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A Constructive Fixed-Point Theorem and the Feedback Semantics of
Timed Systems

Adam Cataldo, Edward Lee, Xiaojun Liu, Eleftherios Matsikoudis, and Haiyang Zheng

Abstract— Deterministic timed systems can be modeled as Fig. 1.
fixed point problems [15], [16], [4]. In particular, any connected
network of timed systems can be modeled as a single system
with feedback, and the system behavior is the fixed point of the
corresponding system equation, when it exists. Fodelta-causal
systems, we can use th€antor metricto measure the distance
between signals and the Banach fixed-point theorem to prove
the existence and uniqueness of a system behavior. Moreover,
the Banach fixed-point theorem isconstructive it provides a

method to construct the unique fixed point through iteration. isomorphi@ with some subset oRN. It is a continuous-time
In this paper, we extend this result to systems modeled with signal if dom(s) = T. We let S be the set of signals. A

the superdensamodel of time [7], [8] used in hybrid systems. . . . .
We call the systems we consideeventually delta-causala strict system#” is a function fromS' to 5. (In its full generality, a

generalization of delta-causal in which multiple events may System may have multiple input and output signals.)

be generated on a signal in zero time. With this model of Note that the denotation of any network of connected
time, we can use ageneralized ultrametric[14] instead of a processes can be computed as the unique fixed point of a
metric to model the distance between signals. The existence and single systen¥ : S — S in direct feedback with itself [16].

uniqueness of behaviors for such systems comes from the fixed- . . . . .
point theorem of [13], but this theorem gives no constructive If ¢ is the least time at which two signals and s, differ,

A physical system can generate events simultaneously

method to compute the fixed point. we say that the distance betweenand ss is
This leads us to definepetrics a generalization of metrics, 1

which we use to generalize the Banach fixed-point theorem d(s1,82) = 57

to provide a constructive fixed-point theorem. This new fixed- 2

point theorem allows us to construct the unique behavior of Thjs is the Cantor metric[15]. A systemF : S — S is
eventually delta-causal systems. delta causaif it is a delta contraction, that is, there exists a

| INTRODUCTION 0 € (0,1) such that for allsy, s2 € S,

Perhaps the best known use of Banach’s classic fixed point d(F(s1), F(s2)) < 6 - d(s1, 52)
theorem is in providing conditions for the existence of &
unique solution to a differential equation. In general, thtf,1
Banach fixed point theorem says that for any metric s’pac%
X, afunctionf : X — X has a unique fixed point if it is a
delta contraction that is, if there exist$ € (0, 1) such that
forall z,y € X,

rom the Banach fixed point theorem, such a system will
ave a unique fixed point, which we can take as the meaning
f the feedback composition resulting from connecting the
output of the system to the input of the system. In this case,
we constructively compute the fixed point by starting with a
guess signal, sayec S. If we let A = log, % then for alln €

d(f(z), f(y)) <6 -d(z,y) N andt < nA, f™(s)(t) = fix(F)(t), wherefix(F) : S — S

is the unique fixed point of". Note however, that using this

The Banach fixed point theoremdsnstructivein that it tells  tag set, we cannot describe many discrete-event and hybrid
us how to construct the unique fixed point. If we start withsystems, because such systems are not delta contractions.
any guessr € X, then the sequence, f(z), f(f(x)),... The problem arises in systems where multiple events occur
converges to the unique fixed point. in zero time.

This theorem has been used in timed discrete-event sys-In [6], the authors argue that a better model for such
tems to reason about when a system with feedback hassgstems uses the tag $ét= R, x N. This is thesuperdense
unique behavior [15], [16], [4]. In the language of [4], amodel of time introduced in [7], [8]. As an example, consider
signal s is a partial function from theag set? = R, to  a billiards table on which balls can roll and collide. For
some sell” of values. A tag set for a signal model providessimplicity, neglect friction and rolling effects and assume
a concept of time. Choosing an appropriate tag set for al collisions are perfectly elastic. If we line up balls
system model is part of the design process described ) and 3 as in Figure 1, and ball has an initial velocity
[5]. The signal is adiscrete-event signaf dom(s) is order v moving towards ball2, then when it hits bal, it will

1A set X is a metric space if there exists a functidn X x X — Ry 2An ordered setd is order isomorphic with an ordered sBt if there
such that for allz,y,z € X, 1) d(z,y) = 0 if and only if z = y, 2)  exists a map : A — B such that fora;,as € A, a1 <4 a2 if and only
d(z,y) = d(y, z), and 3)d(z, z) < d(z,y) + d(z, 2). if o(a1) <p o(a2).



transfer its energy and momentum and stop. Bailill then II. AN EXTENSION OFMETRICS

instantaneouslyransfer its energy and momentum to ball  \y\e define apomonoid(as in partially orderedmonoid)
and stop, and bal8 will now move away from the other {5 pe any(I',C, @, L) whereT is a set,(I',C) is a partial
balls with velocityv. At the physical timef of the collision,  grqer with minimum element., and (T, &, L) is a monoid
we are required to say that ballcollides with ball2 before  \ith monoid operator® and identity elementL. As an
ball 2 collides with ball3. We might therefore say that ball example,(R,, <, +,0), whereR, is the set of nonnegative

1 collides with ball2 at tag(¢,0) and ball2 collides with  og numbers, is a pomonoid. {F, C) is any join-semilattice
ball 3 at tag(, 1). We say(t1, n1) < (ta,n2) if t1 <ts Orif  with minimum elementL, then(T,C, v, L) is a pomonoid.

t1 =ty andn, < n,. This is thelexicographic orderMore  Reaca|l that a join-semilattice is a partial order where the
interesting examples of such behavior can be found in [101]oin Y1V 72, or least upper bound ofy, .}, is defined

If in our Signal model, we lets : T — V with this for any y1,v € I'. For any natural numben € N and

superdense model of time, what should the metric betweepy, ... -, e I" we define

signals be? Instead of a metric, we use a generalized ul- n

trametric [14]. A generalized ultrametric over a S€tis a @% =D B
functiond : X x X — T, where(T',C) is a partial order Par

with minimum elemen nd for all X: - .
um elementl, and for allz, y, = € As another example, letD, &, ®) be a dioid [1], that is,

1) d(z,y) = Lifand only if z =y Je,e € D such that for alla, b, c € D:
2) d(x,y) = d(y,z) o 1) (a@b)®c=ad(b®c) and(a®@b)@c=a® (b&c).
3) d(lay) E 0 andd(yaz) E Y Implles d(y,Z) E Y 2) a P b= b@a

Note that the Cantor metric is a generalized ultrametric, 3) (¢ ©b)®c=(a®c)® (b® c).
whereI" = R,. For superdense-timed systems, we define 4) a®e=aanda®e=e®a = a.

a generalized ultrametri¢ on S such that giversy, ss € .5, 5 a®e=ec®a=c¢.
d(s1,s2) is the largestlown set D of T such that 6) a®a=a.
Note thata < b in D if and only if a = a @& b. Then
s1|D=sy | D 1) (D,<,®,¢) is a pomonoid.

Given a setX and a pomonoidl’, C, @, 1), we define a
wheres; | D is the restriction ofs; to the domainD, that Petric (as in pomonoid netric) to be anyd : X x X — T’
is such that for allz,y, z € X:
1) d(z,y)=Lifandonlyifz =y
2) d(x,y) = d(y,x)
We say that partial functions; and s, from T" to V' are Nos;)e dt(rfa;:)agrlj(:fr;zejt)rieé di(syvz) petric over the pomonoid

equal if for eacht € T, s1(t) is defined if an only ifsy(t) is . .

defined ands; () = so(t). If we let D be the set of down sets .<R+’ < TL’0>' A generallzeq uItrametrld_ P X x X =T
of T, and we ordetD with the reverse inclusion operator, IS a petric over the pomonoi’, C, v, 1) if the least upper
thend : S x S — D is an ultrametric, withL = 7". We will bognf% N zr2| edXISVt/S fgr ]f’il:y ;VEOVI;,sz recfi. T with
later provide an extension of the Banach fixed point theorem n? ra pi( Cd, we define aball of radius y <

which lets us constructively find a unique fixed point for generr € A as
class of systems which can generate more than one event in By(z) ={y € X|d(z,y) T~}

zero time.

An existing theorem [13] about functions over generalize
ultrametrics is sufficient to tell us that a unique fixed poin
exists for these systems. However, unlike the Banach fixeac] )
point theorem, this theorem provides no way to construct te = there _EX'StS am < N such that for allk > n,
unique fixed point. Our extension of the Banach fixed point* = - We define an infinite sequenteo, 21,...) over X
theorem is not restricted to generalized ultrametrics. This 12 beCauchyf there exists a down sdb C T, that mcluQeS
important since not all metrics are generalized ultrametric&! least one elemem # L, such that for alk € D with
(The Euclidean metric is an important example.) Instead, 3 L, there exists am € N such that for alls,m > n,

will introduce petrics a strict generalization of metrics. We (@, 2m) C . We say that a sequenteo, o, ...) overX
onvergego x € X if the sequencéd(xo, z),d(z1,x),...)

note that this approach is in line with other generalization . .
of the Banach fixed point theorem in the study of feedbac ecays ovel'. We define the sek to beCauchy comp!etef
all Cauchy sequencedsy, z1, .. .) over X, there exists a

semantics, such as the generalization for partial metrics giv o
in [9]. uniquez € X such that the sequen¢ey, z1, ...) converges

to z. If the petric is a metric, it is easy to verify that these

si I D={(t,v)|teD A s(t)=v}

e define an infinite sequendgo,y1,...) overI' to be
ecayingif there exists a down seb C T, that includes
least one element # 1, such that for alle € D with

3A subsetA of an ordered seB is a down set ifa € 4, b € B and 4This term was inspired by the tertamonoiddefined agotally ordered
b < aimpliesb € A [2]. monoidin [3]



concepts are equivalent to the corresponding definitions fdecaying contractions even when infinite summations are not
metrics [11]. If a petriad is a generalized ultrametric and  defined. Givenr,y € X andi € N, let

is Cauchy complete, we note that is spherically complete

[14], that is, the intersection of every chain of balls, with B(z {@ d(fM (), f(y))
respect to the inclusion order, is nonempty. e

We define a functiorf : X — X to be astrict contraction We define a strict contractiofi: X — X to be adecaying
contraction if for all z,y € X, there exists a decaying
Ve, y€ X.x#y = d(f(z), f(y) T d(z,y) sequenceo, 71, . ..) over I' such that each; is an upper
If d is a generalized ultrametric, arfdis a strict contraction, bou_nd for B(z, y)?' When infinite summations ex_lst, this is
equivalent to saying that the sequence of Equation 2 decays

then f has a unique fixed point [13]. However, we may hav . X
no way to construct the unique fixed point. Note that eve%orir?t”tﬁégrgmx We can now generalize the Banach fixed-

delta-contraction over a metric space is a strict contractioh. . i . R

It also has the additional property that if giveny € X and Theorem 1 (Cons_trucnve Fixed-Point Thgoren‘f).X IS

) . Cauchy complete with respect to petticand if f : X — X

i € N, we define . ) . . . .
is a decaying contraction, thefi has a unique fixed point
fix(f) € X. Moreover, for anyz € X, the sequence

keN A k:zi} @)

if

= Zd(f”(x),f(y)) (f°(x), f*(x),...) converges tdix(f).
n=i Proof: We follow the proof for the standard Banach
where fixed-point theorem, making modifications where needed.
n x n=20 Let 2 be an arbitrary element ok. Construct a decaying
fM(@) = F(FY(z) n>0 sequenc€o,71,---) such that eachy; is an upper bound

for the setB(z, f(x)); defined in Equation 3.
then the sequenceyy, 71, ...) over R, decays. To see this Note, as the base case for an inductive argument, that for
note that anyn € N,
- n 51 n n+1 k
wsza d(z,y) = d(z,9) - T d(f"(x), f E@df ()))

k=n

It is this property that the Banach fixed-point theore@ince both sides of the equation are equal. Now suppose there
exploits to give a constructive method to compute the uniqué anp > 0, such that for alh € Nandm € {n+1,...,n+
fixed point for delta-contractions with respect to a metric. Ip},

the case of metrics, every delta contraction is a strict contrac- m—1
tion, but not every strict contraction is a delta contraction. d(f™(z), f™(z)) C @ d(f*(x), f*(f(z)))
We will define a similar notion with respect to petrics. k=n

First note that the sét may have no notion of multiplication, Then by the triangle inequality,
so we cannot always say that there exists I" with 6 30

such thatl(f(z), f(y)) C 6®d(z, y) for some multiplication d(f"(z), "™V (x)) C d(f"(z), ["*(x)) ®
operatorg . We are then tempted to require that the sequence d(f"?(x ) Pt (e)
(’}/0, Y- - ) defined by (n+p)—
cC | @ d(f’“(w),f’“(f(x))) @
@d (@), () @ k=n
d(f" (), [P ()
decays. We have not yet defined infinite summations how- n+(p+1)-1
ever. If there exists g € I that is the least upper bound of = B diff @), fF(f=)
the set k=n
{ EB% keN A k> Z} Sy induction, we conclude that for any,m € N with m >
: - m—1
then we can define that d(f"(z), f™(z)) T @ d(f* (), 5 (f(2)))
9] k=n
Y= @ Tn E

. o . From this, (f°(x), f}(x),...) must be a Cauchy se-
If we assume for a minute that all infinite summations ar‘auence Letfix(/) be the unique element ok such that
well defined overT”, then we define a strict contractigh: '

0 1 H
X — X to be adecaying contractioif the sequencéyy, v1) (F(=). f (x)l’ ) converges tCﬁX(f)v' Since
defined by Equation 2 decays for ally € X. We can define d(f T (x), f(fix(f))) C d(f'(x), fix(f))



for eachi € N, the sequencéf!(x), f%(x),...) converges to then7 must have an upper bound ik, becauseD does
f(fix(f)), but then so must the sequen(@®(z), f(z),...). in T. If it also has a maximal elemernt then becauseé)

Since X is Cauchy complete, has no maximal element, thdh must equalD(t, o). If T
. has no maximal element, then from real analysis, we know

fix(f) = f(tx(f)) that R, \ 7 has a minimal element Since (¢,0) cannot

Now suppose for: € X, thatz = f(z). If = # fix(f), belong toD, then(¢,0) is a least upper bound fab, but

then then (¢,0) is a minimal element foff’ \ D, a contradiction.

So in this caseD must equalD(¢, co). Finally, if D has no

d(z, fix(f)) = d(f(2), f(fix(f))) upper bound,D must equall itself. n

C d(z, fix(f)) Given a systemF : S — S, suppose we have the

following: There exists a\ € R, such that for allt € R,

a contradiction. Thusix(f) is the unique fixed point of. there exists a(t) € N such that for allsy, s € S-

]
The key to the constructiveness of this theorem is that 1) n < e(t) ands; | D[t,n] = s2 | D[t,n] implies
each point in the sequendg®(z), f!(z),...) is closer to F(s1) | Dlt,n+ ] F(s2) | [ + 1].
the unique fixed point than the previous. We will see how 2) n > e(t) and sy | D[t,n] = D[t,n] implies
this is useful for our generalized ultrametric. F(s1) [Dlt+ A 0] F(s2) | [t + A, 0].

3) F(51)(0,0) = F(s2)(0,0).

We define such a system to beentually delta causalVe
can interpret this as saying that at each time the system may
stutter a finite number of times before eventually advancing
time by delta. The functiom, which we call theeventuality
function tells us how many times a system may stutter at
each time before delaying its response to an input value. In
Dit,n] ={(t',n") e T|(¢',n') < (t,n)} many examples, the function might simply be a constant
D(t,n) = {(t',n) € T|(t',n) < (t,n)} if there is a maximum number of responses to events that
can happen at any given time. In our pool ball model, the
number of collisions might be bounded by three for example.
to be theclosedandopendown-sets generated gy, n). We The third condition requires that the system always have the
define same initial value, if any. In practice, this may be a parameter
D(t,00) = {(t',n') e T|t' < t} that affects the fixed point of the system in the same way
the initial value of a differential equation affects its solution.

to bﬁ thfetrr:fmlte'dowr; set gentergted hiyl: 'f Tasﬁ to see tthat We note that every eventually delta causadtigctly causal
each of these is a down set. For our total orderlgmote [12]. That is, for allsy, ss € S

that D is a down set of" if (tp,np) € D and(t,n) € T,
with (¢,n) < (tp,np), then(t,n) € D. We can characterize
all down sets with these three sets pllistself.

Lemma 1:1f D is a down set off, then it has one of the

Ill. FEEDBACK SEMANTICS

Let the setS of signals be the set of partial maps from
the superdense time tag sét= R, x N to some value set
V. As defined in Equation 1, note thdt: S x S — D is
our petric with respect to the pomono{®, >, N, T"), where
D is the set of down sets df. Given (¢,n) € T, we define

d(F(Sl), F(SQ)) [ d(817 82)

following four forms: From Theorem 1 of [12], any strictly causal system has a
1) D[t,n] for some(t,n) € T, unique fixed point,_ but like the fixed point theorem of [1_3],
2) D(t,n) for some(t,n) € T, th|s theqrem prowdes_ no method to construct the unique
3) D(t,c) for somet € R, or fixed point. In fact, this theorem could have been proven
4 T. as a direct corollary of the fixed-point theorem of [13], but

Proof: SupposeD is a down set off". If D = {, then the approach used in [12] was different. For eventually delta

D = D(0,0). Consider nonempty). If D has a maximal causal systems, we can construct a fixed point.
element(t,n), thenD = D[t,n]. If D is bounded above by  Theorem 2:If F': S — S is eventually delta causal, then

some(t,n) € T, thenT \ D is anupper setthat is if F'is a decaying contraction.
1) (¢',n') € T\ D, Proof: We first prove that for alls_l, S9 € S with_ 81 #
2) (t,n) €T, and sg, thatd(F'(s1), F'(s2)) D d(s1, s2). This proof is a bit long,
3) (¢,n') < (t,n), since we must consider all the cases in Lemma 1. Suppose

d(s1,s2) = 0, or s1(0,0) # s2(0,0). Then, by the third

then (¢ T\ D.If T\ D has a minimal element,n),
(t,m) €T\ \ n e, n) property of eventually delta causal,

thenD = D(t, n).
Now if D is bounded above without maximal element

andT \ D is without a minimal element, note th@t\ D is d(F(s1), F(s2)) 2 D[0, 0]

bounded below, sinc® is nonempty. If we let Y

T={tcR |3 eN.(t,n) e D} = d(s1,2)



Now supposed(sy, s2) = DJt,n]| for some(t,n). If n < We construct the sequendét,n)o, (t,n)1,...) of super-

e(t), then by the first property dense times with
(t> n)O = <Oa 0)
d(F(s1), F(s2)) 2 D[t,n + 1]
D D[t, n] :
= d(s1,52) (t,1)e0) = (0,€(0))

(t,n)e0)+1 = (A,0)

If n > e(t), then by the second property :
(ta n)e(O)+e(A)+1 = (Av e(A))

d(F(s1), F(s2)) 2 D[t + A, (] (t;n)eo)+e(a)+2 = (24,0)
D Dlt, n] :
= d(sla 52) (t, n)e(o)+€(A)+e(2A)+2 = (QA, 6(2A))

In the case thati(sy,s2) = D(t,n) for some (¢t,n) with

t#0, let Then fori € N, we let
L t< 2 Do=10
T = P A ;> A Di+1 = D[(t,n)i]
2 - 2
Note thatDy € D; C ---. Let s; and sy be arbitrary
sequences. Clearl{py C d(s1,s2). From the third rule of
Thend(s1,s2) D D[r,e(7)], so eventually causal

Dy =D(0,0) C d(F(s1), F(s2))

Now suppose foD; = D[kA, n], thatn < e(kA) andD; C
d(F(s1), F'(s2)). Then by the first rule of eventually causal

Di+1 = D[kA,n + 1]

cd Fi+l Fi+1
If d(s1,s2) = D(0,n), then eithern = 0 and s1(0,0) # < dl (1), (1))
52(0,0) ord(sy,s2) = D[0,n—1], so we have already proven If D; = D[kA,e(kA)] and D; C d(F'(s1), F(s2)), then
that d(F'(s1), F'(s2)) D d(s1,s2). If d(s1,s2) = D(t,00), by the second rule of eventually causal
then
Dit1=D[(k+1)A,0]
C d(F"™(s1), F"*1(s1))

d(F(s1), F(s2)) 2 D[t + A, 0]
D D(t,n)
= d(Sl, 82)

d(F(s1), F(s2)) 2 Dlt + A, 0]
D D(t, o)
= d(Sl, 82) K = mln{k S N|t < kA}

Now suppos€t,n) € T. Let

Note thatk’ must be greater thai Let

sincesi (t,e(t)) = sa(t, e(t)). Finally, if d(s1,s2) =T, then K
$1 = s2, S0 by Lemma 1, we are done. i'=kK -1+ Ze(k:A)
We must now show that for each, s € S, the sequence j=0
(’V(), Y1, - ) where Then
Dy = D(kA,0)
(oo}
i = [) d(F"(s1), F"(s2)) > (tn)
n=i Thus,
decays, or converges 0. By the strict contraction property, QO Di=T

note that for each,
[ ]

, . We can now provide a feedback semantics for eventually
~vi = d(F*(s1), F'(s2)) delta causal systems. Because our fixed point theorem is



constructive, we can provide a method to compute the unique

fixed point. 1]
Corollary 1: If F': S — S is eventually delta causal, then

it has a unique fixed point.

Proof: We must only show that' is Cauchy complete, |
and then the result is immediate from Theorems 1 and 2. Let
(s0,s1,...) be a Cauchy sequence ovér There is some [
down setC of the pomonoid(D, 2, N, T)with at least one
elementD # T such that for al € C with ¢ C T there is
ap € N such that for allk, m > p,

(4]

d(sk,sm) D€ (5]

(4)

We construct a signal € S as follows: Given tagt,n) € T,
there must be are € C such that(t,n) € ¢ and a
corresponding for all k&, m > p, s ands,, satisfy Equation
4. For such signalsy(t,n) = s, (t,n) = s,(t,n). We let 7]
s(t,n) = s,(t,n). Then the Cauchy sequence converges to
S. | 8]
Moreover, we can construct the fixed point as follows:
Let s be any element ofS. Let ((¢,n)o, (¢,n)1,...) be
the sequence of superdense times defined in the proof &
Theorem 2. Then for eache N

F*™*(s) | D[(t,n);] = fix(F) [ D[(t,n)i]

(6]

(10]

That is, if we applyF' i+1 times tos, the result will give us

all the information infix(F') up to superdense timg,n);. [11]
This gives us an obvious strategy to simulate a system wifl]
feedback. To calculatéx(F')(¢t,n), apply F' ¢ + 1 times to
some arbitrary signal, wherei is the minimum integer such
that (t,n); < (t,n).

[13]

[14]
IV. CONCLUSIONS

In the study of the feedback semantics of timed systeni$s]
with the superdense model of time, we introduced the con-
cept of pomoinoid, which is a partially-ordered monoid with
identity bottom. We showed natural mappings frén and [16]
dioids to pomonoids. We also introduced the corresponding
concept of petric, which maps pairs from a sEtto a
pomonoidI’. We extended the Banach fixed-point theorem
for petrics. This extension is useful because it is constructive;
it provides a way to approximate a unique fixed point through
a sequence of computations.

We used this to introduce a generalization of delta-causal
systems, called eventually delta-causal systems, that allow
multiple events to occur in zero time. We used our fixed point
theorem to show how we can construct the unique fixed-point
signal of any eventually delta-causal system.

V. ACKNOWLEDGEMENTS

This work was supported in part by the Center for Hybrid
and Embedded Software Systems (CHESS) at UC Berkeley,
which receives support from the National Science Foundation
(NSF award #CCR-0225610), the State of California Micro
Program, and the following companies: Agilent, DGIST,
General Motors, Hewlett Packard, Infineon, Microsoft, and
Toyota.

REFERENCES

G. Cohen, P. Moller, J. P. Quadrat, and M. Viot, “Algebraic tools for
the performance evaluation of discrete event systeRmeteedings of
the IEEE; Special issue on Dynamics of Discrete Event Systeshs
77, 1, pp. 39-58, 1989.

B. Davey and H. Priestley.attices and Order2nd ed.
University Press, 2002.

K. Evans, M. Konikoff, J. J. Madden, R. Mathis, and G. Whipple,
“Totally ordered commutative monoids3emigroup Forumvol. 62,

no. 2, pp. 249 — 278, July 2001.

E. A. Lee, “Modeling concurrent real-time processes using discrete
events,” Annals of Software Engineeringol. 7, pp. 25-45, 1999,
special Volume on Real-Time Software Engineering.

E. A. Lee and A. Sangiovanni-Vincentelli, “A framework for com-
paring models of computation|EEE Transactions on CADvol. 17,

no. 12, 1998.

E. A. Lee and H. Zheng, “Operational semantics of hybrid systems,”
in Hybrid Systems: Computation and Control: 8th International Work-
shop, HSCC ser. Lecture Notes in Computer Science, vol. 3414.
Zurich, Switzerland: Springer-Verlag, March 9-11 2005.

O. Maler, Z. Manna, and A. Pnueli, “From timed to hybrid systems,”
in REX workshopReal-Time: Theory in Practiceser. Lecture Notes

in Computer Science, 1992, pp. 447-48.

Z. Manna and A. Pnueli, “Verifying hybrid systems,” iklybrid
Systemsser. Lecture Notes in Computer Science. Springer-Verlag,
1993, vol. 736, pp. 4-35.

S. G. Matthews, “An extensional treatment of lazy data flow deadlock,”
in Selected papers of the workshop on Topology and completion in
semantics Amsterdam, The Netherlands, The Netherlands: Elsevier
Science Publishers B. V., 1995, pp. 195-205.

P. J. Mosterman, “An overview of hybrid simulation phenomena and
their support by simulation packages,” hiybrid Systems: Compu-
tation and Contral F. W. Vaandrager and J. H. van Schuppen, Eds.
Springer-Verlag, 1999, pp. 165-177.

J. R. MunkresTopology Prentice Hall, 2000.

H. Naundorf, “Strictly causal functions have a unique fixed point.”
Theor. Comput. Scivol. 238, no. 1-2, pp. 483-488, 2000.

S. Priess-Crampe and P. Ribenboim, “Fixed points, combs, and gen-
eralized power series,” ibhandlungen aus dem Mathematischen
Seminar der Universitt Hamburg vol. 63, 1993, pp. 227-244.

——, “Generalized ultrametric spaces, |,” i&bhandlungen aus dem
Mathematischen Seminar der UniveéiHamburg vol. 66, 1996, pp.
55-73.

B. Roscoe and G. Reed, “Metric spaces as models for real-time con-
currency,” inProceedings of the Third Workshop on the Mathematical
Foundations of Programming Language Semantic 298. Springer
LNCS, 1988, pp. 331-343.

R. K. Yates, “Networks of real-time processes.” @ONCUR 1993,

pp. 384-397.

Cambridge



