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1 Introduction

In this report we address the problem of using a Reed-Mullef( code in channels which, due to
imperfect synchronization, permit one repetition and one deletion of a bit per transmitted codeword
and we provide new results on the run-length structure of this code. The motivation, while briefly
presented here, is fully provided in [1], along with the summary of relevant existing work. This

report and its contribution should be viewed in the context of the problem addressed in [1].

Typically, in a communication system, a binary input messageencoded at the transmitter
using a substitution-error correcting codento a coded sequenee= C'(x), which we assume is
also binary. The received waveform after matched filtering may be written as
r(t) =Y ch(t —iT) +n(t), (1)
wherec; is thei"bit of ¢, h(t) is convolution of the modulating pulse and the matched filter, and
n(t) represents the additive noise introduced by the channel. The receiver first samples the wave-

form r(t) at specific time instances, followed by decoding of the transmitted message based on
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these discrete values. For the decoding to work properly, it is crucial that the sampling is done at
correct places. However, as the operating conditions under which sampling must be performed be-
come more stringent (such as in modern magnetic recording and wireless applications), it becomes
ever more difficult to accurately sample the incoming waveform. As a result, when the adequate
synchronization is missing, some symbol may be skipped or sampled twice. Let us suppose that
we are operating in the infinite SNR regime, and that transmitted codewords can be analyzed indi-
vidually, so that, under perfect synchronization, the received sampled sequence would be precisely
the transmitted codeword. If the synchronization is not perfect, some bit can then be repeated or
deleted. As a result, each codeword gives rise to a whole set of possible binary sequences obtained
from it by different repetition-deletion patterns, as dictated by the accuracy of the synchronization
scheme. An important consequence is that different codewords can then result in the same string,
thus making the correct input message retrieval impossible. We call such codédeortifscation

problemcausing codewords.

In this report we focus on the Reed-Mulldr, n) code. The goal is to address the scenario
when due to imperfect synchronization, both a repetition and a deletion can occur within the trans-
mitted codeword, and to propose a way to eliminate the identification problem causing codewords.
The subcase of a single synchronization error is studied in detail in [1]. In addition, we provide

run-length properties of this code that may be of independent interest.

The report is outlined as follows. In the next section we briefly review the IRM{ code. In
Section 3 we present several useful structural properties of this code, and in Section 4 we provide
a detailed analysis of the RNM(m) code where both a repetition and a deletion are possible. The

report is concluded with Section 5.

2 Review of the RM(l, m) code

First order Reed-Muller codes (RM(r)) are an instance of linear substitution error-correcting
codes [2]. This code is described by & n generator matrixz,, wherek = m + 1 andn = 2™.
Let go(m) denote an all ones vector of leng2lt, and letg;(m) be anm x 2™ matrix whose

columns are binaryh-tuples in the decreasing order.



The generator matrix of the RMgn) code is then

1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0

G — go(m) e )
g1(m) 1 1 1 1 ... 0 0 0 o0
1 1 0 0 1 1 0 0
1 0 1 0 ... 1 0 1 0

Observe that the first row &,,, consists of all ones, and th® row of G, for1 <i < m+1
consists of2~! alternating runs of ones and zeros, where each run is of28iz&™!, and the
leftmost run in each row is a run of ones. L&tm) denote the RM{,;,m) code. Note that every
codeword inC'(m + 1) code is either the concatenation of a codewor@'{m) with itself or with

its bitwise complement.

3 Runlength properties of the Reed-Muller(,m) Code

In addition to the properties of the code presented in [1], we now prove additional interesting

structural results.

3.1 Relationship between the input message and the run-lengths of its code-

word

It is sometimes useful to determine the number of runs of a particular codeword based on its input
message and vice versa. In this section we provide an explicit relationship between these two quan-
tities. Leta,, = (ag, @m, @m-1, -, a2, a1) be a binary string of lengtlh + 1 and letc be a codeword

in C'(m) such thatc = a,,, G,,. The bitay, multiplies the all-ones row o&,,, and therefore does

not affect the number of runs of the resulting codeword, ag. = (ao, am, @1, ..., az, a;) and

am = (ag, am, am_1, ..., az,aq) result in complement codewords (with the same number of runs).



In the following we replace, by x to indicate that the value af, does not matter.

We denote byR,,(ag, a1, ..., am_1, a,,) the total number of runs ie. The following result

provides a closed-form expression ®y, (ag, a1, ..., Gym_1, ayy) iN terms ofay,.

Lemma 1 The number of runs in the codewardiven byc = a,,, G, wherea,, = (ag, am, Gm-1, --., G2, a1)
iS Ry (00, 1, ooy Q1 ) = 27 Lag + 2772 4 1/2 — SO om—h—L ()X,

Proof: By construction the bottomm — 1 rows in G,, when viewed as a» — 1 by 2™ matrix,
are the same as the matrix obtained by concatenating the matrix consisting of the fottom
rows inG,,_1 with itself. If the runs at the point of concatenation are the same, the concatenation

results in the merging of two runs, otherwise no runs are altered.

Therefore, the linear combination of the bottem— 1 rows in G,,, produces a codeword in
C(m) which has eitheRR or 2R — 1 runs, whereR denotes the number of runs of the codeword
produced by the same linear combination of rowssg ;. In particular, the number of runs is
2R if the auxiliary codeword irC'(m — 1) (the one constructed from the same linear combination)
had different outermost bits, and the number of rurisis- 1 if the outermost bits are the same.

The former (latter) case occurs when the linear combination consists of an odd (even) number of

participating rows.

Then, wher,,, = 0 we have the following:

2Rm,1(x,a1,a2,...,am,1), if 221_11 a; mod2 = 1,
Ry(x,a1,a9,...,4m-1,0) = _ .
2R—1(x,a1,a9, ..., a,m—1) — 1, if Y " a; mod2=0
Now, a,, = 1 has the effect of complementing the left half of the codeword obtained from a
linear combination of rows ofx,,, that does not involve second row Gf,,,, and leaving the right

half intact.

Therefore,

2Rm_1($, ai,ag, ..., am_l), if Z:Z_ll a; mod?2 = 0,

Rm(maab@%“'aamflvl) = . 1
2Rp1(z, a1, a9, ..., am—1) — 1, if > " a; mod2 =1
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We can jointly write these two expressions as
R, a1, g, ..., Q1 Q) = 2Rpm_1 (T, a1, G, ..., app_y) — 1/2(=1)2=1% — 1/2,

To obtain the formula foR,,,(x, a1, ..., a,_1, a.,), iterate recursively as follows,

Ro(x,aq,...,an)
= 2R 1 (T, a1, ag, ..., Gpq) — 1/2(—1)251% — 1/2
=2 [2Rm_2(9§,a1,a2, ey G) — 1/2(—1)2?511‘” - 1/2] —1/2(=1)x= —1/2
— 4Ry _o(, a1, g, ...y Appg) — (—1)Zim1% — 1 — 1/2(—1)2=%1% — 1/2
=4 [sz_g(x,al,az, ) — 1/2(—1) TR 1/2} C(—D)Ema ] 1/p(—1) T e 19
=8Ry—3(x,a1,az, ..., Qp_3) — 2(—1)27512‘” —2— (—1)XEe — 1 —1/2(=1)X=% —1/2

= 2" 2Ry (1, a1, az) — 23 (—1)Tim @ g3l gmedoL( )i a gmedel
_2m7<m71>71<_1)22’;1az~ _ gm—(m=1)-1 _ Qm*mfl(_l)ZQ'Ll a; _ gm-m-1

— 2™ IRy (2, ay) — 2721 /2(—1) X — 2m 2 /2 — (1) Timie _gmd
_20(_1)2?51% — 20—l (—EEe 97!

=2"1+a1) —

[2’”*3(—1)25:1% pom (Bl ol (_ )X g gmeS  omed 4] 4] /9

—ola, = 3 B [t 11
k=2

=2 lgy 4272 4 12 = YR (L)X
k=2

which completes the proof. |

It is also useful to know how to quickly determine the input message based on the number
of runs in the codeword it generates. LEt, be the integer denoting the number of runs, and
let S,.(Nm) = (ao, ai, as, ...,am_1, a,,) be the binary string consisting of the entries in the input
message, so that the mappisig is fromN* to {0, 1}™*1.

First observe thaty ", 2m—k=1(—1)Xai| < 9m=2_1/2, Thus, foray = 1, Ry (2, 1, ..., a1, Gm)

isatleast™ '+1, and fora; = 0, R,,,(z,0, ..., apm_1, @) iS @t mos™ 1. Moreover,R,,(z, 1, ..., apm_1, )
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+ Ry (2,0, ..., am_1, ay,) €valuates t@™ + 1.
Thus, for the givemn, if N,, > 2™~! + 1, a; must be 1, otherwise it must be zero.

We can now subtract the contributiona@fto N,,, which is zero form; = 0 and is2™ +1— N,,
for a; = 1, where by contribution we mean the difference in the number of runs of the codewords
whose input messages dte aq, as, ..., a,,) and(z, 0, as, ..., a,, ), respectively. Denote the result
by N/ .

Having subtracted the contribution@ffrom NV,,, to determinex,, observe thak,,,(z, 0, as, ..., Gym—1, am)
=R, 1(x,a9,...,am_1, an), Since the®” row of G, for 1 < i < mis constructed from th@+1)**
row of G,,_1 by duplicating each entry twice. Thus, a codeword constructed from the linear com-
bination of a subset of these particular row&f, has the same number of runs as the codeword

in C(m — 1) constructed from the counterpart rows@®@f, ;.

We now viewa, as the value that multiplies the last row @f,,_1, just like a; did for G,,.
By using the same line of arguments as dgy we conclude that ifV/, > 2m=D=1 1 1, q, is 1,
otherwise itis 0. To determing we need to subtract the contributionaffrom N/ , and compare

the result t2™-)-! 4 1, and so on.
The steps for determining, througha,, can be outlined as follows:

Algorithm 1

1. Initialization: N, = N,,,l =0,a1 =as = ... = a,, = 0

2. Find the largest integer, p > 0 such thatV. > 2P. If no suchp exists, stop and return the

current values ofi; througha,,. If suchp exists, proceed to Step 3.

3. Leti = m — p, and update the valug to be 1 ¢;'s for [ < j < i remain 0). Proceed to Step
4.

4. Let N, :=2r*1 +1 — N_.and let/ = i. Return to Step 2.

Example:m = 4, N,, = 10.



mo mo mo
Aijl N Gj AGJ‘H
N7 N7

@M (00) @Il dM(01)  ¢(10) &M (00) Mo, (11) Mo, (01) ¢, (10) ¢, (00) ..

2 4 5 6

. dg;ﬂff(11)@’;{?(01)6;{*11(10)03}0:1(00)cg}°+1(11)c;’;0+1(01)cg}0+1(10)033.0“(00)@’;1?(11)@’;1*11(10). .
G i Gt

Figure 1: Construction of codewordsdr(m, + 1) from codewords irC'(my).

e Step 1: Initialize(a,, as, as, as) = (0,0,0,0), N. = 10,1 =0
e Step2.a:Sinc8 < N.<16=p=3

e Step3.a: Set=1,a,; =1

e Stepd.a: SelN,. =7,l=1

e Step 2.b: Sincd < N. < 8=p=2

e Step 3.b: Set=2,a, =1

e Step 4.b: SelN, =2,] =2

e Step2.c:Sincé < N.<2=p=0

e Step3.c:Set=4,a4 =1

o Step4.c:SeN. =1,1=14

Step 2.d. N exists, returr(ay, as, as, as) = (1,1,0, 1)

It can be easily checked that the messaes, 0, 1, 1] and[1, 1,0, 1, 1] both result in code-
words with10 runs each.



3.2 Run-length distribution

Lemma 2 The codewords ii’(m) can be partitioned int@™~! + 1 distinct non-empty groups

Go, for0 < j < 2m=1 Here G7 is comprised of those codewordsdt{m) that have; runs of
ones.Gy" is comprised of exactly one codeword, namely the all-zero codeword. This codeword will
be denoted’(00). There are 4 distinct codewords in each gradfy, for 1 < j < 2™~'. These
codewords may be uniquely identified by their first and last bit. They may thus be unambiguously
denoted ag}'(11), ¢j*(10), ¢*(01), andc}*(00) respectively. There are 3 distinct codewords in the
groupG?._.. These codewords may also be uniquely identified by their first and last bit and may
be unambiguously denoted &3,_, (11), c5r.-.(10), andcl;,_, (01) respectively.

Proof: See Lemma 1 in [1]. |

Lemma 3 Consider a codeword in C'(m). Either ¢ has all its runs of the same length, which
is a power of2, or the runs inc are of at most two different lengths, and these two lengths are
consecutive powers of 2. In addition, if there are runs of two different lengthsle outer runs
(i.e. the leftmost run and the rightmost run)dmre of the smaller length.

Proof: See Lemma 3 in [1]. |

Using the notation introduced in the preceding Lemmas, we can prove the following result on
the run-length distribution of'(m).

Lemma 4 With the exception of the all-ones codeword, all codewords belonging to the gfup
for 2r—1 < j < 27 for somep, 0 < p < m — 1 have all runs of ones either of leng®ft—?~! or
of length2™=?. Moreover,(j; — 2°~1) x 2 runs out of thesg runs have lengtl2™~7-1, and the

remaining2? — j runs have lengt™ >,

Proof: To prove the statement we use inductionan For small values ofn, the proposed

statement can be verified directly. Suppose now that the assertion holds fornrseme,.

By Lemma 2, the groug:7)° for 2°~! < j" < 2? for somep, 0 < p < mg — 1 contains

m m m , 1 - : :
codewords’°(10), c},°(01), andcy;°(11). If j" # 2™~ it also containg’,* (00). There is a single
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codeword inG" (the all-zeros codeword). Let us now analyze all the possible concatenations of
the codewords belonging to the groGfj*®,0 < j < 2mo—1 j e, of each codeword with itself and
with its complement. By Lemma 2 there are at most 4 codewordg/thso we have to consider

at most 8 different concatenations. In doing so, the similar cases will be presented together.

e The concatenation aof/(11), if it exists, with itself produces a codeword dﬁ‘l’;;‘.o_ﬁl (see
Arrow 1 in Figure 1).

If j = 1, ¢;"(11) is the all-ones codeword i'(my), and the concatenation with itself
produces the all-ones codeworddtim, + 1). If j > 1, the outer runs in/"(11) must be of
size2™~P~1  (To see this not that if is a complete power of 2, i.g. = 27 then all runs of

ones, including the outer runs, are of si#& 7! by assumption, and if is not a complete
power of 2, i.e2P~! < j < 2P then the outer runs must have siz&@ 7! by Lemma 3). In

the process of concatenation, two outer, smaller runs merge into one larger run and all other
runs of ones are unaltered. Therefore, in the resulting codewaﬂ@;‘ij‘]l, wherej > 1, and

2 < 2j—1<2rtt therear@ x (j —2°P71) x 2 -2 = ((25 — 1) — 2P) x 2 runs of ones

of size2mo—p=1 = 2(mo+1)=(r+1)=1 "'and2 x (2P — j) + 1 = 27*1 — (25 — 1) runs of ones of
sizeomo—r — 9(mo+1)—(p+1)

e The concatenation of;*(11), if it exists, with its complement produces a codeword in
Gyt (see Arrow 2 in Figure 1).
The complement of;* (11) is ¢}, (00). By assumptiong}(11) has(j — 2*~") x 2 runs of
ones of size&™ -1 and2? — j runs of ones of sizé™ 7, forj > 1. If j = 1, thenp = 0,
and the complement is the all-zero codeword, so the result of the concatenation has a single
run of ones, of sizg@™o = 2(mo+1)-1,
Suppose now that > 1. Then there is a correspondipgsuch that2r—! < j < 2° and
0 <p<my— 1. Note thatr=! <j —1 < 27,
Caselj —1=2r!
Under this condition, the codeword, (00) has allj — 1 runs of ones of sizgmo—(p—1)-1
each. The concatenation @f°(11) and¢}™, (00) then hagj — 2°~") x 2 = 2 runs of ones
of size2m~?~1 ‘and2? — j + j — 1 = 2P — 1 runs of ones of siz&™ 7, Using the fact that
2=((27—1)—2P)x2,2? —1 =27 — (25 —1) and that? < 2j — 1 < 2r*! we conclude

that the resulting codeword satisfies the proposed assertion.
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Case 2;j —1 > 20!

The codeword]™, (00) has((j —1) —2P~") x 2 runs of ones of size”~*~" and2’ — (j — 1)
runs of ones of size™~?, The result of the concatenation hgs— 2*') x 2+ ((j — 1) —
2771 x 2 = ((25 — 1) — 2P) x 2 runs of ones of siz@™ P~ and2? — j +2F — (j — 1) =
2Pt1 — (25 —1) runs of ones of size™ 7. Since2? < 25 —1 < 2P the proposed assertion

holds for this choice of — 1 as well.

The concatenation of;*(01), if it exists, with its complement produces a codeword in

Gyt (see Arrow 3 in Figure 1).

First note that the complementdf°(01) is ¢**(10), and since they both belong to the same
groupG’;’, by assumption they both hayg — 2P~1) x 2 runs of ones of sizé™ ! and

2P — 4 runs of ones of siz@™o 7,

As established in Lemma 3, the outer runs are of the smaller size {fierg!), so in the
process of concatenatingf® (01) andc;*(10), the rightmost run of ones if* (01) merges
with the leftmost run of ones ir*(10), resulting in a run of ones of siz~7. All other

runs of ones are unaltered. We will treat the cgsesl and; > 1 separately.

If j = 1, bothc]™(01) andcj™ (10) have one run of ones of si2&°~', so their concatenation
results in a codeword i whose sole run of ones is of si2&°, which is consistent

with the proposed assertion.

Forj > 1, the concatenation af (01) with its complement ha&;j — 27) x 2 -2 = ((2j —
1) —2P) x 2 runs of ones of siz&(mo+)=F+-1 ‘and2 x (2? — j) +1 = 2P+ — (25 — 1) runs
of ones of siz&(m+)-r+1) Sincej > 1,27 < 25 — 1 < 2P*! holds, and we can conclude
that the codeword iﬁl;r;ofll obtained by concatenating” (01) with its complement satisfies

the proposed assertion.

The concatenation of;*(10), if it exists, with its complement produces a codeword in

G50t (see Arrow 5 in Figure 1).

Note that both™(01) and its complement; (10) have(j — 2°~') x 2 runs of ones of size
2mo—P=1 and2? — j runs of ones of siz&™°~?, Consequently, the result of the concatenation
has(j —2P~1) x 2 x 2 = (25— 2?) x 2 runs of ones of sizame+1)-F+1-1 ‘and(2F —j) x 2 =

2Pt — 24 runs of ones of siz&™ 7. Since2’ < 2j < 2P*! we can conclude that the
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proposed assertion holds for a codeworai?@jo+l obtained by concatenating(10) with

its complement.

The concatenation of/(10), if it exists, with itself produces a codeword ([l?‘lg}o“ (see

Arrow 6 in Figure 1).

Now, for 27 < 25 < 2P*1) the resulting codeword hasx (5 — 2P71) x 2 = (25 — 2P) x 2

runs of ones of sizgmo—r~1 = 20mo+D=P+1)—1 and2 x (27 — j) = 27! — 25 runs of ones

of size2mo—» = 2(mo+1)=+1) No runs of ones are altered, they are merely duplicated. This
same argument applies to the concatenatiar’of01) with itself (Arrow 4 in Figure 1), and

to the concatenation ef* (00) with itself (Arrow 7 in Figure 1).

The concatenation of;*(00), if it exists, with its complement produces a codeword in

Gyt (see Arrow 8 in Figure 1).

If j = 0, ¢["(00) is the all-zeros codeword. The concatenation with its complement (the

all-ones codeword) produces a codeworddfi*™ that has a single run of ones of size
2(m0+1)—1'

By assumption, foy > 0, the codeword(00) has(j — 2*~") x 2 runs of ones of size
2mo=pP=1 and2? — j runs of ones of siz&™°~*. The complement of;(00) is ¢}, (11). We
will analyze the cases whei—! < j < 2P andj = 2P separately.

Case 12771 < j < 2P,

Here we have that’—' < j 41 < 27, and2” < 2j 41 < 27*1. By assumptiong}', (11) has
((j+1)—2r~1) x 2 runs of ones of size™ P! and2? — (j + 1) runs of ones of siz&™ 7.
Consequently, the concatenation fias 2P~1) x 2+ ((j+1) =27 1) x 2=((25 +1) — 2P) x 2
runs of ones of sizgmo P! = 2mot)=(p+D=1 gand2P — j 427 — (j +1) = 2PF1 — (25 + 1)
runs of ones of siz@mo—? = 2(mo+1)-(P+1) The assertion therefore holds for the codeword

in Gg;gﬁl, obtained by concatenating (00) with its complement, wheg"~! < j < 2°.
Case 2 = 27,

Now we have thag? < j + 1 < 2/"" and2P*! < 2j 4 1 < 2P2, In this case¢["(00) has
all j = 2” runs of ones of size™—*~'. Its complement}"’, (11) has((j + 1) —2”) x 2 runs
of ones of siz@mo~(P+1)=1 — 2mo=p=2 gnd2r+! — (j + 1) runs of ones of sizg™o—(P+1) =

2mo—r=1 The result of the concatenation h#ts+ 27! — (j + 1) = 27" — 1 runs of ones

of size2m~P~1 ‘and((j + 1) — 2P) x 2 runs of ones of size™ =2, Sincej = 2?7, we can
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replace2r™! — 1 with 2772 — (25 +1) and((j +1) — 27) x 2 with ((2j +1) —2P) x 2. Thus,
for j = 27, the result of the concatenation @t (00) with its complement is a codeword in
Gyt that hagrt? — (25 + 1) runs of ones of size(™mot)=(+2) and((2;j + 1) — 2°H) x 2

runs of ones of sizg(mo+D-(r+2)-1 'where2rt! < 25 + 1 < 2742,

Combining the results stated so far in the proof, we conclude that Lemma 4 holdé/fer+ 1).
|

4 One Deletion, One Repetition Case: Identification-problem

Causing Codewords

Recall the discussion from Section 1. Let us assume that the error correction code is Reed-
Muller(1,m) and that we are operating in the noise-free regime. We further assume that the re-
ceived strings (codewords with synchronization errors) can be observed in isolation so that from
the length of the received string, the total difference between the number of repetitions and dele-
tions is known. Suppose we allow at most one deletion and at most one repetitiodeifotes

the code length, and if= n — 1 bits are received, than one deletion case is declared. Similarly, if

[ = n+ 1 bits are received, one repetition case is declareld=lf. bits are received it is either the

case that no synchronization errors occurred or one of each kind occurred.

Our goal in this section is to analyze the case of at most one deletion and at most one repetition
and to determine all pairs of codewords@{m) that can result in the same string under these
assumptions. This enumeration will yield to the pruned code with improved synchronization error
correction capabilities.

For small values ofn, we have the following result.
Remark 4.1 For m = 0, 1,2 we can show by inspection the following.

m = 0 The only codewords are '0’ and '1’ and they can both result in an empty string.
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m = 1 The codewords are '00’, ’11’,'01’, and '10’. Any two pair of codewords, except for '00’

and’11’, can result in the same string.

m = 2 The codewords are '0000’, '1100’, '0011’,0110’, '1111’,’1010’,0101’, and '1001". The
codeword '0011’ and any one of '0110’, '0101’, and '1001’ can result in the same string.
Similarly, the codeword 1100’ and any one of '1001’, '1010’, and ‘0110’ can result in the
same string. The same is true for '0110’, and any one of '1010’ and ‘0101’ as well as for
1001’ and any one of '0101’ and '1010’. Also, '1010’ and '0101’ can result in the same
string.

m = 3 The confusable codewords are as follows. The codeword '11001100’ can be confused
with either one of '01100110’, '10011001’, and '10010110’. The codeword '01100110’
can be confused with either one of '210011001’, '01101001’, '10010110’, and '01011010'.
The codeword '01101001" can be confused with either one of '10100101’, '01011010’,
and '01010101'. The codeword 10100101’ can be confused with either '10101010’ or
'01010101’, or 01011010’ and finally '210101010’ and ‘01010101’ can be confused. To

complete the list of confusable codewords, take the complement of those listed explicitly.

Before proceeding with the main theorem, we first establish a couple of useful results:

Remark 4.2 Complementarity: Consider two distinct codeworgsand c;,, and their comple-
mentsc, andcy, all in C'(m). Then, if and only ik, and c;, give rise to the same string after
experiencing at most one deletion and one repetition each, then gpaldcy,. In particular, iff
such deletion irc, occurs in a run of ones, then the corresponding deletiog,inccurs in a run

of zeros.

Lemma 5 If c, is a codeword belonging t6'(m), thenc} = B(c,) is also a codeword it (m)
whereB(c,) is the string obtained by reading, backwards.

Proof : To see this recall that'(m) is described by & x n generator matrit,,, wherek = m+1

andn = 2™, The first row ofG,, consists of all ones, and th& row of G, for1 <i < m + 1
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consists of2i~! alternating runs of ones and zeros, where each run is of28iz&"™, and the
leftmost run in each row is a run of ones. Now, we can describe the same code with the alternative
generator matriXG’_, where each row for 1 < i < m + 1 consists o2:~! alternating runs of

zeros and ones, by simply replacing t#ferow of G, with the sum of the first and th&" row.

Note that all rows i, are equal to the corresponding rowd®f, read backwards, so that every
linear combination of the rows d&. is equal to the same linear combination of the row&gf

when read backwards.

Remark 4.3 Reversibility: Consider two distinct codewordsandcy,, and their reverses;, and
c;, all in C(m), where byc; we denote the codeworg read backwards. Then if and onlyd§
andcy, give rise to the same string after experiencing at most one deletion and one repetition each,

the same must be true fof, andc;,.

The previous two remarks will be used throughout the proof of the main Theorem.

We now also introduce a useful auxiliary set of strings and state several properties of these
strings. The proofs for the given statements are contained in [1]. These results will also be used in

the proof of the main Theorem.

Definition 1 For a codewordc € C'(m) letd = d(c) be the string whose entries are the lengths

of consecutive runs in, read from left to right. LeD,, = {d|d = d(c),c € C(m)}, so thatD,,
represents the collection of all possible sequences of run lengths associated with the codewords of
C(m). [

Lemma 6 [mirror-symmetry]Vc € C(m), the stringd = d(c) possesses the mirror-symmetry
property, i.e. the entry in positiop in d, denoted byd(p), is the same as the entry in position

[ —p+ 1, denoted byl(l — p + 1), wherel represents the length of strird)

Lemma 7 If all entries ind = d(c) are either 1 or 2, with at least one entry being 1 and one being

2, then the leftmost entry equal to 2 must be in posizigrior somep > 1.
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Lemma 8 If all entries ind = d(c) are either 1 or 2, with at least one entry being 1 and one being

2, then each run of 2's id is of length2? — 1, for somep > 1.

Lemma 9 If all entries ind = d(c) are either 1 or 2, with at least one entry being 1 and one being
2, then each inner run of 1's (where the inner run denotes a run with neighboring runs on each

side) ind is of length2? — 2, for somep > 1.

Lemma 10 If d, = d(c,) anddy, = d(cyp,), for ca, cp € C(m) (da, dp € D,,) @andm > 2, are
such that they havek + 1 and 2k entries respectively, and all their entries are 1 or 2, then in the

first leftmost position in which they differ, calljt the entry is 1 ird, and is 2 indy,, andp < k.

Proof: For the proofs please see Lemmas 4-8 in [1]. |

We now state the main result.

Theorem 1 For m > 3, the following codewords can result in the same string after each experi-
ences at most one deletion and at most one repetition. (For the ease of proving the result, they are

categorized into different groups).
1. p(10) andc(01) }Group 1

2. ¢"(10) andcn(11)
3. ¢n(10) andc™ | (00)
4. (01) andcf(11)
5

Group 2
ci'(01) andcj,(00) |
7(01) and ¢, (01
Cj ( ) ijl( ) Group 3
cf*(10) and ¢, (10)
c(01) andc}*(00)
cr(01) andcp (11) Group 4

10. *(10) andc;(00)
11. ¢(10) andq?,(11)
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12.

13.

14.
15.
16.
17.

18.
19.
20.
21.

22.
23.
24.
25.

26.
27.

28.
29.

30.
31.

32.
33.
34.
35.

¢, (00) and e (1) } Group 5

¢/(00) andef?,,(11) |} Group 6

J/

—_
@)

ERE

Group 7

Q
>
o
)
—
a)

QD
-]
o
QO
L
@)
—

Yy
Ve ~ P — —~
—_
=
— N— N— N—
QD
>3
o
MQ
|
I
~~ o~ —~
o
—_

(.

iy (11) and e, (10)
i1 (11) andcy, (01)
¢(00) and e, (10

Group 8
)
c'(00) andcy,, (01

)
)
(00) ande(10) )
cm(00) and e (01)

Group 9
¢4 (11) and ¢ (10)

(
v, (11) and¢*(01)

V

c'(00) andc}, (00)

Group 10
i (11) and o (11)

¢ (01) ande,, (01) } Sroup 11
*

c 1 (11) andci(11)

Group 12
' 5(00) and ¢} 1 (00)

I Group 13

wherej = 2" 1 k =2m~2 andl = 3 x 2m3.
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Note that we have already shown this result#or= 3, by Remark 4.1. In the remainder we
will assume thain > 3. Since the cases where exactly one synchronization error per codeword
occurs are contained in the case under current consideration, we first enumerate the ones that
cause the identification problem under a single deletion. These pairs are listed in 1). through 11).
in Theorem 1, and are obtained from Theorem 2 in [1]. It also shown in [1] that no two codewords

can result in the same string when each experiences a repetition.

Thus, the remaining possibilities are when two distinct codewords give rise to the same string,
one of the codewords experiences one repetition and one deletion in different runs and the other
codeword experiences no synchronization errors, and another possibility is that they each experi-
ence one deletion and one repetition. In the former case, it would be necessary that there exist two
codewords, call them, andc, such that wher, experiences a repetition in position sayand
a deletion in position says,, the resulting string would again be a valid codeword. It is now suffi-
cient to consider the codewordg andcy, which satisfy the followingic, experiences a deletion in
positionp; andcy, experiences a deletion in positipn where the bit incy, in positionp, belongs
to a run of size at least 2. The set of such paigs ¢;,) is contained in the collection of pairs listed
in Theorem 2 in [1]. Specifically, they are already listed in 2). through 11). in Theorem 1.

We now focus on the latter case, namely whgnand c,, both experience a deletion and a
repetition. We will insist that botle, andc;, experience both types of errors in different runs
(otherwise the analysis can be reduced to the earlier cases of having one synchronization error per
codeword). As discussed before, it is sufficient to consider the cases when the total number of runs
in ¢, andcy, differs by 0, 1, and 2. Without loss of generality assume that the total number of runs
in c, is at least equal to the total number of rungjn Letd, = d(c,) andd, = d(cy). We treat
the cased, = d,, d, = d, + 1, andd, = d, + 2 separately.

1. lengthd.)=length(d;)

As in the case of single deletion, it is necessary thaindc;, are complements of each other.
Sincec, andcy, disagree in the leftmost bit, it is necessary that one of them experiences a deletion
in the leftmost bit.

Without loss of generality we can assume thatexperiences a deletion in the leftmost bit.
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Then the leftmost bit iy, is the same as the second leftmost bitin(the deletion inc;, cannot
occur in its leftmost bit as then it would be impossible to construct the same string by applying a
repetition to the strings consisting of the remaining 1 bits in c, andc;), so we conclude that
bothc, andc, start with runs of length 1. By Lemma 3, the rightmost runsjrandc,, are also

of length 1, and all other runs in between are of length 1 or 2.

It is further necessary that the deletiorciioccurs in the rightmost bit in a run of size 1, since
otherwise the resulting strings obtained by applying a deletion and a repetittmaimicy,, would
end in different types of runs. Now we are left with the task of determining possible locations of

repetitions in inner runs.

By starting with the leftmost bit ir},, and by matching up the appropriate bitscinandc,
(i.e. the bit in position + 1 in c, is the same as the bit in positiamn cy,, and is the complement
of the bit in positioni + 1 in cp,) up until the very next synchronization error in either codeword,
we conclude that, (andcy) starts with a substring consisting of alternating bits. Now suppose
that the very next error, occurring say at positjgns again inc, (i.e. it must be that the bit in
positionp, in c, is being repeated). This would imply that the bitdgin positionp, is the same
as bit in the same position i, which is impossible for complement codewords. Therefore the
very next error must be a repetitiondg. Since all runs irc, andcy, are of size 1 or 2 only, it is
necessary that the repeated bitinin positionp, belongs to a run of size 1, and that a 2-bit run
of the same type contains bits in positigns+ 1 andp, + 2 in c,. Now suppose that the bit in
positionps (ps > p2) in ¢, is repeated. By matching up the bits in positions between the repetitions
we conclude that the substrings starting at positior 1 and ending at positiop; — 1 consist
of alternating runs of size 2 (we can think @f as trailingc, by two bits). The repetition ir,
must occur in the run of size 1, and in the remainder from postiion 1 onwardscy, is trailing
c, by one bit, so that substring in both codewords consists of alternating bits. Thekgfdras
the following format: it consists of alternating runs of size 1, followed by alternating runs of size
2, followed again by alternating runs of size 1. Sirgecan be viewed as a concatenation of a
codeword fromC'(m — 1) either with itself or with its complement, it is further necessary that
consists of a single run of size 1, followed by alternating runs of size 2, followed again by a single
run of size 1, or that, consists of alternating runs of size 1, followed by a single run of size 2,
followed again by alternating runs of size 1. Since the weight,a$ even, by definition of’(m),

its outermost bits must be of the same type, and we can conclude that the only choices for the pair
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(Cas Cp) iS ca = ¢, (11) @andcy, = ¢;*(00) for k = 2™~2, or vice versa, as well ag, = ¢/*(11)
andcy, = ¢f*,(00) for j = 2m~1 Note that by Remarks 4.2, and 4.3, these are the only such pairs.

These are listed under Group 5 and Group 6.
2. length(da)=length(dy)+1

It can be either the case that experiences a deletion of the outermost 1-bit run @ndxpe-
riences a deletion in a run of size at least 2 or thagxperiences a deletion in an inner run of size

1 andcy, experiences a deletion in an outermost run of size 1.
a) Suppose first that, has even length.

Thend, andd,, differ in the middle locations (since, andc;, can be viewed as the result of
concatenation applied to the same codeword'{m — 1) whereby no runs are altered in creating
c, and the outermost runs are merged in creadipgso thatd,, can be expressed dg=[A11B]
andd,;, asd,=[A2B] where A and B are substrings df, andd;, and are mirror images of each

other.

a.l.-If c, experiences a deletion in the outermost 1-bit run, by reversibility property we can
assume that the leftmost bit iy is deleted. Starting with substrings &, andd,, look the same,
so the last error is either a repetitiondp or a deletion incy, in the place that would correspond

to the entry ind, or d;, immediately preceding B.

We are then left with placing a deletionég (or a repetition irc,), and a repetition iry,. This
further necessitates the case of the left halves,iandc, having the following property: there
are exactly two consecutive entries that are different from each other, so that the left balf of
consists of a run of 1's followed by a run of 2’s followed by a run of 1’s. Then the left hadf,of
has the format: 1.12.21.1 (here and in the remainder by '1.1’ we assume a substring consisting of
1's only), so by structural properties of the stridg, it must be either 1.121.121 or 12.2112.21.
For the former case;, andc;, have2™ — 2 and2™ — 3 runs respectively, and it can be verified
thatc, is ¢*(01) or ¢f*(10) andcy, is ¢*(11) or ¢f* , (00) for j = 2™~' — 1. These are given in the
Group 7. For the latter case, andc;, have2™ ! + 2 and2™~! + 1 runs each. Then, is either
¢7"(01) or ¢*(10) andcy, is eitherc}*(11) or ¢, (00) for j = 22 + 1. These pairs are listed in
Group 8. Again by Remarks 4.2, and 4.3, these are the only such pairs.
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a.ll.-Now suppose that, experiences a deletion in its outermost run, which we can assume to

be rightmost run, and that, experiences a deletion in an inner 1-bit run.

We are left with the task of placing repetitions ¢g and c;, as well as a segment of three
consecutive runs ir,, the middle of which is a 1-bit run that gets deleted, and this segment
either corresponds to a 2-bit or a 1-bit runcin As a consequence of the current assumptions on
the deletions, we have the following changesljpandd,, as a result of synchronization errors,

whereby a ”joint” error means that the deletiondpand the repetition i, occur in the same

segment.
case ind, indy comment
1 211 3(del), - 2 (rep) 2- 3(rep), - {}(del) "joint” error
2 112 3(del), 1— 2 (rep) 2- 3(rep), - {}(del) "joint” error
3 111— 2(del), 1— 2 (rep) - 2(rep), - {}(del) "joint” error
4 111— 2(del), 1 2 (rep) - 2(rep), - {}(del)

In Cases 1-3 we want to place the repetitior jrrelative to the ”joint” error. Sincel, anddy,

agree everywhere except in the middle, we have the following possible situations:

Suppose first that the innermost entriesljpand/ord,, are changed due to the deletioncip
and that this is the leftmost error. In particular, if this is the "joint” error, and the innermost 11 in
d, is followed by 2 (description given under Case 2), then in the right halvelg ahdd,,, there
must be one change from runs of 2’s to runs of 1's to accommodate the remaining error (repetition
in c,), so thatd,, is 1.12.21.1. Thed, can be 1.121.1 or 12.21, adg can be 1.1 or 12.2112.21.
In the former casel, has no entries equal to 2, and the latter case corresponrgsatod ¢y, with
2m~1 + 2 and2™ " + 1 runs each. Then, is eitherc*(01) or ¢}*(10) andcy, is eitherc]*(11) or
" 1(00) for j = 2™~% 4 1. These pairs are listed in Group 8. Since the innermost entries cannot
be 21 ind,, and the innermost entry cannot be Mipn we can rule out Cases 1 and 3 for when the
"joint” error causes the changes of the innermost entrie,iandd;,. However, for Case 4, the

innermost 11 ird, are altered due to deletion but the innermost d,iremains unaltered. Then,
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to accommodate additional repetitions, we require two changes in the right haldgsaotid,,,
once in going from runs of 1's to runs of 2’s, and once in going from runs of 2’s to runs of 1’s.
Thend, is 1.12.21.12.21.1, so that it must be 1.121.12d,1dould also be 12.2112.21 but then it
would not have a run of 1's of size 3 as required). This correspondis égual to 1.121.121.121.1,

and in turn pairs established in Group 7.

If the ”joint” error occurs in the left halves af, andc,, it must correspond to Case 1. Then
suppose that 211 id, which gets altered by the "joint” error starts at positipn By mirror-
symmetryp-th rightmost entry in bothl, andd;, must be 2, so by matching up the appropriate
entries, the + 1-th rightmost entry ird, is 2 as well. However its mirror image is 1 &, unless
211 ind, spans its innermost entries. Moreover, there is one change from runs of 2's to runs of 1's
in the right half ofd,, sody, itself is 12.21, which then yield codewords listed in Group 8.

If for Case 4, deletion ik, occurs in the left half, let us first consider the case when there is
at least one 2 in B. Then B must be 2.21 as otherwise there would be more than 2 mismatches
between the appropriate entries in the right halved péndd,,. If B is 1.1, then the resulting
codewords are already given in Group 2.

Another choice is if the leftmost error is a repetitiondn It then must affect the innermost
entries ind, andd,;,. However, in all cases it is impossible to place the appropriate patterns that

correspond to the deletion & in the substrings B i, andd,,.
b) Now suppose that the length @f is odd.

b.l.-Let us first consider the case whepexperiences a deletion in its outermost run, which by

reversibility property, can be assumed to be the rightmost run (of size 1).

Then it is necessary thdf, andd,, are such that the entry in positieim d, is the same as the
entry in position: in d, except for three pairs of entries. In these exceptions, the entry igll in

and its counterpart is 2 idy, twice, and the entry is 2 id, and its counterpart id;, is 1 once.

Sinced;, has an even number of entries, its two innermost entries mustdyerhist start with
1, and the left and the right halves@f are the same).
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Sinced, has an odd number of entries, and its outermost entries are both 1, its innermost entry
is 2.

Now, this 2 ind, is in the same position when counted from the left as a d;jnso thatd,
andd,, look like (tentatively, where '..." indicate the current unknown substrings), and the overline

indicates the run that disappears as a consequence of having a deletion in the outermogt bit in
d,=1...2..1
d,=1...11...1

We now need to place 2 i, and 1 ind, twice in the same positions and have all other entries
in the same positions be the same. By the mirror symmetdy,pff we place such 2 iy, in the

[-th place from the left, we must place the remaining Ajnin thel-th place from the right.

Then,

dp=1...2..11...2..1
where the left (right) underlined places are in tkt@ position counted from the left (right).

By using mirror symmetry otl, andd;, and the fact that the remaining entries in the same
positions ind, andd;, must be the same, we conclude that all remaining entries must be equal to
1,ie.d,=1.121.1 andl;,=1.121.121.1 where 1.1 indicates a substring of all 1's.

Thenc, is eithercy,, (11) or ¢}*(00) andcy, is eitherc]*(10) or ¢f*(01) for j = 2™~ — 1. It can
be verified that in all 4 choices, the same string can result frpandc,,. These pairs are listed in
Group 13.

b.Il.-Now we consider the case whep experiences a deletion in an inner 1-bit run and

experiences a deletion of the outermost run, which we can take to be its rightmost run.

As in the case analyzed in a.ll we write the table indicating various error patterns. We have the
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following changes inl, andd,, as a result of synchronization errors:

case ind, indy comment
1 211— 3(del), - 2 (rep) 2- 3(rep), - {}(del) "joint” error
2 112— 3(del), 1— 2 (rep) 2- 3(rep), - {}(del) "joint” error
3 111— 2(del), 1— 2 (rep) - 2(rep), - {}(del) "joint” error
4 111— 2(del), 1 2 (rep) - 2(rep), - {}(del)

Suppose first that the repetitiondg occurs before the "joint” error, and that it corresponds to
thep-th leftmost entries i, andd,,, which are then 1 and 2 respectively. Then ki rightmost
entries must be 1 and 2 ih, andd,,, respectively. In particular, if that 2 in theth rightmost
position indy, is after the "joint” error, by matching up the appropriate entrieglinanddy,, it
would follow that lastp — 1 entries ind,, are all 2, which is impossible. If that 2 is a part of the
segment affected by the "joint” error (can hold for Cases 1 and 2), then the rightmodj vould
be in thep + 1-th position, and the rightmost 2 i, would be in itsp-th rightmost position, which
by Lemmas 6 and 7 cannot hold simultaneouslydgmwould end in a run of 2’s which is also
impossible. Similarly, if that 2 is in the position before the "joint” error, for Case 1, the positions
of the rightmost 2’s ind, andd;, would violate Lemmas 6 and 7, and for Caselg,would end
in a 2. For the Case 3, this pattern of errors would imply thaandd,, have all entries equal to
2 inbetween the repetition and its mirror image, and all entries equal to 1 outside of these errors.
Then, however, the location of the leftmost 2'sdp andd,, differs by 1, which is not possible by
Lemma 7.

We now consider the error pattern in which the "joint” error occurs before the repetition. If
there is an entry equal to 2 in the segment before the ”joint” error, then by matching up the appro-
priate entries ird, andd,, the leftmost 2 in that run of 2's has a mirror image in the right half of
di, which must be matched with a 1 &y, i.e. it corresponds to the repetitiondp. Moreover, the
"joint” error cannot have the corresponding entry be Hijn(Case 3) as its mirror image must be
matched with 2 in the right half ad,. If the "joint” error is as given in Case 1, it would be nec-

essary that in the right halves df, andd,, exist two runs of 2’s whose sizes are two consecutive
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numbers, which by Lemma 8 is not possible. Similarly, for Cas&, Zndd,;, would contain runs

of 2's of two consecutive sizes.

We now consider the case when the "joint” error is the leftmost error, and there are nalg’s in
andd,, prior to the positions that correspond to this "joint” error. In particular, if no entry prior to
the "joint” error is equal to 2, then for Case 1, the mirror image of @,insay in thep-th rightmost
position that corresponds to the ”joint” entry, would have to correspond to the repetition location
in c,, and by matching up the appropriate entries in between the locations of the "joint” error and
the repetition, it would follow that 2 in the-th rightmost entry ird;, is preceded by a 12, whereas
2 in thep-th rightmost entry ird,, is preceded by 1. Thed, andd;, would have runs of 2’s of two

consecutive sizes which is impossible by Lemma 8.

For Case 2, again the mirror image of 2dp that corresponds to the "joint” entry, would have
to correspond to the repetition locationdg, but then the rightmost 2’s id,, andd,;, would be
in positions that differ by 2, which by Lemmas 6 and 7 can only be 4 and 2. However then
d, starts with 111211 and,, starts with 121, and to match the entries in between they must be
a repeated sequence 211. Thinis 121121...121121, and, is 1112112...112111, and have
lengths3 x 2™~2 and3 x 2™~2 + 1 respectively. The resulting codewordsandcy, are as given

in Group 9.

For Case 3, let us suppose that due to the repetijtidim rightmost entry ird;, is 2 andp — 1-th
rightmost entry ind, is 1. Then ifp-th entry ind,, is strictly located in the right half odl,,, by
mirror-symmetry, the-th leftmost entry ind;, must be 2 (which is by assumption after the "joint”
error, as the "joint” error is not preceded by a 2) so that 2-th entry ind, must be 2 as well,
which are also the first leftmost entries equal to 2 in hibffandd;,. By Lemma 7 these must be
in positions 4 and 2 irl, andd,, respectively, and as a result we obtain the sampandd,, that

yield the codewords already listed in 9.

The last case to consider is Case 4 when the errors cause the following modificatigrasich
dy,: Deletion ind, converts 111 to 2, and id,, converts 1 to an empty string and the repetitions

in both of them convert 1 to 2.

We first want to place the repetition errors relative to the deletien.ine label them (2,1) and
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(1,2), for when the repetitions occurdg, and inc,, respectively. If (2,1) precedes the deletion, it
itself must be preceded by (1,2) as it is not possible to havedg and 1 indy, in the first leftmost

position they differ in, by Lemma 8.

It is also not possible to have (1,2) precede the deletion, asdhewmould end in 2, unless
(1,2) and the deletion in, are associated with positions that are mirror images of each other in
d,, (otherwised, would end in 2). In that case, we start matching the entrie$,iandd;, that
are in between these two positions and we conclude that all those entries must be 1. There is only
one remaining mismatched pair, i.e. the one we labelled (2,1), so we concludk, thmaist have
a single 2 in its innermost entry and all other entries equal to 1. This however yighisd c;,

already listed in Group 13.

We now consider the case when both mismatchings (1,2) and (2,1) occur after the deletion in
c.. Suppose the segment 111dg, 2 in dy, that corresponds to the deletiondp is immediately
preceded by a 2 in boti, andd;,. Now if, this segment is either followed by 2 and 2dg and
dy, orby 1and 1 orby 2 and 1, one of Lemmas 8 and 9 will be violated. If it is followed by 1 in
d, and 2 indy,, this would correspond to (1,2) error. Thégwould have a segment 21111 adhgl
would have a segment 222 that start in the same position and whose second entry corresponds to
the first position in whichd, andd,, differ. By mirror-symmetryd, would have a segment 1112
andd;, would have a segment 222 that end in the same position, counted from the right. However,
then there would be another mismatch between the corresponding entries thatdg and 2
in dy,. Thus the segment 111 ih,, 2 in d;, that corresponds to the deletiondp is immediately
preceded by a 1 in botth, andd;,. The mirror image of this segment corresponds to the (1,2) error.
The (2,1) error cannot occur after the (1,2) error as that would implydthahds in a 2. Therefore
the (2,1) error is in between the deletiondpand the (1,2) error. Moreover by matching up the
appropriate entries id, andd;, the segment preceding the leftmost error as well as the segment
following the (1,2) error consist of 1's only, as do the segments in between. Since only (2,1) error
remains to be placed somewhere that 2 must correspond to the innermost ehtmyhinch then

has all other entries equal to 1. This in turn yields candidate codewords already listed in 13.

3. length(d,)=length(d)+2

In this case, the deletion i, must occur in a run of size at least 2, and the deletion,in
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must occur in an inner run of size 1. All runs ¢ must be of length 1 or 2 each. dfi, had an
entry larger than 2, that entry would have to be 4 but tdgrwould not have any inner 1's as
required. Thugy, has runs of length 1 and 2 as well. Either the repetitiotyiand the deletion in
cp occur "jointly”, or the repetition incy, is in the run of size 1 and the deletiondg is in a 1-bit

run neighbored by two 1-bit runs whereby these errors occur separately.

a) The deletion irc, is in an inner 1-bit run that is neighbored by a 1-bit and a 2-bit run, and
there is a repetition imy, in the corresponding 2-bit run, or the deletion is in an inner 1-bit run in
c, Which is neighbored by two 1-bit runs and there is a repetition in the corresponding 1-bit run in
cp. In either case, we think of these errors (deletion.inrepetition incy,) as "joint” error, and we
need to place the remaining errors (deletiorin repetition inc,). These two remaining errors
can be thought of as being of the same kind (repetition in a 1-bit rup snd the deletion in a

2-bit run incy,) so we call them x and we call the "joint” error y.

Then there are three different orderings of errors, but by reversibility property it is sufficient to

only consider orderings yxx and xyx.
Suppose the ordering is yxx. Theg andd,, are:
1)d, = A112B1C1D andd, = A2B2C2D or
2)d, =A211B1C1D andl;,, = A2B2C2D or
3)d, =A111B1C1D andl, = A1B2C2D,
for some appropriately chosen substrings A, B, C and D.

In 1) by mirror symmetnyfA|=|D|, and we start matching up the appropriate entria,iand
dy. If Cis not empty, it must end in 1, and we get that there is a substring '21&;, iwhich by
Lemma 9 is not possible. Thus C must be empty, and then we have that B consists of all 2’s so
thatd,=A112.211D andd;,=A22.22D where D is the reverse of A. Furthermore, A starts with 1,
and D ends with 1. Suppose A has at least three runs (of 1's, 2’s, and 1's). Then the last run in A
cannot be a run of 1's as the inner runs of 1'slincannot be k+2 and k;k0 simultaneously by

Lemma 9. Thus A ends in arun of 2's or it consists of 1's only. If Ais 1.1, by Lemnah, Would
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be 1112.2111 which is impossible for > 3. Thus A has a run of 1's followed by a run of 2’s.
Suppose 11 following A is not in the middle of the left half&f. By concatenation principle, A
would have another inner 1 somewhere but that 1 in 4jnwould not have its mirror image in the
left half of d;,. Thus 11 ind, must be in the middle of its left half which then implies tlkt has
no inner 1's. Thusl,=1.12.21.1. In particulad,, is 12.21. Consequently, is 12.2112.2112.21
and the candidate, andc;, arecj'(11) or ¢j*,(00) for c, wherej = 22 4- 2, andcj}(11) or

¢, (00) for ¢y, wherej’ = 22 4- 1. These codewords are listed under Group 10.

For 2) we look at first 2 following A2 ird;, . Suppose it immediately follows that substring.
Then by mirror symmetryA |=|D|-1. If the entry ind, immediately following A211 is 1, B would
be empty and C would consist of all 1's. Howevdy, andd;, would have runs of 2’s of two
consecutive sizes which is not possible by Lemma 8. If A21d.ims followed by 2, then if entry
immediately following A22 ind, is 1, the runs of 2's starting with the leftmost entry in Ddg
and starting with 2 immediately preceding Ddg would differ in length by 1, which is impossible
by Lemma 8. Thus A22 inl,, is followed by 2. By matching up the appropriate entries, it further
follows that C is empty and that B has all 2's. But then by concatenation rule, A has only 1 in its
leftmost position and 2’s everywhere else and we arrivk, @&ndd,;, as being 12.2112.2112.21 and
12.21, which in turn correspond to codewords already given in Group 10. If A3 is followed
by 1, then by Lemma 9, B cannot have any 2’s. Since B is not empty (by assumption thereisa 1
in dy, following A2 and there is a 2 following B), it has all 1's, and 2 immediately following B in
dy, has 2 immediately following C as its mirror image. By mirror symmetry all entries in C must
be 1's as well. Therl, andd;, are A21.1D and A21.121.12D, and their left halves can be viewed
asd|, = d(d}) andd}, = d(c,) for somec;, c, € C(m — 1), whereby two innermost entries if)
andd, are 11. Thenl; is A21.1 andd), is A21.121.1, but then the mirror symmetry of one of them

has to be violated.

For 3), if the substring B has at least one entry equal to 2, then by Lemmas 7 and 9, A must
be empty. However, by mirror symmetdy, actually starts with 111211, which cannot be matched
with dy, which itself must start with 12112, since thdp ends with 112111 and, with 21121,
and this rightmost 2 i, cannot be matched with 1 if,. If B does not have any 2’s then we can
think of A being extended by the size of B, so that B is effectively empty and A ends in a run of
1's. We label the new A as A.Then 2’s neighboring Cdp must be mirror images of each other,
and C itself must be all 1's. Thed,, andd;, are A1.1D and A121.121D. We now view the left
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half of d;, in isolation. If in it 2 following A1 had a mirror image in A, the mirror of the left half
of d, would be violated. Thus 2 following A'1 inly, is in the middle of its left half and A has all

1's. This in turn implies thadl, is all 1's andd,, andd,, correspond te, andc, listed in Group 3.
Consider now the error pattern xyx.

Thend, =A1BEC1D andd,=A2BFC2D where E ind, and F ind,, contain 112 and 2 or 211
and 2, or 111 and 1. Strings A and D must be mirror images of each other, and by matching up
the same entries id, anddy, in B and C we end up with the unmatched middle which is either
of length 4 and 2 ird, andd,, respectively or 3 and 1 id, andd, respectively. For the latter
case, to preserve the mirror symmetrydyf the isolated entries must be 111dg and 1 indy,.
However the run of 1's to which that 1 ih, belongs would be of odd length, which is impossible
by Lemma 9. For the former case, the four innermost entriek, iare 2112 and are 22 iy, or
are 1111 ind, and are 11 ird;, (2112 and 11 does not fit the patterndafandd,,). Then eithed,,
has all entries equal to 2, which gives risectobeingc]*(01) or ¢*(10) for j = 22 andc, being
it 1(01) or el
and 11 ind, andd,, respectively, if at least one of B and C contains a 2, we would have that there

(10). These pairs are listed in Group 11. For when the innermost entries are 1111

exist inner runs of 1's ird, andd,, that differ in length by 2, which by Lemma 9 is impossible.
Thus B and C must contain only 1's, and 2’s bordering A and @ynby mirror symmetry, must
be in the middle of the left and the right half df,, respectively, and A itself must be all 1's as
well. Thend, is all 1's and the resulting, andc;, are already established in Group 3.

b) Now suppose that the deletiondy and the repetition irl;, are not "joint” errors.

We again think of the deletion i&, (must be in a run of size 2) and the repetitiorcin(must
be in a run of size 1) as equivalent errors, and we denote them by x. Let y be the deletion location
in c, and z be the repetition location aj.

We can order x, X, Yy, z in 12 ways but by reversibility it is sufficient to look at 6 of these.
Moreover, z cannot be the rightmost or the leftmost error by an argument similar to that given in
Lemma 10. Suppose thdf andd,, have length$+ 2 and! respectively. Then there exist another
d. of lengthl + 1 such thadd, = d(c.), wherec, € C(m). If [ is even, we apply Lemma 10 to
dy, andd,, and conclude that the first leftmost position, gain which they differ,d,, is 2 andd,
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is 1. Thisp is strictly in the left halves ofl;, andd.. Sinced. andd, disagree only in the middle,
i.e. when counted from the left, first time in positiGyi2 wherel, is the length ofd,, it follows
that the leftmost position in whictl, andd, disagree is stilp, and in that positionl,, is 2 andd,

is 1. Whenl is odd the argument follows similarly.
It is therefore sufficient to analyze the following cases: yzxx, yxzx, and xyzx.
-For xyzx we have thal, = A1B111C2D1E andl,, = A2B2C1D2E

We first observe thatA=|E|. Then irrespective of how are the sizes of B and D related, the
mirror symmetry of one ofl, andd,, will be violated. In particular fofB| = |D|, 2 immediately
following B would have 1 immediately preceding D as its mirror-imaggB|f> |D|, 2 immedi-
ately preceding D irl, and 1 immediately preceding D uh,, would have mirror images in B in
the same positions. If this 2 i, is its own imaged, andd;, would agree up to the innermost
entry ofdy,, so thatd, is then A121A andd,, is A2A, for A the reverse of A, which contradicts

current assumptions ahy, anddy,.
-For yzxx we have thal, = A111B2C1D1E andl;, = A2B1C2D2E

If both A and B contain at least one 2 each, there would be an inner run of d's @f odd
length, which by Lemma 9 is impossible. If A contains no 2's , but B does, then by Lemma 7 A
must be of size’* — 1 for somel;. Now by Lemma 9 the run of 1's in B immediately preceding
its leftmost 2, is of siz&> — 2. Then the leftmost run of 1's id, is of size2" — 1 + 3 + 22 — 2,

which is impossible by Lemma 7. Thus B must contain only 1’s.

By matching up the appropriate entriesdpandd,, it turns out that D must consist of only 1's
as well. Now, the isolated 2 between C and Rijnis either the innermost entry i, or it has its
mirror image, which must be in C (it cannot be in E as its counterpat,irs 1 and would have
its own mirror image in the same position in E). In the former cdgas A21.121.12E where E is
the reverse of A. By the concatenation principle, A and E must contain only 1's as well, s that
has2™ — 1 runs andcy, has2™ — 3 runs, and:; = cf*(2z), c; = ', (22) for z = 1 andj = 2,
orz = 0andj = 2™ ! — 1. These pairs are listed under Group 12. In the latter case, by mirror
symmetry, all entries in C starting with the mirror image of the isolated 2 onwards must be all 2’s

as well. That substring in C cannot be preceded by a 1, as that would imph.tlatdd,;, have
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runs of 2’s of two consecutive lengths, which is impossible by Lemma 8. d@juandd,, are
Al1.12.21.1E and A21.12.21.12E respectively, where A is followed by at least threed,s if

the innermost run of 2’s (which is C) id, has length more than 1, by concatenation principle A
must start with 12, so that in the remainderdafall runs of 1's are either of length 1 or 2, which
contradicts the earlier requirement that there exists a run of size at least 3. Thus, the innermost
run of 2's ind, has size 1, and, is A1.121.12E, which gives rise to the codeword pairs listed in
Group 12.

-Finally, for yxzx, we haved, is A111B2C1D2E andl, = A2B1C2D1E.

If |A|=|E|, the mirror-symmetry is violated. [A| < |E|, then 1 and 2 immediately following
A in d, andd; have mirror images in E (if that 2 in, is its own image, thexl, andd;, would
agree up to the innermost entry dy,, andd;, would be A2A" andd, would be A111A, where
A denotes the reverse of A, but which is impossible) in the same positions, but then the mirror-
symmetry property is violated. Similarly, foA| > |E|, the mirror-symmetry property is violated

as well. [ |

4.1 Pruning of the code

Recall that the™ row of G, for 1 < i < m + 1 consists oR:~! alternating runs of ones and
zeros, and that each run is of length~*+!. Observe that thé" row is then precisely? ,(10). In

particular, the last two rows dk,, arecl,_,(10) for ¢ =m andcy;,_, (10) fori =m + 1.

We write c € C(m) asxG,,, wherex is a (m + 1)-dimensional message vector so that
.1 (10) =10,0,...,0,1]Gy andct, ,(01) = [1,0,...,0,1]Gyy. Similarly, ¢, ,(10) is
0,0,...,0,1,0]Gm andey, ,(01)is[1,0,...,0,1,0]Gm.

Observe that eithet;;,_, (10) or its complement appears in each codeword pair in Groups 1,
2 and 3, and that eithet;;,_,(10) or its complement appears in each codeword pair in Groups 4
and 11. The codeword;;,,_,(11) corresponds to the inpyt,1,0,...0,1] and its complement,
chm-1_1(00), to the input[0,1,0...,0, 1]. At least one of them appears in each codeword pair in
Groups 5, 12 and 13. Likewise, the codewdfyl_, , (11) corresponds to the inpit, 0, ... 0, 1, 1]
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and its complement?;,_,(00), to the input[0,0...,0,1,1], and at least one of them appears in
each codeword pair in Groups 6, 8 and 10. The codewfird, ,(00) corresponds to the input
[0,0,...0,1,0,1] and its complement;;,_, ,(11), totheinpufl,0,...0,1,0, 1], and one of them
appears in each pair in Group 7. Lastl],,.._;(10) corresponds to the inpi, 0,...0,1,1, 1] and

its complementgy,..;(01), to the input[1,0...,0,1,1, 1], and one of them appears in each pair

in Group 9.

Therefore, for each codeword pair, at least one codeword has the message with a nonzero
component in either positiom or m + 1. Consider a matrix consisting of the tap— 1 rows of
Gun. Ithasm — 1 rows and no linear combinations of its rows give rise to codewords causing the
identification problem. Thus, if instead of usififm) of rate2:! we use its linear subcodeé(m)
of rate’g—;}, generated by the top. — 1 rows of G,,, we are able to eliminate the identification
problem while preserving the linearity of the code and suffering a very small loss in the overall

rate.

5 Conclusion

In this report we proved several run-length structural properties of a Reed-Mutgr¢ode and

we studied how to modify this code for use in channels in which sampling errors cause one bit
repetition and one bit deletion per transmitted codeword. We enumerated all pairs of codewords
that can result in the same string under this channel model, and based on this enumeration we pro-
vided a simple way of thinning the code to eliminate such codewords. The resulting code only has
two fewer information bits than the original code and is also equipped with better synchronization

error correction properties.

References

[1] L. Dolecek and V. Anantharam. "Using Reed-Muller R\M{) Codes over Channels with
Synchronization and Substitution Errorss&ubmitted to IEEE Trans. Inform. Theorxpril
2006.

31



[2] F. J. MacWilliams and N. J. A. Sloan€The Theory Of Error Correcting Codes” North
Holland Publishing Company, Amsterdam, Holland, 1977.

32



