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Abstract

We analyze the performance of a Reed-Muller RM(1,m) code over a channel that, in ad-

dition to substitution errors, permits either the repetition of a single bit or the deletion of a

single bit; the latter feature is used to model synchronization errors. We first analyze the run-

length structure of this code. We enumerate all pairs of codewords that can result in the same

sequence after the deletion of a single bit, and propose a simple way to prune the code by

dropping one information bit such that the resulting linear subcode has good post-deletion and

post-repetition minimum distance. A bounded distance decoding algorithm is provided for the

use of this pruned code over the channel. This algorithm has the same order of complexity as

the usual fast Hadamard transform based decoder for the RM(1,m) code.
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1 Introduction

In a typical communication system a binary input messagex is encoded at the transmitter, using a

substitution-error correcting codeC, into a coded sequencec = C(x), which we will assume is also

a binary sequence. The modulated version of this sequence may be modeled as being corrupted by

additive noise, so the received waveform after matched filtering can be written as

r(t) =
∑

i

cih(t− iT ) + n(t), (1)

whereci is theithbit of c, h(t) is convolution of the modulating pulse and the matched filter, and

n(t) represents the noise introduced by the channel.

The receiver samplesr(t) at time instances{kTs + τk}, and the sequence of samples is fed

into the decoder which decides on the most likely input message. Accurate synchronization of the

sampling instants, i.e thatTs be equal toT and that eachτk be ideal, is critical for the full utiliza-

tion of the coding gain of the substitution-error correcting code. As the operating requirements

under which timing recovery must be performed become more stringent, because of higher data

rates and/or longer delays in the decision feedback loop that adjusts the sampling instants, such

synchronization is becoming harder to achieve. Several authors have studied the problem of ac-

curate timing recovery. Proposed solutions include building a more sophisticated timing recovery

block [14], a turbo-like approach to iteratively determine sampling points as well as data [16], and

multiple hypothesis analysis of the sampling instances [11].

As an alternative to more complex and more expensive timing recovery schemes, we propose to

shift the emphasis away from the timing recovery block and instead modify the decoding procedure

and the code itself to compensate for inadequate synchronization. By analyzing the robustness of a

substitution-error correction code to synchronization errors, one could use a subcode of the original

code that would have good minimum distance under both substitution as well as sampling errors.

The trade-off would be between the incurred rate loss associated with the code modification versus

the increased complexity and latency associated with the existing approaches mentioned above.

The challenge of the proposed approach lies in determining the synchronization error correction

capabilities of individual codes of interest, and in determining as large as possible a subcode with

the desired properties.

2



-

6
1

r(t)

T 2T 3T 4T 5T

. . .

t
¦

¦

¦

¦ ¦ ¦

Figure 1: An example of oversampling.

To illustrate the issues that arise when adequate timing recovery is missing, assume (for pur-

poses of argument) thath(t) is a rectangular pulse of durationT and unit amplitude and that we are

operating in the infinite signal-to-noise (SNR) regime where the effect ofn(t) is negligible. Then

r(t) simply becomes

r(t) =
∑

i

ci1(iT ≤ t < (i + 1)T ) . (2)

If samples were taken in the middle of each pulse the sampled version ofr(t) would be pre-

ciselyc. Now suppose that inadequate timing recovery causes the sampling to occur at time instants

kTs + τk.

As an example, consider a sequencec = (0,1,0,1,1,. . .) that results in the waveformr(t) shown

in Figure 1. The sampling pointskTs + τk are marked in the figure by¦. In this example,Ts < T

causes oversampling, and the sampled version ofr(t) contains a repeated bit (here the fourth bit is

sampled twice). Analogously, whenTs > T , undersampling can cause the separation between two

consecutive samples to be so large that some bit is not sampled at all. Therefore without adequate

timing recovery the sampled version ofr(t) results in a sequence obtained by repeating or deleting

some bits inc.

A codewordc can in general give rise to a whole set of received sampled versions ofr(t). The

possible set of such sequences depends on how good the timing recovery scheme is. When two

distinct codewordsc1 andc2 can result in the same sampled sequence, it is no longer possible

to uniquely determine the coded sequence or its pre-imagex from the received sequence, even

in the noise-free environment. We then say that the substitution-error correcting codeC has an

identification problem. We also say that the pair of codewordsc1 andc2 has an identification

problem.
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More generally, two distinct codewordsc1 andc2 could result in sampled sequences with poor

Hamming distance. This would result in poor performance over a channel that permits substitution

errors. In this case we say that the substitution-error correcting codeC haspoor identification. We

also say that the pair of codewordsc1 andc2 has poor identification.

In this paper we adopt a set-theoretic model for the synchronization errors in which a code-

word gives rise to a set of possible received sampled sequences which depends on how many bits

are allowed to be repeated or deleted. In this context, our goal is to ensure that we have good

identification by restricting attention to a large linear subcode for which each pair of distinct code-

words has good post-synchronization error Hamming distance. Further, we would like to analyze

the performance of this subcode when used over a channel that introduces both substitution and

synchronization errors. In this paper we address such questions for the RM(1,m) code.

It should be mentioned that several authors have studied codes immune to insertions and dele-

tions of bits. For example, the so-called Varshamov-Tenengolts code proposed in [20] and pop-

ularized by Levenshtein in [12] has been further studied by Ferreira et al., [9], Levenshtein [13],

Sloane [17], and Tenengolts [18]. Related constructions were proposed in [1], [2], [5], [10] and

[19]. Even though these constructions result in codes that are immune to a given number of inser-

tions and deletions of bits, they have a limited guarantee for other desirable properties of standard

substitution-error correcting codes (such as linearity and a good minimum Hamming distance).

Several other authors have proposed concatenated codes that correct synchronization errors, such

as in [3], [4], and [6]. These have a significant incurred rate loss penalty. In contrast to these

works, our approach is to start with known substitution-error correcting codes and propose how to

modify them with only a small loss in the rate in order to continue to provide good performance

under synchronization errors, which are themselves modeled as a certain number of repetitions or

deletions of bits.

We study RM(1,m) codes in this paper. In Section 2, we prove several structural properties of

the run-lengths of such a code. Using these properties, in Section 3 we systematically analyze the

identification problem for such codes for single deletion errors. We propose a simple way to prune

an RM(1,m) code to obtain a linear subcode that does not suffer from the identification problem

for a single deletion. This subcode is also shown to have good post-deletion and post-repetition

minimum distance. In Section 4 we discuss how to decode the pruned code over channels in which
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substitution errors are present in addition to possibly the deletion of a single bit or the repetition

of a single bit. We present a bounded distance decoding algorithm that is a variant of the fast

Hadamard matrix based decoding which is traditionally used to decode the RM(1,m) codes. The

complexity of this algorithm is of the same order as that of the traditional decoder. Finally, Section

5 concludes the paper and proposes future extensions of this work.

2 Run length properties of the RM(1,m) codes

The first order Reed-Muller codes RM(1,m) are linear(2m,m + 1) substitution-error correcting

codes [15]. They have good minimum distance2m−1, simple encoding, and a relatively low com-

plexity maximum likelihood decoding algorithm (O(n log n) for n = 2m). On the negative side,

they have low rate.

From now on, letC(m) denote the RM(1,m) code. The codeC(m) may be described by an

(m + 1)× 2m generator matrixGm given by

Gm =




1 1 1 1 . . . 1 1 1 1

1 1 1 1 . . . 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1 1 1 . . . 0 0 0 0

1 1 0 0 . . . 1 1 0 0

1 0 1 0 . . . 1 0 1 0




.

For future reference, we recall that every codeword inC(m + 1) is either the concatenation

of a codeword inC(m) with itself or the concatenation of a codeword inC(m) with its bitwise

complement [15, Thm. 2, pg. 374]. The concatenation of two binary stringsa andb will be written

as [a|b]. If c is a codeword inC(m) it is straightforward to check that its bitwise complement,

denotedc, is also a codeword inC(m). Further, its reversal, i.e. the binary string got by reading

c from its end to its beginning, denoted
c←, is also a codeword inC(m). Since the operations of

bitwise complementation and reversal commute, we may unambiguously denote the complement

of the reversal ofc as
c←.
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The purpose of this section is to prove several properties of the run length structure of the codes

C(m). These properties will be used in the subsequent sections. They may also be of independent

interest.

Lemma 1 The codewords inC(m) can be partitioned into2m−1 + 1 distinct non-empty groups

Gm
j , for 0 ≤ j ≤ 2m−1. HereGm

j is comprised of those codewords inC(m) that havej runs of

ones.Gm
0 is comprised of exactly one codeword, namely the all-zero codeword. This codeword will

be denotedcm
0 (00). There are 4 distinct codewords in each groupGm

j , for 1 ≤ j < 2m−1. These

codewords may be uniquely identified by their first and last bit. They may thus be unambiguously

denoted ascm
j (11), cm

j (10), cm
j (01), andcm

j (00) respectively. There are 3 distinct codewords in the

groupGm
2m−1. These codewords may also be uniquely identified by their first and last bit and may

be unambiguously denoted ascm
2m−1(11), cm

2m−1(10), andcm
2m−1(01) respectively.

Proof: The proof is by induction onm. For m = 1 andm = 2 the statement can be verified by

inspection. Suppose the assertion holds for all1 ≤ m ≤ m0.

Let us first consider the groupGm0
j for 1 ≤ j < 2m0−1. By assumption, it contains 4 codewords,

unambiguously denoted ascm0
j (11), cm0

j (01), cm0
j (10), andcm0

j (00) respectively. Out of the eight

possible concatenations of each such codeword with either itself or its complement, 3 result in

codewords inGm0+1
2j−1 (these are [cm0

j (11)|cm0
j (11)], [cm0

j (11)|cm0
j (11)], and [cm0

j (01)|cm0
j (01)]), 4

result in codewords inGm0+1
2j (these are [cm0

j (01)|cm0
j (01)], [cm0

j (10)| cm0
j (10)], [cm0

j (10)|cm0
j (10)],

and [cm0
j (00)|cm0

j (00)]), and 1 results in the codeword [cm0
j (00)|cm0

j (00)] in Gm0+1
2j+1 . By varyingj

from 1 to 2m0−1 − 1, inclusive, we thus describe 3 codewords inGm0+1
1 , 4 codewords in each

Gm0+1
j′ for 2 ≤ j′ ≤ 2m0 − 2 and 1 codeword inGm0+1

2m0−1 such that no two codewords that belong to

the same groupGm0+1
j′ agree in both the first and the last bit.

Now consider the groupGm0

2m0−1. By assumption it has three codewords unambiguously denoted

ascm0

2m0−1(11), cm0

2m0−1(01), andcm0

2m0−1(10) respectively. There are six possibilities arising from con-

catenations of such a codeword with itself or its complement. Of these, 3 result in codewords in

Gm0+1
2m0−1 (these are[cm0

2m0−1(01)|cm0

2m0−1(01)] [cm0

2m0−1(11)|cm0

2m0−1(11)], and [cm0

2m0−1(11)|cm0

2m0−1(11)])

and the remaining 3 result in the codewords ofGm0+1
2m0 . Note that none of the latter three concate-

nations has both outer bits equal to ’0’. Note that we have now described a total of 4 codewords in
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the groupGm0+1
2m0−1, no two agree in both first and last bit, and we have also described 3 codewords

in the the groupGm0+1
2m0 of the desired form.

The concatenation of the all-zero codeword inC(m0) with the all-ones codeword yields the

fourth codeword inGm0+1
1 , and its concatenation with itself yields the only codeword inGm0+1

0 .

We have therefore described1 + 4× (2m0 − 1) + 3 = 2m0+2 codewords inC(m0 + 1), which

is precisely the cardinality of this code, and we showed that the proposed statement holds for it.¥

By exploiting the result in Lemma 1, it is easy to verify the following, which may also of course

be seen more directly.

Lemma 2 For each1 ≤ k ≤ 2m, in C(m) there are exactly 2 codewords which have a total ofk

runs, and they are bitwise complements of each other.

Proof: The complementary codewordscm
j−1(00) andcm

j (11) each have2j − 1 runs. Lettingj run

from 1 through2m−1 gives2m−1 such complementary pairs of codewords. The complementary

codewordscm
j (10) andcm

j (01) each have2j runs. Lettingj run from1 to 2m−1 gives another2m−1

such complementary pairs of codewords. This completes the proof. ¥

Lemma 3 Consider a codewordc in C(m). Eitherc has all its runs of the same length, which is

a power of2, or the runs inc are of two different lengths, and these two lengths are consecutive

powers of 2. In addition, if there are runs of two different lengths inc, the outer runs (i.e. the

leftmost run and the rightmost run) inc are of the smaller length.

Proof: The proof is by induction onm. It is straightforward to check the truth of the statement

for m = 1 andm = 2. Suppose now that the given statement is true for all1 ≤ m ≤ m0.

For a codewordc in C(m0) let [c|c] and [c|c] denote the codewords inC(m0 + 1) that are the

concatenation ofc with itself, and the concatenation ofc with its complement, respectively.

Suppose first thatc has all its runs of the same length, equal to2s for somes ≥ 0. If c has the

same starting and ending bits then in the concatenation[c|c] all runs have the same length2s, so
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the statement of the lemma holds. In the concatenation[c|c] all runs except the run at the point of

concatenation (if there are any such runs) have length2s and the run at the point of concatenation

has length2s+1. The proposed statement continues to be true both in the case in which there are

some runs other than the one at point of concatenation and in the case when there are no such runs.

If c starts and ends with different bits, we may repeat the previous argument mutatis mutandis.

Now suppose thatc has runs of different lengths, which are two consecutive powers of 2, say

2s and2s+1. By assumption, the outer runs are of length2s each, and there is at least one run of

length2s+1. As before, ifc starts and ends in the same bit, the concatenation[c|c] will have all its

runs of lengths either2s or 2s+1. Further, the outer runs in[c|c] have the same length as the ones

in c, i.e. they are of length2s each, so the statement of the lemma is valid. In the concatenation

[c|c], the last run in the left copy ofc and the first run in the right copy ofc are merged together,

and all other runs are unchanged in length. By assumption, the outer runs inc have length2s each,

so their merger results in a run in[c|c] of length2 × 2s = 2s+1. Thus all runs in[c|c] have length

either2s or 2s+1. Since the outer runs in[c|c] are of the same length as the outer runs inc, they

have length2s, as required. Forc starting and ending in different bits, we repeat this argument

mutatis mutandis.

Since each codeword inC(m0 + 1) can be written as a concatenation of a codeword inC(m0)

either with itself or with its complement, the proof of the Lemma is complete. ¥

For the analysis in subsequent sections we also need to record some properties of the runs of

runs in the codewords of RM(1, m).

Definition 1 For a codewordc ∈ C(m) let d = d(c) be the string whose entries are the lengths

of consecutive runs inc, read from left to right. LetDm = {d|d = d(c), c ∈ C(m)}, so thatDm

represents the collection of all possible sequences of run lengths associated with the codewords of

C(m). ¥

As an example, consider a codewordc=’10010110’, wherec ∈ C(3). Then, the associated

d = d(c) is d=’121121’.

We now state several results about such sequences of run lengths, which we will prove together.

8



Lemma 4 [mirror-symmetry]∀c ∈ C(m), the stringd = d(c) possesses the mirror-symmetry

property, i.e. the entry in positionp in d, denoted byd(p), is the same as the entry in position

l − p + 1, denoted byd(l − p + 1), wherel represents the length of stringd.

Lemma 5 If all entries ind = d(c) are either 1 or 2, with at least one entry being 1 and one being

2, then the leftmost entry equal to 2 must be in position2p, for somep ≥ 1.

Lemma 6 If all entries ind = d(c) are either 1 or 2, with at least one entry being 1 and one being

2, then each run of 2’s ind is of length2p − 1, for somep ≥ 1.

Lemma 7 If all entries ind = d(c) are either 1 or 2, with at least one entry being 1 and one being

2, then each inner run of 1’s (where the inner run denotes a run with neighboring runs on each

side) ind is of length2p − 2, for somep ≥ 1.

Proof: We prove these statements by induction. We first directly verify them for small values ofm.

The codewords inC(1) are ’00’,’11’,’01’, and ’10’, soD1 = {2, 11}. The truth of the statements

can be directly verified in this case. The codewords inC(2) are ’0000’, ’1111’, ’1100’, ’0011’,

’0110’, ’1001’, ’1010’, and ’0101’, soD2 = {4, 22, 121, 1111}, and again the proposed statements

can be verified. Similarly, the set associated withC(3) is

D3 = {8, 44, 242, 2222, 12221, 121121, 1112111, 11111111} ,

and the statements hold. In particular, Lemmas 5 and 6 are applicable for the strings ’12221’,

’121121’, and ’1112111’, and Lemma 7 is applicable for the string ’121121’.

Suppose now that the proposed Lemmas hold for all elements ofDm for 1 ≤ m ≤ m0. For a

codewordc in C(m0) let c′ = [c|c] andc′′ = [c|c], and letd = d(c), d′ = d(c′), andd′′ = d(c′′).

First consider the case when the outermost bits inc are complements of each other. Then, in

constructingc′ from c, no runs are altered and the statements in Lemmas 4, 5, 6, and 7 which

by assumption hold ford, continue to hold ford′ = [d|d]. In particular, ifd has lengthl0, d′ has

length2l0. The entryd′(p), for 1 ≤ p ≤ l0 is the same asd′(l0 − p + 1), by assumption, which is

the same asd′(l0− p+1+ l0) = d′(2l0− p+1). Thus, the mirror-symmetry property is preserved.
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The leftmost entry equal to 2 ind′, if there is one, is in the same position as the leftmost entry

equal to 2 ind and Lemma 5 holds trivially. Ifd′ has only entries equal to 1 or 2, and has at least

one entry of each kind, the outermost runs inc′ and therefore inc must be 1-bit runs by Lemma 3.

As an easy consequence, Lemma 6 continues to hold forc′. By assumption, the leftmost 2 inc is

in position2p for somep, so that the leftmost run of 1’s ind is of length2p− 1. The rightmost run

of 1’s in d is also2p − 1 by the mirror symmetry assumption. At the point of concatenation ofc

with itself, two sequences of 1-bit runs each of length2p − 1 are concatenated, and as a result, an

inner run of 1’s ind′ of length2(2p − 1) = 2p+1 − 2 is created. All other runs ind′ are of the same

length as the runs ind, and Lemma 7 follows.

We now focus onc′′ and itsd′′. All runs in d′′ remain the same as ind′ = [d|d], except that

the two innermost entries (which are the same by the mirror-symmetry property ofd) are replaced

by a single entry of their sum. Ford of length l0, d′′ has length2l0 − 1. The entryd′′(p) for

1 < p ≤ l0 − 1 is the same asd′′(l0 − p + 1), which is also the same asd′′(l0 − p + 1 + l0 − 1) =

d′′((2l0 − 1) − p + 1). Forp = 1, the entry in the first position ind′′ is the same as both the first

and the last entry ind, which is itself equal to the last entry ind′′. Therefore, the mirror-symmetry

property (Lemma 4) continues to hold ford′′.

If d has at least one entry equal to 2, its leftmost 2 is in the same position as the leftmost 2 in

d′′, and Lemma 5 remains to hold . Ifd has all entries equal to 1, then the length ofd is 2m0 and

d′′ has a single 2 in the middle position, which is then a power of 2, and both Lemma 5 and 6 hold.

By Lemma 3, ifc has both 1-bit and 2-bit runs, the outermost runs must be 1-bit runs. If the

outermost 1-bit runs inc are neighbored by another 1-bit runs, the innermost run of 2’s ind′′ is

then of length 1. If the outermost 1-bit runs inc′ are neighbored by a sequence of consecutive 2-bit

runs, which each by assumption and the symmetry property ofc must contain2p0 − 1 consecutive

2-bit runs, then the innermost run of 2’s (at the point of concatenation inc′′) in d′′ is of length

2(2p0 − 1) + 1 = 2p0+1 − 1. Since all other runs inc′′ remain unaltered we can conclude that

Lemma 6 holds as well. Finally, Lemma 7 continues to hold trivially since all inner runs of 1’s in

d′′ already existed as inner runs of 1’s in two copies ofd.

If the outermost bits inc are the same, we can mimic the above proof by simply exchanging

c′ andc′′. As discussed before, since each codeword inC(m0 + 1) is either a concatenation of a
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codeword inC(m0) with itself or with its complement, we can conclude that Lemmas 4 through 7

continue to hold forC(m0 + 1). ¥

Another useful observation is given in the following:

Lemma 8 If da = d(ca) anddb = d(cb), for ca, cb ∈ C(m) (da, db ∈ Dm) andm > 2, are such

that they have2k + 1 and2k entries respectively, and all their entries are 1 or 2, then in the first

leftmost position in which they differ, call itp, the entry is 1 inda and is 2 indb, andp < k.

Proof: Let s be the largest power of 2 that divides2k. By assumptions ≥ 1. By Lemma 2, there

exists a codeword inC(m − s), call it c∗b, that hasr1 = 2k/2s runs and has the same leftmost

bit ascb. In particular, if2k is itself a power of 2,c∗b has a single run of length2m/2k. By the

existence ofca in C(m) with 2k +1 runs,2k is strictly less than2m, and thusm−s ≥ 1. Consider

a codeword inC(m− s) that hasr1 + 1 runs, and the same leftmost bit asca, and call itc∗a. Since

r1 is odd,r1 + 1 ≤ 2m−s andc∗a exists by Lemma 2.

Let ce be a codeword inC(m− s− 1) that has(r1 + 1)/2 runs and the same leftmost bit asca

(sincem − s ≥ 1, the codeC(m − s − 1) and its codewordce exist). If ce starts and ends in the

same bit, which corresponds to odd(r1 + 1)/2, we consider the codewordsc′e = [ce|ce] andc′′e =

[ce|ce] in C(m− s), and associated′e = d(c′e) andd′′e = d(c′′e) to them. Note that|d′e| = |d′′e|+ 1,

where|d′e| indicates the length of stringd′e. Moreover, the middle entry (in position(r1 + 1)/2) in

d′′e is the sum of two innermost entries ind′e (which span positions(r1 + 1)/2 and(r1 + 1)/2 + 1,

and are equal to each other by Lemma 4), and all other entries in these two strings are the same.

If ce starts and ends in complementary bits, which happens for even(r1 + 1)/2, instead letc′e

= [ce|ce] andc′′e = [ce|ce], and associated′e = d(c′e) andd′′e = d(c′′e) with them. Observe that

|d′e| = |d′′e| + 1 as well as thatd′′e is the same asd′e except for the two innermost entries ind′e,

which are replaced by their sum to yield the middle entry ofd′′e. By the uniqueness of a codeword

in C(m − s) having|d′e| runs and starting with a particular bit (that being the leftmost bit ofca),

established in Lemma 2, we conclude thatc∗a = c′e, and similarlyc∗b = c′′e.

Therefore, the first leftmost position in whichd∗b = d(c∗b) (same asd′′e) andd∗a = d(c∗a) (same

asd′e) differ is their (r1 + 1)/2th position, such that the entry in that position ind∗b is twice its
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counterpart ind∗a. By assumption on the entries ofda anddb being at most 2, it further follows

that the entry is 1 ind∗a and 2 ind∗b.

By constructing a sequence of codewords{cb,i}, for 1 ≤ i ≤ s + 1, starting fromcb,1 = c∗b,

and wherecb,i ∈ C(m− s− 1+ i) is the result of concatenation ofcb,i−1 either with itself or with

its complement (former if the outermost bits incb,i−1 are different and latter if they are the same),

we arrive atcb. In particular, the associateddb,i = d(cb,i) have length2i−1r1, and for the last term

in the sequencedb,s+1 is of length2sr1 = 2k, which is precisely the length ofd(cb).

Similarly, we construct a sequence of codewords{ca,i}, for 1 ≤ i ≤ s + 1, starting fromca,1 =

c∗a. Nowca,i ∈ C(m− s− 1+ i) is the result of concatenation ofca,i−1 with itself if the outermost

bits inca,i−1 are the same, otherwise it is the result of concatenation ofca,i−1 with its complement.

The associatedda,i = d(ca,i) have length2i−1r1 + 1, so that the last term in the sequence has

2sr1 + 1 = 2k + 1 runs, which is precisely the length ofda = d(ca). Thus, in starting fromc∗a,

by a series of concatenations in which the runs at the point of concatenation are always merged,

we arrive atca. Since the first leftmost entry in whichd∗b andd∗a differ are in their(r1 + 1)/2th

leftmost positions, the first position in whichdb andda differ are still in their(r1 +1)/2th leftmost

positions. Sinces is at least 1,(r1 + 1)/2 ≤ (k + 1)/2 < k, for k > 1. If k = 1, da is [2m−12m−1],

anddb is [2m−22m−12m−2]. Form > 2, 2m−2 > 1, which exceeds the requirement on the entries

of db being at most 2. ¥

3 The identification problem for RM( 1,m) codes

3.1 Model

We recall the discussion of synchronization errors from Section 1. We adopt the following model

in the infinite SNR limit. SupposeC is a(n, k) linear block code. A codewordc ∈ C is modulated

using pulse-amplitude modulation (PAM), and the received waveformr(t) is sampled noise-free.

Let r be the sampled version ofr(t) of lengthl bits. We assume that the location of the first and

the last bit ofr in the received string of data is known, so that the codewords can be analyzed in

isolation. Then, froml we would know the difference between the number of repetitions and the
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number of deletions that occurred over the channel. For instance, if the channel model permits one

repetition, then ifl = n we know that the the sampled version ofr(t) equalsc, while if l = n + 1

the sampled version ofr(t) is c but with one bit repeated. Similarly, if the channel model permits

one deletion, then ifl = n we know that the sampled version ofr(t) equalsc, while if l = n − 1

the sampled version ofr(t) is c with one bit deleted. These are the two channel models that

we consider in this paper. Note that in these examples the location of the repeated (respectively

deleted) bit is not known.

In general, in the infinite SNR limit a channel with synchronization errors could be modeled as

introducing a certain number of repetitions and deletions in the transmitted codeword. Assuming,

as above, that the location of the first and the last bit in the received string of data is known

codewords could be analyzed in isolation, and we would learn the difference,l − n, between the

number of repetitions and the number of deletions that occurred over the channel. However, we

would not know the location of the repetitions and/or the deletions. This more general kind of

model is not analyzed here.

This paper is concerned with use of RM(1,m) codes over channels permitting substitution and

synchronization errors under the two kinds of synchronization error models discussed in the first

paragraph: the single repetition model and the single deletion model. In this section we analyze

the identification problem for codewords of the RM(1,m) codes over channels permitting a single

deletion. Before doing so, we first deal with the much simpler case of channels permitting only

(an arbitrary number of) repetition errors.

3.2 The case of repetition errors

We have the following simple result:

Theorem 1 In C(m), no two codewords can result in the same string when they experience repe-

titions.

Proof: For the case of one, or any number of repetitions, two codewords inC(m) resulting in the

same string must have the same number of runs, and the same sequence of runs. By Lemma 2 there
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are exactly two codewords with the same number of runs. However these two codewords are also

complements of each other and therefore cannot have the same sequence of runs. We can conclude

thatC(m) is immune to repetition errors. ¥

It should be noted, nevertheless, that even single repetitions can result in pairs of codewords

of the RM(1,m) code having poor identification. For instance, the codewordc2m−1(01) and its

complementc2m−1(10) have a post-repetition Hamming distance of2.

3.3 The case of a single deletion

The analysis of the identification problem for RM(1,m) codes over channels permitting a single

deletion is considerably more interesting, see Theorem 2. Before proceeding to the main theorem,

we first make a couple of simple remarks.

Remark 3.1 Complementarity: Consider two distinct codewordsca andcb in C(m). If ca and

cb can give rise to the same string after experiencing one deletion each, the same is true for their

bitwise complementsca andcb.

Remark 3.2 Reversibility: Consider two distinct codewordsca andcb in C(m), If ca andcb can

give rise to the same string after experiencing one deletion each the same is true for their reversals
ca← and

cb←.

Here is a description of the pairs of codewords in RM(1,m) which suffer from the identification

problem over channels with a single deletion, for small values ofm:

Remark 3.3 For m = 0, 1, 2 we can show by inspection the following.

m = 0 The only codewords are ’0’ and ’1’ and they can both result in an empty string.

m = 1 The codewords are ’00’, ’11’, ’01’, and ’10’. The codewords ’00’, ’01’, and ’10’ can all

result in ’0’, and the codewords ’11’,’10’, and ’01’ can all result in ’1’.
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m = 2 The codewords are ’0000’, ’1100’, ’0011’,’0110’, ’1111’, ’1010’,’0101’, and ’1001’. The

codeword ’0011’ and any one of ’0110’, ’0101’, and ’1001’ can result in the same string.

Similarly, the codeword ’1100’ and any one of ’1001’, ’1010’, and ’0110’ can result in the

same string. The same is true for ’0110’, and any one of ’1010’ and ’0101’ as well as for

’1001’ and any one of ’0101’ and ’1010’. Also, ’1010’ and ’0101’ can result in the same

string.

¥

We may now complete the analysis of the identification problem for RM(1,m) codes over

channels permitting a single deletion:

Theorem 2 Let j = 2m−1 and k = 2m−2. For m ≥ 3, there is a total of 11 pairs of distinct

codewords inC(m) that result in the same string when each experiences a deletion. These are:

1. cm
j (10) andcm

j (01)
}

Group 1

2. cm
j (10) andcm

j (11)

3. cm
j (10) andcm

j−1(00)

4. cm
j (01) andcm

j (11)

5. cm
j (01) andcm

j−1(00)





Group 2

6. cm
k (01) andcm

k (00)

7. cm
k (01) andcm

k+1(11)

8. cm
k (10) andcm

k (00)

9. cm
k (10) andcm

k+1(11)





Group 3

10. cm
j (01) and cm

j−1(01)

11. cm
j (10) and cm

j−1(10)



 Group 4.

Proof: Observe that we have already established this result form = 2 in the previous remark. In

the rest of the proof we will assume thatm ≥ 3.
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Note that it is sufficient to assume that the deletion occurs at the end of a run, since the string

resulting from a deletion of a bit in some codeword is the same irrespective of where the deleted

bit was located within the run it belonged to.

Supposeca andcb are distinct codewords inC(m) which result in the same string when each

experiences one deletion. Letda = d(ca) anddb = d(cb) be as defined in Definition 1. We first

observe that during a deletion, the total number of runs in the codeword stays the same, decreases

by one, or by two. Suppose a codewordca experiences a deletion in a run of length at least 2.

Then the length ofda remains unchanged. Ifca experiences a deletion in a run of length 1, the

neighboring runs (if any) will merge and the total number of runs will decrease. In particular, if

this deleted run of length 1 is an outermost run, the length ofda decreases by 1. If this deleted

run of length 1 is located somewhere else inca, the length ofda decreases by 2. It is therefore

sufficient to consider the cases when the lengths ofda anddb differ by 0, 1, and 2. Without loss

of generality assume that|da| ≥ |db|. We treat the cases|da|=|db|, |da|=|db|+1, and|da|=|db|+2

separately.

Case 1:|da|=|db|

By Lemma 2, it must be thatca andcb are complements of each other, and consequentlyda =

db. Either bothca andcb experience deletions in runs of length at least 2 each, or both experience

deletions in different outermost runs of length 1 each or in inner runs of length 1 each.

Sinceca andcb differ in their leftmost bits, a deletion must occur in the leftmost bits in either

ca or cb. Without loss of generality we can assume that the leftmost bit inca is deleted. If this bit

belonged to a run of length at least 2,cb itself would start with a run of length at least 2, but then

it would be impossible to obtain the same string fromca andcb when each experiences exactly

one deletion. Therefore, the leftmost run inca is a run of length 1, and by Lemma 3, all runs inca

(andcb) must be of length 1 or 2. Sinceda decreases by 1, the same must be true fordb, so that

cb experiences a deletion in its outermost bit, which then must be its rightmost bit. Thenca(p)

= cb(p − 1) for 1 < p ≤ 2m (here and in the remainderca(p) denotes the bit in thepth leftmost

position ofca), and by using the fact thatca andcb are complements of each other, it follows that

ca andcb consist of alternating bits. Thusca is eithercm
j (10) or cm

j (01) for j = 2m−1, andcb is

its complement. This codeword pair is listed under 1 and is labeled Group 1.
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Case 2:|da|=|db|+1

Suppose a deletion occurs in positionpa in ca, and in positionpb in cb (we assume that the

deletion occurs at the end of a run), where we index the bits in the codewords with1 through2m,

from left to right. It must be that either: a)ca experiences a deletion in an outermost run of length

1, whilecb experiences a deletion in a run of length at least 2, or b)ca experiences a deletion in an

inner run of length 1 andcb experiences a deletion in an outermost run of length 1.

Subcase 2-1:|da| is even

We view ca as the result of concatenation applied to the same codewordc′ ∈ C(m − 1),

wherebyca = [c′|c′] if c′ has opposite outermost bits, andca = [c′|c′] if the outermost bits inc′

are the same.

In either case a) or b) there exists at least one entry inda equal to 1. Then, by Lemma 3,

outermost runs inca andc′ are all of length 1. By mirror-symmetry (Lemma 4) we can express

da anddb asda = [A11AR] anddb = [A2AR], whereA = [A1A2...Al] is a substring ofda, AR

is its reverse, andA1 = 1.

For the situation described in a), by the reversibility property, we may as well assume that the

leftmost bit inca is deleted. Then the entry in positionp in db must correspond to the entry in

positionp + 1 in da, in the sense thatda(p + 1) = db(p) ∀p except for exactly one, call itp∗, for

which db(p∗ + 1) = da(p
∗)+1. In particular if this entry indb is bigger than 2, by Lemma 3, it

would have to be at least 4, further implying the existence of a run inca of length at least 3, which

is impossible by Lemma 3 and the fact that there is at least one run of length 1 inca.

Thereforedb(p∗) = 2 andda(p
∗+1) = 1. Sincedb(l+1) = 2 andda(l+2) = 1 by construction,

it follows thatp∗ = l + 1. Furthermore,A2 = A1, A3 = A2, ...Al = Al−1, so thatda consists of all

1’s anddb has all 1’s except for its innermost entry which is 2. Consequentlyca is eithercm
j (10)

or cm
j (01), andcb is eithercm

j (11) or cm
j−1(00)for j = 2m−1. One can check that all four pairs of

candidate codewords suffer from the identification problem. This is the set of pairs listed under

Group 2. This group of codeword pairs is closed under complementation and reversal.
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Now, for the situation described in b), by the reversibility property, we may as well assume that

the rightmost bit incb is deleted.

The first leftmost entries whereda anddb differ are their(l + 1)st entries so the deletion in

ca must be in its(l + 2)nd run, which then disappears altogether. Moreover, both(l + 1)st and

(l +3)th runs inca must be of length 1 each because the(l +1)st run ofcb is of length2. Therefore

AR(1) = Al = 1.

The entry in positionl + 2 in db (which isAR(1)) must be the same as the entry in position

l + 4 in da, which isAR(2) = Al−1. The entry in positionl + 3 in db, which is itselfAR(2), is the

same as the entry inda in positionl + 5, which isAR(3).

By continuing forward until the end ofAR, we conclude thatAR consists of all 1’s, thereby

makingda be all 1’s as well, anddb be all 1’s except for 2 in the middle. These twoda anddb

have already been encountered in the situation described in a), and yield the codeword pairs listed

under Group 2.

Subcase 2-2:|da| is odd

In either case a) or b)da has at least one entry equal to 1, so all its entries are either 1 or 2 by

Lemma 3. Ifdb had an entry larger than 3, by Lemma 3 case b) would not be even possible. For

case a) it would require an existence of a run inca of length at least 3, which is also impossible by

the same Lemma. Since all entries inda anddb are then precisely1 or 2, we can use their mirror

symmetry and apply Lemma 8 to conclude thatda anddb have the following formats:

da = [A1B1AR] anddb = [A2C2AR],

where|B| = |C|+ 1 andA andC are possibly empty.

Let |A| = p− 1. Further, note that|C| is even.

For the situation described in a) we may as well assume, by the reversibility property, that the

rightmost bit inca is deleted, and that it belonged to a 1-bit run. Then the deletion incb must be

in its pth leftmost run (of length 2).

18



SinceAR(p − 1) = 1 in da, by mirror symmetry,A(1) = 1 (or by Lemma 3). Since the

rightmost entry indb is the same as the second rightmost entry inda, it further follows thatAR(p−
2) = 1, which in turn implies thatA(2) = 1, and so on until the end ofA, thereby requiring thatA

consists of all 1’s. Similarly, the entry indb in position|db| − (p− 1), which is 2 by assumption,

is the same as the entry inda in position|da| − p, which is itself the last entry inB. ThusB ends

in 2 and by mirror symmetry it also starts with 2. This in turn implies thatC starts and ends with

2, which then implies that the next to the last entry inB is also 2. By continuing on until all entries

in B andC have been encountered we can conclude thatB andC consist only of 2’s. Thenda

= 1.12.21.1 anddb=1.12.21.1 (ifA nonempty) ordb=2.2 (if A empty), where 1.1 (2.2) indicates

a non-empty run of 1’s (2’s). For|db| even, the run of 2’s indb would have to have even length

(since the neighboring 1.1 runs are of the same length by the mirror-symmetry property) which is

impossible by Lemma 6. Thusdb =2.2,A is empty, and thenda=12.21. Consequently,cb itself is

eithercm
k (01) or cm

k (10) for k = 2m−2, andca is eithercm
k (00) or cm

k+1(11). It can be checked that

all four codeword pairs suffer from the identification problem. These are the pairs listed in Group

3. This group of codeword pairs is also closed under complementation and reversal.

For b) we may as well assume, by the reversibility property, that the rightmost bit incb is

deleted, so thatdb ends in a 1. Note that this implies thatAR (andA) cannot be empty, and

thereforep > 1. Then the first leftmost entry in whichda anddb differ is compensated for by

the deletion in a 1-bit run inca. Since all runs incb are of length at most 2, the deleted run in

ca must be bordered by two 1-bit runs. Therefore, the(p + 1)st run (of length 1) inca is deleted,

and both(p)th and(p + 2)nd run inca are also of length 1. Furthermore, the entry in positiont for

p + 1 ≤ t ≤ |db| − 1 in db is the same as the entry in positiont + 2 in da.

In particular, the entry indb in position|db| − p + 1, which is 2, is the same as the entry in

position |da| − p + 2 in da, which isAR(1). By mirror symmetry entries in positionsp − 1 in

bothda anddb are equal to 2. Then the entry indb in position|db| − p + 2 is also 2, as is the

entry inda in position|da| − p + 3. By continuing onwards untilt = |db| − 1, and by using the

mirror symmetry, we conclude thatA (andAR) consists of all 2’s, which is in contradiction with

the earlier requirement that the deletion incb occurs in its outermost run of length 1.

Case 3:|da|=|db|+2
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We now consider the remaining case where the deletion inca occurs in an inner run of length

1 and incb in a run of length at least 2. This deletion in a 1-bit run ofca causes its neighboring

runs to merge. By Lemma 3, these runs are of length 1 or 2 each. If they were both of length 2

each, there would exist an inner run of 1’s inda of length 1, which is impossible by Lemma 7.

If one neighboring run was of length 1 and the other of length 2, the merging would require an

existence of a 3-bit run in the post-deletioncb. By Lemma 3, the deletion incb would then have

to be in a 4-bit run, and by the same Lemma, the outermost runs incb would be of length at least

2. These would have to correspond to the outermost runs inca, which are themselves of length 1

each. Therefore, the deletion inca must occur in an inner 1-bit run neighbored by two 1-bit runs,

and all entries in bothda anddb can be only 1 or 2.

Considercc ∈ C(m) which has|db| + 1 runs. For|da| even, we can think ofca as being

the result of concatenating a codewordcd ∈ C(m − 1) with itself if |da|/2 is even, and with its

complement if|da|/2 is odd, such thatcd andca have the same leftmost bits (the existence of

such codeword inC(m − 1) follows from Lemma 2). Furthermore, in the former case we can

view cc as the result of concatenatingcd with its complement, and in the latter case as the result of

concatenatingcd with itself. Thenda = [dd|dd], anddc = [dd(1, l−1)|(dd(l)+dd(1))|dd(2, l)],

wheredd = d(cd) andl = |dd|. The leftmost entry in whichda anddc differ is their(|dc|+1)/2th

leftmost entry. By mirror symmetry ofdd, this entry indc is twice its counterpart inda. Since all

entries inda are 1 or 2, and its outermost entries are 1, it follows that all entries indc are also at

most 2. Then the first leftmost entry in whichdc anddb differ is say in positionp, for p < |db|/2
anddc(p) = 1 anddb(p) = 2, by Lemma 8. Since|db| < |dc| + 1, the first leftmost entries in

whichda anddb differ is in thepth position, wherep < |db|/2.

A similar argument holds for|da| odd when the first leftmost entry in whichda anddc differ is

then in some positionp, for p < |dc|/2, and the first leftmost entry in whichdc anddb differ is in

their (|db|+ 1)/2th entry. Then the first leftmost entry in whichda anddb differ is still in position

p.

As a result and by mirror symmetry, we can then expressda anddb asda = [A1B1AR] and

db = [A2C2AR], where|B| = |C|+ 2, |A| = p− 1, andA andC are possibly empty.
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By the reversibility property, we can assume that the leftmost error is a deletion inca, which

then must be in the(p + 1)st run in ca (of length 1), neighbored by 1-bit runs on each side, such

that the substring ’111’ starts at positionp in da and the substring ’2’ indb is at positionp.

Fromt = p + 1 onwards, the entry in positiont in db must be the same as the entry in position

t + 2 in da, except for one pair of entries. In this exception, the entry is 2 indb and 1 inda.

By mirror symmetry, the entry indb in position|db| − p + 1 is 2 and the entry inda in position

|da| − p + 1 = |db| − p + 1 + 2 is 1.

We now re-expressda as[A111D1AR] anddb as[A2D2AR], such thatB = 11D. In particular,

D is non-empty as otherwisedb would have a run of 2’s of even length which by Lemma 6 would

imply thatdb consists of all 2’s. As a consequence,da would have an inner run of 1’s of length 4,

which is impossible by Lemma 7.

We suppose that|D| = l, l > 0. By mirror symmetry ofda, D(l) = D(l − 1) = 1, and then

by mirror symmetry ofdb, D(1) = D(2) = 1 as well. By mirror symmetry ofda, D(l − 2) =

D(l − 3) = 1. By continuing on with matching up the appropriate entries inda anddb, and

by utilizing mirror symmetry we conclude thatD consists of all 1’s. Then,da = [A1.1AR] and

db = [A21.12AR], and by Lemma 7|db| is even, as is then|da|.

Considerd′b = db(1, |db|/2), andd′a = da(1, |da|/2). Since|da| and |db| are even, there

exist codewordsc′a, c
′
b ∈ C(m − 1) for which d′a = d(c′a) andd′b = d(c′b). Thend′a = A1.1

andd′b = A21.1. If 2 following A in d′b is not in its innermost position, then it would have a

mirror image inA in d′b (it cannot have a mirror image in the run of 1’s) but such 2 in A ind′a

would not have 2 as its mirror image. Thus|A| = |d′b|/2− 1 andA has all 1’s. Thenda itself has

all 1’s, anddb is 1.121.121.1, so thatca is cm
j (10) or cm

j (01), andcb is cm
j−1(10) or cm

j−1(01), for

j = 2m−1. By the current assumption on the deletion locations, it follows thatca andcb must have

the same leftmost bit. The resulting two pairs of codewords are listed in Group 4. By reversibility

and complementarity these are the only such pairs. ¥

Having identified all pairs of codewords in RM(1,m) that have an identification problem, our

next goal is to construct a linear subcode that has good identification under single deletion errors.

It turns out this is possible to do with the loss of only one information bit, and furthermore, this
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subcode also has good identification for single repetition errors.

3.3.1 Pruning of the Code

Let us first recall that theith row of Gm, for 1 < i ≤ m+1 consists of2i−1 alternating runs of ones

and zeros, and that each run is of length2m−i+1 (see Section 2). Observe that theith row is then

preciselycm
2i−2(10). In particular, the last two rows ofGm arecm

2m−2(10) for i = m andcm
2m−1(10)

for i = m + 1.

We write c ∈ C(m) as xGm, wherex is a (m + 1)-dimensional message vector so that

cm
2m−1(10) = [0, 0, . . . , 0, 1]Gm andcm

2m−1(01) = [1, 0, . . . , 0, 1]Gm. Similarly, cm
2m−2(10) is

[0, 0, . . . , 0, 1, 0]Gm andcm
2m−2(01) is [1, 0, . . . , 0, 1, 0]Gm.

Observe thatcm
2m−1(10) appears in pairs 1). through 3). and the pair 11). in Theorem 2. Its com-

plement, the codewordcm
2m−1(01) appears in pair 1)., 4)., 5). and 10). For both these codewords,

there is a non-zero component in the last, i.e.(m + 1)st position in the corresponding message

vectors. Note thatcm
2m−2(10) appears in pairs 8). and 9). and that its complementcm

2m−2(01) ap-

pears in pairs 6). and 7). There is a non-zero component in positionm in the message vectors

corresponding to these two codewords.

We may now try to find as large as possible a linear subcode ofC(m), in which no two code-

words cause the identification problem under one deletion. The generator matrixĜ of this subcode

can have at mostm rows. Consider a matrix consisting of the topm− 1 rows ofGm, followed by

a binary sum of the last two rows ofGm. Now, Ĝ hasm rows and no linear combinations of its

rows give rise to codewords causing the identification problem.

Therefore, if instead of usingC(m) of rate m+1
2m we use its linear subcodêC(m) of rate m

2m ,

generated by the topm − 1 rows ofGm and the binary sum of the last two rows ofGm, we are

able to eliminate the identification problem under a single deletion while preserving the linearity

of the code and suffering a very small loss in the overall rate.

In the next section, we will see that the subcode we have constructed is not just immune to

single deletions; it also has good identification under the single deletion model and under the
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single repetition model.

In principle, one can utilize the run-length structure of the RM(1,m) code to determine large

subcodes immune to any number of deletions, or even to combinations of repetitions and deletions.

Such analysis quickly becomes very complicated. The first author has carried out a detailed anal-

ysis of the identification problem for the RM(1,m) codes under the infinite SNR channel model

which permitsboth one repetition and one deletion [7]. Some additional structural properties of

the codewords in RM(1,m) codes that may be of independent interest are also contained in [7].

4 Decoding the modified RM(1,m) code over a channel with

synchronization and substitution errors

In the previous section we described how to extract a linear subcode of the RM(1,m) code that is

immune to a single deletion. We now consider the behavior of such a subcode over channels in

which, in addition to substitution errors, synchronization errors can occur as well. We consider two

kinds of channel models for synchronization errors: channels where the deletion of a single bit can

occur, and channels where the repetition of a single bit can occur. As in subsection 3.1 we assume

in each case that the receiver learns from the sampled output whether a deletion (respectively, a

repetition) has occurred or not.

In this section, we first determine the minimum distance between the sets of strings obtained by

applying a deletion of a single bit to codewords of the modified RM(1,m) code. We then compute

the minimum distance between the sets of strings obtained by applying the repetition of a single bit

to codewords of the modified RM(1,m) code. Finally, in each case, we propose a bounded distance

decoding algorithm for up to half the corresponding minimum distance over a channel where, in

addition to substitution errors, the synchronization error can occur as well. The complexity of

the decoding algorithm is of the same order as that of the usual fast Hadamard transform based

decoding for RM(1,m) codes.
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4.1 Minimum distance

In this subsection we first determine the minimum Hamming distance between the elements of sets

associated with distinct codewords of the modified code that result from the deletion of a single bit.

Let Ĉ(m) denote the code whose generator matrix consists of the topm − 1 rows ofGm and the

binary sum of the last two rows ofGm. The codeĈ(m) is immune to one deletion by construction.

We first make the following observation:

Remark 4.1 For m ≥ 2 a codewordc of C(m) belongs toĈ(m) if and only if all its quadruplets

starting at positioni for i mod4 ≡ 1 are all ’1111’ or ’0000’ or all are ’0110’ or ’1001’.

In the remainder we will call quadruplets ofc starting at positioni for i mod 4 ≡ 1 constituent

quadruplets.

Forc ∈ Ĉ(m), let Sd(c) denote the set of strings obtained by applying the deletion of a single

bit to c.

Lemma 9 For ca, cb distinct codewords in̂C(m), letD(ca, cb) be the smallest Hamming distance

betweensa and sb wheresa ranges over all elements in the setSd(ca) and sb ranges over all

elements in the setSd(cb). LetDm
min = minca,cb∈Ĉ(m),ca 6=cb

D(ca, cb). Then form > 2, Dm
min =

2m−3. Further, form ≥ 3, D(ca, cb) = 2m−3 only for ca = cm
j (01) or cm

j (10) for j = 3 ∗ 2m−3,

andcb eitherca + cm
1 (10), or ca + cm

1 (01), or vice versa, and in addition form ≥ 4, cb is also

ca + cm
1 (00), or vice versa.

Proof:

Suppose thatca experiences a deletion in positionp1 andcb experiences a deletion in posi-

tion p2. Without loss of generality we can assume thatp1 < p2. Let p′1 = b(p1 − 1)/4c4 + 1

and letp′2 = b(p2 − 1)/4c4 + 4, so thatp′1 denotes the first position of the constituent quadru-

plet p1 belongs to, andp′2 denotes the last position of the constituent quadrupletp2 belongs to.

We also letl1 be the Hamming distance between the stringsca(1, p
′
1 − 1) andcb(1, p′1 − 1), l2
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be the Hamming distance between the stringsca(p
′
1, p

′
2) andcb(p′1, p

′
2), andl3 be the Hamming

distance between the stringsca(p
′
2 + 1, 2m) andcb(p′2 + 1, 2m), where the notationci(p, q) in-

dicates the substring of the codewordci starting at positionp and ending at positionq. In ad-

dition, let nc = (p′2 − p′1 + 1)/4 be the total number of quadruplets spanned by positionsp′1

and p′2. By the standard properties of a Reed-Muller(1,m) code, l1 + l2 + l3 is either 2m−1

or 2m. Let c̃a = [ca(1, p1 − 1)|ca(p1 + 1, 2m)], and c̃b = [cb(1, p2 − 1)|cb(p2 + 1, 2m)].

Then the Hamming distancedH(c̃a, c̃b) betweeñca and c̃b is dH (c̃a(1, p
′
1 − 1), c̃b(1, p′1 − 1))

+dH (c̃a(p
′
1, p

′
2 − 1), c̃b(p′1, p

′
2 − 1))+ dH (c̃a(p

′
2, 2

m − 1), c̃b(p′2, 2
m − 1)). Observe that the first

term in the sum is simplyl1 and that the last term isl3. We let l̃2 denote the middle term,

dH (c̃a(p
′
1, p

′
2 − 1), c̃b(p′1, p

′
2 − 1)), and we establish the relationship betweenl̃2 and l2 for all

choices ofca andcb, from which the bound on the overall distance will follow.

1) Let us first consider the case when the constituent quadruplets inca are ’0110’ and ’1001’

and incb are ’0000’ and ’1111’, or vice versa. In this case, the Hamming distance betweenca and

cb is 2m−1, and the constituent quadruplet pairs starting at the same positions inca andcb each

contribute 2 to the overall Hamming distance. Therefore,l2 = 2nc.

If p′2 − p′1 = 3, then the deletions occur in the same quadruplet,l2 is 2 to begin with, and the

Hamming distance betweeñca(p
′
1, p

′
2− 1) andc̃b(p′1, p

′
2− 1) is at least 1, which can be verified by

checking all cases. Hence the Hamming distance betweenc̃a andc̃b is at least2m−1 − 1, which is

strictly greater than2m−3.

Now suppose thatp′2 − p′1 > 3. Thennc > 1. After the deletions, the Hamming distance

betweeñca(p
′
1 + 4i, p′1 + 3 + 4i) andc̃b(p′1 + 4i, p′1 + 3 + 4i), for 1 ≤ i ≤ nc − 2 is at least 1, as

is the distance between the substringsc̃a(p
′
2 − 3, p′2 − 1) andc̃b(p′2 − 3, p′2 − 1), and between the

substrings̃ca(p
′
1, p

′
1 + 3) and c̃b(p′1, p

′
1 + 3) (which again can be verified by checking all cases).

Then,l̃2 ≥ (nc − 2) ∗ 1 + 1 ∗ 1 + 1 ∗ 1 = l2/2.

Since the Hamming distance betweenc̃a(p
′
1, p

′
2 − 1) and c̃b(p′1, p

′
2 − 1) is at leastl2/2, the

Hamming distance betweeñca and c̃b is then at leastl1 + l2/2 + l3, which is lower bounded by

2m−2, and thus strictly greater than2m−3.

2) Suppose now that the constituent quadruplets are ’0000’ and ’1111’ in bothca andcb. The
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Hamming distance betweenca andcb is either2m−1 or 2m, and the constituent quadruplet pairs

starting at the same positions inca andcb each contribute either 0 or 4 to the overall Hamming dis-

tance. In the segment spanning positionsp′1 andp′2 in ca andcb, l2/4 of the constituent quadruplet

pairs each contribute 4 to the overall Hamming distance betweenca andcb.

If p′2 − p′1 = 3, the deletions occur in the same quadruplet, andl2 is either 0 or 4. Then

dH (c̃a(p
′
1, p

′
1 + 2), c̃b(p′1, p

′
1 + 2)) is either 0 (if l2 = 0) or 3 (if l2 = 4). The overall distance

betweeñca andc̃b is thus at least2m−1 − 1, which is bigger than2m−3 for all m ≥ 3.

If p′2−p′1 > 3 we consider constituent quadruplets contained within positionsp′1 +4 andp′2−4

in ca andcb that start at the same positions and we denote the set of their starting positions by

Tot (the setTot is non empty as long asp′1 andp′2 belong to non-adjacent quadruplets). LetCom

be the subset ofTot whose elements index complementary quadruplets inca andcb. Then the

Hamming distance between the quadrupletsca(i + 1, i + 4) andcb(i, i + 3), and consequently

betweeñca(i, i + 3) and c̃b(i, i + 3) for i ∈ Com is at least 3. In addition, ifp′2 belongs to the

constituent quadruplets ofca andcb that are complements of each other, the distance between

c̃a(p
′
2 − 3, p′2 − 1) andc̃b(p′2 − 3, p′2 − 1) is at least 3. Similarly, ifp′1 belongs to the constituent

quadruplets ofca andcb that are complements of each other, the distance betweenc̃a(p
′
1, p

′
1 + 3)

andc̃b(p′1, p
′
1 + 3) is also at least 3. Therefore, the Hamming distance betweenc̃a(p

′
1, p

′
2 − 1) and

c̃b(p′1, p
′
2−1) is at least3× l2/4, thereby making the overall distance betweenc̃a andc̃b be at least

l1 + 3l2/4 + l3, which is again strictly greater than2m−3.

3) Finally, considerca and cb with constituent quadruplets ’0110’ and ’1001’. Again, the

Hamming distance betweenca andcb is either2m−1 or 2m, and the constituent quadruplet pairs

starting at the same positions inca andcb each contribute either 0 or 4 to it.

For the case whenp′2 − p′1 = 3, l2 is either 0 or 4, so that the Hamming distance between

c̃a(p
′
1, p

′
2 − 1) andc̃b(p′1, p

′
2 − 1) is either at least 0 forl2 = 0 or at least 1 forl2 = 4. In the former

case, the Hamming distance betweenc̃a andc̃b is at least2m−1, and in latter case it is least2m−1−3.

In particular, form ≥ 4, 2m−1−3 is strictly bigger than2m−3. Form = 3, 2m−1−3 = 2m−3. Then

ca andcb would have to be complements of each other in the quadruplets experiencing deletions,

and would have to be the same in their other quadruplet. Forca + cb being either ’00001111’ or

’11110000’,ca is then eitherc3
3(10) or c3

3(01) andcb is eitherca + c3
1(10) or ca + c3

1(01) or vice

26



versa. Observe that these are precisely the codeword pairs listed at the beginning of the proof for

j = 3 andm = 3.

If p′2− p′1 > 3 we again consider constituent quadruplets contained within positionsp′1 + 4 and

p′2 − 4 in ca andcb that start at the same positions and we denote the set of their starting positions

by Tot (the setTot is non empty as long asp′1 andp′2 belong to non-adjacent quadruplets). Let

Combe the subset ofTot whose elements index complement quadruplets inca andcb, and let

Sam = Tot− Com.

Then the Hamming distance betweenca(i + 1, i + 4) andcb(i, i + 3) for i ∈ Comis either 1

or 2, and we denote their total number bys1
1 ands1

2, respectively such thats1
1 + s1

2 = |Com|. The

Hamming distance betweenca(i + 1, i + 4) andcb(i, i + 3) for i ∈ Samis either 2 or 3, and we

similarly denote their total number bys0
2 ands0

3, respectively, wheres0
2 + s0

3 = |Sam|. In addition,

if p′2 belongs to the constituent quadruplets ofca andcb that are complements of each other, the

distance betweeñca(p
′
2 − 3, p′2 − 1) andc̃b(p′2 − 3, p′2 − 1) is either 1, 2, or 3, which we denote

by t12, and is either 0, 1, or 2 if those two quadruplets inca andcb are the same, in which case we

denote it byt02. Let J2 = 1 if these two quadruplets are complements and letJ2 = 0 otherwise.

Finally, the distance betweeñca(p
′
1, p

′
1 + 3) andc̃b(p′1, p

′
1 + 3) is 0, 1, 2, or 3 if the corresponding

quadruplets inca andcb are the same, when is denoted byt01, and is1, 2, 3, or4 if these quadruplets

are complements, when is denoted byt11. Let J1 = 1 for complement quadruplets andJ1 = 0 for

the same.

The overall Hamming distance betweenc̃a andc̃b is thenl1 + J1t
1
1 + (1− J1)t

0
1 + s1

1 + 2s1
2 +

2s0
2 + 3s0

3 + J2t
1
2 + (1− J2)t

0
2 + l3. Observe thats1

1 + s1
2 + J1 + J2 = l2/4.

Sincet11 ≥ 1 andt12 ≥ 1 we have

dH(c̃a, c̃b) ≥ l1 + J1 + s1
1 + s1

2 + J2 + l3

= l1 +
l2
4

+ l3

≥ 1

4
dH(ca, cb) ≥ 2m−3 .

Equality holds in this sequence of inequalities if and only ifdH(ca, cb) = 2m−1 (i.e. ca andcb are

not complements of each other),l1 = 0, l3 = 0, s0
2 = 0, s0

3 = 0, s1
2 = 0, and one of the following

four cases holds:
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(a) (J1, J2) = (1, 1) and(t11, t
1
2) = (1, 1),

(b) (J1, J2) = (0, 1) and(t01, t
1
2) = (0, 1),

(c) (J1, J2) = (1, 0) and(t11, t
0
2) = (1, 0),

(d) (J1, J2) = (0, 0) and(t01, t
0
2) = (0, 0).

Sincel1 = 0 andl3 = 0, all constituent quadruplets inca(1, p
′
1 − 1) andcb(1, p′1 − 1) as well

as inca(p
′
2 + 1, 2m) andcb(p′2 + 1, 2m) are pairwise the same. Sinces0

2 = s0
3 = 0, the constituent

quadruplets spanning positionsp′1 + 4 throughp′2 − 4 in ca andcb are pairwise complements of

each other. Moreover, sinces1
2 = 0 they are actually alternating ’1001’ and ’0110’ inca and are

alternating ’0110’ or ’1001’ incb, or vice versa. The quadruplets inca andcb to whichp′1 (p′2)

belongs are the same ifJ1 = 0 (J2 = 0), and otherwise they are complements. Therefore, for all

four cases,ca + cb is of the type 0...01...10...0, with possibly one run of zeros empty (but not both

as thenca andcb would be complements), and is such that it belongs toĈ(m). Specifically,ca+cb

is eithercm
1 (10), cm

1 (01), or cm
1 (00), and byp′2 − p′1 > 3, m is at least 3. Sincecm

1 (00) /∈ Ĉ(m)

for m = 3, no new pairs can result from this analysis in this case, so we may assume from now on

thatm ≥ 4.

Let pl andpr be the positions of the leftmost and the rightmost 1 inca + cb. Thenp′1 is either

pl or pl− 4, depending on the value ofJ1 and on the format ofca + cb, and likewisep′2 is eitherpr

or pr + 4, depending on the value ofJ2 andca + cb. In particular, forca + cb equal tocm
1 (10), J1

must be1 andp′1 = pl, and forca + cb equal tocm
1 (01), J2 must be1 andp′2 = pr.

For m > 5, since there are at least1/2(2m−2) − 2 contiguous alternating ’0110’ and ’1001’

(or vice versa) spanning positionsp′1 + 4 andp′2 − 4 in ca, and since(pl, pr) is either(1, 2m−1) or

(2m−1+1, 2m) or (2m−2+1, 3∗2m−2), by the concatenation principle it follows that all quadruplets

spanning positionspl andpr in ca are alternating ’0110’ and ’1001’, or vice versa. It then follows

that under the set of constraints(l1 = 0, l3 = 0, s0
2 = 0, s0

3 = 0, s1
2 = 0), ca can only becm

j (01) or

cm
j (10) for j = 3 ∗ 2m−3, andcb is thenca + cm

1 (10), ca + cm
1 (01), or ca + cm

1 (00), or vice versa.

It remains to determine whether these candidate codeword pairs satisfy one of the (a) through (d)

cases.
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From the structure of the candidate codeword pairs, it follows for example that all six codeword

pairs achieveDm
min for (J1, J2, t

1
1, t

1
2) = (1, 1, 1, 1), with deletions in positions(p1, p2) = (2m−1 +

1, 2m) for ca + cb = cm
1 (01), in positions(p1, p2) = (1, 2m−1) for ca + cb = cm

1 (10), and in

positions(p1, p2) = (2m−2 + 1, 3 ∗ 2m−2) for ca + cb = cm
1 (00), such that both individual values

of ca andcb per pair are possible.

For m = 4 andm = 5 the pairs of codewords{ca, cb} achieving the proposedDm
min can be

identified directly, and they have the same format as codewords achievingDm
min for m > 5. This

concludes the proof of the lemma.

¥

We next determine the minimum Hamming distance between the elements of sets associated

with distinct codewords of the modified code that result from the repetition of a single bit.

Forc ∈ Ĉ(m), letSr(c) denote the set of strings obtained by applying the repetition of a single

bit to c. Recall thatSd(c) denotes the set of strings obtained by applying the deletion of a single

bit to c.

Lemma 10 For ca, cb distinct codewords in̂C(m), let R(ca, cb) be the smallest Hamming dis-

tance betweenta and tb whereta ranges over all elements in the setSr(ca) and tb ranges over

all elements in the setSr(cb). Let Rm
min = minca,cb∈Ĉ(m),ca 6=cb

R(ca, cb). Then form > 2,

Rm
min = 2m−3 + 1. Further, form ≥ 3, R(ca, cb) = 2m−3 + 1 only forca = cm

j (01) or cm
j (10) for

j = 3 ∗ 2m−3, andcb eitherca + cm
1 (10), or ca + cm

1 (01), or vice versa, and in addition form ≥ 4,

cb is alsoca + cm
1 (00), or vice versa.

Proof: We first observe that0 ≤ R(ca, cb) − D(ca, cb) ≤ 2, whereD(ca, cb) is as defined in

Lemma 9. To see this, considersa obtained by deleting a bit inca in positionpa, andsb obtained

by deleting a bit incb in positionpb. For pa < pb, dH(sa, sb) = dH(ca(1, pa − 1), cb(1, pa −
1))+ dH(ca(pa + 1, pb), cb(pa, pb − 1))+ dH(ca(pb + 1, n), cb(pb + 1, n)). For ta ∈ Sr(ca) and

tb ∈ Sr(cb) such that the bit in positionpb (pa) is the bit that gets repeated inta (tb), write

dH(ta, tb) asdH(ca(1, pa − 1), cb(1, pa − 1)) + d1+ dH(ca(pa + 1, pb), cb(pa, pb − 1)) + d2+

dH(ca(pb +1, n), cb(pb +1, n)), whered1 = ca(pa)+cb(pa) andd2 = ca(pb)+cb(pb). Therefore,
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0 ≤ dH(ta, tb) − dH(sa, sb) = d1 + d2 ≤ 2. A similar argument gives the same inequality for

pa > pb. Taking the minimum over all(pa, pb), the claim of this paragraph follows.

By Lemma 9,Dm
min = 2m−3, so thatRm

min is at most2m−3 + 2. We use the nomenclature

introduced in Lemma 9 to determine the codewordsca, cb for whichD(ca, cb) yields the proposed

bound onR(ca, cb), i.e. the codewords for whichD(ca, cb) is at most2m−3 + 1.

1) Let us first consider the case when the constituent quadruplets inca are ’0110’ and ’1001’

and incb are ’0000’ and ’1111’, or vice versa. From the proof of Lemma 9 it follows thatD(ca, cb)

is at least2m−2, as is thenR(ca, cb). The proposed lower bound can only be met form = 3. By

checking all cases, form = 3, it follows thatR(ca, cb) is at least4, thus exceeding the proposed

lower bound.

2) Suppose now that the constituent quadruplets are ’0000’ and ’1111’ in bothca andcb. From

the proof of Lemma 9 it follows thatD(ca, cb) is at least3 × 2m−3, and thusR(ca, cb) is strictly

greater than the proposed lower bound.

3) Finally, considerca andcb with constituent quadruplets ’0110’ and ’1001’.

We assume thatp′1, p′2, c̃a, c̃b, l1, l2, l3 as well ast01, t11, t02, t12, s1
1, s1

2, s0
2, ands0

3 are as defined

in the proof of Lemma 9.

In the notation of Lemma 9, ifp′2 − p′1 = 3, D(ca, cb) is at least2m−1 − 3, thus exceeding

2m−3 + 1 for m ≥ 4. For m = 3, there are four codewords in̂C(m) having ’0110’ and ’1001’

as constituent quadruplets. It follows by direct checking thatR(ca, cb) = 2m−3 + 1 = 2 only for

ca =’01101001’ or ’10010110’ andcb = ca + c3
1(01) or cb = ca + c3

1(10), or vice versa. In the

remainder we will assumem ≥ 4.

Forp′2− p′1 > 3, in the notation of Lemma 9, the overall Hamming distance betweenc̃a andc̃b

is

dH(c̃a, c̃b) = l1 + J1t
1
1 + (1− J1)t

0
1 + s1

1 + 2s1
2 + 2s0

2 + 3s0
3 + J2t

1
2 + (1− J2)t

0
2 + l3, (3)

wheres1
1 + s1

2 + J1 + J2 = l2/4.

As established in Lemma 9, fordH(c̃a, c̃b) to equal2m−3 for m ≥ 4 it is necessary thatca is
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cm
j (01) or cm

j (10) for j = 3 ∗ 2m−3, andcb is eitherca + cm
1 (10), ca + cm

1 (01), or ca + cm
1 (00), or

vice versa. By direct checking it follows thatR(ca, cb) is precisely2m−3 + 1 for all six codeword

pairs (since the deletions inca andcb yieldingDm
min are such that one of them belongs to a run of

size 2 and the other belongs to a run of size 1).

It remains to determineca, cb for whichdH(c̃a, c̃b) equals2m−3 + 1, and such that both dele-

tions occur in runs of size bigger than 1. Using the expression in (3) it follows thatdH(ca, cb) =

2m−1, l1 = 0, l3 = 0, s0
2 = 0, s0

3 = 0, (call this set of conditions (*)) and one of the following

holds:

(a) (J1, J2) = (0, 1) and(t01, t
1
2, s

1
2) = (0, 2, 0),

(b) (J1, J2) = (0, 1) and(t01, t
1
2, s

1
2) = (1, 1, 0),

(c) (J1, J2) = (1, 0) and(t11, t
0
2, s

1
2) = (2, 0, 0),

(d) (J1, J2) = (1, 0) and(t11, t
0
2, s

1
2) = (1, 1, 0),

(e) (J1, J2) = (0, 0) and(t01, t
0
2, s

1
2) = (1, 0, 0),

(f) (J1, J2) = (0, 0) and(t01, t
0
2, s

1
2) = (0, 1, 0),

(g) (J1, J2) = (1, 1) and(t11, t
1
2, s

1
2) = (2, 1, 0),

(h) (J1, J2) = (1, 1) and(t11, t
1
2, s

1
2) = (1, 2, 0),

(i) (J1, J2) = (0, 1) and(t01, t
1
2, s

1
2) = (0, 1, 1),

(j) (J1, J2) = (1, 0) and(t11, t
0
2, s

1
2) = (1, 0, 1),

(k) (J1, J2) = (0, 0) and(t01, t
0
2, s

1
2) = (0, 0, 1),

(l) (J1, J2) = (1, 1) and(t11, t
1
2, s

1
2) = (1, 1, 1),

Sincel1 = 0 andl3 = 0, all constituent quadruplets inca(1, p
′
1 − 1) andcb(1, p′1 − 1) as well

as inca(p
′
2 + 1, 2m) andcb(p′2 + 1, 2m) are pairwise the same. Sinces0

2 = s0
3 = 0, the constituent
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quadruplets spanning positionsp′1 + 4 throughp′2 − 4 in ca andcb are pairwise complements of

each other. Therefore, for all cases,ca + cb is of the type 0...01...10...0, with possibly one run of

zeros empty (but not both as thenca andcb would be complements), and is such that it belongs to

Ĉ(m).

First observe that for cases (a) through (h), the common constraints1
2 = 0, along with the

constraint set (*) is the same as the set of constraints on the same parameters established in the

proof of Lemma 9. As given in the proof of Lemma 9, under the set of constraints(l1 = 0, l3 =

0, s0
2 = 0, s0

3 = 0, s1
2 = 0), ca can only becm

j (01) or cm
j (10) for j = 3 ∗ 2m−3, andcb can only then

beca + cm
1 (10), ca + cm

1 (01), or ca + cm
1 (00), or vice versa. Observe that these codeword pairs are

already established in the earlier case whendH(c̃a, c̃b) = 2m−3 was analyzed (though it can also

be verified that these candidate codeword pairs satisfy at least one of the (a) through (h) cases, and

with deletions in appropriate runs of size 2 result in strings with Hamming distance2m−3 + 1).

The remaining cases (i) through (l) all share the same constraint thats1
2 = 1, which implies

that all constituent quadruplets spanning positionsp′1 + 8 throughp′2 − 4 in ca andcb are the

complements of their left neighboring quadruplets, except for one constituent quadruplet which is

the same as its left neighboring quadruplet.

Let pl andpr be the positions of the leftmost and the rightmost 1 inca + cb, so that(pl, pr) is

either(1, 2m−1) or (2m−1 + 1, 2m) or (2m−2 + 1, 3 ∗ 2m−2). Depending on the values ofJ1 and

J2 and the structure ofca + cb, p′1 is eitherpl − 4 or pl andp′2 is eitherpr + 4 or pr, so that all

constituent quadruplets spanning positionspl +8 throughpr− 4 in ca andcb are the complements

of their left neighboring quadruplets with the exception of one constituent quadruplet which is the

same as its left neighboring quadruplet.

For m > 5, by the concatenation principle it follows that this singular constituent quadruplet

must be the one starting at the position2m−1+1 so thatca+cb is cm
1 (00). Moreover, the constituent

quadruplets spanning positionspl = 2m−2 + 1 and2m−1 are then alternating ’0110’ and ’1001’ (or

vice versa), followed by alternating ’1001’ and ’0110’ (or vice versa) that span positions2m−1 + 1

andpr = 3 ∗ 2m−2. As a result, it follows thatca is cm
j (11) or cm

j−1(00) for j = 3 ∗ 2m−3 − 1, and

cb is eitherca + cm
1 (10), ca + cm

1 (01), or ca + cm
1 (00), or vice versa. However, in all cases, when

dH(c̃a, c̃b) = 2m−3 + 1, not both deletion errors can be in runs of size bigger than 1 (which can be
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verified by direct checking of all possible constraint sets as given by (i) through (l)), and therefore

R(ca, cb) is strictly greater than2m−3 + 1.

For m = 4, 5 it can be checked directly that the only codeword pairs achievingdH(c̃a, c̃b) =

2m−3 + 1 under the current constraints are the same as form > 5. Again, not both deletions can

occur in runs of size 2, and thusR(ca, cb) is again strictly greater than2m−3 + 1. ¥

4.2 Decoding algorithm

In this subsection, we first propose a bounded distance decoding scheme forĈ(m) which corrects

one deletion and up to2m−4 − 1 substitution errors. We outline the algorithm and discuss its

correctness and complexity.

A common technique for decoding a codeword in a Reed-Muller (1,m) code that has experi-

enced a certain number of substitution errors involves computing a fast Hadamard transform of the

received string, [15,§4, Ch.14]. Specifically, the received strings (of lengthn) is multiplied by a

Hadamard matrixHn to formsHn. The computation is done efficiently by starting with the binary

string s of lengthn = 2m and carrying outm stages, each of which involvesn = 2m additions

of integers, to return the integer valued stringsHn of lengthn. Subsequently one needs to find

the coordinate in this integer string of maximum absolute value. The complexity of the overall

algorithm is therefore normally quoted asO(n log n).

In our situation, letc ∈ Ĉ(m) for m ≥ 5 be the transmitted codeword. Lets be the received

string obtained fromc by one deletion and at most2m−4−1 substitution errors. Thus, the received

strings is of lengthn − 1. The objective is to recoverc from s. In principle one could construct

strings of lengthn by inserting either 0 or 1 at each position ins and compare each resulting

string with candidate codewords from̂C(m), which would be equivalent to performing2n standard

decoding operations. The complexity of such an algorithm would beO(n2 log n). However, it is

possible to do much better.

For any codeword̃c ∈ Ĉ(m), write c̃ =
[
c̃L|c̃R

]
, wherec̃L and c̃R are each of length2m−1.

In particular, the transmitted codewordc is written asc =
[
cL|cR

]
. From the received strings we
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createsL = [s(1) . . . s(2m−1)] andsR = [s(2m−1 − 1) . . . s(2m − 1)]. Each of these strings is of

length2m−1.

If the location of the deletion is in the second half of the codeword, thensL is obtained fromcL

by at most2m−4 − 1 substitution errors. Further, for everyc̃ ∈ Ĉ(m) other thanc andc + cm
1 (01)

we have

dH(sL, c̃L) ≥ dH(cL, c̃L)− dH(sL, cL) ≥ 2m−2 − (2m−4 − 1) > 2m−4 .

If one uses the fast Hadamard transform to compute
[
sL|0]

Hn, the coordinate with maximum

absolute value will then correspond to either the pair comprised ofc and its bitwise complement

or the pair comprised ofc+ cm
1 (01) and its bitwise complement. Further, there will be at most two

competing locations for the maximum absolute value.

Similarly, if the location of the deletion is in the first half of the codeword, thensR is obtained

from cR by at most2m−4 − 1 substitution errors, so by using the fast Hadamard transform to

compute
[
0|sR

]
Hn, the coordinate with maximum absolute value will correspond to either the

pair comprised ofc and its bitwise complement or the pair comprised ofc+ cm
1 (10) and its bitwise

complement. Again, there will be at most two competing locations for the maximum absolute

value.

Thus, inO(n log n) operations we will be presented with at most8 candidates for the transmit-

ted codeword. We may now go the naive step of considering all the2n strings of lengthn got by

inserting either 0 or 1 at each position ins and compare each resulting string with each of these8

candidate codewords. InO(n) operations we will arrive at the true codeword.

There are some obvious inefficiencies in the algorithm just described. For instance, it is not

really necessary to compare the received string with the columns ofHn that correspond to strings

in C(m) that are not inĈ(m). An analysis of this inefficiency could save a constant factor. The

second stage could also undoubtedly be improved, but this is less interesting because the over-

all complexity is dominated by the first stage. Since using the first stage as described has the

significant practical advantage that the existing hardware which is used to decode when there is

no deletion can also be used when there is a deletion, we have preferred to describe the overall

algorithm as above.
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Finally, along similar lines, we propose a bounded distance decoding scheme forĈ(m) for

m ≥ 4 which corrects one repetition and up to2m−4 substitution errors and discuss its correctness

and complexity. Lets be the received string obtained fromc by one repetition and at most2m−4

substitution errors. Thus, the received strings is of lengthn + 1. As before, for any codeword

c̃ ∈ Ĉ(m), write c̃ =
[
c̃L|c̃R

]
, wherẽcL andc̃R are each of length2m−1. The transmitted codeword

c is written asc =
[
cL|cR

]
. From the received strings we createsL = [s(1) . . . s(2m−1)] and

sR = [s(2m−1 + 1) . . . s(2m − 1)]. Each of these strings is of length2m−1.

If the location of the repetition is in the second half of the codeword, thensL is got fromcL by

at most2m−4 substitution errors. Further, for everyc̃ ∈ Ĉ(m) other thanc andc+ cm
1 (01) we have

dH(sL, c̃L) ≥ dH(cL, c̃L)− dH(sL, cL) ≥ 2m−2 − 2m−4 > 2m−4 .

If one uses the fast Hadamard transform to compute
[
sL|0]

Hn the coordinate with maximum

absolute value will then correspond to either the pair comprised ofc and its bitwise complement

or the pair comprised ofc+ cm
1 (01) and its bitwise complement. Further, there will be at most two

competing locations for the maximum absolute value.

Similarly, if the location of the deletion is in the first half of the codeword, thensR is got

from cR by at most2m−4 substitution errors, so by using the fast Hadamard transform to com-

pute
[
0|sR

]
Hn, the coordinate with maximum absolute value will correspond to either the pair

comprised ofc and its bitwise complement or the pair comprised ofc + cm
1 (10) and its bitwise

complement. Again, at most two locations will compete for the maximum absolute value.

Thus inO(n log n) operations, there will be at most8 candidates for the transmitted codeword.

We may now again follow the naive way and consider all the2n strings of lengthn obtained by

inserting either 0 or 1 at each position ins and compare each resulting string with each of these8

candidate codewords. Using this approach, inO(n) operations the true codeword will follow.

5 Conclusion and Future Work

In this paper we studied the performance of a Reed-Muller RM(1,m) code, as an instance of a

substitution-error correcting code, over channels in which, in addition to substitution errors, a
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sampling error can cause synchronization errors. Specifically, we studied the cases where the

synchronization error results in the deletion of a single bit and where it results in the repetition of

a single bit. The model we worked with is aimed at handling the kinds of errors that can occur

in a variety of applications, such as magnetic recording and wireless transmission, in the absence

of adequate timing recovery. Our approach to handling synchronization errors is to start with a

good substitution-error correcting code, to analyze which codeword pairs cause the identification

problem, and then find a linear subcode of as high a rate as possible that would both provide

protection against substitution errors and be robust to the synchronization errors. The rate loss

incurred from using the subcode and the increase in the complexity of the decoding algorithm

should of course be reasonably small for such an approach to work.

Another contribution of this paper is to develop several structural properties of the RM(1,m)

codes, which where motivated by this point of view. These structural properties may be of interest

in their own right.

In general, we provided an analysis that is combinatorially much tighter than might be needed

for our immediate concerns. These combinatorial results may also be of independent interest.

Specifically, we enumerated all pairs of codewords of the RM(1,m) codes that suffer from an

identification problem over a channel allowing for the deletion of a single bit. We introduced a

pruned linear subcode of the RM(1,m) code, with the loss of one information bit, which does not

suffer from the identification problem under the deletion of a single bit. Given a pair of codewords

in the pruned code the appropriate notion of distance between them over a channel permitting

synchronization errors is the minimum Hamming distance between any pair of strings which are

derived respectively from each codeword after the application of such synchronization error. We

gave a combinatorially tight analysis of the the minimum distance of the pruned code for this

notion of distance for both the case of the deletion of a single bit and the case of the repetition of a

single bit. Specifically, we explicitly identified all pairs of codewords of the pruned code for which

the post-synchronization error Hamming distance equals the corresponding post-synchronization

minimum distance of the pruned code.

Finally, we provided a bounded distance decoding algorithm, suitable for the use of the pruned

code over a channel where in addition to possibly one deletion error (respectively one repetition

error), substitution errors can occur as well. The complexity of this algorithm is of the same order
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as that of the usual fast Hadamard transform based decoding for the RM(1,m) code. What is more,

the proposed algorithm can in fact be essentially run on the same hardware platform as in the case

without synchronization errors.

There are of course many codes that are superior to RM(1,m) codes in several respects (for in-

stance, having higher rates). Future work would involve studying the behavior under our synchro-

nization error model of other families of codes with good substitution-error correcting properties.

The analysis should also be broadened to include more general models in which several repetitions

and deletions are simultaneously allowed. As in this paper, the aim of such an analysis would be

to find pruned versions of such codes, with low rate loss and only moderate increase in decoding

complexity, which would not only have good substitution error-correcting capabilities but would

also provide protection against the sampling errors of interest. Additional work-in-progress of ours

along these lines has been reported in [8].
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