
Prerendered User Interfaces for Higher-Assurance
Electronic Voting

Ka-Ping Yee
David Wagner
Marti Hearst
Steven Bellovin

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-35

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-35.html

April 5, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Prerendered User Interfaces for Higher-Assurance Electronic Voting

Ka-Ping Yee∗

ping@zesty.ca

David Wagner∗

daw@cs.berkeley.edu

Marti Hearst∗

hearst@sims.berkeley.edu

Steven M. Bellovin†

smb@cs.columbia.edu

Abstract

We propose an election system architecture in
which the voting user interface is prerendered and
published before election day. The prerendered
user interface is a verifiable artifact — anelectronic
sample ballot— enabling public participation in
the review, verification, usability testing, and
accessibility testing of the ballot. Preparing the user
interface outside of the voting machine dramatically
reduces the amount and difficulty of software
verification required to assure the correctness of
the election result. We present a design for a
high-assurance touchscreen voting machine that
can support a wide range of user interface styles
and demonstrate its feasibility by implementing it
in less than 300 lines of Python.

1 Introduction

Democratic elections are coming to depend more
and more on electronic voting systems. In 2002, the
United States passed the Help America Vote Act [1],
which includes a requirement for “at least one direct
recording electronic voting system or other voting
system equipped for individuals with disabilities at
each polling place.” Over $300 million in federal
funds has been disbursed specifically to pay for
new voting machines [6]. Many other governments
around the world are planning ahead for large-scale
deployment of electronic voting.

Electronic voting machines have the potential
to provide significant improvements in usability

∗University of California, Berkeley, CA, 94720
†Columbia University, New York, NY 10027

and accessibility over paper ballots. For example,
they can be designed to help voters detect and
correct mistakes; they can provide alternate user
interfaces for individuals with disabilities; and they
can be programmed with support for more alternate
languages than a typical paper ballot. However, the
electronic voting process lacks the transparency of
paper voting. The correct functioning of a computer
program is vastly more difficult to assure than the
correct functioning of a piece of paper and a writing
instrument. Computer failures are an everyday
part of modern life. Moreover, elections are an
especially high-profile and potentially rewarding
target for attack, and a broad range of parties stand
to benefit from influencing their outcome.

The typical challenge in software security is to
design software to defend against various threats.
However, since the stakes are so high in this case,
we cannot assume that the implementation will
match our design. The threat model must in-
clude the possibility of malicious code in the voting
system — and even in the absence of deliberate
insider fraud, well-intentioned programmers can
make mistakes. Thus, our challenge is not only to
design a secure voting machine program, but also
to design an overall architecture for the election
system that lets us confirm that it really is secure.

Though software is involved at many stages of the
election process, this work focuses on the software
in the voting machine itself. We will explain in
Section 3.2 why we believe this to be the most
critical software component of the system. Unfor-
tunately, the software in today’s voting machines
is far too large to allow automated verification or
thorough independent review, given the time and

1

cost constraints of the election equipment certi-
fication process. In 2004, Kohno, Stubblefield,
Rubin, and Wallach [2] examined the source code
for the Diebold AccuVote TS machine and found
it to contain many serious design and engineer-
ing errors, declaring it “far below even the most
minimal security standards applicable in other con-
texts.” The main voting machine program consists
of over 31,000 lines of C++ code and resource
scripts, ignoring comments and blank lines. Ver-
ifying the correctness of a program this size is
overwhelmingly difficult.

We observe that the user interface (UI) is a
major contributor to software complexity. By our
estimate, the voting UI constitutes about 14,000
lines of the aforementioned source code. The
key idea we propose is to construct and verify a
prerendered description of the UI before the elec-
tion. Prerendering the UI yields several significant
advantages:

• It simplifies the software running in the voting
machine, facilitating its verification.

• It mitigates the conflict between accessibility
and security concerns by enabling the UI de-
sign to be highly flexible without endangering
the security properties of the machine.

• It mitigates the conflict between the propri-
etary interests of voting machine vendors and
the public benefits of transparency by reducing
the portion of code that has to be disclosed to
evaluate the security of the machine.

• It enables the UI to be updated and verified
independently of, and more easily than, the
voting machine software.

• It allows the UI to be separately published and
to be run on commodity hardware, thereby
enabling it to be tested by anyone — not just
those with access to the equipment that will
actually be used on election day.

In this paper, we propose an election system ar-
chitecture based on the concept of a prerendered
user interface. We present a specific software
design for a touchscreen voting machine in this
architecture, describe our prototype implementation
of the machine, and evaluate this implementation in
terms of its security and verifiability.

2 Goals

We begin by identifying six high-level goals for a
secure, verifiable, and usable election architecture.

1. Minimize trusted code. Reducing the por-
tion of code that needs to be verified makes
software verification less costly and more reli-
able. By “verification” we mean informal code
review, independent security audits, formal
methods, and everything in between. All these
kinds of verification are highly sensitive to
code size, because small changes can have
far-reaching effects and software components
can interact in unexpected ways.

2. Design for verification. The difficulty of soft-
ware verification is reduced by designing code
and data structures specifically to make them
more tractable to analysis. Examples include
componentization and limited data flows.

3. Minimize code churn. If the code that needs
to be verified changes less often, each release
can be tested and audited more thoroughly.
Therefore, voting systems should be designed
so that customization or new functionality can
be provided without changing the trusted code.

4. Support public review. The success of a
democratic election depends not only upon
the actual reliability of the voting system but
also upon public confidence in that reliability.
Therefore, the election system should allow as
much as possible of the election to be verifiable
by the public, including non-programmers.

5. Support accessibility.The architecture should
allow for user interfaces that enable individuals
with disabilities to vote privately and indepen-
dently and should facilitate their participation
in reviewing and testing these user interfaces.

6. Support interoperability. Election officials
should be able to mix and match components
from many vendors. To this end, the sys-
tem should define clear interfaces between
components. This enhances the effectiveness
of testing, as components can be tested in
isolation and multiple implementations of a
component can be checked against each other.
Also, the resulting market competition may
reduce election costs.

2

The following are some basic requirements of
democratic elections:

• The voting system must not break down.

• Each voter may only vote once, and only in
contests for which the voter is authorized.

• Votes must be reported accurately.

• Each voter’s choices must be kept secret.

• The voting system must not provide opportu-
nities for voters to sell their votes or to be
coerced into voting a particular way.

Standard ballot features that the voting system
should support include “vote fork out of n,” write-
ins, multiple languages, and straight-ticket voting,
and the system should not preclude the possibility
of ranked voting. Electronic voting systems are also
expected to prevent voters from casting anovervote
(choosing too many selections) and to notify voters
if they are about toundervote(choose fewer than
the allowed number of selections).

In this work, we focus on producing voting ma-
chine software that works correctly and verifying
that it works correctly. Other parts of the election
system such as absentee ballots, voting by mail, and
voter registration are outside of our scope. To run
an accurate election, it is also necessary to make
sure the machines are actually running the software
that was approved and to protect the voting machine
and its storage media from tampering. We do
not address physical security and chain-of-custody
issues in this paper.

3 Architecture

Election systems depend on software for many
different functions before, during, and after the
actual day of the election. However, since so
little information is typically published about the
programs used to conduct an election and their
inputs and outputs, trusting the outcome of a com-
puterized election today requires trusting practically
everything in the system — including the software
that produces ballot definitions, the voting machine
software, the software that tallies votes, and all
the operating systems, compilers, editors, and other
tools that were used to produce these programs.
In the following sections, we present a general

election system architecture that reduces what must
be accepted on faith to trust the validity of the
election result.

3.1 Verification Methods

If a software component has inputx and output
y, and it is supposed to implement a deterministic
function f , there are two ways to check that the
component has produced the correct output:

1. Program verification. Examine the imple-
mentation of the software component and
verify that it matches the specification off .
This may include manual source code analysis,
formal verification, or other methods.

2. Result verification. Given x, computef(x)
and check that it matches the actual output,y.
Doing this requires records of bothx andy and
an independent implementation off .

Program verification only needs to be performed
once for a given implementation off , whereas
result verification must be performed for each time
f is executed. However, proving statements about
the behaviour of software programs is generally
very difficult. The state of the art in automated
software verification is only capable of verifying
fairly small programs of limited complexity, against
specifications that are difficult to write. Software
review by human experts is time-consuming and can
be prone to error. Furthermore, program verification
requires disclosure of the software code, which
often faces legal, financial, or political barriers.
Disclosing code always improves the transparency
of the process, but it is useful to be able to check
the correctness of an election withoutrequiring in-
spection of all the code. For all of these reasons, our
architecture is designed to minimize dependence on
program verification.

3.2 Election Verification

The “direct recording electronic” device (DRE) is
the component that handles voter input and record-
ing of votes. Because election rules forbid leaking
vote information that can be identified with specific
voters, the input to the DRE must be kept secret.
Consequently, result verification of the DRE is

3

tally programballot design
tool DRE device

voter input
(secret)

DRE software
(public)

ballot definition
(public)

anonymous votes
(public)

election officer input election result

Figure 1: Simplified block diagram of the proposed election system architecture. The dashed arrows hint at
the complex web of dependencies (including source code, operating systems, compilers, editors, and other
tools) underlying each software component. Publishing the inputs and outputs of the DRE (shown in bold)
lets us cut away these dependencies when performing a security evaluation.

simply not an option; program verification is the
only way to gain trust in the DRE.

If the DRE stores votes in anonymous form, its
output can be published. All the other components
of the system can have their inputs and outputs
published and so can be checked by result verifi-
cation. The part of the process from the input of the
voter’s selections to the point where the selections
are recorded anonymously is the only part of an
election system that requires program verification.
Therefore, our overall approach is to minimize the
size and complexity of the DRE software (even
if it means that other components become more
complex) and to publish all of the DRE’s inputs
and outputs — except for the votes themselves, until
they are anonymized — to enable result verification
of the rest of the process (Figure 1).

The ballot definition is published far enough in
advance that it can be validated before election day.
For instance, the ballot definition might be pub-
lished on government websites and made available
to candidates; anyone would be able to download
it and run software on their own computer to see
exactly what will be shown to voters on election
day. This provides a chance to detect omitted
races, misspelled candidate names, layout errors,
and other ballot errors. In this way, the published
ballot definition is analogous to the paper sample
ballot typically mailed to voters before an election.

The anonymized cast vote records from every
DRE are published for all to see after the election.
Anyone can add up the votes in these files to
obtain the election-wide totals and compare them

against the official totals to gain confidence that
tallying was done correctly. Also, pollworkers
and observers might be encouraged to check the
summary tapes that are printed at the close of polls
against the published electronic vote files to verify
that the files were not tampered with while in transit.

The consequence is that neither the ballot layout
software nor the vote tallying software need to be
verified. The published ballot definitions, DRE
software, and anonymous vote records are sufficient
to allow members of the public to independently
check the accuracy of the election outcome.

3.3 Prerendering the User Interface

In a typical DRE, much of the software code is
responsible for generating the voting user interface
in real-time on the running machine. This includes
the code for arranging the layout of elements on the
screen, rendering text in a variety of typefaces and
languages, drawing buttons, boxes, icons, and so on.

The DRE software can be considerably simplified
by moving this layout and rendering functionality
into a separate pre-election component. Instead of
a ballot definition (such as those used by today’s
DREs) that lists only essential information about
contests and candidates, we propose a ballot defini-
tion that describes the complete user interface. For
a visual interface, this would include prerendered
images of the screen and interface elements exactly
as the user will see them; for an audio interface, this
would include prerecorded sound clips.

4

3.4 Virtual Machine

In our architecture, the ballot definition is a high-
level, platform-independent description of the user
interface for voting, displayed by avirtual machine
(VM) that provides a high-level interface to the
input and output hardware. The job of the VM
is to respond to user input by displaying images
or playing sound clips as prescribed by the ballot
definition, keep track of the user’s selections, and
record the user’s selections anonymously. Imple-
menting the VM for a variety of DRE hardware
platforms would enable all of them to interoperate
using the same formats for ballot definitions and
recorded votes. Our main hypothesis is that the VM
implementation can be made considerably smaller,
simpler, and easier to verify than the software in
today’s DREs.

3.5 Electronic Sample Ballot

The published ballot definition serves the role of
an electronic sample ballot, analogous to a sample
ballot in a paper election. Standardizing the file
format of the ballot definition and implementing
the VM for consumer PCs enables voters to try out
the ballot in advance with exactly the same user
interface that they will see at the polls.

The user interface of any voting machine is in
a position to mislead or otherwise influence voters
and hence influence the voter input. Therefore, veri-
fying the accuracy and fairness of the user interface
is critical. The published electronic sample ballot
gives the election averifiable user interface, since it
can be examined and tested by all voters, members
of the disabled community, usability experts, and
accessibility experts.

Today, less commonly used ballot designs, such
as ballots for voters with disabilities or ballots
in alternate languages, receive significantly less
attention, since only the election office can compose
and check electronic ballots. A published sample
ballot would allow such ballots to receive broader
scrutiny. In particular, it would enable members
of minority communities to play a role in making
sure the electronic ballot serves them fairly. The
publication of an electronic sample ballot would
therefore help to level the playing field for users

of alternate languages, users with disabilities, and
other minorities.

3.6 Ballot Definition Visualization

Running the ballot definition in a live test might
show that the ballot appears to behave correctly,
but it would not be a sure way to test the complete
behaviour of the ballot. To be certain that the ballot
contains no hidden behaviour or incorrect behaviour
triggered by rare combinations of inputs, one would
have to examine the ballot definition file itself.

Therefore, we propose a software tool that trans-
forms an electronic sample ballot into a human-
readable format that completely describes the user
interface. One possible visualization would be
a flowchart-like diagram that illustrates the steps
of the user interface with the prerendered screen
images. Anyone would be able to download the
electronic sample ballot, use the program to produce
a diagram, print it out, and examine it. This would
make possible a whole new level of assurance: the
electronic voting UI could be verified even by non-
programmers. The printed UI visualization can also
be archived in the records of the election. The vi-
sualization alone should be sufficient to reconstruct
the interface that voters used at the polls.

Similarly, the definition for an audio ballot could
be transformed into a complete audio description of
the interface, to allow anyone capable of using the
audio interface to also have the option of inspecting
it for correctness.

3.7 Anonymous Recording

We return now to two security requirements
mentioned previously: voter privacy and coercion
prevention.

To protect voter privacy, ballots should be stored
without any identifying information. The ballots
should also be stored in an order independent of the
order in which they were cast, so that someone who
observes the sequence of voters entering the polling
place cannot correlate the sequence of voters with
the sequence of stored ballots.

To prevent coercion, voters must not be allowed
to put identifying marks on their ballots. In one
possible coercion scenario, the coercing party gives

5

each voter a unique secret phrase to enter as a
write-in candidate. For example, suppose Ted tells
Alice to vote for Carol for President with “moldy
explosion” as write-in for Dogcatcher, and also tells
Bob to vote for Carol for President with “wrinkled
tourbus” as write-in for Dogcatcher. Then the
recorded ballots are no longer publishable because
they would enable Ted to confirm, and thus buy,
Alice’s and Bob’s votes.

One way to resolve this problem is to store each
of the voter’s selections as a separate item instead of
the entire ballot as a unit. (As a metaphor, imagine
cutting up a paper ballot into strips, one for each
contest, that all get mixed up in the ballot box.) If
the selections cannot be associated with each other,
then a specially marked selection cannot be used to
identify the rest of a voter’s ballot.

4 Design

This section describes our current design for a
touchscreen voting machine based on the above
architecture that comes close to the richness and
capability of today’s touchscreen voting interfaces
for sighted voters. This design supports only a
visual interface, but could be extended to support
audio or braille interfaces for visually impaired,
blind, or deafblind voters.

A traditional method of recording the voter’s
selections is to store a numeric code or a text string
identifying each selected candidate. Instead, we
store the image containing the candidate’s name
exactly as it was shown to the voter, or for a write-in,
the sequence of images of the characters selected by
the voter, to reduce the risk of confusion.

Our design allows the voter to choose one or more
options from a list of options, which is sufficient
to emulate any choice that could be expressed by
selecting bubbles or arrows on an optical-scan bal-
lot. Our design does not directly support ranking
or scoring of options. Ranking could be crudely
supported by repeating the same list of options, as in
some paper elections. (San Francisco’s ranked bal-
lots, for example, show the same list of candidates
in each of three columns; voters are instructed to
choose their first choice in the first column, second
choice in the second column, and third choice in the

third column.) However, since the machine knows
nothing about the semantics of ranking, it would not
be able to warn the voter about invalid rankings.

4.1 Ballot Definition Format

The ballot definition is divided into two parts — the
ballot modeland theimage library— corresponding
to the medium-independent and medium-specific
information about the voting user interface. The
ballot model specifies the interaction sequence,
while the image library specifies the appearance.

Separating the ballot model from the image
library reduces the cost and effort of validating
changes to the ballot. Replacing the image library
is sufficient to adjust the layout or visual style of the
ballot, change the display resolution, or translate the
interface into another language, all without altering
the ballot model. For these kinds of changes, only
the new image library needs to be validated, not
the entire ballot definition. Comparing two image
libraries (for example, to confirm the accuracy of
a language translation) is easier than checking the
correctness of a ballot model.

4.1.1 Ballot Model

The ballot model consists of an array ofcontests, an
array ofpages, and an array ofsubpages.

A contest is a question being put to the voters,
such as a referendum on an issue or the election
of a candidate (or several candidates) to a position.
Each contest has an integer parametermax sels
specifying the maximum number of selections that
a voter may choose (usually 1, but possibly more
in contests that allow choosing multiple candidates)
and an integer parametermax chars specifying the
maximum number of characters that can be entered
for a write-in option.

The page is the basic unit of presentation. For
example, a single page might display some instruc-
tions, a description of a contest, or a list of available
options. At any given moment, one of the pages is
the current page. The user interface begins on the
first page in the array of pages. When it transitions
to the last page, the ballot is cast with the user’s
current selections.

6

ballot model

pagepagepage

subpagesubpagesubpage

contestcontestcontest
 int max_sels
 int max_chars targettargettarget

 int action
 int page_i
 int contest_i

optionoptionoption
 int contest_i

write-inwrite-inwrite-in
 int contest_i

reviewreviewreview
 int contest_i

subtargetsubtargetsubtarget
 int action

image library
 int width
 int height

spritespritesprite
 int width
 int height
 byte[] pixels

layoutlayoutlayout

background
 int width
 int height
 byte[] pixels

slotslotslot
 int left
 int top
 int width
 int height

Figure 2: Structure of the ballot definition. Names
ending with i indicate array indices.

Associated with each page are arrays oftargets,
options, reviews, andwrite-ins, and any of these ele-
ments can beactivatedby the user. In a touchscreen
interface, these elements correspond to rectangular
areas of the screen that are activated by touches.

A target is a user-triggered transition to another
page. In a touchscreen interface, a target appears as
a button that the user can press. Optionally, a target
can also trigger one of the following actions:

• Clear all the selections in a particular contest.

• Clear all the selections in the entire ballot.

An option is an option that the user can choose
in a particular contest. For example, a contest
for President would have one option for each of

the eligible candidates; a referendum contest would
typically have one option for “Yes” and one option
for “No.” Each option belongs to exactly one page,
though there may be options on different pages that
belong to the same contest — for example, if the
contest has too many options to fit on one page.
Activating an option toggles it between a selected
and unselected state. In a touchscreen interface,
an option appears as a labelled box that changes
appearance to show whether it is selected.

A write-in is a write-in option. It can be in
a selected or unselected state, just like a regular
option; when selected, it also has an associated list
of entered characters. When a write-in is activated,
it triggers a jump to asubpagewhere the voter can
type in the text of the write-in selection.

A review displays the current selections in a
particular contest. Activating a review has no effect,
though targets can overlap reviews. In a touchscreen
interface, a review appears as a screen area (or
multiple screen areas) filled in with the option (or
options) currently selected in its associated contest.
For example, a confirmation page could summarize
the voter’s selections by presenting reviews for
several contests.

A subpage is a temporary page for entering a
write-in. A subpage is like a subroutine call, but
only one level deep — the only possible transition is
back to the current page. In a touchscreen interface,
a subpage provides a text field and an on-screen
keyboard for the voter to type in the name of a
write-in candidate. The number of subpages is
determined by the contests: there is one subpage
for each contest that contains a write-in. A subpage
contains an array ofsubtargets.

A subtarget triggers one of these actions:

• APPEND a particular character to the text field.

• APPEND2: if the text field is not empty, then
append a particular character to the text field.

• DELETE the last character.

• CLEAR all the characters.

• ACCEPT the write-in text and return.

• CANCEL the write-in text and return.

If the write-in text already containsmax chars char-
acters, activating anAPPEND or APPEND2 subtarget
has no effect. If the write-in text is empty, activating

7

background image

option (slot 4)

write-in (slot 5)

target (slot 0) target (slot 1) target (slot 2) target (slot 3)

write-in characters (slots 6–26)

write-in characters (slots 28–48)
write-in (slot 27)

Figure 3: An example of a selection page with two options currently selected, and its corresponding layout.

an APPEND2 or ACCEPT subtarget has no effect. If
the subpage is exited by anACCEPT subtarget, the
write-in option becomes selected and acquires the
contents of the text field. If the subpage is exited
by aCANCEL subtarget, the write-in option becomes
unselected and empty. Thus, it is not possible for a
write-in to contain text yet remain unselected.

Because anACCEPT subtarget only works when
there is write-in text present, a write-in cannot be
simultaneously empty and selected. The purpose of
APPEND2 is to prevent a write-in fromappearing
empty and yet being selected. For example, if the
keyboard’s “space” button is anAPPEND2 subtarget,
then the write-in text cannot consist of only spaces.

4.1.2 Image Library

The image library consists of an array oflayouts
and an array ofsprites, and also specifies the screen
dimensions in pixels.

A layout consists of a background image and an
array ofslots. Each page or subpage corresponds
to exactly one layout, and vice versa. Aslot is a
rectangular region of the screen where a sprite can
be pasted or where a touch will have an effect.

A sprite is an image smaller than the screen
size that is meant to be pasted into a slot on a
background image. The array of sprites contains
images of options and write-ins in their selected
states, images of characters that can be typed into
a write-in, and the image of the text entry cursor
shown while entering a write-in.

In a layout corresponding to a page, the slots
correspond to the targets, options, write-ins, and
reviews for that page. Each target has one slot,
specifying the touch region that activates the target;
the image of the target button (or other widget) is
part of the background image. Each option has
one slot, which specifies both its touch region and
also the position for pasting the sprite showing
the option in its selected state. The image of the
unselected option is part of the background image,
and when the option is selected, the sprite is pasted
over it. Each write-in also has a sprite for its
selected state, which would typically look like a
selected option but with space provided for the
write-in text. A write-in has one slot for its touch
region and for pasting the selected write-in sprite,
andmax chars more slots specifying the positions
where the entered characters are to be pasted. Each
review hasmax sels groups of slots (for displaying
up to max sels options selected by the voter). In
each group of slots, there is one slot for pasting
the selected option sprite andmax chars slots for
displaying the write-in text if a write-in is selected.

In the layout corresponding to a subpage, the
slots correspond to the subtargets and character slots
for the page. Each subtarget has one slot, the
touch region that activates it. Additionally there are
max chars slots specifying the positions where the
entered characters are to be pasted.

To keep the DRE software as simple as possible,
all images are stored uncompressed with 3 bytes
(red, green, and blue values) per pixel.

8

APPEND2
subtarget (slot 32)

subtarget (slot 1)
CLEAR

background image

CANCEL subtarget (slot 2) ACCEPT subtarget (slot 3)

write-in characters (slots 33–53)subtarget (slot 0)
DELETE

APPEND subtargets (slots 4–31)

character sprites cursor sprite

Figure 4: An example of a write-in subpage with a few characters entered, and its corresponding layout.

4.1.3 Referential Integrity

To simplify verification, the ballot definition format
minimizes its use of pointers and other kinds of
references. There are only two kinds of references
in these data structures:

• Targets refer to the page they transition to. This
is necessary to allow for multiple outgoing
transitions from a page and multiple incoming
transitions to a page.

• Targets, options, write-ins, and reviews refer to
contests. This is necessary to allow options,
write-ins, and reviews to be freely arranged
among the pages, so there can be multiple
contests on a single page or multiple pages for
a single contest.

These references are stored as integer array in-
dices in the ballot definition because it is simpler to
verify that an index is in range than to verify that
a pointer is valid. All other associations between
elements of the ballot definition are implied through
structural correspondence. For instance, if there are
p pages andq subpages, then there are exactlyp+ q
layouts in the layout array, where the firstp are for
pages and the lastq are for subpages. This use
of corresponding array indices avoids the need for
pages or layouts to contain pointers to each other.

Similarly, the meanings of the slots are deter-
mined by their order in the slot array. The slot
array for a page contains, in order, one slot for
each target, then one slot for each option, then1 +

max chars slots for each write-in, thenmax sels ×
(1+max chars) slots for each review. The slot array
for a subpage contains one slot for each subtarget
followed bymax chars slots for the entered text.

The sprite array contains one sprite for each op-
tion and write-in, in the order they appear among the
pages, followed by, for each subpage, a character
sprite for eachAPPEND or APPEND2 subtarget and
one cursor image sprite.

4.1.4 Well-formedness and Validity

We distinguish two different notions of the cor-
rectness of a ballot definition. A ballot definition
is well-formedif it satisfies the assumptions made
by the virtual machine implementation. A ballot
definition isvalid if it represents an acceptable user
interface for voting.

Because the ballot definition must be well-
formed in order for the VM to read it and operate
safely and correctly, a verifier in the voting machine
checks for well-formedness before accepting a
ballot definition. To be well-formed, a ballot
definition must meet the following conditions:

• There is at least one page and one contest.

• There is one subpage for each contest that
contains a write-in.

• There is one layout for each page or subpage.

• Every index referring to a page or contest is in
bounds for its respective array.

• Every target or subtarget has a validaction.

9

• Every layout contains the correct number of
slots to match its page or subpage, as described
in Section 4.1.3.

• All background images match the screen size.

• All slots fit entirely within the screen bounds.

• All option slots, write-in slots, review slots,
option sprites, and write-in sprites associated
with the same contest have the same size.

• All character slots, character sprites, and cur-
sor sprites associated with the same contest
have the same size.

• The image library contains the correct num-
ber of sprites to match the ballot model, as
described in Section 4.1.3.

Validity, on the other hand, does not have a single
definition since it depends on election regulations
that can vary by locality. The following are some
examples of conditions for validity that we expect
to be common, as they prevent some obvious pitfalls
and sources of confusion in the user interface:

• Target, option, write-in, and review slots do not
overlap each other, except that target slots may
overlap review slots.

• Character slots do not overlap each other and
lie entirely within their corresponding write-in
or review slot.

• Character slots in write-ins and reviews are
arranged in the same relative positions as the
character slots on the corresponding subpages.

• The last page contains no targets, options,
write-ins, or reviews.

• The user is never trapped in a subgraph of
pages, except after arriving on the last page.

• There exists some transition path from the first
page to every other page.

• Every subpage contains anACCEPT subtarget,
a CANCEL subtarget, and at least oneAPPEND

subtarget.

• Before casting the ballot (arriving at the last
page), the user must be shown pages that
display reviews for all the contests.

The ballot design tool could provide guidance, en-
force validity conditions, or give notification when
validity conditions are not met.

4.2 Virtual Machine

The VM is composed of four software modules: the
navigator, thevideo driver, theevent loop, and the
vote recorder(Figure 5). This separation does not
in itself prevent attacks, since the corruption of any
module still has the potential to corrupt the outcome
of the election. Rather, the separation into modules
is an instance of design for verification. Estab-
lishing limited responsibilities for each module and
limited data flows among modules facilitates the
auditing and testing necessary to prevent an attack.

The navigator walks through the pages in the
ballot model, always starting on the first page. It
keeps track of the current page, the user’s current
selections, the current subpage (if any), and the
entered characters on the current subpage (if any).
The navigator responds to just one message:

• When told to activate a slot, the navigator
takes the action for the corresponding tar-
get or subtarget, toggles the corresponding
option, or transitions to the subpage for the
corresponding write-in.

The navigator issues three kinds of messages to
other modules:

• It tells the video driver togoto a layout upon
transition to a page or subpage. The message
specifies the layout index.

• It tells the video driver topaste sprites into
slots as necessary to display options, write-
ins, reviews, and write-in text. The message
specifies the sprite index and slot index.

• It tells the vote recorder towrite the selections
when the ballot is cast (when transitioning to
the last page). The message contains an array
of max sels selections for each contest. Each
selection is a list of integers: for a selected
option this is just one integer, the index of the
selected sprite; for a write-in, this is the index
of the selected sprite followed by the indices of
the entered character sprites.

The video driver has only one piece of state: it
keeps track of which layout is the current layout.
It interprets the slot index in apaste command in
the context of the current layout. The video driver
handles three kinds of messages:

10

LEGEND

navigatorvideo driver

image library

event loop

frame buffer

goto(layout_i)
paste(sprite_i, slot_i)

 activate(slot_i)locate(x, y)

touch sensor
x, y

cast vote records

write(selections)

ballot definition

software
module

hardware
device

data

one-way data flow

vote recorder

 slot_i

ballot model

Figure 5: Block diagram of the virtual machine, which consists of the four software modules in bold. The
argumentslayout i, sprite i, slot i, x, andy are integers;selections is an array of arrays of lists of integers.

• When told togoto a layout, the video driver
copies the background image into the frame
buffer and remembers the given layout index.

• When told topaste a sprite into a slot, the
video driver copies the sprite into the frame
buffer at the position specified by the slot.

• When told tolocate a given point by its co-
ordinates, the video driver looks through the
slots in the current layout and returns the index
of the first slot that contains the point, or
a failure code. (If the point lies within an
overlapping target and review, the target slot
will be returned because targets come first.)

The event loop receives touch events from the
screen’s touch sensor. We assume that when the
user touches the screen, the sensor reports(x, y)
coordinates in the same coordinate space used for
displaying images. Upon receiving a touch event,
the event loop asks the video driver tolocate the
corresponding slot, then passes the slot number on
to the navigator in anactivate message.

Thevote recorder records the voter’s selections
in non-volatile storage upon receiving awrite
message from the navigator. The votes are recorded
using a tamper-evident, history-independent,
subliminal-free storage method. Molnar, Kohno,
Sastry, and Wagner have proposed several schemes
with these properties [3] for storing ballots on
a programmable read-only memory (PROM).
Each stored selection includes or indicates its
associated ballot definition so that the meaning of
the selections is apparent from the storage contents.

5 Implementation

To evaluate the feasibility and complexity of
our voting machine design, we have built a
prototype implementation in Python that runs on
Linux, MacOS, or Windows. Our prototype uses
Pygame [5], an open-source multimedia library for
Python, to handle graphics and mouse input. It runs
on a commodity PC using the video display and the
mouse to simulate a touchscreen device.

The prototype reads the ballot definition from a
file namedballot and writes vote records to a file
namedvotes . Theballot file represents read-
only media and is opened read-only; thevotes file
represents a PROM. Each time the program runs, it
casts at most one ballot, then enters a terminal state.
Restarting the program is analogous to restarting the
voting machine for the next voter.

5.1 Ballot Definition File

A separate Python module, not shown in Figure 5,
reads theballot file, verifies all the conditions
necessary to determine that it is well-formed, and
deserializes it to objects in memory. All integers
in the file are stored as 4-byte unsigned integers;
images are stored uncompressed with 3 bytes (red,
green, and blue) for each pixel.

The prototype does not include any user interface
for selecting which ballot definition to use; instead,
it assumes that the appropriateballot file will be
present when the program starts. Differentballot
files can be used for different runs.

11

before recording

erased (all zeroes) unused (all ones)old sorted list

writing new list in progress

old sorted list new sorted list

erasing old list in progress

new sorted listold sorted list

recording complete

new sorted list

maximum space that could have been used to store all
preceding lists, regardless of order in which votes were cast

first flag indicates start of valid list of votes

Figure 6: Storing votes in a copyover list. The list is always written in sorted order and the amount of erased
space preceding the list is independent of the size of previous lists, so that no information is revealed about
the order in which votes were cast. On a PROM, changing a bit from 1 to 0 is an irreversible operation.

This corresponds to a deployment model in which
a pollworker has the option to insert any ballot
definition before activating the voting machine for
each voting session. For a choice among ballots
that has to be authorized by the pollworker, the
pollworker chooses the ballot definition to put in
the machine. For a choice among ballots that the
voter is allowed to make, either the pollworker can
select a ballot definition at the voter’s request, or
multiple ballots can be combined into a single ballot
definition. For example, a ballot definition could
support both English and French by including all
the pages for an English ballot and all the pages for
a French ballot, then adding a starting page to let the
user select between them.

An alternative deployment model, which we have
not implemented, would be to fix a list of all
approved ballot definitions and put them on the
machine in advance, then provide some way for the
pollworker to choose which ballot definition to use.

5.2 Vote Storage File

The votes file is used to simulate a PROM, a
solid-state storage device initially filled with 1 bits;
writing to a PROM can change 1 bits to 0 bits, but
never the reverse. The vote recorder writes to the
file in a manner consistent with this property.

For this prototype, we have chosen to store the
ballots using acopyover list, since it is history-
independent, simple to implement, and does not
depend on a random number generator. A copyover

list [3] is a list of items stored in sorted order; each
time we add items to the list, we write a new copy of
the entire list in sorted order and erase the old copy
by overwriting it with zeroes. Because the items are
stored in sorted order, the list does not reveal the
order in which the items were added.

The items in the copyover list are the individual
selections within each contest from all the voters.
Each item consists of the SHA-1 hash of the ballot
definition, the integer index of the contest, and the
integer index of the selected option sprite. For a
write-in selection, this is followed by the indices
of the selected character sprites. All integers are
stored as 4-byte unsigned integers. The individual
selections are stored as separate items so that the
votes file can be published without letting voters
mark their ballots to prove how they voted, as
explained in Section 3.7.

Since the items in the list can vary in length,
the size of the list depends on the contents of the
selections. If the new list were stored immediately
after the old list, the size of the erased space would
reveal something about the size of the old list and
hence about the sequence of votes. (For example, if
two selections are stored, one with a short write-in
and one with a long write-in, then casting the long
one first would yield a larger erased space than if
they were cast in the opposite order.) Therefore,
we always erase the maximum amount of space that
would have been required, regardless of the order in
which the selections were added to the list.

12

A flag value is stored at the beginning of each list,
and the list is encoded so that it cannot contain the
flag value. The first occurrence of the flag in the file
is considered to signal the start of the current list
of votes. After the new list is written, erasing the
flag in front of the old list commits to the new list,
as shown in Figure 6. This commitment is atomic,
since changing even one bit invalidates the flag.

5.3 Interpreting Recorded Votes

For a stored selection to have well-defined seman-
tics, it must be somehow associated with a ballot
definition. We considered four ways to do this:

1. Store an entire copy of the ballot definition
with each selection.

2. Assume a pre-established global mapping
of identifiers to ballot definitions; store an
identifier with each selection.

3. Store a cryptographic hash of the ballot
definition with each selection.

4. Store an array of ballot definitions, then store
an array index with each selection.

The first scheme is simple, but uses a lot of
storage space. At a resolution of 1024 by 768 pixels,
a background image for a page occupies about 2.4
megabytes; a typical ballot definition is on the order
of 10 to 100 megabytes. Storing a few hundred
votes would require several gigabytes of space.

The second scheme uses very little space, but
depends on management of a global namespace of
ballot definition identifiers, which seems potentially
brittle and error-prone. If a vote record says that
it belongs to ballot definition #34 and there is a
disagreement about which ballot definition was #34,
the vote record becomes meaningless.

We chose the third scheme for our prototype
because it is space-efficient, and as long as the
hash function is collision-resistant, there can be no
ambiguity about which ballot definition is associ-
ated with each vote record. However, in order
to ascertain the true meaning of a vote, one must
otherwise obtain a copy of the ballot definition. Our
architecture assumes that the ballot definitions are
published, so this is not a serious problem.

The fourth scheme stores the actual ballot def-
initions, yielding a vote record that is fully self-

contained. But in order to store all the definitions
on write-once storage, without revealing any infor-
mation about the order in which they were used,
and without using very large amounts of space, all
the acceptable ballot definitions must be known in
advance. This scheme would make sense for an
implementation where the machine presents a UI for
the pollworker to select the ballot definition to use.

If the list of acceptable ballot definitions is fixed
in advance, it would be possible to use just one
storage device instead of two. The storage medium
would initially contain all the ballot definitions; the
machine would both read the ballot definitions from
it and append the vote records to it. In such an
alternative scheme, vote records would not become
inadvertently separated from their ballot definitions,
but it would be somewhat harder to guarantee that
the ballot definitions are never alterable.

6 Evaluation

6.1 Size

The entire prototype implementation is 293 lines
long, not including comments and blank lines. The
breakdown of module sizes is as follows:

ballot definition loader and verifier 126 lines
event loop 13 lines
navigator 94 lines
video driver 22 lines
subtotal (user interface) 255 lines
vote recorder 38 lines

total 293 lines

6.2 Dependencies

Our prototype runs on Python version 2.3. We
have tried to minimize the dependencies in our
implementation so that the size of the Python code
gives a reasonable indication of the true complexity
of the program.

Only one collection type, the Python list, is used
in the prototype code. Although some lists change
length while the program is running, every list has
an upper bound on its length determined by the
ballot definition, so an implementation based on
arrays could preallocate the necessary space.

13

6.2.1 User Interface Modules

The user interface modules import nothing from
Python’s standard library and use only the following
built-in functions:

• open andread on the ballot definition file.

• ord to convert characters to integers.

• enumerate andrange for iterating over lists.

• len and theremove method on lists.

The only Pygame drawing function that we use is
blit , which copies a bitmap onto the screen.

6.2.2 Vote Recorder Module

The vote recorder uses Python’s built-insha mod-
ule for computing the SHA-1 hash of the ballot
definition, and also the following built-in functions:

• open , read , write , seek , andtell on the vote
storage file to simulate access to a PROM.

• ord andchr to convert characters to integers.

• enumerate for iterating over lists.

• Thesort method to sort the copyover list.

• len and max to find the longest item in the
copyover list.

6.3 Functionality

Our design allows a wide range of possible ballot
formats. For instance, our prototype can support:

• both general and primary elections

• ballots in any language and any typeface

• voter instructions at any point in the process

• multiple contests on a single screen

• splitting a contest over multiple screens

• contests allowing more than one selection

• photographs or logos shown with candidates

• write-in text with characters in any language

• review of selections before casting the ballot

• jumping directly to specific contests or review
screens

• regulations requiring voters to review their
selections before casting the ballot

• regulations restricting the number of times that
voters may review their selections

Our design does not provide an audio interface or
a printed receipt; these are discussed in Section 7.

Our prototype does not provide administrative
functions, and does not support straight-ticket vot-
ing, ranked voting, automatic ballot rotation, or
generation of audit logs, though it could be extended
to include these features. Our prototype also does
not encrypt its storage; by design, there is no need
to encrypt the stored votes.

6.4 Separation of Concerns

Our prototype is divided into five modules that
can be inspected or implemented separately. Each
module has a limited responsibility, which makes it
easier to audit and test.

The ballot definition loader is responsible for
establishing that the ballot definition is well-formed.
If the loader is implemented correctly, and if the
other modules rely only on the conditions of well-
formedness, then the only possible kind of software
failure is a failure to load the ballot definition. Suc-
cessful completion of the loading and verification
step assures that software errors cannot occur during
the voting session.

It is easy to see by direct inspection of the source
code that all modules other than the event loop only
react to messages they receive. The event loop is the
only module capable of initiating messages, but it is
also the smallest and easiest to audit.

The video driver is a passive component, never
sending any messages at all. In particular, the
video driver does not have the authority to activate
slots (that is, it cannot “press buttons” in the inter-
face), which lessens our vulnerability to errors in its
implementation.

The navigator has access to only the ballot model
and cannot draw arbitrarily on the display. Since
it cannot see the image data, it cannot determine
the semantics of the user’s selections. Freezing
the implementation of the VM before choosing the
order of candidates on the ballot would make it
difficult for even the author of the navigator to bias
the vote for or against a specific candidate. Also,
since the only input to the navigator is a slot number,
which is a small integer, the navigator is amenable
to some amount of exhaustive testing.

The voting machine has no non-volatile storage

14

other than the ballot definition and the cast vote
storage. Since the machine is restarted for each
new voting session, and since the ballot definition
is read-only, the only state retained between voting
sessions is the vote storage. Furthermore, the
vote recorder module only receives messages and
never sends any messages to any other software
module, so no information in the vote storage can
reach any of the other modules. Consequently,
the user interface seen by each voter is determined
only by the ballot definition and cannot reveal any
information about previous voting sessions. Also,
this ensures that all voters using the same ballot
definition receive the same voting experience.

6.5 Election Rules

Election regulations concerning the ballot are up-
held either by the implementation of the navigator
module or by validating the ballot definition.

By design, our prototype can only cast one ballot
each time it runs. It is easy to confirm by inspection
of the navigator that the only way to cast a ballot is
to arrive at the last page and to see that the last page
is a terminal node in the ballot definition.

It is also straightforward to verify that overvot-
ing is impossible, because only the navigator can
manipulate the user’s selections, and there are only
two places in the code where an item is added to the
selection list.

Other election process rules can be verified by
examining the ballot definition. For example, to
ensure that the voter will be notified of undervotes
before casting the ballot, we can check the graph of
transitions among pages to see that the voter must
proceed through review pages before arriving at any
page that can cast the ballot.

6.6 Comparison

At only 293 lines of Python, our prototype code is
much smaller than the 31,000 lines of C++ in the
AccuVote TS. It may be slightly more appropriate
to compare our 255 lines of UI code with the
AccuVote’s 14,000 lines of UI code — but neither
comparison is entirely fair, because our prototype
lacks some of the AccuVote’s functionality and the
two systems have different sets of dependencies.

Nonetheless, the correctness of our code is certainly
easier to assure than the correctness of the AccuVote
TS code. In general, programs with less code tend
to be easier to review, easier to test, less likely to
contain bugs, and less likely to crash.

One reason that we have less code is our choice
of programming language. Our prototype requires a
Python interpreter, whereas the AccuVote TS does
not. On the other hand, the AccuVote TS soft-
ware depends on Microsoft Windows CE and builds
its user interface using the Microsoft Foundation
Classes, which are much larger and more complex
that theblit functionality we use from Pygame.

It is not unreasonable to consider running Python
on voting machines. Python is widely deployed
and vetted and is supported by an active developer
community. Unlike Windows CE and MFC, Python
is a mature open source project, distributed with
an extensive suite of regression tests. As a data
point concerning Python’s size, we note that Nokia
has released a Python interpreter [4] that fits in a
504-kilobyte installation package and includes over
40 Python library modules that we do not use.

Alternatively, the Python code could be translated
into a compiled language. Although we did use
a higher-level language, we have been careful to
minimize our use of Python’s library modules and
built-in functions, as described in Section 6.2. It is
reasonable to expect that translating our code into
a compiled language would multiply its size by a
factor of 3 or 4, but not by 100.

Despite its small size, our prototype maintains
clear boundaries and minimal data flow among its
five modules. As described earlier in this section,
many of the desired security properties of the voting
machine are straightforward to verify in our proto-
type, due to its design. The AccuVote TS code does
not lend itself to similarly easy analysis.

7 Open Issues

Although we have not yet decided on the best ways
to extend our design, we mention some ideas in
this section to show that it is feasible to add some
of the important missing functionality within the
architecture we have described here.

15

7.1 Accessible Interfaces

One way to provide an audio interface would be to
add asound libraryto the ballot definition, contain-
ing prerecorded audio clips of spoken instructions,
contest descriptions, and candidate names. A new
module, the audio driver, would play clips from the
sound library upon request by the navigator. The
event loop would handle user input from hardware
buttons, and the ballot definition would specify
additional targets for handling button presses.

Extending the event loop to support hardware
buttons would also be a way to support alternate
input devices for voters with physical disabilities.

Although the majority of blind individuals do not
use braille, a braille interface would be one way
to provide access to deafblind voters. This might
be implemented with the addition of another ballot
definition component containing lines of text to be
sent to a braille display.

7.2 Printing

Our design could be extended to produce a voter-
verifiable ballot record by adding a print driver
module that controls the printer. For a DRE with
a prerendered user interface, the printout might
contain either the exact images that the voter saw
or printed text representing the voter’s selections.

For a graphical printout, the print driver module
would have access only to the image library, and
would tell the printer to print the sprites that the user
selected.

One way to support a text printout would be to
add adictionarycomponent to the ballot definition
that associates each contest and sprite with a string.
Only the print driver module would have access to
the dictionary; it would send these strings to the
printer to describe the user’s selections.

7.3 Ballot Definition Tools

We have not yet considered how to build the ballot
design and visualization tools. The existence of
the ballot definition as a separate artifact opens
up possibilities for interesting new research in au-
tomated description, validation, and evaluation of
user interfaces. The design tool is in a position
not only to check for validity according to election

laws, but also to compute measures of usability and
accessibility and provide guidance to the designer.

8 Conclusion

We have presented an election system architecture
capable of offering much stronger levels of assur-
ance in both its software implementation and its
user interface with considerably less verification
and testing effort compared to an existing elec-
tronic voting system. Our architecture also provides
broader public access to the verification process and
has the potential to level the playing field for voters
with disabilities and other minorities. We have
presented a specific design for a touchscreen voting
machine and have shown that it can be implemented
in a small fraction of the amount of code in current
voting machines.

9 Acknowledgements

We thank David Dill for enlightening discussions
about design for verification; the categories “pro-
gram verification” and “result verification” were
suggested by him. We thank David Jefferson for
bringing the importance of interoperability to our
attention. Scott Luebking provided helpful advice
on several usability and accessibility considerations.

References

[1] 107th U. S. Congress. Help America Vote Act
of 2002. http://www.fec.gov/hava/law_
ext.txt .

[2] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S.
Wallach. Analysis of an Electronic Voting System.
In Proc. IEEE Symp. on Security and Privacy, 2004.

[3] D. Molnar, T. Kohno, N. Sastry, and D. Wagner.
Tamper-Evident, History-Independent, Subliminal-
Free Data Structures on PROM Storage -or- How
to Store Ballots on a Voting Machine (Extended
Abstract). InProc. IEEE Symp. on Security and
Privacy, 2006.

[4] Nokia. Python for Series 60. http://www.
forum.nokia.com/python .

[5] Pygame.http://pygame.org/ .

[6] U. S. Election Assistance Commission.EAC 2004
Annual Report. http://www.eac.gov/docs/
EAC%20Annual%20Report%20FY04.pdf .

16

