On structural properties of Reed-Muller codes and their use in channels with synchronization and substitution errors

Lara Dolecek

Electrical Engineering and Computer Sciences University of California at Berkeley

Technical Report No. UCB/EECS-2006-43 http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-43.html

April 27, 2006

Copyright © 2006, by the author(s). All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

On Structural Properties of Reed-Muller RM(1,m)Codes and Their Use in Channels with Synchronization Errors

Lara Dolecek dolecek@eecs.berkeley.edu

April 25, 2006

1 Introduction

In this report we address the problem of using a Reed-Muller(1,m) code in channels which, due to imperfect synchronization, permit one repetition and one deletion of a bit per transmitted codeword and we provide new results on the run-length structure of this code. The motivation, while briefly presented here, is fully provided in [1], along with the summary of relevant existing work. This report and its contribution should be viewed in the context of the problem addressed in [1].

Typically, in a communication system, a binary input message \mathbf{x} is encoded at the transmitter using a substitution-error correcting code C into a coded sequence $\mathbf{c} = C(\mathbf{x})$, which we assume is also binary. The received waveform after matched filtering may be written as

$$r(t) = \sum_{i} c_i h(t - iT) + n(t), \tag{1}$$

where c_i is the i^{th} bit of \mathbf{c} , h(t) is convolution of the modulating pulse and the matched filter, and n(t) represents the additive noise introduced by the channel. The receiver first samples the waveform r(t) at specific time instances, followed by decoding of the transmitted message based on

these discrete values. For the decoding to work properly, it is crucial that the sampling is done at correct places. However, as the operating conditions under which sampling must be performed become more stringent (such as in modern magnetic recording and wireless applications), it becomes ever more difficult to accurately sample the incoming waveform. As a result, when the adequate synchronization is missing, some symbol may be skipped or sampled twice. Let us suppose that we are operating in the infinite SNR regime, and that transmitted codewords can be analyzed individually, so that, under perfect synchronization, the received sampled sequence would be precisely the transmitted codeword. If the synchronization is not perfect, some bit can then be repeated or deleted. As a result, each codeword gives rise to a whole set of possible binary sequences obtained from it by different repetition-deletion patterns, as dictated by the accuracy of the synchronization scheme. An important consequence is that different codewords can then result in the same string, thus making the correct input message retrieval impossible. We call such codewords *identification problem* causing codewords.

In this report we focus on the Reed-Muller (1, m) code. The goal is to address the scenario when due to imperfect synchronization, both a repetition and a deletion can occur within the transmitted codeword, and to propose a way to eliminate the identification problem causing codewords. The subcase of a single synchronization error is studied in detail in [1]. In addition, we provide run-length properties of this code that may be of independent interest.

The report is outlined as follows. In the next section we briefly review the RM(1, m) code. In Section 3 we present several useful structural properties of this code, and in Section 4 we provide a detailed analysis of the RM(1, m) code where both a repetition and a deletion are possible. The report is concluded with Section 5.

2 Review of the RM(1, m) code

First order Reed-Muller codes (RM(1,m)) are an instance of linear substitution error-correcting codes [2]. This code is described by a $k \times n$ generator matrix $\mathbf{G_m}$ where k = m + 1 and $n = 2^m$. Let $\mathbf{g_0(m)}$ denote an all ones vector of length 2^m , and let $\mathbf{g_1(m)}$ be an $m \times 2^m$ matrix whose columns are binary m-tuples in the decreasing order.

The generator matrix of the RM(1,m) code is then

Observe that the first row of G_m consists of all ones, and the i^{th} row of G_m , for $1 < i \le m+1$ consists of 2^{i-1} alternating runs of ones and zeros, where each run is of size 2^{m-i+1} , and the leftmost run in each row is a run of ones. Let C(m) denote the RM(1,m) code. Note that every codeword in C(m+1) code is either the concatenation of a codeword in C(m) with itself or with its bitwise complement.

3 Runlength properties of the Reed-Muller(1,m) Code

In addition to the properties of the code presented in [1], we now prove additional interesting structural results.

3.1 Relationship between the input message and the run-lengths of its codeword

It is sometimes useful to determine the number of runs of a particular codeword based on its input message and vice versa. In this section we provide an explicit relationship between these two quantities. Let $\mathbf{a_m} = (a_0, a_m, a_{m-1}, ..., a_2, a_1)$ be a binary string of length m+1 and let \mathbf{c} be a codeword in C(m) such that $\mathbf{c} = \mathbf{a_m} \mathbf{G_m}$. The bit a_0 multiplies the all-ones row of $\mathbf{G_m}$ and therefore does not affect the number of runs of the resulting codeword, i.e. $\mathbf{a_m} = (a_0, a_m, a_{m-1}, ..., a_2, a_1)$ and $\mathbf{a_m} = (\overline{a_0}, a_m, a_{m-1}, ..., a_2, a_1)$ result in complement codewords (with the same number of runs).

In the following we replace a_0 by x to indicate that the value of a_0 does not matter.

We denote by $R_m(a_0, a_1, ..., a_{m-1}, a_m)$ the total number of runs in c. The following result provides a closed-form expression for $R_m(a_0, a_1, ..., a_{m-1}, a_m)$ in terms of $\mathbf{a_m}$.

Lemma 1 The number of runs in the codeword **c** given by
$$\mathbf{c} = \mathbf{a_m} \mathbf{G_m}$$
 where $\mathbf{a_m} = (a_0, a_m, a_{m-1}, ..., a_2, a_1)$ is $R_m(a_0, a_1, ..., a_{m-1}, a_m) = 2^{m-1}a_1 + 2^{m-2} + 1/2 - \sum_{k=2}^m 2^{m-k-1}(-1)^{\sum_{i=1}^k a_i}$.

Proof: By construction the bottom m-1 rows in G_m when viewed as a m-1 by 2^m matrix, are the same as the matrix obtained by concatenating the matrix consisting of the bottom m-1 rows in G_{m-1} with itself. If the runs at the point of concatenation are the same, the concatenation results in the merging of two runs, otherwise no runs are altered.

Therefore, the linear combination of the bottom m-1 rows in G_m produces a codeword in C(m) which has either 2R or 2R-1 runs, where R denotes the number of runs of the codeword produced by the same linear combination of rows in G_{m-1} . In particular, the number of runs is 2R if the auxiliary codeword in C(m-1) (the one constructed from the same linear combination) had different outermost bits, and the number of runs is 2R-1 if the outermost bits are the same. The former (latter) case occurs when the linear combination consists of an odd (even) number of participating rows.

Then, when $a_m = 0$ we have the following:

$$R_m(x, a_1, a_2, ..., a_{m-1}, 0) = \begin{cases} 2R_{m-1}(x, a_1, a_2, ..., a_{m-1}), & \text{if } \sum_{i=1}^{m-1} a_i \text{ mod } 2 \equiv 1, \\ 2R_{m-1}(x, a_1, a_2, ..., a_{m-1}) - 1, & \text{if } \sum_{i=1}^{m-1} a_i \text{ mod } 2 \equiv 0 \end{cases}$$

Now, $a_m = 1$ has the effect of complementing the left half of the codeword obtained from a linear combination of rows of G_m that does not involve second row of G_m , and leaving the right half intact.

Therefore,

$$R_m(x, a_1, a_2, ..., a_{m-1}, 1) = \begin{cases} 2R_{m-1}(x, a_1, a_2, ..., a_{m-1}), & \text{if } \sum_{i=1}^{m-1} a_i \text{ mod } 2 \equiv 0, \\ 2R_{m-1}(x, a_1, a_2, ..., a_{m-1}) - 1, & \text{if } \sum_{i=1}^{m-1} a_i \text{ mod } 2 \equiv 1 \end{cases}$$

We can jointly write these two expressions as

$$R_m(x, a_1, a_2, ..., a_{m-1}, a_m) = 2R_{m-1}(x, a_1, a_2, ..., a_{m-1}) - 1/2(-1)^{\sum_{i=1}^m a_i} - 1/2.$$

To obtain the formula for $R_m(x, a_1, ..., a_{m-1}, a_m)$, iterate recursively as follows,

$$\begin{split} &R_m(x,a_1,...,a_m) \\ &= 2R_{m-1}(x,a_1,a_2,...,a_{m-1}) - 1/2(-1)^{\sum_{i=1}^m a_i} - 1/2 \\ &= 2\left[2R_{m-2}(x,a_1,a_2,...,a_m) - 1/2(-1)^{\sum_{i=1}^m a_i} - 1/2\right] - 1/2(-1)^{\sum_{i=1}^m a_i} - 1/2 \\ &= 4R_{m-2}(x,a_1,a_2,...,a_{m-2}) - (-1)^{\sum_{i=1}^m a_i} - 1 - 1/2(-1)^{\sum_{i=1}^m a_i} - 1/2 \\ &= 4\left[2R_{m-3}(x,a_1,a_2,...,a_{m-3}) - 1/2(-1)^{\sum_{i=1}^{m-2} a_i} - 1/2\right] - (-1)^{\sum_{i=1}^m a_i} - 1 - 1/2(-1)^{\sum_{i=1}^m a_i} - 1/2 \\ &= 8R_{m-3}(x,a_1,a_2,...,a_{m-3}) - 2(-1)^{\sum_{i=1}^{m-2} a_i} - 2 - (-1)^{\sum_{i=1}^m a_i} - 1 - 1/2(-1)^{\sum_{i=1}^m a_i} - 1/2 \\ &\vdots \\ &= 2^{m-2}R_2(x,a_1,a_2) - 2^{m-3-1}(-1)^{\sum_{i=1}^3 a_i} - 2^{m-3-1} - 2^{m-4-1}(-1)^{\sum_{i=1}^4 a_i} - 2^{m-4-1} - \dots \\ &- 2^{m-(m-1)-1}(-1)^{\sum_{i=1}^{m-1} a_i} - 2^{m-(m-1)-1} - 2^{m-m-1}(-1)^{\sum_{i=1}^m a_i} - 2^{m-m-1} \\ &= 2^{m-1}R_1(x,a_1) - 2^{m-2}1/2(-1)^{\sum_{i=1}^2 a_i} - 2^{m-2}1/2 - 2^{m-4}(-1)^{\sum_{i=1}^3 a_i} - 2^{m-4} - \dots \\ &- 2^0(-1)^{\sum_{i=1}^{m-1} a_i} - 2^0 - 2^{-1}(-1)^{\sum_{i=1}^m a_i} - 2^{-1} \\ &= 2^{m-1}(1+a_1) - \\ &\left[2^{m-3}(-1)^{\sum_{i=1}^2 a_i} + 2^{m-4}(-1)^{\sum_{i=1}^3 a_i} + \dots + 2^{-1}(-1)^{\sum_{i=1}^{m-1} a_i} + 2^{m-3} + 2^{m-4} + \dots + 1 + 1/2\right] \\ &= 2^{m-1}a_1 - \sum_{k=2}^m 2^{m-k-1}(-1)^{\sum_{k=1}^k a_i} + 2^{m-1} - \left[2^{m-2} - 1 + 1/2\right] \\ &= 2^{m-1}a_1 + 2^{m-2} + 1/2 - \sum_{k=2}^m 2^{m-k-1}(-1)^{\sum_{i=1}^k a_i} + 2^{m-1} - 2^{m-k-1}(-1)^{\sum_{i=1}^k a_i} + 2^{m-1}(-1)^{\sum_{i=1}^k a_i} + 2^{m-1}(-1)^{\sum_$$

which completes the proof.

It is also useful to know how to quickly determine the input message based on the number of runs in the codeword it generates. Let N_m be the integer denoting the number of runs, and let $S_m(N_m) = (a_0, a_1, a_2, ..., a_{m-1}, a_m)$ be the binary string consisting of the entries in the input message, so that the mapping S_m is from \mathbb{N}^+ to $\{0,1\}^{m+1}$.

First observe that $|\sum_{k=2}^{m} 2^{m-k-1} (-1)^{\sum_{i=2}^{k} a_i}| \le 2^{m-2} - 1/2$. Thus, for $a_1 = 1$, $R_m(x, 1, ..., a_{m-1}, a_m)$ is at least $2^{m-1} + 1$, and for $a_1 = 0$, $R_m(x, 0, ..., a_{m-1}, a_m)$ is at most 2^{m-1} . Moreover, $R_m(x, 1, ..., a_{m-1}, a_m)$

 $+ R_m(x, 0, ..., a_{m-1}, a_m)$ evaluates to $2^m + 1$.

Thus, for the given m, if $N_m \ge 2^{m-1} + 1$, a_1 must be 1, otherwise it must be zero.

We can now subtract the contribution of a_1 to N_m , which is zero for $a_1 = 0$ and is $2^m + 1 - N_m$ for $a_1 = 1$, where by contribution we mean the difference in the number of runs of the codewords whose input messages are $(x, a_1, a_2, ..., a_m)$ and $(x, 0, a_2, ..., a_m)$, respectively. Denote the result by N'_m .

Having subtracted the contribution of a_1 from N_m , to determine a_2 , observe that $R_m(x,0,a_2,...,a_{m-1},a_m)$ = $R_{m-1}(x,a_2,...,a_{m-1},a_m)$, since the i^{th} row of $\mathbf{G_m}$ for $1 \le i \le m$ is constructed from the $(i+1)^{st}$ row of $\mathbf{G_{m-1}}$ by duplicating each entry twice. Thus, a codeword constructed from the linear combination of a subset of these particular rows of $\mathbf{G_m}$ has the same number of runs as the codeword in C(m-1) constructed from the counterpart rows of $\mathbf{G_{m-1}}$.

We now view a_2 as the value that multiplies the last row of G_{m-1} , just like a_1 did for G_m . By using the same line of arguments as for a_1 , we conclude that if $N'_m \geq 2^{(m-1)-1} + 1$, a_2 is 1, otherwise it is 0. To determine a_3 we need to subtract the contribution of a_2 from N'_m , and compare the result to $2^{(m-1)-1} + 1$, and so on.

The steps for determining a_1 through a_m can be outlined as follows:

Algorithm 1

- 1. Initialization: $N_c = N_m$, l = 0, $a_1 = a_2 = ... = a_m = 0$
- 2. Find the largest integer p, $p \ge 0$ such that $N_c > 2^p$. If no such p exists, stop and return the current values of a_1 through a_m . If such p exists, proceed to Step 3.
- 3. Let i = m p, and update the value a_i to be 1 (a_j 's for l < j < i remain 0). Proceed to Step 4.
- 4. Let $N_c := 2^{p+1} + 1 N_c$ and let l = i. Return to Step 2.

Example: m = 4, $N_m = 10$.

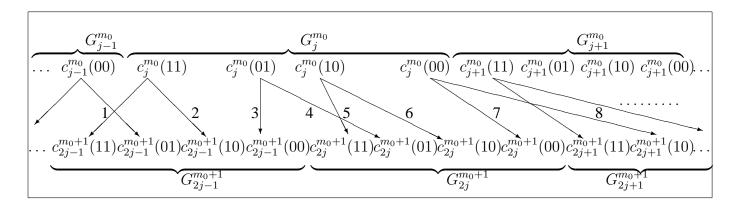


Figure 1: Construction of codewords in $C(m_0 + 1)$ from codewords in $C(m_0)$.

- Step 1: Initialize $(a_1, a_2, a_3, a_4) = (0, 0, 0, 0), N_c = 10, l = 0$
- Step 2.a: Since $8 < N_c < 16 \Rightarrow p = 3$
- Step 3.a: Set $i = 1, a_1 = 1$
- Step 4.a: Set $N_c = 7$, l = 1
- Step 2.b: Since $4 < N_c < 8 \Rightarrow p = 2$
- Step 3.b: Set i = 2, $a_2 = 1$
- Step 4.b: Set $N_c = 2$, l = 2
- Step 2.c: Since $1 < N_c \le 2 \Rightarrow p = 0$
- Step 3.c: Set i = 4, $a_4 = 1$
- Step 4.c: Set $N_c = 1$, l = 4
- Step 2.d. No p exists, return $(a_1, a_2, a_3, a_4) = (1, 1, 0, 1)$

It can be easily checked that the messages [0, 1, 0, 1, 1] and [1, 1, 0, 1, 1] both result in codewords with 10 runs each.

3.2 Run-length distribution

Lemma 2 The codewords in C(m) can be partitioned into $2^{m-1}+1$ distinct non-empty groups G_j^m , for $0 \le j \le 2^{m-1}$. Here G_j^m is comprised of those codewords in C(m) that have j runs of ones. G_0^m is comprised of exactly one codeword, namely the all-zero codeword. This codeword will be denoted $c_0^m(00)$. There are 4 distinct codewords in each group G_j^m , for $1 \le j < 2^{m-1}$. These codewords may be uniquely identified by their first and last bit. They may thus be unambiguously denoted as $c_j^m(11)$, $c_j^m(10)$, $c_j^m(01)$, and $c_j^m(00)$ respectively. There are 3 distinct codewords in the group $G_{2^{m-1}}^m$. These codewords may also be uniquely identified by their first and last bit and may be unambiguously denoted as $c_{2^{m-1}}^m(11)$, $c_{2^{m-1}}^m(10)$, and $c_{2^{m-1}}^m(01)$ respectively.

Lemma 3 Consider a codeword c in C(m). Either c has all its runs of the same length, which is a power of 2, or the runs in c are of at most two different lengths, and these two lengths are consecutive powers of 2. In addition, if there are runs of two different lengths in c, the outer runs (i.e. the leftmost run and the rightmost run) in c are of the smaller length.

Using the notation introduced in the preceding Lemmas, we can prove the following result on the run-length distribution of C(m).

Lemma 4 With the exception of the all-ones codeword, all codewords belonging to the group G_j^m for $2^{p-1} < j \le 2^p$ for some p, $0 \le p \le m-1$ have all runs of ones either of length 2^{m-p-1} or of length 2^{m-p} . Moreover, $(j-2^{p-1}) \times 2$ runs out of these j runs have length 2^{m-p-1} , and the remaining $2^p - j$ runs have length 2^{m-p} .

Proof: To prove the statement we use induction on m. For small values of m, the proposed statement can be verified directly. Suppose now that the assertion holds for some $m = m_0$.

By Lemma 2, the group $G_{j'}^{m_0}$ for $2^{p-1} < j' \le 2^p$ for some $p, 0 \le p \le m_0 - 1$ contains codewords $c_{j'}^{m_0}(10)$, $c_{j'}^{m_0}(01)$, and $c_{j'}^{m_0}(11)$. If $j' \ne 2^{m_0-1}$ it also contains $c_{j'}^{m_0}(00)$. There is a single

codeword in $G_0^{m_0}$ (the all-zeros codeword). Let us now analyze all the possible concatenations of the codewords belonging to the group $G_j^{m_0}$, $0 \le j \le 2^{m_0-1}$ i.e. of each codeword with itself and with its complement. By Lemma 2 there are at most 4 codewords in $G_j^{m_0}$ so we have to consider at most 8 different concatenations. In doing so, the similar cases will be presented together.

• The concatenation of $c_j^{m_0}(11)$, if it exists, with itself produces a codeword in $G_{2j-1}^{m_0+1}$ (see Arrow 1 in Figure 1).

If j=1, $c_j^{m_0}(11)$ is the all-ones codeword in $C(m_0)$, and the concatenation with itself produces the all-ones codeword in $C(m_0+1)$. If j>1, the outer runs in $c_j^{m_0}(11)$ must be of size 2^{m_0-p-1} . (To see this not that if j is a complete power of 2, i.e. $j=2^p$ then all runs of ones, including the outer runs, are of size 2^{m_0-p-1} by assumption, and if j is not a complete power of 2, i.e. $2^{p-1} < j < 2^p$ then the outer runs must have size 2^{m_0-p-1} by Lemma 3). In the process of concatenation, two outer, smaller runs merge into one larger run and all other runs of ones are unaltered. Therefore, in the resulting codeword in $G_{2j-1}^{m_0+1}$, where j>1, and $2^p < 2j-1 < 2^{p+1}$, there are $2 \times (j-2^{p-1}) \times 2-2 = ((2j-1)-2^p) \times 2$ runs of ones of size $2^{m_0-p-1} = 2^{(m_0+1)-(p+1)-1}$, and $2 \times (2^p-j)+1 = 2^{p+1}-(2j-1)$ runs of ones of size $2^{m_0-p}=2^{(m_0+1)-(p+1)-1}$.

• The concatenation of $c_j^{m_0}(11)$, if it exists, with its complement produces a codeword in $G_{2j-1}^{m_0+1}$ (see Arrow 2 in Figure 1).

The complement of $c_j^{m_0}(11)$ is $c_{j-1}^{m_0}(00)$. By assumption, $c_j^{m_0}(11)$ has $(j-2^{p-1})\times 2$ runs of ones of size 2^{m_0-p-1} , and 2^p-j runs of ones of size 2^{m_0-p} , for j>1. If j=1, then p=0, and the complement is the all-zero codeword, so the result of the concatenation has a single run of ones, of size $2^{m_0}=2^{(m_0+1)-1}$.

Suppose now that j > 1. Then there is a corresponding p such that $2^{p-1} < j \le 2^p$ and $0 . Note that <math>2^{p-1} \le j - 1 < 2^p$.

Case 1:
$$j - 1 = 2^{p-1}$$

Under this condition, the codeword $c_{j-1}^{m_0}(00)$ has all j-1 runs of ones of size $2^{m_0-(p-1)-1}$ each. The concatenation of $c_j^{m_0}(11)$ and $c_{j-1}^{m_0}(00)$ then has $(j-2^{p-1})\times 2=2$ runs of ones of size 2^{m_0-p-1} , and $2^p-j+j-1=2^p-1$ runs of ones of size 2^{m_0-p} . Using the fact that $2=((2j-1)-2^p)\times 2$, $2^p-1=2^{p+1}-(2j-1)$ and that $2^p<2j-1<2^{p+1}$, we conclude that the resulting codeword satisfies the proposed assertion.

Case 2: $j - 1 > 2^{p-1}$

The codeword $c_{j-1}^{m_0}(00)$ has $((j-1)-2^{p-1})\times 2$ runs of ones of size 2^{m_0-p-1} and $2^p-(j-1)$ runs of ones of size 2^{m_0-p} . The result of the concatenation has $(j-2^{p-1})\times 2+((j-1)-2^{p-1})\times 2=((2j-1)-2^p)\times 2$ runs of ones of size 2^{m_0-p-1} , and $2^p-j+2^p-(j-1)=2^{p+1}-(2j-1)$ runs of ones of size 2^{m_0-p} . Since $2^p<2j-1<2^{p+1}$, the proposed assertion holds for this choice of j-1 as well.

• The concatenation of $c_j^{m_0}(01)$, if it exists, with its complement produces a codeword in $G_{2j-1}^{m_0+1}$ (see Arrow 3 in Figure 1).

First note that the complement of $c_j^{m_0}(01)$ is $c_j^{m_0}(10)$, and since they both belong to the same group $G_j^{m_0}$, by assumption they both have $(j-2^{p-1})\times 2$ runs of ones of size 2^{m_0-p-1} , and 2^p-j runs of ones of size 2^{m_0-p} .

As established in Lemma 3, the outer runs are of the smaller size (here 2^{m_0-p-1}), so in the process of concatenating $c_j^{m_0}(01)$ and $c_j^{m_0}(10)$, the rightmost run of ones in $c_j^{m_0}(01)$ merges with the leftmost run of ones in $c_j^{m_0}(10)$, resulting in a run of ones of size 2^{m_0-p} . All other runs of ones are unaltered. We will treat the cases j=1 and j>1 separately.

If j = 1, both $c_j^{m_0}(01)$ and $c_j^{m_0}(10)$ have one run of ones of size 2^{m_0-1} , so their concatenation results in a codeword in $G_1^{m_0+1}$ whose sole run of ones is of size 2^{m_0} , which is consistent with the proposed assertion.

For j>1, the concatenation of $c_j^{m_0}(01)$ with its complement has $(2j-2^p)\times 2-2=((2j-1)-2^p)\times 2$ runs of ones of size $2^{(m_0+1)-(p+1)-1}$, and $2\times (2^p-j)+1=2^{p+1}-(2j-1)$ runs of ones of size $2^{(m_0+1)-(p+1)}$. Since j>1, $2^p<2j-1<2^{p+1}$ holds, and we can conclude that the codeword in $G_{2j-1}^{m_0+1}$ obtained by concatenating $c_j^{m_0}(01)$ with its complement satisfies the proposed assertion.

• The concatenation of $c_j^{m_0}(10)$, if it exists, with its complement produces a codeword in $G_{2j}^{m_0+1}$ (see Arrow 5 in Figure 1).

Note that both $c_j^{m_0}(01)$ and its complement $c_j^{m_0}(10)$ have $(j-2^{p-1})\times 2$ runs of ones of size 2^{m_0-p-1} , and 2^p-j runs of ones of size 2^{m_0-p} . Consequently, the result of the concatenation has $(j-2^{p-1})\times 2\times 2=(2j-2^p)\times 2$ runs of ones of size $2^{(m_0+1)-(p+1)-1}$, and $(2^p-j)\times 2=2^{p+1}-2j$ runs of ones of size 2^{m_0-p} . Since $2^p<2j\leq 2^{p+1}$, we can conclude that the

proposed assertion holds for a codeword in $G_{2j}^{m_0+1}$ obtained by concatenating $c_j^{m_0}(10)$ with its complement.

• The concatenation of $c_j^{m_0}(10)$, if it exists, with itself produces a codeword in $G_{2j}^{m_0+1}$ (see Arrow 6 in Figure 1).

Now, for $2^p < 2j \le 2^{p+1}$) the resulting codeword has $2 \times (j-2^{p-1}) \times 2 = (2j-2^p) \times 2$ runs of ones of size $2^{m_0-p-1} = 2^{(m_0+1)-(p+1)-1}$, and $2 \times (2^p-j) = 2^{p+1}-2j$ runs of ones of size $2^{m_0-p} = 2^{(m_0+1)-(p+1)}$. No runs of ones are altered, they are merely duplicated. This same argument applies to the concatenation of $c_j^{m_0}(01)$ with itself (Arrow 4 in Figure 1), and to the concatenation of $c_j^{m_0}(00)$ with itself (Arrow 7 in Figure 1).

• The concatenation of $c_j^{m_0}(00)$, if it exists, with its complement produces a codeword in $G_{2j+1}^{m_0+1}$ (see Arrow 8 in Figure 1).

If j = 0, $c_j^{m_0}(00)$ is the all-zeros codeword. The concatenation with its complement (the all-ones codeword) produces a codeword in $G_1^{m_0+1}$ that has a single run of ones of size $2^{(m_0+1)-1}$.

By assumption, for j > 0, the codeword $c_j^{m_0}(00)$ has $(j-2^{p-1}) \times 2$ runs of ones of size 2^{m_0-p-1} , and $2^p - j$ runs of ones of size 2^{m_0-p} . The complement of $c_j^{m_0}(00)$ is $c_{j+1}^{m_0}(11)$. We will analyze the cases when $2^{p-1} < j < 2^p$ and $j = 2^p$ separately.

Case 1:
$$2^{p-1} < j < 2^p$$
.

Here we have that $2^{p-1} < j+1 \le 2^p$, and $2^p < 2j+1 < 2^{p+1}$. By assumption, $c_{j+1}^{m_0}(11)$ has $((j+1)-2^{p-1})\times 2$ runs of ones of size 2^{m_0-p-1} and $2^p-(j+1)$ runs of ones of size 2^{m_0-p} . Consequently, the concatenation has $(j-2^{p-1})\times 2+((j+1)-2^{p-1})\times 2=((2j+1)-2^p)\times 2$ runs of ones of size $2^{m_0-p-1}=2^{(m_0+1)-(p+1)-1}$, and $2^p-j+2^p-(j+1)=2^{p+1}-(2j+1)$ runs of ones of size $2^{m_0-p}=2^{(m_0+1)-(p+1)}$. The assertion therefore holds for the codeword in $G_{2j+1}^{m_0+1}$, obtained by concatenating $c_j^{m_0}(00)$ with its complement, when $2^{p-1}< j< 2^p$.

Case 2:
$$j = 2^p$$
.

Now we have that $2^p < j+1 \le 2^{p+1}$ and $2^{p+1} < 2j+1 < 2^{p+2}$. In this case, $c_j^{m_0}(00)$ has all $j=2^p$ runs of ones of size 2^{m_0-p-1} . Its complement $c_{j+1}^{m_0}(11)$ has $((j+1)-2^p)\times 2$ runs of ones of size $2^{m_0-(p+1)-1}=2^{m_0-p-2}$, and $2^{p+1}-(j+1)$ runs of ones of size $2^{m_0-(p+1)}=2^{m_0-p-1}$. The result of the concatenation has $2^p+2^{p+1}-(j+1)=2^{p+1}-1$ runs of ones of size 2^{m_0-p-1} , and $((j+1)-2^p)\times 2$ runs of ones of size 2^{m_0-p-2} . Since $j=2^p$, we can

replace $2^{p+1}-1$ with $2^{p+2}-(2j+1)$ and $((j+1)-2^p)\times 2$ with $((2j+1)-2^{p+1})\times 2$. Thus, for $j=2^p$, the result of the concatenation of $c_j^{m_0}(00)$ with its complement is a codeword in $G_{2j+1}^{m_0+1}$ that has $2^{p+2}-(2j+1)$ runs of ones of size $2^{(m_0+1)-(p+2)}$, and $((2j+1)-2^{p+1})\times 2$ runs of ones of size $2^{(m_0+1)-(p+2)-1}$, where $2^{p+1}<2j+1<2^{p+2}$.

Combining the results stated so far in the proof, we conclude that Lemma 4 holds for $C(m_0 + 1)$.

4 One Deletion, One Repetition Case: Identification-problem Causing Codewords

Recall the discussion from Section 1. Let us assume that the error correction code is Reed-Muller(1,m) and that we are operating in the noise-free regime. We further assume that the received strings (codewords with synchronization errors) can be observed in isolation so that from the length of the received string, the total difference between the number of repetitions and deletions is known. Suppose we allow at most one deletion and at most one repetition. If n denotes the code length, and if l = n - 1 bits are received, than one deletion case is declared. Similarly, if l = n + 1 bits are received, one repetition case is declared. If l = n bits are received it is either the case that no synchronization errors occurred or one of each kind occurred.

Our goal in this section is to analyze the case of at most one deletion and at most one repetition and to determine all pairs of codewords of C(m) that can result in the same string under these assumptions. This enumeration will yield to the pruned code with improved synchronization error correction capabilities.

For small values of m, we have the following result.

Remark 4.1 For m = 0, 1, 2 we can show by inspection the following.

m=0 The only codewords are '0' and '1' and they can both result in an empty string.

- m = 1 The codewords are '00', '11', '01', and '10'. Any two pair of codewords, except for '00' and '11', can result in the same string.
- m = 2 The codewords are '0000', '1100', '0011','0110', '1111', '1010','0101', and '1001'. The codeword '0011' and any one of '0110', '0101', and '1001' can result in the same string. Similarly, the codeword '1100' and any one of '1001', '1010', and '0110' can result in the same string. The same is true for '0110', and any one of '1010' and '0101' as well as for '1001' and any one of '0101' and '1010'. Also, '1010' and '0101' can result in the same string.
- m = 3 The confusable codewords are as follows. The codeword '11001100' can be confused with either one of '01100110', '10011001', and '10010110'. The codeword '01100110' can be confused with either one of '10011001', '01101001', '10010110', and '01011010'. The codeword '01101001' can be confused with either one of '10100101', '01011010', and '01010101'. The codeword '10100101' can be confused with either '10101010' or '01010101', or '01011010' and finally '10101010' and '01010101' can be confused. To complete the list of confusable codewords, take the complement of those listed explicitly.

Before proceeding with the main theorem, we first establish a couple of useful results:

Remark 4.2 Complementarity: Consider two distinct codewords c_a and c_b , and their complements $\overline{c_a}$ and $\overline{c_b}$, all in C(m). Then, if and only if c_a and c_b give rise to the same string after experiencing at most one deletion and one repetition each, then so do $\overline{c_a}$ and $\overline{c_b}$. In particular, iff such deletion in c_a occurs in a run of ones, then the corresponding deletion in $\overline{c_a}$ occurs in a run of zeros.

Lemma 5 If $\mathbf{c_a}$ is a codeword belonging to C(m), then $\mathbf{c_a^*} = B(\mathbf{c_a})$ is also a codeword in C(m) where $B(\mathbf{c_a})$ is the string obtained by reading $\mathbf{c_a}$ backwards.

Proof: To see this recall that C(m) is described by a $k \times n$ generator matrix G_m where k = m+1 and $n = 2^m$. The first row of G_m consists of all ones, and the i^{th} row of G_m , for $1 < i \le m+1$

consists of 2^{i-1} alternating runs of ones and zeros, where each run is of size 2^{m-i+1} , and the leftmost run in each row is a run of ones. Now, we can describe the same code with the alternative generator matrix $\mathbf{G'_m}$, where each row i for $1 < i \le m+1$ consists of 2^{i-1} alternating runs of zeros and ones, by simply replacing the i^{th} row of $\mathbf{G_m}$ with the sum of the first and the i^{th} row. Note that all rows in $\mathbf{G'_m}$ are equal to the corresponding rows of $\mathbf{G_m}$ read backwards, so that every linear combination of the rows of $\mathbf{G'_m}$ is equal to the same linear combination of the rows of $\mathbf{G_m}$ when read backwards.

Remark 4.3 Reversibility: Consider two distinct codewords $\mathbf{c_a}$ and $\mathbf{c_b}$, and their reverses $\mathbf{c_a^*}$ and $\mathbf{c_b^*}$, all in C(m), where by $\mathbf{c_a^*}$ we denote the codeword $\mathbf{c_a}$ read backwards. Then if and only if $\mathbf{c_a}$ and $\mathbf{c_b}$ give rise to the same string after experiencing at most one deletion and one repetition each, the same must be true for $\mathbf{c_a^*}$ and $\mathbf{c_b^*}$.

The previous two remarks will be used throughout the proof of the main Theorem.

We now also introduce a useful auxiliary set of strings and state several properties of these strings. The proofs for the given statements are contained in [1]. These results will also be used in the proof of the main Theorem.

Definition 1 For a codeword $\mathbf{c} \in C(m)$ let $\mathbf{d} = d(\mathbf{c})$ be the string whose entries are the lengths of consecutive runs in \mathbf{c} , read from left to right. Let $\mathcal{D}_m = \{\mathbf{d} | \mathbf{d} = d(\mathbf{c}), \mathbf{c} \in C(m)\}$, so that \mathcal{D}_m represents the collection of all possible sequences of run lengths associated with the codewords of C(m).

Lemma 6 [mirror-symmetry] $\forall \mathbf{c} \in C(m)$, the string $\mathbf{d} = d(\mathbf{c})$ possesses the mirror-symmetry property, i.e. the entry in position p in \mathbf{d} , denoted by $\mathbf{d}(p)$, is the same as the entry in position l-p+1, denoted by $\mathbf{d}(l-p+1)$, where l represents the length of string \mathbf{d} .

Lemma 7 If all entries in $\mathbf{d} = d(\mathbf{c})$ are either 1 or 2, with at least one entry being 1 and one being 2, then the leftmost entry equal to 2 must be in position 2^p , for some $p \ge 1$.

Lemma 8 If all entries in d = d(c) are either 1 or 2, with at least one entry being 1 and one being 2, then each run of 2's in d is of length $2^p - 1$, for some p > 1.

Lemma 9 If all entries in d = d(c) are either 1 or 2, with at least one entry being 1 and one being 2, then each inner run of 1's (where the inner run denotes a run with neighboring runs on each side) in d is of length $2^p - 2$, for some $p \ge 1$.

Lemma 10 If $d_a = d(c_a)$ and $d_b = d(c_b)$, for c_a , $c_b \in C(m)$ $(d_a, d_b \in \mathcal{D}_m)$ and m > 2, are such that they have 2k + 1 and 2k entries respectively, and all their entries are 1 or 2, then in the first leftmost position in which they differ, call it p, the entry is 1 in d_a and is 2 in d_b , and p < k.

Proof: For the proofs please see Lemmas 4–8 in [1].

We now state the main result.

Theorem 1 For $m \geq 3$, the following codewords can result in the same string after each experiences at most one deletion and at most one repetition. (For the ease of proving the result, they are categorized into different groups).

1.
$$c_j^m(10)$$
 and $c_j^m(01)$ Group 1

$$\left. \begin{array}{ll} 2. & c_{j}^{m}(10) \ \textit{and} \ c_{j}^{m}(11) \\ 3. & c_{j}^{m}(10) \ \textit{and} \ c_{j-1}^{m}(00) \\ 4. & c_{j}^{m}(01) \ \textit{and} \ c_{j}^{m}(11) \\ 5. & c_{j}^{m}(01) \ \textit{and} \ c_{j-1}^{m}(00) \end{array} \right\} \textit{Group 2}$$

$$\left. \begin{array}{ll} \textit{6.} & c_{j}^{m}(01) \; \textit{and} \; c_{j-1}^{m}(01) \\ \textit{7.} & c_{j}^{m}(10) \; \textit{and} \; c_{j-1}^{m}(10) \end{array} \right\} \textit{Group 3}$$

$$\left. \begin{array}{ll} 8. & c_k^m(01) \ and \ c_k^m(00) \\ 9. & c_k^m(01) \ and \ c_{k+1}^m(11) \\ 10. & c_k^m(10) \ and \ c_k^m(00) \\ 11. & c_k^m(10) \ and \ c_{k+1}^m(11) \end{array} \right\} Group \ 4$$

11.
$$c_k^m(10)$$
 and $c_{k+1}^m(11)$

12.
$$c_{j-1}^m(00)$$
 and $c_j^m(11)$ Group 5

13.
$$c_k^m(00)$$
 and $c_{k+1}^m(11)$ $\}$ Group 6

14.
$$c_{i-1}^m(11)$$
 and $c_{i-1}^m(10)$

$$\left. \begin{array}{ll} \textit{14.} & c_{j-1}^m(11) \ \textit{and} \ c_{j-1}^m(10) \\ \textit{15.} & c_{j-1}^m(11) \ \textit{and} \ c_{j-1}^m(01) \\ \textit{16.} & c_{j-2}^m(00) \ \textit{and} \ c_{j-1}^m(10) \\ \textit{17.} & c_{j-2}^m(00) \ \textit{and} \ c_{j-1}^m(01) \end{array} \right\} \textit{Group 7}$$

16.
$$c_{j-2}^m(00)$$
 and $c_{j-1}^m(10)$

17.
$$c_{j-2}^m(00)$$
 and $c_{j-1}^m(01)$

18.
$$c_{k+1}^{m}(11)$$
 and $c_{k+1}^{m}(10)$
19. $c_{k+1}^{m}(11)$ and $c_{k+1}^{m}(01)$
20. $c_{k}^{m}(00)$ and $c_{k+1}^{m}(10)$
21. $c_{k}^{m}(00)$ and $c_{k+1}^{m}(01)$

19.
$$c_{k+1}^m(11)$$
 and $c_{k+1}^m(01)$

20.
$$c_k^m(00)$$
 and $c_{k+1}^m(10)$

21.
$$c_k^m(00)$$
 and $c_{k+1}^m(01)$

22.
$$c_l^m(00)$$
 and $c_l^m(10)$

23.
$$c_l^m(00)$$
 and $c_l^m(01)$

24.
$$c_{l+1}^m(11)$$
 and $c_l^m(10)$

$$\left. \begin{array}{ll} 22. & c_l^m(00) \ \textit{and} \ c_l^m(10) \\ 23. & c_l^m(00) \ \textit{and} \ c_l^m(01) \\ 24. & c_{l+1}^m(11) \ \textit{and} \ c_l^m(10) \\ 25. & c_{l+1}^m(11) \ \textit{and} \ c_l^m(01) \end{array} \right\} \textit{Group 9}$$

26.
$$c_k^m(00)$$
 and $c_{k+1}^m(00)$
27. $c_{k+1}^m(11)$ and $c_{k+2}^m(11)$ Group 10

27.
$$c_{k+1}^m(11)$$
 and $c_{k+2}^m(11)$

$$\left. \begin{array}{ll} 28. & c_k^m(01) \ and \ c_{k+1}^m(01) \\ \\ 29. & c_k^m(10) \ and \ c_{k+1}^m(10) \end{array} \right\} Group \ 11$$

29.
$$c_k^m(10)$$
 and $c_{k+1}^m(10)$ $\begin{cases} Group \ 1. \end{cases}$

$$\left. \begin{array}{ll} \textit{30.} & c_{j-1}^m(11) \ \textit{and} \ c_{j}^m(11) \\ \textit{31.} & c_{j-2}^m(00) \ \textit{and} \ c_{j-1}^m(00) \end{array} \right\} \textit{Group 12}$$

31.
$$c_{j-2}^m(00)$$
 and $c_{j-1}^m(00)$

32.
$$c_i^m(11)$$
 and $c_{i-1}^m(10)$

32.
$$c_{j}^{m}(11)$$
 and $c_{j-1}^{m}(10)$
33. $c_{j}^{m}(11)$ and $c_{j-1}^{m}(01)$
34. $c_{j-1}^{m}(00)$ and $c_{j-1}^{m}(10)$
35. $c_{j}^{m}(00)$ and $c_{j-1}^{m}(01)$

34.
$$c_{j-1}^m(00)$$
 and $c_{j-1}^m(10)$

35.
$$c_{j-1}^m(00)$$
 and $c_{j-1}^m(01)$

where
$$j = 2^{m-1}$$
, $k = 2^{m-2}$, and $l = 3 * 2^{m-3}$.

Note that we have already shown this result for m=3, by Remark 4.1. In the remainder we will assume that m>3. Since the cases where exactly one synchronization error per codeword occurs are contained in the case under current consideration, we first enumerate the ones that cause the identification problem under a single deletion. These pairs are listed in 1). through 11). in Theorem 1, and are obtained from Theorem 2 in [1]. It also shown in [1] that no two codewords can result in the same string when each experiences a repetition.

Thus, the remaining possibilities are when two distinct codewords give rise to the same string, one of the codewords experiences one repetition and one deletion in different runs and the other codeword experiences no synchronization errors, and another possibility is that they each experience one deletion and one repetition. In the former case, it would be necessary that there exist two codewords, call them c_a and c_b such that when c_a experiences a repetition in position say p_1 and a deletion in position say p_2 , the resulting string would again be a valid codeword. It is now sufficient to consider the codewords c_a and c_b which satisfy the following: c_a experiences a deletion in position p_1 and c_b experiences a deletion in position p_2 where the bit in c_b in position p_2 belongs to a run of size at least 2. The set of such pairs (c_a , c_b) is contained in the collection of pairs listed in Theorem 2 in [1]. Specifically, they are already listed in 2). through 11). in Theorem 1.

We now focus on the latter case, namely when c_a and c_b both experience a deletion and a repetition. We will insist that both c_a and c_b experience both types of errors in different runs (otherwise the analysis can be reduced to the earlier cases of having one synchronization error per codeword). As discussed before, it is sufficient to consider the cases when the total number of runs in c_a and c_b differs by 0, 1, and 2. Without loss of generality assume that the total number of runs in c_a is at least equal to the total number of runs in c_b . Let $d_a = d(c_a)$ and $d_b = d(c_b)$. We treat the cases $d_a = d_b$, $d_a = d_b + 1$, and $d_a = d_b + 2$ separately.

1. $length(d_a) = length(d_b)$

As in the case of single deletion, it is necessary that c_a and c_b are complements of each other. Since c_a and c_b disagree in the leftmost bit, it is necessary that one of them experiences a deletion in the leftmost bit.

Without loss of generality we can assume that c_a experiences a deletion in the leftmost bit.

Then the leftmost bit in c_b is the same as the second leftmost bit in c_a (the deletion in c_b cannot occur in its leftmost bit as then it would be impossible to construct the same string by applying a repetition to the strings consisting of the remaining n-1 bits in c_a and c_b), so we conclude that both c_a and c_b start with runs of length 1. By Lemma 3, the rightmost runs in c_a and c_b are also of length 1, and all other runs in between are of length 1 or 2.

It is further necessary that the deletion in c_b occurs in the rightmost bit in a run of size 1, since otherwise the resulting strings obtained by applying a deletion and a repetition to c_a and c_b , would end in different types of runs. Now we are left with the task of determining possible locations of repetitions in inner runs.

By starting with the leftmost bit in c_b , and by matching up the appropriate bits in c_a and c_b (i.e. the bit in position i + 1 in c_a is the same as the bit in position i in c_b , and is the complement of the bit in position i + 1 in c_b) up until the very next synchronization error in either codeword, we conclude that c_a (and c_b) starts with a substring consisting of alternating bits. Now suppose that the very next error, occurring say at position p_2 is again in c_a (i.e. it must be that the bit in position p_2 in c_a is being repeated). This would imply that the bit in c_b in position p_2 is the same as bit in the same position in ca, which is impossible for complement codewords. Therefore the very next error must be a repetition in c_b . Since all runs in c_a and c_b are of size 1 or 2 only, it is necessary that the repeated bit in c_b in position p_2 belongs to a run of size 1, and that a 2-bit run of the same type contains bits in positions $p_2 + 1$ and $p_2 + 2$ in c_a . Now suppose that the bit in position p_3 ($p_3 > p_2$) in c_a is repeated. By matching up the bits in positions between the repetitions we conclude that the substrings starting at position $p_2 + 1$ and ending at position $p_3 - 1$ consist of alternating runs of size 2 (we can think of c_b as trailing c_a by two bits). The repetition in c_a must occur in the run of size 1, and in the remainder from position $p_3 + 1$ onwards, c_b is trailing c_a by one bit, so that substring in both codewords consists of alternating bits. Therefore, c_a has the following format: it consists of alternating runs of size 1, followed by alternating runs of size 2, followed again by alternating runs of size 1. Since c_a can be viewed as a concatenation of a codeword from C(m-1) either with itself or with its complement, it is further necessary that ${f c_a}$ consists of a single run of size 1, followed by alternating runs of size 2, followed again by a single run of size 1, or that c_a consists of alternating runs of size 1, followed by a single run of size 2, followed again by alternating runs of size 1. Since the weight of c_a is even, by definition of C(m), its outermost bits must be of the same type, and we can conclude that the only choices for the pair

 $(\mathbf{c_a}, \mathbf{c_b})$ is $\mathbf{c_a} = c_{k+1}^m(11)$ and $\mathbf{c_b} = c_k^m(00)$ for $k = 2^{m-2}$, or vice versa, as well as $\mathbf{c_a} = c_j^m(11)$ and $\mathbf{c_b} = c_{j-1}^m(00)$ for $j = 2^{m-1}$. Note that by Remarks 4.2, and 4.3, these are the only such pairs. These are listed under Group 5 and Group 6.

2. $length(d_a) = length(d_b) + 1$

It can be either the case that c_a experiences a deletion of the outermost 1-bit run and c_b experiences a deletion in a run of size at least 2 or that c_a experiences a deletion in an inner run of size 1 and c_b experiences a deletion in an outermost run of size 1.

a) Suppose first that d_a has even length.

Then d_a and d_b differ in the middle locations (since c_a and c_b can be viewed as the result of concatenation applied to the same codeword in C(m-1) whereby no runs are altered in creating c_a and the outermost runs are merged in creating c_b) so that d_a can be expressed as d_a =[A11B] and d_b as d_b =[A2B] where A and B are substrings of d_a and d_b and are mirror images of each other.

a.I.-If c_a experiences a deletion in the outermost 1-bit run, by reversibility property we can assume that the leftmost bit in c_a is deleted. Starting with substrings B, d_a and d_b look the same, so the last error is either a repetition in c_a or a deletion in c_b , in the place that would correspond to the entry in d_a or d_b immediately preceding B.

We are then left with placing a deletion in c_b (or a repetition in c_a), and a repetition in c_b . This further necessitates the case of the left halves in c_a and c_b having the following property: there are exactly two consecutive entries that are different from each other, so that the left half of c_a consists of a run of 1's followed by a run of 2's followed by a run of 1's. Then the left half of d_a has the format: 1.12.21.1 (here and in the remainder by '1.1' we assume a substring consisting of 1's only), so by structural properties of the string d_a , it must be either 1.121.121 or 12.2112.21. For the former case, c_a and c_b have $2^m - 2$ and $2^m - 3$ runs respectively, and it can be verified that c_a is $c_j^m(01)$ or $c_j^m(10)$ and c_b is $c_j^m(11)$ or $c_{j-1}^m(00)$ for $j = 2^{m-1} - 1$. These are given in the Group 7. For the latter case, c_a and c_b have $2^{m-1} + 2$ and $2^{m-1} + 1$ runs each. Then c_a is either $c_j^m(01)$ or $c_j^m(10)$ and c_b is either $c_j^m(11)$ or $c_{j-1}^m(00)$ for $j = 2^{m-2} + 1$. These pairs are listed in Group 8. Again by Remarks 4.2, and 4.3, these are the only such pairs.

a.II.-Now suppose that c_b experiences a deletion in its outermost run, which we can assume to be rightmost run, and that c_a experiences a deletion in an inner 1-bit run.

We are left with the task of placing repetitions in c_a and c_b as well as a segment of three consecutive runs in c_a , the middle of which is a 1-bit run that gets deleted, and this segment either corresponds to a 2-bit or a 1-bit run in c_b . As a consequence of the current assumptions on the deletions, we have the following changes in d_a and d_b as a result of synchronization errors, whereby a "joint" error means that the deletion in c_a and the repetition in c_b occur in the same segment.

case	in $\mathbf{d_a}$	in $\mathbf{d_b}$	comment
1	$211 \rightarrow 3$ (del), $1 \rightarrow 2$ (rep)	$2\rightarrow 3$ (rep), $1\rightarrow \{\}$ (del)	"joint" error
2	$112 \rightarrow 3$ (del), $1 \rightarrow 2$ (rep)	$2\rightarrow 3$ (rep), $1\rightarrow \{\}$ (del)	"joint" error
3	$111 \rightarrow 2 \text{(del)}, 1 \rightarrow 2 \text{ (rep)}$	$1 \rightarrow 2 (rep), 1 \rightarrow \big\{\big\} (del)$	"joint" error
4	$111 \rightarrow 2(del), 1 \rightarrow 2 (rep)$	$1 \rightarrow 2 (rep), 1 \rightarrow \{\} (del)$	

In Cases 1-3 we want to place the repetition in c_a relative to the "joint" error. Since d_a and d_b agree everywhere except in the middle, we have the following possible situations:

Suppose first that the innermost entries in $\mathbf{d_a}$ and/or $\mathbf{d_b}$ are changed due to the deletion in $\mathbf{c_a}$, and that this is the leftmost error. In particular, if this is the "joint" error, and the innermost 11 in $\mathbf{d_a}$ is followed by 2 (description given under Case 2), then in the right halves of $\mathbf{d_a}$ and $\mathbf{d_b}$, there must be one change from runs of 2's to runs of 1's to accommodate the remaining error (repetition in $\mathbf{c_a}$), so that $\mathbf{d_b}$ is 1.12.21.1. Then $\mathbf{d_b}$ can be 1.121.1 or 12.21, and $\mathbf{d_a}$ can be 1.1 or 12.2112.21. In the former case $\mathbf{d_a}$ has no entries equal to 2, and the latter case corresponds to $\mathbf{c_a}$ and $\mathbf{c_b}$ with $2^{m-1}+2$ and $2^{m-1}+1$ runs each. Then $\mathbf{c_a}$ is either $c_j^m(01)$ or $c_j^m(10)$ and $\mathbf{c_b}$ is either $c_j^m(11)$ or $c_{j-1}^m(00)$ for $j=2^{m-2}+1$. These pairs are listed in Group 8. Since the innermost entries cannot be 21 in $\mathbf{d_a}$, and the innermost entry cannot be 1 in $\mathbf{d_b}$, we can rule out Cases 1 and 3 for when the "joint" error causes the changes of the innermost entries in $\mathbf{d_a}$ and $\mathbf{d_b}$. However, for Case 4, the innermost 11 in $\mathbf{d_a}$ are altered due to deletion but the innermost 2 in $\mathbf{d_b}$ remains unaltered. Then,

to accommodate additional repetitions, we require two changes in the right halves of $\mathbf{d_a}$ and $\mathbf{d_b}$, once in going from runs of 1's to runs of 2's, and once in going from runs of 2's to runs of 1's. Then $\mathbf{d_a}$ is 1.12.21.12.21.1, so that it must be 1.121.121.1 ($\mathbf{d_a}$ could also be 12.2112.21 but then it would not have a run of 1's of size 3 as required). This corresponds to $\mathbf{d_b}$ equal to 1.121.121.1, and in turn pairs established in Group 7.

If the "joint" error occurs in the left halves of c_a and c_b , it must correspond to Case 1. Then suppose that 211 in d_a which gets altered by the "joint" error starts at position p. By mirror-symmetry p-th rightmost entry in both d_a and d_b must be 2, so by matching up the appropriate entries, the p+1-th rightmost entry in d_b is 2 as well. However its mirror image is 1 in d_b unless 211 in d_a spans its innermost entries. Moreover, there is one change from runs of 2's to runs of 1's in the right half of d_b so d_b itself is 12.21, which then yield codewords listed in Group 8.

If for Case 4, deletion in c_a occurs in the left half, let us first consider the case when there is at least one 2 in B. Then B must be 2.21 as otherwise there would be more than 2 mismatches between the appropriate entries in the right halves of d_a and d_b . If B is 1.1, then the resulting codewords are already given in Group 2.

Another choice is if the leftmost error is a repetition in c_a . It then must affect the innermost entries in d_a and d_b . However, in all cases it is impossible to place the appropriate patterns that correspond to the deletion in c_a in the substrings B in d_a and d_b .

b) Now suppose that the length of d_a is odd.

b.I.-Let us first consider the case when c_a experiences a deletion in its outermost run, which by reversibility property, can be assumed to be the rightmost run (of size 1).

Then it is necessary that d_a and d_b are such that the entry in position i in d_b is the same as the entry in position i in d_a except for three pairs of entries. In these exceptions, the entry is 1 in d_a and its counterpart is 2 in d_b twice, and the entry is 2 in d_a and its counterpart in d_b is 1 once.

Since d_b has an even number of entries, its two innermost entries must be 1 (d_b must start with 1, and the left and the right halves of d_b are the same).

Since d_a has an odd number of entries, and its outermost entries are both 1, its innermost entry is 2.

Now, this 2 in d_a is in the same position when counted from the left as a 1 in d_b , so that d_a and d_b look like (tentatively, where '...' indicate the current unknown substrings), and the overline indicates the run that disappears as a consequence of having a deletion in the outermost bit in c_a .

$$\mathbf{d_a} = 1...2...\overline{1}$$

$$d_b=1...11...1$$

We now need to place 2 in d_b and 1 in d_a twice in the same positions and have all other entries in the same positions be the same. By the mirror symmetry of d_b , if we place such 2 in d_b in the l-th place from the left, we must place the remaining 2 in d_b in the l-th place from the right.

Then,

$$\mathbf{d_a} = 1...\underline{1}...2...\underline{1}...\overline{1}$$

$$\mathbf{d_b} = 1...2...11...2...1$$

where the left (right) underlined places are in the *l*-th position counted from the left (right).

By using mirror symmetry of d_a and d_b and the fact that the remaining entries in the same positions in d_a and d_b must be the same, we conclude that all remaining entries must be equal to 1, i.e. d_a =1.121.1 and d_b =1.121.121.1 where 1.1 indicates a substring of all 1's.

Then $\mathbf{c_a}$ is either $c_{j+1}^m(11)$ or $c_j^m(00)$ and $\mathbf{c_b}$ is either $c_j^m(10)$ or $c_j^m(01)$ for $j=2^{m-1}-1$. It can be verified that in all 4 choices, the same string can result from $\mathbf{c_a}$ and $\mathbf{c_b}$. These pairs are listed in Group 13.

b.II.-Now we consider the case when c_a experiences a deletion in an inner 1-bit run and c_b experiences a deletion of the outermost run, which we can take to be its rightmost run.

As in the case analyzed in a.II we write the table indicating various error patterns. We have the

following changes in d_a and d_b as a result of synchronization errors:

case	in $\mathbf{d_a}$	in $\mathbf{d_b}$	comment
1	$211 \rightarrow 3$ (del), $1 \rightarrow 2$ (rep)	$2\rightarrow 3$ (rep), $1\rightarrow \{\}$ (del)	"joint" error
2	$112 \rightarrow 3$ (del), $1 \rightarrow 2$ (rep)	$2\rightarrow 3$ (rep), $1\rightarrow \{\}$ (del)	"joint" error
3	$111 \rightarrow 2 \text{(del)}, 1 \rightarrow 2 \text{ (rep)}$	$1 \rightarrow 2 \text{(rep)}, 1 \rightarrow \big\{\big\} \text{(del)}$	"joint" error
4	$111 \rightarrow 2(del), 1 \rightarrow 2 (rep)$	$1 \rightarrow 2 \text{(rep)}, 1 \rightarrow \{\} \text{(del)}$	

Suppose first that the repetition in c_a occurs before the "joint" error, and that it corresponds to the p-th leftmost entries in d_a and d_b , which are then 1 and 2 respectively. Then the p-th rightmost entries must be 1 and 2 in d_a and d_b , respectively. In particular, if that 2 in the p-th rightmost position in d_b is after the "joint" error, by matching up the appropriate entries in d_a and d_b , it would follow that last p-1 entries in d_a are all 2, which is impossible. If that 2 is a part of the segment affected by the "joint" error (can hold for Cases 1 and 2), then the rightmost 2 in d_a would be in the p+1-th position, and the rightmost 2 in d_b would be in its p-th rightmost position, which by Lemmas 6 and 7 cannot hold simultaneously, or d_b would end in a run of 2's which is also impossible. Similarly, if that 2 is in the position before the "joint" error, for Case 1, the positions of the rightmost 2's in d_a and d_b would violate Lemmas 6 and 7, and for Case 2, d_b would end in a 2. For the Case 3, this pattern of errors would imply that d_a and d_b have all entries equal to 2 inbetween the repetition and its mirror image, and all entries equal to 1 outside of these errors. Then, however, the location of the leftmost 2's in d_a and d_b differs by 1, which is not possible by Lemma 7.

We now consider the error pattern in which the "joint" error occurs before the repetition. If there is an entry equal to 2 in the segment before the "joint" error, then by matching up the appropriate entries in d_a and d_b , the leftmost 2 in that run of 2's has a mirror image in the right half of d_b which must be matched with a 1 in d_a , i.e. it corresponds to the repetition in c_a . Moreover, the "joint" error cannot have the corresponding entry be 1 in d_b (Case 3) as its mirror image must be matched with 2 in the right half of d_a . If the "joint" error is as given in Case 1, it would be necessary that in the right halves of d_a and d_b exist two runs of 2's whose sizes are two consecutive

numbers, which by Lemma 8 is not possible. Similarly, for Case 2, d_a and d_b would contain runs of 2's of two consecutive sizes.

We now consider the case when the "joint" error is the leftmost error, and there are no 2's in d_a and d_b prior to the positions that correspond to this "joint" error. In particular, if no entry prior to the "joint" error is equal to 2, then for Case 1, the mirror image of 2 in d_b , say in the p-th rightmost position that corresponds to the "joint" entry, would have to correspond to the repetition location in c_a , and by matching up the appropriate entries in between the locations of the "joint" error and the repetition, it would follow that 2 in the p-th rightmost entry in d_b is preceded by a 12, whereas 2 in the p-th rightmost entry in d_a is preceded by 1. Then d_a and d_b would have runs of 2's of two consecutive sizes which is impossible by Lemma 8.

For Case 2, again the mirror image of 2 in d_b that corresponds to the "joint" entry, would have to correspond to the repetition location in c_a , but then the rightmost 2's in d_a and d_b would be in positions that differ by 2, which by Lemmas 6 and 7 can only be 4 and 2. However then d_a starts with 111211 and d_b starts with 121, and to match the entries in between they must be a repeated sequence 211. Then d_b is 121121...121121, and d_a is 1112112...112111, and have lengths $3 \times 2^{m-2}$ and $3 \times 2^{m-2} + 1$ respectively. The resulting codewords c_a and c_b are as given in Group 9.

For Case 3, let us suppose that due to the repetition, p-th rightmost entry in $\mathbf{d_b}$ is 2 and p-1-th rightmost entry in $\mathbf{d_a}$ is 1. Then if p-th entry in $\mathbf{d_b}$ is strictly located in the right half of $\mathbf{d_b}$, by mirror-symmetry, the p-th leftmost entry in $\mathbf{d_b}$ must be 2 (which is by assumption after the "joint" error, as the "joint" error is not preceded by a 2) so that p+2-th entry in $\mathbf{d_a}$ must be 2 as well, which are also the first leftmost entries equal to 2 in both $\mathbf{d_a}$ and $\mathbf{d_b}$. By Lemma 7 these must be in positions 4 and 2 in $\mathbf{d_a}$ and $\mathbf{d_b}$ respectively, and as a result we obtain the same $\mathbf{d_a}$ and $\mathbf{d_b}$ that yield the codewords already listed in 9.

The last case to consider is Case 4 when the errors cause the following modifications in d_a and d_b : Deletion in d_a converts 111 to 2, and in d_b converts 1 to an empty string and the repetitions in both of them convert 1 to 2.

We first want to place the repetition errors relative to the deletion in c_a . We label them (2,1) and

(1,2), for when the repetitions occur in c_b , and in c_a , respectively. If (2,1) precedes the deletion, it itself must be preceded by (1,2) as it is not possible to have 2 in d_a and 1 in d_b in the first leftmost position they differ in, by Lemma 8.

It is also not possible to have (1,2) precede the deletion, as then d_a would end in 2, unless (1,2) and the deletion in c_a are associated with positions that are mirror images of each other in d_b (otherwise d_a would end in 2). In that case, we start matching the entries in d_a and d_b that are in between these two positions and we conclude that all those entries must be 1. There is only one remaining mismatched pair, i.e. the one we labelled (2,1), so we conclude that d_a must have a single 2 in its innermost entry and all other entries equal to 1. This however yields c_a and c_b already listed in Group 13.

We now consider the case when both mismatchings (1,2) and (2,1) occur after the deletion in c_a . Suppose the segment 111 in d_a , 2 in d_b that corresponds to the deletion in c_a is immediately preceded by a 2 in both da and db. Now if, this segment is either followed by 2 and 2 in da and d_b, or by 1 and 1 or by 2 and 1, one of Lemmas 8 and 9 will be violated. If it is followed by 1 in $\mathbf{d_a}$ and 2 in $\mathbf{d_b}$, this would correspond to (1,2) error. Then $\mathbf{d_a}$ would have a segment 21111 and $\mathbf{d_b}$ would have a segment 222 that start in the same position and whose second entry corresponds to the first position in which da and db differ. By mirror-symmetry da would have a segment 1112 and d_b would have a segment 222 that end in the same position, counted from the right. However, then there would be another mismatch between the corresponding entries that is 1 in da and 2 in d_b . Thus the segment 111 in d_a , 2 in d_b that corresponds to the deletion in c_a is immediately preceded by a 1 in both d_a and d_b . The mirror image of this segment corresponds to the (1,2) error. The (2,1) error cannot occur after the (1,2) error as that would imply that d_a ends in a 2. Therefore the (2,1) error is in between the deletion in c_a and the (1,2) error. Moreover by matching up the appropriate entries in da and db the segment preceding the leftmost error as well as the segment following the (1,2) error consist of 1's only, as do the segments in between. Since only (2,1) error remains to be placed somewhere that 2 must correspond to the innermost entry in da which then has all other entries equal to 1. This in turn yields candidate codewords already listed in 13.

3. $length(d_a) = length(d_b) + 2$

In this case, the deletion in c_b must occur in a run of size at least 2, and the deletion in c_a

must occur in an inner run of size 1. All runs in c_a must be of length 1 or 2 each. If d_b had an entry larger than 2, that entry would have to be 4 but then d_a would not have any inner 1's as required. Thus c_b has runs of length 1 and 2 as well. Either the repetition in c_b and the deletion in c_b occur "jointly", or the repetition in c_b is in the run of size 1 and the deletion in c_a is in a 1-bit run neighbored by two 1-bit runs whereby these errors occur separately.

a) The deletion in c_a is in an inner 1-bit run that is neighbored by a 1-bit and a 2-bit run, and there is a repetition in c_b in the corresponding 2-bit run, or the deletion is in an inner 1-bit run in c_a which is neighbored by two 1-bit runs and there is a repetition in the corresponding 1-bit run in c_b . In either case, we think of these errors (deletion in c_a , repetition in c_b) as "joint" error, and we need to place the remaining errors (deletion in c_b , repetition in c_a). These two remaining errors can be thought of as being of the same kind (repetition in a 1-bit run in c_a and the deletion in a 2-bit run in c_b) so we call them x and we call the "joint" error y.

Then there are three different orderings of errors, but by reversibility property it is sufficient to only consider orderings yxx and xyx.

Suppose the ordering is yxx. Then d_a and d_b are:

- 1) $d_a = A112B1C1D$ and $d_b = A2B2C2D$ or
- 2) $d_a = A211B1C1D$ and $d_b = A2B2C2D$ or
- 3) $d_a = A111B1C1D$ and $d_b = A1B2C2D$,

for some appropriately chosen substrings A, B, C and D.

In 1) by mirror symmetry |A|=|D|, and we start matching up the appropriate entries in d_a and d_b . If C is not empty, it must end in 1, and we get that there is a substring '212' in d_b which by Lemma 9 is not possible. Thus C must be empty, and then we have that B consists of all 2's so that d_a =A112.211D and d_b =A22.22D where D is the reverse of A. Furthermore, A starts with 1, and D ends with 1. Suppose A has at least three runs (of 1's, 2's, and 1's). Then the last run in A cannot be a run of 1's as the inner runs of 1's in d_a cannot be k+2 and k,k>0 simultaneously by Lemma 9. Thus A ends in a run of 2's or it consists of 1's only. If A is 1.1, by Lemma 7 d_a would

be 1112.2111 which is impossible for m>3. Thus A has a run of 1's followed by a run of 2's. Suppose 11 following A is not in the middle of the left half of $\mathbf{d_a}$. By concatenation principle, A would have another inner 1 somewhere but that 1 in A in $\mathbf{d_b}$ would not have its mirror image in the left half of $\mathbf{d_b}$. Thus 11 in $\mathbf{d_a}$ must be in the middle of its left half which then implies that $\mathbf{d_b}$ has no inner 1's. Thus $\mathbf{d_b}=1.12.21.1$. In particular $\mathbf{d_b}$ is 12.21. Consequently $\mathbf{d_a}$ is 12.2112.2112.21 and the candidate $\mathbf{c_a}$ and $\mathbf{c_b}$ are $c_j^m(11)$ or $c_{j'-1}^m(00)$ for $\mathbf{c_a}$ where $j=2^{m-2}+2$, and $c_{j'}^m(11)$ or $c_{j'-1}^m(00)$ for $\mathbf{c_b}$ where $j'=2^{m-2}+1$. These codewords are listed under Group 10.

For 2) we look at first 2 following A2 in d_b . Suppose it immediately follows that substring. Then by mirror symmetry |A|=|D|-1. If the entry in d_a immediately following A211 is 1, B would be empty and C would consist of all 1's. However, d_a and d_b would have runs of 2's of two consecutive sizes which is not possible by Lemma 8. If A211 in da is followed by 2, then if entry immediately following A22 in d_b is 1, the runs of 2's starting with the leftmost entry in D in d_a and starting with 2 immediately preceding D in db would differ in length by 1, which is impossible by Lemma 8. Thus A22 in d_b is followed by 2. By matching up the appropriate entries, it further follows that C is empty and that B has all 2's. But then by concatenation rule, A has only 1 in its leftmost position and 2's everywhere else and we arrive at d_a and d_b as being 12.2112.2112.21 and 12.21, which in turn correspond to codewords already given in Group 10. If A2 in d_b is followed by 1, then by Lemma 9, B cannot have any 2's. Since B is not empty (by assumption there is a 1 in d_b following A2 and there is a 2 following B), it has all 1's, and 2 immediately following B in $\mathbf{d}_{\mathbf{b}}$ has 2 immediately following C as its mirror image. By mirror symmetry all entries in C must be 1's as well. Then d_a and d_b are A21.1D and A21.121.12D, and their left halves can be viewed as $d_1' = d(c_1')$ and $d_2' = d(c_2')$ for some $c_1', c_2' \in C(m-1)$, whereby two innermost entries in d_1' and d'_2 are 11. Then d'_1 is A21.1 and d'_2 is A21.121.1, but then the mirror symmetry of one of them has to be violated.

For 3), if the substring B has at least one entry equal to 2, then by Lemmas 7 and 9, A must be empty. However, by mirror symmetry d_a actually starts with 111211, which cannot be matched with d_b which itself must start with 12112, since then d_a ends with 112111 and d_b with 21121, and this rightmost 2 in d_a cannot be matched with 1 in d_b . If B does not have any 2's then we can think of A being extended by the size of B, so that B is effectively empty and A ends in a run of 1's. We label the new A as A'.Then 2's neighboring C in d_b must be mirror images of each other, and C itself must be all 1's. Then d_a and d_b are A'1.1D and A'121.121D. We now view the left

half of d_b in isolation. If in it 2 following A'1 had a mirror image in A', the mirror of the left half of d_a would be violated. Thus 2 following A'1 in d_b is in the middle of its left half and A' has all 1's. This in turn implies that d_a is all 1's and d_a and d_b correspond to c_a and c_b listed in Group 3.

Consider now the error pattern xyx.

Then d_a =A1BEC1D and d_b =A2BFC2D where E in d_a and F in d_b contain 112 and 2 or 211 and 2, or 111 and 1. Strings A and D must be mirror images of each other, and by matching up the same entries in d_a and d_b in B and C we end up with the unmatched middle which is either of length 4 and 2 in d_a and d_b respectively or 3 and 1 in d_a and d_b respectively. For the latter case, to preserve the mirror symmetry of d_a , the isolated entries must be 111 in d_a and 1 in d_b . However the run of 1's to which that 1 in d_b belongs would be of odd length, which is impossible by Lemma 9. For the former case, the four innermost entries in d_a are 2112 and are 22 in d_b or are 1111 in d_a and are 11 in d_b (2112 and 11 does not fit the pattern of d_a and d_b). Then either d_b has all entries equal to 2, which gives rise to c_b being $c_j^m(01)$ or $c_j^m(10)$ for $j = 2^{m-2}$ and c_a being $c_{j+1}^m(01)$ or $c_{j+1}^m(01)$. These pairs are listed in Group 11. For when the innermost entries are 1111 and 11 in d_a and d_b respectively, if at least one of B and C contains a 2, we would have that there exist inner runs of 1's in d_a and d_b that differ in length by 2, which by Lemma 9 is impossible. Thus B and C must contain only 1's, and 2's bordering A and D in d_b , by mirror symmetry, must be in the middle of the left and the right half of d_b , respectively, and A itself must be all 1's as well. Then d_a is all 1's and the resulting c_a and c_b are already established in Group 3.

b) Now suppose that the deletion in d_a and the repetition in d_b are not "joint" errors.

We again think of the deletion in c_b (must be in a run of size 2) and the repetition in c_a (must be in a run of size 1) as equivalent errors, and we denote them by x. Let y be the deletion location in c_a and z be the repetition location in c_b .

We can order x, x, y, z in 12 ways but by reversibility it is sufficient to look at 6 of these. Moreover, z cannot be the rightmost or the leftmost error by an argument similar to that given in Lemma 10. Suppose that $\mathbf{d_a}$ and $\mathbf{d_b}$ have lengths l+2 and l respectively. Then there exist another $\mathbf{d_c}$ of length l+1 such that $\mathbf{d_c} = d(\mathbf{c_c})$, where $\mathbf{c_c} \in C(m)$. If l is even, we apply Lemma 10 to $\mathbf{d_b}$ and $\mathbf{d_c}$, and conclude that the first leftmost position, say p, in which they differ, $\mathbf{d_b}$ is 2 and $\mathbf{d_c}$

is 1. This p is strictly in the left halves of $\mathbf{d_b}$ and $\mathbf{d_c}$. Since $\mathbf{d_c}$ and $\mathbf{d_a}$ disagree only in the middle, i.e. when counted from the left, first time in position $l_0/2$ where l_0 is the length of $\mathbf{d_a}$, it follows that the leftmost position in which $\mathbf{d_b}$ and $\mathbf{d_a}$ disagree is still p, and in that position $\mathbf{d_b}$ is 2 and $\mathbf{d_a}$ is 1. When l is odd the argument follows similarly.

It is therefore sufficient to analyze the following cases: yzxx, yxzx, and xyzx.

-For xyzx we have that $d_a = A1B111C2D1E$ and $d_b = A2B2C1D2E$

We first observe that |A=|E|. Then irrespective of how are the sizes of B and D related, the mirror symmetry of one of d_a and d_b will be violated. In particular for |B|=|D|, 2 immediately following B would have 1 immediately preceding D as its mirror-image. If |B|>|D|, 2 immediately preceding D in d_a and 1 immediately preceding D in d_b , would have mirror images in B in the same positions. If this 2 in d_b is its own image, d_a and d_b would agree up to the innermost entry of d_b , so that d_a is then A121A' and d_b is A2A', for A' the reverse of A, which contradicts current assumptions on d_a and d_b .

-For yzxx we have that $d_a = A111B2C1D1E$ and $d_b = A2B1C2D2E$

If both A and B contain at least one 2 each, there would be an inner run of 1's in d_a of odd length, which by Lemma 9 is impossible. If A contains no 2's, but B does, then by Lemma 7 A must be of size $2^{l_1} - 1$ for some l_1 . Now by Lemma 9 the run of 1's in B immediately preceding its leftmost 2, is of size $2^{l_2} - 2$. Then the leftmost run of 1's in d_a is of size $2^{l_1} - 1 + 3 + 2^{l_2} - 2$, which is impossible by Lemma 7. Thus B must contain only 1's.

By matching up the appropriate entries in d_a and d_b it turns out that D must consist of only 1's as well. Now, the isolated 2 between C and D in d_b is either the innermost entry in d_b or it has its mirror image, which must be in C (it cannot be in E as its counterpart in d_a is 1 and would have its own mirror image in the same position in E). In the former case, d_b is A21.121.12E where E is the reverse of A. By the concatenation principle, A and E must contain only 1's as well, so that c_a has $2^m - 1$ runs and c_b has $2^m - 3$ runs, and $c_1 = c_j^m(zz)$, $c_2 = c_{j-1}^m(zz)$ for z = 1 and $j = 2^{m-1}$, or z = 0 and $j = 2^{m-1} - 1$. These pairs are listed under Group 12. In the latter case, by mirror symmetry, all entries in C starting with the mirror image of the isolated 2 onwards must be all 2's as well. That substring in C cannot be preceded by a 1, as that would imply that d_a and d_b have

runs of 2's of two consecutive lengths, which is impossible by Lemma 8. Thus d_a and d_b are A1.12.21.1E and A21.12.21.12E respectively, where A is followed by at least three 1's in d_a . If the innermost run of 2's (which is C) in d_a has length more than 1, by concatenation principle A must start with 12, so that in the remainder of d_a all runs of 1's are either of length 1 or 2, which contradicts the earlier requirement that there exists a run of size at least 3. Thus, the innermost run of 2's in d_a has size 1, and d_a is A1.121.12E, which gives rise to the codeword pairs listed in Group 12.

-Finally, for yxzx, we have: d_a is A111B2C1D2E and d_b = A2B1C2D1E.

If |A|=|E|, the mirror-symmetry is violated. If |A|<|E|, then 1 and 2 immediately following A in d_a and d_b have mirror images in E (if that 2 in c_b is its own image, then d_a and d_b would agree up to the innermost entry in d_b , and d_b would be A2A' and d_a would be A111A', where A' denotes the reverse of A, but which is impossible) in the same positions, but then the mirror-symmetry property is violated. Similarly, for |A|>|E|, the mirror-symmetry property is violated as well.

4.1 Pruning of the code

Recall that the i^{th} row of $\mathbf{G_m}$, for $1 < i \le m+1$ consists of 2^{i-1} alternating runs of ones and zeros, and that each run is of length 2^{m-i+1} . Observe that the i^{th} row is then precisely $c_{2^{i-2}}^m(10)$. In particular, the last two rows of $\mathbf{G_m}$ are $c_{2^{m-2}}^m(10)$ for i=m and $c_{2^{m-1}}^m(10)$ for i=m+1.

We write $\mathbf{c} \in C(m)$ as $\mathbf{x}\mathbf{G_m}$, where \mathbf{x} is a (m+1)-dimensional message vector so that $c_{2^{m-1}}^m(10) = [0,0,\dots,0,1]\mathbf{G_m}$ and $c_{2^{m-1}}^m(01) = [1,0,\dots,0,1]\mathbf{G_m}$. Similarly, $c_{2^{m-2}}^m(10)$ is $[0,0,\dots,0,1,0]\mathbf{G_m}$ and $c_{2^{m-2}}^m(01)$ is $[1,0,\dots,0,1,0]\mathbf{G_m}$.

Observe that either $c_{2^{m-1}}^m(10)$ or its complement appears in each codeword pair in Groups 1, 2 and 3, and that either $c_{2^{m-2}}^m(10)$ or its complement appears in each codeword pair in Groups 4 and 11. The codeword $c_{2^{m-1}}^m(11)$ corresponds to the input $[1,1,0,\ldots 0,1]$ and its complement, $c_{2^{m-1}-1}^m(00)$, to the input $[0,1,0\ldots,0,1]$. At least one of them appears in each codeword pair in Groups 5, 12 and 13. Likewise, the codeword $c_{2^{m-2}+1}^m(11)$ corresponds to the input $[1,0,\ldots 0,1,1]$

and its complement, $c_{2^{m-2}}^m(00)$, to the input $[0,0\ldots,0,1,1]$, and at least one of them appears in each codeword pair in Groups 6, 8 and 10. The codeword $c_{2^{m-1}-2}^m(00)$ corresponds to the input $[0,0,\ldots 0,1,0,1]$ and its complement, $c_{2^{m-1}-1}^m(11)$, to the input $[1,0,\ldots 0,1,0,1]$, and one of them appears in each pair in Group 7. Lastly, $c_{3*2^{m-3}}^m(10)$ corresponds to the input $[0,0,\ldots 0,1,1,1]$ and its complement, $c_{3*2^{m-3}}^m(01)$, to the input $[1,0\ldots,0,1,1,1]$, and one of them appears in each pair in Group 9.

Therefore, for each codeword pair, at least one codeword has the message with a nonzero component in either position m or m+1. Consider a matrix consisting of the top m-1 rows of $\mathbf{G_m}$. It has m-1 rows and no linear combinations of its rows give rise to codewords causing the identification problem. Thus, if instead of using C(m) of rate $\frac{m+1}{2^m}$ we use its linear subcode $\hat{C}(m)$ of rate $\frac{m-1}{2^m}$, generated by the top m-1 rows of $\mathbf{G_m}$ we are able to eliminate the identification problem while preserving the linearity of the code and suffering a very small loss in the overall rate.

5 Conclusion

In this report we proved several run-length structural properties of a Reed-Muller(1,m) code and we studied how to modify this code for use in channels in which sampling errors cause one bit repetition and one bit deletion per transmitted codeword. We enumerated all pairs of codewords that can result in the same string under this channel model, and based on this enumeration we provided a simple way of thinning the code to eliminate such codewords. The resulting code only has two fewer information bits than the original code and is also equipped with better synchronization error correction properties.

References

[1] L. Dolecek and V. Anantharam. "Using Reed-Muller RM(1,m) Codes over Channels with Synchronization and Substitution Errors". *submitted to IEEE Trans. Inform. Theory*, April 2006.

[2] F. J. MacWilliams and N. J. A. Sloane. "The Theory Of Error Correcting Codes". North Holland Publishing Company, Amsterdam, Holland, 1977.