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Abstract

Outage Capacity of the Fading Relay Channel in the Low SNR Regime

by

Amir Salman Avestimehr

Master of Science-Plan II in Engineering - Electrical Engineering and Computer

Sciences

University of California, Berkeley

Professor David Tse, Chair

In this thesis we look at the outage capacity of the fading relay channel with half-duplex

constraint in the low SNR regime. First we consider the scenario that the channel state

information (CSI) is available only at the receiver. In this case we show that a Bursty

Amplify-Forward (BAF) protocol is optimal and achieves the max-flow min-cut upper bound

on the outage capacity of this network.

But as the channel estimation is quite challenging in the low SNR regime we look at the

scenario that neither the transmitter nor the receiver know the channel state (non coherent).

We show that the outage capacity in this scenario is the same as before, hence the receiver

does not need to estimate the channel to get the same rate as before. We also investigate

another extreme that the channel state information is available at both the transmitter and

the receiver (full CSI). We show that this additional information will just slightly increase

the outage capacity while the communication protocol gets quite complicated.

Finally we consider two important extensions: one is when we have an average sum

power constraint on the source and the relay and we can optimize the power allocated to

the source and the relay. The other extension is when we can add more relays to help the
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source. Here the goal is to understand how much these additional relays are beneficial.

Professor David Tse
Dissertation Committee Chair
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Chapter 1

Introduction

Cooperative diversity has been shown to be an effective way of creating diversity in

wireless fading networks (1; 2; 3). In the slow fading scenario, once a channel is weak due to

deep fade coding no longer helps the transmission. In this situation cooperative transmission

can dramatically improve the performance by creating diversity using the antennas available

at the other nodes of the network. This observation leads to recent interest in the design and

analysis of efficient cooperative transmission protocols. In particular in (4) authors looked

at different cooperative strategies for relay networks applied two several wireless channels

with different geometries and fading conditions.

In this paper, the cooperative diversity scenario is modelled by a slow Rayleigh fading

relay channel. There are two regimes of interest that one can look at for this channel : high

SNR and low SNR. The design and analysis of cooperative protocols at high SNR have

been studied in (3) and (5). In the high SNR regime, the main performance measure is

the diversity-multiplexing tradeoff (9), which can be viewed as a high SNR approximation

of the outage probability curve. In (3) the authors looked at the scenario that the channel

state information (CSI) is only available at the receiver and they introduced several simple

transmission protocols and analyzed the diversity-multiplexing tradeoff achieved by these

schemes. While these schemes extract the maximal available diversity in the channel, they

are sub-optimal in terms of achieving the diversity-multiplexing tradeoff. Then in (5) more
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efficient cooperative transmission protocols were introduced. In particular, they proposed

a dynamic decode and forward scheme that achieves the optimal diversity-multiplexing

tradeoff in a range of low multiplexing gain.

While at high SNR regime the main challenge is to use the degrees of freedom efficiently,

the energy efficiency becomes the important measure in the low SNR regime. Therefore in

the low SNR regime we should look for the cooperative schemes that are efficient in the

transfer of energy into the network. Moreover based on this intuition the behavior of all

protocols can be summarized in how they transfer energy in the network.

In this paper we focus on the outage performance at the low SNR regime. There are

two reasons to study the low SNR regime. First, as we will show in section 2.1, the impact

of diversity on capacity is much more significant in low SNR than high SNR. Second, in

energy-limited scenarios, the key performance measure is the maximum number of bits per

unit energy that one can communicate for a given ǫ outage probability. So analogous to

(6) one can define the ǫ-outage capacity per unit energy or Cǫ. It is easy to show that this

capacity is achieved in the low SNR limit and so our results on low SNR outage capacity

directly translates to results on the outage capacity per unit cost.

First we consider the case that the channel state information is available at the receiver

only. We impose a practical constraint on the relay, which is the relay operates on a half-

duplex mode and transmits and receives on different frequency bands (so called frequency-

division (FD) relay channel). In order to find the outage capacity we will first use the

max-flow min-cut bound to find an upper bound on the ǫ-outage capacity of the frequency-

division (FD) relay channel. Then we investigate the outage performance of two classes

of cooperative protocols: Amplify-Forward (AF) and Decode-Forward (DF) (7). We show

that with AF protocol we get the same outage rate as when there is no cooperation and only

the direct link is used. On the other hand with DF protocol we can get full diversity gain.

But still there is a gap between the outage capacity of DF protocol and the upper bound

on the outage rate of the relay channel. Then we investigate the performance of Bursty

Amplify-Forward (BAF) protocol, where the source only transmits with a low duty cycle

but transmitting at high power when transmitting. We show that, somewhat surprisingly,
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this simple protocol closes the gap and achieves the optimal outage capacity of the relay

channel, in the limit of low SNR and low probability of outage. This leads immediately to

the outage capacity per unit cost of FD fading relay channel. The summary of our results is

shown in Table 1. In this table gsd, grd and gsr are the mean of channel gains from the source

to destination, relay to destination and source to relay and SNRsd, SNRrd and SNRsr are

the average received SNRs from the source to destination, relay to destination and source

to relay. The main results are also stated in the following two theorems,

Theorem 1.0.1. In the limit of low SNR and low outage probability, the ǫ-outage capacity

, Cǫrelay
of the FD- relay channel(in nats/s) is

Cǫrelay
≈

√

2SNRsdSNRrdSNRsr

SNRrd + SNRsr

ǫ (1.1)

where SNRsd, SNRrd and SNRsr are the average received SNRs from the source to destination,

relay to destination and source to relay.

And if we define the ǫ-outage capacity per unit energy of the FD- relay channel to be

the maximum number of bits that one can transmit with outage probability ǫ, per unit

energy spent at the source and unit energy spent at the relay we have

Theorem 1.0.2. In the limit of low outage probability the ǫ-outage capacity per unit energy,

Cǫ, relay, of the FD- relay channel (in nats/s/J) is

Cǫ, relay ≈
√

2gsdgrdgsr

grd + gsr

ǫ (1.2)

where gsd, grd and gsr are the average channel gains from the source to destination, relay to

destination and source to relay. The noise variance of all channels have been assumed to

be 1.

As the channel estimation is quite challenging in the low SNR regime we ask the following

natural question: how much is the channel knowledge beneficial or crucial in this regime?

To address this question we look at two extremes. One extreme is the case that neither the

transmitter nor the receiver knows the channel. We show that the outage capacity in the

interested regime is the same as before. The optimal scheme in this case is to use bursty
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Scenario Outage Rate(nats/s)

Non Cooperative ǫ SNRsd

Amplify-Forward (AF) ǫ SNRsd

Decode-Forward (DF)
√

2SNRsdSNRrdSNRsr

2SNRrd+SNRsr
ǫ

Bursty Amplify-Forward (BAF)
√

2SNRsdSNRrdSNRsr

SNRrd+SNRsr
ǫ

Upper Bound On the Outage Capacity
√

2SNRsdSNRrdSNRsr

SNRrd+SNRsr
ǫ

Outage Capacity
√

2SNRsdSNRrdSNRsr

SNRrd+SNRsr
ǫ

Outage Capacity per Unit Cost
√

2gsdgrdgsr

grd+gsr
ǫ

Table 1.1. The results on the approximate outage rates (nats/s) at low SNR and low
probability of outage ǫ.

pulse position modulation (PPM) encoding at the source and the energy estimator at the

destination while the relay is just amplifies and forwards the received signal. Therefore we

can achieve the same outage performance even in the absence of CSI at the receiver.

In the other extreme we look at the case that the CSI is available at both the transmitter

and receiver (full CSI). In this case the source and the relay can beam-form to the desti-

nation to obtain better outage performance. To understand how beneficial this additional

information can be, we derive the outage capacity in the interested regime. We show that

the mixed protocol of bursty amplify-forward + beamforming is the optimal strategy in

this case. We also show that for some typical cases the gain from this additional knowledge

is small as the source tends to allocate less power for beam-forming and more power to

broadcast the information.

In the last section we look at two important extensions: First we look at the scenario

that we have average power constraint on the source and the relay and we can optimize

the power that is allocated to each node. Here we derive the optimal power allocation that

maximizes the outage capacity. As the other extension we look at the case that more relays

are added to the picture and the transmission from the source to the destination is helped

by k relays. To understand the gain obtained by adding more relays into the network, we

derive the outage capacity of this network. Furthermore, the optimal strategy in this case

is still the BAF protocol.
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Chapter 2

Motivations and Model

2.1 The Effect of Diversity in High vs. Low SNR

In this section we discuss why the effect of diversity is much more significant in low SNR

than high SNR. In the case of slow fading, where the delay requirement is short compared to

the coherence time of the channel, the correct performance measure is the ǫ-outage capacity

Cǫ. This is the largest rate of transmission R(nats/s) such that the outage probability

pout(R) is less than ǫ. To show the impact of fading, the ǫ-outage capacity of a point-to-

point Rayleigh fading channel is plotted in Figure 2.1 as a fraction of the AWGN capacity at

the same SNR. It is clear that the impact is much more significant in the low SNR regime.

Some simple calculations can explain why. Conditional on a realization of the channel h, the

fading channel is an AWGN channel with received signal-to-noise ratio equal to |h|2SNR.

Thus

PoutAWGN
(R) = P{ln(1 + |h|2SNR) < R (nats/s)}

= P{|h|2 <
eR − 1

SNR
}

If F is the cumulative distribution of |h|2, solving PoutAWGN
(R) = ǫ yields

Cǫ = ln(1 + F−1(1 − ǫ)SNR) (nats/s) (2.1)
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At high SNR we have

Cǫ ≈ lnSNR + ln(F−1(1 − ǫ)) (nats/s)

≈ CAWGN − ln(
1

F−1(1 − ǫ)
) (nats/s),

a constant difference irrespective of the SNR. Thus, the relative loss gets smaller at high

SNR. At low SNR, on the other hand,

Cǫ ≈ F−1(1 − ǫ) SNR (nats/s)

≈ F−1(1 − ǫ) CAWGN (2.2)

But for Rayleigh fading, |h|2, F (x) = P{|h|2 > x} = e−x. Thus for small ǫ

F−1(1 − ǫ) = − ln(1 − ǫ)

≈ ǫ

This combined with (2.2) shows that at low SNR, for small outage probability, ǫ, we have

Cǫ ≈ ǫ CAWGN (2.3)

which is proportional to ǫ and shows the significant effect of fading at low SNR.

Now we increase the diversity of the channel by having L receive antennas instead of

one, each independently Rayleigh faded. The impact of receive diversity on the ǫ-outage

capacity for various values of L is plotted in Figure 2.2. Compared to Figure 2.1, the

dramatic effect of diversity on outage capacity at low SNR can now be seen. For given

channel gains h := [h1, . . . , hL]t, the capacity is ln(1 + ||h||2SNR). The effective gain ‖h‖2

is χ2-distributed with 2L degrees of freedom. At high SNR the outage probability is given

by:

pout(R) ≈ (eR − 1)L

L!SNRL
. (2.4)

Here we see a diversity gain of L: the outage probability now decays like 1/SNRL. Let us

look at the low-SNR regime. At low SNR and small ǫ, :

Cǫ ≈ F−1(1 − ǫ)SNR (2.5)

≈ (L!)
1
L (ǫ)

1
L SNR nats/s (2.6)
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Figure 2.2. ǫ-outage capacity with L-fold receive diversity, as a fraction of the AWGN
capacity ln(1 + L SNR), for ǫ = 0.01 and different L.

and the loss with respect to the AWGN capacity is by a factor of ǫ1/L rather than by ǫ

when there is no diversity. For example at low SNR and at ǫ = 0.01, for L = 1, the outage

capacity i is only 1% of the AWGN capacity and for L = 2 it is dramatically increased to

14% of the AWGN capacity. Note that in this regime, the diversity L is reflected in the

exponent of ǫ in the outage capacity.

2.2 Model

In this paper we consider a simple relay network consisting of a source (S), a relay (R)

and a destination (D). We impose a practical constraint on the relay that does not allow
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the relay to receive and transmit signals simultaneously at the same time and the same

frequency band, known as the half-duplex constraint. There are two major models in the

literature that satisfy this constraint: fixed and random division strategies. In the fixed

division strategy the relay receives and transmits data on different frequency-bands/time-

slots (frequency division/time division). In the random division strategy the relay randomly

decides to listen to data or transmit at each time slot. In this paper we consider the fixed

division strategy and the discrete-time frequency division (FD) model for the fading relay

channel with AWGN noise is shown in Figure 2.3. We focus on the case that the channel

from the source to the relay and from the relay to the destination is split into two bands.

The path gains hsd, hrd and hsr are subject to independent Rayleigh fading with means gsd,

grd and gsr respectively. The received signal at the relay at time i ≥ 1 is

YRi
= hsrX1i

+ ZRi

The received signals at time i at the destination from the first and the second frequency

bands are denoted by Y1i
and Y2i

respectively, where Y1i
= hsdX1i

+Z1i
and Y2i

= hrdXRi
+

hsdX2i
+ Z2i

. Also {ZRi
}, {Z1i

} and {Z2i
} are assumed to be independent (over time and

with each other) CN (0, 1) noises. An average transmitted power constraint equal to P

at both the source and the relay is assumed. We also define SNR := P/1 as the SNR

per (complex) degree-of-freedom. Therefore the average received SNRs from the source to

destination (SNRsd), relay to destination (SNRrd) and source to relay (SNRsr) are equal to

SNRsd = gsdSNR

SNRrd = gsrSNR

SNRsr = grdSNR

We consider the slow fading situation where the delay requirement is short compared to the

coherence time of the channel. Thus we can assume that the channel gains are random but

fixed for all time. We also assume that the relay knows channel gain hsr and the destination

knows the channel gains hsd and hrd. In this paper we compute the mutual information and

rates in nats/s.

8
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Chapter 3

The Outage Capacity of the Relay

Channel

3.1 The Upper Bound on the Outage Capacity of the FD

Relay Channel

In this section we find an upper bound on the ǫ−outage capacity of the FD relay channel

in the limit of low SNR and low probability of outage. The bound is based on the general

max-flow min-cut bound for the networks (10). In the network shown in Figure 2.3 we have

two cuts between the source and the destination: the broadcast cut and the multiple access

cut. Also there are two frequency bands in the model: the relay listens on one frequency

band and transmits on the other, let the fraction of the bandwidth that relay allocates to

listen to source be α. Also source should decide on the amount of energy it is going to pour

into each frequency band, Let the source use power P1 in the first frequency band and P2

in the other. In order to satisfy the power constraint P at the source we should have:

αP1 + (1 − α)P2 ≤ P (3.1)

By using the max-flow min-cut upper bound for a fixed realization of the channels, hsd, hrd

and hsr, and the fact that the maximum average mutual information in the bound can be

10



obtained by independent complex Gaussian random variables that are also independent of

the channel gains and maximizing over the choices of α, P1 and P2 we have,

Crelay(hsr, hsd, hrd) ≤ max
0≤α≤1,P1,P2

αP1+(1−α)P2=P

min{α ln(1 + (|hsd|2 + |hsr|2) P1) + (1 − α) ln(1 + |hsd|2P2)

, α ln(1 + |hsd|2P1) + (1 − α) ln(1 + |hrd|2P + |hsd|2P2)}

≤ max
0≤α≤1,P1,P2

αP1+(1−α)P2=P

min{α|hsr|2P1 + |hsd|2(αP1 + (1 − α)P2)

, |hsd|2(αP1 + (1 − α)P2) + |hrd|2(1 − α)P}

= P max
0≤β≤1

αP1=βP

{|hsd|2 + min(|hrd|2, β|hsr|2)} (3.2)

= (|hsd|2 + min{|hrd|2, |hsr|2})SNR (3.3)

Although (3.3) is an upper bound on the max-flow min-cut bound for the FD-relay

channel, but as we move to low SNR regime this bound gets tight to the max-flow min-

cut bound (because ln(1 + x) ≈ x for small x). It is very important to note that (3.2)

is maximized when β = 1, which means that source is not allocating any energy to the

second frequency band. This is due to the fact that at low SNR regime we are not degrees

of freedom limited therefore the optimal strategy is to allocate all energy to the frequency

band that both the relay and the destination have access to. The other important fact is

that the important parameter is the amount of energy that is transmitted in each frequency

band not how to divide the frequency band.

Also the upper bound shown in (3.3) can be viewed as the max-flow min-cut bound

on the energy flow from the source to the destination therefore one can conclude that any

optimal scheme that provides a rate close to the max-flow min-cut bound should be an

energy efficient scheme.

Now we can use this bound to get the following upper bound on the outage capacity of

the FD-relay channel:

Theorem 3.1.1. The ǫ-outage capacity , Cǫrelay
, of the FD- relay channel (in nats/s)

11



satisfies

lim
ǫ→0

SNR→0

Cǫrelay√
ǫ SNR

≤
√

2gsdgrdgsr

grd + gsr

(3.4)

Proof. The max-flow min-cut bound shown in (3.3) implies that

Poutrelay
(R) = P{Crelay(hsr, hsd, hrd) < R}

≥ P{SNR(|hsd|2 + min(|hrd|2, |hsr|2)) < R}

= P{|hsd|2 + min(|hrd|2, |hsr|2) <
R

SNR
}

Now min(|hrd|2, |hsr|2) is another exponential random variable with mean grdgsr

grd+gsr
also

ǫ → 0 implies that R
SNR

→ 0, thus from Lemma A.0.4 we have

lim
SNR→0

R
SNR

→0

poutrelay
(R)

(

R
SNR

)2 ≥ lim
SNR→0

R
SNR

→0

P{|hsd|2 + min(|hrd|2, |hsr|2) < R
SNR

}
(

R
SNR

)2

=
1

2 × gsd × grdgsr

grd+gsr

=
grd + gsr

2gsdgrdgsr

Thus

lim
ǫ→0

SNR→0

Cǫrelay√
ǫ SNR

≤
√

2gsdgrdgsr

grd + gsr

(3.5)

It is instructive to compare this upper bound to the outage capacity of a 2 × 1 MISO

channel which is also another upper bound on the outage capacity of FD-fading relay

channel. For the MISO channel we have

Pout,MISO = P{ln(1 + (|hsd|2 + |hrd|2)SNR) < R}

= P{|hsd|2 + |hrd|2 <
eR − 1

SNR
}

therefore by lemma, ( A.0.4) ,

lim
SNR→0

R
SNR

→0

poutMISO
(R)

(

R
SNR

)2 =
1

2gsdgrd

(3.6)

which shows that

lim
ǫ→0

SNR→0

CǫMISO√
ǫ SNR

≤
√

2gsdgrd (3.7)
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Now by comparing (3.4) to (3.7) we notice that the max-flow min-cut bound is generally

tighter than the more straight forward MISO upper bound (because gsr

gsr+grd
≤ 1).

The derived upper bound also shows that up to the first order approximation the outage

capacity of the relay channel, Cǫrelay
is upperbounded by

√

2gsdgrdgsr

grd + gsr

ǫ SNR =

√

2SNRsdSNRrdSNRsr

SNRrd + SNRsr

ǫ (3.8)

Now having this upper bound on the outage capacity of FD-fading relay channel in

the low SNR and low outage probability regime, one might wonder how close the outage

capacity can be to this bound. To answer this question we first analyze two commonly

used schemes for the relay channel: decode-forward and amplify-forward schemes. We show

that although the achievable outage rate of these two schemes is not the same as max-flow

min-cut upper bound, they suggest a natural scheme called bursty amplify-forward (BAF)

scheme that should be used the achieve the upper bound and thereby we establish the

outage capacity.

3.2 The Achievable Outage Rate of Decode-Forward Proto-

col

In this section we look at the decode-forward strategy. In this scheme first, the message

is broadcasted to both the destination and the relay from the source. Then the relay tries

to decode the message. If the relay is successful in decoding the message, then re-transmits

it by using repetition coding (while the source is silent), otherwise remains silent. It is easy

to verify that the maximum mutual information achieved with this strategy is

IDF =







ln(1 + |hsd|2SNR) |hsr|2 < (eR − 1)/SNR

ln(1 + (|hsd|2 + |hrd|2)SNR) |hsr|2 > (eR − 1)/SNR

(3.9)

where the first case is related to the time that relay is not able to decode so the message is

transmitted only through the direct link between the source and the destination, therefore

we can easily compute the rate that this scheme can provide for outage probability of ǫ:

13



Theorem 3.2.1. For the achievable ǫ − outage rate of decode-forward scheme we have

lim
ǫ→0

SNR→0

RǫDF√
ǫ SNR

=

√

2gsdgrdgsr

2grd + gsr

(3.10)

Proof.

PoutDF
(R) = P{IDF < R}

= P{|g|2 <
eR − 1

SNR
}P{|hsd|2 <

eR − 1

SNR
}

+P{|hsr|2 >
eR − 1

SNR
}P{|hsd|2 + |hrd|2 <

eR − 1

SNR
}

and as eR−1
SNR

≥ R
SNR

, ǫ → 0 implies that R
SNR

→ 0 thus

lim
ǫ→0

SNR→0

PoutDF
(

R
SNR

)2 = lim
SNR→0

R
SNR

→0

(
P{|hsr|2 < eR−1

SNR
}

R
SNR

× P{|hsd|2 < eR−1
SNR

}
R

SNR

)

+ lim
SNR→0

R
SNR

→0

(P{|hsr|2 >
eR − 1

SNR
} × P{|hsd|2 + |hrd|2 < eR−1

SNR
}

(

R
SNR

)2 )

= g−1
sr × g−1

sd
+ 1 × 1

2gsdgrd

=
2grd + gsr

2gsdgrdgsr

the last equality follows from Lemma A.0.4 and some calculations. Thus for the achievable

ǫ − outage rate of DF we have

lim
ǫ→0

SNR→0

RǫDF√
ǫ SNR

=

√

2gsdgrdgsr

2grd + gsr

This theorem shows that at low SNR and for small outage probability, ǫ, the achievable

outage rate of decode-forward protocol is

RǫDF
≈

√

2gsdgrdgsr

2grd + gsr

ǫ SNR =

√

2SNRsdSNRrdSNRsr

2SNRrd + SNRsr

ǫ (3.11)

This compared to the upper bound on the outage capacity (3.4) shows that DF protocol can

not achieve the max-flow min-cut upper bound. In fact the ratio between the achievable

rate of DF protocol and the upper bound on the outage capacity is
√

grd+gsr

2grd+gsr
=

√

grd/gsr+1
2grd/gsr+1 .

The first thing to note is that this ratio is a number between
√

1
2 and 1. This ratio is closer

to
√

1
2 when the relay is closer to the destination than the source (grd/gsr > 1). This follows

14



the reason that more often the attempt to fully decode the message will not be successful

in this case. On the other hand when the source is closer to the source than the destination

(grd/gsr < 1) the relay is able to decode the whole message most of the time and therefore

this ratio is closer to 1.

It is interesting to note that in the case of low SNR, even if the relay uses more so-

phisticated coding rather than repetition coding (for example Slepian-Wolf coding (7)) we

can not improve the outage rate of DF protocol. The reason is that at low SNR repetition

coding is optimal. Also, in (5) the achievable outage rate of the dynamic-decode-forward

scheme was analyzed at high SNR. In this scheme the source transmits the data over the

whole time slot and the relay listens until it is able to decode. Once it is able to decode,

it helps the transmission. This protocol was shown to be optimal at high SNR, in the

sense of diversity-multiplexing trade-off, for the outage performance of the relay channel for

some range of multiplexing gain. But at low SNR there is no hope of getting better rate

by using the dynamic-decode-forward scheme. The reason is that at low SNR we are not

degree-of-freedom limited so the performance of the dynamic-decode-forward scheme is the

same as the decode-forward scheme.

One way to interpret why decode-forward protocol does not achieve the max-flow min-

cut bound is to analyze how it transfers the energy in the network. Relay may or may not

be able to decode and forward the data to the destination and this depends on the channel

from the source to the itself. Therefore the energy transferred by the relay is discontinues

on the channel gain from the source to the relay. However the max-flow min-cut bound

(3.3) shows that the optimal energy transfer should be continuous in all channel gains.

This suggests trying other schemes where the relay behavior is some sort of continuous, one

example would be amplify-forward which we analyze in the next section.
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3.3 The Achievable Outage Rate of Amplify-Forward Proto-

col

In this strategy first the source broadcasts the message to both the relay and the des-

tination. Then the relay re-scales its received signal to satisfy the power constraint and

transmits it to the destination. It is easy to show that for a given realization of the chan-

nels hsd, hrd and hsr the maximum average mutual information in nats between the input

and the two outputs (received signals from the source and the relay at the destination),

achieved by i.i.d complex Gaussian inputs is

IAF = ln

(

1 + SNR(|hsd|2 +
|hrd|2|hsr|2SNR

|hrd|2SNR + |hsr|2SNR + 1
)

)

(3.12)

Therefore we can easily compute the rate that this scheme can provide for outage probability

of ǫ:

Theorem 3.3.1. For the achievable ǫ − outage rate of amplify-forward scheme we have

lim
ǫ→0

SNR→0

RǫAF√
ǫ SNR

= 0 (3.13)

and if ǫ > SNR

lim
ǫ→0

SNR→0
ǫ>SNR

RǫAF

ǫ SNR
= gsd (3.14)

Proof. As the proof of the first and the second part are very similar here we only prove the

first part of the Theorem.

PoutAF
(R) = P{IAF < R}

≥ P{|hsd|2 +
|hrd|2|hsr|2SNR

|hrd|2SNR + |hsr|2SNR + 1
<

R

SNR
} (3.15)

≥ P{|hsd|2 + |hrd|2|hsr|2SNR <
R

SNR
}

≥ P

{

|hsd|2 <
R

2 SNR

}

× P

{

|hrd|2 <

√

R

2(SNR)2

}

× P

{

|hsr|2 <

√

R

2(SNR)2

}
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(3.15) is true as ln(1 + x) ≤ x. Also from (3.15) ǫ → 0 implies that R
SNR

→ 0, thus we have

lim
ǫ→0

SNR→0

PoutAF
(R)

(

R
SNR

)2 ≥ lim
SNR→0

R
SNR

→0

(

1 − e−g−1
sd

R
2 SNR

)

(

1 − e
−g−1

rd

q
R

2 SNR2

)(

1 − e
−g−1

sr

q
R

2 SNR2

)

(

R
SNR

)2

≈ lim
SNR→0

g−1
sd

g−1
rd

g−1
sr

4SNR
→ ∞

This shows that

lim
ǫ→0

SNR→0

RǫAF√
ǫ SNR

= 0 (3.16)

Although amplify-forward strategy is able to provide full diversity at high SNR regime

(3), this theorem clarifies that it does not provide full diversity at low SNR. The reason is

that at low SNR regime, most of the received signal at the relay is noise. So relay becomes

useless by transmitting mostly noise than signal. To improve the performance of this scheme

one might think of transmitting bursty signals at the source to help the relay receive a less

noisy observation. This scheme is called bursty amplify-forward (BAF) and is considered

in next section.

3.4 The Achievable Outage Rate of Bursty Amplify-Forward

Protocol

As it was mentioned before, the key point that makes AF protocol not suitable for

low SNR is that the relay mostly injects noise to the system and it becomes useless. To

overcome this fact we look at the scheme that the source does bursty transmission. Thus,

the source broadcasts the message in only a fraction of the time, α, with high power and it

remains silent for the rest of the time. As the transmission power (while transmitting) is P
α

the achievable rate (nats/s) using this strategy for a fixed realization of the channels is

IBAF (α) = α ln

[

1 +
P

αN

(

|hsd|2 +
|hrd|2|hsr|2P

(|hrd|2 + |hsr|2)P + αN

)]

(3.17)

Now we investigate the achievable outage rate of this protocol.
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Theorem 3.4.1. We can choose α as a function of SNR such that the achievable ǫ−outage

rate of Bursty amplify-forward (BAF) scheme, RǫBAF
, satisfies:

lim
SNR→0

ǫ→0
α→0

RǫBAF
(α)√

ǫ SNR
=

√

2gsdgrdgsr

grd + gsr

(3.18)

Proof. We know that PoutBAF
(R, α) = P{IBAF (α) < R} therefore from (3.17) we have

P{IBAF (α) < R} = P{|hsd|2 +
|hrd|2|hsr|2

|hrd|2 + |hsr|2 + α
SNR

< (e
R
α − 1)

α

SNR
} (3.19)

Now as (e
R
α − 1) α

SNR
≥ R

SNR
thus ǫ → 0 implies that R

SNR
→ 0. We pick α → 0 in such a

way that δ := α
SNR

→ 0 and R
α → 0 (for example α =

√
R SNR has this condition). Now by

applying Lemma A.0.6 with g(δ) = δ(e
R
α − 1) we get

lim
SNR→0

R
SNR

→0
α→0

PoutBAF
(R, α)

g2(δ)
= lim

SNR→0
R

SNR
→0

α→0

PoutBAF
(R, α)

( R
SNR

)2
=

grd + gsr

2gsdgrdgrd

(3.20)

So we have the desired result,

lim
SNR→0

ǫ→0
α→0

RǫBAF
(α)√

ǫ SNR
=

√

2gsdgrdgsr

grd + gsr

(3.21)

This theorem shows that at low SNR, for small outage probabilities, ǫ, the achievable

outage rate of BAF is:

RBAF ≈
√

2SNRsdSNRrdSNRsr

SNRrd + SNRsr

ǫ (3.22)

Thus the outage performance of BAF protocol matches the max-flow min-cut upper

bound on the ǫ-outage capacity of the FD fading relay channel therefore we have proved the

main theorem (1.0.1) for the ǫ outage capacity of FD fading relay channel. It is interesting

to note that in (8) it was also shown that low duty cycle transmission can improve the

performance of the amplify-forward scheme at low SNR when we have no fading. But there

the achievable rate of this protocol did not match the max-flow min-cut upper bound. The

reason for optimality of this protocol in outage behavior is that by picking parameter α we

make sure that the effective rate of transmission, R
α , is still small but the transmit power
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is quite high. Hence as the effective rate of transmission is still small, in the outage event

both the direct and indirect (source to relay to destination) path should have low overall

gain. Therefore at lease one of the links in the indirect path and the direct path should

be in deep fade. Thus the typical outage event is when the direct link and one of the links

in the indirect path (source to relay or relay to destination) are at low SNR due to being

in deep fade and the other link is at high SNR. In this case we can ignore the noise of the

strong link in the indirect path. Also as the received SNR from both direct and indirect

paths are low we are still energy efficient. Therefore the typical outage behavior of this

protocol matches that of the cutset bound.

3.5 Outage Capacity per Unit Cost of FD Fading Relay

Channel

We define the ǫ-outage capacity per unit energy of the FD- relay channel to be the

maximum number of bits that one can transmit with outage probability ǫ, per unit energy

spent at the source and unit energy spent at the relay. The previous results on the outage

capacity directly apply to the outage capacity per unit cost of FD relay channel with fading,

Cǫ, relay, for small probability of outage. In FD relay channel, for any SNR, the maximum

rate to have outage probability less than ǫ is Cǫrelay
(SNR) which is obviously concave and

strictly increasing in SNR (otherwise by time sharing we will get better rate). Thus

Cǫ, relay = sup
SNR

Cǫrelay
(SNR)

SNR

is achieved by letting SNR → 0. Therefore

Cǫ, relay = lim
SNR→0

Cǫrelay
(SNR)

SNR

Thus from our result on the Cǫrelay
, (1.1), we complete the proof of the Main Theorem

lim
ǫ→0

Cǫ, relay√
ǫ

= lim
ǫ→0

SNR→0

Cǫrelay√
ǫ SNR

=

√

2gsdgrdgsr

grd + gsr
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Chapter 4

The Effect of Channel Knowledge

Channel estimation is quite challenging in the low SNR regime therefore it is impor-

tant to understand how much the channel knowledge is beneficial or crucial to the outage

capacity of the fading relay channel in the interested regime. We study two extremes in

this section. One extreme is the case that neither the transmitter nor the receiver knows

the channel (non coherent model). We show even without the channel knowledge available

at the destination one can achieve the same outage capacity as before using a bursty pulse

position modulation (PPM) scheme. On the other hand in the other extreme that both

the transmitter and receiver know the channel (Full CSI model) we show that the outage

capacity can be increased slightly while the channel estimation becomes very hard. We also

discuss that the bursty amplify-forward scheme combined with beam-forming can achieve

the outage capacity in this case.

4.1 Outage Capacity of Non-Coherent Fading Relay Channel

In this section we show that even without the channel knowledge available at the receiver

as well as the transmitter, we can achieve the same outage capacity as the case that CSI

is available at the receiver (1.1). The achievable scheme is using bursty pulse position

modulation coding and the amplify forward scheme at the relay. The detection at the
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destination is based on energy detection, i.e. the position with highest energy is decoded

at the destination.

Let φ1, . . . , φM be M orthonormal signals of the form φi = (0, . . . , 0, 1, 0, . . . , 0), which

is a length M vector with non-zero value at the i-th position (i = 1, . . . , M).

To transmit message m (m = 1, . . . , M), the source will broadcast the message xm =

Aφm followed by zeros in L > M time slots. The relay and the destination will respectively

receive yR and y1. In the next L time slots, the source remains silent and the relay will

transmit the first M time unit of yR that contains information (normalized by
√

A2

A2|hsr|2+M

to satisfy the average power and remains silent afterwards and the destination will receive

y2. In order to satisfy the average power constraint we should have A2 = 2LP . To decode,

the destination will compute y = (|y1,1|2 + |y2,1|2/σ̂2, . . . , |y1,M |2 + |y2,M |2/σ̂2), where σ̂2 is

the estimated variance of the indirect path and y1,m and y2,m are respectively the projection

of the first M elements of y1 and y2 onto φm (m = 1, . . . , M) :

y1,m = y1(1, . . . , M)φt
m, m = 1, . . . , M (4.1)

y2,m = y2(1, . . . , M)φt
m, m = 1, . . . , M (4.2)

The destination will decode the unique message m if the m − th component of y is

maximum. But for making the analysis simpler we will use another decoding technique

that requires the destination to pick a threshold, τ , and to decode the unique message m

if the m − th component of y is uniquely larger than the threshold τ . It is obvious that

the probability of error using this genie aided scheme can not be less than the first strategy

(picking the maximum).

By symmetry lets assume that message 1 has been transmitted by the source, then for
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fixed channel gains we have,

y1,1 = Ahsd + z1,1

∼ CN (Ahsd, 1)

y1,m = z1,m, 1 < m ≤ M

∼ CN (0, 1)

y2,1 =
A2hsrhrd

√

A2|hsr|2 + M
+

Ahrd
√

A2|hsr|2 + M
zR,1 + z2,1

∼ CN (
A2hsrhrd

√

A2|hsr|2 + M
,

A2|hrd|2
A2|hsr|2 + M

+ 1)

y2,m =
Ahrd

√

A2|hsr|2 + M
zR,m + z2,m, 1 < m ≤ M

∼ CN (0,
A2|hrd|2

A2|hsr|2 + M
+ 1)

where z1,1, z1,2, z2,1, z2,2, zR,1 and zR,2 are distributed like CN (0, 1).

There are two cases that the decoding fails:

|y1,1|2 +
|y2,1|2

σ̂2
< τ (4.3)

or there exists one 1 < i ≤ M such that

|y1,i|2 +
|y2,i|2

σ̂2
> τ (4.4)

We select the variance estimator to be

σ̂2 =

∑M
i=1 |y2,i|2

M

M Large≈ A2|hrd|2
A2|hsr|2 + M

(
A2|hsr|2

M
+ 1) + 1 (4.5)

Now to make the probability of first event small we make sure that the mean of the

random variable |y1,1|2 + |y2,1|2/σ̂2 is far from τ .

E[|y1,1|2 +
|y2,1|2

σ̂2
] ≈ A2|hsd|2 +

A4|hsr|2|hrd|2

A2|hsr|2 + A2|hrd|2 + M + A4|hsr|2|hrd|2

M

+

+
A2|hsr|2 + A2|hrd|2 + M

A2|hsr|2 + A2|hrd|2 + M + A4|hsr|2|hrd|2

M

> A2|hsd|2 +
A4|hsr|2|hrd|2

A2|hsr|2 + A2|hrd|2 + M + A4|hsr|2|hrd|2

M
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To make the mean of the random variable |y1,1|2 +
|y2,1|2

σ̂2 far from τ it is sufficient to have

τ << A2|hsd|2 +
A4|hsr|2|hrd|2

A2|hsr|2 + A2|hrd|2 + M + A4|hsr|2|hrd|2

M

(4.6)

Before considering the second case we state a lemma,

Lemma 4.1.1. If u and v are exponential random variables with mean µu and µv respec-

tively then

P{u + v > τ} =
µu

µu − µv
e
− τ

µu − µv

µu − µv
e
− τ

µv (4.7)

Proof.

P{u + v < τ} =

∫ τ

0

1

µu
e−

x
µu P{v < τ − x}dx

=

∫ τ

0

1

µu
e
− x

µu (1 − e
− τ−x

µv )dx

= 1 − e
τ

µu − 1

µu
e
− τ

µv

∫ τ

0
e
( 1

µv
− 1

µu
)x

dx

= 1 − µu

µu − µv
e
− τ

µu +
µv

µu − µv
e
− τ

µv

The second case of error consists of M − 1 events. Each event occurs when a sum of

two exponential random variables (with means 1 and µ =
A2|hrd|

2

A2|hsr|2+M
+1

σ̂2 < 1) is greater than

τ . Therefore by union bound and lemma 4.1.1 we have

P{∃i : |y1,i|2 +
|y2,i|2

σ̂2
> τ} < (M − 1)P{|y1,2|2 +

|y2,2|2
σ̂2

> τ}

<
1

1 − µ
eln M−τ

Now in order to make the probability of this event small we should have a large negative

exponent, i.e.

lnM << τ (4.8)

To be able to pick the threshold τ to simultaneously satisfy (4.6) and (4.8) we should

have

lnM << A2|hsd|2 +
A4|hsr|2|hrd|2

A2|hsr|2 + A2|hrd|2 + M + A4|hsr|2|hrd|2

M

(4.9)
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As we are interested in the regime that R = ln M
2L → 0, P → 0 and R

P = log M
2LP → 0, we

pick M and L large enough such that:

lnM << M << 2LP = A2 (4.10)

Therefore long as min{A2|hsr|2, A2|hrd|2} < M ,

A4|hsr|2|hrd|2

A2|hsr|2 + A2|hrd|2 + M + A4|hsr|2|hrd|2

M

≈ min{A2|hsr|2, A2|hrd|2} (4.11)

and we can satisfy (4.9) if

lnM << A2|hsd|2 + A2 min{|hsr|2, |hrd|2} (4.12)

or

R

P
=

lnM

2LP
=

lnM

A2
< |hsd|2 + min{|hsr|2, |hrd|2} (4.13)

which is the same expression as the max-flow min-cut upper bound (3.3) being greater

than the rate that we try to communicate.

And if min{A2|hsr|2, A2|hrd|2} > M then

A4|hsr|2|hrd|2

A2|hsr|2 + A2|hrd|2 + M + A4|hsr|2|hrd|2

M

≈ M (4.14)

and we can obviously satisfy (4.9).

4.2 Outage Capacity of the Fading Relay Channel with Full

CSI

In this part we investigate the outage capacity of the FD-relay channel shown in Figure

2.3. The model is the same as before except for the fact that channel state information is

available at both transmitter and receiver (full CSI). One might think once the transmitter

knows the channel it can always adjust the power such that no outage occurs, this is a valid

idea if we can average the power on different realizations of the channel. How ever in a

slow fading scenario that the channel varies very slowly over time it is a practical constraint
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to have average power constraint during a single realization of the channel. Therefore in

this scenario the transmitter can not avoid the outage and outage capacity if an interesting

measure to look at.

The Upper Bound on the Outage Capacity

In this section we use the general max-flow min-cut bound for the network shown in

Figure 2.3 to find an upper bound on the ǫ− outage capacity of the FD relay channel with

full CSI using in the limit of low SNR and low probability of outage. For fixed channel

gains, the max-flow min-cut bound is as follows:

Crealy(hsr, hsd, hrd) ≤ max
p(X1,X2,XR)

min(I(X1, X2, XR; Y1, Y2), I(X1, X2; YR, Y1, Y2|XR))

(4.15)

The first term which is corresponding to the multiple access is bounded by:

I(X1, X2, XR; Y1, Y2) = h(Y1, Y2) − h(Y1, Y2|X1, X2, XR)

= h(Y1, Y2) − h(Z1, Z2)

= h(Y1, Y2) − ln(2πe)

≤ α ln (var(Y1)) + (1 − α) ln (var(Y2))

≤ α ln
(

1 + |hsd|2var(X1)
)

+

+(1 − α) ln
(

1 + |hsd|2var(X2) + |hrd|2var(XR) + 2|hsd||hrd|ρE(X2XR)
)

≤ α ln
(

1 + |hsd|2P1

)

+

+(1 − α) ln
(

1 + |hsd|2P2 + |hrd|2PR + 2|hsd||hrd|ρ
√

P2PR

)

≤ α|hsd|2P1 + (1 − α)(|hsd|2P2 + |hrd|2PR + 2|hsd||hrd|ρ
√

P2PR)

= β|hsd|2P + ((1 − β)|hsd|2P + |hrd|2P + 2|hsd||hrd|ρ
√

1 − β)P (4.16)

where we define

ρ =
E(X2XR)

√

E(X2
2 )E(X2

R)
(4.17)
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Now we will bound the second term which is corresponding to the broadcast cut. First

we note that given XR we have two parallel channels: (X1; Y1, YR) and (X2; Y2) therefore

we have the following markov chain: Y2 → X2 → X1 → (Y1, YR) which makes the following

equalities obvious:

I(X2; (Y1, YR)|X1, XR) = 0

0 ≤ I(X1; Y2|(Y1, YR), X2, XR) ≤ I(X1, (Y1, YR); Y2|X2, XR) = 0

Therefore,

I(X1, X2; YR, Y1, Y2|XR) = I(X1; (Y1, YR)|XR) + I(X2; (Y1, YR)|X1, XR)

+I(X2; Y2|(Y1, YR), XR) + I(X1; Y2|(Y1, YR), X2, XR) (4.18)

= I(X1; (Y1, YR)|XR) + I(X2; Y2|(Y1, YR), XR) (4.19)

= I(X1; (Y1, YR)|XR) + I(X2, (Y1, YR); Y2|XR) − I((Y1, YR); Y2|XR)

= I(X1; (Y1, YR)|XR) + I(X2; Y2|XR) − I((Y1, YR); Y2|XR) (4.20)

≤ I(X1; (Y1, YR)|XR) + I(X2; Y2|XR) (4.21)

Now we have:

I(X1; Y1, YR|XR) ≤ α ln(1 + (|hsd|2 + |hsr|2)P1)

and

I(X2; Y2|XR) ≤ (1 − α) ln(1 + |hsd|2(E(X2
2 ) − (E(X2XR))2

E(X2
R)

)

= (1 − α) ln(1 + |hsd|2(1 − ρ2)P2)

≤ (1 − α)|hsd|2(1 − ρ2)P2

= (1 − β)|hsd|2(1 − ρ2)P (4.22)

Therefore,

Crelay(hsd, hrd, hsr) ≤ min
0≤β≤1
−1≤ρ≤1

{|hsd|2(β + (1 − β)(1 − ρ2)) + |hsr|2β, |hsd|2 + |hrd|2+

+2|hsd||hrd|ρ
√

1 − β}P
(4.23)
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Now we have the following bound on the outage probability with full CSI:

Pout,relay ≥ min
0≤β≤1
−1≤ρ≤1

P{|hsd|2(β + (1 − β)(1 − ρ2)) + |hsr|2β, |hsd|2 + |hrd|2+

+2|hsd||hrd|ρ
√

1 − β <
R

SNR
}

(4.24)

4.2.1 The Achievable Scheme: BAF + Beamforming

Here we show that for any choice of β and ρ it is possible to achieve the max-flow

min-cut bound on the outage probability shown in (4.24) in the limit of low SNR and low

outage probability. To achieve the bound we use the described BAF protocol (source talks

fraction of α of the time) with the difference that here the source uses both frequency bands

to transmit the new data and in the second frequency band some of the power is allocated

to beamform with the help of the relay.

For given β and ρ, we construct X1 using random Gaussian code generation with power

βP
α . Now a part of X2 should be used to transmit new data and a part of it is used to

beamform with the relay. Therefore we set,

X2 = c1
hsrhrd

hsd

X1 + X̂2 (4.25)

where X̂2 is another codeword generated using random Gaussian codeword generation with

power (1−ρ2)(1−β)P
α and c1 is a constant to set the power constraint on X2 equal to (1−β)P

α .

And as we are using Amplify-Forward protocol

XR =
YR

√

|g|2 βP
α + 1

√

P

α
(4.26)

Therefore we have,

YR = hsrX1 + ZR

Y1 = hsdX1 + Z1

Y2 = hsdX2 + hrdXR + Z2

= c1hsrhrdX1 + hsdX̂2 +
hsrhrd

√

|hsr|2 βP
α + 1

√

P

α
X1 +

hrd
√

|hsr|2 βP
α + 1

√

P

α
ZR + Z2
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Now if we write the equations in the matrix form,







Y1

Y2






=







hsd 0

hsrhrd(c1+
q

P

|hsr|2βP+α
) hsd













X1

X̂2






+







Z1

hrd

q
P

|hsr|2βP+α
ZR+Z2






(4.27)

and

c2
1 =

|hsd|2(1 − β)ρ2

β|hsr|2|hrd|2
(4.28)

The capacity of this 2 × 2 MIMO system is :

RBAF+B = α ln(1 + |hsd|2
βP

α
+

|hsd|2(|hsr|2βP + α)((1 − ρ2)(1 − β)P ))

α(|hsr|2βP + |hrd|2P + α)
+

+
|hsr|2|hrd|2(c1

√

|hsr|2βP + α +
√

P )2(βP )

α(|hsr|2βP + |hrd|2P + α)
+ |hsd|2

βP

α

|hsd|2(|hsr|2βP + α)((1 − ρ2)(1 − β)P )

α(|hsr|2βP + |hrd|2P + α)
)

(4.29)

Now we can verify that in the cases of typical outage this achievable rate has the same

shape as the max-flow min-cut bound. For example one case of typical outage is when both

hsd and hrd are weak and hsr is not weak. In this case we have,

RBAF+B ≈ α ln(1 + |hsd|2
βP

α
+ |hsd|2(1 − ρ)2(1 − β)

P

α
+ |hsd|2(1 − β)ρ2 P

α
+

+|hrd|2
P

α
+ 2|hsd||hrd|ρ

√

1 − β
P

α
)

≈ |hsd|2P + |hrd|2P + 2|hsd||hrd|ρ
√

1 − βP (4.30)

Which is the same as the multiple access cut in (4.23).

To have a sense of this additional gain lets look at the case that all the channel gains

are rayleigh fading with mean 1 (gsd = gsr = grd = 1). If we solve the maximization problem

in this case we get

β ≈ 0.94

ρ ≈ 1

RBAF+B ≈ 1.04
√

ǫ SNR

Now if we compared this rate to the outage capacity of the corresponding relay channel

without CSI at the transmitter (≈ √
ǫ SNR) we notice that the additional gain from having
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CSI at the transmitter is quite low (just 4%). This can be intuitively explained by noticing

that the source prefers to allocate more power to the first frequency band which both

the destination and the relay can receive data from to increase diversity than the second

frequency band (for beam-forming with the relay).
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Chapter 5

Some Extensions

In this section we look at two important extensions: First we look at the scenario that

we have average power constraint on the source and the relay and the question is what is the

optimal power allocation to them in the sense of outage capacity. As the second extension

we look at the network where the transmission from the source to the destination is helped

by k relays. To understand the gain obtained by adding more relays into the network, we

compute the outage capacity of this network in the interested regime. We also show that

the same BAF protocol is optimal and achieves the outage capacity of this network in the

interested regime.

5.1 Optimized Power Allocation to the Source and the Relay

Sometimes in the case of limited energy scenarios, there is a sum energy constraint on the

transmitting nodes and it is important to optimize the energy spent at each transmitting

node. In the case of the relay channel we consider the case that we have the average

some power constraint equal to 2P on the source and the relay. But from the behavior

of Bursty Amplify-Forward protocol we know that for each power allocation the max-flow

min-cut bound corresponding to that power allocation is tight in the limit of low SNR

and low outage probability. Therefore it just remains to minimize the outage probability
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corresponding to rate equal to max-flow min-cut bound and the achievablity of this outage

probability is guaranteed by BAF protocol.

If power used for transmission at the source and the relay are represented by P1 and

P2 respectively then to satisfy the average sum power constraint we have 1
2(P1 + P2) = 2P .

The max-flow min-cut bound is:

Crelay(hsd, hrd, hsr) ≤ min(
1

2
ln(1 + (|hsd|2 + |hsr|2)P1),

1

2
ln(1 + |hsd|2P1) +

1

2
ln(1 + |hrd|2P2))

≤ 1

2
(|hsd|2P1 + min(|hsr|2P1, |hrd|2P2))

=
(

|hsd|2β + min(|hsr|2β, |hrd|2(1 − β))
)

2P (5.1)

where 1
2P1 = β2P and 1

2P2 = (1 − β)2P . Therefore,

Poutrelay
(R) = P{Crelay(hsr, hsd, hrd) < R}

≥ P{2SNR(|hsd|2β + min(|hsr|2β, |hrd|2(1 − β))) < R}

= P{|hsd|2β + min(|hsr|2β, |hrd|2(1 − β)) <
R

2SNR
}

Now min(|hsr|2β, |hrd|2(1 − β)) is another exponential random variable with mean

β(1−β)grdgrd

βgsr+(1−β)grd
. Using Lemma A.0.4 we have

lim
SNR→0

R
SNR

→0

poutrelay
(R)

(

R
SNR

)2 ≥ 1

4 × 2 × βgsd × β(1−β)grdgsr

βgsr+(1−β)grd

=
βgsr + (1 − β)grd

8β2(1 − β)gsdgrdgsr

(5.2)

In order to minimize the outage probability, we should minimize the term shown in (5.2)

with respect to 0 ≤ β ≤ 1, which is very simple.

5.2 Network With k Relays

In this section we look at a network consisting of a source (S) and a destination (D) and k

relays (R1, . . . Rk) with half-duplex constraint. As we are interested in the low SNR regime,

with the same intuition as before we can argue that without being sup optimal we can

assume that all the communicating channels to the destination are orthogonal in frequency

and each one has access to 1
k+1 of the total bandwidth. Therefore the equivalent model is

shown in figure (5.1). The channel gains hsr1 , . . . , hsrk
and hsd, hr1D

, . . . , hrkd
are subject to

independent Rayleigh fading with means gsr1 , . . . , gsrk
and gsd, gr1D

, . . . , grkd
respectively.
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Figure 5.1. The general communication model at low SNR with k relays.

Upper bound on the outage capacity

Any cut from the source to the destination will include the direct path (hsd) and exactly

one of the channels in each indirect path (hsri
or hrid

). Therefore there are 2k different total

cuts and the minimum of them will be the max-flow min-cut bound for this network. It

can be easily shown by induction that for fixed channel gains, the max-flow min-cut upper

bound on the achievable rate of this network is:

Ck−relay(hsr1
, . . . , hsrk

, hsd, hr1D, . . . , hrkd) ≤
1

k + 1
min{{ln(1 + (|hsd|

2 +
X
i∈V

|hsri
|2) (k + 1)P )

+
X

i∈({1,...,k}−V )

ln(1 + |hrid
|2(k + 1)P )|V ⊆ {1, . . . , k}}}

≤ (|hsd|
2 +

kX
i=1

min{|hsri
|2, |hrid

|2})SNR (5.3)

Using this bound we can find the corresponding upper bound on the outage capacity of

the FD network with k relays. But before that we need a few lemmas.

Lemma 5.2.1. If u and v are two independent random variables such that

lim
ǫ→0

P{u < ǫ}
ǫ

= α1

lim
ǫ→0

P{v < ǫ}
ǫk

= α2

then

lim
ǫ→0

P{u + v < ǫ}
ǫk+1

=
α1α2

k + 1
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Lemma 5.2.2. If u1, u2, . . . , uk are k independent exponential random variables with means

gsd, µ2, . . . , µk respectively then

lim
ǫ→0

P{u1 + u2 + . . . + uk < ǫ}
ǫk

=
1

k! µ1µ2 . . . µk

Proof. Proof by induction on k and using lemma 5.2.1.

Theorem 5.2.3. The ǫ-outage capacity , Cǫk−relay
, of the FD- network with k relays (in

nats/s) satisfies

lim
ǫ→0

SNR→0

Cǫk−relay

k+1
√

ǫ SNR
≤ k+1

√

(k + 1)! gsd

∏k
i=1 grid

∏k
i=1 gsri

∏k
i=1(gsri

+ grid
)

(5.4)

Proof. The max-flow min-cut bound shown in (5.3) implies that

Poutk−relay
(R) = P{Ck−relay(hsr1 , . . . , hsrk

, hsd, hr1D
, . . . , hrkd

) < R}

≥ P{(|hsd|2 +
k

∑

i=1

min{|hsri
|2, |hrid

|2})SNR < R}

= P{|hsd|2 +
k

∑

i=1

min{|hsri
|2, |hrid

|2} <
R

SNR
}

Now by using lemmas 5.2.1 and 5.2.2 we have

lim
SNR→0

R
SNR

→0

poutk−relay
(R)

(

R
SNR

)k+1
≥ lim

SNR→0
R

SNR
→0

P{|hsd|2 +
∑k

i=1 min{|hsri
|2, |hrid

|2} < R
SNR

}
(

R
SNR

)k+1

=

∏k
i=1(gsri

+ grid
)

(k + 1)! gsd

∏k
i=1 grid

∏k
i=1 gsri

Thus

lim
ǫ→0

SNR→0

Cǫk−relay

k+1
√

ǫ SNR
≤ k+1

√

(k + 1)! gsd

∏k
i=1 grid

∏k
i=1 gsri

∏k
i=1(gsri

+ grid
)

(5.5)

5.2.1 The Achievable Scheme: BAF protocol

As a consequence of the optimality of BAF protocol in the FD-relay channel we know

that this protocol transfers the energy equal to

min{|hsri
|2, |hrid

|2}SNR
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thorough each indirect path. Therefore in this case also BAF protocol will achieve the

max-flow min-cut bound in the limit of low SNR and low outage probability and

lim
ǫ→0

SNR→0

Cǫk−relay

k+1
√

ǫ SNR
= k+1

√

(k + 1)! gsd

∏k
i=1 grid

∏k
i=1 gsri

∏k
i=1(gsri

+ grid
)

(5.6)
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Chapter 6

Comments and Conclusions

In this paper we looked at the outage performance of the FD fading relay channel. We

were able to find the ǫ-outage capacity and the ǫ-outage capacity per unit cost of this relay

channel in the limit of low SNR and low probability of outage. We also showed that this

optimal outage rate is achieved by Bursty Amplify-Forward protocol.

As the channel estimation is quite challenging in the low SNR regime we look at a non

coherent scenario that neither the transmitter nor the receiver know the channel state. We

showed that there is a scheme that uses bursty pulse position modulation for encoding and

a type of energy detection for decoding and achieves the same rate as before (with the same

outage probability). Hence the outage capacity of non coherent scenario is the same as the

coherent scenario. We also investigate another extreme that the channel state information

is available at both the transmitter and the receiver (full CSI). We show that this additional

information will just slightly increase the outage capacity while the communication protocol

gets quite complicated. The optimal scheme in this case is a combination of beam-forming

and bursty amplify-forward protocols.

Finally we considered two important extensions in this paper. One is when we have an

average sum power constraint on the source and the relay. We proposed the optimal power

allocation to the source and the relay for this scenario. The other extension is when we can
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add more relays to help the source. Here we demonstrated how much the outage capacity

increases by adding each additional relay.

36



Bibliography

[1] A. Sendonaris, E. Erkip, and B. Aazhang, ”User cooperation diversity part I: system

description”, IEEE trans. Comm., vol.51, pp.1927-1938, Nov. 2003.

[2] A. Sendonaris, E. Erkip, and B. Aazhang, ”User cooperation diversity part II: imple-

mentation aspects and performance analysis”, IEEE trans. Comm., vol.51, pp.1939-1948,

Nov. 2003.

[3] J.N. Laneman, D.N.C. Tse and G.W. Wornell,” Cooperative diversity in wireless net-

works: efficient protocols and outage behavior”, IEEE Trans. Inform. Th., December

2004.

[4] G. Kramer, M. Gastpar, and P. Gupta, ”Cooperative strategies and capacity theorems

for relay networks”, IEEE Transactions on Information Theory, 51(9):3037-3063, Sep-

tember 2005.

[5] K. Azarian, H. El Gamal, and P. Schniter, ”On the achievable diversity-multiplexing

tradeoff in half-duplex cooperative channels” , submitted to the IEEE Transactions on

Information Theory, July 2004.

[6] S. Verdu, ”On Channel Capacity per Unit Cost”, IEEE Transactions on Information

Theory, Vol. 36, pp. 1019-1030, September 1990.

[7] T.M. Cover and A.A. El Gamal, ”Capacity theorems for the relay channel”, IEEE Trans.

Inform. Th., 25(5):572-584, Sept. 1979.

37



[8] A. El Gamal, M. Mohseni, S. Zahedi, ”On Reliable Communication over Additive White

Gaussian Noise Relay Channels”, Submitted to IEEE Transactions on Information The-

ory, September 2004.

[9] L. Zheng and D. Tse, ”Diversity and Multiplexing: A Fundamental Tradeoff in Multiple

Antenna Channels”, IEEE Transactions on Information Theory, May 2003, p. 1073.

[10] T. M. Cover and J. A. Thomas, ”Elements of Information Theory” New York: Wiley,

1991.

38



Appendix A

Appendix: Some Probability

Preliminaries

In this appendix we investigate some of the probabilities that we will need to analyze

the communication protocols.

Lemma A.0.4. Let w = u+v, where u and v are independent exponential random variables

with mean µu and µv, respectively. Then if g(ǫ) is a continuous function at ǫ = 0 and

g(ǫ) → 0 as ǫ → 0 we have

lim
ǫ→0

1

g(ǫ)2
P{w < g(ǫ)} =

1

2µuµv
(A.1)

Proof. The proof only requires basic probability calculations.

Lemma A.0.5. Let δ be positive, and let rδ = vw
v+w+δ , where v and w are independent

exponential random variables with mean µv and µw, respectively. Let h(δ) be continuous

with h(δ) → 0 as δ → 0. Then

lim
δ→0

1

h(δ)
P{rδ < h(δ)} = µ−1

v + µ−1
w (A.2)

Proof. As u and v are exponential random variables with parameters λv = µ−1
v and λw =

µ−1
w , we have
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P{ vw

v + w + δ
< h(δ)} = P{vw < (v + w + δ)h(δ)}

= P{v(w − h(δ)) < (w + δ)h(δ)}

= P{v <
(w + δ)h(δ)

w − h(δ)
|w > h(δ)}P{w > h(δ)} + P{w < h(δ)}

= P{v <
(w′ + δ + h(δ))h(δ)

w′
}e−λwh(δ) + (1 − e−λwh(δ))

= P{v < h(δ) +
(δ + h(δ))h(δ)

w′
}e−λwh(δ) + (1 − e−λwh(δ))

= e−λwh(δ)

∫ ∞

0
e−w′

(1 − e−λv(h(δ)+
(δ+h(δ))h(δ)

w′ ))dw′ + (1 − e−λwh(δ))

= e−λwh(δ)(1 − e−λvh(δ)

∫ ∞

0
e−(w′+

λvh(δ)(δ+h(δ))

w′ )dw′) + (1 − e−λwh(δ))

= e−λwh(δ)(1 − e−λvh(δ)

∫ ∞

0
e−(w′+

f(δ)

w′ )dw′) + (1 − e−λwh(δ))

where w′ = w − h(δ) and f(δ) = λvh(δ)(δ + h(δ)) → 0 as δ → 0. But,

∫ ∞

0
e

−β
4x

−γxdx =

√

β

γ
K1(

√

βγ) (A.3)

where K1(.) is the modified Bessel function of the second type. So

lim
δ→0

1

h(δ)
P{rδ < h(δ)} = lim

δ→0
(
e−λwh(δ)(1 − e−λvh(δ)[

√

4f(δ)K1(
√

4f(δ))]) + 1 − e−λwh(δ)

h(δ)
)

= lim
δ→0

e−λwh(δ)(1 − e−λvh(δ))

h(δ)
+ lim

δ→0

1 − e−λwh(δ)

h(δ)

= λv + λw

the second equality is true as limǫ→0 ǫK1(ǫ) = 1.

Lemma A.0.6. Let u, v and w be independent exponential random variables with mean

µu, µv, and µw respectively. Let ǫ be positive and let g(ǫ) > 0 be continuous with g(ǫ) → 0

as ǫ → 0. Then

lim
ǫ→0

1

g2(ǫ)
P{u +

vw

v + w + ǫ
< g(ǫ)} =

µ−1
u

(

µ−1
v + µ−1

w

)

2
. (A.4)
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Proof. As u, v and v are exponential random variables with parameters λu = µ−1
u , λv = µ−1

v

and λw = µ−1
w respectively, then using the same rǫ as in Lemma A.0.5 we have

P{u +
vw

v + w + ǫ
< g(ǫ)} = P{u + rǫ < g(ǫ)}

=

∫ g(ǫ)

0
P{rǫ < g(ǫ) − u}pu(u)du

= g(ǫ)

∫ 1

0
P{rǫ < g(ǫ)(1 − u′)}λue−λug(ǫ)u′

du′

= g(ǫ)2
∫ 1

0
(1 − u′)[

P{rǫ < g(ǫ)(1 − u′)}
g(ǫ)(1 − u′)

]λue−λug(ǫ)u′
du′

where in the third equality we have used the change of variables u′ = u/g(ǫ). But by Lemma

A.0.5 with δ = ǫ and h(δ) = g(ǫ)(1 − u′), the quantity in the brackets approaches λv + λw

as ǫ → 0 and gives the result.
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