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Abstract

Observation Uncertainty in Gaussian Sensor Networks

by

Anand Dilip Sarwate

Master of Science in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Michael Gastpar, Chair

The term “sensor network” encompasses a wide range of engineering systems with dramatically

different characteristics. We consider a specific class of sensor networks whose objective is to

reconstruct a source at a central terminal. Our objective in this thesis is to quantify the asymptotic

error in reconstructing the source as the number of data sources, sensors, and model complexity

increases. We consider three types of estimation systems – unconstrained estimators for vector

Gaussian sources that are allowed direct access to the sensor observations, estimators for discrete

sources that receive information via rate constrained links from the sensors, and estimators for

scalar Gaussians whose input is the output of a multiple-access channel.

We first establish bounds on the optimal estimator performance of these networks using a

centralized estimator with access to all of the sensor observations. We assume the observations are

noisy linear functions of the source and are thus specified by a matrix. Because the asymptotic

error depends only on the spectral properties of this matrix, we can use tools from matrix analysis

to give bounds on the spectrum and error in terms of the entries of the matrix for a number of

different scenarios. Finally, we look at the case where the matrix is partially unknown. In some
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cases we can estimate the matrix directly from the data and in others we must minimize the worst

mismatch distortion.

These problems can also be looked at in a more information-theoretic framework. We look at a

lossless distributed source coding problem in which the joint distribution of the sources is partially

unknown. Although for any finite number of sensors standard multi-terminal source codes can

easily be adapted to handle the model uncertainty across time, we show a rate penalty is incurred

if the number of sensors and blocklength go to ∞ simultaneously. This represents one kind of

tradeoff between delay and complexity for the scaling behavior of these systems.

Finally, we look at the case where the sensors must communicate their observations across an

additive white Gaussian noise multiple-access channel. With a known correlation structure, the

optimal error converges to 0 as 1/M , where M is the number of sensors. However, a simple feedback

scheme using K bits broadcast to all sensors can provide a distortion that scales to 0 as M −K/(K+2).

We conjecture that providing similar feedback to an optimal source code will not improve the

performance beyond that of our protocol.

Professor Michael Gastpar
Thesis Committee Chair
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Chapter 1

Prelude: a model for sensor networks

Consider the following hypothetical scenario: many sensors are placed around the watershed

of a city in order to monitor contaminant levels in the ground water. These contaminants may

have been introduced, for example, by illegal dumping of waste. The goal of the network is to

measure the concentration levels and report this information back to a monitoring station. Every

sensor can only measure the concentration of a single chemical that is the by-product of several

types of contaminants, so the observation of an individual sensor may not be very informative. The

sensors have a small processor, a wireless radio to communicate with the monitoring station, and

limited battery power. The engineering problem is to design an efficient system for tracking the

contaminant levels over time.

This is a problem of data-gathering and estimation using a wireless sensor network. We are

interested in the theoretical bounds on the estimation error at the central observer and what

happens to these bounds as the number of sources and sensors increase. In order to accurately

address these questions we must have a model of remote sensing that is both rich enough to

capture the problems specific to this application and simple enough to be amenable to theoretical

analysis. In general, the complexity of real-world sensing scenarios is not accurately reflected in

the models studied by theoreticians. Even though the physics of the observation mechanism may

be well-understood, the resulting model may be intractable. Different modeling techniques used
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on the observation and communication halves of the problem may cause difficulties in merging the

two. Finally, those results which can be proved may yield little insight into engineering tradeoffs

or may be so tailored to a specific situation as to be ungeneralizable.

In this thesis we will investigate a very specific class of data-gathering sensor networks. We will

introduce structured uncertainty into the mapping between the observed variables at the sensors

(e.g. concentration levels of a chemical by-product) and an underlying data source of interest (e.g.

concentration levels of contaminants). This modeling uncertainty is different from the uncertainty

caused by noise in the observations; it is uncertainty about how the observations are related to each

other rather than their reliability.

A sensor network designed for estimation will have different performance limits depending on

the constraints on communication among the sensors and between the sensors and the base station.

Correspondingly, we look at three different scenarios: centralized estimation, lossless multi-terminal

source coding, and estimation over a shared additive multiple-access channel. We will will first

discuss a toy example to show what we mean by observation uncertainty and then describe our

three problems and main results.

1.1 A toy example

Suppose {S1[n]} and {S2[n]} are a pair of iid discrete-time Gaussian random processes with

mean 0 and variance σ2
1 and σ2

2, respectively. These two processes represent different sources that

we would like to estimate using a sensor network. The network consists of M sensors, each of

which observes a discrete-time process {Uj [n]} for j = 1, 2, . . . M . These processes are given by the

equation

Uj [n] =

[

A1j A2j

]







S1[n]

S2[n]






+Wj[n] (1.1)

where {{Wj [n]} : j = 1, 2, . . . M} is a collection of independent iid Gaussian processes with mean

0 and variance σ2
W . The pair [A1j A2j ] is equal to [0 1] or [1 0] equiprobably, but does not change
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over time. Gathering the equations into a matrix we have

U = AS +W . (1.2)

This models the case where each sensor observes exactly one of the two sources through noise.

This example gives an idea for what we mean by observation uncertainty. Each sensor does not

know a priori which source it is observing. Another view is that the covariance of the matrix A is

uncertain or that the joint distribution of U is uncertain. If σ1 6= σ2 then each sensor can compute

its own empirical variance and make an estimate of which source it is observing with exponentially

small probability of error. In this scenario the modeling uncertainty is resolvable at the sensors

given a sufficient amount of observed data.

However, if σ1 = σ2 then we must come up with something more clever. Depending on the

access an the estimator has to the sensor’s information, information about the correlation between

the sensors may become costly as M increases. If the estimator has direct access to the sensor

observations, it can try to sort the sensors by measuring their correlation and then estimate the

sources separately. If the sensors must compress their observations before transmitting them, they

may include some overhead to allow the estimator to do this sorting. This overhead could be

avoided if the sensors can communicate between themselves, as we shall see.

1.2 Problem descriptions and main results

In this section we will describe two different frameworks for the sensor network problem as well

as what we mean by uncertainty in observations. For sources taking values in a discrete set, we

assume that each sensor observes a different source directly but that the joint distribution of all

the sources is unknown. For Gaussian sources, we assume that the sensor observations are a noisy

linear transformation of the sources. In all cases we assume a discrete-time model for the source

process as well as any communication channels.
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Figure 1.1. The distributed source coding problem. Each terminal views one component of a
correlated source and encodes it into a rate-limited message. The decoder uses all the messages to
reconstruct the sources.

1.2.1 Discrete sources and distribution uncertainty

In Chapter 3 we address the problem of multi-terminal source coding with distribution uncer-

tainty. The picture is shown in Figure 1.1. We assume that the source to be estimated is a tuple

S = (S1, S2, . . . , SM ), where each component Sm ∈ Sm and Sm are finite sets. These sources have

some joint distribution P (S) that is known to lie in a set of distributions Λ. Sensor m observes

the sequence Sn
m = (Sm[1], Sm[2] . . . Sm[n]) of source samples and maps it into one of 2nRm possible

messages. The goal is to find the set of rate tuples (R1, . . . , RM ) such that the decoder can recover

the original source sequences with a probability of error that goes to 0 as n goes to ∞.

We will assume that the true distribution P (S) cannot be estimated from the marginal distri-

butions of the sensors, and that Λ consists of these “indistinguishable” distributions. In this case,

the set of rates is limited by the worst-case distributions in the class Λ [7]. We give a construction

via binning in the style of Cover and Thomas [6] for this result, which gives an explicit characteri-

zation of the (negligible) overhead needed to compensate for the class Λ. The overhead is the form

log |Λ|n−1 log n, which corresponds to rate needed to communicate the joint type of a distribution

in Λ.

Since the focus of this thesis is on scaling behaviors, we are interested in the case where M → ∞
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as well as n → ∞. Because Λ is a function of M , the complexity of our model may increase

exponentially in the number of sensors. For a fixed M , we can write the asymptotic excess rate

as n→ ∞ as log |ΛM |n−1 log n. However, if M increases simultaneously with the blocklength, and

ΛM grows exponentially in M , for a fixed n this excess rate may not converge to 0. Taking the

blocklength as a proxy for the processing delay and |ΛM | as a proxy for the model complexity, we can

show that if M grows faster than n
log n the region of achievable rates must shrink to accommodate

the information communicated to the decoder about the joint distribution.

1.2.2 Gaussian sources and fading observations

In contrast to the discrete case, for continuous sources we will assume that the number of

sources L is smaller than the number of sensors M . We model the underlying source as an iid

Gaussian process {S[n]} taking values in R
L. At each time S[n] is jointly Gaussian with mean

0 and variance σ2
SI. We view this as L independent sources which we would like to estimate to

minimize an expected squared-error criterion.

The observed signal Um[n] at sensor m is given by the equation

Um[n] = Am({S[k] : k ≤ n}) +Wm[n] . (1.3)

This follows from the Wold decomposition, which says that we can decompose the process Um

conditioned on S into a deterministic part (a function of S) and an additive stochastic process Wm,

which we view as noise. To make things even more simple, we will assume that Wm is iid across

time and space according to some probability measure µW .

By observation uncertainty, we mean the {Am} are themselves random variables that take

values in a set of functions. For example, suppose that there is only one source and that the sensor

observation Um is a noisy weighted average of the previous N + 1 time samples of the source:

Um[n] =

N
∑

k=0

Am[k]S[n− k] +Wm[n] = (Am ∗ S)[n] +Wm[n] . (1.4)

Although this is just a linear filter, we may not know the filter coefficients exactly; they may depend

on the sensor’s physical location with respect to the source. We can either treat the filter Am[n]
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as a unknown parameter or (in Bayesian style) as a random variable with some prior distribution

pA(·).

Let us collect the functions Am into a vector A that takes values in a set of functions A. The

choice of A will reflect the degree of uncertainty in the observation function. If the realization of A

is known to the sensors, then we can condition on A and find the average behavior by taking the

expectation with respect to pA(·). A more interesting case is when A is unknown to the sensors, so

that we must design strategies robust to the choice of A.

We call this model fading observations in analogy to fading communication channels, which are

used to model wireless links with multipath interference. We identify two major distinctions – fast

and slow fading. In fast fading, the realization of A changes at every time step. In our filtering

example above, this would mean that the filter used to compute Um[n] is different from the filter

used to compute Um[n+ 1]. Fast fading may occur as a result of source or sensor mobility or may

have to do with the physics of the quantity measured by the sensors. In slow fading A is chosen

once and fixed for all time, albeit unknown to the sensors. Again, the choice of slow versus fast

fading models is application dependent.

In both Chapter 2 and 4 we will assume that A is a matrix in R
M×L. Conditioned on knowing

A, the sensor observations are jointly Gaussian, so the optimal centralized estimator is linear. In

Chapter 2 we review MMSE estimation for Gaussian random variables and express the error in

terms of the singular values of A. We can then use results from matrix analysis to analyze the

distortion for different constraints on the entries of A and the estimator. In the case where A is

unknown but slow-fading, we show that a centralized estimator can in some cases estimate A and

then do the same MMSE estimation as before. However, for fast-fading A the optimal strategy

is less clear. We examine the case when the estimator must be linear. In the case where the

fading distribution pA(·) is known, we can find the best linear estimator. In the case where pA(·) is

unknown, we formulate the problem as finding a linear estimator to minimize the worst mismatch.

In Chapter 4 we assume the sensors must communicate their observations over the additive

white Gaussian noise channel shown in Figure 1.2. Rather than the rate constraints of Chapter 3,
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Figure 1.2. The network considered in Chapter 4.

we assume the sensors’ communication is power-limited:

E
[

|Xm[n]|2
]

≤ P . (1.5)

We assume there is a single source (L = 1) and a slow-fading matrix A that is a vector with iid

entries according to some bounded zero-mean distribution.

In the absence of fading, two strategies have been proposed in the literature. The off-the-

shelf solution is to have the sensors use the optimal distributed lossy compression scheme and

then transmit their compressed messages losslessly across the communication channel. The lowest

distortion achievable for a rate R is proportional to 1/R [28] and the highest rate achievable across

the channel is proportional to logM , so the end-to-end distortion is 1/ logM . However, if the

sensors simply transmit their observations raw [18] but scaled up to the power constraint of the

channel, the distortion scales like 1/M . We call the former scheme separation-based transmission

and the latter uncoded transmission.

How does the slow-fading model affect the performance of these two strategies? The key problem

is that the sensors cannot estimate locally the sign of their observation. We show that this type

of sign-ambiguity, which is detrimental to centralized encoders, renders the uncoded transmission

7



scheme useless – on average, the sensors cancel themselves out and the received signal-to-noise ratio

goes to 0 as M → ∞. Thus the distortion does not improve at all with more sensors.

Recall that in the case of centralized estimation with slow fading, the estimator could sometimes

disambiguate between the different fading possibilities. How much information do the sensors need

to perform a similar hypothesis test in this scenario? We propose sharing the signal of one sensor

(a “beacon”) with all the others. An open conjecture is that this extra side information does not

affect the scaling rate of the optimal distributed source code. We show that even if the beacon’s

signal is quantized to 1 bit, K samples of this side information is sufficient to give the uncoded

transmission protocol an distortion scaling rate of O(M−K/(K+2)). If the beacon transmits every

time slot, the scaling rate will approach the optimal O(M−1).

1.3 Where we are going

Our interest in this thesis is on the performance achievable as the number of sensors tends to

infinity. The benefits of looking at the asymptotic performance are twofold. Firstly, because the

models we use are gross simplifications of real networks, a tight characterization of the performance

is impossible, so scaling behaviors may give more insight than small system designs. A more

aesthetic benefit is that many of the expressions have “nice” limiting behavior. However, there is a

danger to considering only the asymptotic picture: intuitions valid for finite networks break down

in the limit. To see this, consider the network density. To increase the number of sensors, we can

let the area covered by the network expand to keep density constant or keep the area fixed and let

the density go to infinity. In the latter case, the distance between sensors will become very small,

and the aggregate signal-to-noise ratio for a single source across the sensors may tend to infinity.

For the sensor networks studied here we presume the existence of a centralized decoder that

wishes to aggregate the information sent by the sensors in order to reconstruct the source or

function of the source. The constraints on the decoder’s access to the sensors’ observations are

the motivation for the three problems studied in the remaining chapters of this thesis. In the

next chapter we will look at centralized estimation, where the decoder has full access to the sensor

8



observations. In Chapter 3 we will look at lossless compression with rate-limited communication to

the decoder. Finally, in chapter 4 we will look at a joint source-channel communication scenario.

9



Chapter 2

Scherzo: centralized estimation from

linear models in AWGN

We turn first to estimators that have direct access to the sensor observations. Specifically, we

will review MMSE estimation of Gaussian sources viewed through linear functions with additive

white Gaussian noise (AWGN). In the case where the source is a vector and the functions are

memoryless, the observation process is simply multiplication by a matrix. The bulk of this chapter

is a review on using matrix spectra to express the estimation error and using bounds on eigenvalues

to characterize observation matrices. In particular, we can quantify the effects of sensor density,

dynamic range, and other engineering parameters on the limiting behavior of these systems. We

will then look at cases when the matrix characterizing the observations is not known a priori. In the

case where the matrix is unknown but not time-varying, we can first estimate the matrix and then

build an optimal linear estimator. If the matrix is time-varying, we give a two characterizations

of the performance of linear estimators depending on if the distribution of the time variation is

known.
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2.1 Linear estimation error via matrix spectra : a review

As a review, we will first describe a generic matrix model for the observations and derive

conditions on the entries of the matrix for the error to converge to a constant. We then examine a

specific example of this kind of matrix arising from upsampling and spatially filtering an underlying

source. Finally, we describe the performance of central estimators under multiplication by a random

matrix and leverage results on the spectral convergence to calculate the asymptotic mean-squared

error. Our objective is to unify several different ways of generating linear models and analyze

them all via the asymptotic spectra of the associated matrices, using well-known tools from matrix

analysis.

2.1.1 Problem statement

The structured observation models we would like to consider are motivated by different geo-

metric assumptions on the sources and sensors. However, the induced mathematical model is the

same in all cases, and is illustrated by the block diagram in Figure 2.1. For a problem with M

sensors and L sources, we are interested in the estimation error as M → ∞. There are two cases of

interest: M/L constant and M/L→ ∞. In the former we will see that the sampling density M/L

will appear in the asymptotic error expressions. In the latter, we are mostly interested in whether

the error converges to 0 and if so, how fast.

The source generates an independent, identically distributed (iid) sequence of vectors S[k] ∈ R
L:

S = {S[k] : k > 0} (2.1)

where at each time k the vector S[k] is a jointly Gaussian vector with mean 0 and covariance σ2
SI.

These source vectors are multiplied by a matrix A ∈ R
M×L, called the observation matrix, and

noise is added to form the sensor observation vector

U [k] = A · S[k] +W [k] (2.2)

where {W [k] : k > 0} are iid Gaussian random vectors with mean 0 and covariance σ2
W I. We call

equation (2.2) the observation process.
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Figure 2.1. General diagram for remote observation via a known matrix A.

A memoryless centralized estimator for this problem is a function

f : R
M → R

L (2.3)

that takes an observation vector U and creates a source estimate Ŝ = f(U). The estimation error

is measured by taking the expectation of a distortion function d(S, Ŝ):

D = E[d(S, Ŝ)] (2.4)

In our case we measure distortion by mean-squared error:

d(S, Ŝ) =
1

L
‖S − Ŝ‖2 . (2.5)

We consider memoryless estimators because they are optimal when the source is memoryless as

well. However, as we will see later, this may not be the case when the matrix A changes over time.

In our simple case it is well known that the optimal estimator is linear, so that

Ŝ = f(U) = F · U = F (AS +W ) . (2.6)

The following well-known proposition gives the error for the optimal estimator in terms of the

singular values of A.
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Proposition 1. Let {αj : j = 1, 2, . . . L} be the singular values of A. Then the MMSE is given by

D =
1

L

L
∑

i=1

σ2
Sσ

2
W

α2
i σ

2
S + σ2

W

. (2.7)

Proof. The estimator can be written in terms of the covariance and cross correlation matrices of

the various vectors. Let

ΣS = E[SST ] = σ2
SI (2.8)

ΣW = E[WW T ] = σ2
SI (2.9)

ΣUS = E[UST ] = AΣS (2.10)

ΣSU = ΣT
US = ΣT

SA
T (2.11)

ΣU = E[UUT ] = AΣSA
T + ΣW (2.12)

Then

F = ΣSUΣ−1
U . (2.13)

We can calculate the expected squared error:

E[‖S − Ŝ‖2] = E[‖S − ΣSUΣ−1
U U‖2]

= tr
[

E[(S − ΣSUΣ−1
U U)(S − ΣSUΣ−1

U U)T ]
]

= tr
[

ΣS − ΣSUΣ−1
U ΣUS

]

= σ2
SL− tr

[

σ4
SA

T (AATσ2
S + σ2

W )−1A
]

= σ2
S

(

L− σ2
S tr

[

AAT (AATσ2
S + σ2

W )−1
])

.

Let A = UΛAV
T be the singular value decomposition of A, where U and V are orthogonal and

ΛA is the matrix of singular values of A with (ΛA)ii = αi. Now:

E[‖S − Ŝ‖2] = σ2
S

(

L− σ2
S tr

[

UΛ2
AU

T (UΛ2
AU

Tσ2
S + σ2

W )−1
])

= σ2
S

(

L−
L
∑

i=1

α2
i σ

2
S

α2
i σ

2
S + σ2

W

)

=

L
∑

i=1

σ2
Sσ

2
W

α2
i σ

2
S + σ2

W

.

13



As we can see from this equation, the optimal centralized estimation error is only a function of

the singular values of the observation matrix A. Finding the asymptotic behavior of these singular

values will yield the corresponding error bounds in this chapter.

Suppose that that we are interested in estimating a scalar source so that L = 1 and M is

allowed to grow to ∞. In this case A is a vector and α2
1 = ‖A‖2, so

D =
σ2

Sσ
2
W

σ2
S‖A‖2 + σ2

W

. (2.14)

If the entries of A are all bounded away from 0 then as M increases ‖A‖2 → ∞ and the distortion

scales to 0 as M → ∞. We will return to this estimation problem in Chapter 4. We now close with

some specialized examples.

Example : Circulant network

Suppose that A has the following structure:

A =



























a0 aM−1 · · · aM−L+1

a1 a0 · · · aM−L+2

a2 a1 · · · aM−L+3

...
...

...
...

aM−1 aM−2 · · · aM−L



























(2.15)

That is, each column of the observation matrix is a cyclic shift of the previous column. This may

happen if the sensors are placed in a circle around a second circle of sources [18]. In a far-field

approximation this may be a reasonable model. The singular values of A are the eigenvalues of

B = ATA, which has a special structure:

B =



















b0 b1 · · · bL−1

bL−1 b0 · · · bL−2

...
...

...
...

b1 b2 · · · b0



















(2.16)
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γ

µ

1

2

etc.

Figure 2.2. A (contrived) example of a circulant network with M = L. The black circles on the
inner ring are sources observed by an outer ring of sensors represented by the gray circles.

This is a circulant matrix. A useful property of circulant matrices is that they are diagonalized by

the discrete Fourier Transform (DFT) matrix [20]. The singular values are the DFT coefficients of

the sequence {am}. Thus we can write the distortion as:

D =
1

L

L
∑

i=1

σ2
Sσ

2
W

β2
i σ

2
S + σ2

W

. (2.17)

where

βi =
L−1
∑

l=0

ble
−j2π l

L , (2.18)

the DFT of the first row of B.

For a physical example of a sensor network, consider the diagram shown in Figure 2.1.1. In

this example M = L, with a circle of sensors surrounding a circle of sources1. Suppose furthermore

that the sensor observations can be written as:

Um =

L
∑

l=1

`(d(m, l))Sl , (2.19)

where d(m, l) is the distance from sensor m to source l and `(·) is an attenuation (path-loss) that

is a function of the distance. If γ and µ are the radii of the inner and outer circles respectively,

1Of course, we could have the positions of the sources and sensors interchanged, so that the sensors form a circular
array, much like a panopticon [16].
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then we can write this as

Um =

L
∑

l=1

`

(

(

γ2 + µ2 − 2γµ cos

(

2π
|m− l|
M

))1/2
)

Sl . (2.20)

This has the desired form. By choosing a model for `(·), we can evaluate the spectra and hence the

asymptotic performance for centralized estimators with this topology.

Our interest in circulant matrices is not because they provide an accurate model for sensor

network observations, but because they characterize the limiting behavior of Toeplitz matrices,

which arise in the LTI filtering framework later in this chapter.

Example : block models

In some instances we may be able to break our estimation problem into independent parts and

write the overall distortion as the average of the different components. Consider an observation

matrix A which can be written in a block form:

A =



















A1 0 · · · 0

0 A2 · · · 0

...
...

. . .
...

0 0 · · · AK



















. (2.21)

Let the block Ak have Mk rows and Lk columns. Then the covariance matrix can also be written

in block form

B = ATA =



















AT
1A1 0 · · · 0

0 AT
2A2 · · · 0

...
...

. . .
...

0 0 · · · AT
KAK



















. (2.22)

The eigenvalues for this matrix are the union of the singular values for each Ak, 1 ≤ k ≤ K, so

D =
1

L

K
∑

k=1

Lk
∑

i=1

σ2
Sσ

2
W

β2
i,kσ

2
S + σ2

W

, (2.23)

where βi,k is the i-th eigenvalue of AT
kAk.

16



2.1.2 Bounded energy observations

We now constrain the matrix A to model a scenario in which the sensors can receive limited

power and each source emits limited energy. By this we mean that the sequence of coefficients

{aml} is square summable over l for each fixed m and square summable over m for each fixed l.

It is intuitive that in this case the the sources cannot be recovered perfectly because the signal to

noise ratio for each source is bounded. As we noted in the last chapter, the assumptions here fit

with the expanding network view of scaling.

Let Ln = L0n and Mn = M0n be the number of sources and sensors respectively for a problem

at scale n. Let {aml : l > 0,m > 0} be a 2-dimensional array of real numbers and define A(n) =

{aml : 1 ≤ l ≤ Ln, 1 ≤ m ≤Mn} be the observation matrix at scale n.

Bounded row and column norms

The constraints we impose are the following:

‖A(n)‖1 = max
1≤l≤∞

∞
∑

m=1

|aml| < εC (2.24)

‖A(n)‖∞ = max
1≤m≤∞

∞
∑

l=1

|aml| < εR (2.25)

These are the maximum column sum and maximum row sum norms, respectively. The first con-

straint bounds the total contribution of a source to all the sensor’s observations while the second

bounds the contribution of the all the sources to a sensor’s observation. Under these two constraints,

we can bound the asymptotic distortion in terms of the constants εC and εR.

Proposition 2. If the observation matrix A satisfies the bounds in (2.24) and (2.25), then the

asymptotic distortion for a centralized estimator is bounded away from 0.

Proof. We will use the row and column sum bounds to prove a bound on the maximum singular

value of the matrix A(n) that is independent of n. The singular values of A(n) are the eigenvalues
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of the Ln × Ln matrix B = (A(n))TA(n). Consider the column sum of B:

Lm
∑

j=1

Bij =

Ln
∑

j=1

Mn
∑

k=1

akiakj ≤
Mn
∑

k=1

|aki|
Ln
∑

j=1

|akj| ≤
Mn
∑

k=1

|aki|εR ≤ εCεR

This bound holds for all n and i so we have ‖B‖1 < ∞. The largest eigenvalue of B is upper

bounded by any matrix norm on B [23, p. 297], so αi ≤ εCεR for all i.

Turning to the distortion expression in (2.7) we can easily bound the distortion away from 0:

D ≥ 1

Ln

Ln
∑

i=1

σ2
Sσ

2
W

εCεRσ2
S + σ2

W

=
σ2

Sσ
2
W

εCεRσ2
S + σ2

W

> 0 . (2.26)

Since this bound is independent of n, the asymptotic distortion is also greater than 0.

Simply having unbounded row or column norms is insufficient for the distortion to converge to

0. For example, we could have a matrix A whose rank is only 1:

A =



























1 2−1 2−2 2−3 · · ·

1 2−1 2−2 2−3 · · ·

1 2−1 2−2 2−3 · · ·

1 2−1 2−2 2−3 · · ·
...

...
...

...
...



























. (2.27)

For this choice of A, every row is summable and every column is not, but all but 1 of the singular

values are 0, so the distortion does not converge to 0.

Toeplitz matrices

In some specific cases, we can obtain a closed form solution for the limit of the centralized

distortion as the number of sources and sensors tend to infinity. One particular case is that of

Toeplitz covariance matrices. Let {bk : −∞ < k <∞} be a sequence of real numbers that satisfies

∞
∑

k=−∞
|bk| = β <∞ . (2.28)

The matrix B can be thought of as the covariance matrix of a wide-sense stationary random process.

So if the sensor observations are wide-sense stationary across space we would get a matrix with this
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structure. The corresponding observation matrix A can be thought of as a linear space-invariant

filter, as discussed in the sequel. It is important to realize that the oversampling ratio M0/L0 is

hidden in the matrix B, so that in the expressions given below we cannot simply change the value

of M0/L0 to lower the error.

The Fourier transform of {bk} is

B(ω) = lim
k→∞

k
∑

j=−k

ake
−jkω . (2.29)

Let Kn = 1
2(Mn − 1). Suppose that the matrix B = A(n)(A(n))T is a Toeplitz matrix whose first

row is (b0, . . . , bKn) and whose first column is (b0, . . . , b−Kn). Since the (i, j)-th entry of B is the

correlation between sensors i and j, this gives us the wide-sense stationarity across space.

The celebrated Grenander-Szegö Theorem [21, pp. 64–65] on the distribution of eigenvalues

of Toeplitz forms gives us a convenient expression for the limit. The theorem states that for any

function F continuous on the support of the eigenvalues, the average of the function converges to

a limit:

lim
k→∞

1

k

k
∑

j=1

F (αj) =
1

2π

∫ π

−π
F (B(ω))dω . (2.30)

In our case we have

lim
n→∞

1

Mn

Mn
∑

j=1

σ2
Sσ

2
W

α
(n)
j σ2

S + σ2
W

=
1

2π

∫ π

−π

σ2
Sσ

2
W

B(ω)σ2
S + σ2

W

dω . (2.31)

where αn
j is the j-th eigenvalue of B. Note that B is rank-deficient with Mn −Ln eigenvalues equal

to 0. We can rewrite the left side of the equation

lim
n→∞





Mn − Ln

Mn
σ2

S +
1

Mn

Ln
∑

j=1

σ2
Sσ

2
W

α
(n)
j σ2

S + σ2
W



 =
1

2π

∫ π

−π

σ2
Sσ

2
W

B(ω)σ2
S + σ2

W

dω . (2.32)

Since Ln/Mn = L0/M0 is a constant, we have

D = lim
n→∞

1

Ln

Ln
∑

j=1

σ2
Sσ

2
W

α
(n)
j σ2

S + σ2
W

= σ2
S

(

1 − M0

L0

(

1 − 1

2π

∫ π

−π

σ2
Sσ

2
W

B(ω)σ2
S + σ2

W

dω

))

. (2.33)
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This expression quantifies the benefit of the sampling density M0/L0 on the asymptotic distortion.

Note, however, that the support of B(ω) depends on M0/L0; the more we oversample, the more

“pinched” the spectrum becomes.

Example : harmonic decay

Suppose

bn =
sinωcn

πn
, (2.34)

which is just a sinc function. Its Fourier transform is a box

B(ω) = 1(|ω|<ωc) . (2.35)

So the integral breaks into two terms:

D =
M0

L0

1

2π

(

2σ2
S(π − ωc) + 2

σ2
Sσ

2
W

σ2
S + σ2

W

ωc

)

−
(

M0

L0
− 1

)

σ2
S

= σ2
S

(

1 − M0

L0

1

π

σ2
S

σ2
S + σ2

W

ωc

)

This shows the effect of the bandwidth of this spatial lowpass filter on the estimation error – the

higher the bandwidth the smaller the error.

Example : exponential decay

Suppose that bn = β|n|, a two-sided exponential decay. Its Fourier transform is

B(ω) =
1

|1 − βejω| =
1

1 + β2 − 2β cosω
. (2.36)

The distortion can be written as

D = σ2
S

(

1 − M0

L0

(

1 − 1

2π

∫ π

−π

σ2
W (1 + β2 − 2β cosω)

σ2
S + σ2

W (1 + β2 − 2β cosω)
dω

))

We have to turn to a table of integrals to solve this. Let us write:

σ2
W (1 + β2 − 2β cosω)

σ2
S + σ2

W (1 + β2 − 2β cosω)
=

σ2
W (1 + β2) − 2σ2

Wβ cosω

σ2
S + σ2

W (1 + β2) − 2σ2
Wβ cosω

=
C1 + C2 cosω

C3 + C2 cosω
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Then [19, TI(341)] gives two possibilities depending on the value of C 2
3 − C2

2 :

C2
3 − C2

2 = (σ2
W (1 + β2)2 + σ2

S)2 − 4β2σ2
W

= σ4
W

(

(

σ2
S

σ2
W

)2

+ 2(1 + β2)
σ2

S

σ2
W

+ (1 − β2)2

)

> 0 .

Thus:

∫ π

−π

C1 + C2 cosω

C3 + C2 cosω
=

[

ω + (C1 − C3)

(

2
√

C2
3 − C2

2

arctan

√

C2
3 − C2

2 tan ω
2

C3 + C2

)]π

−π

= 2π
C2

C2
+

2(C1 − C3)
√

C2
3 − C2

2

lim
θ→π

2 arctan

√

C2
3 − C2

2 tan θ
2

C3 + C2

= 2π − 2πσ2
S

√

C2
3 − C2

2

So the distortion is

D = σ2
S









1 − M0

L0

σ2
S

σ2
W

·







1
(

σ2
S

σ2
W

)2
+ 2(1 + β2)

σ2
S

σ2
W

+ (1 − β2)2







1/2








.

This gives a more complicated relationship between the decay factor β, the oversampling ratio, and

the signal to noise ratio σ2
S/σ

2
W .

The most important class of Toeplitz models comes from modeling the sensor observations as

the output of a linear time-invariant (LTI) system driven by the source observations.

2.1.3 Observation models from LTI filters

Having established that the bounded energy conditions in the previous section limit the perfor-

mance of centralized estimators, we now turn to a situation in which the best centralized estimator

may be partially decentralized. The model we choose is one of estimating a spatially distributed

source through an LTI filter. A simple physical model for this can be made by assuming the sensors

and sources to be located on a line, as shown in Figure 2.3. A diagram of the sampling situation
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↑ N

Figure 2.3. An example of a network on a line. Imagine the two lines are actually the same line.
The squares mark the locations of the sources, and the circles mark the locations of the sensors.
The sensor observations are the superposition of the impulse response of the filter centered at the
sensor locations. The upsampling ratio N is shown via the dotted lines.

s[x] - ↑ N -
t[y]

h[y] -g?

w[y]

u[y]

Figure 2.4. Filtering model for remote sensing.

is shown in Figure 2.4. The source is upsampled and filtered by a linear space-invariant filter h[y]

and each sensor observes a noisy sample of the upsampled and filtered source.

Let us write the filter as

h[y] =

∞
∑

i=−∞
hiδ[y − i] . (2.37)

We can write the sequence {aml} in terms of the filter coefficients. We assume that the filter is

absolutely summable:
∞
∑

y=−∞
|h[y]| = h̄ <∞ , (2.38)

which implies that it is stable and its Fourier transform H(ejω) exists [30].

The source sequence s[x] is first upsampled by a factor N that corresponds to the ratio M/L

in the previous section. This upsampled signal is then filtered by h[y] and noise is added. We can
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s[x] - ↑ N -
t[y]

h[y] -g?

w[y]

u[y]
g[y] -

t̂[y] ↓ N -ŝ[x]

Figure 2.5. Wiener filter solution for spatial filtering.

rewrite the filter as an infinite matrix A (see [35, p. 72]):

A =

































...
...

· · · h[0] h[−N ] · · ·

· · · ...
... · · ·

· · · h[N − 1] h[−1] · · ·

· · · h[N ] h[0] · · ·
...

...

































. (2.39)

The matrix AAT is the autocorrelation matrix of the process u[y]. It is Toeplitz and generated

by the autocorrelation function Ru[y] = E[u[y + x]u[x]]. Therefore the asymptotic distortion is

given by equation (2.33) in the previous section. The MMSE estimator for these observations is a

linear operator G(·) which, when applied to u[y], yields an estimate ŝ[x] that is closest to u[y] in

the mean-square sense:

G = argmin
G

E
[

‖s[x] −Gu[y]‖2
]

. (2.40)

The solution is given in the following proposition.

Proposition 3. The MMSE estimator for the filtered observation model in Figure 2.4 is a cascade

of a non-causal Wiener filter for t[y] followed by downsampling by N .

Proof. We will show that the proposed system shown in Figure 2.5 is in fact the MMSE estimator.

Let t̂[y] be the output of the Wiener filter for t[y] given u[y] and ŝ[x] = t̂[y/N ] for y = xN and 0

otherwise. By the orthogonality property, the Wiener filter satisfies the following condition:

E[(t[y] − t̂[y])t̂[y]] = 0. (2.41)
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Downsampling will not change this relationship – we can substitute y = xN to get

E[(s[x] − ŝ[x])ŝ[x]] = 0 . (2.42)

The system in Figure 2.5 is linear and the estimation error is uncorrelated with the original signal.

Since all of the signals are jointly Gaussian, the error is in fact independent of the original signal,

so this estimator must be the MMSE estimator for s[x].

To calculate the filter and corresponding estimation error, define the following correlation func-

tions and spectra:

rtu[y] = E[t[y + z]u[z]] (2.43)

Rtu(ejω) =

∞
∑

y=−∞
rtu[y]e−jωy (2.44)

rt[y] = E[t[y + z]t[z]] (2.45)

Rt(e
jω) =

∞
∑

y=−∞
rt[y]e

−jωy. (2.46)

The power spectrum of the non-causal Wiener filter is given by

G(ejω) =
Rtu(ejω)

Rtt(ejω)
. (2.47)

The infinite matrix corresponding to this Wiener filter is the MMSE estimation matrix. The

estimation error is given by (2.33) with B(ω) = Rt(e
jω).

Why do we bother with this filtering perspective? It provides us with a compact description

of the estimator (in this case a linear filter) and a means of constructing it that does not rely on

multiplying larger and larger matrices. An additional benefit is that Wiener filters can be designed

with constraints on the number of nonzero taps. In a sensor network scenario, we interpret this

as a constraint on the number of sensors that can collaborate. Specifically, we can constrain the
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estimation matrix G to be 0 outside some set of diagonals:

G =















































...
...

· · · g1,1 g1,2 · · · g1,K 0 0 · · ·

· · · g2,1 g2,2 · · · g1,K g2,K+1 0 · · ·

· · · ...
...

...
...

...
... · · ·

· · · gK,1 gK,2 · · · gK,K gK,K+1 gK,K+2 · · ·

· · · 0 gK+1,2 · · · gK+1,K gK+1,K+1 gK+1,K+2 · · ·

· · · 0 0 · · · gK+2,K gK+2,K+1 gK+2,K+2 · · ·
...

...
...

...
...

...















































. (2.48)

Here we have constrained the matrix to operate on at most K steps in either direction.

The solution in this case is relatively simple [22, p. 102]. Define the vectors and matrices

uy = (u[y −K], u[y −K + 1], . . . , u[y +K])T (2.49)

gy = (g[y −K], g[y −K + 1], . . . , g[y +K])T (2.50)

py = E[u[y]t[y]] (2.51)

Ry = E[uyu
H
y ] (2.52)

The solution is then:

gy = R−1
y py . (2.53)

We follow it by the downsampling operation as before. Because all of the processes are wide-sense

stationary, this distributed solution can be computed offline.

The previous analysis highlights an important problem in trying to make models more accurate.

By enforcing a realistic collaboration constraint, we appear to still have a clean and easy-to-compute

optimal partially-decentralized solution for the estimation problem. Unfortunately, real sensors

are unlikely to be positioned evenly on a line, so the filter will not be space-invariant and the

observations will not be wide-sense stationary by index.
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2.1.4 Random matrices with iid entries

Let us now suppose that the entries of the observation matrix are independent and identically

distributed random variables. One of the deeper results of random matrix theory is that the

eigenvalue distribution of large random matrices is the same regardless of the distribution chosen

for the entries. Therefore the results we can obtain for random matrix models of sensor observations

rely only on the assumption of independent entries. The geometric view of the network here is that

the sources and sensors are both located in the same area but a priori very little is known about the

coefficient between any particular source and sensor. However, once the network is deployed, the

relevant coefficients can be measured or approximated. What we wish to know is the probability

of achieving a certain asymptotic distortion.

The primary tool we will use is the Marčenko-Pastur law [25] as it is cited in [2, pp. 620-621].

We reproduce it here for completeness:

Theorem 1. Suppose that p/n→ y ∈ (0,∞). If the entries of an p× n complex matrix A are iid

with mean 0 and variance σ2 and B = 1
nAA

H , then the empirical spectral distribution (ESD) of B

tends (as p, n→ ∞) to a limiting distribution with density

py(x) =











1
2πxyσ2

√

(b− x)(x− a), if a ≤ x ≤ b

0, otherwise,
(2.54)

and a point mass 1 − 1/y at the origin if y > 1 where a = a(y) = σ2(1 − √
y)2 and b = b(y) =

σ2(1 +
√
y)2.

The important feature of distribution is that at almost all of the nonzero normalized singular values

of A will lie in a region bounded away from the origin, so unnormalized singular values scale to

infinity like n. This in turn will force the distortion to 0 for our problem.

Proposition 4. Suppose that {aml} is an array of iid random variables with mean 0 and variance

σ2. Then the asymptotic distortion converges to 0 as M → ∞.

Proof. Because the singular values of A and AT are identical, the distribution of the singular values

converges to the Marčenko-Pastur law with y = L0/M0 < 1. All of the eigenvalues in the asymptotic
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limit are greater than a(y)n = nσ2(1 −
√

L0/M0)
2. Thus the distortion is:

D = lim
n→∞

1

L0n

L0n
∑

i=1

σ2
Sσ

2
W

α2
i σ

2
S + σ2

W

≤ lim
n→∞

1

L0n

L0n
∑

i=1

σ2
Sσ

2
W

a(y)nσ2
S + σ2

W

= lim
n→∞

σ2
Sσ

2
W

L0(a(y)nσ2
S + σ2

W )

= 0 .

Thus the distortion converges to 0

Indeed, the smallest eigenvalue converges to a(y) almost surely [2, p. 635], so the convergence

is even stronger. This result is not surprising in view of the results of the first section, which

stated that bounded row and column sum variances are sufficient to force the distortion to a non-

zero value. The previous proposition has unrealistic assumptions for many practical systems –

the received energy is unbounded in expectation and the observation gains must be iid. However,

since the Marčenko-Pastur law is the limiting distribution for all distributions with zero mean and

variance σ2, we can relax the condition on identical distribution. The sufficient condition on the

collection {aml} of independent random variables with mean zero and common variance σ2 is given

by [2, p. 623]. Suppose that for any δ > 0,

1

δLnMn

Ln
∑

l=0

Mn
∑

m=0

E
[

|aml|21(|aml|>δ
√

n)

]

→ 0 . (2.55)

If this condition is satisfied, the singular values again converge to the Marčenko-Pastur law and

the distortion will again converge to 0. What these results suggest is that if the observations have

bounded energy, the distortion is finite and positive, but in the “average case” of unbounded energy,

the distortion will converge to 0.

2.2 Estimation with fading observations

While estimation from known matrices is an interesting topic, a more accurate model of the

observations may come from the fading observations framework mentioned in the first chapter. Here
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the matrix A takes values in in a set A and we must design an estimator that is robust across this

class. In slow fading, A is chosen once and fixed for all time, and in fast fading A is time-varying.

We will take up these two cases in turn. Slow fading turns out to be equivalent to the analysis in

the previous section because the matrix A can (within reason) be estimated from the observations

themselves. The fast fading case is more difficult and we restrict our analysis to linear estimators.

2.2.1 Slow fading

Suppose that A = {A1, A2, . . . AK} and that A is chosen from A . Let ∆(Aj|Ak) be the

mismatch error for a memoryless estimator for Aj when A = Ak:

∆(Aj |Ak) = E

[

1

L

∥

∥S − σ2
SA

T
j (σ2

SAjA
T
j + σ2

W I)−1(AkS +W )
∥

∥

2
]

. (2.56)

We break the estimation into two parts: we first find A from the sequence of observations

U [1], U [2], . . . U [n] and then use the MMSE estimator assuming those are the true statistics. The

estimation problem can be seen as a hypothesis test between the different candidates in A. For

simplicity, we will assume a uniform prior on the set A.

A crucial property that we will need is that each Aj ∈ A induces a different joint distribution for

the observations U . As an example, suppose +A ∈ A and −A ∈ A. Then the statistical properties

of the observations are identical under both hypotheses and there will be no way to tell them apart.

Consequently, an estimator built for +A will make ∆(−A | +A) very large. In order to avoid these

complications, we will always assume that A is separable in the sense that p(U |Aj) 6= p(U |Ak) for

j 6= k.

Suppose that K = 2 so that we have a binary hypothesis test. We can bound the probability

of error in our hypothesis test following [10, Sec. 3.4]. Let

T̂n =
1

n

n
∑

j=1

log
pU(U [j]|A = A1)

pU(U [j]|A = A2)
(2.57)

be the normalized observed log likelihood ratio. A well-known result states that the best estimate

Â can be found by comparing T̂n to a threshold.
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Lemma 1. In the slow fading case with discrete A, if A = Ak the distortion converges to the

MMSE distortion as the sample size goes to ∞:

lim
n→∞

∆(Â({U [j] : j = 1, 2, . . . n})|Ak) → ∆(Ak|Ak) (2.58)

Proof. Let α = P (Â 6= Ak). Then

∆({U [j] : j = 1, 2, . . . n}|Ak) = (1 − α)∆(Ak|Ak) + α∆(Aj |Ak) (2.59)

By Corollary 3.4.6 in [10], the probability of error satisfies a large deviations bound so that α ≤

exp(−nβ) for some constant β > 0. Since ∆(Aj|Ak) is bounded, taking the limit on both sides

completes the proof.

This clearly extends to finite K. For centralized estimators, this type of slow fading is uninter-

esting because it can be disambiguated with exponentially small probability of error. Let us now

consider the case where A is not finite, so that a simple hypothesis test may no longer be sufficient.

A simple approach is to compute the sample covariance matrix:

Σ̂U =
1

n

n
∑

j=1

U [j]U [j]T . (2.60)

Unfortunately, the sample covariance is very sensitive to outliers in the data [1]. Several methods

for robust covariance estimation have been proposed in the statistics literature [1], [5], [26], [40],

and depending on the nature of the set A, some will be better than others. For example, if A is very

structured and constrained, the EM approach of [5] may be effective. The worst-case distortion

can then be expressed as:

Dmax = lim
n→∞

sup
B∈A

D(Â({U [j] : j = 1, 2, . . . n})|B) . (2.61)

Although slow fading for centralized estimators seems straightforward, estimating A from the

marginals at each sensor may prove to be impossible, as we will see in Chapter 4. Similarly, if

the sensors are limited in their ability to communicate with each other, computationally inten-

sive covariance estimation procedures that require significant inter-sensor communication may be

infeasible.
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2.2.2 Fast fading

We now turn to fast fading, in which the observation matrix A[n] varies over time. We will

assume that A[n] is iid with some distribution pA(·) on a finite set A = {A1, A2, . . . , AK}. If A[n]

was known to the estimator, it would simply use the MMSE estimator for each Ak:

Dopt =

K
∑

k=1

pA(Ak)∆(Ak|Ak) . (2.62)

However, our interest is in the case where A[n] is unknown.

Suppose first that pA(·) is not known to the estimator. Following the previous section, can we

estimate pA(·)? The answer is yes, as long as K is not too large. Consider the average covariance

matrix of the observations:

Σ̄U =

K
∑

k=1

pA(Ak)(σ
2
SAkA

T
k + σ2

W I) (2.63)

The sample covariance matrix of the observation vectors will converge to Σ̄U , with the same caveats

about outliers as before. Alternatively, we can use the robust methods mentioned earlier to estimate

Σ̄U . Since Σ̄U is just a linear matrix-valued function with coefficients {pA(Ak)}, we can estimate

{pA(Ak)} from Σ̄U as long as K < (M 2 + M)/2, the dimension of the set of possible covariance

matrices. Clearly there are many convergence as well as numerical stability issues in performing

this estimation.

Let us instead look at the case where we are forced to choose a fixed memoryless estimation

matrix G. For a particular distribution pA(·) and G we have an optimization problem over the

error functions

D(pA, G) =
1

L
E
[

(S − Ŝ)T (S − Ŝ)
]

=
1

L
E
[

(S −G(AS +W ))T (S −G(AS +W ))
]

, (2.64)

where the expectation is taken over A, S, and W .

We can view this as a game in which one player chooses a matrix G to minimize the distortion

and the other chooses a distribution pA to maximize the distortion. Suppose that pA is known. Then

the worst case distortion for this estimator is given by the solution to the following optimization
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problem:

sup
pA

inf
G
D(pA, G) . (2.65)

In the case where pA is unknown, the first player must choose G and reveal that choice to the

second player. The relevant quantity is

inf
G

sup
pA

D(pA, G) . (2.66)

The interpretation of this is that for each choice of G there is a ”worst-case” distribution pA, and

that we will choose the G that induces the smallest average distortion for the worst-case pA.

Consider first the case where A is chosen iid across time according to a distribution pA that is

known to the estimator, leading to (2.65). Then

D(pA, G) =
1

L
tr
[

σ2
SI − 2σ2

SGĀ+G(σ2
SΣA + σ2

W )GT
]

=
1

L

(

Lσ2
S − 2σ2

S tr(GĀ) + σ2
S tr(GTGΣA) + σ2

W tr(GTG)
)

, (2.67)

where Ā = E[A] and ΣA = E[AAT ]. We need to minimize this over G. Let us first consider the

scalar case where L = M = 1.

∂

∂G
D(pA, G) = −2σ2

SĀ+ 2σ2
SΣAG+ 2σ2

WG (2.68)

G =
Āσ2

S

ΣAσ2
S + σ2

W

. (2.69)

Unfortunately, this analysis does not easily extend to the matrix case. The problem is that ĀĀT 6=

ΣA in general, so the trick of taking the singular value decomposition used before is no longer valid.

Suppose we take the orthogonality condition for least-squares estimation:

tr
(

E
[

(S −GU)UTGT
])

= 0 (2.70)

This gives:

tr(σ2
SĀ

TGT ) = tr(G(σ2
SΣA + σ2

W I)GT ) (2.71)

If we just “guess”

G = σ2
SĀ

T (σ2
SΣA + σ2

W I)−1 , (2.72)
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then (perhaps unsurprisingly) we get equality in (2.71). Thus the best estimator is given by (2.72).

Our estimation error is therefore given by

inf
G
D(pA, G) =

1

L

(

Lσ2
S − 2σ2

S tr
(

ĀT (σ2
SΣA + σ2

W I)−1Ā
)

+ σ2
S tr

(

ĀT (σ2
SΣA + σ2

W I)−1Ā
))

(2.73)

= σ2
S − 1

L
σ2

S tr
(

ĀT (σ2
SΣA + σ2

W I)−1Ā
)

(2.74)

We can immediately deduce some interesting consequences of this result. Firstly, if the convex

closure of A contains the 0 matrix, the distortion can be forced to Lσ2
S by choosing the pA that

makes Ā = 0. Secondly, since our estimator is only a function of the statistics of the A process, it

can be constructed “on the fly” based on the sensor observations.

We now turn to the reversed scenario, where a linear estimator must be chosen offline, and

then the worst-case pA is selected, leading to (2.66). Let us first consider the scalar version of the

problem. The distortion function is given by (2.67):

D(pA, G) = E
[

S2 − 2GAS2 +G2(A2S2 +W 2)
]

(2.75)

= σ2
S − 2GµAσ

2
S +G2(σ2

Aσ
2
S + σ2

W ) , (2.76)

where µA and σA are the mean and variance of A. Note that this distortion only depends on these

parameters of A. For any choice of G, we can evaluate D(Ai, G) for every choice of Ai. The worst

case pA will concentrate all its mass on the Ai’s that maximize the distortion.

The vector case is no different – for any linear estimator G, one or more of the possible obser-

vation matrix values A will maximize the distortion. Thus the set of possible G’s is partitioned by

this “worst-case” function. Let Πj = {G : D(Aj , G) = minAi
D(Ai, G)}. We can choose the best G

via the following:

inf
G

sup
pA

D(pA, G) = min

{

inf
G∈Πj

D(Aj , G) : Aj ∈ A
}

(2.77)

Unfortunately, we cannot at this time come up with a nice characterization of this problem under

general conditions, so we will close with a scalar example.
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Example : spike source

Let us take the pathological example for which A = {1, 1000} and σ2
S = σ2

W = 1. We partition

the set of possible estimators G into those for which A = 1 is worst and those for which A = 1000

is worst. The dividing point will be when they are equal:

σ2
S − 2Gσ2

S +G2(σ2
S + σ2

W ) = σ2
S − 2000Gσ2

S +G2(106σ2
S + σ2

W ) (2.78)

G =
2(103 − 1)

106 − 1
= 1.998 × 10−3 . (2.79)

So choosing G to be at this dividing point will lead to the lowest worst-case distortion:

D = σ2
S − 2σ2

SG+ (σ2
S + σ2

W )G2 ≈ 0.996 , (2.80)

which is not much better than “guessing.” A slightly less pathological example may be to take

A = {1, 2}:

G =
2(2 − 1)

4 − 1
=

2

3
(2.81)

D ≈ 0.556 (2.82)

For A = 1 the optimal distortion is 0.5, so the loss is a little over 11%.

2.3 Our toy example

We now return to the canonical example with which we ended the previous chapter. The first

step in our analysis will be to find the spectrum of the observation matrix:

AAT =







B1 0

0 B2






, (2.83)

where Bi is the number of sensors observing source i. A centralized estimator could compute these

numbers approximately by taking a very large sample covariance matrix. The best linear estimator

based on knowledge of the Bi would be given by (2.62)

D =
1

2

σ2
Sσ

2
W

B1σ
2
S + σ2

W

+
1

2

σ2
Sσ

2
W

B2σ
2
S + σ2

W

. (2.84)
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However, this presupposes that the estimator can determine the true matrix A. To do this it

needs significantly more than just the numbers B1 and B2. A naive and computationally crippling

computation could allow the estimator to perform pairwise tests to divide the sensors into two

groups. The error in these tests is exponentially small in the number of samples, so the sorting

would be accurate for any finite M . Since the focus of this thesis is not on computational feasibility,

we leave this as an open problem and assume that the true matrix A can indeed be estimated.

The asymptotics of this problem are relatively uninteresting – if each sensor is equally likely to

observe S1 as S2, then both B1 and B2 will converge to M/2 as M → ∞. In scaling law parlance

we would say that the total distortion goes to 0 as 1/M . The reason for this bland analysis is

that the estimator is both data-dependent and centralized. As we shall see, the problem becomes

significantly more complicated once distributed computation and communication enter into the

picture.
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Chapter 3

Rondo: source coding with

uncertainty

In this chapter we will look at lossless distributed source reconstruction using the tools of

information theory. Observation uncertainty for this problem takes the form of an unknown joint

distribution for the sources. In what follows we assume the reader is familiar with the basics

of information theory as described in [6], for example. In the next section we will describe the

Slepian-Wolf problem and its extension to uncertain joint distributions. This does not provide any

difficulty in the proof – any rates that are achievable for all sources in the class are achievable

using a modified Slepian-Wolf code. The main contribution of this chapter comes in section 5,

where we look at a source coding system in which the blocklength and number of sensors increases

simultaneously. By linking the two we can bound how fast the blocklength must grow in order to

accommodate more sensors for a fixed error probability.

Information theory views the problem as one of encoding the sensor observations into a discrete

set of indices. Given a sequence of source observations U n, we create an encoding map Un →

{1, 2, . . . , N} and a decoding map {1, 2, . . . , N} → Ŝn in order to minimize some some distortion

function d(sn, ŝn)]. In the noiseless case, the sensor observations U n are simply the source values
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Sn. For lossless source coding, the distortion measure is error probability, so that Ŝ = S and

d(sn, ŝn) =
1

n

n
∑

i=1

1(si 6= ŝi) (3.1)

The objective to create a sequence of codes, indexed by n, such that Pe = E[d(sn, ŝn)] → 0 as

n→ ∞. Thus in the limit, the reconstruction is “perfect.” In order to do this, we will upper bound

the block error 1(sn 6= ŝn).

3.1 Slepian-Wolf coding over a class of distributions

In this section we will discuss observation uncertainty in lossless source coding problems. The

type of observation uncertainty that we will address is that of distributional uncertainty. In the

point-to-point case this leads to the well-addressed problem of constructing universal source codes.

In the multi-terminal case the famous theorem of Slepian and Wolf provides the springboard for

coding schemes that can handle multiple distributions. The idea is shown in Figure 3.1. We will

look at how the number of terminals and hence modeling complexity relate to the blocklength,

which will motivate our analysis in the next section.

The source-coding community has already addressed uncertainty in the underlying source distri-

bution. For the point-to-point or centralized problem, many universal source codes exist for discrete

S, using the Lempel-Ziv algorithm [42], context-tree weighting [41], or the Burrows-Wheeler Trans-

form [4], [15], for example. These source codes will compress the source S at a rate that converges

to the true entropy H(S) without knowing a priori what that entropy is. In one very simple uni-

versal source code, the encoder observes a block of n symbols sn and transmits the type T (sn) of

the block along with a compressed version using a compression algorithm that assumes the block is

distributed according to T (sn). The overhead for transmitting the type is negligible compared to

the blocklength, and the rate required by this scheme also converges H(S). This universal scheme

is more in the spirit of the multi-terminal problem we will investigate next.

Unfortunately, universal schemes are difficult to extend to multiuser settings. Consider the

problem of two terminals observing correlated sources S1 and S2. If the statistics are known to the
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Pλ(S1, S2)

λ ∈ Λ
S1

S2

Enc

Enc

Dec

R1

R2

Ŝ1, Ŝ2

Figure 3.1. Source coding for a class of sources.

encoders and decoder, then the set of rates at which the sources can be communicated losslessly to

a destination was found by Slepian and Wolf [34]. An exercise in Csiszár and Körner [8, Exercise

3.1.6] (more generally in [7, Theorem 2]) gives an example of how to construct a single code for all

correlated sources that achieves a certain error exponent. To obtain that exponent, the encoder is

obligated to raise the rate at which it operates to that of a worst-case source. This is in contrast

to the point-to-point schemes, where the coding algorithms converge to the minimum rate needed

for the particular source.

Another coding scheme that can achieve these worst-cast points is the sequential binning scheme

proposed by Draper, Chang and Sahai [13]. In their framework, unknown statistics are not a

problem as long as the target rate pair is in the achievable region for the source, and they provide

error exponents for their scheme that can in some cases are better than those for the corresponding

block codes. Baron, Khojastepour, and Baraniuk [3] examined the notion of redundancy rates for

fixed block-length coding, which captures the excess rate needed to account for distributed coding

in the non-asymptotic regime. However, in order to analyze the universality of their scheme over

different distributions, they adopt the linked-encoder framework of Oohama [27]. Other strategies

to gain universality [12], [24] propose a feedback link from the decoder.

However, in some instances the encoder and decoder may have some limited knowledge of the

joint distribution of the sources, and a code in the style of Csiszár and Körner is more reasonable.

We will show that it is possible to lower the rates required to the worst source in the class. The code
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in [7] is non-constructive and uses a minimum entropy decoder. Here we give an explicit binning

construction in the style of [6] using a decoder that looks for jointly typical sequences. For the sake

of completeness, we include some standard definitions first.

Definition 1. A discrete memoryless correlated source is a tuple of random variables S = (S1, S2,

. . . , Sm) with variable Sj taking values in a finite set Sj. The variables are jointly distributed with

some distribution P (S) independently and identically across time. A class of sources is a collection

of joint distributions Pλ(S) indexed by λ ∈ Λ. Entropies calculated under Pλ are also given subscript

λ, e.g. Hλ(S1, S2), Hλ(S1|S2), etc.

Definition 2. A (n,R1, R2) distributed source code for a class of sources (S, T ) is a tuple (φ1, φ2, ψ)

of maps with

φ1 : Sn → {1, 2, . . . 2nR1} (3.2)

φ2 : T n → {1, 2, . . . 2nR2} (3.3)

ψ : {1, 2, . . . 2nR1} × {1, 2, . . . 2nR2} → Sn × T n . (3.4)

The probability of error for this code under distribution Pλ(S, T ) for λ ∈ Λ is

P
(n)
e,λ = Pλ(ψ(φ1(S

n), φ2(T
n)) 6= (Sn, T n)) (3.5)

Definition 3. A rate pair (R1, R2) is achievable for a class of sources {Pλ : λ ∈ Λ} if there exists

a sequence of (n,R1, R2) distributed source codes such that P
(n)
e,λ → 0 for all λ ∈ Λ. The achievable

rate region is the closure of the set of achievable rates.

Given any Slepian-Wolf rate region R, we can show that all sources whose rate regions lie within

R are achievable using a single code.

Proposition 5. Let α1, α2, and α3 be positive real constants. Consider the class of sources

{Pλ : λ ∈ Λ} for the random variables (S1, S2) that satisfy:

α1 > Hλ(S1|S2) (3.6)

α2 > Hλ(S2|S1) (3.7)

α3 > Hλ(S1, S2) (3.8)
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Then the set of achievable rates is given by {(R1, R2) : R1 ≥ α1, R2 ≥ α2, R1 +R2 ≥ α3) .

Proof. The converse is simple. Fix ε > 0 suppose rate R1 = α1 − ε was in the achievable rate

region. Then it must be in the rate region for all sources in the class. But there exists some source

in the class such that H(S1|S2) = α1 − ε/2, so R1 is not an achievable rate for this source, which

is a contradiction. Identical arguments can be made for the other inequalities.

The proof of achievability is nearly identical to that in [6, §14.4.1], with a slight modification.

The key fact is that for a fixed block length n, there are only a polynomial number of types, so

the number of typical sequences over all sources in the class is dominated by the source with the

largest entropy in the class. The rate penalty for using polynomially more bins in the Slepian-Wolf

code goes to zero with the blocklength.

Let (R1, R2) be an achievable rate pair. We will show that the pair (R1 +δ,R2 +δ) is achievable

using binning for any δ > 0. Fix a block length n.

1. Assign to each sequence sn
1 ∈ S∞

n an index in {1, 2, . . . 2 · 2nR1}, chosen uniformly. Assign to

each sequence sn
2 ∈ S∈

n an index in {1, 2, . . . 2 · 2nR2}, also chosen uniformly. These are our

encoders φ1 and φ2.

2. The messages that the users send are the bin indices of their respective source sequences. Let

the messages be m1 and m2.

3. Decode (sn
1 , s

n
2 ) if φ(sn

1 ) = m1, φ(sn
2 ) = m2, and (sn

1 , s
n
2 ) ∈ A

(n)
ε,λ , the ε-typical sets under Pλ.

We must now bound the probability of error. For a fixed Pλ, the coding scheme above has

sufficient rate by the Slepian-Wolf theorem. The new error events center around what happens

when a pair (sn
1 , s

n
2 ) that is jointly-typical with respect to Pλ is instead decoded as a pair that is

jointly typical with respect to Pµ. In what follows, we assume that (Sn
1 , S

n
2 ) is chosen according to

Pλ and that λ 6= µ. The errors are then:

1. There is a ŝn
1 such that φ1(ŝ

n
1 ) = φ1(S

n
1 ) and (ŝn

1 , S
n
2 ) ∈ A(n)

ε,µ for some µ,
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2. There is a ŝn
2 such that φ2(ŝ

n
2 ) = φ2(S

n
2 ) and (Sn

1 , ŝ
n
2 ) ∈ A(n)

ε,µ for some µ,

3. There is a pair (ŝn
1 , ŝ

n
2 ) 6= (Sn

1 , S
n
2 ) such that φ1(ŝ

n
1 ) = φ1(S

n
1 ), φ2(ŝ

n
2 ) = φ2(S

n
2 ), and (ŝn

1 , ŝ
n
2 ) ∈

A
(n)
ε,µ for some µ.

To bound these events 1–3 we must turn to our type arguments. Let Pn denote all types

of denominator n. There are at most (n + 1)|S1|+|S2| such types. The number of jointly typical

sequences across all classes is then

|A(n)
ε,Λ| =

∣

∣

∣

∣

∣

∣

⋃

µ∈Pn∩Λ

A(n)
ε,µ

∣

∣

∣

∣

∣

∣

The size of the jointly typical sets is then:

|A(n)
ε,Λ(S1, S2)| ≤

∑

µ∈Pn∩Λ

2n(Hµ(S1,S2)+ε) (3.9)

≤ (n+ 1)|S1|+|S2|
(

sup
µ∈Pn∩Λ

2n(Hµ(S1,S2)+ε)

)

(3.10)

≤ sup
µ∈Pn∩Λ

2n(Hµ(S1,S2)+ε+n−1(|S1|+|S2|) log(n+1)) (3.11)

≤ sup
µ∈Pn∩Λ

2n(Hµ(S1,S2)+ε+δn) (3.12)

where δn → 0 as n→ ∞. Similarly,

|A(n)
ε,Λ(S1|S2)| ≤ sup

µ∈Pn∩Λ
2n(Hµ(S1|S2)+ε+δn)|A(n)

ε,Λ(S2|S1)| ≤ sup
µ∈Pn∩Λ

2n(Hµ(S2|S1)+ε+δn) . (3.13)

For any fixed λ, the probability of the decoding errors above are:

Pe,1 ≤
∑

(sn
1 ,sn

2 )

Pλ(sn
1 , s

n
2 )

∑

µ∈Pn∩Λ

∑

ŝn
1 6=sn

1 , (ŝn
1 ,sn

2 )∈A
(n)
ε,µ

P (φ1(ŝ
n
1 ) = φ1(s

n
1 ))

=
∑

(sn
1 ,sn

2 )

Pλ(sn
1 , s

n
2 )2−nR1 |A(n)

ε,Λ(S1|sn
2 )|

≤ 2−nR1 sup
µ∈Pn∩Λ

2n(Hµ(S1|S2)+ε+δn)

Pe,2 ≤ 2−nR2 sup
µ∈Pn∩Λ

2n(Hµ(S2|S1)+ε+δn)
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Pe,3 ≤ 2−n(R1+R2) sup
µ∈Pn∩Λ

2n(Hµ(S1,S2)+ε+δn)

Since Pn is dense in Λ, as n→ ∞ we have decoding errors of the types above if

R1 < sup
µ∈Λ

Hµ(S1|S2)

R2 < sup
µ∈Λ

Hµ(S2|S1)

R1 +R2 < sup
µ∈Λ

Hµ(S1, S2) .

This establishes the result.

The theorem says that there exists a Slepian-Wolf code that achieves all rates common to the

rate regions of all sources in the class. In some cases the class may be small and all sources have the

same rate region, so the rates are tight. As an example, consider a memoryless correlated source

(S1, S2), with each component taking values in the set {−1, 1} with distribution Bernoulli(1/2).

However, their product S1S2 may have distribution Bernoulli(α) or Bernoulli(1−α) for some fixed

α. Call these two joint distributions Pα and Pβ respectively. Note that Hb(α) = Hb(1 − α), where

Hb(·) is the binary entropy function. The Slepian-Wolf region is the set of rates (R1, R2) such that

R1 > Hb(α) (3.14)

R2 > Hb(α) (3.15)

R1 +R2 > 1 +Hb(α) , (3.16)

where Hb(·) denotes the binary entropy function.

For a correlated source with many components, a similar result can be shown to Proposition 5.

We omit the proof as it is nearly identical to that shown above.

Proposition 6. Let {ασ : σ ⊆ {1, 2, . . . m}} be a set of positive real numbers. Let S(σ) = {Sj :

j ∈ σ}. Consider the class of sources {Pλ : λ ∈ Λ} for the random variables (S1, S2, . . . , Sm) that

satisfy:

ασ > H(S(σ)|S(σc)) (3.17)
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Figure 3.2. Binary correlated source with one remote component. Conditioned on the first compo-
nent, the decoder can figure out if the second one was complemented or not.

Then the set of achievable rates is given by {(R1, R2, . . . , Rk) : R(σ) ≥ ασ) ∀σ}, where

R(σ) =
∑

j∈σ

Rj . (3.18)

3.2 Multi-terminal coding with many terminals

Consider a slight variation of the previous example, as shown in Figure 3.2. The source (S1, S2)

have the same marginals as before, but the product S1S2 is Bernoulli(α). The source S1 is viewed

directly by the first terminal, but the second source S2 is viewed remotely through a channel may

or may not flip all of the bits, forming the observed sequence T2. This induces the same class of

sources on (S1, T2) as considered above. Using the same coding scheme, we can reconstruct S1 and

T2 exactly. From the empirical statistics of a long block-length sample we can recover the single bit

that determines the particular distribution in the class. This “extra bit” corresponds to the δn term

in the proof above. There, approximately log n bits of information about the joint distribution of

the source are transmitted in addition to the source sequences.

We now want to look at what happens as the number of sources gets larger. If there are

m sources, the previous scheme would use m log n bits about the joint distribution. One way of

thinking about the blocklength n is as a processing delay. If the number of sources is allowed to

grow with the processing delay, so that m and n are going to ∞ together, the penalty may become
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non-negligible. Suppose that |Sj | = K for all j. For any fixed number m of sources, the number

of types of denominator n is upper bounded by (n+ 1)mK . As m gets larger, the number of types

grows exponentially with m, which causes a larger rate penalty using the Slepian-Wolf system.

Increasing m requires using a larger blocklength to achieve the same error probability. We would

like to capture this intuition. To do this, we will fix the ratio (m log n)/n. and consider then a

sequence of (n(m), R1, . . . Rm) codes.

Definition 4. A rate sequence {Ri}f(n)
i=1 is achievable under scaling f(n) if there exists a sequence

of (n,R1, . . . , Rf(n)) source codes whose probability of error εn → 0 as n→ ∞.

This definition forces a tradeoff between the number of sensors and the blocklength of the

corresponding universal code. If the modeling complexity increases exponentially in the number

of terminals, we may incur a rate penalty. However, if the number of models is only polynomial

in the terminals, the exponential error probability from the block code can easily encompass the

modeling complexity as well. Our main result is the following.

Proposition 7. Let {ασ : σ ⊆ {1, 2, . . . m}} be a set of positive real numbers. Let S(σ) = {Sj :

j ∈ σ}. Consider the class of sources {Pλ : λ ∈ Λ} for the random variables (S1, S2, . . . , Sm) that

satisfy:

ασ > H(S(σ)|S(σc)) (3.19)

Then the sum-rate for achievable tuples under scaling n/ log n is bounded:

lim
m→∞

m
∑

j=1

Rj ≥ lim
m→∞

H(S1, S2, . . . , Sm) + c1 (3.20)

Proof. We can simply look at the entropy of the source. For a fixed m and n, consider jointly

encoding the source (S1, S2, . . . , Sm). This requires nH(S1, S2, . . . , Sm) bits plus H(Pn ∩Λ). There

are c2n
mc3 sources in Pn ∩Λ, so we need c4m log n additional bits. Dividing by the block length n:

lim
m→∞

m
∑

j=1

Rj ≥ lim
m→∞

≥ H(S1, S2, . . . , Sm) + c4
m log n

n
. (3.21)
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Note that ifm and n grow at the same rate, then the rate penalty increases logarithmically in the

block length. In some sense we can view this as a density-delay tradeoff for source coding systems

of this type. For very large systems, the delay required to amortize the modeling uncertainty is

also large.

3.3 The example revisited

Although we only discussed lossless coding problems in this chapter, the ideas can provide some

intuition for our example. In the case of distributed compression, the problem does not naively

decompose into that of partitioning the sensors into two groups and using a CEO code [28] for each

group. However, a little more thought shows that the only information needed by the terminals to

do the encoding is the number of sensors observing the same source as them. However, the decoder

must know which source is observed by each sensor in order to do the joint decoding required by

the CEO code.

In the case where the matrix A is known, the distortion can be bounded by

D ≤ σ2
S

σ2
S

σ2
W

B1(1 − exp(−2R1/B1)) + 1
+

σ2
S

σ2
S

σ2
W

B2(1 − exp(−2R2/B2)) + 1
, (3.22)

where the rates R1 and R2 are the sum rates for the terminals observing S1 and S2 respectively.

How much information is needed to enable this performance? In order to determine which

source they are observing, each sensor can compare its own source sequence to a common “pilot”

sequence, perhaps observed by another sensor. This pilot sequence could be the signs of the first ρ

samples observed at the sender. By measuring the empirical correlation between the pilot and their

own signal, each sensor can decide with high probability to which group they belong. In addition,

they would need the numbers B1 and B2. In terms of bits, we have

ρ+ logB1 + logB2 < ρ+ 2 logM bits (3.23)

Since these bits must be shared by all the sensors, it would be sufficient to broadcast all this
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information to them before transmission. This is precisely the intuition behind the scheme described

in the next chapter.
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Chapter 4

Finale: fading observations and

alignment

In this chapter we look at a joint source-channel coding problem with uncertainty in the ob-

servation process. We call these models fading observation models in analogy to fading channels in

wireless communications. Much of this work has appeared in some form in [32], [33]. In a sense, this

chapter will deal with a part of the interface between the previous two problems. The communica-

tion channel imposes constraints on our encoding strategies. In the language of Chapter 2, these

may be constraints on the covariance of the estimation matrix. In terms of the coding problems in

Chapter 3, there may be a rate constraint on our codes. However the underlying question is this:

what should the sensors send in order to best help the estimator, given that they must share the

available communications resources?

At first glance, it would seem that minimizing the redundancy in the messages sent by the

sensors would provide the decoder with the most information for its estimate. More precisely, the

sensors would use an optimal CEO source code [28] followed by a capacity-achieving channel code.

The decoder could then decode the compressed source observations and use those to estimate the

source. The problem with this approach is that the multiple-access channel is a bottleneck for the

rate. If the communication power available grows linearly with the number of sensors, the capacity

46



grows only logarithmically. The end-to-end distortion for this strategy scales to zero like 1/ logM

for a Gaussian source observed in Gaussian noise with an additive white Gaussian noise channel.

The other approach is to let the sensors collaborate in communicating their observations. The

uncoded transmission strategy adopted by Gastpar and Vetterli [17] is one such collaboration

method. However, all of the sensors must know the joint statistics of the observation process as

well as the communication channel. In the case where there is observation uncertainty, the problem

of uncoded may be significantly more difficult, as we have seen in the case of centralized estimators.

In this chapter we consider the slow-fading models examined at the end of Chapter 2. Although

we cannot prove that there is a strict penalty in the CEO code, the uncoded transmission scheme

fails completely in the presence of fading. We exhibit a simple feedback protocol that can bootstrap

the uncoded transmission scheme into a regime with a distortion that scales like M−1/3, better than

that of separate source and channel coding without fading. We also conjecture that the CEO code

with similar feedback still exhibits the same 1/ logM scaling.

4.1 Uncertainty in observations

We first describe a general class of sensor observation models and then a specific example that

will dominate the bulk of the analysis in this chapter.

4.1.1 Fading observations : a general model

The model we propose is similar to that studied at the end of Chapter 2. For clarity, we review

some notation. We use an uppercase letter S for a random variable, a lowercase s for its realization,

and PS(s) for its distribution. We write an independent, identically distributed (iid) sequence of

random variables indexed by n as {S[n]}∞n=1 or Sn. If S[n] is vector valued, we denote the m-th

component of S[n] by Sm[n].
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Figure 4.1. Sensor network with fading observations. The function A can be arbitrary, but we will
generally assume that it is a linear transformation.

A source generates a sequence of iid symbols

Sn = {S[n]}∞n=1 (4.1)

at each time n according to PS(s). The M sensors observe the the source through the observation

function A(·), corrupted by noise W that is iid across sensors and time with distribution PW (w):

Un = A(Sn) +W n . (4.2)

The observation function A(·) is a random variable taking values in a set of functions A according

to some known distribution PA(a). The choice of A depends on the specifics of the sensors’ design

and reflects the relationship between the quantities of interest and the actual observed variables.

We do not assume the sensors know the function A(·) after it is chosen. The fast-fading situation

with centralized estimation was dealt with in Chapter 2, and we do not address it in the context

of joint source-channel coding; instead we will focus on the slow-fading case.

The model generalizes others in the literature. We can view the source as being observed

through an input channel as in [11], where the known channel is replaced by a fading channel.

If A(·) is the identity map with probability one, we reduce to the the CEO problem [37]. If S

is a jointly Gaussian vector and A(·) is a random matrix, we have the source model studied by
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Viswanath [36]. If A is deterministic and the communication channel is also modeled by matrix

multiplication, we have the network studied in [18]. Typical channel fading models model the

fading as multiplicative because of experimental evidence on multipath interference. While the

main example we study in this chapter is multiplicative, it is for reasons of expediency rather

than the appropriateness of the model. As usual, we will treat sources and noises that are jointly

Gaussian.

In this network, the communication channel is added into the picture. We model it as a general

multiple-access channel with transition probabilities p(y|x1, x2, . . . xM ). The sensors encode their

observations independently into channel inputs Xn. The specific realization of A is not known to

the encoders, but the prior distribution PA(a) is known. The communication channel may have a

cost function ρ which the inputs must satisfy with some constraint P in the following sense:

E [ρ (X[n])] ≤ P . ∀n (4.3)

The receiver uses Y to form an estimate Ŝn = {Ŝ[n]}∞n=1 that minimizes a distortion measure

d(Sn, Ŝn). In general, the decoder also does not know the realization a of A, so the distortion will

depend on this realization. We write the end-to-end distortion D(A,M,P ) that is achieved as

D(A,M,P ) = ES

[

d
(

Sn, Ŝn
)]

. (4.4)

The goal of our coding scheme is to minimize the expected value of D.

In order to express out scaling results, we use standard asymptotic notation. We say that a

function f(M) scales as fast as g(M) or f(M) = Ω(g(M)) if there exists a constant cl such that

f(M) ≥ clg(M) . (4.5)

We say that a function f(M) scales as slow as g(M) or f(M) = O(g(M)) if there exists a constant

cu such that

f(M) ≤ cug(M) . (4.6)

We write f = O(max{g1(M), g2(M)}) if there is a constant cu such that

f(M) ≤ cu max{g1(M), g2(M)} . (4.7)
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Figure 4.2. Gaussian network with fading observations.

By limiting ourselves to these asymptotic characterizations, we conveniently ignore many factors

which affect smaller networks. However, we feel that this analysis is useful in characterizing achiev-

able performance limits.

4.1.2 Scalar multiplicative fading

The first question to ask for sensors observing faded observations is to what extent they can

determine the fading process. Consider the case where each sensor receives Am(S[n]) + Wm[n],

where the Am are drawn iid from some distribution over a finite set A. The sensors can estimate

their own marginal distribution locally. If two fading functions a1, a2 ∈ A induce different marginal

distributions on Um at sensor m, then the sensor can in theory discriminate between them based

on the empirical statistics. The problem introduced by fading observations in this setting is from

different fading functions inducing the same marginal distribution on Um. For point-to-point

systems, this is similar to the rate-distortion problem considered by [9]. In order to collaborate, the

sensors must disambiguate between the fading processes which could induce their local distribution.

We call this problem one of alignment.

Again, we turn to Gaussian sources and Gaussian noise. The model we consider is shown
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in Figure 4.2. The source S is a Gaussian random variable with mean 0 and variance σ2
S . The

observation noises {Wm}M
m=1 are iid zero-mean Gaussian random variables with mean σ2

W . The

multiple-access channel is a standard memoryless additive white Gaussian noise channel with a

sum-power constraint
∑

E[|Xm|2] ≤ MP on the inputs. The channel noise Z is Gaussian with

zero mean and variance σ2
S. The distortion measure is mean-squared error:

d(Sn, Ŝn) = lim
N→∞

1

N
E

[

N
∑

n=1

∣

∣

∣S[n] − Ŝ[n]
∣

∣

∣

2
]

. (4.8)

Consider a Gaussian network in which the observation fading functions {Am(·)} are multipli-

cation by scalars {Am} satisfying the following:

{Am} are iid with distribution pA(a) (4.9)

pA(a) = pA(−a) (4.10)

|Am| < ν a.s. (4.11)

We call this bounded real scalar fading. A specific example that we will use is when the {Am} are

iid and equiprobable on the set {−1,+1}. In the next section we will examine the performance of

coding strategies on this kind of source fading.

4.2 Existing schemes

The two schemes we examine for this joint-source channel coding problems are uncoded trans-

mission and separation-based coding. Both of these schemes have already been analyzed in the

absence of fading [17]. In the separation-based approach, the problem is decomposed into that

of distributedly compressing the source into independent bitstreams and then encoding those bit-

streams over the multiple-access channel. On the other hand, the sensors could simply forward

their observations and use the fact that the channel’s summing operation partially computes the

MMSE estimate – this is what we call uncoded transmission.
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4.2.1 Separate source and channel coding

In this section we derive the asymptotic performance for separation-based compression of

sources with distributed encoding. Let RS(D) be the rate-distortion function for the source S

with distortion limit D. Note that R(D) is vector-valued and represents a rate tuple (R1, . . . RM ).

Let C(P ) be the capacity function for the multiple-access channel p(y|x1, . . . xM ) under the cost

constraint E[ρ(x1, . . . xM )] ≤ P . Note that C(P ) is also a tuple of achievable rates (R
(c)
1 , . . . R

(c)
M )

for reliable communication across the multiple-access channel.

Suppose we have a distributed source code for S with rates (r1, . . . rM ). If R(D) = r and

r < C(P ) then we can compress the source and transmit the compressed messages reliably across

the channel. Thus if R(D) < C(P ) component-wise, we can achieve distortion D across the

channel. If r > C(P ) in any component, then the rate tuple generated by the source code cannot

be communicated reliably across the channel.

Let Rtot =
∑

Rm. If all of the signs {Am} are known, the sum-rate for source coding using a

CEO source code in the limit as M → ∞ is given by [28, Equation (6)]:

D(Rtot,M) =
σ2

S
σ2

S

σ2
W

M(1 − exp(−2Rtot/M)) + 1
. (4.12)

The sum capacity of the Gaussian multiple-access channel is upper-bounded by the case when the

messages may be dependent. The total power is MP , so:

Rtot ≤
1

2
log

(

1 +
M2P

σ2
S

)

(4.13)

Substituting, the achievable distortion is lower bounded by

D(M) ≥ σ2
Sσ

2
W

σ2
W + σ2

SM

(

1 −
(

σ2
S

σ2
S+M2P

)1/M
) . (4.14)

Taking the limit as M → ∞ gives the 1/ logM behavior described at the beginning of this chapter.
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4.2.2 Uncoded transmission

In the uncoded transmission scheme, each sensor scales its own observation to meet the power

constraint of the channel. Define the constant η as

η =

√

P

σ2
S + σ2

W

. (4.15)

Then

Xm[n] = ηUm[n] = η(AmS[n] +Wm[n]) . (4.16)

The received signal is then

Y [n] = η

(

M
∑

m=1

AmS[n] +
M
∑

m=1

Wm[n]

)

+ Z[n] (4.17)

The MMSE estimate of S given Y will depend on the random variable B =
∑M

m=1Am. For a

fixed B define

L(B,M) =
σ2

Sσ
2
W

B2

M+(σ2
S

/σ2
W

)η−2σ
2
S + σ2

W

. (4.18)

The expected distortion is then

Dunc(MP ) = EB [L(B,M)] . (4.19)

If all the gains Am are equal to 1, then B = M and the function L(B,M) = O(M−1). A more

interesting case is when we have bounded real scalar fading:

Proposition 8. For the Gaussian network with fading observations satisfying (4.9)–(4.11), the

distortion scales like Ω(1) using the uncoded transmission scheme.

Proof. Note that the sensors can each determine the magnitude of their fading coefficients {Am}

by computing the marginal density function of their observations. For sensor m, the density of Um

is

pUm(um) =
1

√

2π(A2
mσ

2
S + σ2

W )
exp

(

− 1

2(A2
mσ

2
S + σ2

W )
u2

m

)

. (4.20)
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This density is identical for Am = ±am. The sensors apply the gains

ηm =

√

P

A2
mσ

2
S + σ2

W

(4.21)

to get the distortion in (4.19). Note that

M
∑

m=1

P

σ2
SA

2
m + σ2

W

+ σ2
S ≥M

P

σ2
Sν

2 + σ2
W

+ σ2
S ≥Mµ2 (4.22)

for some µ > 0.

Thus we can lower bound the distortion by

D(M) ≥ σ2
S

B√
M
µ+ 1

. (4.23)

Now note that B =
∑M

m=1 ηmAm, and

E[ηmAm] = E

[
√

PA2
m

A2
mσ

2
S + σ2

W

sgnAm

]

= 0 (4.24)

E[η2
mA

2
m] = E

[

PA2
m

A2
mσ

2
S + σ2

W

]

= σ2
B <∞ . (4.25)

So by the central limit theorem [14], BM−1/2 converges to a Gaussian random variable with mean

0 and variance σ2
B.

We can now write the expected distortion in the limit:

lim
M→∞

E[D(M)] ≥ lim
M→∞

E

[

σ2
S

(BM−1/2µ)2 + 1

]

(4.26)

= E

[

lim
M→∞

σ2
S

(BM−1/2µ)2 + 1

]

(4.27)

=

∫

σ2
S

ξ2 + 1
dξ (4.28)

> 0 , (4.29)

where ξ is normally distributed with mean 0 and variance σ2
Bµ

2. Thus the expected distortion does

not converge to 0 as M → ∞, so D(M) = Ω(1).

We can also give a result that is slightly stronger only on technical grounds.
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Proposition 9. Suppose the fading observation functions in the Gaussian model are multiplication

by random variables {Am} taking values in {−1, 1}. Suppose the {Am} are exchangeable and

lim
M→∞

M−1
∑

Am = 0 a.s. (4.30)

lim
M→∞

P

(

1√
M

∣

∣

∣

∑

Am

∣

∣

∣
> ε

)

≤ Kε < 1 . (4.31)

Then uncoded transmission yields an expected distortion that scales with M like Ω(1).

Proof. Let H = (B >
√
Mε). In this case,

P (Hc) ≥ 1 −Kε > 0 (4.32)

We can find a lower bound on the distortion by only taking the expectation over H c:

Dunc(MP ) ≥ EΓ [L(M − 2Γ,M)]

≥ L(
√
Mε2,M) (Kε)

As M → ∞, this function converges to a constant, so Dunc(M) = Ω(1).

4.3 A simple feedback framework

The problem with the uncoded transmission scheme is that the sensors’ observations are not

aligned, so blindly forwarding their observations causes sufficient interference to void the collaborate

gain from the coherent addition of the source observations. Another way of viewing this is that any

choice of gains is a choice of estimator, and that every estimator performs poorly in expectation

over the distribution of A. This lack of alignment is caused by the zero-mean distribution we chose

for the observation gains. We now present a scheme that uses a small amount of extra information

that recovers some of the performance for uncoded transmission in the unknown-sign model. We

show that with a single bit broadcast to all the sensors we can make the distortion converge to 0

as O(M−1/3), and for K bits we get O(M−K/(K+2)). We generally refer to the extra information

used as feedback, although we emphasize that it need not come from the end receiver in the sensor
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network. Indeed, an interesting case is when the feedback comes from one of the other sensors in

the network.

The method we propose to align the sensors is to divide the operation of the network into two

phases – a discovery phase and a transmission phase. We define the time axis so that the discovery

phase is at times n ≤ 0 and the transmission phase is at times n > 0. In the discovery phase sensor

m forms an estimate Âm of its own observation gain Am based on its own observations and some

feedback. Sensor m then forwards ηÂmUm to compensate for its observation gain. If a sufficient

fraction of the sensors are aligned, the distortion will converge to 0 rapidly as the number of sensors

increases.

4.3.1 A single bit of feedback for sign fading

In this section we consider a discovery phase of only one time step. Let S0 = S[0] be the

value of the source during the discovery phase on which we base our feedback signal. Let f(S0)

be a feedback signal that is broadcast to all of the sensors. The function f(·) may be stochastic

– for example, it may be a noisy observation of the source. We give examples of specific forms of

feedback and decision rules in the next section.

After receiving f(S0), each sensor m forms an estimate Âm = gm(f(S0), Um) of its observation

gain. Conditioned on a value S0 = s0, the sensor observations are independent and identically

distributed, so the events of successful estimation of the observation gains are independent from

sensor to sensor. By the exchangeability of the gains Am, each sensor should attempt to maximize

their probability of success, and will adopt the same decision rule gm(·) = g(·). Let v(s0) denote

the probability that a sensor correctly estimates its own observation gain. Let Âm = g(f(S0), Um).

Upon making their decisions, the sensors then form the channel inputs

Xm[n] = ηÂmUm[n] . (4.33)

Let Γ denote the number of sensors for which Âm = Am. Conditioned on the value of S0, the event

of each sensor being aligned correctly depends only on the noise value at that sensor, and hence is
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an independent Bernoulli random variable with parameter v(s0), so Γ is a binomial random variable

with parameters (M,v(s0)).

The distortion achievable after the feedback is given by

E[D | f(S0)] = ES0

[

M
∑

k=0

L(M − 2k,M)P (Γ = k)

]

(4.34)

where the expectation is taken over S0 and

P (Γ = k) =

(

M

k

)

v(s0)
k(1 − v(s0))

M−k . (4.35)

For equation (4.34) to converge to 0, each term in the summation must converge to 0 asM → ∞.

The convergence is in turn dependent on S0 and the decision rule g(·) by which the sensors estimate

their alignment. Intuitively, if S0 is close to zero, it will be difficult to determine Am and thus the

probability v(S0) that sensor m aligns correctly will be close to 1/2. We therefore wish to find

a decision rule g(·) that minimizes the probability of error for each sensor, or, alternately, that

maximizes the probability of correct alignment

In order for D(M) = O(M−1), the random variable Γ must be bounded away from 1/2 with

probability one over the possible values of S0. Assume that limM→∞ Γ > 1/2 + ε with probability

one. By the strong law of large numbers, Γ/M → v(S0) with probability one, which implies

v(S0) > 1/2 + ε with probability one, which will not be true in general. However, if we allow ε to

scale with M as well, we can recover some of the scaling rate, as shown in the next proposition.

Proposition 10. Suppose the feedback function f(·) and decision rule g(·) are chosen such that

there exist constants ε1 > 0, ε2 > 0, and functions α(M) and β(M) such that

lim
M→∞

α(M) = 0 (4.36)

lim
M→∞

β(M) = 0 (4.37)

lim
M→∞

Mβ(M)2 = ∞ (4.38)

(|S0| ≥ ε1α(M)) =⇒ v(S0) ≥
1

2
+ ε2β(M) . (4.39)

Then as M → ∞, the feedback/decision pair (f, g) achieves a distortion D(M) in the transmission
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phase satisfying

D(M) = O

(

max

{

α(M),
1

Mβ(M)2

})

. (4.40)

For the network with sign fading.

Remark. Equation (4.39) says that if the source sample S0 on which we base our feedback is

large enough, e.g. at least ε1α(M), then the probability of successful alignment is at least ε2β(M)

more than 1/2.

Proof. Suppose that (4.36) – (4.39) hold. Let H be the event (|S0| ≥ ε1α(M)). Let Γ be a binomial

random variable with parameters (M,v(s0)) so that E[Γ] = Mv(s0). We have the following bound:

P

(

|Γ − Mv(s0)| >
Mβ(M)ε2√

2

)

(4.41)

≤ exp

(

−1

2
ε22Mβ(M)2

)

. (4.42)

We can also write the following bounds, using the assumptions in (4.39):

P (Hc) =
1

√

2πσ2
S

∫ ε1α(M)

−ε1α(M)
e−x2/2σ2

Sdx (4.43)

≤
√

2

πσ2
S

ε1α(M) (4.44)

v (S0 |H ) ≥ 1

2
+ ε2β(M) . (4.45)

We evaluate the distortion separately on the events

F1 = Hc

F2 = H ∩ (Γ > (ε2/2)Mβ(M))

F3 = H ∩ (Γ ≤ (ε2/2)Mβ(M)) .

On Hc we upper bound the distortion by letting Γ = M/2. On H, we have equation (4.45), so we

can let Γ = M/2 on F2 and Γ = 1
2 + (ε2/2)Mβ(M) on F3. Putting this together and noting that
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the distortion must be less than σ2
S , we rewrite (4.34) as :

ES0 [L(M − 2Γ,M)(1F1 + 1F2 + 1F3)]

≤ σ2
S (P (Hc) + P (Γ > (ε2/2) | H )) + L(Mε2β(M)/2,M)P ((Γ ≤ (ε2/2) | H )

≤ σ2
S

(√

2

πσ2
S

ε1α(M) + exp

(

−1

2
ε2Mβ(M)2

)

)

+ L(Mε2β(M)/2,M) .

The first term converges to zero with the slower of α(M) and exp(−Mβ(M)2). The second term

converges to zero as O(M−1β(M)−2). Since β(M)−2 is sub-linear, we can ignore this latter term,

so the distortion is O(max{α(M),M−1β(M)−2}).

The bounds for this proof depend only one the relationship between the values of S0 and

the success probability v(S0). The latter depends only on the noise distribution, and thus it is

possible to treat non-Gaussian noises, although in this case the destination’s linear estimator will

not necessarily be the MMSE estimator.

Proposition 11. Suppose the fading observation functions satisfy the conditions of Proposition 9.

Then the K-bit feedback scheme outlined above achieves a distortion that scales like O(M −K/(K+2)).

4.3.2 Example: feedback from a beacon sensor

Example: perfect feedback

To gain further insight, let us consider an idealized case in which f(·) is the identity function, so

that the sensors get to know the source sample exactly; we call this perfect feedback. We emphasize

that this feedback is only available during the discovery phase and not for all time, and that we

are assuming that the discovery phase is one sample long.

Conditioned on the value of S0 = s0, each sensor is left with the problem of detecting antipodal

signals ±s0 in the presence of Gaussian noise with a uniform prior. The maximum a priori proba-

bility (MAP) rule for this problem is a threshold test at 0; for s0 > 0, if Um > 0 then Âm = 1, and
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for s0 < 0 if Um > 0 then Âm = −1. The probability of success for this rule is

vp(s0) = 1 −Q

( |s0|
σw

)

, (4.46)

where

Q(x) =
1√
2π

∫ ∞

x
e−y2/2dy . (4.47)

The success probability, conditioned on H = |S0| ≥ εM , is

vp (S0 | H ) ≥ 1

2
+

εM

2
√

2πσ2
W

. (4.48)

Proposition 10 tell us that the distortion scales faster than max{εM ,M−1ε−2
M }. Equating these two

scaling rates, we can set εM = O(M−1/3) to yield a scaling rate of O(M−1/3).

Suppose instead that the sensors do not receive S0, but instead a one bit quantization of S0, or

f(S0) = sgn(S0). Since the the MAP rule with full knowledge of S0 was a threshold test at 0 for

all values of S0, the MAP rule for this case is the same. Another way to phrase the decision rule

is if f(S0) = sgn(Um) then Âm = 1, otherwise Âm = −1. We again condition on the value of S0,

which gives the the same success probabilities as (4.46) and (4.48). Therefore the distortion with

this one bit of feedback is also O(M−1/3). It is interesting to note that in this case the achievable

distortion scaling does not depend on the “richness” of the actual available feedback.

Example: one bit of feedback

Suppose instead that each sensor is given access to the sign of the signal received at an extra

sensor b:

f(S0) = Gb = sgn(AbS0 +Wb) . (4.49)

Sensor m must then decide if Am = Ab or Am 6= Ab. Again, we condition on S0 = s0. The

probability that Gb = Ab is given by

P (Gb = Ab |S0 = s0 ) = 1 −Q

( |s0|
σw

)

. (4.50)

Since we cannot exactly know the signs Ab and Am, we assume without loss of generality that

Ab = 1 and attempt to distinguish between the two hypotheses Am = Ab and Am = −Ab.
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Suppose we have full knowledge of Ub = AbS0 +Wb. Under the hypothesis Am = Ab, the pair

(Abs0 +W0, Ams0 +Wm) is jointly Gaussian with mean (s0, s0). Under the hypothesis Am = −Ab

they are jointly Gaussian with mean (s0,−s0). The decision rule in this case is again a threshold

test on the line Um = 0. If Um and Ub have the same sign, then sensor m guesses Âm = Âb = 1,

and if they have different sign it guesses Âm = −Âb = −1. This rule is again indifferent to the

value of S0, as in the perfect feedback case.

The decision rule for Am that maximizes a posteriori probability of the observations is therefore

given by

Âm =











g(Gb, Um) = 1 if Gb = sgn(Um)

g(Gb, Um) = −1 if Gb 6= sgn(Um) ,
(4.51)

regardless of the value of S0. The probability of success is given by

vn(s0) = 1 − 2Q

( |s0|
σw

)

Q

(−|s0|
σw

)

. (4.52)

So the conditional probability of success is:

vn

(

S0

∣

∣

∣
|S0| >

εM
2

)

≥ 1

2
+

εM
√

2πσ2
W

+
ε2M

2πσ2
W

. (4.53)

The εM term is dominant as M → ∞ in this conditional probability, the same as in the perfect

feedback case. From our previous analysis, we can see that D(M) = O(M−1/3).

The noisy feedback example models a situation in which one sensor acts as a “beacon” by

broadcasting the sign of its observation to the other sensors. In a scaling sense, the sign of the

noisy observation is “as good” as knowing the sign of the source sample exactly, although the

constants in the convergence become worse as the noise becomes more severe.

4.3.3 Many bits of feedback

We now consider the effect of lengthening the discovery phase by allowing the feedback involve

more than one sample of the source. Let S0 = S[0] and S−1 = S[−1] be the two source samples

on which we base our feedback f(S0, S−1). Conditioned on a realization (s0, s−1) of these two
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�

�

(−1,−1)

(1, 1)

�

�

(−s0,−s−1)

(s0, s−1)

+

(um[0], um[−1])

sign perfect

Figure 4.3. MAP rules for perfect feedback and perfect sign feedback. The plus is the noisy ob-
servation (um[0], um[−1]). Under perfect information, Âm = 1, whereas with only sign information
the expected probability of success is maximized when Âm = −1.

samples, the sensor observations are again independent, so each sensor should seek to maximize its

own probability of success. To illustrate the effect of adding more feedback, we consider the perfect

feedback of Section 4.3.2 to simplify the expressions. A similar analysis can be carried out for the

noisy feedback case.

Suppose our feedback is the pair (S0, S−1). Conditioned on the values of S0 and S−1, sensor

m’s observations (Um[0], Um[−1]) are jointly Gaussian with mean (s0, s−1) under the hypothesis

Am = 1 and mean (−s0,−s−1) under the hypothesis Am = −1. The problem is again the same

as that of detecting antipodal signals in the presence of Gaussian noise, and the MAP rule is a

threshold test shown in Figure 4.3. The probability of success for this rule is

vp(s0, s1) = 1 −Q





√

s20 + s2−1

σw



 . (4.54)

Let H be the event (|S0| ≤ εα(M), |S−1| ≤ εα(M)), and Hc its complement. Then we have:

vp (S0, S−1 | Hc ) ≥ 1 −Q

(√
2εα(M)

σw

)

(4.55)

≥ 1

2
+ εα(M)

1

2
√

πσ2
W

. (4.56)

Since S0 and S−1 are independent, P (H) is proportional to α(M)2. The analysis in Proposition
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10 implies that D(M) = O(max{α(M)2,Mα(M)−2}). Setting these two terms equal gives α(M) =

M−4 so D(M) = O(M−1/2).

Extending the above analysis in a standard way shows that with K samples of feedback we get

distortion D(M) = O(M−K/(K+2)). By choosing K arbitrarily large, we get closer to the optimal

rate of O(M−1).

Suppose we only get the signs of S0 and S−1, so that f(S0, S−1) = (sgn(S0), sgn(S−1)). The

threshold test in the MAP rule for perfect feedback depends on the actual values of (s0, s−1), as

opposed to the threshold test when K = 1. Thus the scaling result above does not immediately

follow. Sensor m must then determine, based on the observation pair (Um[0], Um[−1]), whether

Am = 1 or Am = −1 in a way that maximizes its probability of making a correct decision. We

would like for the probability of success to be greater than 1/2.

Under the two hypotheses, the pair (Um[0], Um[−1]) is jointly Gaussian with mean (s0, s−1)

for Am = 1, mean (−s0,−s−1) for Am = −1 and covariance σ2
W I. The likelihood of observing

(Um[0], Um[−1]) is the expectation of the conditional likelihood over all source pairs (s0, s−1) that

could have generated f(s0, s−1). Because of the symmetry in the distribution of (S0, S−1), the

likelihoods under the two hypotheses are equal on the line orthogonal to the vector f(s0, s−1) so

the MAP estimate is a threshold on that line.

To illustrate the difference between the MAP estimate for the case of perfect feedback versus

the case of sign feedback, consider Figure 4.3. For a fixed (s0, s−1), the probability of error is given

by the probability that the noise exceeds the distance from the point (s0, s−1) to the threshold in

the direction orthogonal to the decision boundary:

vp(s0, s−1) = 1 −Q

( |s0| + |s−1|√
2σw

)

(4.57)

This differs from equation (4.54) by a shift in the norm inside the Q(·) function; with perfect

knowledge of the samples we have a L2 norm, and with only the sign we have L1. This explains

why the tests and errors were the same in the case when K = 1.

Let H be the event that |S0|, |S−1| ≤ εα(M) and Hc its complement. Then we can bound the
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probability of success:

vp (s0, s−1 |Hc ) ≥ 1

2
+

ε
√

πσ2
W

α(M) (4.58)

Thus from our previous analysis, D(M) = O(M−1/2) as in the case when we have perfect knowledge

of the source samples.

4.3.4 Feedback for bounded scalar fading

As an extension to these results on sign fading, we can modify the scheme for bounded real

scalar fading. In order to prevent excess noise, we can set a threshold of ε. All sensors which

estimate their gain |Am| < ε do not transmit anything. Since the gains are iid this affects at a

constant fraction P (|Am| < ε) of the sensors almost surely as M → ∞. Consider the case of 1-bit

feedback. Suppose the beacon broadcasts the sign of its observation Gb at time 1 to all the other

sensors:

Gb = sgn(U0[1]) = sgn(AbS[1] +W0[1]) (4.59)

We call this signal the feedback function f(Ub)

Sensor m then checks if Gb = Gm (defined analogously). If so, it estimates sgn(Am) = sgn(Ab),

otherwise it estimates sgn(Am) = − sgn(Ab). Call this decision rule g(Gb, Um). This rule is the

maximum a posteriori probability (MAP) rule for detecting the sign of Am. Denote by vm(S[1])

the probability of successfully estimating sgn(Am) at sensor m using this rule. Conditioned on

S[1], all the sensor observations are independent. We have already assumed that Am > ε, so

vm(S[1]) > 1/2 + δ for all m. We have the same proposition relating the scaling rate to the to the

success probability:

Proposition 12. Suppose the feedback function f(·) and decision rule g(·) are chosen such that

there exist constants ε1 > 0, ε2 > 0, and functions α(M) and β(M) such that

lim
M→∞

α(M) = 0 (4.60)

lim
M→∞

β(M) = 0 (4.61)
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lim
M→∞

Mβ(M)2 = ∞ (4.62)

(|S[1]| ≥ ε1α(M)) =⇒ v(S[1]) ≥ 1

2
+ ε2β(M) . (4.63)

Then as M → ∞, the feedback/decision pair (f, g) achieves a distortion D(M) in the transmission

phase satisfying

D(M) = O

(

max

{

α(M),
1

Mβ(M)2

})

. (4.64)

for the Gaussian network with bounded real scalar fading.

We then have, by application of the previous proposition, that a single bit of feedback in the

mode we have described biases the sum of the forwarded observations into a regime that scales

faster than
√
M , which then avoids the central-limit behavior of the misaligned situation. It is

clear from these examples that the situations in which the fading process {Am} is problematic are

when Am is zero-mean and symmetric. In these cases the sign of Am plays a key role. This can be

thought of as a phase uncertainty introduced by the fading observations.

4.3.5 A conjecture for the CEO problem with limited feedback

The obvious question to ask at this point is how separate source and channel coding is affected by

the introduction of similar feedback capabilities. Although we cannot provide a definitive answer

at this time, recent results on the CEO problem [29], [31], [38], [39] suggest that the feedback

signal will not affect the scaling behavior of the distortion-rate function. We will briefly sketch an

argument along these lines, following the very recent work of Wagner [39].

We can bound the performance of a CEO code with a beacon by changing the model slightly.

Let us suppose there are M + 1 sensors numbered 0, 1, 2, . . . M and let Um be defined as before.

Now suppose A0 = 1 and let the input to each sensor’s encoder be the pair (Um, Ub) for m =

1, 2, . . . M . We also give the signal Ub to the decoder. Thus the entire problem has been reduced

to a “conditional CEO” problem with all terminals sharing a side information signal Ub, and

the observed variables at the encoders are conditionally independent given the pair (S,Ub). By

evaluating the bound in [39] we can obtain a new set of achievable rates for this problem.
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It is intuitively plausible that this coding problem is no different from the original CEO problem

save for an extra conditioning on Ub that will only affect the distortion achievable at a given rate by

a constant. Furthermore it is clear that this problem will give a lower bound on the distortion-rate

function for the case with feedback because we do not even assume a rate-limitation on the side

information and even provide it to the decoder. We leave the proof of this conjecture for future

work.

4.4 Other directions and our example

We now turn to Gaussian networks in which the source is observed through a class of linear

filters. Locally to the sensors, there are two sources of misalignment in these networks: phase

uncertainty, and delay uncertainty. The former refers to relative phase differences between sensors

with the same power spectrum, and is a generalization of the problem in the previous section. The

latter refers to integer delays in the observation of the source. This may be caused by propagation

delays or a lack of clock synchronization.

Suppose the observation ensemble A is a set of filters {A(k)[n]} such that the power spectrum of

the filtered source A(k)[n] ∗ S[n] is nowhere zero. Each sensor receives the source filtered by one of

the filters in A, where Am[n] is chosen uniformly from A. The sensors can attempt to empirically

estimate their observation function’s power spectral density and compensate for it by whitening

their observations. For example, if A = {±1 ± 1
2z

−1}, then the power spectral density for sensor

m could be

Um(ejω) = σ2
W +

(

1 +
1

4

)

σ2
S + σ2

S cosω (4.65)

for Am(z) = ±(1 + 1
2z

−1) or

Um(ejω) = σ2
W +

(

1 +
1

4

)

σ2
S − σ2

S cosω (4.66)

for Am(z) = ±(1 − 1
2z

−1).

In this example, some of the filters have the same power spectrum but different phases. The

ambiguity in phase, which in this case is again a sign change, cannot be distinguished by the sensors
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locally. If feedback were provided in the same way as in the previous section, we might be able to

align the sensors to enable coherent communication. In this case, one sensor from each of the two

spectral classes would broadcast the sign of its observation – by comparing signs we can achieve

the same alignment as before.

More generally, consider a arbitrary collection of causal finite impulse response (FIR) filters A

with identical power spectra, and which all have nonzero impulse response at 0. The sensors cannot

distinguish between these filters locally. Suppose the set of indistinguishable filters A depends on

L+ 1 source samples:

A(ejω) =

L
∑

k=0

ake
−jωk . (4.67)

Then the power spectrum of the sensor m’s observed process is

Um(ejω) =

L
∑

k=0

(

L
∑

l=0

akak−l

)

cos kω + σ2
W . (4.68)

However, the only way for two filters A1[n] and A2[n] to induce the same power spectrum U(ejω)

is for the coefficients of cos kω to all be equal. This in turn implies that a1k = −a2k for all k, so

the ambiguity is at most between a filter and its negative.

The results of the previous section show that phase misalignment can be catastrophic for the

uncoded transmission scheme, but a small amount of feedback can recover some of the performance

and outperform the best separation-based approach if the ambiguity takes the form of a sign shift.

For ensembles of real filters, we have shown that indeed this ambiguity is at most a sign shift. To

help align the sensors with a given filter, we use the same beacon strategy described earlier. This

allows a sufficient fraction of the sensors to align themselves with high probability, allowing for

further processing to enable coherent communication.

The second source of ambiguity that can arise with linear filters is in the absolute delay. Suppose

A = {1, z−1}, so that some sensors observe the source with unit delay. Suppose furthermore that

PA(1) = PA(z−1) = 1/2. If the sensors forward their observations uncoded, the received signal

Y [n] is given by:

Y [n] = η

(

B0S[n] +B1S[n− 1] +

M
∑

m=1

Wm[n]

)

+ Z[n] , (4.69)
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where B0 is the number of sensors with zero delay, B1 is the number sensors with unit delay, and

η is

η =

√

P

σ2
S + σ2

W

. (4.70)

The destination can use a smoothing filter to estimate the source sequence. Using a Wiener

filter, the power spectrum of the error is given by

ε(ejω) =
(Mη2σ2

W + σ2
S)σ2

S

(B2
0 +B2

1 + 2B0B1 cosω)η2σ2
S +Mη2σ2

W + σ2
S

. (4.71)

This error function is different from that in the sign-mismatch case, but also suffers from the effects

of phase mismatch from the cosω term. However, a feedback scheme which can bias the sensor’s

estimate of their own delay can shift the scaling rate in denominator of the integral.

Returning to our canonical example, we can note that it is quite similar to the delay example

above. If there are two channel uses per source sample, the sensors can use a feedback scheme to

estimate which source they are observing and slot their transmissions accordingly. Unfortunately, as

long as a fraction of sensors are misaligned, their contributions will result in a coherent interference

that scales as fast as the correctly aligned sensors. To be more precise, we would hope to get a

distortion of the form

D = E





σ2
Sσ

2
W

B2
0

B0+(σ2
S/σ2

W )η−2σ
2
S + σ2

W

+
σ2

Sσ
2
W

B2
1

B1+(σ2
S/σ2

W )η−2 σ
2
S + σ2

W



 (4.72)

= 2
σ2

Sσ
2
W

(M/2)2

(M/2)+(σ2
S/σ2

W )η−2σ
2
S + σ2

W

(4.73)

With the feedback, a portion β of the sensors will remain misaligned (in either direction), so we

would have in expectation:

D = 2
σ2

Sσ
2
W

M(1/2−β)2σ2
W

(M/2)σ2
W +M2β2σ2

S+σ2
Sη−2 σ

2
S + σ2

W

(4.74)

One way around this is to allow the amount of feedback allowed to increase with M . We leave this

for future work.

These examples suggest that phase uncertainty can render uncoded schemes useless, but a little

bit of feedback goes a long way in terms of scaling rate. For complex signals with continuous

68



phase differences, the efficacy of this one-shot feedback scheme may be more limited. However,

modifying the scheme so that the beacon opportunistically waits for a good signal may allow a

tradeoff between the length of the discovery period and the achievable distortion scaling.
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Chapter 5

Coda

The current surge in research attention on sensor networks is fueled by the development of

practical platforms for implementing a wide range of applications. These applications range from

military surveillance, environmental and industrial monitoring, and traffic regulation to “smart

homes,” commercial robotics, and biomedical sensing. In many cases the network is used to gather

data in order to estimate some underlying variable. Because of the inherent unreliability in sensor

placement and physical modeling, robust estimation systems are needed in order to deal with real-

world applications. In this thesis we took a simple sensor network model and introduced structured

uncertainty in the observation model. This structured uncertainty took the form of an unknown

correlation between the observed variables. Our objectives were to examine the performance of

existing estimators and coding schemes and to propose new tradeoffs and protocols to improve the

performance of these schemes in the large-network limit.

The data-gathering sensor networks we study have three main behaviors – an communication,

distributed processing, and estimation. We examined these in the reverse order. From the per-

spective of centralized estimation, we looked at linear observation models with bounds on norms,

structural constraints, and random distributions and used the same asymptotic spectral expansions

to find the performance of estimators for each type. On the distributed coding front, we looked at

universal Slepian-Wolf codes and showed that the order in which the limits are taken in looking
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at large block-length codes is important. Finally, we looked at the effect of introducing a simple

communication channel into our sensor network. Although phase uncertainty rendered the uncoded

transmission protocol useless, we exhibited a simple one-time feedback protocol that can bias the

network to recapture some of the performance loss.

The expectation among engineers is that an optimal algorithm should also be robust to per-

turbations in the modeling assumptions. In sensor networks these perturbations may not be small

deviations but instead larger structural uncertainties. Therefore robust models and protocols for

sensor networks should incorporate some of this uncertainty or provide a mechanism by which it

can be resolved. In this thesis we attempted to provide some steps towards analyzing the effect

of this uncertainty for Gaussian networks. Hopefully some of the problems ideas studied here will

provide some insight into real network designs.
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Akadémi Kiadó, Budapest, 1982.

[9] Dembo, A., and Weissman, T. The minimax distortion redundancy in noisy source coding. IEEE Transactions
on Information Theory 49, 11 (2003), 3020–3030.

[10] Dembo, A., and Zeitouni, O. Large Deviations Techniques and Applications. Springer, New York, 1998.

[11] Dobrushin, R. L., and Tsybakov, B. S. Information transmission with additional noise. IEEE Transactions
on Information Theory 8 (1962), 293–304.

[12] Draper, S. Universal Incremental Slepian-Wolf Coding. In 43rd Annual Allerton Conference on Communica-
tion, Control and Computation (Monticello, IL, September 2004).

[13] Draper, S. C., Chang, C., and Sahai, A. Sequential Random Binning for Streaming Distributed Source
Coding. In IEEE International Symposium on Information Theory Proceedings (ISIT 2005) (2005), pp. 1406–
1410.

[14] Durrett, R. Probability: Theory and Examples, 2nd ed. Duxbury, Belmont, CA, 1995.

[15] Effros, M., Visweswariah, K., Kulkarni, S., and Verdu, S. Universal lossless source coding with the
Burrows-Wheeler transform. IEEE Transactions on Information Theory 48, 5 (2002), 1061–1081.

[16] Foucault, M. Discipline and Punish : The Birth of the Prison. Vintage Books, New York, 1995.

[17] Gastpar, M., and Vetterli, M. Source-channel communication in sensor networks. In Information Processing
in Sensor Networks 2003 (Palo Alto, California, April 2003), F. Zhao and L. Guibas, Eds., Springer, pp. 162–177.

[18] Gastpar, M., and Vetterli, M. Power-bandwidth-distortion scaling laws for sensor networks. In Information
Processing in Sensor Networks 2004 (Berkeley, California, April 2004), ACM.

[19] Gradshteyn, I. S., and Ryzhik, I. M. Table of Integrals, Series, and Products, 6th ed. Academic Press, San
Diego, 2000.

[20] Gray, R. M. Toeplitz and circulant matrices : a review. Originally written 1971, August 2005.
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