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Abstract

The classical synthesis problem for reactive systems asks, given a proponent process A and
an opponent process B, to refine A so that the closed-loop system A||B satisfies a given spec-
ification Φ. The solution of this problem requires the computation of a winning strategy for
proponent A in a game against opponent B.

We define and study the co-synthesis problem, where the proponent A consists itself of two
independent processes, A = A1||A2, with specifications Φ1 and Φ2, and the goal is to refine both
A1 and A2 so that A1||A2||B satisfies Φ1∧Φ2. For example, if the opponent B is a fair scheduler
for the two processes A1 and A2, and Φi specifies the requirements of mutual exclusion for Ai

(such as mutex, bounded overtaking, and starvation freedom), then the co-synthesis problem
asks for the automatic synthesis of a mutual-exclusion protocol.

We show that co-synthesis defined classically, with the processes A1 and A2 either collab-
orating or competing, does not capture desirable solutions. Instead, the proper formulation of
co-synthesis is the one where process A1 competes with A2 but not at the price of violating Φ1,
and vice versa. We call this assume-guarantee synthesis and show that it can be solved by
computing secure-equilibrium strategies. In particular, from mutual-exclusion requirements our
assume-guarantee synthesis algorithm automatically computes Peterson’s protocol.

1 Introduction

The algorithmic synthesis (or control) of reactive systems is based on solving two-player zero-sum
games on graphs [8, 9]. Player 1 (representing the system or controller to be synthesized) attempts
to satisfy a specification Φ; player 2 (representing the environment or plant) tries to violate the
specification. Synthesis is successful if a strategy for player 1 can be found which ensures that
Φ is satisfied no matter what player 2 does. These games are zero-sum, because the objective of
player 2 is ¬Φ, the negation of player 1’s objective. In other words, synthesis assumes the worst-case
scenario that player 2 is as obstructive as possible.

In many game situations in economics, the two players do not have strictly complementary
objectives. Then the appropriate notion of rational behavior is that of a Nash equilibrium. One
also encounters non-zero-sum situations in computer science applications [7]. We demonstrate, for

∗This research was supported in part by the AFOSR MURI grant F49620-00-1-0327, and the NSF ITR grant
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the first time, that non-zero-sum situations arise in the co-synthesis problem. In co-synthesis, we
are not asked to synthesize a single reactive process, but a system composed of several processes Pi,
each with its own specification Φi. For instance, the design of a mutual-exclusion protocol is a co-
synthesis question: each one of two processes P1 and P2 is supposed to satisfy certain requirements,
such as mutex, bounded overtaking, and starvation freedom. In such a situation, the processes are
neither collaborating nor are they strictly competitive: they are not collaborating because process
P1 cannot assume that P2 will help establishing Φ1; they are not strictly competitive because process
P2 will not obstruct Φ1 at all costs, but only if doing so does not endanger Φ2. In other words, the
two processes are conditionally competitive: process P1 can assume that P2 will primarily try to
satisfy Φ2, and only secondarily try to violate Φ1, and vice versa. This situation can be captured by
2-player games with lexicographic objectives, and Nash equilibria for such lexicographic objectives
are called secure equilibria [4]. Formally, a pair of strategies for the two players is winning and
secure if (1) both players satisfy their objectives by playing the strategies, and (2) if one player
deviates from her strategy in order to harm the other player, then that other player can retaliate
by violating the first player’s objective. We refer to such strategies as winning secure equilibrium
strategies.

We formally define the co-synthesis problem, using the automatic synthesis of a mutual-exclusion
protocol as a guiding example. More precisely, we wish to synthesize two processes P1 and P2 so
that the composite system P1||P2||S, where S is a scheduler that arbitrarily but fairly interleaves
the actions of P1 and P2, satisfies the mutual-exclusion requirements of Dijkstra [10]. We show that
traditional zero-sum game-theoretic formulations, where P1 and P2 either collaborate against S,
or unconditionally compete, do not lead to acceptable solutions. We then show that for the non-
zero-sum game-theoretic formulation, where the two processes compete conditionally, the secure-
equilibrium solution is exactly Peterson’s mutual-exclusion protocol. In other words, Peterson’s
protocol can be synthesized automatically as the secure winning strategies of two players whose
objectives are the mutual-exclusion requirements. This is to our knowledge the first application of
non-zero-sum games in the synthesis of reactive processes. This is also, to our knowledge, the first
application of Nash equilibria —in particular, the special kind called “secure”— in system design.

The correct formulation of co-synthesis, with the two processes competing conditionally, is
called assume-guarantee synthesis, because similar to assume-guarantee verification (see e.g. [6]), in
attempting to satisfy her specification, each process makes the assumption that the other process
does not violate her own specification. The solution of the assume-guarantee synthesis problem
requires the computation of secure equilibria in 3-player games, with the three players P1, P2,
and S. Previously, meaningful (i.e., unique maximal) secure equilibria were known to exist only for
certain 2-player games [4], and there it was also shown that in general such meaningful equilibria
need not exist for three players. Here we extend the theoretical results of [4] in two ways, in order to
solve the assume-guarantee synthesis problem. First, we provide unique characterization of winning
secure equilibrium in 3-player games provided the third player can win unconditionally. In assume-
guarantee synthesis this condition is satisfied, because the winning condition of the third player (i.e.,
the scheduler) is fairness. Second, we give an algorithm for answering the existence of a winning
secure equilibrium (Theorem 2) and for computing the corresponding strategies (Theorem 3). These
algorithms extend those of [4] from two to three players.

On large state spaces, assume-guarantee synthesis, like all algorithmic methods, can be imprac-
tical. In Section 4, we provide an abstraction methodology for assume-guarantee synthesis. We
show how a game structure can be abstracted, independently for player 1 and player 2, so that
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from certain winning strategies on the two abstract games, we can infer secure equilibrium strate-
gies on the concrete game. To our knowledge, this is the first abstraction methodology that works
with two independent abstractions of a single game structure. Single-player abstractions suffice
for zero-sum games (the abstraction weakens one player and strengthens the other). However, for
non-zero-sum games, the two-abstractions methodology suggests itself, because each abstraction
focuses on the objective of a different player and may thus omit different details. In this way, both
abstractions may have smaller state spaces than a combined abstraction would. Specifically, we
provide proof rules for inferring secure equilibrium strategies on a concrete 3-player non-zero-sum
game from classical winning strategies on two abstract 2-player zero-sum games, for the cases of
safety and Büchi objectives. In fact, in the safety case, our proof rule corresponds closely to the
assume-guarantee rule of [1]. In the Büchi case, our rule provides a novel assume-guarantee rule
for the verification of specifications under weak fairness.

2 Co-synthesis

2.1 Processes and schedulers

Let X be a finite set of variables such that each variable x ∈ X has a finite domain Dx. We denote
by θ[X] ∈

∏
x∈X Dx a valuation on X that assigns each variable x ∈ X a value θ(x) ∈ Dx. We

denote by Θ[X] the set of all valuations on X. For A ⊆ X and a valuation θ[X] we denote by
θ[X] ↾ A the restriction of the valuation on the set A of variables.

Processes. For i ∈ { 1, 2 }, a process Pi = (Xi, δi) consists of a finite set Xi of variables and a
non-deterministic transition function δi : Θ[Xi] → 2Θ[Xi] \ ∅, i.e., the transition function given a
present valuation specifies the possible updates. We denote by X = X1∪X2 the set of all variables.

Scheduler. A scheduler Sc at each round chooses whether it is process P1’s or process P2’s turn to
update the variables. Formally, the scheduler Sc is a function Sc : Θ[X]∗ → {1, 2}. A fair scheduler
assigns turns to both process P1 and P2 infinitely often, i.e., let τ ∈ (Θ[X])ω be an infinite sequence
of valuations and let τi denote the prefix of length i of τ ; for a fair scheduler Sc for all τ there exists
infinitely many i ≥ 0 and j ≥ 0 such that Sc(τi) = 1 and Sc(τj) = 2.

Refinement of processes. A refinement of a process Pi = (Xi, δi) is a process P ′
i = (X ′

i, δ
′
i) such

that

1. Xi ⊆ X ′
i; and

2. for all θ[X ′
i] ∈ Θ[X ′

i] we have δ′i(θ[X ′
i]) ↾ Xi ⊆ δi(θ[X ′

i] ↾ Xi);

i.e., the process P ′
i has possibly more variables and every possible update of variables of Xi in P ′

i

is a possible update in Pi. We denote by P ′
i � Pi that P ′

i is a refinement of Pi.

Traces. Given a set X of variables, a trace τ(X) = (v0, v1, . . .) ∈ Θ[X]ω is an infinite sequence of
valuations on X. Given a trace τ(X) = (v0, v1, v2, . . .) and A ⊆ X we denote by τ(X) ↾ A = (v0 ↾

A, v1 ↾ A, v2 ↾ A, . . .) the restriction of τ(X) on the set A of variables. The notation for a set of
traces is similar.

Traces of processes and scheduler. Given process P1 = (X1, δ1), P2 = (X2, δ2), a scheduler Sc

and a starting valuation v0 ∈ Θ[X], where X = X1 ∪ X2, the set of all possible traces are

[[(P1 || P2 || Sc)(v0)]] = { (v0, v1 . . .) ∈ Θ[X]ω | ∀i ≥ 0. Sc(v0, v1, . . . , vi) = j;
vi+1 ↾ (X \ Xj) = vi ↾ (X \ Xj); vi+1 ↾ Xj ∈ δj(vi ↾ Xj) }
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Specifications. A specification Φi(X) is a set of traces on X, i.e., Φi(X) ⊆ Θ[X]ω. We consider
only ω-regular specifications in this paper [11].

2.2 Weak co-synthesis

The weak co-synthesis problem is formulated as follows:

1. Input. Processes P1 = (X1, δ1), P2 = (X2, δ2); and specifications Φ1(X) for player 1 and
Φ2(X) for player 2, and a starting valuation v0 ∈ Θ[X], where X = X1 ∪ X2.

2. Solution problem. Does there exist P ′
1 = (X ′

1, δ
′
1) and P ′

2 = (X ′
2, δ

′
2) and a valuation v′0 ∈

Θ[X ′
1∪X ′

2] such that P ′
1 � P1 and P ′

2 � P2; v′0 ↾ X = v0 and for all fair schedulers Sc we have

[[(P ′
1 || P ′

2 || Sc)(v′0)]] ↾ X ⊆ Φ1(X) ∩ Φ2(X).

Example 1 (Mutual exclusion protocol synthesis) We will consider the synthesis of the mu-
tual exclusion (mutex) protocol of two processes as shown in Fig 1. We use the short-hand nota-
tions 2 and 3 to denote always (safety) and eventually (reachability) specifications, respectively.
A process i places a request to enter the critical section by setting flag[i] = 1 and the entering of the
process i in the critical section is denoted by Cri = true. The process can stay in the critical section
for an arbitrary finite amount of time (denoted as fin wait), and then comes out of the critical
section and assigns Cri = false. The choice (C9,C10) expresses that the process can arbitrarily wait
(for possibly infinitely long) without any further request to enter the critical section or proceed with
a request to enter the critical section. The specification for process 1 is consists of two parts:

Φprogress
1 = 2

(
(flag[1] == 1) ⇒ 3(Cr1 == true)

)
; and

Φmutex
1 = 2

(
¬(Cr1 == true ∧ Cr2 == true)

)
.

The specification Φprogress
1 denotes that if process 1 wishes to enter the critical section (denoted by

setting flag[1] = 1), then process 1 eventually enters the critical section; and the specification Φmutex
1

denotes that both the processes are not in the critical section. The specification Φ1 for process 1 is
the conjunction of Φprogress

1 and Φmutex
1 . The specification Φ2 for process 2 is symmetric.

Example 2 (Undesirable behavior synthesis) A solution of the weak co-synthesis formulation
(i.e., P ′

1 and P ′
2) is given in Fig 2. However, the solution is not satisfactory because process 1

depends on the fact that process 2 requests for the critical section infinitely often to make progress.
If process 2 only makes a single request for the critical section and then never makes further request,
then the progress specification of process 1 is easily violated.

2.3 Classical co-synthesis

The classical co-synthesis problem is formulated as follows:

1. Input. Processes P1 = (X1, δ1), P2 = (X2, δ2); and specifications Φ1(X) for player 1 and
Φ2(X) for player 2, and a starting valuation v0 ∈ Θ[X], where X = X1 ∪ X2.
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do

{

flag[1]:=1; turn:=2;

| while (flag[1]) nop;

| while (flag[2]) nop;

| while (turn==1) nop;

| while (turn==2) nop;

| while (flag[1] && turn ==2)

nop;

| while (flag[1] && turn ==1)

nop;

| while (flag[2] && turn ==2)

nop;

| while (flag[2] && turn ==1)

nop;

Cr1:=true; fin_wait;

Cr1:=false;

flag[1]:=false;

X(1):=1;

while(X(1)==1)

| nop;

| X(1):=0;

} while(1)

do

{

flag[2]:=1; turn:=1;

| while (flag[1]) nop; (C1)

| while (flag[2]) nop; (C2)

| while (turn==1) nop; (C3)

| while (turn==2) nop; (C4)

| while (flag[1] && turn ==2) (C5)

nop;

| while (flag[1] && turn ==1) (C6)

nop;

| while (flag[2] && turn ==2) (C7)

nop;

| while (flag[2] && turn ==1) (C8)

nop;

Cr2:=true; fin_wait;

Cr2:=false;

flag[2]:=false;

X(2):=1;

while(X(2)==1)

| nop; (C9)

| X(2):=0; (C10)

} while(1)

Figure 1: A mutual exclusion protocol synthesis

2. Solution problem. Does there exist P ′
1 = (X ′

1, δ
′
1) and P ′

2 = (X ′
2, δ

′
2) and a valuation v′0 ∈

Θ[X ′
1∪X ′

2] such that P ′
1 � P1 and P ′

2 � P2; v′0 ↾ X = v0 and for all fair schedulers Sc we have

[[(P ′
1 || P2 || Sc)(v′0)]] ↾ X ⊆ Φ1(X);

[[(P1 || P ′
2 || Sc)(v′0)]] ↾ X ⊆ Φ2(X).

Example 3 (Mutex protocol synthesis) The answer to the classical synthesis problem for Ex-
ample 1 is “NO”. We will argue later (in Example 5) why the answer to the given problem is
negative.

2.4 Assume-guarantee synthesis

We now present a new formulation of the co-synthesis problem, and the idea of the formulation is
derived from the notion of secure equilibrium [3]. We refer to this new formulation as the assume-
guarantee synthesis problem.
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do

{

flag[1]:=1; turn:=2;

while (turn==2) nop;

Cr1:=true;

fin_wait

Cr1:=false;

flag[1]:=false;

X(1):=1

while(X(1)==1)

X(1):=0;

} while(1)

do

{

flag[2]:=1; turn:=1;

while (turn==1) nop;

Cr2:=true;

fin_wait

Cr2:=false;

flag[2]:=false;

X(2):=1

while(X(2)==1)

X(2):=0;

} while(1)

Figure 2: Weak co-synthesis

1. Input. Processes P1 = (X1, δ1), P2 = (X2, δ2); and specifications Φ1(X) for player 1 and
Φ2(X) for player 2, and a starting valuation v0 ∈ Θ[X], where X = X1 ∪ X2.

2. Solution problem. Does there exist P ′
1 = (X ′

1, δ
′
1) and P ′

2 = (X ′
2, δ

′
2) and a valuation v′0 ∈

Θ[X ′
1∪X ′

2] such that P ′
1 � P1 and P ′

2 � P2; v′0 ↾ X = v0 and for all fair schedulers Sc we have

[[(P ′
1 || P2 || Sc)(v′0)]] ↾ X ⊆ Φ2(X) → Φ1(X);

[[(P1 || P ′
2 || Sc)(v′0)]] ↾ X ⊆ Φ1(X) → Φ2(X);

[[(P ′
1 || P ′

2 || Sc)(v′0)]] ↾ X ⊆ Φ1(X) ∩ Φ2(X).

Example 4 (Assume-guarantee synthesis of mutex protocol) A solution to the assume-guarantee
synthesis problem for Example 1 is shown in Fig 3. We will argue the correctness of the solution
as assume-guarantee synthesis problem later (in Example 6). The synthesis of the processes shown
in Fig 3 is the Peterson mutual exclusion protocol.

The success of the assume-guarantee synthesis problem for the mutex protocol of Example 1
and the failure of the classical co-synthesis problem suggests the classical co-synthesis formulation
is too strong.

3 Game Algorithms for Co-synthesis

3.1 Three player games

We consider games played on game graphs with three players.
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do

{

flag[1]:=1; turn:=2;

while (flag[2] && turn ==1)

nop;

Cr1:=true;

fin_wait;

Cr1:=false;

flag[1]:=false;

X(1):=1;

while(X(1)==1)

| nop;

| X(1):=0;

} while(1)

do

{

flag[2]:=1; turn:=1;

while (flag[1] && turn ==2)

nop;

Cr2:=true;

fin_wait;

Cr2:=false;

flag[2]:=false;

X(2):=1;

while(X(2)==1)

| nop; (C9)

| X(2):=0; (C10)

} while(1)

Figure 3: Peterson mutual exclusion protocol synthesis

Game graphs. A game graph G = ((S,E), (S1, S2, S3)) consists of a directed graph (S,E) with a
finite state space S and a set E of edges, and a partition (S1, S2, S3) of the state space S into three
sets. The states in S1 are player 1 states, the states in S2 are player 2 states, and the states in S3

are player 3 states. For a state s ∈ S, we write E(s) = { t ∈ S | (s, t) ∈ E } for the set of successor
states of s. We assume that every state has at least one out-going edge, i.e., E(s) is non-empty for
all states s ∈ S.

Plays. A game is played by three players: player 1, player 2, and player 3, who form an infinite
path in the game graph by moving a token along edges. They start by placing the token on an
initial state, and then they take moves indefinitely in the following way. If the token is on a state
in S1, then player 1 moves the token along one of the edges going out of the state. If the token is
on a state in S2 (or S3), then player 2 (resp. player 3 ) does likewise. The result is an infinite path
in the game graph; we refer to such infinite paths as plays. Formally, a play is an infinite sequence
〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all k ≥ 0. We write Ω for the set of all plays.

Strategies. A strategy for a player is a recipe that specifies how to extend plays. Formally,
a strategy σi for player i is a function σi: S∗ · Si → S that, given a finite sequence of states
(representing the history of the play so far) which ends in a player i state, chooses the next state.
The strategy must choose only available successors, i.e., for all w ∈ S∗ and s ∈ Si, if σi(w · s) = t,
then t ∈ E(s). We write Σi for the set of all strategies for player i. Strategies in general require
memory to remember the history of plays. An equivalent definition of strategies is as follows. Let
M be a set called memory. A strategy with memory can be described as a pair of functions:
(a) a memory-update function σu: S × M → M that, given the memory and the current state,
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updates the memory; and (b) a next-state function σn: S × M → S that, given the memory and
the current state, specifies the successor state. The strategy is finite-memory if the memory M is
finite. The strategy is memoryless if the memory M is a singleton set. The memoryless strategies
do not depend on the history of a play, but only on the current state. Each memoryless strategy
for player i can be specified as a function σi: Si → S such that σi(s) ∈ E(s) for all s ∈ Si. Given a
starting state s ∈ S, strategies σi ∈ Σi, for player 1, player 2 and player 3, there is a unique play,
denoted ω(s, σ1, σ2, σ3) = 〈s0, s1, s2, . . .〉, which is defined as follows: s0 = s and for all k ≥ 0, if
sk ∈ Si, then σi(s0, s1, . . . , sk) = sk+1.

Notations. Objectives Φ in G are subsets of plays, i.e., Φ ⊆ Ω. We define the notion of winning
for an objective, for a player and a set of players as follows: the notations are derived from ATL [2].
For an objective Φ the set of winning states for player 1 in a game graph G is as follows:

〈〈1〉〉G(Φ) = { s ∈ S | ∃σ1 ∈ Σ1. ∀σ2 ∈ Σ2. ∀σ3 ∈ Σ3. ω(s, σ1, σ2, σ3) ∈ Φ };

and a witness strategy σ1 for player 1 for the existential quantification is referred to as a winning
strategy. The notations for winning states 〈〈2〉〉G(Φ) and 〈〈3〉〉G(Φ) for player 2 and player 3 are
similar. The notion of the set of winning states for objective Φ in a game graph G, for player 1 and
player 2 combined against player 3 is as follows:

〈〈1, 2〉〉G(Φ) = { s ∈ S | ∃σ1 ∈ Σ1. ∃σ2 ∈ Σ2. ∀σ3 ∈ Σ3. ω(s, σ1, σ2, σ3) ∈ Φ };

and the notations for 〈〈1, 3〉〉G(Φ) and 〈〈2, 3〉〉G(Φ) are similar. The following determinacy results
follows from the result of [5].

Theorem 1 (Finite-memory determinacy[5]) For all ω-regular objectives Φ, for all three player
game graphs G, for all I ⊆ { 1, 2, 3 } and J = { 1, 2, 3 } \ I, the following assertions hold:
(a) 〈〈I〉〉G(Φ) = S \ 〈〈J〉〉G(¬Φ); and (b) there exists finite-memory strategies for players in I such
that against all strategies of the players in J , for all states in s ∈ 〈〈I〉〉G(Φ), the play starting at s

given the strategies satisfy Φ.

3.2 Game solution to weak and classical co-synthesis

Game graph. We associate with the processes and scheduler a game graph Gcosynthesis = ((S,E), (S1, S2, S3))
defined as follows:

1. The set of states S is as follows:

S = Θ[X] × { 1, 2, 3 }; and Si = Θ[X] × { i }.

2. The set of edges E is as follows:

E = { ((s, 3), (s, 1)) | s ∈ Θ[X] } ∪ { ((s, 3), (s, 2)) | s ∈ Θ[X] }
∪ { ((s, i), (s′, 3)) | i ∈ { 1, 2 }; s′ ↾ Xi ∈ δi(s ↾ Xi); s′ ↾ (X \ Xi) = s ↾ (X \ Xi) }.

Restriction of plays. We define the restriction of plays to valuations as follows: given a play
ω = 〈(v0, 3), (v0, i0), (v1, 3), (v1, i1), (v2, 3), . . .〉 ∈ Ω, where for all j ≥ 0 we have ij ∈ { 1, 2 }, we
denote by ω ↾ (S1 ∪ S2) the sequence of valuations (v0, v1, v2, . . .) in ω.
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Objectives. Objectives Φ in the game Gcosynthesis are subsets of plays, i.e., Φ ⊆ Sω. We only
consider ω-regular objectives [11]. Given a specification Φ(X) ⊆ Θ[X]ω we denote by [[Φ(X)]] =
{ω ∈ Ω | ω ↾ (S1 ∪S2) ∈ Φ(X) }. For the rest of the section the objective of player 3 is the fairness
objective Φ3 to satisfy that both S1 and S2 are visited infinitely often.

Lemma 1 (Game solution of weak co-synthesis) Given processes P1 = (X1, δ1), P2 = (X2, δ2);
and specifications Φ1(X) for player 1 and Φ2(X) for player 2, and a starting valuation v0 ∈ Θ[X],
where X = X1 ∪ X2, let Φ1 = [[Φ1(X)]] and Φ2 = [[Φ2(X)]]. The answer to the weak co-synthesis
problem is “YES” if and only if (v0, 3) ∈ 〈〈1, 2〉〉Gcosynthesis

(Φ3 → (Φ1 ∧ Φ2)).

Proof.(Sketch). We first note that for games with ω-regular objectives, finite-memory winning
strategies suffices (Theorem 1). The proof follows by the following case analysis.

1. Given a finite-memory strategy σ1, a witness P ′
1 = (X ′

1, δ
′
1) for the weak co-synthesis problem

can be obtained as follows: the variables X ′
i \ Xi encodes the finite-memory information of

the strategy σ1 and the next-state function of the strategy is then captured by a deterministic
update function δ′1. A similar construction holds for player 2.

2. Given a witness P ′
1 = (X ′

1, δ
′
1) as a witness for the weak co-synthesis problem, we first observe

that any deterministic restriction of P ′
1 (i.e., the transition function δ′1 is made deterministic)

is also a witness to the weak co-synthesis problem. A witness strategy σ1 in Gcosynthesis is
obtained as follows: the variables in X ′

1 \ X1 is encoded as the finite-memory information of
σ1 and the deterministic update is captured by the next-state function. The construction of
witness strategies for player 2 is similar.

Lemma 2 (Game solution of classical co-synthesis) Given processes P1 = (X1, δ1), P2 =
(X2, δ2); and specifications Φ1(X) for player 1 and Φ2(X) for player 2, and a starting valua-
tion v0 ∈ Θ[X], where X = X1 ∪ X2, let Φ1 = [[Φ1(X)]] and Φ2 = [[Φ2(X)]]. The answer to
the classical co-synthesis problem is “YES” if and only if (v0, 3) ∈ 〈〈1〉〉Gcosynthesis

(Φ3 → Φ1) and
(v0, 3) ∈ 〈〈2〉〉Gcosynthesis

(Φ3 → Φ2).

The proof for Lemma 2 is similar to Lemma 1.

Example 5 (Failure of classical co-synthesis) We now argue the failure of the classical co-
synthesis for Example 1. We show that for every strategy for process 1, there exists spoiling strategy
for process 2 and scheduler such that specification of process 1 is violated. We first consider the
choices of process 1 (C1 — C8) and produce spoiling strategies for process 2 and the scheduler.

1. Choice C1. Given choice C1 for process 1, we construct spoiling strategy for process 2 and the
scheduler that satisfies process 2’s specification and not process 1’s. The sequence of valuations
is as follows:

Process 2: flag[2]:=1; turn:=1;

Process 1: flag[1]:=1; turn:=2;

Process 2: Enters critical section by condition while(flag[2] && turn==1) nop; and
then it always does nop (C9); so process 1 does not enter the critical section.
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2. Choice C2. Process 2 and the scheduler follow the same spoiling strategy till entering the
critical section as for the case of choice C1. Then instead of choice (C9), process 2 comes
out of the loop, sets flag[2]:=1; turn:=1, and then the scheduler assigns turn to process 1.

3. Choice C3. Same spoiling strategy as for choice C2.

4. Choice C4. A spoiling strategy of process 2 and the scheduler that satisfies process 2’s speci-
fication and not process 1’s is as follows:

Process 1: flag[1]:=1; turn:=2;

Process 2: flag[2]:=1; turn:=1;

Process 2: Enters critical section by condition while(flag[2] && turn==2) nop; and
then it always does nop; so process 1 does not enter the critical section.

5. Choice C5 and C6. Reduces to C3 and C4, respectively.

6. Choice C7. The spoiling strategy is as follows:

Process 1: flag[1]:=1; turn:=2;

Process 2: flag[2]:=1; turn:=1;

Process 2: Enters critical section by condition while(flag[2] && turn==2) nop; and
then process 2 follows choice (C10), enters the loop, sets flag[2]:=1; turn:=1;
and then the scheduler assigns turn to process 1; and so process 1 does not enter
the critical section.

7. Choice C8. The spoiling strategies are as follows:

Process 2: flag[2]=1; turn=1;

Process 1: flag[1]=1; turn=2;

Process 2: while(flag[2]) nop; hence process 2 does not enter the critical section and
neither does process 1.

Observe that in this case process 2 cannot falsify process 1’s specification satisfying her own
specification.

It is easy to argue from the above construction, that for every strategy for process 1, there exists
strategy for process 2 and the scheduler that falsify process 1’s specification. Hence the answer to
the classical co-synthesis problem is negative.

3.3 Secure equilibrium and game solution to assume-guarantee synthesis

In this subsection we consider three player games with lexicographic ordering of objectives and the
notion of equilibrium is formalized as the notion of secure equilibrium [4]. We consider the special
class of games where player 3 can win unconditionally, i.e., given the objective Φ3 for player 3
we have 〈〈3〉〉G(Φ3) = S. In the setting of processes and scheduler (as player 3) with the fairness
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objective Φ3 for the scheduler, the restriction that 〈〈3〉〉G(Φ3) = S means the scheduler has a fair
scheduling strategy from all states. In the special case when the scheduler is not restricted to be
fair, the objective Φ3 of the scheduler is the set of all paths and the restriction is satisfied trivially.
We first present the notion of secure equilibrium and then provide unique characterization of the
winning secure equilibrium states (Theorem 2). We also establish the existence of finite-memory
winning secure equilibrium strategies (Theorem 3) and relate the assume-guarantee synthesis prob-
lem to solving three player games with winning secure equilibrium (Theorem 4).

Values and payoff-profiles. Given objectives Φi for player i, strategies σi for player i, for
i ∈ { 1, 2, 3 } and a state s, we denote by val i the value for player i and is defined as follows:

val i(s, σ1, σ2, σ3) =

{
1 if ω(s, σ1, σ2, σ3) ∈ Φi;

0 otherwise;

and the payoff-profile (val1(s, σ1, σ2, σ3), val 2(s, σ1, σ2, σ3), val 3(s, σ1, σ2, σ3)) consists of the value
for each player, and i-th component represents the value for player i. We now present the notion
of secure equilibrium [3]. Since 〈〈3〉〉G(Φ3) = S, any equilibrium payoff-profile will assign value 1 to
player 3. Hence we will focus on payoff-profiles with value 1 for player 3.

Payoff-profile ordering. The preference order �i for player i is defined as follows:

(val1, val2, val 3) ≺i (val ′1, val
′
2, val

′
3)

iff (val i < val ′i) ∨ (val i = val ′i ∧ val j + valk > val ′j + val ′k);

for j 6= k, j, k ∈ { 1, 2, 3 } \ { i }.

In the special case where the value for player 3 is 1, the player 1 preference order �1 and the
player 2 preference order �2 on payoff profiles are obtained lexicographically:

(val 1, val2, 1) ≺1 (val ′1, val
′
2, 1) iff (val1 < val ′1) ∨ (val1 = val ′1 ∧ val2 > val ′2),

that is, player 1 prefers a payoff profile which gives her greater payoff, and if two payoff profiles
match in the first component, then she prefers the payoff profile in which the player 2’s payoff is
minimized; symmetrically,

(val 1, val2, 1) ≺2 (val ′1, val
′
2, 1) iff (val2 < val ′2) ∨ (val2 = val ′2 ∧ val1 > val ′1).

The preference order for player 3 is as follows:

(val1, val 2, 1) ≺3 (val ′1, val
′
2, 1) iff val1 + val2 > val ′1 + val ′2.

The preference ordering for each player is shown in Fig 4. Given two payoff profiles (val 1, val2, val3)
and (val ′1, val

′
2, val

′
3), we write (val1, val 2, val3) = (val ′1, val

′
2, val

′
3) iff val i = val ′i for i ∈ {1, 2, 3} and

(val1, val2, val 3) �i (val1, val
′
2, val

′
3) iff either (val1, val2, val 3) ≺i (val ′1, val

′
2, val

′
3) or (val1, val2, val 3) =

(val ′1, val
′
2, val

′
3).

Secure equilibrium and maximal secure equilibrium. A strategy profile (σ1, σ2, σ3) is a
secure equilibrium at a state s iff the following conditions hold:

∀σ′
1 ∈ Σ1. val1(s, σ

′
1, σ2, σ3) �1 val1(s, σ1, σ2, σ3);
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≺3

(0, 0, 1)

(1, 0, 1)

(1, 0, 1)

(1, 1, 1) Player 3 preference order.

(0, 1, 1) ≺1 (0, 0, 1) ≺1 (1, 1, 1) ≺1 (1, 0, 1) Player 1 preference order.

(1, 0, 1) ≺2 (0, 0, 1) ≺2 (1, 1, 1) ≺2 (0, 1, 1) Player 2 preference order.

≺3

≺3
≺3

Figure 4: Payoff-profile preference ordering.

∀σ′
2 ∈ Σ2. val2(s, σ1, σ

′
2, σ3) �2 val2(s, σ1, σ2, σ3);

∀σ′
3 ∈ Σ3. val3(s, σ1, σ2, σ

′
3) �3 val3(s, σ1, σ2, σ3),

i.e., (σ1, σ2, σ3) is a Nash equilibrium with respect to the payoff-profile orderings �i for player i,
where i ∈ { 1, 2, 3 }. For v,w ∈ {0, 1}, we write Svw1 ⊆ S to denote the set of states s such
that a secure equilibrium with the payoff profile (v,w, 1) exists in the game G at s with objec-
tives Φi for player i, that is, s ∈ Svw1 iff there is a secure equilibrium (σ1, σ2, σ3) at s such that
(val1(s, σ1, σ2, σ3), val 2(s, σ1, σ2, σ3), val 3(s, σ1, σ2, σ3)) = (v,w, 1). Similarly, MSvw1 ⊆ Svw1 de-
notes the set of states s such that the payoff profile (v,w, 1) is a maximal secure equilibrium payoff
profile at s, that is, s ∈ MSvw1 iff (1) s ∈ Svw1 and (2) for all v′, w′ ∈ {0, 1}, if s ∈ Sv′w′1,
then (v′, w′, 1) �1 (v,w, 1) and (v′, w′, 1) �2 (v,w, 1). The set of states MS111 is referred to as
the winning secure equilibrium states and witness secure equilibrium strategies as winning secure
equilibrium strategies.

Characterization of MS111. Let

U1 = 〈〈1〉〉(Φ3 → Φ1); U2 = 〈〈2〉〉(Φ3 → Φ2).

Z1 = 〈〈1, 3〉〉(G↾U1)(Φ1 ∧ Φ3 ∧ ¬Φ2); Z2 = 〈〈2, 3〉〉(G↾U2)(Φ2 ∧ Φ3 ∧ ¬Φ1).

Lemma 3 In Z1 the unique secure equilibrium is (1, 0, 1).

Proof. Since Z1 = 〈〈1, 3〉〉(G↾U1)(Φ1∧Φ3∧¬Φ2), consider the strategy pair (σ1, σ3) such that against
all player 2 strategies σ2 and for all states s ∈ Z1 we have ω(s, σ1, σ2, σ3) ∈ Φ1 ∧ Φ3 ∧ ¬Φ2. The
secure equilibrium strategy pair (σ∗

1 , σ
∗
3) for player 1 and player 3 (along with any strategy σ2 for

player 2) is constructed as follows.

1. The strategy σ∗
1 is as follows: player 1 plays σ1 and if player 3 deviates from σ3, then player 1

switches to a winning strategy for Φ3 → Φ1. Such a strategy exists since Z1 ⊆ U1 =
〈〈1〉〉G(Φ3 → Φ1).

2. The strategy σ∗
3 is as follows: player 3 plays σ3 and if player 1 deviates from σ1, then player 3

switches to a winning strategy for Φ3. Such a strategy exists since 〈〈3〉〉G(Φ3) = S.

Hence objective of player 1 is always satisfied, given objective of player 3 is satisfied. Thus
player 3 has no incentive to deviate. Similarly, player 1 also has no incentive to deviate. The result
follows.
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Lemma 4 In Z2 the unique secure equilibrium is (0, 1, 1).

Theorem 2 (Characterization of MS111) Let Z = Z1∪Z2, and W = 〈〈1, 2〉〉G↾(S\Z)(Φ3 → (Φ1∧
Φ2)). Then W = MS111.

Proof. By Theorem 1 we have S \W = 〈〈3〉〉G(Φ3∧(¬Φ1∨¬Φ2)) and there is a player 3 strategy σ3

that satisfies Φ3∧(¬Φ1∨¬Φ2) against all strategies of player 1 and player 2. Hence the equilibrium
(1, 1, 1) cannot exist in the complement set of W , i.e., MS111 ⊆ W . We now show that in W there
is a secure equilibrium with payoff-profile (1, 1, 1). The following construction ensures.

1. In W ∩ U1, player 1 plays a winning strategy for objective Φ3 → Φ1, and player 2 plays a
winning strategy for objective (Φ3∧Φ1) → Φ2. Observe that S \Z1 = 〈〈2〉〉G(¬Φ1∨¬Φ3∨Φ2),
and hence such a winning strategy exists for player 2.

2. In W ∩(U2\U1), player 2 plays a winning strategy for objective Φ3 → Φ2, and player 1 plays a
winning strategy for objective (Φ2∧Φ3) → Φ1. Observe that S \Z2 = 〈〈1〉〉G(¬Φ2∨¬Φ3∨Φ1),
and hence such a winning strategy exists for player 1.

3. By Theorem 1 we have W \ U1 = 〈〈2, 3〉〉G(¬Φ1 ∧ Φ3) and W \ U2 = 〈〈1, 3〉〉G(¬Φ2 ∧ Φ3). The
strategy construction in W\(U1∪U2) is as follows: player 1 and player 2 play a strategy (σ1, σ2)
to satisfy Φ1 ∧Φ2 against all strategies of player 3, and player 3 plays a winning strategy for
Φ3; if player 1 deviates, then player 2 and player 3 switches to a strategy (σ2, σ3) such that
against all strategies for player 1 the objective Φ3 ∧ ¬Φ1 is satisfied; and if player 2 deviates,
then player 1 and player 3 switches to a strategy (σ1, σ3) such that against all strategies for
player 2 the objective Φ3 ∧ ¬Φ2 is satisfied. Hence neither player 1 and nor player 2 has any
incentive to deviate according to the preference order �1 and �2, respectively.

The result follows.

Strategic characterization of MS111. To obtain a characterization of MS111 in terms of winning
strategies we define the notion of retaliating strategies. The set of retaliation strategies for player 1
and player 2 as follows:

Re1(s) = { σ1 ∈ Σ1 | ∀σ2 ∈ Σ2. ∀σ3 ∈ Σ3. ω(s, σ1, σ2, σ3) ∈ ((Φ3 ∧ Φ2) → Φ1) };

Re2(s) = { σ2 ∈ Σ2 | ∀σ1 ∈ Σ1. ∀σ3 ∈ Σ3. ω(s, σ1, σ2, σ3) ∈ ((Φ3 ∧ Φ1) → Φ2) }.

Theorem 3 Let

U = { s ∈ S | ∃σ1 ∈ Re1(s). ∃σ2 ∈ Re2(s). ∀σ3 ∈ Σ3. ω(s, σ1, σ2, σ3) ∈ Φ3 → (Φ1 ∧ Φ2) }.

Then U = MS111.

Proof. We first show that U ⊆ MS111. For a state s ∈ U , pick σ1 ∈ Re1(s) and σ2 ∈ Re2(s)
such that for all σ3 ∈ Σ3 we have ω(s, σ1, σ2, σ3) ∈ Φ3 → (Φ1∧Φ2). Then fixing (σ1, σ2) for player 1
and player 2, and a winning strategy for player 3 we obtain a secure equilibrium of (1, 1, 1).

We now show that MS111 ⊆ U . The result follows from the proof of Theorem 2. We proved that
for s ∈ G \ (Z1 ∪ Z2) we have Re1(s) 6= ∅ and Re2(s) 6= ∅. The strategy construction in Theorem 2
in W is a witness that for all s ∈ MS111 we have s ∈ U .

Observe that the construction of secure equilibrium strategies in Theorem 2 are finite-memory
strategies for ω-regular objectives. The existence of finite-memory secure equilibrium strategies
and argument similar to Lemma 1 establishes the following theorem.
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Theorem 4 (Game solution of assume-guarantee synthesis) Given processes P1 = (X1, δ1),
P2 = (X2, δ2); and specifications Φ1(X) for player 1 and Φ2(X) for player 2, and a starting valu-
ation v0 ∈ Θ[X], where X = X1 ∪ X2, let Φ1 = [[Φ1(X)]] and Φ2 = [[Φ2(X)]]. The answer to the
assume-guarantee synthesis problem is “YES” if and only if (v0, 3) ∈ MS111 in Gcosynthesis.

Example 6 (Assume-guarantee synthesis of mutex protocol) It follows from the analysis
in Example 5 that all choices other than the choice C8 for process 1 cannot be witness for the
assume-guarantee synthesis problem. The choice C8 for process 1 and the symmetric choice C5 for
process 2 yield a witness for the assume-guarantee synthesis problem.

4 Abstraction-based Co-synthesis

The results of Section 3 provide game algorithms for the co-synthesis problems. However the state
space of the original game structure can be large and algorithmic analysis on the original game
structure can be impractical. In this section we present sound proof rules for game solutions for
the co-synthesis problems from simpler game structures (abstractions). In Section 3 we established
correspondence of the weak, classical and assume-guarantee synthesis problem with game solutions
for the respective co-synthesis problem. In this section we focus on sound proof rules for the game
solutions. We first present the notion of abstractions and review the sound proof rules for the weak
and classical co-synthesis problem. We then present sound proof rules for the assume-guarantee
synthesis problem for safety and Büchi (liveness) objectives. In particular we show how to solve
zero-sum simpler game structures (abstractions) and obtain witness of winning secure equilibrium
strategies in the original game structure from the winning strategies of the simpler games.

4.1 Abstractions

Abstractions. An abstraction GA
Ξ (I), for I ⊆ {1, 2, 3}, for a game structure G = ((S,E), (S1, S2, S3))

is a game structure GA
Ξ (I) = ((SA, EA)(SA

1 , SA
2 , SA

3 )) with a concretization function Ξ : SA → 2S \∅
such that the following conditions hold.

• The abstraction preserves the player structures: for all i ∈ { 1, 2, 3 }, for all sA ∈ SA
i we have

Ξ(sA) ⊆ Si.

• The abstraction partitions the concrete state space:
⋃

sA∈SA Ξ(sA) = S and for every s ∈ S

there is an unique sA ∈ SA such that s ∈ Ξ(sA).

• Universal abstraction of edges for players in I and existential abstraction of edges for players
in J = { 1, 2, 3 } \ I:

EA = { (sA, tA) | ∃i ∈ I. sA ∈ SA
i . ∀s ∈ Ξ(sA). ∃t ∈ Ξ(tA). (s, t) ∈ E }

∪ { (sA, tA) | ∃i ∈ J. sA ∈ SA
i . ∃s ∈ Ξ(sA). ∃t ∈ Ξ(tA). (s, t) ∈ E }

Mapping of plays and strategies. Given a play ω = 〈s0, s1, s2, . . .〉 ∈ Ω in G we obtain the play
Ξ(ω) = 〈sA

0 , sA
1 , sA

2 , . . .〉 in GA
Ξ such that for all i ≥ 0 we have si ∈ Ξ(sA

i ). The notation for prefix of
plays (i.e., history of a play) is similar. For i ∈ I, and a strategy σA

i we denote by σi = Ξ(σA
i ) the

strategy defined as follows: for a history w ∈ S∗ and s ∈ Si, the strategy σi chooses a successor t in
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Ξ(σA
i (Ξ(w ·s))); observe that since the abstraction of edges for player i is universal, the construction

of the strategy is sound.

Abstraction of objectives. Given an objective Φ in G we use the following notations for objec-
tives in GA

Ξ(I)

Existential projection: Ξ(Φ)∃ = { ωA | ∃ω ∈ Φ. ωA = Ξ(ω) };
Universal projection: Ξ(Φ)∀ = { ωA | ∀ω. if ωA = Ξ(ω) then ω ∈ Φ }.

For abstraction GA
Ξ(I) the objectives of players in I are obtained by universal projection and

objectives of players in {1, 2, 3}\I are obtained by existential projection. For singleton i, in sequel
we write GA

Ξ (i) to denote GA
Ξ ({ i }).

4.2 Proof rules

The following theorem is the basic principle of obtaining sound proof rules for weak and classical
co-synthesis problem.

Theorem 5 Given a game structure G, an objective Φ, and an abstraction GA
Ξ(1) if sA ∈ 〈〈1〉〉GA

Ξ
(1)(Ξ(Φ)∀),

then for all s ∈ Ξ(sA) we have s ∈ 〈〈1〉〉G(Φ). Similar result hold for player 2 abstractions.

We now present sound proof rules for secure equilibrium for safety and Büchi objectives (as a
special case the result can be also obtained for reachability objectives).

Safety objectives. For a set F ⊆ S, the safety objective requires the set F is never left. Formally,
the safety objective 2(F ) defines the set of plays { 〈s0, s1, s2, . . .〉 | ∀i ≥ 0. si ∈ F }. Given safety
objectives for both players, whether the scheduler is a fair scheduler or not is immaterial, since if
a safety objective can be violated, then it can also be violated by a fair scheduler. Hence in proof
rules for safety objectives for simplicity the objective of player 3 is assumed to be the set of all
plays. A sound proof rule for secure equilibrium with safety objectives is presented in the following
theorem. The classical assume-guarantee rule can be obtained as a special case of the following
result by restricting the strategies of player 1 and player 2 to singletons and interpreting player 3
as the universal player that resolves all non-determinism (observe that player 3 is not restricted to
be fair in the following theorem).

Theorem 6 Let G be a game structure with safety objectives Φ1 and Φ2 for player 1 and player 2,
respectively. Let GA

Ξ(1) and GA
Ξ (2) be player 1 and player 2 abstractions, respectively. Let the

objectives for the players in GA
Ξ(1) be Φ1

1 = Ξ(Φ1)∀, Φ1
2 = Ξ(Φ2)∃, respectively; and in GA

Ξ(2) be
Φ2

1 = Ξ(Φ1)∃, Φ2
2 = Ξ(Φ2)∀, respectively. Then if sA ∈ MS111 in GA

Ξ (1) and sA ∈ MS111 in GA
Ξ (2),

then for all s ∈ Ξ(sA) we have s ∈ MS111 in G.

Proof. (Sketch). Let (σ1, σ2) be retaliation strategies in GA
Ξ (1) such that for all strategies σ3 we

have ωA(sA, σ1, σ2, σ3) ∈ (Φ1
1 ∧Φ1

2). Let (σ1, σ2) be retaliation strategies in GA
Ξ (2) such that for all

strategies σ3 we have ωA(s, σ1, σ2, σ3) ∈ (Φ2
1 ∧ Φ2

2). The strategies σ∗
1 = Ξ(σ1) and σ∗

2 = Ξ(σ2) are
retaliation strategies in G, and for all σ3 we have ω(s, σ∗

1 , σ
∗
2 , σ3) ∈ Φ1 ∧ Φ2.

Liberal retaliation strategies. Given safety objectives 2(F1) and 2(F2) for player 1 and player 2,
respectively, a strategy σ1 for player 1 is a liberal retaliation strategy if (a) σ1 is a retaliation strategy;
and (b) for all histories 〈s0, s1, s2, . . . , sk〉 such that for all i ≤ k, si ∈ F1, such that the history can
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arise by playing σ1 and some strategies σ2, σ3, there is a strategy σ2, such that for all σ3 we have
ω(s, σ1, σ2, σ3) ∈ 2(F2). It means that any threat strategy is not invoked as long as the player is
safe. We denote by LRe1 the set of liberal retaliation strategies for player 1, and the definition for
LRe2 is similar. The next lemma follows since if both plays play any liberal retaliation strategies,
then for all strategies σ3 the play never leaves F1 ∩ F2.

Lemma 5 Given a game structure G with safety objectives Φ1 and Φ2 for player 1 and player 2,
respectively, if s ∈ MS111, then ∀σ1 ∈ LRe1. ∀σ2 ∈ LRe2. ∀σ3 ∈ Σ3. ω(s, σ1, σ2, σ3) ∈ (Φ1 ∧ Φ2).

Büchi objectives. For a set B ⊆ S, the Büchi objective requires the set B is visited infinitely
often. Formally, the Büchi objective 23(B) defines the set of plays { 〈s0, s1, s2, . . .〉 | ∀i ≥ 0. ∃j ≥
i. si ∈ B }. A sound proof rule for secure equilibrium with Büchi objectives is presented in the
following theorem.

Theorem 7 Let G be a game structure with Büchi objectives Φ1 = 23(B1) and Φ2 = 23(B2) for
player 1 and player 2, respectively, and the fairness objective Φ3 for player 3. Let GA

Ξ (1) and GA
Ξ (2)

be player 1 and player 2 abstractions, respectively, and GA
Ξ ({ 1, 2 }) be player 1 and 2 abstraction.

Let the objectives for the players be

Φ1
1 = Ξ(Φ1)∀, Φ1

2 = Ξ(Φ2)∃, Φ1
3 = Ξ(Φ3)∃, in GA

Ξ (1);

Φ2
1 = Ξ(Φ1)∃, Φ2

2 = Ξ(Φ2)∀, Φ2
3 = Φ1

3 = Ξ(Φ3)∃, in GA
Ξ (2).

Let
CA

1 = 〈〈1〉〉GA

Ξ
(1)((Φ

1
3 ∧ Φ1

2) → Φ1
1); CA

2 = 〈〈2〉〉GA

Ξ
(2)((Φ

2
3 ∧ Φ2

1) → Φ2
2).

Let C1 = { s ∈ S | s ∈ Ξ(sA), sA ∈ CA
1 } and C2 = { s ∈ S | s ∈ Ξ(sA), sA ∈ CA

2 }; and consider the
objectives Φ3

1 = Ξ(Φ1 ∩ 2(C1))∀ and Φ3
2 = Ξ(Φ2 ∩ 2(C2))∀. Let

CA
3 = 〈〈1, 2〉〉GA

Ξ
({ 1,2 })(Φ

1
3 → (Φ3

1 ∧ Φ3
2)).

For all sA ∈ CA
3 and for all s ∈ Ξ(sA) we have s ∈ MS111 in G.

Proof. (Sketch). There exist strategies (σA
1 , σA

2 ) for player 1 and player 2 in GA
Ξ({ 1, 2 }) such

that for all sA ∈ CA
3 and for all strategies σA

3 we have ωA(sA, σA
1 , σA

2 , σA
3 ) ∈ Φ1

3 → (Φ3
1 ∧ Φ3

2),
and the strategies also ensure that once B1 is reached a state in B2 is reached within at most
|S|-visits to B1 and that once B2 is reached a state in B1 is reached within at most |S|-visits to
B2. Let σ̂A

1 be a strategy in GA
Ξ(1) such that for all sA ∈ CA

1 and for all strategies σA
2 , σA

3 we
have ωA(sA, σ̂A

1 , σA
2 , σA

3 ) ∈ (Φ1
3 ∧ Φ1

2) → Φ1
1; and let σ̂A

2 be a strategy in GA
Ξ(2) such that for all

sA ∈ CA
2 and for all strategies σA

1 , σA
3 we have ωA(sA, σA

1 , σ̂A
2 , σA

3 ) ∈ (Φ1
3 ∧ Φ2

1) → Φ2
2. The witness

for retaliation strategies for the conclusion is as follows.

• Strategy σ∗
1 : player 1 starts playing the co-operating strategy Ξ(σA

1 ) obtained from GA
Ξ ({1, 2})

to satisfy Φ3 → (Φ1 ∧ Φ2) and also ensures C1 is not left; whenever a state in B2 is reached
after a visit to B1, then player 1 continues to play Ξ(σA

1 ) for at most |S|-visits to B2 and if B1

is not reached within |S| visit to B2, then player 1 switches to the strategy Ξ(σ̂A
1 ) obtained

from GA
Ξ(1) to satisfy (Φ3 ∧ Φ2) → Φ1, and if B1 is reached continue with the co-operating

strategy Ξ(σA
1 ) obtained from GA

Ξ({ 1, 2 }).
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Process 1.

do

{

| z1:= 0;

| z1:= 1;

y1:=1;

while(y1==1) {

| y1:=1;

| y1:=0;

}

if(y2==1)

x1:=1;

x1:=0;

} while(1)

Process 2.

do

{

| z2:= 0;

| z2:= 1;

y2:=1;

while(y2==1) {

| y2:=1;

| y2:=0;

}

if(y1==1)

x2:=1;

x2:=0;

} while(1)

Figure 5: Processes

• Strategy σ∗
2 : player 2 starts playing the co-operating strategy Ξ(σA

2 ) obtained from GA
Ξ ({1, 2})

to satisfy Φ3 → (Φ1 ∧ Φ2) and also ensures C2 is not left; whenever a state in B1 is reached
after a visit to B2, then player 2 continues to play Ξ(σA

2 ) for at most |S|-visits to B1 and if B2

is not reached within |S| visit to B1, then player 2 switches to the strategy Ξ(σ̂A
2 ) obtained

from GA
Ξ(2) to satisfy (Φ3 ∧ Φ1) → Φ2, and if B2 is reached continue with the co-operating

strategy Ξ(σA
2 ) obtained from GA

Ξ({ 1, 2 }).

The strategies (σ∗
1 , σ

∗
2) are witness retaliation strategies to prove the result.

Example 7 (Process abstractions) Consider the processes P1 and P2 shown in Fig 5 and the
corresponding abstractions A1 and A2 shown in Fig 6 obtained by ignoring variables z1 and z2,
respectively. The objective for process i is 23(xi == 1), i.e., to set xi := 1 infinitely often. The
strategy for process 1 for assume-guarantee synthesis as obtained from the abstraction is as follows:
process 1 sets y1 to 1 unless x2 is set to 1 and when x2 is set to 1, then process 1 sets y1 to 0. The
strategy for process 2 is obtained symmetrically. The above strategies obtained from the abstractions
are witness to the assume-guarantee synthesis problem.
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Abstraction 1.

do

{

y1:=1;

while(y1==1) {

| y1:=1;

| y1:=0;

}

if(y2==1)

x1:=1;

x1:=0;

} while(1)

Abstraction 2.

do

{

y2:=1;

while(y2==1) {

| y2:=1;

| y2:=0;

}

if(y1==1)

x2:=1;

x2:=0;

} while(1)

Figure 6: Process abstractions
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