver in numerical inte-
gration. Numerical integrators find the area under the curve
of some function that returns a real value. Put formally, we
are dealing with functions where the answer is the solution
to a problem of the form f; f(z)dx. Here, a and b are real
constants, and f is some function where the input and out-
put are real numbers. Often, there is no closed form for the
integral, so we have to estimate the area under the curve
numerically.

Numerical integration techniques solve the function at
strategically-placed points in order to estimate the area un-
der the curve with a polynomial for which we can easily find
the area. If more points are taken, the solver can estimate
the integral with a larger number of smaller polynomials,
which yields a more accurate answer. Note that this ap-
proximation can be expensive if f itself is expensive.

The numerical analysis literature contains a variety of in-
tegration rules used to pick the points used to find a polyno-
mial. The rule demonstrated in Figure 4.3 is the Trapezoid
Rule. We will use this rule as an example in our discus-
sion, but the techniques discussed here apply to other rules
as well. According to the trapezoid rule, the area under
the curve in our problem * is approximated by S(a,b) =
b=a(f(a) + £(b)).

If there is a significant amount of error in our estimate,
we run can f(aT“’), and find a more accurate approximation
using the sum of two trapezoids, S(a, “£%) + S(2£2, b).
It can be shown that the magnitude of the error in S(a,b)
is bounded by: & | S(a, b) — (S(a, “£%) + S(%£2, b)) |,
where C' is a constant that depends on the characteristics of
the function, as described in Chapter 4 of [2]. If the error
bound is not acceptable, we can recursively perform this
technique on the ranges [a, %] and [%2, b] to estimate

fa(aer)/Q f(z)dx and f(l;er)/Q f(z)dz, respectively. The sum
of these estimates give a better approximation to the original
integral, and the error in this approximation is the sum of
the errors of these estimates.

Next, we describe how to implement functions with nu-
merical integration using our iterative interface. When the
function creates a new result object, it computes an approxi-
mation S using an integration rule and a corresponding error
magnitude E.. With this data, the object has initial values
for L and H of S — E. and S + E., respectively. The first
call to iterate() will compute the integral and the associated
error using the sum of the approximations over [a, %% ] and
[“T*'b, b]. Subsequent iterations halve the existing intervals,
and compute the bounds by computing the approximation
and error of each new interval.

In the VAO interface, an object must also provide
estCPU, estL, and estH members. For each iteration,
estC'PU is simple to calculate. Since each iteration causes
twice as many intervals to be computed, the object can eas-
ily calculate estC'PU if it can estimate the cost for f. The
object can estimate the bounds after the next iteration, but
these bounds depend on the integration rule. For example,
the trapezoid rule for a given interval yields an error of the
form O(h?®), where h is the interval width (in the initial ap-

"The Trapezoid Rule holds as long as continuity conditions
are required for f. See Chapter 4 of [2] for a survey of
different integration rules.



proximation above, for example, h = b — a). Therefore, the
magnitude of the error can be estimated with K1 h%, where
K, is some unknown constant. This equation ignores any
higher-order terms hidden by the big-O error form, but it
is useful for estimating the error in the next iteration. On
the next iteration, the interval will be split into two intervals
that are % wide, and therefore the total error magnitude will
be 2 [ K1 (£)*] =1 K1 h®. Given these error estimates, we
can estimate K; in the same way we obtained error coeffi-
cients for PDEs above. Since K; h® is the formula for the
current error, we can estimate the error magnitude for the
next iteration by one-fourth of the current error magnitude.
Of course, this is only an estimate, as the error formula we
use does not take into account any higher order terms hid-
den by the big-O error form. However, this estimate can
easily be used to compute estL and estH.

In most cases, the modifications for the VAOs interface
does not cause significant overhead over the traditional
solver. That is, the solver in the VAO interface is never
significantly more expensive than the traditional solver, and
the query processor can use the VAO interface to run the
function much more cheaply. At a given accuracy, the tra-
ditional solver computes as many points as the solver with
the VAO modifications. If N VAO iterations are required for
the accuracy provided by a given traditional function, the
following holds using the notation from Section 3.2:

Zf.\[:l execiter (f, (args),ff’<‘"95>‘i) ~ costirad(f, (args))

Given the formula for costiter in Section 3.2, the VAO
cost approximately equals the traditional cost for the same
accuracy if there is negligible cost for a) choosing an itera-
tion, and b) loading and storing state. These are both rea-
sonable assumptions for many applications because a) our
experiments show iteration choice to be of negligible cost,
and b) the state of many integration problems is very small
(less than 100 data points required in all the examples in [2]
and [28]). Therefore, we can assume that the compute cost
of the integrator using the VAO interface is roughly equal to
the traditional cost for the same amount of accuracy. That
is, the query processor gets the benefits of the VAO interface
at effectively no additional cost.

4.4 Root Solvers

Root solvers comprise the final class of numerical func-
tions discussed in this paper. Root solvers are basically rou-
tines that find an x value that solves the equation f(z) =
0 for some function f. There are a variety of solvers which
depend on the nature of the function, but here we will de-
tail the bisection method, a method that works with any
continuous real-valued function®.

The root solver begins with loose error bounds [a,b] on
a solution. [a,b] can be any bounds such that f(a) and
f(b) are of different sign, which indicates that a solution
definitely lies within. The solver then computes f(2£2),
which provides refined bounds. To show this, consider an
example where f(a) < 0 and f(b) > 0. If f(%E2) > 0, then
a solution lies in [a, “E’] because f(a) and f(%E) have
opposite signs. Similarly, [“TM, b] provides new bounds if

f(2£2) < 0. The algorithm iteratively refines the bounds
using the same technique until the error bounds are within

8See Chapter 2 of [2] for a discussion of bisection method
and other common root solvers.

a desired accuracy specified by the user.

Since the solver is iterative in nature, it fits nicely into our
VAO interface. At any given iteration, L and H are deter-
mined by the last bounds computed, and iterate() simply
runs another iteration. estCPU is effectively the time to
run the function at the midpoint of the bounds, and this
depends on the function itself. In the case of [estL, estH],
the next bounds can either be the upper or lower half of the
current bounds. Therefore, the solver will need some way of
predicting [estL, est H]. Even if this prediction is completely
random, the prediction will only be wrong half the time on
average, and it will never be off by more than a factor of 2
of the previous bounds.

For the cost, the root solver is like the numerical inte-
grator in that the compute cost of each VAO iteration is
incurred by the traditional solver running at the same accu-
racy. Therefore, the VAO version of the solver has the same
cost for any given accuracy if the costs of getting and stor-
ing state are small with respect to the iteration computation.
Since bisection method only needs the previous bounds for
the next iteration, the overhead of using the VAO interface
over the traditional solver is negligible.

5. VAO DESCRIPTIONS

Now that we have discussed the VAO interface and the im-
plementation of some common numerical functions, we now
focus on the designs of specific VAOs. Since we described
the selection VAO in the last section, we now concentrate on
aggregation VAOs. The execution module is the same for all
VAOs, so we focus on the operator portion of the VAOs here.
For all aggregates, the VAOs must process a set of result ob-
jects to obtain a single operator output. As explained above,
these VAOs each require an iteration strategy to choose it-
erations without excessive compute work from iterations.

In our designs, each VAO uses a greedy iteration strat-
egy. That is, a VAO continually picks the iteration which is
best among the current choices until the operator produces
an answer. This strategy is based on the insight that iter-
ative techniques converge, meaning that later iterations for
a given result object usually yield less error reduction than
earlier ones. In the case of PDE solvers, later iterations also
often require more CPU cycles than previous ones because
the solver uses more information on each iteration. There-
fore, the iteration that currently yields the most benefit per
CPU cycle is often the best global choice.

Of course, the criteria for choosing the best iteration de-
pends on the operator itself. Below, we describe each VAO
and give the greedy heuristic for choosing an iteration from
among the current objects. We also characterize the cost of
using each heuristic to choose an iteration, which is a cost
represented by chooselter in the cost equations above.

In our aggregate VAO designs, we assume that the aggre-
gates are in the output of the query. Because the output of
an aggregate over bounded values is also a bounded value,
the user must specify a precision constraint € with each ag-
gregate. The precision constraint provides a limit on the
bounds width of each resulting aggregate.

5.1 MIN and MAX

Given a set of objects O, the MAX VAO returns the
bounds of an object 0mas € O such that for all other objects
0i € O, either:

1. Omaz-L > 0,.H, or



2. Both 0; and 0,42 have overlapping bounds, and their
respective bound widths are less than their minWidth
values.

In the first case, omaz is clearly larger that o,. In the
second, the system cannot determine if 0mmqq is larger than
0; because both objects reached their stopping conditions
9. MAX returns bounds on omas no larger than the user-
supplied precision constraint €. Note that MIN is symmetric
to MAX, so we do not discuss it here in order to conserve
space.

Object L H estCPU | estL | estH
01 97 101 4 98 99
02 95 103 4 96 101
03 100 | 106 4 102 104

Table 2: Data Members for example initial result ob-
jects evaluated by an aggregate VAO.

(L, H]
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Figure 6: L and H bounds from objects in Table 1,
shown graphically.

Since bounds for 0mqz within € can easily be found once
the VAO identifies the object ', finding omaz is the primary
challenge in MAX processing. Suppose the MAX VAO is
running over the objects 01-03 shown in Table 2 (bounds
shown graphically in Figure 4). The VAO needs to run iter-
ations until oma. is found, as shown in Figure 5. Here, the
operator knows that 03 = omqez because it has the largest
bounds and there is no overlap between o3z and any other
object. Thus, the greedy heuristic should choose the iter-
ation which provides the most overlap reduction per CPU
cycle between omaqz and the other objects. Unfortunately,
the greedy heuristic has no way of knowing which object is
Omaz, since finding omaqz is the objective.

9For those familiar with approximate distributed caching
work in [25], this work uses the following alternative defi-
nition for the bounds returned by MIN over bounded data:
[mine,c00i.L, ming,co0;.H |. Unlike our definition, the
upper and lower minimum bounds can come from different
objects. However, this property is unacceptable in many ap-
plications which want bounds on the minimum object (i.e.
“give me bounds on the bond with minimum value”).

075 find bounds within €, note that omaz.minWidth
must be larger than e. To ensure this, the current
MAX implementation returns an error if € is less than
mazo;co (0. minWidth).
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Figure 7: L and H bounds from Table 1 after MAX
VAO has run iterations and found that 0,,,, = 03.

To deal with this problem, the VAO uses an educated
guess for Omaz, which we define as o,,,. The VAO cur-
rently sets 0},,, to the object with the highest upper bound,
although different criteria can be used if more information
is available. The VAO then iterates over the object that
reduces the total overlap the most per cycle between 0,44
and other objects. When the ol,,. guess no longer has the
largest upper bound, the algorithm changes its guess and
chooses another iteration. The algorithm keeps choosing it-
erations until either a) no other objects overlap with 0},,,
or b) 0},,, and the objects that overlap with it all hit their
stopping conditions.

To demonstrate the MAX heuristic, consider a VAO
choosing an iteration from among 01-0s in Table 2/Figure
4. Here, 03 iS 0lnqq, S0 the algorithm should choose the
iteration that will reduce the overlap the most, per CPU
cycle, between o3 and the other two objects. To estimate
this overlap reduction for the next iteration of object o;,
the VAO computes the effect on overlap if the bounds of o;
shrink to [ o;.estL, o;.estH ]. With o1, for example, only
the reduction of 01.H to o1.est H will reduce the overlap be-
tween 01 and o3. Therefore, the overlap reduction is at most
01.H — o1.estH, limited by the current overlap between o1
and o3. Since this current overlap is 01.H — o03.L, the esti-
mated overlap reduction for o; is min(o1.H — 03.L, 01.H —
o1.estH) = min(101 — 100, 101 — 99) = 1.

Using similar computations, the estimated overlap reduc-
tion for o2 and o3 is 2 and 3, respectively. Since objects
01-03 have the same estimated CPU cost (estCPU), the
VAO chooses to iterate over os. Here, o3 has the highest
estimated overlap reduction, primarily because 03 is 0},q4
and the iteration reduces overlap of o3 with both o1 and o02.

In practice, the cost of choosing an iteration is quite rea-
sonable. To choose the first iteration to run, the VAO must
find 0),,, and compute the overlap reduction estimates for
all objects. This estimate can be computed in constant
time for each object except for o),,,, Where iterations re-
duce overlap between ol,,, and all other objects. Thus,
computing estimated overlap reduction takes O(N) time for
N objects. Finding the maximum estimate also takes O(N)
time without indexing, though indexes could certainly make
this search more efficient. Once an iteration is run, the VAO
has to update the overlap reduction estimates, which takes



O(N) time if oy,,, was iterated over and constant time for
any other object. If the algorithm changes its 0,,,, guess,
the VAO has to recompute the overlap reduction estimates
for each object. These computations take O(N) total time,
as we showed when discussing the algorithm’s initial itera-
tion choice. Overall, the VAO requires at most O(N) time
to choose each iteration. As more iterations are run, how-
ever, N decreases because the VAO eliminates objects from
consideration which have bounds too low to be the maxi-
mum. As we will show in Section 6, the iteration choice
cost is negligible in our experiments compared to function
execution cost.

5.2 AVE and SUM

AVE and SUM are effectively computed by the same VAO.
In addition to an object set O, this VAO also takes a set of
weights W. Each o; € O has a unique associated weight w;
€ W, where each w; is a nonnegative real number. This
operator effectively finds the weighted sum of the object
values at each extreme; that is, it finds [ Zoieo w; 0;.L,
> 0,c0 Wi 0i-H ]. The operator must make iterations until
these computed bounds are within the specified precision
constraint €, or the bounds for each o; are narrower than
oi.minBounds. With N objects in O, this operator pro-
duces an average if each w; is %, and it produces a sum if
each w; is 1.

An iteration over an object o; will increase 0;.L and/or
decrease 0;.H, provided that o;.H — o0;.L is not already
less than o;.minBounds. Therefore, the greedy heuristic
simply chooses the iteration that yields the most estimated
error reduction per CPU cycle, weighted by w;. The VAO
estimates the weighted error reduction for each object o;
with the formula w; [(0s.estL—o0;.L)+(0;.H —o0;.estH)|. For
the objects o1, 02, and 03 shown in Table 2, the estimated
error reduction is 1, 1, and %, respectively. Since the objects
have the same estimated CPU cost in this example, the VAO
iterates over ogz.

To initially run the greedy heuristic, the VAO has to com-
pute the estimated error reduction per CPU cycle for each
object. Since each estimate is computed in constant time,
these computations require O(N) total time for N objects.
The VAO can choose the largest error reduction in O(N)
time without indexing. Once the VAO runs an iteration,
it must update the object’s estimated error reduction per
cycle, which again takes constant time. Thus, the VAO can
choose an iteration in O(N) time without indexing. While
the VAO can choose iterations in sublinear time using in-
dexes such as heap queues [7], we found such optimizations
unnecessary in our current experiments.

6. PERFORMANCE

Now that we have explained the VAO designs and po-
tential applications, we now discuss VAO performance. To
evaluate our designs, we implemented prototype VAOs and
use them to run a variety of experiments. In this section, we
present results on bond trading continuous queries similar
to Q1-Q3 in Section 1. These experiments show two major
results. First, experiments with real bond data and models
show that VAOs often drastically outperform traditional op-
erators under real market conditions. Second, experiments
with synthetic data show that VAOs are robust under many
scenarios explicitly designed to stress VAOs.

All queries in these experiments require a bond model,

which in turn requires interest rates and bond data. In our
experiments, We use the bond model presented in [28], which
requires a numeric PDE solver. To implement this model
with our VAO interface, we used the techniques discussed in
Section 4. For interest rates, we use the 10-year Constant
Maturity U.S. Treasury yield for days between January 3 to
January 31, 1994 [17].

For the bond data, we use both real and synthetic data
sets. For the real data, we use bond data on 500 mortgage
backed securities issued between January and December of
1993 1. For the synthetic data, we designed data sets that
impair the performance of the VAOs. As we show below, the
VAOs are sensitive to the distribution of the function results.
Therefore, we generate bond data such that the results have
a distribution that reduces the performance of the VAOs.
The distributions used are operator-specific, and thus we
discuss them with the results for each operator below.

To create these distributions, we used the following pro-
cess. First, we iterated over each bond in our real data set
until we knew the result for each bond within $.01. We
then used a random number generator [18] to generate a
distribution of bond model results for the same number of
bonds as in our real set. We then create a random one-to-
one mapping between the generated bond results and the
real bonds, and compute the difference between each gener-
ated result and corresponding result from the model. When
executing an iteration over a synthetic bond, we run the
iteration over the corresponding real bond, and then shift
the resulting bounds by the computed difference. This re-
sults in bounds that, given enough iterations, converge to
the desired distribution of results.

All prototype and experiment code was written in C++.
All experiments were run on a Pentium 4 2.4 GHz PC with
1.2 GB of RAM running the Fedora Core 1 Linux distribu-
tion. The prototype processes interest rate streams over the
continuous queries in our experiments, and reports the wall-
clock time for the processing. Although new interest rates
depend on the Treasury price and arrive every 1-4 minutes,
the following experiments show processing time for one in-
terest rate, the opening rate for Jan. 3, 1994. We show one
interest rate because a) the traditional operator experiments
take a large amount of time on one processor, and b) the in-
terest rate value seems to have little effect on the processing
time of our queries. We ran similar experiments with the
high and low interest rate in our data set, and found that
the results show similar trends.

As a baseline, we implemented traditional operators and
used them to run the same queries on the same data. Since
traditional operators cannot adjust function accuracy ac-
cording to query, we implemented a ”black box” version of
the model that always returns an answer with less than $.01
error. To implement this model, we ran each bond through
the model with the VAO interface, and iterated over each
result object until the error was less than $.01. For each
bond, we recorded the step sizes needed to obtain this error.
When we run bonds with the ”black box” interface, we run
the PDE solvers with the corresponding step sizes to ensure
that we obtain $.01 error. Note that these function calls of-
ten underestimate the time needed if the function was used
in a production system. In these calls, the model knows a

M Qpecifically, these bonds are Freddie Mac Gold PC 30-year
Mortgage Backed Securities. The source of this data has
been anonomized for double-blind reviewing purposes.



priori the step sizes needed to get the desired accuracy, and
no further work has to be done to ensure that the error is
acceptable.

Below, we present results on three types of queries: selec-
tion, max aggregation, and sum aggregation.

6.1 Selection Results

In this section, we discuss selection queries which find
bonds that are greater (or less) than some selection constant,
similar to Q1 in Section 1. Here, we first present experiments
using our real bond data, which influenced the design of the
synthetic data experiments which we present later.

Using our real bond data, we ran queries with different
constants using our VAQOs, as well as traditional operators.
The constants are set to yield different selectivities for the
operator. Figure 8 and 9 plot the runtimes for different
selectivities for a selection query with a > (greater than)
and < (less than) operator, respectively.

These figures show the runtimes using the both the se-
lection VAO (vao) and a traditional operator (trad). The
traditional operator runtimes are constant because perfor-
mance doesn’t depend on the query. In all these experi-
ments, the selection VAO outperforms the traditional oper-
ator by over two orders of magnitude. In fact, under real
market conditions, VAOs effectively enable practitioners to
run these queries in real time. Since interest rates arrive ev-
ery 1-4 minutes, the traditional operator would require over
100 processors with linear speedup, where the VAOs would
only require a few!'2.

In addition to the drastic performance improvement from
the VAOs, these graphs exhibit two characteristics that seem
strange at first blush. First, neither graph exhibits a mono-
tonically increasing performance improvement with selectiv-
ity, which is expected of most queries with a selection pred-
icate. Second, note that the runtime for any selectivity s in
Figure 8 is the same as the runtime for 1 — s in Figure 9.

Both of these characteristics appear because the perfor-
mance of the VAO does not depend on selectivity. Instead, it
depends on the proximity of function results to the constant.
For example, consider a VAO with a highly selective con-
stant where many function results are close in value to the
constant. Although the VAO eventually eliminates many
results, it still has to run many results to highly accurate
bounds in order to answer the query. On the other hand,
a less selective VAO with no bonds near the constant can
answer the query with few iterations over each result. Due
to this property of VAOs, we do not see a monotonically in-
creasing performance improvement with selectivity because
the runtime is determined by the number of bonds that are
close to any constant. In our real data set, this number is
not strongly related to the selectivity of the constant. Also,
note that an experiment with any selectivity s in Figure 8
has the same constant as the selectivity 1 — s in Figure 9,
which explains why such pairs of experiments have identical
runtimes.

Using the knowledge gained from these experiments, we
created experiments explicitly designed to stress selection
VAOs. If the VAO has higher runtime when bonds are close
in value to the constant, we can raise the runtime by de-
creasing the difference between bond model results and the
constant. To do this, we generated several different Gaus-
sian distributions of bond values, and ran experiments with

2The models easily parallelizable; see [11] for details.

the selection VAOs. The mean of these distributions was set
to the VAO constant, while we varied the standard devia-
tion to control the distance of the results to the constant.
The results are shown in Figure 10.

In this figure, the pathological case occurs at 0 standard
deviation, where all bonds have the value of the predicate
constant. Here, the VAO is actually more expensive than
the traditional operator. The VAO has to run each model
to the same accuracy as the traditional operator, but it also
has the overhead of the previous iterations. Fortunately, the
VAO performance improves quickly as the standard devia-
tion rises from 0. Since the VAO becomes much cheaper
than the traditional case at only $0.05 standard deviation
and the standard deviation of our real bond prices is approx-
imately $7.78'3, we conclude that the VAO performs quite
well except in the most pathological cases.

6.2 MAX Aggregate Results

Given the selection results, we now turn to queries that
find the largest bond price from our set of bonds, similar
to query Q2 in Section 1. Like the selection VAO, we first
consider experiments over real bond data. In these experi-
ments, we have runtimes for our MAX VAO, a traditional
aggregate operator, and an operator with a theoretically op-
timal iteration strategy (Optimal). In order to provide a
fair comparison, the VAO and the optimal operator return
a bounds with less than $.01 error. This is the same ac-
curacy returned by the “black box” functions used by the
traditional operators.

Unlike the VAO, the optimal operator knows in advance
the bond that has the maximum value. Therefore, it iter-
ates over this bond until the error is less than $.01, and then
iterates over other bonds until no error bounds overlap with
the maximum bounds. As running the maximum bond to
an accuracy higher than $.01 is useless, this operator pro-
vides an optimal iteration strategy, albeit one which requires
knowledge of the maximum bond a priori.

Operator Type | Runtime (sec.)

Optimal 108
VAO 111
Traditional 6953

The runtime for each operator is shown above. For tradi-
tional operators, the MAX runtime is effectively identical
to the selection runtime because the same amount of work
is done in the functions. Note that the VAO takes almost
two orders of magnitude less time to answer the query than
the traditional operator. At real market data rates, VAOs
can again run the query with only a few processors, while
traditional operators require over 100.

When comparing the VAO to the optimal operator, the
extra work in the VAO is only 3 seconds, which is less than
3% of the total work in the optimal case. Most of this extra
work comes from the fact that the VAO is initially wrong
in its guess for the maximum bond, and must eventually
correct itself. The remainder of the overhead, which is less
than .1 second, comes from the VAO’s more complex itera-
tion strategy. As stated in Section 5.2, the time to choose an

13 Although the distribution is centered around the mean,
it is a real data set and does not resemble a theoretical
distribution.
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Figure 10: Selection VAO and traditional operator with

synthetic data.

iteration is linear on the number of bonds that still have the
potential to be the maximum. In our experiments, only 5
bonds meet this criteria after the initial iteration, and each
iteration potentially eliminates another bond. Therefore,
only a small number of bonds were considered for iteration
by the VAO in our experiments.

Given our experiments over real data, we now turn to syn-
thetic data experiments. The MAX VAO is sensitive to the
distribution of results, but in a different manner than the se-
lection VAO. As the MAX VAO must find the maximum re-
sults, the MAX VAO has higher runtime when more results
are clustered around the maximum. To simulate this clus-
tering, we again generated bond model results from a Gaus-
sian distribution, but we only took prices from the lower half
of the distribution. In the worst case of 0 standard devia-
tion, all bonds are the same value, and the VAO must run
all bonds to $.01 accuracy to determine that they are all
the same. As the standard deviation rises, fewer and fewer
bonds have model results near the maximum.

Figure 11 shows the results of the synthetic data exper-
iments with the MAX VAO and the traditional operator.
As in the selection experiments, the MAX VAO only per-
forms worse than the traditional operator in the worst cases.
At $0.10 standard deviation, the VAO significantly outper-
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synthetic data.

forms the traditional operator, and it continues to drop as
the standard deviation rises.

6.3 SUM Aggregate Results

In this section, we present results for SUM aggregate
queries that compute a sum of bond values at the current
interest rate. Unlike MAX and selection, the SUM VAO is
not directly affected by the distribution of function results
Instead, the performance of VAOs depends on how much
each result is weighted in the sum. Weighted sums are of-
ten used to find the value of a portfolio, for example, where
each security price is weighted by the number of shares held.
If some of the results are heavily weighted, the system can
run more iterations over these results, since the error in the
lightly weighted results has less effect on the overall sum. If
results are equally weighted, however, the system has less
opportunity to save cycles by adjusting the iteration strat-
egy.

To evaluate the SUM operator, we ran different SUM
queries with weights generated with what we call a hot-cold
scheme. With this scheme, we set a constant total amount
of weight, and partition the bonds into a hot and a cold set.
In the experiments shown here, the hot set includes 10%
of the total bonds chosen randomly, and the cold set con-

Same as Figure 8, except query uses less than



tains the remaining bonds. In our experiments, we vary the
amount of total weight that is allocated to the bonds in the
hot set. As more weight is allocated to the hot set, we see
bonds that are more heavily weighted, and should see more
performance benefit from the VAOs.

The total weight in each of our experiments is 500, the
cardinality of our bond set. Each VAO query has a preci-
sion constraint of (500)($.01) = $5. This constraint reflect
the error bounds on the traditional SUM operator when all
bonds are run with $.01 error.

SUM Aggregate Queries
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10 20 30 40 50 60 70 80 90 100
% hot weight

Figure 12: SUM aggregate queries with different percent-
ages of weight on the hot set.

Figure 12 presents the runtimes for SUM queries with dif-
ferent weight percentages allocated to the hot set. In this fig-
ure, the traditional operator actually outperforms the VAO
for low percentages. In these scenarios, the VAO can do rel-
atively little optimization, and the VAO has the extra cost
of running intermediate iterations. As the percentage gets
larger, however, the VAO optimizations eventually outweigh
the overhead, and the VAOs are up to over 4 times faster
than the traditional operator. Given that the AVE VAO
does not always yield the best performance, we plan to de-
velop a hybrid operator that uses the VAO algorithm only
when it is cheaper than the traditional operator.

7. CONCLUSION

In this paper, we address the execution of expensive
user-defined functions (UDF's) in either static or continuous
queries. While previous work focuses on avoiding expen-
sive function calls, systems still need to optimize the actual
function executions. These optimizations are impeded by
the “black box” UDF interface used by continuous query
systems, which do not allow the systems any control over
function execution.

To speed up expensive functions, we exploit the trade-off
between accuracy and compute work inherent in many func-
tions. That is, we optimize functions that return more ac-
curate answers if more compute cycles are used. We present
Variable-Accuracy Operators (VAOs), a new class of opera-
tors which computes each function result only to an accuracy
needed to answer the query. To adjust accuracy, VAOs use a
new function interface that returns upper and lower bounds
on the result, and allows the VAO to refine the bounds by
using more compute cycles. In this paper, we describe our
VAO designs for selection and 4 aggregate operators. We
also demonstrate how a large class of numeric functions can

be implemented with the VAO interface.

To evaluate these operators, we built prototype VAOs and
ran experiments with bond trading queries using real finan-
cial data and a numeric bond model. In these experiments,
the VAOs outperformed traditional operators with “black
box” interfaces by up to over two orders of magnitude for
some queries. In addition to experiments with real market
data, we also found VAOs to be robust in performance tests
explicitly designed to stress VAOs,
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