
On structural properties of Reed-Muller codes and
their use in channels with synchronization and

substitution errors

Lara Dolecek

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-43

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-43.html

April 27, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

On Structural Properties of Reed-Muller RM(1,m)

Codes and Their Use in Channels with Synchronization

Errors

Lara Dolecek

dolecek@eecs.berkeley.edu

April 25, 2006

1 Introduction

In this report we address the problem of using a Reed-Muller(1,m) code in channels which, due to

imperfect synchronization, permit one repetition and one deletion of a bit per transmitted codeword

and we provide new results on the run-length structure of this code. The motivation, while briefly

presented here, is fully provided in [1], along with the summary of relevant existing work. This

report and its contribution should be viewed in the context of the problem addressed in [1].

Typically, in a communication system, a binary input messagex is encoded at the transmitter

using a substitution-error correcting codeC into a coded sequencec = C(x), which we assume is

also binary. The received waveform after matched filtering may be written as

r(t) =
∑

i

cih(t− iT) + n(t), (1)

whereci is theithbit of c, h(t) is convolution of the modulating pulse and the matched filter, and

n(t) represents the additive noise introduced by the channel. The receiver first samples the wave-

form r(t) at specific time instances, followed by decoding of the transmitted message based on

1

these discrete values. For the decoding to work properly, it is crucial that the sampling is done at

correct places. However, as the operating conditions under which sampling must be performed be-

come more stringent (such as in modern magnetic recording and wireless applications), it becomes

ever more difficult to accurately sample the incoming waveform. As a result, when the adequate

synchronization is missing, some symbol may be skipped or sampled twice. Let us suppose that

we are operating in the infinite SNR regime, and that transmitted codewords can be analyzed indi-

vidually, so that, under perfect synchronization, the received sampled sequence would be precisely

the transmitted codeword. If the synchronization is not perfect, some bit can then be repeated or

deleted. As a result, each codeword gives rise to a whole set of possible binary sequences obtained

from it by different repetition-deletion patterns, as dictated by the accuracy of the synchronization

scheme. An important consequence is that different codewords can then result in the same string,

thus making the correct input message retrieval impossible. We call such codewordsidentification

problemcausing codewords.

In this report we focus on the Reed-Muller (1, m) code. The goal is to address the scenario

when due to imperfect synchronization, both a repetition and a deletion can occur within the trans-

mitted codeword, and to propose a way to eliminate the identification problem causing codewords.

The subcase of a single synchronization error is studied in detail in [1]. In addition, we provide

run-length properties of this code that may be of independent interest.

The report is outlined as follows. In the next section we briefly review the RM(1, m) code. In

Section 3 we present several useful structural properties of this code, and in Section 4 we provide

a detailed analysis of the RM(1, m) code where both a repetition and a deletion are possible. The

report is concluded with Section 5.

2 Review of the RM(1, m) code

First order Reed-Muller codes (RM(1,m)) are an instance of linear substitution error-correcting

codes [2]. This code is described by ak × n generator matrixGm wherek = m + 1 andn = 2m.

Let g0(m) denote an all ones vector of length2m, and letg1(m) be anm × 2m matrix whose

columns are binarym-tuples in the decreasing order.

2

The generator matrix of the RM(1,m) code is then

Gm =


 g0(m)

g1(m)


 =




1 1 1 1 . . . 1 1 1 1

1 1 1 1 . . . 0 0 0 0

. .

1 1 1 1 . . . 0 0 0 0

1 1 0 0 . . . 1 1 0 0

1 0 1 0 . . . 1 0 1 0




. (2)

Observe that the first row ofGm consists of all ones, and theith row of Gm, for 1 < i ≤ m+1

consists of2i−1 alternating runs of ones and zeros, where each run is of size2m−i+1, and the

leftmost run in each row is a run of ones. LetC(m) denote the RM(1,m) code. Note that every

codeword inC(m + 1) code is either the concatenation of a codeword inC(m) with itself or with

its bitwise complement.

3 Runlength properties of the Reed-Muller(1,m) Code

In addition to the properties of the code presented in [1], we now prove additional interesting

structural results.

3.1 Relationship between the input message and the run-lengths of its code-

word

It is sometimes useful to determine the number of runs of a particular codeword based on its input

message and vice versa. In this section we provide an explicit relationship between these two quan-

tities. Letam = (a0, am, am−1, ..., a2, a1) be a binary string of lengthm+1 and letc be a codeword

in C(m) such thatc = amGm. The bita0 multiplies the all-ones row ofGm and therefore does

not affect the number of runs of the resulting codeword, i.e.am = (a0, am, am−1, ..., a2, a1) and

am = (a0, am, am−1, ..., a2, a1) result in complement codewords (with the same number of runs).

3

In the following we replacea0 by x to indicate that the value ofa0 does not matter.

We denote byRm(a0, a1, ..., am−1, am) the total number of runs inc. The following result

provides a closed-form expression forRm(a0, a1, ..., am−1, am) in terms ofam.

Lemma 1 The number of runs in the codewordc given byc = amGm wheream = (a0, am, am−1, ..., a2, a1)

is Rm(a0, a1, ..., am−1, am) = 2m−1a1 + 2m−2 + 1/2−∑m
k=2 2m−k−1(−1)

Pk
i=1 ai.

Proof: By construction the bottomm − 1 rows inGm when viewed as am − 1 by 2m matrix,

are the same as the matrix obtained by concatenating the matrix consisting of the bottomm − 1

rows inGm−1 with itself. If the runs at the point of concatenation are the same, the concatenation

results in the merging of two runs, otherwise no runs are altered.

Therefore, the linear combination of the bottomm − 1 rows inGm produces a codeword in

C(m) which has either2R or 2R − 1 runs, whereR denotes the number of runs of the codeword

produced by the same linear combination of rows inGm−1. In particular, the number of runs is

2R if the auxiliary codeword inC(m− 1) (the one constructed from the same linear combination)

had different outermost bits, and the number of runs is2R − 1 if the outermost bits are the same.

The former (latter) case occurs when the linear combination consists of an odd (even) number of

participating rows.

Then, whenam = 0 we have the following:

Rm(x, a1, a2, ..., am−1, 0) =





2Rm−1(x, a1, a2, ..., am−1), if
∑m−1

i=1 ai mod2 ≡ 1,

2Rm−1(x, a1, a2, ..., am−1)− 1, if
∑m−1

i=1 ai mod2 ≡ 0

Now, am = 1 has the effect of complementing the left half of the codeword obtained from a

linear combination of rows ofGm that does not involve second row ofGm, and leaving the right

half intact.

Therefore,

Rm(x, a1, a2, ..., am−1, 1) =





2Rm−1(x, a1, a2, ..., am−1), if
∑m−1

i=1 ai mod2 ≡ 0,

2Rm−1(x, a1, a2, ..., am−1)− 1, if
∑m−1

i=1 ai mod2 ≡ 1

4

We can jointly write these two expressions as

Rm(x, a1, a2, ..., am−1, am) = 2Rm−1(x, a1, a2, ..., am−1)− 1/2(−1)
Pm

i=1 ai − 1/2.

To obtain the formula forRm(x, a1, ..., am−1, am), iterate recursively as follows,

Rm(x, a1, ..., am)

= 2Rm−1(x, a1, a2, ..., am−1)− 1/2(−1)
Pm

i=1 ai − 1/2

= 2
[
2Rm−2(x, a1, a2, ..., am)− 1/2(−1)

Pm−1
i=1 ai − 1/2

]
− 1/2(−1)

Pm
i=1 ai − 1/2

= 4Rm−2(x, a1, a2, ..., am−2)− (−1)
Pm

i=1 ai − 1− 1/2(−1)
Pm

i=1 ai − 1/2

= 4
[
2Rm−3(x, a1, a2, ..., am−3)− 1/2(−1)

Pm−2
i=1 ai − 1/2

]
− (−1)

Pm
i=1 ai − 1− 1/2(−1)

Pm
i=1 ai − 1/2

= 8Rm−3(x, a1, a2, ..., am−3)− 2(−1)
Pm−2

i=1 ai − 2− (−1)
Pm

i=1 ai − 1− 1/2(−1)
Pm

i=1 ai − 1/2

...

= 2m−2R2(x, a1, a2)− 2m−3−1(−1)
P3

i=1 ai − 2m−3−1 − 2m−4−1(−1)
P4

i=1 ai − 2m−4−1 − ...

−2m−(m−1)−1(−1)
Pm−1

i=1 ai − 2m−(m−1)−1 − 2m−m−1(−1)
Pm

i=1 ai − 2m−m−1

= 2m−1R1(x, a1)− 2m−21/2(−1)
P2

i=1 ai − 2m−21/2− 2m−4(−1)
P3

i=1 ai − 2m−4 − ...

−20(−1)
Pm−1

i=1 ai − 20 − 2−1(−1)
Pm

i=1 ai − 2−1

= 2m−1(1 + a1)−[
2m−3(−1)

P2
i=1 ai + 2m−4(−1)

P3
i=1 ai + ... + 2−1(−1)

P
i=1mai + 2m−3 + 2m−4 + ... + 1 + 1/2

]

= 2m−1a1 −
m∑

k=2

2m−k−1(−1)
Pk

i=1 ai + 2m−1 − [
2m−2 − 1 + 1/2

]

= 2m−1a1 + 2m−2 + 1/2−
m∑

k=2

2m−k−1(−1)
Pk

i=1 ai ,

which completes the proof. ¥

It is also useful to know how to quickly determine the input message based on the number

of runs in the codeword it generates. LetNm be the integer denoting the number of runs, and

let Sm(Nm) = (a0, a1, a2, ..., am−1, am) be the binary string consisting of the entries in the input

message, so that the mappingSm is fromN+ to {0, 1}m+1.

First observe that|∑m
k=2 2m−k−1(−1)

Pk
i=2 ai| ≤ 2m−2−1/2. Thus, fora1 = 1, Rm(x, 1, ..., am−1, am)

is at least2m−1+1, and fora1 = 0, Rm(x, 0, ..., am−1, am) is at most2m−1. Moreover,Rm(x, 1, ..., am−1, am)

5

+ Rm(x, 0, ..., am−1, am) evaluates to2m + 1.

Thus, for the givenm, if Nm ≥ 2m−1 + 1, a1 must be 1, otherwise it must be zero.

We can now subtract the contribution ofa1 to Nm, which is zero fora1 = 0 and is2m +1−Nm

for a1 = 1, where by contribution we mean the difference in the number of runs of the codewords

whose input messages are(x, a1, a2, ..., am) and(x, 0, a2, ..., am), respectively. Denote the result

by N ′
m.

Having subtracted the contribution ofa1 fromNm, to determinea2, observe thatRm(x, 0, a2, ..., am−1, am)

= Rm−1(x, a2, ..., am−1, am), since theith row ofGm for 1 ≤ i ≤ m is constructed from the(i+1)st

row of Gm−1 by duplicating each entry twice. Thus, a codeword constructed from the linear com-

bination of a subset of these particular rows ofGm has the same number of runs as the codeword

in C(m− 1) constructed from the counterpart rows ofGm−1.

We now viewa2 as the value that multiplies the last row ofGm−1, just like a1 did for Gm.

By using the same line of arguments as fora1, we conclude that ifN ′
m ≥ 2(m−1)−1 + 1, a2 is 1,

otherwise it is 0. To determinea3 we need to subtract the contribution ofa2 from N ′
m, and compare

the result to2(m−1)−1 + 1, and so on.

The steps for determininga1 througham can be outlined as follows:

Algorithm 1

1. Initialization: Nc = Nm, l = 0, a1 = a2 = ... = am = 0

2. Find the largest integerp, p ≥ 0 such thatNc > 2p. If no suchp exists, stop and return the

current values ofa1 througham. If suchp exists, proceed to Step 3.

3. Let i = m− p, and update the valueai to be 1 (aj ’s for l < j < i remain 0). Proceed to Step

4.

4. Let Nc := 2p+1 + 1−Nc and letl = i. Return to Step 2.

Example:m = 4, Nm = 10.

6

. . . cm0
j−1(00) cm0

j (11) cm0
j (01) cm0

j (10) cm0
j (00) cm0

j+1(11) cm0
j+1(01) cm0

j+1(10) cm0
j+1(00). . .

. . . cm0+1
2j−1 (11)cm0+1

2j−1 (01)cm0+1
2j−1 (10)cm0+1

2j−1 (00)cm0+1
2j (11)cm0+1

2j (01)cm0+1
2j (10)cm0+1

2j (00)cm0+1
2j+1 (11)cm0+1

2j+1 (10). . .

.
1 2 3 4 5 6 7 8

XXXXXXXXXXXXXXXXz

Q
Q

Q
Q

Q
QQs

XXXXXXXXXXXXXXXXXz

Q
Q

Q
Q

Q
QQs

HHHHHHHHHHj

A
A
A
AAU?

HHHHHHHHHj

@
@

@
@@R

¡
¡

¡
¡¡ª

@
@

@
@@R

¡
¡

¡¡ª

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Gm0+1

2j−1 Gm0+1
2j Gm0+1

2j+1

Gm0
jGm0

j−1 Gm0
j+1︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

Figure 1: Construction of codewords inC(m0 + 1) from codewords inC(m0).

• Step 1: Initialize(a1, a2, a3, a4) = (0, 0, 0, 0), Nc = 10, l = 0

• Step 2.a: Since8 < Nc < 16⇒ p = 3

• Step 3.a: Seti = 1, a1 = 1

• Step 4.a: SetNc = 7, l = 1

• Step 2.b: Since4 < Nc < 8⇒ p = 2

• Step 3.b: Seti = 2, a2 = 1

• Step 4.b: SetNc = 2, l = 2

• Step 2.c: Since1 < Nc ≤ 2⇒ p = 0

• Step 3.c: Seti = 4, a4 = 1

• Step 4.c: SetNc = 1, l = 4

• Step 2.d. Nop exists, return(a1, a2, a3, a4) = (1, 1, 0, 1)

It can be easily checked that the messages[0, 1, 0, 1, 1] and [1, 1, 0, 1, 1] both result in code-

words with10 runs each.

7

3.2 Run-length distribution

Lemma 2 The codewords inC(m) can be partitioned into2m−1 + 1 distinct non-empty groups

Gm
j , for 0 ≤ j ≤ 2m−1. HereGm

j is comprised of those codewords inC(m) that havej runs of

ones.Gm
0 is comprised of exactly one codeword, namely the all-zero codeword. This codeword will

be denotedcm
0 (00). There are 4 distinct codewords in each groupGm

j , for 1 ≤ j < 2m−1. These

codewords may be uniquely identified by their first and last bit. They may thus be unambiguously

denoted ascm
j (11), cm

j (10), cm
j (01), andcm

j (00) respectively. There are 3 distinct codewords in the

groupGm
2m−1. These codewords may also be uniquely identified by their first and last bit and may

be unambiguously denoted ascm
2m−1(11), cm

2m−1(10), andcm
2m−1(01) respectively.

Proof: See Lemma 1 in [1]. ¥

Lemma 3 Consider a codewordc in C(m). Either c has all its runs of the same length, which

is a power of2, or the runs inc are of at most two different lengths, and these two lengths are

consecutive powers of 2. In addition, if there are runs of two different lengths inc, the outer runs

(i.e. the leftmost run and the rightmost run) inc are of the smaller length.

Proof: See Lemma 3 in [1]. ¥

Using the notation introduced in the preceding Lemmas, we can prove the following result on

the run-length distribution ofC(m).

Lemma 4 With the exception of the all-ones codeword, all codewords belonging to the groupGm
j

for 2p−1 < j ≤ 2p for somep, 0 ≤ p ≤ m − 1 have all runs of ones either of length2m−p−1 or

of length2m−p. Moreover,(j − 2p−1) × 2 runs out of thesej runs have length2m−p−1, and the

remaining2p − j runs have length2m−p.

Proof: To prove the statement we use induction onm. For small values ofm, the proposed

statement can be verified directly. Suppose now that the assertion holds for somem = m0.

By Lemma 2, the groupGm0

j′ for 2p−1 < j′ ≤ 2p for somep, 0 ≤ p ≤ m0 − 1 contains

codewordscm0

j′ (10), cm0

j′ (01), andcm0

j′ (11). If j′ 6= 2m0−1 it also containscm0

j′ (00). There is a single

8

codeword inGm0
0 (the all-zeros codeword). Let us now analyze all the possible concatenations of

the codewords belonging to the groupGm0
j , 0 ≤ j ≤ 2m0−1 i.e. of each codeword with itself and

with its complement. By Lemma 2 there are at most 4 codewords inGm0
j so we have to consider

at most 8 different concatenations. In doing so, the similar cases will be presented together.

• The concatenation ofcm0
j (11), if it exists, with itself produces a codeword inGm0+1

2j−1 (see

Arrow 1 in Figure 1).

If j = 1, cm0
j (11) is the all-ones codeword inC(m0), and the concatenation with itself

produces the all-ones codeword inC(m0 +1). If j > 1, the outer runs incm0
j (11) must be of

size2m0−p−1. (To see this not that ifj is a complete power of 2, i.e.j = 2p then all runs of

ones, including the outer runs, are of size2m0−p−1 by assumption, and ifj is not a complete

power of 2, i.e.2p−1 < j < 2p then the outer runs must have size2m0−p−1 by Lemma 3). In

the process of concatenation, two outer, smaller runs merge into one larger run and all other

runs of ones are unaltered. Therefore, in the resulting codeword inGm0+1
2j−1 , wherej > 1, and

2p < 2j − 1 < 2p+1, there are2 × (j − 2p−1) × 2 − 2 = ((2j − 1) − 2p) × 2 runs of ones

of size2m0−p−1 = 2(m0+1)−(p+1)−1, and2× (2p − j) + 1 = 2p+1 − (2j − 1) runs of ones of

size2m0−p = 2(m0+1)−(p+1) .

• The concatenation ofcm0
j (11), if it exists, with its complement produces a codeword in

Gm0+1
2j−1 (see Arrow 2 in Figure 1).

The complement ofcm0
j (11) is cm0

j−1(00). By assumption,cm0
j (11) has(j − 2p−1)× 2 runs of

ones of size2m0−p−1, and2p − j runs of ones of size2m0−p, for j > 1. If j = 1, thenp = 0,

and the complement is the all-zero codeword, so the result of the concatenation has a single

run of ones, of size2m0 = 2(m0+1)−1.

Suppose now thatj > 1. Then there is a correspondingp such that2p−1 < j ≤ 2p and

0 < p ≤ m0 − 1. Note that2p−1 ≤ j − 1 < 2p.

Case 1:j − 1 = 2p−1

Under this condition, the codewordcm0
j−1(00) has allj − 1 runs of ones of size2m0−(p−1)−1

each. The concatenation ofcm0
j (11) andcm0

j−1(00) then has(j − 2p−1) × 2 = 2 runs of ones

of size2m0−p−1, and2p − j + j − 1 = 2p − 1 runs of ones of size2m0−p. Using the fact that

2 = ((2j− 1)− 2p)× 2, 2p− 1 = 2p+1− (2j− 1) and that2p < 2j− 1 < 2p+1, we conclude

that the resulting codeword satisfies the proposed assertion.

9

Case 2:j − 1 > 2p−1

The codewordcm0
j−1(00) has((j−1)−2p−1)×2 runs of ones of size2m0−p−1 and2p−(j−1)

runs of ones of size2m0−p. The result of the concatenation has(j − 2p−1)× 2 + ((j − 1)−
2p−1)× 2 = ((2j − 1)− 2p)× 2 runs of ones of size2m0−p−1, and2p − j + 2p − (j − 1) =

2p+1− (2j−1) runs of ones of size2m0−p. Since2p < 2j−1 < 2p+1, the proposed assertion

holds for this choice ofj − 1 as well.

• The concatenation ofcm0
j (01), if it exists, with its complement produces a codeword in

Gm0+1
2j−1 (see Arrow 3 in Figure 1).

First note that the complement ofcm0
j (01) is cm0

j (10), and since they both belong to the same

groupGm0
j , by assumption they both have(j − 2p−1)× 2 runs of ones of size2m0−p−1, and

2p − j runs of ones of size2m0−p.

As established in Lemma 3, the outer runs are of the smaller size (here2m0−p−1), so in the

process of concatenatingcm0
j (01) andcm0

j (10), the rightmost run of ones incm0
j (01) merges

with the leftmost run of ones incm0
j (10), resulting in a run of ones of size2m0−p. All other

runs of ones are unaltered. We will treat the casesj = 1 andj > 1 separately.

If j = 1, bothcm0
j (01) andcm0

j (10) have one run of ones of size2m0−1, so their concatenation

results in a codeword inGm0+1
1 whose sole run of ones is of size2m0, which is consistent

with the proposed assertion.

Forj > 1, the concatenation ofcm0
j (01) with its complement has(2j−2p)×2−2 = ((2j−

1)−2p)×2 runs of ones of size2(m0+1)−(p+1)−1, and2× (2p− j)+1 = 2p+1− (2j−1) runs

of ones of size2(m0+1)−(p+1). Sincej > 1, 2p < 2j − 1 < 2p+1 holds, and we can conclude

that the codeword inGm0+1
2j−1 obtained by concatenatingcm0

j (01) with its complement satisfies

the proposed assertion.

• The concatenation ofcm0
j (10), if it exists, with its complement produces a codeword in

Gm0+1
2j (see Arrow 5 in Figure 1).

Note that bothcm0
j (01) and its complementcm0

j (10) have(j − 2p−1)× 2 runs of ones of size

2m0−p−1, and2p−j runs of ones of size2m0−p. Consequently, the result of the concatenation

has(j−2p−1)×2×2 = (2j−2p)×2 runs of ones of size2(m0+1)−(p+1)−1, and(2p−j)×2 =

2p+1 − 2j runs of ones of size2m0−p. Since2p < 2j ≤ 2p+1, we can conclude that the

10

proposed assertion holds for a codeword inGm0+1
2j obtained by concatenatingcm0

j (10) with

its complement.

• The concatenation ofcm0
j (10), if it exists, with itself produces a codeword inGm0+1

2j (see

Arrow 6 in Figure 1).

Now, for 2p < 2j ≤ 2p+1) the resulting codeword has2 × (j − 2p−1) × 2 = (2j − 2p) × 2

runs of ones of size2m0−p−1 = 2(m0+1)−(p+1)−1, and2× (2p − j) = 2p+1 − 2j runs of ones

of size2m0−p = 2(m0+1)−(p+1). No runs of ones are altered, they are merely duplicated. This

same argument applies to the concatenation ofcm0
j (01) with itself (Arrow 4 in Figure 1), and

to the concatenation ofcm0
j (00) with itself (Arrow 7 in Figure 1).

• The concatenation ofcm0
j (00), if it exists, with its complement produces a codeword in

Gm0+1
2j+1 (see Arrow 8 in Figure 1).

If j = 0, cm0
j (00) is the all-zeros codeword. The concatenation with its complement (the

all-ones codeword) produces a codeword inGm0+1
1 that has a single run of ones of size

2(m0+1)−1.

By assumption, forj > 0, the codewordcm0
j (00) has(j − 2p−1) × 2 runs of ones of size

2m0−p−1, and2p− j runs of ones of size2m0−p. The complement ofcm0
j (00) is cm0

j+1(11). We

will analyze the cases when2p−1 < j < 2p andj = 2p separately.

Case 1:2p−1 < j < 2p.

Here we have that2p−1 < j +1 ≤ 2p, and2p < 2j +1 < 2p+1. By assumption,cm0
j+1(11) has

((j +1)−2p−1)×2 runs of ones of size2m0−p−1 and2p− (j +1) runs of ones of size2m0−p.

Consequently, the concatenation has(j−2p−1)×2+((j+1)−2p−1)×2=((2j+1)−2p)×2

runs of ones of size2m0−p−1 = 2(m0+1)−(p+1)−1, and2p− j +2p− (j +1) = 2p+1− (2j +1)

runs of ones of size2m0−p = 2(m0+1)−(p+1). The assertion therefore holds for the codeword

in Gm0+1
2j+1 , obtained by concatenatingcm0

j (00) with its complement, when2p−1 < j < 2p.

Case 2:j = 2p.

Now we have that2p < j + 1 ≤ 2p+1 and2p+1 < 2j + 1 < 2p+2. In this case,cm0
j (00) has

all j = 2p runs of ones of size2m0−p−1. Its complementcm0
j+1(11) has((j +1)− 2p)× 2 runs

of ones of size2m0−(p+1)−1 = 2m0−p−2, and2p+1 − (j + 1) runs of ones of size2m0−(p+1) =

2m0−p−1. The result of the concatenation has2p + 2p+1 − (j + 1) = 2p+1 − 1 runs of ones

of size2m0−p−1, and((j + 1)− 2p)× 2 runs of ones of size2m0−p−2. Sincej = 2p, we can

11

replace2p+1−1 with 2p+2− (2j +1) and((j +1)−2p)×2 with ((2j +1)−2p+1)×2. Thus,

for j = 2p, the result of the concatenation ofcm0
j (00) with its complement is a codeword in

Gm0+1
2j+1 that has2p+2− (2j + 1) runs of ones of size2(m0+1)−(p+2), and((2j + 1)− 2p+1)× 2

runs of ones of size2(m0+1)−(p+2)−1, where2p+1 < 2j + 1 < 2p+2.

Combining the results stated so far in the proof, we conclude that Lemma 4 holds forC(m0 + 1).

¥

4 One Deletion, One Repetition Case: Identification-problem

Causing Codewords

Recall the discussion from Section 1. Let us assume that the error correction code is Reed-

Muller(1,m) and that we are operating in the noise-free regime. We further assume that the re-

ceived strings (codewords with synchronization errors) can be observed in isolation so that from

the length of the received string, the total difference between the number of repetitions and dele-

tions is known. Suppose we allow at most one deletion and at most one repetition. Ifn denotes

the code length, and ifl = n− 1 bits are received, than one deletion case is declared. Similarly, if

l = n + 1 bits are received, one repetition case is declared. Ifl = n bits are received it is either the

case that no synchronization errors occurred or one of each kind occurred.

Our goal in this section is to analyze the case of at most one deletion and at most one repetition

and to determine all pairs of codewords ofC(m) that can result in the same string under these

assumptions. This enumeration will yield to the pruned code with improved synchronization error

correction capabilities.

For small values ofm, we have the following result.

Remark 4.1 For m = 0, 1, 2 we can show by inspection the following.

m = 0 The only codewords are ’0’ and ’1’ and they can both result in an empty string.

12

m = 1 The codewords are ’00’, ’11’, ’01’, and ’10’. Any two pair of codewords, except for ’00’

and ’11’, can result in the same string.

m = 2 The codewords are ’0000’, ’1100’, ’0011’,’0110’, ’1111’, ’1010’,’0101’, and ’1001’. The

codeword ’0011’ and any one of ’0110’, ’0101’, and ’1001’ can result in the same string.

Similarly, the codeword ’1100’ and any one of ’1001’, ’1010’, and ’0110’ can result in the

same string. The same is true for ’0110’, and any one of ’1010’ and ’0101’ as well as for

’1001’ and any one of ’0101’ and ’1010’. Also, ’1010’ and ’0101’ can result in the same

string.

m = 3 The confusable codewords are as follows. The codeword ’11001100’ can be confused

with either one of ’01100110’, ’10011001’, and ’10010110’. The codeword ’01100110’

can be confused with either one of ’10011001’, ’01101001’, ’10010110’, and ’01011010’.

The codeword ’01101001’ can be confused with either one of ’10100101’, ’01011010’,

and ’01010101’. The codeword ’10100101’ can be confused with either ’10101010’ or

’01010101’, or ’01011010’ and finally ’10101010’ and ’01010101’ can be confused. To

complete the list of confusable codewords, take the complement of those listed explicitly.

¥

Before proceeding with the main theorem, we first establish a couple of useful results:

Remark 4.2 Complementarity: Consider two distinct codewordsca and cb, and their comple-

mentsca and cb, all in C(m). Then, if and only ifca and cb give rise to the same string after

experiencing at most one deletion and one repetition each, then so doca andcb. In particular, iff

such deletion inca occurs in a run of ones, then the corresponding deletion inca occurs in a run

of zeros.

Lemma 5 If ca is a codeword belonging toC(m), thenc∗a = B(ca) is also a codeword inC(m)

whereB(ca) is the string obtained by readingca backwards.

Proof : To see this recall thatC(m) is described by ak×n generator matrixGm wherek = m+1

andn = 2m. The first row ofGm consists of all ones, and theith row of Gm, for 1 < i ≤ m + 1

13

consists of2i−1 alternating runs of ones and zeros, where each run is of size2m−i+1, and the

leftmost run in each row is a run of ones. Now, we can describe the same code with the alternative

generator matrixG′
m, where each rowi for 1 < i ≤ m + 1 consists of2i−1 alternating runs of

zeros and ones, by simply replacing theith row of Gm with the sum of the first and theith row.

Note that all rows inG′
m are equal to the corresponding rows ofGm read backwards, so that every

linear combination of the rows ofG′
m is equal to the same linear combination of the rows ofGm

when read backwards.

Remark 4.3 Reversibility: Consider two distinct codewordsca andcb, and their reversesc∗a and

c∗b, all in C(m), where byc∗a we denote the codewordca read backwards. Then if and only ifca

andcb give rise to the same string after experiencing at most one deletion and one repetition each,

the same must be true forc∗a andc∗b.

The previous two remarks will be used throughout the proof of the main Theorem.

We now also introduce a useful auxiliary set of strings and state several properties of these

strings. The proofs for the given statements are contained in [1]. These results will also be used in

the proof of the main Theorem.

Definition 1 For a codewordc ∈ C(m) let d = d(c) be the string whose entries are the lengths

of consecutive runs inc, read from left to right. LetDm = {d|d = d(c), c ∈ C(m)}, so thatDm

represents the collection of all possible sequences of run lengths associated with the codewords of

C(m). ¥

Lemma 6 [mirror-symmetry]∀c ∈ C(m), the stringd = d(c) possesses the mirror-symmetry

property, i.e. the entry in positionp in d, denoted byd(p), is the same as the entry in position

l − p + 1, denoted byd(l − p + 1), wherel represents the length of stringd.

Lemma 7 If all entries ind = d(c) are either 1 or 2, with at least one entry being 1 and one being

2, then the leftmost entry equal to 2 must be in position2p, for somep ≥ 1.

14

Lemma 8 If all entries ind = d(c) are either 1 or 2, with at least one entry being 1 and one being

2, then each run of 2’s ind is of length2p − 1, for somep ≥ 1.

Lemma 9 If all entries ind = d(c) are either 1 or 2, with at least one entry being 1 and one being

2, then each inner run of 1’s (where the inner run denotes a run with neighboring runs on each

side) ind is of length2p − 2, for somep ≥ 1.

Lemma 10 If da = d(ca) anddb = d(cb), for ca, cb ∈ C(m) (da, db ∈ Dm) andm > 2, are

such that they have2k + 1 and2k entries respectively, and all their entries are 1 or 2, then in the

first leftmost position in which they differ, call itp, the entry is 1 inda and is 2 indb, andp < k.

Proof: For the proofs please see Lemmas 4–8 in [1]. ¥

We now state the main result.

Theorem 1 For m ≥ 3, the following codewords can result in the same string after each experi-

ences at most one deletion and at most one repetition. (For the ease of proving the result, they are

categorized into different groups).

1. cm
j (10) andcm

j (01)
}

Group 1

2. cm
j (10) andcm

j (11)

3. cm
j (10) andcm

j−1(00)

4. cm
j (01) andcm

j (11)

5. cm
j (01) andcm

j−1(00)





Group 2

6. cm
j (01) and cm

j−1(01)

7. cm
j (10) and cm

j−1(10)



 Group 3

8. cm
k (01) andcm

k (00)

9. cm
k (01) andcm

k+1(11)

10. cm
k (10) andcm

k (00)

11. cm
k (10) andcm

k+1(11)





Group 4

15

12. cm
j−1(00) andcm

j (11)
}

Group 5

13. cm
k (00) andcm

k+1(11)
}

Group 6

14. cm
j−1(11) andcm

j−1(10)

15. cm
j−1(11) andcm

j−1(01)

16. cm
j−2(00) andcm

j−1(10)

17. cm
j−2(00) andcm

j−1(01)





Group 7

18. cm
k+1(11) andcm

k+1(10)

19. cm
k+1(11) andcm

k+1(01)

20. cm
k (00) andcm

k+1(10)

21. cm
k (00) andcm

k+1(01)





Group 8

22. cm
l (00) andcm

l (10)

23. cm
l (00) andcm

l (01)

24. cm
l+1(11) andcm

l (10)

25. cm
l+1(11) andcm

l (01)





Group 9

26. cm
k (00) andcm

k+1(00)

27. cm
k+1(11) andcm

k+2(11)



 Group 10

28. cm
k (01) andcm

k+1(01)

29. cm
k (10) andcm

k+1(10)



 Group 11

30. cm
j−1(11) andcm

j (11)

31. cm
j−2(00) andcm

j−1(00)



 Group 12

32. cm
j (11) andcm

j−1(10)

33. cm
j (11) andcm

j−1(01)

34. cm
j−1(00) andcm

j−1(10)

35. cm
j−1(00) andcm

j−1(01)





Group 13

wherej = 2m−1, k = 2m−2, andl = 3 ∗ 2m−3.

16

Note that we have already shown this result form = 3, by Remark 4.1. In the remainder we

will assume thatm > 3. Since the cases where exactly one synchronization error per codeword

occurs are contained in the case under current consideration, we first enumerate the ones that

cause the identification problem under a single deletion. These pairs are listed in 1). through 11).

in Theorem 1, and are obtained from Theorem 2 in [1]. It also shown in [1] that no two codewords

can result in the same string when each experiences a repetition.

Thus, the remaining possibilities are when two distinct codewords give rise to the same string,

one of the codewords experiences one repetition and one deletion in different runs and the other

codeword experiences no synchronization errors, and another possibility is that they each experi-

ence one deletion and one repetition. In the former case, it would be necessary that there exist two

codewords, call themca andcb such that whenca experiences a repetition in position sayp1 and

a deletion in position sayp2, the resulting string would again be a valid codeword. It is now suffi-

cient to consider the codewordsca andcb which satisfy the following:ca experiences a deletion in

positionp1 andcb experiences a deletion in positionp2 where the bit incb in positionp2 belongs

to a run of size at least 2. The set of such pairs (ca, cb) is contained in the collection of pairs listed

in Theorem 2 in [1]. Specifically, they are already listed in 2). through 11). in Theorem 1.

We now focus on the latter case, namely whenca andcb both experience a deletion and a

repetition. We will insist that bothca andcb experience both types of errors in different runs

(otherwise the analysis can be reduced to the earlier cases of having one synchronization error per

codeword). As discussed before, it is sufficient to consider the cases when the total number of runs

in ca andcb differs by 0, 1, and 2. Without loss of generality assume that the total number of runs

in ca is at least equal to the total number of runs incb. Let da = d(ca) anddb = d(cb). We treat

the casesda = db, da = db + 1, andda = db + 2 separately.

1. length(da)=length(db)

As in the case of single deletion, it is necessary thatca andcb are complements of each other.

Sinceca andcb disagree in the leftmost bit, it is necessary that one of them experiences a deletion

in the leftmost bit.

Without loss of generality we can assume thatca experiences a deletion in the leftmost bit.

17

Then the leftmost bit incb is the same as the second leftmost bit inca (the deletion incb cannot

occur in its leftmost bit as then it would be impossible to construct the same string by applying a

repetition to the strings consisting of the remainingn − 1 bits in ca andcb), so we conclude that

bothca andcb start with runs of length 1. By Lemma 3, the rightmost runs inca andcb are also

of length 1, and all other runs in between are of length 1 or 2.

It is further necessary that the deletion incb occurs in the rightmost bit in a run of size 1, since

otherwise the resulting strings obtained by applying a deletion and a repetition toca andcb, would

end in different types of runs. Now we are left with the task of determining possible locations of

repetitions in inner runs.

By starting with the leftmost bit incb, and by matching up the appropriate bits inca andcb

(i.e. the bit in positioni + 1 in ca is the same as the bit in positioni in cb, and is the complement

of the bit in positioni + 1 in cb) up until the very next synchronization error in either codeword,

we conclude thatca (andcb) starts with a substring consisting of alternating bits. Now suppose

that the very next error, occurring say at positionp2 is again inca (i.e. it must be that the bit in

positionp2 in ca is being repeated). This would imply that the bit incb in positionp2 is the same

as bit in the same position inca, which is impossible for complement codewords. Therefore the

very next error must be a repetition incb. Since all runs inca andcb are of size 1 or 2 only, it is

necessary that the repeated bit incb in positionp2 belongs to a run of size 1, and that a 2-bit run

of the same type contains bits in positionsp2 + 1 andp2 + 2 in ca. Now suppose that the bit in

positionp3 (p3 > p2) in ca is repeated. By matching up the bits in positions between the repetitions

we conclude that the substrings starting at positionp2 + 1 and ending at positionp3 − 1 consist

of alternating runs of size 2 (we can think ofcb as trailingca by two bits). The repetition inca

must occur in the run of size 1, and in the remainder from positionp3 + 1 onwards,cb is trailing

ca by one bit, so that substring in both codewords consists of alternating bits. Therefore,ca has

the following format: it consists of alternating runs of size 1, followed by alternating runs of size

2, followed again by alternating runs of size 1. Sinceca can be viewed as a concatenation of a

codeword fromC(m − 1) either with itself or with its complement, it is further necessary thatca

consists of a single run of size 1, followed by alternating runs of size 2, followed again by a single

run of size 1, or thatca consists of alternating runs of size 1, followed by a single run of size 2,

followed again by alternating runs of size 1. Since the weight ofca is even, by definition ofC(m),

its outermost bits must be of the same type, and we can conclude that the only choices for the pair

18

(ca, cb) is ca = cm
k+1(11) andcb = cm

k (00) for k = 2m−2, or vice versa, as well asca = cm
j (11)

andcb = cm
j−1(00) for j = 2m−1. Note that by Remarks 4.2, and 4.3, these are the only such pairs.

These are listed under Group 5 and Group 6.

2. length(da)=length(db)+1

It can be either the case thatca experiences a deletion of the outermost 1-bit run andcb expe-

riences a deletion in a run of size at least 2 or thatca experiences a deletion in an inner run of size

1 andcb experiences a deletion in an outermost run of size 1.

a) Suppose first thatda has even length.

Thenda anddb differ in the middle locations (sinceca andcb can be viewed as the result of

concatenation applied to the same codeword inC(m− 1) whereby no runs are altered in creating

ca and the outermost runs are merged in creatingcb) so thatda can be expressed asda=[A11B]

anddb asdb=[A2B] where A and B are substrings ofda anddb and are mirror images of each

other.

a.I.-If ca experiences a deletion in the outermost 1-bit run, by reversibility property we can

assume that the leftmost bit inca is deleted. Starting with substrings B,da anddb look the same,

so the last error is either a repetition inca or a deletion incb, in the place that would correspond

to the entry inda or db immediately preceding B.

We are then left with placing a deletion incb (or a repetition inca), and a repetition incb. This

further necessitates the case of the left halves inca andcb having the following property: there

are exactly two consecutive entries that are different from each other, so that the left half ofca

consists of a run of 1’s followed by a run of 2’s followed by a run of 1’s. Then the left half ofda

has the format: 1.12.21.1 (here and in the remainder by ’1.1’ we assume a substring consisting of

1’s only), so by structural properties of the stringda, it must be either 1.121.121 or 12.2112.21.

For the former case,ca andcb have2m − 2 and2m − 3 runs respectively, and it can be verified

thatca is cm
j (01) or cm

j (10) andcb is cm
j (11) or cm

j−1(00) for j = 2m−1 − 1. These are given in the

Group 7. For the latter case,ca andcb have2m−1 + 2 and2m−1 + 1 runs each. Thenca is either

cm
j (01) or cm

j (10) andcb is eithercm
j (11) or cm

j−1(00) for j = 2m−2 + 1. These pairs are listed in

Group 8. Again by Remarks 4.2, and 4.3, these are the only such pairs.

19

a.II.-Now suppose thatcb experiences a deletion in its outermost run, which we can assume to

be rightmost run, and thatca experiences a deletion in an inner 1-bit run.

We are left with the task of placing repetitions inca andcb as well as a segment of three

consecutive runs inca, the middle of which is a 1-bit run that gets deleted, and this segment

either corresponds to a 2-bit or a 1-bit run incb. As a consequence of the current assumptions on

the deletions, we have the following changes inda anddb as a result of synchronization errors,

whereby a ”joint” error means that the deletion inca and the repetition incb occur in the same

segment.

case inda in db comment

1 211→ 3(del), 1→ 2 (rep) 2→ 3(rep), 1→ {}(del) ”joint” error

2 112→ 3(del), 1→ 2 (rep) 2→ 3(rep), 1→ {}(del) ”joint” error

3 111→ 2(del), 1→ 2 (rep) 1→ 2(rep), 1→ {}(del) ”joint” error

4 111→ 2(del), 1→ 2 (rep) 1→ 2(rep), 1→ {}(del)

In Cases 1-3 we want to place the repetition inca relative to the ”joint” error. Sinceda anddb

agree everywhere except in the middle, we have the following possible situations:

Suppose first that the innermost entries inda and/ordb are changed due to the deletion inca,

and that this is the leftmost error. In particular, if this is the ”joint” error, and the innermost 11 in

da is followed by 2 (description given under Case 2), then in the right halves ofda anddb, there

must be one change from runs of 2’s to runs of 1’s to accommodate the remaining error (repetition

in ca), so thatdb is 1.12.21.1. Thendb can be 1.121.1 or 12.21, andda can be 1.1 or 12.2112.21.

In the former caseda has no entries equal to 2, and the latter case corresponds toca andcb with

2m−1 + 2 and2m−1 + 1 runs each. Thenca is eithercm
j (01) or cm

j (10) andcb is eithercm
j (11) or

cm
j−1(00) for j = 2m−2 + 1. These pairs are listed in Group 8. Since the innermost entries cannot

be 21 inda, and the innermost entry cannot be 1 indb, we can rule out Cases 1 and 3 for when the

”joint” error causes the changes of the innermost entries inda anddb. However, for Case 4, the

innermost 11 inda are altered due to deletion but the innermost 2 indb remains unaltered. Then,

20

to accommodate additional repetitions, we require two changes in the right halves ofda anddb,

once in going from runs of 1’s to runs of 2’s, and once in going from runs of 2’s to runs of 1’s.

Thenda is 1.12.21.12.21.1, so that it must be 1.121.121.1 (da could also be 12.2112.21 but then it

would not have a run of 1’s of size 3 as required). This corresponds todb equal to 1.121.121.121.1,

and in turn pairs established in Group 7.

If the ”joint” error occurs in the left halves ofca andcb, it must correspond to Case 1. Then

suppose that 211 inda which gets altered by the ”joint” error starts at positionp. By mirror-

symmetryp-th rightmost entry in bothda anddb must be 2, so by matching up the appropriate

entries, thep + 1-th rightmost entry indb is 2 as well. However its mirror image is 1 indb unless

211 inda spans its innermost entries. Moreover, there is one change from runs of 2’s to runs of 1’s

in the right half ofdb sodb itself is 12.21, which then yield codewords listed in Group 8.

If for Case 4, deletion inca occurs in the left half, let us first consider the case when there is

at least one 2 in B. Then B must be 2.21 as otherwise there would be more than 2 mismatches

between the appropriate entries in the right halves ofda anddb. If B is 1.1, then the resulting

codewords are already given in Group 2.

Another choice is if the leftmost error is a repetition inca. It then must affect the innermost

entries inda anddb. However, in all cases it is impossible to place the appropriate patterns that

correspond to the deletion inca in the substrings B inda anddb.

b) Now suppose that the length ofda is odd.

b.I.-Let us first consider the case whenca experiences a deletion in its outermost run, which by

reversibility property, can be assumed to be the rightmost run (of size 1).

Then it is necessary thatda anddb are such that the entry in positioni in db is the same as the

entry in positioni in da except for three pairs of entries. In these exceptions, the entry is 1 inda

and its counterpart is 2 indb twice, and the entry is 2 inda and its counterpart indb is 1 once.

Sincedb has an even number of entries, its two innermost entries must be 1 (db must start with

1, and the left and the right halves ofdb are the same).

21

Sinceda has an odd number of entries, and its outermost entries are both 1, its innermost entry

is 2.

Now, this 2 inda is in the same position when counted from the left as a 1 indb, so thatda

anddb look like (tentatively, where ’...’ indicate the current unknown substrings), and the overline

indicates the run that disappears as a consequence of having a deletion in the outermost bit inca.

da=1...2...1

db=1...11...1

We now need to place 2 indb and 1 inda twice in the same positions and have all other entries

in the same positions be the same. By the mirror symmetry ofdb, if we place such 2 indb in the

l-th place from the left, we must place the remaining 2 indb in thel-th place from the right.

Then,

da=1...1...2...1...1

db=1...2...11...2...1

where the left (right) underlined places are in thel-th position counted from the left (right).

By using mirror symmetry ofda anddb and the fact that the remaining entries in the same

positions inda anddb must be the same, we conclude that all remaining entries must be equal to

1, i.e.da=1.121.1 anddb=1.121.121.1 where 1.1 indicates a substring of all 1’s.

Thenca is eithercm
j+1(11) or cm

j (00) andcb is eithercm
j (10) or cm

j (01) for j = 2m−1−1. It can

be verified that in all 4 choices, the same string can result fromca andcb. These pairs are listed in

Group 13.

b.II.-Now we consider the case whenca experiences a deletion in an inner 1-bit run andcb

experiences a deletion of the outermost run, which we can take to be its rightmost run.

As in the case analyzed in a.II we write the table indicating various error patterns. We have the

22

following changes inda anddb as a result of synchronization errors:

case inda in db comment

1 211→ 3(del), 1→ 2 (rep) 2→ 3(rep), 1→ {}(del) ”joint” error

2 112→ 3(del), 1→ 2 (rep) 2→ 3(rep), 1→ {}(del) ”joint” error

3 111→ 2(del), 1→ 2 (rep) 1→ 2(rep), 1→ {}(del) ”joint” error

4 111→ 2(del), 1→ 2 (rep) 1→ 2(rep), 1→ {}(del)

Suppose first that the repetition inca occurs before the ”joint” error, and that it corresponds to

thep-th leftmost entries inda anddb, which are then 1 and 2 respectively. Then thep-th rightmost

entries must be 1 and 2 inda anddb, respectively. In particular, if that 2 in thep-th rightmost

position indb is after the ”joint” error, by matching up the appropriate entries inda anddb, it

would follow that lastp − 1 entries inda are all 2, which is impossible. If that 2 is a part of the

segment affected by the ”joint” error (can hold for Cases 1 and 2), then the rightmost 2 inda would

be in thep+1-th position, and the rightmost 2 indb would be in itsp-th rightmost position, which

by Lemmas 6 and 7 cannot hold simultaneously, ordb would end in a run of 2’s which is also

impossible. Similarly, if that 2 is in the position before the ”joint” error, for Case 1, the positions

of the rightmost 2’s inda anddb would violate Lemmas 6 and 7, and for Case 2,db would end

in a 2. For the Case 3, this pattern of errors would imply thatda anddb have all entries equal to

2 inbetween the repetition and its mirror image, and all entries equal to 1 outside of these errors.

Then, however, the location of the leftmost 2’s inda anddb differs by 1, which is not possible by

Lemma 7.

We now consider the error pattern in which the ”joint” error occurs before the repetition. If

there is an entry equal to 2 in the segment before the ”joint” error, then by matching up the appro-

priate entries inda anddb, the leftmost 2 in that run of 2’s has a mirror image in the right half of

db which must be matched with a 1 inda, i.e. it corresponds to the repetition inca. Moreover, the

”joint” error cannot have the corresponding entry be 1 indb (Case 3) as its mirror image must be

matched with 2 in the right half ofda. If the ”joint” error is as given in Case 1, it would be nec-

essary that in the right halves ofda anddb exist two runs of 2’s whose sizes are two consecutive

23

numbers, which by Lemma 8 is not possible. Similarly, for Case 2,da anddb would contain runs

of 2’s of two consecutive sizes.

We now consider the case when the ”joint” error is the leftmost error, and there are no 2’s inda

anddb prior to the positions that correspond to this ”joint” error. In particular, if no entry prior to

the ”joint” error is equal to 2, then for Case 1, the mirror image of 2 indb, say in thep-th rightmost

position that corresponds to the ”joint” entry, would have to correspond to the repetition location

in ca, and by matching up the appropriate entries in between the locations of the ”joint” error and

the repetition, it would follow that 2 in thep-th rightmost entry indb is preceded by a 12, whereas

2 in thep-th rightmost entry inda is preceded by 1. Thenda anddb would have runs of 2’s of two

consecutive sizes which is impossible by Lemma 8.

For Case 2, again the mirror image of 2 indb that corresponds to the ”joint” entry, would have

to correspond to the repetition location inca, but then the rightmost 2’s inda anddb would be

in positions that differ by 2, which by Lemmas 6 and 7 can only be 4 and 2. However then

da starts with 111211 anddb starts with 121, and to match the entries in between they must be

a repeated sequence 211. Thendb is 121121...121121, andda is 1112112...112111, and have

lengths3 × 2m−2 and3 × 2m−2 + 1 respectively. The resulting codewordsca andcb are as given

in Group 9.

For Case 3, let us suppose that due to the repetition,p-th rightmost entry indb is 2 andp−1-th

rightmost entry inda is 1. Then ifp-th entry indb is strictly located in the right half ofdb, by

mirror-symmetry, thep-th leftmost entry indb must be 2 (which is by assumption after the ”joint”

error, as the ”joint” error is not preceded by a 2) so thatp + 2-th entry inda must be 2 as well,

which are also the first leftmost entries equal to 2 in bothda anddb. By Lemma 7 these must be

in positions 4 and 2 inda anddb respectively, and as a result we obtain the sameda anddb that

yield the codewords already listed in 9.

The last case to consider is Case 4 when the errors cause the following modifications inda and

db: Deletion inda converts 111 to 2, and indb converts 1 to an empty string and the repetitions

in both of them convert 1 to 2.

We first want to place the repetition errors relative to the deletion inca. We label them (2,1) and

24

(1,2), for when the repetitions occur incb, and inca, respectively. If (2,1) precedes the deletion, it

itself must be preceded by (1,2) as it is not possible to have 2 inda and 1 indb in the first leftmost

position they differ in, by Lemma 8.

It is also not possible to have (1,2) precede the deletion, as thenda would end in 2, unless

(1,2) and the deletion inca are associated with positions that are mirror images of each other in

db (otherwiseda would end in 2). In that case, we start matching the entries inda anddb that

are in between these two positions and we conclude that all those entries must be 1. There is only

one remaining mismatched pair, i.e. the one we labelled (2,1), so we conclude thatda must have

a single 2 in its innermost entry and all other entries equal to 1. This however yieldsca andcb

already listed in Group 13.

We now consider the case when both mismatchings (1,2) and (2,1) occur after the deletion in

ca. Suppose the segment 111 inda, 2 in db that corresponds to the deletion inca is immediately

preceded by a 2 in bothda anddb. Now if, this segment is either followed by 2 and 2 inda and

db, or by 1 and 1 or by 2 and 1, one of Lemmas 8 and 9 will be violated. If it is followed by 1 in

da and 2 indb, this would correspond to (1,2) error. Thenda would have a segment 21111 anddb

would have a segment 222 that start in the same position and whose second entry corresponds to

the first position in whichda anddb differ. By mirror-symmetryda would have a segment 1112

anddb would have a segment 222 that end in the same position, counted from the right. However,

then there would be another mismatch between the corresponding entries that is 1 inda and 2

in db. Thus the segment 111 inda, 2 in db that corresponds to the deletion inca is immediately

preceded by a 1 in bothda anddb. The mirror image of this segment corresponds to the (1,2) error.

The (2,1) error cannot occur after the (1,2) error as that would imply thatda ends in a 2. Therefore

the (2,1) error is in between the deletion inca and the (1,2) error. Moreover by matching up the

appropriate entries inda anddb the segment preceding the leftmost error as well as the segment

following the (1,2) error consist of 1’s only, as do the segments in between. Since only (2,1) error

remains to be placed somewhere that 2 must correspond to the innermost entry inda which then

has all other entries equal to 1. This in turn yields candidate codewords already listed in 13.

3. length(da)=length(db)+2

In this case, the deletion incb must occur in a run of size at least 2, and the deletion inca

25

must occur in an inner run of size 1. All runs inca must be of length 1 or 2 each. Ifdb had an

entry larger than 2, that entry would have to be 4 but thenda would not have any inner 1’s as

required. Thuscb has runs of length 1 and 2 as well. Either the repetition incb and the deletion in

cb occur ”jointly”, or the repetition incb is in the run of size 1 and the deletion inca is in a 1-bit

run neighbored by two 1-bit runs whereby these errors occur separately.

a) The deletion inca is in an inner 1-bit run that is neighbored by a 1-bit and a 2-bit run, and

there is a repetition incb in the corresponding 2-bit run, or the deletion is in an inner 1-bit run in

ca which is neighbored by two 1-bit runs and there is a repetition in the corresponding 1-bit run in

cb. In either case, we think of these errors (deletion inca, repetition incb) as ”joint” error, and we

need to place the remaining errors (deletion incb, repetition inca). These two remaining errors

can be thought of as being of the same kind (repetition in a 1-bit run inca and the deletion in a

2-bit run incb) so we call them x and we call the ”joint” error y.

Then there are three different orderings of errors, but by reversibility property it is sufficient to

only consider orderings yxx and xyx.

Suppose the ordering is yxx. Thenda anddb are:

1) da = A112B1C1D anddb = A2B2C2D or

2) da = A211B1C1D anddb = A2B2C2D or

3) da = A111B1C1D anddb = A1B2C2D,

for some appropriately chosen substrings A, B, C and D.

In 1) by mirror symmetry|A|=|D|, and we start matching up the appropriate entries inda and

db. If C is not empty, it must end in 1, and we get that there is a substring ’212’ indb which by

Lemma 9 is not possible. Thus C must be empty, and then we have that B consists of all 2’s so

thatda=A112.211D anddb=A22.22D where D is the reverse of A. Furthermore, A starts with 1,

and D ends with 1. Suppose A has at least three runs (of 1’s, 2’s, and 1’s). Then the last run in A

cannot be a run of 1’s as the inner runs of 1’s inda cannot be k+2 and k,k>0 simultaneously by

Lemma 9. Thus A ends in a run of 2’s or it consists of 1’s only. If A is 1.1, by Lemma 7da would

26

be 1112.2111 which is impossible form > 3. Thus A has a run of 1’s followed by a run of 2’s.

Suppose 11 following A is not in the middle of the left half ofda. By concatenation principle, A

would have another inner 1 somewhere but that 1 in A indb would not have its mirror image in the

left half of db. Thus 11 inda must be in the middle of its left half which then implies thatdb has

no inner 1’s. Thusdb=1.12.21.1. In particulardb is 12.21. Consequentlyda is 12.2112.2112.21

and the candidateca andcb arecm
j (11) or cm

j−1(00) for ca wherej = 2m−2 + 2, andcm
j′ (11) or

cm
j′−1(00) for cb wherej′ = 2m−2 + 1. These codewords are listed under Group 10.

For 2) we look at first 2 following A2 indb . Suppose it immediately follows that substring.

Then by mirror symmetry|A|=|D|-1. If the entry inda immediately following A211 is 1, B would

be empty and C would consist of all 1’s. However,da anddb would have runs of 2’s of two

consecutive sizes which is not possible by Lemma 8. If A211 inda is followed by 2, then if entry

immediately following A22 indb is 1, the runs of 2’s starting with the leftmost entry in D inda

and starting with 2 immediately preceding D indb would differ in length by 1, which is impossible

by Lemma 8. Thus A22 indb is followed by 2. By matching up the appropriate entries, it further

follows that C is empty and that B has all 2’s. But then by concatenation rule, A has only 1 in its

leftmost position and 2’s everywhere else and we arrive atda anddb as being 12.2112.2112.21 and

12.21, which in turn correspond to codewords already given in Group 10. If A2 indb is followed

by 1, then by Lemma 9, B cannot have any 2’s. Since B is not empty (by assumption there is a 1

in db following A2 and there is a 2 following B), it has all 1’s, and 2 immediately following B in

db has 2 immediately following C as its mirror image. By mirror symmetry all entries in C must

be 1’s as well. Thenda anddb are A21.1D and A21.121.12D, and their left halves can be viewed

asd′1 = d(c′1) andd′2 = d(c′2) for somec′1, c
′
2 ∈ C(m − 1), whereby two innermost entries ind′1

andd′2 are 11. Thend′1 is A21.1 andd′2 is A21.121.1, but then the mirror symmetry of one of them

has to be violated.

For 3), if the substring B has at least one entry equal to 2, then by Lemmas 7 and 9, A must

be empty. However, by mirror symmetryda actually starts with 111211, which cannot be matched

with db which itself must start with 12112, since thenda ends with 112111 anddb with 21121,

and this rightmost 2 inda cannot be matched with 1 indb. If B does not have any 2’s then we can

think of A being extended by the size of B, so that B is effectively empty and A ends in a run of

1’s. We label the new A as A’.Then 2’s neighboring C indb must be mirror images of each other,

and C itself must be all 1’s. Thenda anddb are A’1.1D and A’121.121D. We now view the left

27

half of db in isolation. If in it 2 following A’1 had a mirror image in A’, the mirror of the left half

of da would be violated. Thus 2 following A’1 indb is in the middle of its left half and A’ has all

1’s. This in turn implies thatda is all 1’s andda anddb correspond toca andcb listed in Group 3.

Consider now the error pattern xyx.

Thenda =A1BEC1D anddb=A2BFC2D where E inda and F indb contain 112 and 2 or 211

and 2, or 111 and 1. Strings A and D must be mirror images of each other, and by matching up

the same entries inda anddb in B and C we end up with the unmatched middle which is either

of length 4 and 2 inda anddb respectively or 3 and 1 inda anddb respectively. For the latter

case, to preserve the mirror symmetry ofda, the isolated entries must be 111 inda and 1 indb.

However the run of 1’s to which that 1 indb belongs would be of odd length, which is impossible

by Lemma 9. For the former case, the four innermost entries inda are 2112 and are 22 indb or

are 1111 inda and are 11 indb (2112 and 11 does not fit the pattern ofda anddb). Then eitherdb

has all entries equal to 2, which gives rise tocb beingcm
j (01) or cm

j (10) for j = 2m−2 andca being

cm
j+1(01) or cm

j+1(10). These pairs are listed in Group 11. For when the innermost entries are 1111

and 11 inda anddb respectively, if at least one of B and C contains a 2, we would have that there

exist inner runs of 1’s inda anddb that differ in length by 2, which by Lemma 9 is impossible.

Thus B and C must contain only 1’s, and 2’s bordering A and D indb, by mirror symmetry, must

be in the middle of the left and the right half ofdb, respectively, and A itself must be all 1’s as

well. Thenda is all 1’s and the resultingca andcb are already established in Group 3.

b) Now suppose that the deletion inda and the repetition indb are not ”joint” errors.

We again think of the deletion incb (must be in a run of size 2) and the repetition inca (must

be in a run of size 1) as equivalent errors, and we denote them by x. Let y be the deletion location

in ca and z be the repetition location incb.

We can order x, x, y, z in 12 ways but by reversibility it is sufficient to look at 6 of these.

Moreover, z cannot be the rightmost or the leftmost error by an argument similar to that given in

Lemma 10. Suppose thatda anddb have lengthsl +2 andl respectively. Then there exist another

dc of lengthl + 1 such thatdc = d(cc), wherecc ∈ C(m). If l is even, we apply Lemma 10 to

db anddc, and conclude that the first leftmost position, sayp, in which they differ,db is 2 anddc

28

is 1. Thisp is strictly in the left halves ofdb anddc. Sincedc andda disagree only in the middle,

i.e. when counted from the left, first time in positionl0/2 wherel0 is the length ofda, it follows

that the leftmost position in whichdb andda disagree is stillp, and in that positiondb is 2 andda

is 1. Whenl is odd the argument follows similarly.

It is therefore sufficient to analyze the following cases: yzxx, yxzx, and xyzx.

-For xyzx we have thatda = A1B111C2D1E anddb = A2B2C1D2E

We first observe that|A=|E|. Then irrespective of how are the sizes of B and D related, the

mirror symmetry of one ofda anddb will be violated. In particular for|B| = |D|, 2 immediately

following B would have 1 immediately preceding D as its mirror-image. If|B| > |D|, 2 immedi-

ately preceding D inda and 1 immediately preceding D indb, would have mirror images in B in

the same positions. If this 2 indb is its own image,da anddb would agree up to the innermost

entry ofdb, so thatda is then A121A’ anddb is A2A’, for A’ the reverse of A, which contradicts

current assumptions onda anddb.

-For yzxx we have thatda = A111B2C1D1E anddb = A2B1C2D2E

If both A and B contain at least one 2 each, there would be an inner run of 1’s inda of odd

length, which by Lemma 9 is impossible. If A contains no 2’s , but B does, then by Lemma 7 A

must be of size2l1 − 1 for somel1. Now by Lemma 9 the run of 1’s in B immediately preceding

its leftmost 2, is of size2l2 − 2. Then the leftmost run of 1’s inda is of size2l1 − 1 + 3 + 2l2 − 2,

which is impossible by Lemma 7. Thus B must contain only 1’s.

By matching up the appropriate entries inda anddb it turns out that D must consist of only 1’s

as well. Now, the isolated 2 between C and D indb is either the innermost entry indb or it has its

mirror image, which must be in C (it cannot be in E as its counterpart inda is 1 and would have

its own mirror image in the same position in E). In the former case,db is A21.121.12E where E is

the reverse of A. By the concatenation principle, A and E must contain only 1’s as well, so thatca

has2m − 1 runs andcb has2m − 3 runs, andc1 = cm
j (zz), c2 = cm

j−1(zz) for z = 1 andj = 2m−1,

or z = 0 andj = 2m−1 − 1. These pairs are listed under Group 12. In the latter case, by mirror

symmetry, all entries in C starting with the mirror image of the isolated 2 onwards must be all 2’s

as well. That substring in C cannot be preceded by a 1, as that would imply thatda anddb have

29

runs of 2’s of two consecutive lengths, which is impossible by Lemma 8. Thusda anddb are

A1.12.21.1E and A21.12.21.12E respectively, where A is followed by at least three 1’s inda. If

the innermost run of 2’s (which is C) inda has length more than 1, by concatenation principle A

must start with 12, so that in the remainder ofda all runs of 1’s are either of length 1 or 2, which

contradicts the earlier requirement that there exists a run of size at least 3. Thus, the innermost

run of 2’s inda has size 1, andda is A1.121.12E, which gives rise to the codeword pairs listed in

Group 12.

-Finally, for yxzx, we have:da is A111B2C1D2E anddb = A2B1C2D1E.

If |A|=|E|, the mirror-symmetry is violated. If|A| < |E|, then 1 and 2 immediately following

A in da anddb have mirror images in E (if that 2 incb is its own image, thenda anddb would

agree up to the innermost entry indb, anddb would be A2A’ andda would be A111A’, where

A’ denotes the reverse of A, but which is impossible) in the same positions, but then the mirror-

symmetry property is violated. Similarly, for|A| > |E|, the mirror-symmetry property is violated

as well. ¥

4.1 Pruning of the code

Recall that theith row of Gm, for 1 < i ≤ m + 1 consists of2i−1 alternating runs of ones and

zeros, and that each run is of length2m−i+1. Observe that theith row is then preciselycm
2i−2(10). In

particular, the last two rows ofGm arecm
2m−2(10) for i = m andcm

2m−1(10) for i = m + 1.

We write c ∈ C(m) as xGm, wherex is a (m + 1)-dimensional message vector so that

cm
2m−1(10) = [0, 0, . . . , 0, 1]Gm andcm

2m−1(01) = [1, 0, . . . , 0, 1]Gm. Similarly, cm
2m−2(10) is

[0, 0, . . . , 0, 1, 0]Gm andcm
2m−2(01) is [1, 0, . . . , 0, 1, 0]Gm.

Observe that eithercm
2m−1(10) or its complement appears in each codeword pair in Groups 1,

2 and 3, and that eithercm
2m−2(10) or its complement appears in each codeword pair in Groups 4

and 11. The codewordcm
2m−1(11) corresponds to the input[1, 1, 0, . . . 0, 1] and its complement,

cm
2m−1−1(00), to the input[0, 1, 0 . . . , 0, 1]. At least one of them appears in each codeword pair in

Groups 5, 12 and 13. Likewise, the codewordcm
2m−2+1(11) corresponds to the input[1, 0, . . . 0, 1, 1]

30

and its complement,cm
2m−2(00), to the input[0, 0 . . . , 0, 1, 1], and at least one of them appears in

each codeword pair in Groups 6, 8 and 10. The codewordcm
2m−1−2(00) corresponds to the input

[0, 0, . . . 0, 1, 0, 1] and its complement,cm
2m−1−1(11), to the input[1, 0, . . . 0, 1, 0, 1], and one of them

appears in each pair in Group 7. Lastly,cm
3∗2m−3(10) corresponds to the input[0, 0, . . . 0, 1, 1, 1] and

its complement,cm
3∗2m−3(01), to the input[1, 0 . . . , 0, 1, 1, 1], and one of them appears in each pair

in Group 9.

Therefore, for each codeword pair, at least one codeword has the message with a nonzero

component in either positionm or m + 1. Consider a matrix consisting of the topm − 1 rows of

Gm. It hasm− 1 rows and no linear combinations of its rows give rise to codewords causing the

identification problem. Thus, if instead of usingC(m) of ratem+1
2m we use its linear subcodêC(m)

of rate m−1
2m , generated by the topm − 1 rows ofGm we are able to eliminate the identification

problem while preserving the linearity of the code and suffering a very small loss in the overall

rate.

5 Conclusion

In this report we proved several run-length structural properties of a Reed-Muller(1,m) code and

we studied how to modify this code for use in channels in which sampling errors cause one bit

repetition and one bit deletion per transmitted codeword. We enumerated all pairs of codewords

that can result in the same string under this channel model, and based on this enumeration we pro-

vided a simple way of thinning the code to eliminate such codewords. The resulting code only has

two fewer information bits than the original code and is also equipped with better synchronization

error correction properties.

References

[1] L. Dolecek and V. Anantharam. ”Using Reed-Muller RM(1,m) Codes over Channels with

Synchronization and Substitution Errors”.submitted to IEEE Trans. Inform. Theory, April

2006.

31

[2] F. J. MacWilliams and N. J. A. Sloane.”The Theory Of Error Correcting Codes”. North

Holland Publishing Company, Amsterdam, Holland, 1977.

32

