
A Constructive Fixed-Point Theorem and the
Feedback Semantics of Timed Systems

James Adam Cataldo
Edward A. Lee
Xiaojun Liu
Eleftherios Dimitrios Matsikoudis
Haiyang Zheng

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-4

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-4.html

January 24, 2006



Copyright © 2006, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which  receives support from
the National Science Foundation (NSF award #CCR-0225610), the State of
California Micro Program, and the following companies: Agilent, DGIST,
General Motors, Hewlett Packard, Infineon, Microsoft, and Toyota.



A Constructive Fixed-Point Theorem and the Feedback Semantics of
Timed Systems

Adam Cataldo, Edward Lee, Xiaojun Liu, Eleftherios Matsikoudis, and Haiyang Zheng

Abstract— Deterministic timed systems can be modeled as
fixed point problems [15], [16], [4]. In particular, any connected
network of timed systems can be modeled as a single system
with feedback, and the system behavior is the fixed point of the
corresponding system equation, when it exists. Fordelta-causal
systems, we can use theCantor metric to measure the distance
between signals and the Banach fixed-point theorem to prove
the existence and uniqueness of a system behavior. Moreover,
the Banach fixed-point theorem isconstructive: it provides a
method to construct the unique fixed point through iteration.

In this paper, we extend this result to systems modeled with
the superdensemodel of time [7], [8] used in hybrid systems.
We call the systems we considereventually delta-causal, a strict
generalization of delta-causal in which multiple events may
be generated on a signal in zero time. With this model of
time, we can use ageneralized ultrametric[14] instead of a
metric to model the distance between signals. The existence and
uniqueness of behaviors for such systems comes from the fixed-
point theorem of [13], but this theorem gives no constructive
method to compute the fixed point.

This leads us to definepetrics, a generalization of metrics,
which we use to generalize the Banach fixed-point theorem
to provide a constructive fixed-point theorem. This new fixed-
point theorem allows us to construct the unique behavior of
eventually delta-causal systems.

I. I NTRODUCTION

Perhaps the best known use of Banach’s classic fixed point
theorem is in providing conditions for the existence of a
unique solution to a differential equation. In general, the
Banach fixed point theorem says that for any metric space1

X, a functionf : X → X has a unique fixed point if it is a
delta contraction, that is, if there existsδ ∈ (0, 1) such that
for all x, y ∈ X,

d(f(x), f(y)) ≤ δ · d(x, y)

The Banach fixed point theorem isconstructivein that it tells
us how to construct the unique fixed point. If we start with
any guessx ∈ X, then the sequencex, f(x), f(f(x)), . . .
converges to the unique fixed point.

This theorem has been used in timed discrete-event sys-
tems to reason about when a system with feedback has a
unique behavior [15], [16], [4]. In the language of [4], a
signal s is a partial function from thetag setT = R+ to
some setV of values. A tag set for a signal model provides
a concept of time. Choosing an appropriate tag set for a
system model is part of the design process described in
[5]. The signal is adiscrete-event signalif dom(s) is order

1A set X is a metric space if there exists a functiond : X ×X → R+

such that for allx, y, z ∈ X, 1) d(x, y) = 0 if and only if x = y, 2)
d(x, y) = d(y, x), and 3)d(x, z) ≤ d(x, y) + d(x, z).

Fig. 1. A physical system can generate events simultaneously
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isomorphic2 with some subset ofN. It is a continuous-time
signal if dom(s) = T . We let S be the set of signals. A
systemF is a function fromS to S. (In its full generality, a
system may have multiple input and output signals.)

Note that the denotation of any network of connected
processes can be computed as the unique fixed point of a
single systemF : S → S in direct feedback with itself [16].
If t is the least time at which two signalss1 and s2 differ,
we say that the distance betweens1 ands2 is

d(s1, s2) =
1
2t

This is theCantor metric [15]. A systemF : S → S is
delta causalif it is a delta contraction, that is, there exists a
δ ∈ (0, 1) such that for alls1, s2 ∈ S,

d(F (s1), F (s2)) ≤ δ · d(s1, s2)

From the Banach fixed point theorem, such a system will
have a unique fixed point, which we can take as the meaning
of the feedback composition resulting from connecting the
output of the system to the input of the system. In this case,
we constructively compute the fixed point by starting with a
guess signal, says ∈ S. If we let∆ = log2

1
δ , then for alln ∈

N andt < n∆, fn(s)(t) = fix(F )(t), wherefix(F ) : S → S
is the unique fixed point ofF . Note however, that using this
tag set, we cannot describe many discrete-event and hybrid
systems, because such systems are not delta contractions.
The problem arises in systems where multiple events occur
in zero time.

In [6], the authors argue that a better model for such
systems uses the tag setT = R+×N. This is thesuperdense
model of time introduced in [7], [8]. As an example, consider
a billiards table on which balls can roll and collide. For
simplicity, neglect friction and rolling effects and assume
all collisions are perfectly elastic. If we line up balls1,
2, and 3 as in Figure 1, and ball1 has an initial velocity
v moving towards ball2, then when it hits ball2, it will

2An ordered setA is order isomorphic with an ordered setB if there
exists a mapo : A → B such that fora1, a2 ∈ A, a1 ≤A a2 if and only
if o(a1) ≤B o(a2).



transfer its energy and momentum and stop. Ball2 will then
instantaneouslytransfer its energy and momentum to ball3
and stop, and ball3 will now move away from the other
balls with velocityv. At the physical timet of the collision,
we are required to say that ball1 collides with ball2 before
ball 2 collides with ball3. We might therefore say that ball
1 collides with ball2 at tag (t, 0) and ball2 collides with
ball 3 at tag(t, 1). We say(t1, n1) ≤ (t2, n2) if t1 < t2 or if
t1 = t2 andn1 ≤ n2. This is thelexicographic order. More
interesting examples of such behavior can be found in [10].

If in our signal model, we lets : T → V with this
superdense model of time, what should the metric between
signals be? Instead of a metric, we use a generalized ul-
trametric [14]. A generalized ultrametric over a setX is a
function d : X × X → Γ, where(Γ,v) is a partial order
with minimum element⊥, and for allx, y, z ∈ X:

1) d(x, y) = ⊥ if and only if x = y
2) d(x, y) = d(y, x)
3) d(x, y) v γ andd(y, z) v γ implies d(y, z) v γ

Note that the Cantor metric is a generalized ultrametric,
where Γ = R+. For superdense-timed systems, we define
a generalized ultrametricd on S such that givens1, s2 ∈ S,
d(s1, s2) is the largestdown set3 D of T such that

s1 � D = s2 � D (1)

wheresi � D is the restriction ofsi to the domainD, that
is

si � D =
{
(t, v)

∣∣t ∈ D ∧ s(t) = v
}

We say that partial functionss1 and s2 from T to V are
equal if for eacht ∈ T , s1(t) is defined if an only ifs2(t) is
defined ands1(t) = s2(t). If we letD be the set of down sets
of T , and we orderD with the reverse inclusion operator⊇,
thend : S × S → D is an ultrametric, with⊥ = T . We will
later provide an extension of the Banach fixed point theorem
which lets us constructively find a unique fixed point for a
class of systems which can generate more than one event in
zero time.

An existing theorem [13] about functions over generalized
ultrametrics is sufficient to tell us that a unique fixed point
exists for these systems. However, unlike the Banach fixed
point theorem, this theorem provides no way to construct the
unique fixed point. Our extension of the Banach fixed point
theorem is not restricted to generalized ultrametrics. This is
important since not all metrics are generalized ultrametrics.
(The Euclidean metric is an important example.) Instead, we
will introduce petrics, a strict generalization of metrics. We
note that this approach is in line with other generalizations
of the Banach fixed point theorem in the study of feedback
semantics, such as the generalization for partial metrics given
in [9].

3A subsetA of an ordered setB is a down set ifa ∈ A, b ∈ B and
b ≤ a implies b ∈ A [2].

II. A N EXTENSION OFMETRICS

We define apomonoid(as in partially orderedmonoid4)
to be any〈Γ,v,⊕,⊥〉 whereΓ is a set,〈Γ,v〉 is a partial
order with minimum element⊥, and〈Γ,⊕,⊥〉 is a monoid
with monoid operator⊕ and identity element⊥. As an
example,〈R+,≤,+, 0〉, whereR+ is the set of nonnegative
real numbers, is a pomonoid. If〈Γ,v〉 is any join-semilattice
with minimum element⊥, then〈Γ,v,∨,⊥〉 is a pomonoid.
Recall that a join-semilattice is a partial order where the
join γ1 ∨ γ2, or least upper bound of{γ1, γ2}, is defined
for any γ1, γ2 ∈ Γ. For any natural numbern ∈ N and
γ0, . . . , γn ∈ Γ we define

n⊕
i=0

γi := γ0 ⊕ · · · ⊕ γn

As another example, let〈D,⊕,⊗〉 be a dioid [1], that is,
∃e, ε ∈ D such that for alla, b, c ∈ D:

1) (a⊕ b)⊕ c = a⊕ (b⊕ c) and(a⊗ b)⊗ c = a⊗ (b⊗ c).
2) a⊕ b = b⊕ a.
3) (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c).
4) a⊕ ε = a anda⊗ e = e⊗ a = a.
5) a⊗ ε = ε⊗ a = ε.
6) a⊕ a = a.

Note that a ≤ b in D if and only if a = a ⊕ b. Then
〈D,≤,⊕, ε〉 is a pomonoid.

Given a setX and a pomonoid〈Γ,v,⊕,⊥〉, we define a
petric (as in pomonoid metric) to be anyd : X × X → Γ
such that for allx, y, z ∈ X:

1) d(x, y) = ⊥ if and only if x = y
2) d(x, y) = d(y, x)
3) d(x, z) v d(x, y)⊕ d(y, z)

Note that any metric is a petric over the pomonoid
〈R+,≤,+, 0〉. A generalized ultrametricd : X × X → Γ
is a petric over the pomonoid〈Γ,v,∨,⊥〉 if the least upper
boundγ1 ∨ γ2 exists for any twoγ1, γ2 ∈ Γ.

For a petricd, we define aball of radius γ ∈ Γ with
centerx ∈ X as

Bγ(x) = {y ∈ X|d(x, y) v γ}

We define an infinite sequence(γ0, γ1, . . .) over Γ to be
decayingif there exists a down setD ⊆ Γ, that includes
at least one elementγ 6= ⊥, such that for allε ∈ D with
ε A ⊥, there exists ann ∈ N such that for allk ≥ n,
γk @ ε. We define an infinite sequence(x0, x1, . . .) over X
to beCauchyif there exists a down setD ⊆ Γ, that includes
at least one elementγ 6= ⊥, such that for allε ∈ D with
ε A ⊥, there exists ann ∈ N such that for allk,m ≥ n,
d(xk, xm) @ ε. We say that a sequence(x0, x1, . . .) over X
convergesto x ∈ X if the sequence(d(x0, x), d(x1, x), . . .)
decays overΓ. We define the setX to beCauchy completeif
for all Cauchy sequences(x0, x1, . . .) overX, there exists a
uniquex ∈ X such that the sequence(x0, x1, . . .) converges
to x. If the petric is a metric, it is easy to verify that these

4This term was inspired by the termtomonoiddefined astotally ordered
monoid in [3]



concepts are equivalent to the corresponding definitions for
metrics [11]. If a petricd is a generalized ultrametric andX
is Cauchy complete, we note thatX is spherically complete
[14], that is, the intersection of every chain of balls, with
respect to the inclusion order, is nonempty.

We define a functionf : X → X to be astrict contraction
if

∀x, y ∈ X. x 6= y ⇒ d(f(x), f(y)) @ d(x, y)

If d is a generalized ultrametric, andf is a strict contraction,
thenf has a unique fixed point [13]. However, we may have
no way to construct the unique fixed point. Note that every
delta-contraction over a metric space is a strict contraction.
It also has the additional property that if givenx, y ∈ X and
i ∈ N, we define

γi =
∞∑

n=i

d(fn(x), f (y))

where

fn(x) =

{
x n = 0
f(fn−1(x)) n > 0

then the sequence(γ0, γ1, . . .) over R+ decays. To see this
note that

γi ≤
∞∑

n=i

δnd(x, y) = d(x, y) · δi

1− δ

It is this property that the Banach fixed-point theorem
exploits to give a constructive method to compute the unique
fixed point for delta-contractions with respect to a metric. In
the case of metrics, every delta contraction is a strict contrac-
tion, but not every strict contraction is a delta contraction.

We will define a similar notion with respect to petrics.
First note that the setΓ may have no notion of multiplication,
so we cannot always say that there existsδ ∈ Γ with δ A 0
such thatd(f(x), f(y)) v δ⊗d(x, y) for some multiplication
operator⊗ . We are then tempted to require that the sequence
(γ0, γ1, . . .) defined by

γi =
∞⊕

n=i

d(fn(x), fn(y)) (2)

decays. We have not yet defined infinite summations how-
ever. If there exists aγ ∈ Γ that is the least upper bound of
the set {

k⊕
n=i

γn

∣∣∣∣∣k ∈ N ∧ k ≥ i

}
then we can define that

γ =
∞⊕

n=i

γn

If we assume for a minute that all infinite summations are
well defined overΓ, then we define a strict contractionf :
X → X to be adecaying contractionif the sequence(γ0, γ1)
defined by Equation 2 decays for allx, y ∈ X. We can define

decaying contractions even when infinite summations are not
defined. Givenx, y ∈ X and i ∈ N, let

B(x, y)i =

{
k⊕

n=i

d(fn(x), fn(y))

∣∣∣∣∣k ∈ N ∧ k ≥ i

}
(3)

We define a strict contractionf : X → X to be adecaying
contraction if for all x, y ∈ X, there exists a decaying
sequence(γ0, γ1, . . .) over Γ such that eachγi is an upper
bound forB(x, y)i. When infinite summations exist, this is
equivalent to saying that the sequence of Equation 2 decays
for all x, y ∈ X. We can now generalize the Banach fixed-
point theorem.

Theorem 1 (Constructive Fixed-Point Theorem):If X is
Cauchy complete with respect to petricd, and iff : X → X
is a decaying contraction, thenf has a unique fixed point
fix(f) ∈ X. Moreover, for anyx ∈ X, the sequence
(f0(x), f1(x), . . .) converges tofix(f).

Proof: We follow the proof for the standard Banach
fixed-point theorem, making modifications where needed.
Let x be an arbitrary element ofX. Construct a decaying
sequence(γ0, γ1, . . .) such that eachγi is an upper bound
for the setB(x, f(x))i defined in Equation 3.

Note, as the base case for an inductive argument, that for
any n ∈ N,

d(fn(x), fn+1(x)) v
n⊕

k=n

d(fk(x), fk(f(x)))

since both sides of the equation are equal. Now suppose there
is anp > 0, such that for alln ∈ N andm ∈ {n+1, . . . , n+
p},

d(fn(x), fm(x)) v
m−1⊕
k=n

d(fk(x), fk(f(x)))

Then by the triangle inequality,

d(fn(x), fn+(p+1)(x)) v d(fn(x), fn+p(x))⊕
d(fn+p(x), fn+p+1(x))

v

(n+p)−1⊕
k=n

d(fk(x), fk(f(x)))

⊕

d(fn+p(x), fn+p+1(x))

=
n+(p+1)−1⊕

k=n

d(fk(x), fk(f(x)))

By induction, we conclude that for anyn, m ∈ N with m >
n,

d(fn(x), fm(x)) v
m−1⊕
k=n

d(fk(x), fk(f(x)))

v γn

From this, (f0(x), f1(x), . . .) must be a Cauchy se-
quence. Letfix(f) be the unique element ofX such that
(f0(x), f1(x), . . .) converges tofix(f). Since

d(f i+1(x), f(fix(f))) v d(f i(x),fix(f))



for eachi ∈ N, the sequence(f1(x), f2(x), . . .) converges to
f(fix(f)), but then so must the sequence(f0(x), f1(x), . . .).
SinceX is Cauchy complete,

fix(f) = f(fix(f))

Now suppose forz ∈ X, that z = f(z). If z 6= fix(f),
then

d(z,fix(f)) = d(f(z), f(fix(f)))
@ d(z,fix(f))

a contradiction. Thusfix(f) is the unique fixed point off .

The key to the constructiveness of this theorem is that
each point in the sequence(f0(x), f1(x), . . .) is closer to
the unique fixed point than the previous. We will see how
this is useful for our generalized ultrametric.

III. F EEDBACK SEMANTICS

Let the setS of signals be the set of partial maps from
the superdense time tag setT = R+ × N to some value set
V . As defined in Equation 1, note thatd : S × S → D is
our petric with respect to the pomonoid〈D,⊇,∩, T 〉, where
D is the set of down sets ofT . Given (t, n) ∈ T , we define

D[t, n] = {(t′, n′) ∈ T |(t′, n′) ≤ (t, n)}
D(t, n) = {(t′, n′) ∈ T |(t′, n′) < (t, n)}

to be theclosedandopendown-sets generated by(t, n). We
define

D(t,∞) = {(t′, n′) ∈ T |t′ ≤ t}

to be theinfinitedown set generated byt. It is easy to see that
each of these is a down set. For our total order onT , note
that D is a down set ofT if (tD, nD) ∈ D and (t, n) ∈ T ,
with (t, n) ≤ (tD, nD), then(t, n) ∈ D. We can characterize
all down sets with these three sets plusT itself.

Lemma 1: If D is a down set ofT , then it has one of the
following four forms:

1) D[t, n] for some(t, n) ∈ T ,
2) D(t, n) for some(t, n) ∈ T ,
3) D(t,∞) for somet ∈ R+, or
4) T .

Proof: SupposeD is a down set ofT . If D = ∅, then
D = D(0, 0). Consider nonemptyD. If D has a maximal
element(t, n), thenD = D[t, n]. If D is bounded above by
some(t, n) ∈ T , thenT \D is anupper set, that is if

1) (t′, n′) ∈ T \D,
2) (t, n) ∈ T , and
3) (t′, n′) ≤ (t, n),

then (t, n) ∈ T \D. If T \D has a minimal element(t, n),
thenD = D(t, n).

Now if D is bounded above without maximal element
andT \D is without a minimal element, note thatT \D is
bounded below, sinceD is nonempty. If we let

T = {t ∈ R+|∃n ∈ N.(t, n) ∈ D}

then T must have an upper bound inR+ becauseD does
in T . If it also has a maximal elementt, then becauseD
has no maximal element, thenD must equalD(t,∞). If T
has no maximal element, then from real analysis, we know
that R+ \ T has a minimal elementt. Since (t, 0) cannot
belong toD, then (t, 0) is a least upper bound forD, but
then (t, 0) is a minimal element forT \D, a contradiction.
So in this case,D must equalD(t,∞). Finally, if D has no
upper bound,D must equalT itself.

Given a systemF : S → S, suppose we have the
following: There exists a∆ ∈ R+ such that for allt ∈ R+,
there exists ae(t) ∈ N such that for alls1, s2 ∈ S:

1) n < e(t) and s1 � D[t, n] = s2 � D[t, n] implies
F (s1) � D[t, n + 1] = F (s2) � D[t, n + 1].

2) n ≥ e(t) and s1 � D[t, n] = s2 � D[t, n] implies
F (s1) � D[t + ∆, 0] = F (s2) � D[t + ∆, 0].

3) F (s1)(0, 0) = F (s2)(0, 0).

We define such a system to beeventually delta causal. We
can interpret this as saying that at each time the system may
stutter a finite number of times before eventually advancing
time by delta. The functione, which we call theeventuality
function, tells us how many times a system may stutter at
each time before delaying its response to an input value. In
many examples, the functione might simply be a constant
if there is a maximum number of responses to events that
can happen at any given time. In our pool ball model, the
number of collisions might be bounded by three for example.
The third condition requires that the system always have the
same initial value, if any. In practice, this may be a parameter
that affects the fixed point of the system in the same way
the initial value of a differential equation affects its solution.

We note that every eventually delta causal isstrictly causal
[12]. That is, for alls1, s2 ∈ S,

d(F (s1), F (s2)) @ d(s1, s2)

From Theorem 1 of [12], any strictly causal system has a
unique fixed point, but like the fixed point theorem of [13],
this theorem provides no method to construct the unique
fixed point. In fact, this theorem could have been proven
as a direct corollary of the fixed-point theorem of [13], but
the approach used in [12] was different. For eventually delta
causal systems, we can construct a fixed point.

Theorem 2:If F : S → S is eventually delta causal, then
F is a decaying contraction.

Proof: We first prove that for alls1, s2 ∈ S with s1 6=
s2, thatd(F (s1), F (s2)) ⊃ d(s1, s2). This proof is a bit long,
since we must consider all the cases in Lemma 1. Suppose
d(s1, s2) = ∅, or s1(0, 0) 6= s2(0, 0). Then, by the third
property of eventually delta causal,

d(F (s1), F (s2)) ⊇ D[0, 0]
⊃ ∅
= d(s1, s2)



Now supposed(s1, s2) = D[t, n] for some(t, n). If n <
e(t), then by the first property

d(F (s1), F (s2)) ⊇ D[t, n + 1]
⊃ D[t, n]
= d(s1, s2)

If n ≥ e(t), then by the second property

d(F (s1), F (s2)) ⊇ D[t + ∆, 0]
⊃ D[t, n]
= d(s1, s2)

In the case thatd(s1, s2) = D(t, n) for some (t, n) with
t 6= 0, let

τ =

{
t
2 t < ∆

2

t− ∆
2 t ≥ ∆

2

Thend(s1, s2) ⊃ D[τ, e(τ)], so

d(F (s1), F (s2)) ⊇ D[τ + ∆, 0]
⊃ D(t, n)
= d(s1, s2)

If d(s1, s2) = D(0, n), then eithern = 0 and s1(0, 0) 6=
s2(0, 0) or d(s1, s2) = D[0, n−1], so we have already proven
that d(F (s1), F (s2)) ⊃ d(s1, s2). If d(s1, s2) = D(t,∞),
then

d(F (s1), F (s2)) ⊇ D[t + ∆, 0]
⊃ D(t,∞)
= d(s1, s2)

sinces1(t, e(t)) = s2(t, e(t)). Finally, if d(s1, s2) = T , then
s1 = s2, so by Lemma 1, we are done.

We must now show that for eachs1, s2 ∈ S, the sequence
(γ0, γ1, . . .) where

γi =
∞⋂

n=i

d(Fn(s1), Fn(s2))

decays, or converges toT . By the strict contraction property,
note that for eachi,

γi = d(F i(s1), F i(s2))

We construct the sequence((t, n)0, (t, n)1, . . .) of super-
dense times with

(t, n)0 = (0, 0)
...

(t, n)e(0) = (0, e(0))
(t, n)e(0)+1 = (∆, 0)

...

(t, n)e(0)+e(∆)+1 = (∆, e(∆))
(t, n)e(0)+e(∆)+2 = (2∆, 0)

...

(t, n)e(0)+e(∆)+e(2∆)+2 = (2∆, e(2∆))
...

Then for i ∈ N, we let

D0 = ∅
Di+1 = D[(t, n)i]

Note that D0 ⊆ D1 ⊆ · · · . Let s1 and s2 be arbitrary
sequences. ClearlyD0 ⊆ d(s1, s2). From the third rule of
eventually causal

D1 = D(0, 0) ⊆ d(F (s1), F (s2))

Now suppose forDi = D[k∆, n], thatn < e(k∆) andDi ⊆
d(F i(s1), F i(s2)). Then by the first rule of eventually causal

Di+1 = D[k∆, n + 1]

⊆ d(F i+1(s1), F i+1(s1))

If Di = D[k∆, e(k∆)] and Di ⊆ d(F i(s1), F i(s2)), then
by the second rule of eventually causal

Di+1 = D[(k + 1)∆, 0]

⊆ d(F i+1(s1), F i+1(s1))

Now suppose(t, n) ∈ T . Let

k′ = min{k ∈ N|t < k∆}

Note thatk′ must be greater than0. Let

i′ = k′ − 1 +
k′∑

j=0

e(k∆)

Then

Di′ = D(k∆, 0)
3 (t, n)

Thus,
∞⋃

n=0

Di = T

We can now provide a feedback semantics for eventually
delta causal systems. Because our fixed point theorem is



constructive, we can provide a method to compute the unique
fixed point.

Corollary 1: If F : S → S is eventually delta causal, then
it has a unique fixed point.

Proof: We must only show thatS is Cauchy complete,
and then the result is immediate from Theorems 1 and 2. Let
(s0, s1, . . .) be a Cauchy sequence overS. There is some
down setC of the pomonoid〈D,⊇,∩, T 〉with at least one
elementD 6= T such that for allε ∈ C with ε ⊂ T there is
a p ∈ N such that for allk,m ≥ p,

d(sk, sm) ⊃ ε (4)

We construct a signals ∈ S as follows: Given tag(t, n) ∈ T ,
there must be anε ∈ C such that (t, n) ∈ ε and a
correspondingp for all k,m ≥ p, sk andsm satisfy Equation
4. For such signalssk(t, n) = sm(t, n) = sp(t, n). We let
s(t, n) = sp(t, n). Then the Cauchy sequence converges to
s.

Moreover, we can construct the fixed point as follows:
Let s be any element ofS. Let ((t, n)0, (t, n)1, . . .) be
the sequence of superdense times defined in the proof of
Theorem 2. Then for eachi ∈ N

F i+1(s) � D[(t, n)i] = fix(F ) � D[(t, n)i]

That is, if we applyF i+1 times tos, the result will give us
all the information infix(F ) up to superdense time(t, n)i.
This gives us an obvious strategy to simulate a system with
feedback. To calculatefix(F )(t, n), apply F i + 1 times to
some arbitrary signals, wherei is the minimum integer such
that (t, n)i ≤ (t, n).

IV. CONCLUSIONS

In the study of the feedback semantics of timed systems
with the superdense model of time, we introduced the con-
cept of pomoinoid, which is a partially-ordered monoid with
identity bottom. We showed natural mappings fromR+ and
dioids to pomonoids. We also introduced the corresponding
concept of petric, which maps pairs from a setX to a
pomonoidΓ. We extended the Banach fixed-point theorem
for petrics. This extension is useful because it is constructive;
it provides a way to approximate a unique fixed point through
a sequence of computations.

We used this to introduce a generalization of delta-causal
systems, called eventually delta-causal systems, that allow
multiple events to occur in zero time. We used our fixed point
theorem to show how we can construct the unique fixed-point
signal of any eventually delta-causal system.
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