
Concurrent Embedded Design for Multimedia: JPEG
encoding on Xilinx FPGA Case Study

Jike Chong
Abhijit Davare
Kelvin Lwin

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-40

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-40.html

April 16, 2006



Copyright © 2006, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
The authors would like to thank Kaushik Ravindran, Yujia Jin, N.R. Satish,
and Douglas Densmore for insightful discussions on the capabilities of the
Xilinx Platform.



1

Concurrent Embedded Design for Multimedia:
JPEG encoding on Xilinx FPGA Case Study

Jike Chong, Abhijit Davare, Kelvin Lwin
{jike, davare, klwin}@eecs.berkeley.edu

Abstract— Parallel platforms are becoming predominant in
the embedded systems space due to a variety of factors. These
platforms can deliver high peak performance if they can be
programmed effectively. However, current sequential software
design techniques as well as the Single Program Multiple
Data (SPMD) programming models often used in the High
Performance Computing (HPC) domain are insufficient. In this
report, we experiment with a dataflow programming model for
multimedia embedded systems. By applying this programming
model to a common application and embedded platform, we get
a better idea of the implementation challenges for this class of
systems.

I. I NTRODUCTION

In the past, the programming of concurrent systems was a
challenge primarily limited to the HPC domain. Today, highly
concurrent programmable platforms are becoming widespread
in the embedded systems domain as well, and due to the
unique verification and synthesis requirements for this domain,
the programming challenges are significant.

With the continuing availability of additional transistors
at every process generation, designers have a choice when
migrating their designs. The first option is to leave the design
functionality unchanged and take advantage of the benefits
of smaller dies in the subsequent process generation. This is
by far the easiest option. Unfortunately, it is not practical
in many instances since the system requirements routinely
increase along with the availability of additional transistors.

The second alternative is to redo the hardware design
to support the additional functionality by building a more
complex gate level netlist. For instance, a 32-bit RISC core can
be enhanced with better branch prediction or a re-pipelined
to achieve a higher frequency to offer higher performance.
This approach was taken in the past and allowed software
to remain unchanged across process generations. However,
there are two main problems that have emerged with this
approach. First, the design effort involved in verifying the
new design is substantially more than in the past due to
increase in design complexity, manufacturing variation and
other nanometer fabrication issues. The second problem is that
power consumption vastly increases when trying to run more
transistors at greater frequencies.

The third alternative is to abandon the uniprocessor para-
digm and place multiple general purpose or specialized cores
on chip. This has the advantages of easing the hardware
design and integration issues. However, the sequential software
paradigm is no longer valid. The onus is placed on the soft-
ware developer to effectively utilize the additional parallelism

provided by the hardware. Unfortunately, tools for effectively
transforming sequential software into concurrent software do
not exist.

The hypothesis of this research is that appropriate concur-
rent programming models must be developed to effectively
utilize future multi-core embedded platforms. In this paper,
we concentrate on experimenting with a dataflow model
for multimedia applications. We show that the choice of
this application model allows us to quickly create feasible
implementations while still retaining a clear path to higher
performance implementations.

II. EMBEDDED SYSTEMS VS. HPC

The HPC domain differs in several ways from the embedded
systems domain. In this section, these differences will be
highlighted according to several different categories.

A. Platforms

As compared to HPC systems, embedded systems platforms
have a number of unique characteristics.

First, the balance between computation and communication
is currently much better in embedded systems than in HPC.
Since the multiple cores in embedded systems are on the
same chip, access to memory resources is relatively faster.
Embedded applications typically have stringent cost or power
requirements that prevents the use of large memories. The
same requirements also prevents the use of very high fre-
quency cores. The practical consequence is that the amount
of computation needed to justify a communication operation
is much lower in embedded systems. Of course, the trend is
that communication will become relatively more expensive in
the future.

In HPC, the programming model is usually SPMD, where a
single program is distributed to multiple processing elements.
In embedded systems, a MPMD paradigm exists, where cer-
tain components of the overall computation are assigned to
specialized processing elements. The verification challenges
increase when the original code is fragmented and distributed.

Unlike general purpose processors in HPC, each embedded
processor can have different functional units that can better
execute certain instructions. As an example, without a barrel
shifter in an uBlaze, multiply can be performed faster than
a shift. The designer not only has to carefully tune the code
in order to achieve performance but must choose or optimize
the type of functional units available in each of the uBlazes
as shown in Figure 1. An easy solution is to instantiate all



2

Fig. 1. MicroBlaze Soft Processor Block Diagram [1]

available functional units for each of the ublazes. However,
this has a direct impact on the number of ublazes that could
be instantiated on the same FPGA.

The desire in embedded systems is to obtain predictable
performance from the application. Average case performance
is not as important as worst-case performance. Therefore,
embedded platforms typically do not have complex memory
hierarchies seen in HPC nodes. Another reason to avoid com-
plex pipelines and memory hierarchies is power consumption.
Typically, the worst-case joules per instruction value cannot
be improved by making each processor more complex.

Finally, memory coherency is another area where differ-
ences exist between HPC and embedded design. Significant
overhead is required to maintain coherency over distributed
memory. In HPC, coherency is used to expand the reach
of legacy sequential programs. Embedded systems typically
can not afford such overhead. Embedded applications in the
multimedia domain typically require only a small data work-
set at any given time, distributed fast memories are capable of
implementing the applications, but are harder to program.

B. Applications

Application development in embedded systems has typically
been carried out either in assembly language or low-level C.
Object orientation and memory allocation/deallocation have
typically not been used due to the overhead. Unfortunately,
this means that software reuse is typically difficult, especially
for larger designs. With concurrent designs, this problem is
exacerbated.

Since verification is important component of the embedded
design process, the code that is deployed on these systems
needs to be analyzed for correctness. Even if code snippets
are verified manually, their composition on a multiprocessor
implementation is still difficult to verify.

Experience in HPC shows that performance is directly re-
lated to the quality of the code generated with many optimiza-
tions not performed by even high-power compilers today. Even

for uniprocessor code, the inner loop optimization is one of the
key to achieving high performance by keeping the functional
units operating at peak utilization. The user has to be highly
knowledgeable and give as many hints to the compiler as
possible to get decent performance. The situation is only
worse in multiprocessor systems where communication has to
be taken into account. In the embedded domain, compilers
are lightweight and typically implement only a fraction of
commonly applied optimizations. In addition, the paucity of
instruction memory on embedded processors implies that some
optimizations may not be feasible. For instance, a uBlaze soft
processor can support from 4 KB to 64 KB of RAM for both
instruction and data. So the designer must be careful in using
scarce resources for optimal performance.

C. Systems

The primary focus of HPC systems is simulation or offline
data analysis. Neither of these needs to be carried out in real
time. Instead, the objective is to complete the simulation or
analysis run as quickly as possible. Therefore, the design of
these systems concentrates on average-case performance. By
exploiting spatial and temporal locality in the applications, the
system will complete runs quicker on average. In the worst
case, the simulation or analysis may take substantially longer,
but these occurrences are relatively rare and not considered in
the design phase.

By definition, the systems we are considering are embedded
in the environment around them, they must function according
to the latency, throughput, energy and power characteristics
that the environment features. This implies that in order to
ensure that an embedded system will function correctly in
its environment, certain worst-case requirements need to be
met. The design process must ensure that for all inputs, the
system will meet these worst-case requirements. In order to
efficiently carry out this type of analysis, embedded systems
design focuses on restricted programming models, or models
of computation, that can be verified with respect to the
requirements.

Another difference between HPC and the embedded systems
domain has to do with the market for these systems. The
users of HPC systems typically want to carry out cutting-
edge science. Typically, the cost, resources, and infrastructure
required to maintain a high-performance computing facility
make it a viable option only for governmental or large
academic institutions, but relatively few industrial customers.
Even when HPC is used in industrial contexts, it is used in
the back-end to carry out offline activities. Applications for
these HPC platforms are usually written by scientists, not by
programmers. Therefore, there is an effort made to provide
and support appropriate programming models (MPI, OpenMP,
Pthreads, etc) so that applications can better exploit a larger
fraction of the peak capacity. Also, the application codes that
run on HPC platforms are usually long-lasting, having been
developed relatively slowly over a period of years.

In the embedded systems domain, the situation is very
different. Typically, embedded systems development is carried
out in an industrial setting by a wide variety of companies. Due



3

to time-to-market pressures, there is typically no particular
methodology applied to embedded software development, it is
simply the usage and adaptation of existing low-level code.
Assembly and C are the predominant development languages,
any layers on top of these do not enjoy widespread acceptance.
This approach is no longer sustainable with highly parallel
platforms.

III. C ONTRIBUTIONS

The main contributions of this research are the performance-
oriented characterization of the Virtex II Pro FPGA platform
and the development of a lightweight environment for dataflow
application modeling.

A. Performance Analysis of Platform

One of the main contributions of this work is the character-
ization of a uBlaze soft processor and FIFO-based platform.
The characterization relates to the inter-processor communica-
tion and the computation cost on each uBlaze. The relationship
between logic utilization, FIFO depth, and FIFO latency
is the most important relationship for communication. For
computation, the inclusion of specialized uBlaze resources
such as barrel shifters and multipliers, and their influence on
runtime of code as well as logic utilization was understood.

B. Pthreads Dataflow Modeling

The datraflow [2] paradigm is effective for distributed
data-streaming applications. Unfortunately, existing software
frameworks that can help model dataflow applications such as
Ptolemy II [3] and Metropolis [4] are typically heavyweight
and not suited for quick migration to embedded processors.

The requirement for a lightweight dataflow modeling en-
vironment allows a program with multiple processes to be
specified in C-language code that can directly be implemented
on the target processor. Pthreads [5] provides the ability to
implement multi-process C programs with minimal modifica-
tion to the final C code. To implement dataflow semantics, we
implemented a FIFO class for inter-process communication
with bounded storage, blocking reads and blocking writes.

IV. DATAFLOW

In this section, the programming model chosen for this case
study – dataflow – along with the related Process Networks
model, will be described in further detail.

Kahn Process Networks [6] is a model of computation
where concurrent processes communicate with each other
through point-to-point one-way FIFOs. Read actions from
these FIFOs block until at least one data item (or token)
becomes available. The FIFOs have unbounded size, so write
actions are non-blocking. Reads from the FIFOs are destruc-
tive, which means that a token can only be read once. The
appealing characteristic of the KPN model of computation
is that execution is deterministic and independent of process
interleaving. Also, this model of computation (MoC) allows
natural description of applications since it places relatively few
requirements on the designer other than blocking reads.

Fig. 2. JPEG encoder block diagram

Dataflow process networks are a special case of Kahn
Process Networks where the execution of processes can be
divided into a series of atomic firings [2]. This MoC in
general suffers from the same undecidability as Kahn Process
Networks [7]. In static dataflow [8], the number of tokens
produced and consumed for each firing is statically fixed. Due
to this restriction, aspects such as scheduling and buffer size
can be computed statically and efficiently. The key limitation
is that data-dependent behavior is difficult to express. This lim-
itation makes this MoC unsuitable for many practical applica-
tions. Related work including Cyclo-static Dataflow [9], Het-
erochronous Dataflow [10], and Parameterized Dataflow [11]
attempt to extend static dataflow but retain decidability by
allowing structured data-dependent behavior.

V. A PPLICATION AND PLATFORM

In this Section, the JPEG encoder application and the Xilinx
Virtex II FPGA platform will be described.

A. JPEG encoder

The JPEG encoder [12] application, Figure 2, is required
in many types of systems, from digital cameras to high-end
scanners. The application compresses raw image data in 4:4:4
format as per the JPEG standard and emits a compressed
bitstream. This application was chosen since it is relatively
simple, yet is a representative component of a wide class of
multimedia applications. The main blocks in the JPEG encoder
algorithm are utilized in several video compression algorithms
including MPEG-2 and the next generation H.264 standard.

In the preprocessing step, the raw RGB image data is first
converted into YUV format, which represents the image as
a set of luminance, blue chrominance and red chrominance
components. This is advantageous for compression since the
human eye is more sensitive to luminance than either of the
chrominance components. The chrominance components can
therefore be compressed further than the luminance compo-
nent.

Next, each of the three components is converted into 8x8
blocks and processed independently. First, each 8x8 block
passes through a forward DCT block, which converts the
spatial data in the block into frequency data. This step in
the flow does not result in the loss of any information,
besides round-off errors. Next, the DCT outputs are quantized,
or divided, by coefficients from a user-defined table. The
quantization step is the fundamental information-losing step
in the compression process and attempts to reduce many of
the higher DCT frequency coefficients to zeros.



4

Then, run-length encoding and Huffman encoding are car-
ried out on the quantized coefficients to reduce the number
of bits needed to represent them. The Huffman compression
tables are hard-coded and supplied by the user. The JPEG file
consists of the user-supplied tables and the compressed image
bitstream.

B. Xilinx Platform

The Xilinx ML310 is a development board for a Virtex-II
Pro XC2VP30-based embedded system. In addition to more
than 30,000 logic cells, over 2,400 Kb of BRAM, and dual
PPC405 processors available in the FPGA, ML310 provides
onboard Ethernet MAC/PHY, DDR memory, multiple PCI
slots, and standard PC I/O ports within an ATX form factor
board. An integrated System ACE CF controller is deployed
to perform board bring-up and to load applications from the
included 512MB CompactFlash card.

The programmable logic cells on the FPGA can be used
to implement uBlaze soft processor cores, which can be con-
nected using a variety of communication channels. Choices of
communication channels include system peripheral buses and
hardware FIFOs such as the Fast Simplex Links (FSL), which
are direct communication channels to and from architectured
registers in the soft processors.

The uBlaze 32-bit soft processor is a standard RISC-based
engine with a 32 register by 32 bit LUT RAM-based Register
File, with separate instructions for data and memory access.
It supports both on-chip BlockRAM and/or external memory.
All peripherals including the memory controller, UART and
the interrupt controller run off of the On-chip Peripheral
Bus (OPB). Additional processor performance is achieved by
utilizing fast hardware divide and hardware multiply capability
associated with the dedicated 18 bit x 18 bit multiplier block.

The uBlaze requires 950 logic cells on the Virtex-II Pro,
and supports a variety of communication channels such as
OPB and Fast Simplex Link(FSL). The FSL has its own
interface with the architectural registers, which bypasses the
slower memory controllers and the OPB. There can be up to
8 input and 8 output FSLs per uBlaze, each of which can be
considered an unidirectional FIFO.

VI. D ESIGN SPACE EXPLORATION

For design space exploration (DSE), we start from a feasible
point within the design space, and move to “nearby” (incre-
mental changes) feasible points such that each move results in
a better objective value. At the end, we may be trapped in a
local minimum, which may or may not be the global minimum.
Since we do not have a pre-existing characterization of the
design space, we can’t apply a global optimization technique,
but this initial exercise will allow us to capture the features of
the design space for future automation.

DSE involves re-partitioning the design to exploiting actor-
level parallelism in the application while maintaining func-
tional correctness. The re-partition should result in an im-
provement in the objective value. Realizing this approach
on an embedded platform requires the ability to debug and
characterize a design effectively.

On the FPGA platform, to realize and measure a multi-
processor configuration, we instantiate a multi-processor topol-
ogy with uBlaze, FSL, OPB, UART and timer peripherals,
implement and debug required application on the system, and
acquire the necessary statistics to point to possible modifica-
tions.

In instantiating multi-processor topologies, the size of a
multi-processor configuration is not a direct indication of
complexity of realization. A 9 uBlaze 3x3 torus configuration
takes only 83 minutes to place and route, where as an 8 uBlaze
configuration in a four stage pipeline with three uBlaze’s in
parallel in the 2nd/3rd stage takes 1,291 minutes to place and
route. The efficiency of realizing a regular configuration on
the FPGA fabric prompted us to use a regular torus structure
for functional debugging, and later pruning these structures to
specialized topologies for the area related objective evaluation.
Note, using the 9 uBlaze 3x3 torus to implement an 8 uBlaze
configuration is not without penalties. To accommodate all
links in a torus structure, global routes through these platforms
may compromise system performance. One such example is
illustrated in section VIII.

The Xilinx uBlaze debugging interface we utilized requires
a port for each uBlaze as well as an UART device on the On-
chip Peripheral Bus (OPB) to pass any output to the serial port.
In a multi-uBlaze implementation, such debugging interface
imposes significant limitations on what can be observed on the
serial port. Since access to the UART is arbitrated on a byte-
by-byte basis, multiple output UART requests from uBlaze’s
to the bus will render a set of outputs unintelligible.

An arbiter can be implemented to grant access to each
uBlaze as it requests usage of the output bus. However,
such mechanisms induce significant overhead in resources and
performance, a simplified version also limits the scalability
of the solution. Instead, we leverage the ease of functional
debugging in the Pthreads environment and map a set of
functionally correct partitions one-to-one to a topology in
uBlaze’s and FSLs. Then, only minor checking is required
on the FPGA, and it can be performed on one uBlaze at a
time to avoid conflicts on the OPB. Thus, in implementing the
required application, the Pthreads code is mapped directly to
the multi-processor configuration after functional verification
has taken place.

The performance of the design is measured by checking a
Xilinx Timer instance on the OPB. The timer increments at
the input clock rate, making it effectively a free-running cycle
counter. Multiple requests to the timer on the OPB are not
arbitrated, so only one uBlaze can be timed in any given run.
In acquiring the necessary statistics, timer access from a ublaze
through the OPB requires approximately 40 cycles of overhead
per access. Since timing statistics are measured in 100,000
cycle range, this overhead is negligible. Analyzing relative
performance of different partitions will point to bottlenecks
in the implementation, where parallelized tasks may require
balancing, or additional parallelism may be required.

VII. T RAVERSAL OF DESIGN SPACE

The objective for this case study is to optimize JEPG
performance of one encoding stream within the area budget



5

Fig. 3. Sequence of topologies experimented with in design space exploration

of the 2VP30 chip. The baseline design is a single uBlaze im-
plementation, where the entire algorithm is implemented on a
single processor with appropriate instruction and data memory.
The topologies traversed from this initial implementation are
summarized in Figure 3.

There are two natural ways to parallelize the JPEG algo-
rithm, one based on pipelining the processing steps as shown
in Figure 3a, the other based on independent processing of
each channel as shown in Figure 3(b). Analysis of Figures
3(a) and 3(b) indicates that the time taken for each part of
the algorithm differs drastically. The blocking read and write
semantic on the FIFOs self-times the steady state throughput
to the worst case execution time of all pipeline stages. In the
case of implementation (b), the bottleneck stages are level-shift
and DCT.

Implementation (b) improves the throughput by recognizing
that large portions of the three channels in each MCU can be
processed in parallel. By working on all the processing steps
of each channel, we evenly divide up the work into three parts,
thus reducing by a factor of three the average execution time
for the processes. The bottleneck in implementation (b) is at
the Huffman stage, where run length encoding and Huffman
encoding are done serially for the three channels. The reason
for this serialization is the usage of a simplified version of the
compression code to transform a fixed length character stream
into a variable length bit stream.

In (c), run length encoding and Huffman encoding are sep-
arated out into three concurrent stages, one for each channel.
This operation eliminates the bottleneck in the pipeline, but
adds the overhead of managing the convergence of three vari-
able length bit stream in the final write stage. The bottleneck
is then shifted to the level-shift, DCT and quantization stage.

In (d), the bottleneck in (c) is separated into two stages, the
level-shift/DCT, and the quantization stage. This alone will
shift the bottleneck to the first stage - the color conversion
stage. The color conversion is responsible for producing the
three parallel channels for the rest of the algorithm to work
on, and needs to supply all three pipelines. However, there
is exploitable parallelism among the MCUs to be converted.
The color conversion process is distributed over two uBlazes,
each of which communicate with all three color channels. The
bottleneck is then shifted back to the level-shift/DCT stage,
with all stages being roughly balanced.

Throughout this exploration procedure, to obtain finer grain
parallelism, the code was optimized with respect to the uBlaze
it was being executed on. Loop overhead in tight loops causes

a lot of wasted cycles. Overhead is reduced by unrolling loops
in the critical stages to increase performance. The loops in the
non-critical stages should remain unchanged to maintain code
density. The uBlaze’s in critical stages are also fitted with
accelerators such as barrel shifters to boost performance.

When the area occupied by the design comes too close to
the capacity of the FPGA, system performance is lost due to
congestion.

VIII. E XPERIMENTAL RESULTS

For the JPEG application, the quantization and huffman
tables were provided according to the reference implemen-
tation of the standard. The test image in raw RGB format was
preloaded onto the FPGA, and the result was written out to
memory.

The logic slice usage on the FPGA, timing and performance
numbers are presented in Table I.

TABLE I

EXPERIMENTAL RESULTS

Topologies Area1 Clk2 Clk3 Cycle Performance
Single mB 10% 100 100 595,525 1
(a) 4 mB 26% 100 100 291,470 2.04
(b) 5 mB 32% 100 100 224,506 2.65
(c) 8 mB 4 64% 73.8 100 112,093 5.31
(d) 12 mB5 76% 82.3 100 62,084 9.59

1 Percentage slices used in a Xilinx 2VP30 FPGA
2 MHz achieved with global debugging bus
3 MHz achieved with only point to point communication channels
4 implemented on top of 9 mB torus
5 extended from 9 mB torus

The uBlaze is a modular building block that is capable of
running at 122Mhz individually. When building a system of
many uBlazes, OPBs and FSL are used as communication
channels between the uBlazes. We observe that the overall sys-
tem performance is highly dependent on the communication
channel implementation. In the implementations where we link
uBlazes (up to 6) with an OPB bus to the RS232 debugging
interface and timer(Clk2 column in Table I), the global bus
degrades system performance significantly for larger designs.

One may note that in row (c) and (d) of Table I, performance
does not degrade monotonically with respect to logic slice
usage for designs with a global debugging bus. This is a seri-
ous concern for system level design space exploration as the
performance of FPGA implementations is heavily dependent
on placement and route and overall architecture.

For debugging the design, the OPB is used to monitor
variables on one uBlaze at a time. After the debugging process
is complete, the application only requires point to point links
to operate and the OPB is no longer required for all but one
uBlaze to monitor performance. As seen in (Clk3) column
of Table I, The system can operate at 100MHz with the
OPB restricted to serving only one uBlaze, thus the system
performance bottleneck is removed.

The relative efficiency graph in Figure 4 shows the perfor-
mance achieved vs. FPGA fabric utilization for the different
topologies. The key message from this data is that effective
use of the available chip area has a substantial impact on total



6

Fig. 4. Relative area-performance efficiency of various topologies

Fig. 5. Runtime analysis of various topologies

performance. Super-linear speed up was achieved when the
system overhead is amortized over 12 uBlazes in topology
(d).

The efficiency for topologies (a) and (b) is compromised
by an imbalance in the pipeline, as illustrated in Figure 5. In
this figure, the balancing of the pipeline stages for each of the
different topologies is detailed by showing the busy and idle
times for each processor. The total number of cycles taken to
process the image is also shown.

IX. CONCLUSIONS

In this work, we have applied a dataflow programming
model to a case study from the multimedia domain. We have
characterized several aspects of the application and platform
and demonstrated the ability to manually traverse the design
space and arrive at a competitive solution.

The most important lessons from this exploration procedure
are as follows. First, we discovered dataflow is an efficient
architecture for system partitioning in FPGA based designs.
The point to point communication channels are efficiently
mapped by the backend tool flow to achieve high clock
frequency. Global structures such as debugging buses are es-
sential during the development phase of a system, but severely
limit system performance. Removing global debugging buses
once the system is debugged recovers the achievable perfor-
mance. Super-linear area-performance efficiency increase can
be achieved by amortizing system overhead over up to 12
uBlazes, allowing this parallelization approach to gain almost
an order of magnitude of performance. Second, we determined
that for this algorithm, large FIFOs are only required to
eliminate the effects of jitter on overall performance. If a
certain stage in the algorithm has data dependent complexity,

then having large input or output FIFOs will prevent the
variation from causing upstream and downstream processors
to block. However, no FIFO size can overcome the effects of
an imbalanced pipeline. Ideally, analysis of the dataflow graph
should be able to identify minimum lengths on the FIFOs to
avoid deadlock whereas simulation should help identify the
extent of data-dependent computation in each stage.

X. FUTURE WORK

This research opens up a number of avenues for future
research. First, automated synthesis techniques can be applied
to automate the design space exploration process. Second,
additional capabilities of the FPGA platform can be utilized
in an effort to improve overall performance.

If certain restrictions are placed on the communication
patterns of the actors in the dataflow diagram, then design
properties such as the amount of FIFO memory needed and
the schedules on individual processors can be statically deter-
mined.

The Virtex II FPGA platform has several other components
that were not utilized in this work. For instance, the PowerPC
cores offer four times the performance of the uBlaze’s with-
out any additional area penalty. Also, bus-based interconnect
structures are available on this platform. Additional cores such
as the picoBlaze soft processor are also available. These cores
use a small fraction of the area required for a uBlaze, but
are 8-bit and have substantially lower processing capabilities.
Finally, we would like to better characterize the performance
of our implementations on the platform by looking at the
power consumption.

REFERENCES

[1] Xilinx inc website. www.xilinx.com.
[2] E.A. Lee and T.M. Parks. Dataflow Process Networks. InProceedings

of the IEEE, vol.83, no.5, pages 773 – 801, May 1995.
[3] Xiaojun Liu, Yuhong Xiong, and Edward A. Lee. The Ptolemy II

Framework for Visual Languages. InProceedings of the IEEE 2001
Symposia on Human Centric Computing Languages and Environments
(HCC’01), page 50. IEEE Computer Society, 2001.

[4] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli. Metropolis: An Integrated Electronic Sys-
tem Design Environment.IEEE Computer, 36(4):45– 52, April 2003.

[5] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell.Pthreads
programming. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1996.

[6] G. Kahn. The Semantics of a Simple language for Parallel Program-
ming. In Proceedings of IFIP Congress, pages 471–475. North Holland
Publishing Company, 1974.

[7] Joseph Tobin Buck. Scheduling dynamic dataflow graphs with bounded
memory using the token flow model. Technical Report ERL-93-69,
1993.

[8] Edward Ashford Lee and David G. Messerschmitt. Static scheduling
of synchronous data flow programs for digital signal processing.IEEE
Trans. Comput., 36(1):24–35, 1987.

[9] T. Parks, J. Pino, and E. Lee. A comparison of synchronous and
cyclostatic dataflow, 1995.

[10] A. Girault, B. Lee, and E.A. Lee. Hierarchical finite state machines with
multiple concurrency models.IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, 18(6):742–760, June 1999. Research
report UCB/ERL M97/57.

[11] B. Bhattacharya and S. S. Bhattacharyya. Parameterized modeling and
scheduling of dataflow graphs. Technical Report UMIACS-TR-99-73,
Institute for Advanced Computer Studies, University of Maryland at
College Park, December 1999. Also Computer Science Technical Report
CS-TR-4083.

[12] Gregory K. Wallace. The JPEG still picture compression standard.
34(4):30–44, April 1991.


