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Abstract

We analyze the performance of a Reed-Muller RM{() code over a channel that, in ad-
dition to substitution errors, permits either the repetition of a single bit or the deletion of a
single bit; the latter feature is used to model synchronization errors. We first analyze the run-
length structure of this code. We enumerate all pairs of codewords that can result in the same
sequence after the deletion of a single bit, and propose a simple way to prune the code by
dropping one information bit such that the resulting linear subcode has good post-deletion and
post-repetition minimum distance. A bounded distance decoding algorithm is provided for the
use of this pruned code over the channel. This algorithm has the same order of complexity as

the usual fast Hadamard transform based decoder for tha Ri¢ode.
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1 Introduction

In a typical communication system a binary input messageencoded at the transmitter, using a
substitution-error correcting codg, into a coded sequenee= C'(x), which we will assume is also
a binary sequence. The modulated version of this sequence may be modeled as being corrupted by

additive noise, so the received waveform after matched filtering can be written as
r(t) =Y eh(t —iT) +n(t), (1)

wherec; is thei"bit of c, h(t) is convolution of the modulating pulse and the matched filter, and

n(t) represents the noise introduced by the channel.

The receiver samplest) at time instance$k7; + 7.}, and the sequence of samples is fed

into the decoder which decides on the most likely input message. Accurate synchronization of the
sampling instants, i.e thdt, be equal tdl" and that eachy be ideal, is critical for the full utiliza-

tion of the coding gain of the substitution-error correcting code. As the operating requirements
under which timing recovery must be performed become more stringent, because of higher data
rates and/or longer delays in the decision feedback loop that adjusts the sampling instants, such
synchronization is becoming harder to achieve. Several authors have studied the problem of ac-
curate timing recovery. Proposed solutions include building a more sophisticated timing recovery
block [14], a turbo-like approach to iteratively determine sampling points as well as data [16], and

multiple hypothesis analysis of the sampling instances [11].

As an alternative to more complex and more expensive timing recovery schemes, we propose to
shift the emphasis away from the timing recovery block and instead modify the decoding procedure
and the code itself to compensate for inadequate synchronization. By analyzing the robustness of a
substitution-error correction code to synchronization errors, one could use a subcode of the original
code that would have good minimum distance under both substitution as well as sampling errors.
The trade-off would be between the incurred rate loss associated with the code modification versus
the increased complexity and latency associated with the existing approaches mentioned above.
The challenge of the proposed approach lies in determining the synchronization error correction
capabilities of individual codes of interest, and in determining as large as possible a subcode with

the desired properties.
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Figure 1. An example of oversampling.

To illustrate the issues that arise when adequate timing recovery is missing, assume (for pur-
poses of argument) thatt) is a rectangular pulse of duratidhand unit amplitude and that we are
operating in the infinite signal-to-noise (SNR) regime where the effeetfis negligible. Then
r(t) simply becomes

r(t) =) Gl(T <t<(i+1)T). (2)

If samples were taken in the middle of each pulse the sampled versigi)afould be pre-
ciselyc. Now suppose that inadequate timing recovery causes the sampling to occur at time instants
kJTS + 7.

As an example, consider a sequence(0,1,0,1,1,. .) that results in the waveform(¢) shown
in Figure 1. The sampling pointsl; + 7, are marked in the figure by. In this example7, < T
causes oversampling, and the sampled versiofitpfcontains a repeated bit (here the fourth bit is
sampled twice). Analogously, whén > T', undersampling can cause the separation between two
consecutive samples to be so large that some bit is not sampled at all. Therefore without adequate
timing recovery the sampled versionidt) results in a sequence obtained by repeating or deleting

some bits inc.

A codewordc can in general give rise to a whole set of received sampled versiotis)off he
possible set of such sequences depends on how good the timing recovery scheme is. When two
distinct codewords:; andc, can result in the same sampled sequence, it is no longer possible
to uniquely determine the coded sequence or its pre-inxafyjem the received sequence, even
in the noise-free environment. We then say that the substitution-error correcting_cbds an
identification problem We also say that the pair of codewords and c, has an identification

problem.



More generally, two distinct codewords andc, could result in sampled sequences with poor
Hamming distance. This would result in poor performance over a channel that permits substitution
errors. In this case we say that the substitution-error correcting©ddespoor identification We

also say that the pair of codewordsandc, has poor identification.

In this paper we adopt a set-theoretic model for the synchronization errors in which a code-
word gives rise to a set of possible received sampled sequences which depends on how many bits
are allowed to be repeated or deleted. In this context, our goal is to ensure that we have good
identification by restricting attention to a large linear subcode for which each pair of distinct code-
words has good post-synchronization error Hamming distance. Further, we would like to analyze
the performance of this subcode when used over a channel that introduces both substitution and

synchronization errors. In this paper we address such questions for tHerRMpde.

It should be mentioned that several authors have studied codes immune to insertions and dele-
tions of bits. For example, the so-called Varshamov-Tenengolts code proposed in [20] and pop-
ularized by Levenshtein in [12] has been further studied by Ferreira et al., [9], Levenshtein [13],
Sloane [17], and Tenengolts [18]. Related constructions were proposed in [1], [2], [5], [10] and
[19]. Even though these constructions result in codes that are immune to a given number of inser-
tions and deletions of bits, they have a limited guarantee for other desirable properties of standard
substitution-error correcting codes (such as linearity and a good minimum Hamming distance).
Several other authors have proposed concatenated codes that correct synchronization errors, such
as in [3], [4], and [6]. These have a significant incurred rate loss penalty. In contrast to these
works, our approach is to start with known substitution-error correcting codes and propose how to
modify them with only a small loss in the rate in order to continue to provide good performance
under synchronization errors, which are themselves modeled as a certain number of repetitions or

deletions of bits.

We study RM(,m) codes in this paper. In Section 2, we prove several structural properties of
the run-lengths of such a code. Using these properties, in Section 3 we systematically analyze the
identification problem for such codes for single deletion errors. We propose a simple way to prune
an RM(1,m) code to obtain a linear subcode that does not suffer from the identification problem
for a single deletion. This subcode is also shown to have good post-deletion and post-repetition

minimum distance. In Section 4 we discuss how to decode the pruned code over channels in which



substitution errors are present in addition to possibly the deletion of a single bit or the repetition
of a single bit. We present a bounded distance decoding algorithm that is a variant of the fast
Hadamard matrix based decoding which is traditionally used to decode thgéRM{odes. The
complexity of this algorithm is of the same order as that of the traditional decoder. Finally, Section

5 concludes the paper and proposes future extensions of this work.

2 Run length properties of the RM(1,m) codes

The first order Reed-Muller codes RMfn) are linear(2™, m + 1) substitution-error correcting
codes [15]. They have good minimum distar2¢e !, simple encoding, and a relatively low com-
plexity maximum likelihood decoding algorithn®(n logn) for n = 2™). On the negative side,
they have low rate.

From now on, letC(m) denote the RM{;,m) code. The cod€’'(m) may be described by an

(m 4+ 1) x 2™ generator matrixG,, given by

[ 1 1 1 1 ... 1 1 1 1 ]
1 1 1 1 0O 0 0 O
G, =
1 1 1 1 0O 0 0 O
1 1 0 0 1 1 0 0
10 1 0 10 1 0

For future reference, we recall that every codeword’im + 1) is either the concatenation
of a codeword inC'(m) with itself or the concatenation of a codeworddfim) with its bitwise
complement [15, Thm. 2, pg. 374]. The concatenation of two binary stgslb will be written
aslalb]. If cis a codeword inC'(m) it is straightforward to check that its bitwise complement,
denoted, is also a codeword i'(m). Further, its reversal, i.e. the binary string got by reading
c from its end to its beginning, denoted, is also a codeword id'(m). Since the operations of
bitwise complementation and reversal commute, we may unambiguously denote the complement

of the reversal of as<-.



The purpose of this section is to prove several properties of the run length structure of the codes
C(m). These properties will be used in the subsequent sections. They may also be of independent
interest.

Lemma 1 The codewords ii'(m) can be partitioned int@™~! + 1 distinct non-empty groups
G7,for0 < j < 2m=1 Here G is comprised of those codewordsdt{m) that have; runs of
ones.Gy" is comprised of exactly one codeword, namely the all-zero codeword. This codeword will
be denoted’(00). There are 4 distinct codewords in each grad, for 1 < j < 2™~'. These
codewords may be uniquely identified by their first and last bit. They may thus be unambiguously
denoted ag]'(11), ¢j*(10), ¢*(01), andc}*(00) respectively. There are 3 distinct codewords in the
groupGy,.—.. These codewords may also be uniquely identified by their first and last bit and may
be unambiguously denoted &3,_, (11), c5r.-.(10), andcl;,_, (01) respectively.

Proof: The proof is by induction om:. Form = 1 andm = 2 the statement can be verified by

inspection. Suppose the assertion holds fot &l m < m,.

Let us first consider the grou;™ for 1 < j < 2mo—1 By assumption, it contains 4 codewords,
unambiguously denoted a$°(11), ¢;*°(01), ¢/**(10), andc;**(00) respectively. Out of the eight
possible concatenations of each such codeword with either itself or its complement, 3 result in
codewords inG5°' (these ared](11)|c; (11)], [/ (11)[c]°(11)], and [ (01)[c[°(01)]), 4
result in codewords iﬂg}o“ (these ared;*(01)[c[*(01)], [¢j*(10)] €™ (10)], [} (10)[c* (10)],
and [}°(00)[°(00)]), and 1 results in the codewordP’(00)|c; (00)] in G52%}". By varyingj

from 1 to 2m0~! — 1, inclusive, we thus describe 3 codewordsGti°*!, 4 codewords in each

G;?OH for 2 < j/ < 2™ —2and 1 codeword iG5| such that no two codewords that belong to

the same grouﬁ?;.’,““rl agree in both the first and the last bit.

Now consider the grou@’)° _,. By assumption it has three codewords unambiguously denoted

2mQ 1
ascy, -1 (11), chy -1 (01), andcl;) —, (10) respectively. There are six possibilities arising from con-
catenations of such a codeword with itself or its complement. Of these, 3 result in codewords in
Gy (these areleys, . (01)[che, 1 (O1)] [, - (11)|es, (1)), and [ee, . (11)[5%, (1))
and the remaining 3 result in the codewords:4i,”'. Note that none of the latter three concate-

nations has both outer bits equal to '0’. Note that we have now described a total of 4 codewords in



the groupG4,™,, no two agree in both first and last bit, and we have also described 3 codewords

in the the groug5:.* of the desired form.

The concatenation of the all-zero codewordCifvn,) with the all-ones codeword yields the

fourth codeword inG7™*!, and its concatenation with itself yields the only codeword/jjf*'.

We have therefore describédt 4 x (2™ — 1) 4+ 3 = 202 codewords irC(mg + 1), which

is precisely the cardinality of this code, and we showed that the proposed statement hold for it.

By exploiting the resultin Lemma 1, it is easy to verify the following, which may also of course
be seen more directly.

Lemma 2 For eachl < k& < 2™, in C(m) there are exactly 2 codewords which have a totat of

runs, and they are bitwise complements of each other.

Proof: The complementary codewords , (00) andcj*(11) each have;j — 1 runs. Letting; run
from 1 through2™~! gives2™~! such complementary pairs of codewords. The complementary
codewords?(10) andcj*(01) each have; runs. Lettingj run from1 to 2™~' gives anothe™ "

such complementary pairs of codewords. This completes the proof. |

Lemma 3 Consider a codeword in C'(m). Eitherc has all its runs of the same length, which is
a power of2, or the runs inc are of two different lengths, and these two lengths are consecutive
powers of 2. In addition, if there are runs of two different lengthg,ithe outer runs (i.e. the

leftmost run and the rightmost run) ihare of the smaller length.

Proof: The proof is by induction omn. It is straightforward to check the truth of the statement
form = 1 andm = 2. Suppose now that the given statement is true fodafft m < my.
For a codewora: in C'(my) let [c|c] and [c|c] denote the codewords ifi(m, + 1) that are the

concatenation of with itself, and the concatenation efwith its complement, respectively.

Suppose first that has all its runs of the same length, equaktdor somes > 0. If ¢ has the

same starting and ending bits then in the concatenétiehall runs have the same length, so



the statement of the lemma holds. In the concatendtiehall runs except the run at the point of
concatenation (if there are any such runs) have lepgtnd the run at the point of concatenation

has lengti2**!1. The proposed statement continues to be true both in the case in which there are
some runs other than the one at point of concatenation and in the case when there are no such runs.

If ¢ starts and ends with different bits, we may repeat the previous argument mutatis mutandis.

Now suppose that has runs of different lengths, which are two consecutive powers of 2, say
2¢ and25t!. By assumption, the outer runs are of lengtheach, and there is at least one run of
length2:T!. As before, ifc starts and ends in the same bit, the concatenétighwill have all its
runs of lengths eithe2® or 251, Further, the outer runs ije|c] have the same length as the ones
in c, i.e. they are of length® each, so the statement of the lemma is valid. In the concatenation
[c|c], the last run in the left copy af and the first run in the right copy efare merged together,
and all other runs are unchanged in length. By assumption, the outer rahgave lengti2® each,
so their merger results in a run figic] of length2 x 2° = 2571, Thus all runs ifc|c] have length
either2® or 257!, Since the outer runs ife|c] are of the same length as the outer runs,ithey
have length2®, as required. Foe starting and ending in different bits, we repeat this argument

mutatis mutandis.

Since each codeword ifi(m, + 1) can be written as a concatenation of a codeword (im)

either with itself or with its complement, the proof of the Lemma is complete. |

For the analysis in subsequent sections we also need to record some properties of the runs of

runs in the codewords of RM(m).

Definition 1 For a codewordc € C'(m) letd = d(c) be the string whose entries are the lengths

of consecutive runs in, read from left to right. LeD,, = {d|d = d(c),c € C(m)}, so thatD,,
represents the collection of all possible sequences of run lengths associated with the codewords of
C(m). [

As an example, consider a codeward 10010110, wherec € C'(3). Then, the associated
d = d(c) isd="121121".

We now state several results about such sequences of run lengths, which we will prove together.

8



Lemma 4 [mirror-symmetry]Vc € C(m), the stringd = d(c) possesses the mirror-symmetry
property, i.e. the entry in positiop in d, denoted byd(p), is the same as the entry in position
[ —p+ 1, denoted byl(l — p + 1), wherel represents the length of strird

Lemma 5 If all entries ind = d(c) are either 1 or 2, with at least one entry being 1 and one being

2, then the leftmost entry equal to 2 must be in posizigrior somep > 1.

Lemma 6 If all entries ind = d(c) are either 1 or 2, with at least one entry being 1 and one being
2, then each run of 2's id is of length2? — 1, for somep > 1.

Lemma 7 If all entries ind = d(c) are either 1 or 2, with at least one entry being 1 and one being
2, then each inner run of 1's (where the inner run denotes a run with neighboring runs on each

side) ind is of length2? — 2, for somep > 1.

Proof: We prove these statements by induction. We first directly verify them for small values of
The codewords i'(1) are '00’,/11’,01’, and '10’, soD; = {2,11}. The truth of the statements
can be directly verified in this case. The codeword€¢’i2) are '0000’, '1111’, '1100’, '0011’,
'0110’,°’1001’,’1010’, and '0101’, s>, = {4, 22,121, 1111}, and again the proposed statements

can be verified. Similarly, the set associated witf3) is
Dy = {8,44,242,2222 12221,121121,1112111, 11111111} ,

and the statements hold. In particular, Lemmas 5 and 6 are applicable for the strings '12221’,
'121121’, and '1112111’, and Lemma 7 is applicable for the string '121121".

Suppose now that the proposed Lemmas hold for all elemeris, dbr 1 < m < mq. For a
codewordc in C'(my) letc’ = [c|c] andc” = [c[¢], and letd = d(c), d’ = d(c’), andd” = d(c").

First consider the case when the outermost bits ame complements of each other. Then, in
constructinge’ from ¢, no runs are altered and the statements in Lemmas 4, 5, 6, and 7 which
by assumption hold fod, continue to hold fod’ = [d|d]. In particular, ifd has length, d’ has
length2ly. The entryd’(p), for 1 < p <, is the same ad’(l, — p + 1), by assumption, which is
the same ad’(lp —p+1+1y) =d’(2lo — p+1). Thus, the mirror-symmetry property is preserved.

9



The leftmost entry equal to 2 id’, if there is one, is in the same position as the leftmost entry
equal to 2 ind and Lemma 5 holds trivially. [&’ has only entries equal to 1 or 2, and has at least
one entry of each kind, the outermost rung/imnd therefore i must be 1-bit runs by Lemma 3.
As an easy consequence, Lemma 6 continues to hold .f@y assumption, the leftmost 2 iis

in position2? for somep, so that the leftmost run of 1's i is of length2? — 1. The rightmost run

of I'sind is also2? — 1 by the mirror symmetry assumption. At the point of concatenation of
with itself, two sequences of 1-bit runs each of lengjth- 1 are concatenated, and as a result, an
inner run of 1's ind’ of length2(27 — 1) = 2P*! — 2 is created. All other runs id’ are of the same

length as the runs id, and Lemma 7 follows.

We now focus ore” and itsd”. All runs in d” remain the same as ull = [d|d], except that
the two innermost entries (which are the same by the mirror-symmetry propetjyaoé replaced
by a single entry of their sum. Fat of lengthly, d” has length2l, — 1. The entryd”(p) for
1 <p<ly—1listhe same ad”(l, — p+ 1), which is also the same @ (lp —p+ 1+, — 1) =
d”((2lp — 1) — p+ 1). Forp = 1, the entry in the first position id” is the same as both the first
and the last entry id, which is itself equal to the last entry &'. Therefore, the mirror-symmetry
property (Lemma 4) continues to hold faf.

If d has at least one entry equal to 2, its leftmost 2 is in the same position as the leftmost 2 in
d”, and Lemma 5 remains to hold . dfhas all entries equal to 1, then the lengthdag 2™ and

d” has a single 2 in the middle position, which is then a power of 2, and both Lemma 5 and 6 hold.

By Lemma 3, ifc has both 1-bit and 2-bit runs, the outermost runs must be 1-bit runs. If the
outermost 1-bit runs i are neighbored by another 1-bit runs, the innermost run of 2&'irs
then of length 1. If the outermost 1-bit runsdhare neighbored by a sequence of consecutive 2-bit
runs, which each by assumption and the symmetry propestymaist contair2” — 1 consecutive
2-bit runs, then the innermost run of 2's (at the point of concatenatiari)itn d” is of length
2(2r0 — 1) +1 = 2p0+1 — 1. Since all other runs ie” remain unaltered we can conclude that
Lemma 6 holds as well. Finally, Lemma 7 continues to hold trivially since all inner runs of 1's in

d” already existed as inner runs of 1's in two copieslof

If the outermost bits irc are the same, we can mimic the above proof by simply exchanging

¢’ andc”. As discussed before, since each codeword im, + 1) is either a concatenation of a

10



codeword inC'(my) with itself or with its complement, we can conclude that Lemmas 4 through 7
continue to hold foC'(mg + 1). |

Another useful observation is given in the following:

Lemma 8 If d, = d(c,) anddy, = d(cy,), for c,, ¢, € C(m) (da, dp € D,,) andm > 2, are such
that they havek + 1 and 2k entries respectively, and all their entries are 1 or 2, then in the first
leftmost position in which they differ, calljt the entry is 1 id, and is 2 indy,, andp < k.

Proof: Let s be the largest power of 2 that divides. By assumptiors > 1. By Lemma 2, there
exists a codeword i'(m — s), call it cj,, that hasr; = 2k/2° runs and has the same leftmost
bit ascy,. In particular, if2k is itself a power of 2¢; has a single run of lengtk” /2k. By the
existence ot, in C'(m) with 2k + 1 runs,2k is strictly less tha2™, and thusn — s > 1. Consider

a codeword irC'(m — s) that has+ + 1 runs, and the same leftmost bitas and call itc’. Since

ryisodd,r; + 1 < 2™ % andc;, exists by Lemma 2.

Let c. be a codeword il (m — s — 1) that hag(r; + 1)/2 runs and the same leftmost bit@s
(sincem — s > 1, the codeC'(m — s — 1) and its codeword, exist). If c. starts and ends in the
same bit, which corresponds to o¢id + 1)/2, we consider the codeword$ = [c.|cc] andcl =
[Colce] iIN C'(m — s), and associatd, = d(c,) andd = d(c’) to them. Note thafd. | = |d’| + 1,
where|d.| indicates the length of strind(,. Moreover, the middle entry (in positidm; + 1)/2) in
d’ is the sum of two innermost entriesd) (which span positions-; +1)/2and(r, +1)/2+ 1,
and are equal to each other by Lemma 4), and all other entries in these two strings are the same.

If c. starts and ends in complementary bits, which happens for@yen 1)/2, instead let,
= [co|ce] @andc? = [ce|Co], and associatd,, = d(c,) andd’ = d(c”) with them. Observe that
|d.| = |d.| + 1 as well as thatl, is the same ad/, except for the two innermost entries dl},
which are replaced by their sum to yield the middle entrd@0f By the uniqueness of a codeword
in C(m — s) having|d.| runs and starting with a particular bit (that being the leftmost bit.Qf

established in Lemma 2, we conclude that c.,, and similarlyci, = c..

Therefore, the first leftmost position in whielj, = d(c;,) (same asl’) andd}, = d(c}) (same

asd,) differ is their (r; + 1)/2™ position, such that the entry in that positiondyj is twice its

11



counterpart ind}. By assumption on the entries df, andd;, being at most 2, it further follows
that the entry is 1 iml} and 2 ind;,.

By constructing a sequence of codewofds ; }, for 1 < i < s + 1, starting fromecy, 1 = cj,,
and whereey, ; € C(m — s — 1+ 1) is the result of concatenation of ;_ either with itself or with
its complement (former if the outermost bitsdp;_, are different and latter if they are the same),
we arrive afcy,. In particular, the associateli, ; = d(cp ;) have lengtl~1r;, and for the last term

in the sequencd, 514 is of length2°r, = 2k, which is precisely the length of(cy,).

Similarly, we construct a sequence of codewofds; }, for 1 < i < s+ 1, starting fromc, ; =
ci. Nowc,; € C(m —s—1+1) is the result of concatenation of ;_; with itself if the outermost
bits inc, ;_1 are the same, otherwise it is the result of concatenatie of with its complement.
The associated,; = d(ca;) have length2~'r; + 1, so that the last term in the sequence has
2°ry +1 = 2k + 1 runs, which is precisely the length df, = d(c,). Thus, in starting front},
by a series of concatenations in which the runs at the point of concatenation are always merged,
we arrive atc,. Since the first leftmost entry in whiafty, andd;; differ are in their(r; + 1)/2™
leftmost positions, the first position in whieh, andd,, differ are still in their(r, + 1) /2" leftmost
positions. Since is atleast1(r; +1)/2 < (k+1)/2 < k,fork > 1. If k = 1, d, is [2m 121,
andd,, is [2m22m12m72]. Form > 2, 2™~% > 1, which exceeds the requirement on the entries
of dy, being at most 2. |

3 The identification problem for RM(1,m) codes

3.1 Model

We recall the discussion of synchronization errors from Section 1. We adopt the following model
in the infinite SNR limit. Suppos€' is a(n, k) linear block code. A codeworde C'is modulated
using pulse-amplitude modulation (PAM), and the received wavefd@tinis sampled noise-free.

Let r be the sampled version oft) of length! bits. We assume that the location of the first and
the last bit ofr in the received string of data is known, so that the codewords can be analyzed in

isolation. Then, froni we would know the difference between the number of repetitions and the

12



number of deletions that occurred over the channel. For instance, if the channel model permits one
repetition, then if = n we know that the the sampled version¢f) equalsc, while if | = n + 1

the sampled version of(t) is c but with one bit repeated. Similarly, if the channel model permits
one deletion, then if = n we know that the sampled version«gf) equalsc, while if | =n — 1

the sampled version af(t) is ¢ with one bit deleted. These are the two channel models that
we consider in this paper. Note that in these examples the location of the repeated (respectively

deleted) bit is not known.

In general, in the infinite SNR limit a channel with synchronization errors could be modeled as
introducing a certain number of repetitions and deletions in the transmitted codeword. Assuming,
as above, that the location of the first and the last bit in the received string of data is known
codewords could be analyzed in isolation, and we would learn the differerce, between the
number of repetitions and the number of deletions that occurred over the channel. However, we
would not know the location of the repetitions and/or the deletions. This more general kind of

model is not analyzed here.

This paper is concerned with use of RM{:) codes over channels permitting substitution and
synchronization errors under the two kinds of synchronization error models discussed in the first
paragraph: the single repetition model and the single deletion model. In this section we analyze
the identification problem for codewords of the RIM{) codes over channels permitting a single
deletion. Before doing so, we first deal with the much simpler case of channels permitting only

(an arbitrary number of) repetition errors.

3.2 The case of repetition errors

We have the following simple result:

Theorem 1 In C'(m), no two codewords can result in the same string when they experience repe-

titions.

Proof: For the case of one, or any number of repetitions, two codewor@%:m) resulting in the

same string must have the same number of runs, and the same sequence of runs. By Lemma 2 there
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are exactly two codewords with the same number of runs. However these two codewords are also
complements of each other and therefore cannot have the same sequence of runs. We can conclude

thatC'(m) is immune to repetition errors. [

It should be noted, nevertheless, that even single repetitions can result in pairs of codewords
of the RM(1,m) code having poor identification. For instance, the codewsgrd:(01) and its

complement,»-1(10) have a post-repetition Hamming distanceof

3.3 The case of a single deletion

The analysis of the identification problem for RM{z) codes over channels permitting a single
deletion is considerably more interesting, see Theorem 2. Before proceeding to the main theorem,

we first make a couple of simple remarks.

Remark 3.1 Complementarity: Consider two distinct codeworgsandcy, in C(m). If c, and
cp Can give rise to the same string after experiencing one deletion each, the same is true for their

bitwise complemenis, andc;.

Remark 3.2 Reversibility: Consider two distinct codewordsandcy, in C(m), If c, andcy, can
give rise to the same string after experiencing one deletion each the same is true for their reversals

& and s,

Here is a description of the pairs of codewords in RM{() which suffer from the identification

problem over channels with a single deletion, for small values :of

Remark 3.3 For m = 0, 1, 2 we can show by inspection the following.

m = 0 The only codewords are '0’ and '1’ and they can both result in an empty string.

m = 1 The codewords are '00’, '11’, '01’, and '10’. The codewords '00’, '01’, and 10’ can all

result in '0’, and the codewords '11'’10’, and '01’ can all result in '1".
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m = 2 The codewords are ‘0000, '1100’,'0011’,0110",°1111’,'1010’,0101’, and '1001’. The
codeword '0011’ and any one of '0110’, '0101’, and '1001’ can result in the same string.
Similarly, the codeword 1100’ and any one of '1001’, '1010’, and 0110’ can result in the
same string. The same is true for '0110’, and any one of '1010’ and ‘0101’ as well as for
'1001" and any one of '0101" and '1010’. Also, '1010’ and 0101’ can result in the same

string.

We may now complete the analysis of the identification problem for RM) codes over

channels permitting a single deletion:

Theorem2 Letj = 2"t andk = 2™ 2 For m > 3, there is a total of 11 pairs of distinct

codewords irC'(m) that result in the same string when each experiences a deletion. These are:
1. ¢(10)andc(01) | Group 1

2. (10) andc(11)
3. ¢(10) andcl,(00)
4. ¢r(01) ander(11)
5. ¢(01) ande,(00)

Group 2

6. ¢(01)andc*(00)
7. ¢r(01) andep,  (11)
8. ¢(10) andc*(00)
9. ¢(10) andcy, (11)

Group 3

J

10. ¢7(01) and ¢ ,(01)
11. ¢(10) and 7, (10)

<

Group 4.

Proof: Observe that we have already established this resuli:fer 2 in the previous remark. In

the rest of the proof we will assume that> 3.
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Note that it is sufficient to assume that the deletion occurs at the end of a run, since the string
resulting from a deletion of a bit in some codeword is the same irrespective of where the deleted

bit was located within the run it belonged to.

Suppose:, andcy, are distinct codewords i6'(m) which result in the same string when each
experiences one deletion. Léf = d(c,) anddy, = d(cp,) be as defined in Definition 1. We first
observe that during a deletion, the total number of runs in the codeword stays the same, decreases
by one, or by two. Suppose a codewargdexperiences a deletion in a run of length at least 2.
Then the length ofl, remains unchanged. &, experiences a deletion in a run of length 1, the
neighboring runs (if any) will merge and the total number of runs will decrease. In particular, if
this deleted run of length 1 is an outermost run, the lengtd.oflecreases by 1. If this deleted
run of length 1 is located somewhere elsecin the length ofd, decreases by 2. It is therefore
sufficient to consider the cases when the lengthd.cindd,, differ by 0, 1, and 2. Without loss
of generality assume th&d,| > |dy|. We treat the cased,|=|d}|, |da|=|dp|*+1, and|d,|=|dp|+2

separately.
Case 1]d,|=|dp|

By Lemma 2, it must be that, andc;, are complements of each other, and consequeljtly
dy,. Either bothc, andc;, experience deletions in runs of length at least 2 each, or both experience

deletions in different outermost runs of length 1 each or in inner runs of length 1 each.

Sincec, andc, differ in their leftmost bits, a deletion must occur in the leftmost bits in either

c, Or c,. Without loss of generality we can assume that the leftmost kit is deleted. If this bit
belonged to a run of length at leastc, itself would start with a run of length at least 2, but then
it would be impossible to obtain the same string frognandc, when each experiences exactly
one deletion. Therefore, the leftmost runcipis a run of length 1, and by Lemma 3, all runscin
(andcp,) must be of length 1 or 2. Sina&, decreases by 1, the same must be truelfgrso that

cp experiences a deletion in its outermost bit, which then must be its rightmost bit. cLen
=cp(p — 1) for 1 < p < 2™ (here and in the remainde(p) denotes the bit in the" leftmost
position ofc,), and by using the fact that, andc;, are complements of each other, it follows that
c, andcy, consist of alternating bits. Thus, is eitherc}"(lo) or c}"(Ol) for j = 2m~1, andcy, is

its complement. This codeword pair is listed under 1 and is labeled Group 1.
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Case 2|d,|=|dp|+1

Suppose a deletion occurs in positignin c,, and in positionp, in ¢, (we assume that the
deletion occurs at the end of a run), where we index the bits in the codewords thitbugh2,
from left to right. It must be that either: &), experiences a deletion in an outermost run of length
1, whilec;, experiences a deletion in a run of length at least 2, et,[@xperiences a deletion in an

inner run of length 1 and,, experiences a deletion in an outermost run of length 1.
Subcase 2-1d,| is even

We view c, as the result of concatenation applied to the same code¢ioed C'(m — 1),

wherebyc, = [c|c] if ¢/ has opposite outermost bits, aogd = [c|c/] if the outermost bits i’

are the same.

In either case a) or b) there exists at least one ent,irqual to 1. Then, by Lemma 3,
outermost runs ir, andc’ are all of length 1. By mirror-symmetry (Lemma 4) we can express
d, anddy, asd, = [A11A%] andd,, = [42A%], whereA = [A, A,...A}] is a substring ofl,, A"

is its reverse, and; = 1.

For the situation described in a), by the reversibility property, we may as well assume that the
leftmost bit inc, is deleted. Then the entry in positignin d;, must correspond to the entry in
positionp + 1 in d,, in the sense that,(p + 1) = dy(p) Vp except for exactly one, call jt*, for
which dy, (p* + 1) = da(p*)+1. In particular if this entry indy, is bigger than 2, by Lemma 3, it
would have to be at least 4, further implying the existence of a rug of length at least 3, which

is impossible by Lemma 3 and the fact that there is at least one run of lengif, 1 in

Therefored,, (p*) =2 andd,(p*+1) = 1. Sinced, ({4 1) = 2 andd, (! +2) = 1 by construction,
it follows thatp* = [ + 1. FurthermoreA, = A, A3 = A,, ...A; = A,_1, so thatd, consists of all
1's anddy, has all 1's except for its innermost entry which is 2. Consequentlg eitherc’*(10)
or ¢f*(01), andcy, is eitherc*(11) or ", (00)for j = 2™~'. One can check that all four pairs of
candidate codewords suffer from the identification problem. This is the set of pairs listed under

Group 2. This group of codeword pairs is closed under complementation and reversal.
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Now, for the situation described in b), by the reversibility property, we may as well assume that
the rightmost bit incy, is deleted.

The first leftmost entries wheid, andd,, differ are their(l + 1) entries so the deletion in
c. must be in its(l + 2)™ run, which then disappears altogether. Moreover, tjbth 1)t and
(I+3)™ runs inc, must be of length 1 each because the 1) run of ¢, is of length2. Therefore
AR(1) = A = 1.

The entry in positiori + 2 in dy, (which is A%(1)) must be the same as the entry in position
[+ 4ind,, which isAf(2) = A;_;. The entry in positiort + 3 in d},, which is itselfA%(2), is the

same as the entry i, in position/ + 5, which is A%(3).

By continuing forward until the end ofi®, we conclude thati” consists of all 1's, thereby
makingd, be all 1's as well, andl;, be all 1's except for 2 in the middle. These talg andd,,
have already been encountered in the situation described in a), and yield the codeword pairs listed
under Group 2.

Subcase 2-2d, | is odd

In either case a) or b}, has at least one entry equal to 1, so all its entries are either 1 or 2 by
Lemma 3. Ifd;, had an entry larger than 3, by Lemma 3 case b) would not be even possible. For
case a) it would require an existence of a ruejrof length at least 3, which is also impossible by
the same Lemma. Since all entriesdgandd;, are then precisely or 2, we can use their mirror

symmetry and apply Lemma 8 to conclude tiatandd,, have the following formats:
d, = [A1B1A"] andd,, = [A2C2A%],
where|B| = |C| + 1 and A andC' are possibly empty.
Let|A| = p — 1. Further, note thaC| is even.

For the situation described in a) we may as well assume, by the reversibility property, that the
rightmost bit inc, is deleted, and that it belonged to a 1-bit run. Then the deletieg must be
in its p leftmost run (of length 2).
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Since A%(p — 1) = 1 in d,, by mirror symmetry,A(1) = 1 (or by Lemma 3). Since the
rightmost entry ind,, is the same as the second rightmost enti.init further follows thatA?(p—
2) = 1, which in turn implies that(2) = 1, and so on until the end of, thereby requiring that
consists of all 1's. Similarly, the entry id, in position|d,| — (p — 1), which is 2 by assumption,
is the same as the entry dh, in position|d,| — p, which is itself the last entry ii3. ThusB ends
in 2 and by mirror symmetry it also starts with 2. This in turn implies thegtarts and ends with
2, which then implies that the next to the last entrysims also 2. By continuing on until all entries
in B andC' have been encountered we can conclude thandC' consist only of 2’s. Thenl,
=1.12.21.1 andl,=1.12.21.1 (ifA nonempty) ord,=2.2 (if A empty), where 1.1 (2.2) indicates
a non-empty run of 1's (2's). Fddy,| even, the run of 2’s inl;, would have to have even length
(since the neighboring 1.1 runs are of the same length by the mirror-symmetry property) which is
impossible by Lemma 6. Thuk, =2.2, A is empty, and thed,=12.21. Consequently, itself is
eitherc;*(01) or ¢*(10) for k = 22, andc, is eitherc}(00) or ¢}, (11). It can be checked that
all four codeword pairs suffer from the identification problem. These are the pairs listed in Group

3. This group of codeword pairs is also closed under complementation and reversal.

For b) we may as well assume, by the reversibility property, that the rightmost bj is
deleted, so thadl, ends in a 1. Note that this implies thdf (and A) cannot be empty, and
thereforep > 1. Then the first leftmost entry in whici, andd,, differ is compensated for by
the deletion in a 1-bit run ir,. Since all runs incy, are of length at most 2, the deleted run in
c. must be bordered by two 1-bit runs. Therefore, the- 1) run (of length 1) inc, is deleted,
and both(p)™ and(p + 2)" run inc, are also of length 1. Furthermore, the entry in positidor
p+1<t<|dp| —1ind, is the same as the entry in positioa 2 in d,.

In particular, the entry irdy, in position|d,| — p + 1, which is 2, is the same as the entry in
position|d,| — p + 2 in da, Which is A%(1). By mirror symmetry entries in positions— 1 in
bothd, andd, are equal to 2. Then the entry é, in position|d;,| — p + 2 is also 2, as is the
entry ind, in position|d.| — p + 3. By continuing onwards untl = |d},| — 1, and by using the
mirror symmetry, we conclude that (and A%) consists of all 2’s, which is in contradiction with

the earlier requirement that the deletiorcinoccurs in its outermost run of length 1.

Case 3|d,|=|dp|+2
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We now consider the remaining case where the deletien mccurs in an inner run of length
1 and incy, in a run of length at least 2. This deletion in a 1-bit runcgfcauses its neighboring
runs to merge. By Lemma 3, these runs are of length 1 or 2 each. If they were both of length 2
each, there would exist an inner run of 1'sdg of length 1, which is impossible by Lemma 7.
If one neighboring run was of length 1 and the other of length 2, the merging would require an
existence of a 3-bit run in the post-deletiofy By Lemma 3, the deletion in, would then have
to be in a 4-bit run, and by the same Lemma, the outermost rufiswould be of length at least
2. These would have to correspond to the outermost rung, iwhich are themselves of length 1
each. Therefore, the deletionég must occur in an inner 1-bit run neighbored by two 1-bit runs,

and all entries in botld, andd;, can be only 1 or 2.

Considerc. € C(m) which has|dy| + 1 runs. For|d,| even, we can think o, as being
the result of concatenating a codewetd < C(m — 1) with itself if |d,|/2 is even, and with its
complement if|/d,|/2 is odd, such thaty andc, have the same leftmost bits (the existence of
such codeword irC'(m — 1) follows from Lemma 2). Furthermore, in the former case we can
view c. as the result of concatenating with its complement, and in the latter case as the result of
concatenatingq with itself. Thend, = [dq|dq], andd. = [dq(1,{—1)|(da(!) +da(1))|da(2,1)],
wheredy = d(cq) andl = |dq4|. The leftmost entry in whick, andd,, differ is their(|d.|+1)/2™"
leftmost entry. By mirror symmetry alg, this entry ind., is twice its counterpart id,. Since all
entries ind, are 1 or 2, and its outermost entries are 1, it follows that all entriek i#&re also at
most 2. Then the first leftmost entry in which andd,, differ is say in positiorp, for p < |dy|/2
andd.(p) = 1 anddy(p) = 2, by Lemma 8. Sincéd,,| < |d.| + 1, the first leftmost entries in
whichd, andd,, differ is in thep" position, wherep < |dy,|/2.

A similar argument holds fofd,| odd when the first leftmost entry in whieh, andd.. differ is
then in some positiop, for p < |d.|/2, and the first leftmost entry in whiaf. andd,, differ is in
their (|dy,| + 1) /2" entry. Then the first leftmost entry in whieh, andd,, differ is still in position

p.

As a result and by mirror symmetry, we can then exprgsandd;, asd, = [A1B1A%] and
dy, = [A2C2A%], where|B| = |C| + 2, |A| = p — 1, and A andC are possibly empty.
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By the reversibility property, we can assume that the leftmost error is a deletign which
then must be in thép + 1)%' run in ¢, (of length 1), neighbored by 1-bit runs on each side, such
that the substring '111’ starts at positipnn d, and the substring '2’ iraly, is at positionp.

Fromt¢ = p 4+ 1 onwards, the entry in positiann d;, must be the same as the entry in position
t + 2 in d,, except for one pair of entries. In this exception, the entry is djrand 1 ind..
By mirror symmetry, the entry iy, in position|d,| — p + 1 is 2 and the entry irl, in position
da| —p+1=|dp| —p+1+2is 1.

We now re-express, as[A111D1A%] anddy, as[A2D2A%], such that3 = 11D. In particular,
D is non-empty as otherwis#, would have a run of 2's of even length which by Lemma 6 would
imply thatd,, consists of all 2’s. As a consequendg,would have an inner run of 1's of length 4,

which is impossible by Lemma 7.

We suppose thaD| = [, [ > 0. By mirror symmetry ofd,, D(l) = D(l — 1) = 1, and then
by mirror symmetry ofdy,, D(1) = D(2) = 1 as well. By mirror symmetry ofl,, D(l — 2) =
D(l — 3) = 1. By continuing on with matching up the appropriate entriesljnandd,,, and
by utilizing mirror symmetry we conclude th#t consists of all 1's. Thend, = [41.14%] and
dy, = [A21.12A%], and by Lemma Tdy| is even, as is thef,|.

Considerd;, = dy(1, |ds|/2), andd, = da(1,|da|/2). Since|d.| and|dy| are even, there
exist codewords,, c;, € C(m — 1) for whichd}, = d(c}) anddy = d(c;). Thend, = Al.1
anddy = A21.1. If 2 following A in dj, is not in its innermost position, then it would have a
mirror image inA in dj, (it cannot have a mirror image in the run of 1's) but such 2 in Adjp
would not have 2 as its mirror image. Thu§ = |d}|/2 — 1 and A has all 1's. Thenl, itself has
all 1's, anddy, is 1.121.121.1, so that, is ¢}*(10) or ¢/*(01), andcy, is ¢, (10) or ¢}, (01), for
j = 2m~1, By the current assumption on the deletion locations, it followsdhaindc;, must have
the same leftmost bit. The resulting two pairs of codewords are listed in Group 4. By reversibility

and complementarity these are the only such pairs. |

Having identified all pairs of codewords in RMfn) that have an identification problem, our
next goal is to construct a linear subcode that has good identification under single deletion errors.

It turns out this is possible to do with the loss of only one information bit, and furthermore, this
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subcode also has good identification for single repetition errors.

3.3.1 Pruning of the Code

Let us first recall that thé" row of G,,,, for 1 < i < m+ 1 consists oR'~! alternating runs of ones
and zeros, and that each run is of length ! (see Section 2). Observe that tferow is then
preciselych;_,(10). In particular, the last two rows d&,, arecy;, . (10) for i = m andcy;, . (10)

fori=m + 1.

We writec € C(m) asxGy,, Wherex is a (m + 1)-dimensional message vector so that
chom-1(10) =10,0,...,0,1]Gy andcs,_, (01) = [1,0,...,0,1]Gw. Similarly, ¢;,_.(10) is
[0,0,...,0,1,0]Gm andcl, ,(01)is [1,0,...,0,1,0]Gp.

Observe thaty;,_, (10) appears in pairs 1). through 3). and the pair 11). in Theorem 2. Its com-
plement, the codeword;,_, (01) appears in pair 1)., 4)., 5). and 10). For both these codewords,
there is a non-zero component in the last, i(g: + 1) position in the corresponding message
vectors. Note thatl},_,(10) appears in pairs 8). and 9). and that its complenagnt,(01) ap-
pears in pairs 6). and 7). There is a non-zero component in positionthe message vectors

corresponding to these two codewords.

We may now try to find as large as possible a linear subcod&of), in which no two code-
words cause the identification problem under one deletion. The generator Giafitkis subcode
can have at most rows. Consider a matrix consisting of the tap— 1 rows of G,,,, followed by
a binary sum of the last two rows &,,. Now, G hasm rows and no linear combinations of its

rows give rise to codewords causing the identification problem.

Therefore, if instead of using'(m) of rate Zt! we use its linear subcodé(m) of rate ST
generated by the tom — 1 rows of G,,, and the binary sum of the last two rows @Gf,,, we are
able to eliminate the identification problem under a single deletion while preserving the linearity

of the code and suffering a very small loss in the overall rate.

In the next section, we will see that the subcode we have constructed is not just immune to

single deletions; it also has good identification under the single deletion model and under the
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single repetition model.

In principle, one can utilize the run-length structure of the RM{) code to determine large
subcodes immune to any number of deletions, or even to combinations of repetitions and deletions.
Such analysis quickly becomes very complicated. The first author has carried out a detailed anal-
ysis of the identification problem for the RWM¢n) codes under the infinite SNR channel model
which permitsboth one repetition and one deletion [7]. Some additional structural properties of

the codewords in RM(m) codes that may be of independent interest are also contained in [7].

4 Decoding the modified RM(1,m) code over a channel with

synchronization and substitution errors

In the previous section we described how to extract a linear subcode of the/RMode that is
immune to a single deletion. We now consider the behavior of such a subcode over channels in
which, in addition to substitution errors, synchronization errors can occur as well. We consider two
kinds of channel models for synchronization errors: channels where the deletion of a single bit can
occur, and channels where the repetition of a single bit can occur. As in subsection 3.1 we assume
in each case that the receiver learns from the sampled output whether a deletion (respectively, a

repetition) has occurred or not.

In this section, we first determine the minimum distance between the sets of strings obtained by
applying a deletion of a single bit to codewords of the modified RMJ code. We then compute
the minimum distance between the sets of strings obtained by applying the repetition of a single bit
to codewords of the modified RMgn) code. Finally, in each case, we propose a bounded distance
decoding algorithm for up to half the corresponding minimum distance over a channel where, in
addition to substitution errors, the synchronization error can occur as well. The complexity of
the decoding algorithm is of the same order as that of the usual fast Hadamard transform based

decoding for RM{,m) codes.
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4.1 Minimum distance

In this subsection we first determine the minimum Hamming distance between the elements of sets
associated with distinct codewords of the modified code that result from the deletion of a single bit.
Let C(m) denote the code whose generator matrix consists of the:tepl rows of G, and the

binary sum of the last two rows @%,,. The code”(m) is immune to one deletion by construction.

We first make the following observation:

Remark 4.1 For m > 2 a codeword: of C'(m) belongs taC(m) if and only if all its quadruplets
starting at position for : mod4 = 1 are all '1111’ or '0000’ or all are ‘0110’ or '1001".

In the remainder we will call quadruplets ofstarting at positiori for i mod4 = 1 constituent
quadruplets.

Forc € é(m), let S,(c) denote the set of strings obtained by applying the deletion of a single
bit to c.

Lemma 9 For c,, ¢y, distinct codewords i (m), let D(c,, cp,) be the smallest Hamming distance
betweens, and s, wheres, ranges over all elements in the s&f(c,) and s;, ranges over all
elements in the seét;(cy,). LetD™ D(ca,cp). Then form > 2, DI, =

min — 11 min

ca,cbeé(m),ca;écb
2™=3. Further, form > 3, D(ca, cp) = 2772 only forc, = ¢}*(01) or ¢*(10) for j = 3 % 22,
andcy, eitherc, + ¢*(10), or c, + ¢]*(01), or vice versa, and in addition fan. > 4, c;, is also

ca + ¢]*(00), or vice versa.

Proof:

Suppose that, experiences a deletion in positign and c;, experiences a deletion in posi-
tion p,. Without loss of generality we can assume that< p,. Letp) = |[(py — 1)/4]4 + 1
and letp, = |(p» — 1)/4]4 + 4, so thatp| denotes the first position of the constituent quadru-
plet p; belongs to, ang, denotes the last position of the constituent quadrupldielongs to.

We also let/; be the Hamming distance between the stringd,p] — 1) andcy(1,p] — 1), s
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be the Hamming distance between the string®, p,) andcy(p}, p), andiz be the Hamming
distance between the strings(p, + 1,2™) andcy,(p, + 1,2™), where the notatiow;(p, q) in-
dicates the substring of the codewardstarting at positiorp and ending at positiop. In ad-
dition, letn. = (p,, — p}| + 1)/4 be the total number of quadruplets spanned by positigns
and p,. By the standard properties of a Reed-Muller) code,l; + I + I3 is either2m~1
or 2™, Let¢, = [ca(l,p1 — 1)|ca(pr + 1,2™)], and €, = [cu(l,pa — 1)|cu(p2 + 1,2™)].
Then the Hamming distancéy (c,, ¢,) betweenc, and ¢y, is dy (Ca(1,p] — 1), ¢u(1,p] — 1))
+dy (Ca(py,ph — 1), Cu(ph, ph — 1))+ dy (Ca(ph, 2™ — 1), Cp(ph, 2™ — 1)). Observe that the first
term in the sum is simply; and that the last term i&. We let I, denote the middle term,
dy (Ga(pl, ph — 1), E(p,, 1y, — 1)), and we establish the relationship betwéerand I, for all

choices ofc, andcy,, from which the bound on the overall distance will follow.

1) Let us first consider the case when the constituent quadruplefsare ‘0110’ and '1001’
and incy, are 0000’ and '1111’, or vice versa. In this case, the Hamming distance betyeem
cp, is 271, and the constituent quadruplet pairs starting at the same positiegsaimd c;, each

contribute 2 to the overall Hamming distance. Thereftye; 2n..

If p, — p| = 3, then the deletions occur in the same quadruples 2 to begin with, and the
Hamming distance between(p;, p, — 1) andcy(p}, py — 1) is at least 1, which can be verified by
checking all cases. Hence the Hamming distance bet@&gandc,, is at leas™ ! — 1, which is

strictly greater than™ 3.

Now suppose that, — p; > 3. Thenn. > 1. After the deletions, the Hamming distance
betweert,(p| + 44, p} + 3 + 4i) andcy, (p) + 4i,p) + 3+ 4i), for1 <i <n.—2isatleast 1, as
is the distance between the substrieg&), — 3, p, — 1) andcy, (py — 3, py — 1), and between the
substringst. (p}, p| + 3) andey(p, p) + 3) (which again can be verified by checking all cases).
Thenly > (ne—2) x 14+ 1%1+1%1=1,/2.

Since the Hamming distance betweegstp), p, — 1) andcy,(p),py — 1) is at leastly /2, the
Hamming distance between andc,, is then at least; + [,/2 + I3, which is lower bounded by
2m=2_and thus strictly greater thaxt 3.

2) Suppose now that the constituent quadruplets are '0000’ and '1111’ irch@thdc,,. The
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Hamming distance between andcy, is either2™~! or 2™, and the constituent quadruplet pairs
starting at the same positionsdgpandc;, each contribute either O or 4 to the overall Hamming dis-
tance. In the segment spanning positiphandp,, in c, andcy, l»/4 of the constituent quadruplet

pairs each contribute 4 to the overall Hamming distance betwgandcy,.

If p), — p} = 3, the deletions occur in the same quadruplet, &ni$ either 0 or 4. Then
d (Ca(py, P} + 2), Cu(py, p) + 2)) is either O (ifl, = 0) or 3 (if I, = 4). The overall distance
betweert, andcy, is thus at least™ ! — 1, which is bigger tha™=3 for all m > 3.

If p, —p| > 3 we consider constituent quadruplets contained within posipbrast andp/, — 4
in c, andcy, that start at the same positions and we denote the set of their starting positions by
Tot (the setl’ot is non empty as long g8 andp), belong to non-adjacent quadruplets). Gstm
be the subset df'ot whose elements index complementary quadruplets, iandc,. Then the
Hamming distance between the quadruplets + 1,: + 4) andcy (4,7 + 3), and consequently
betweenc,(i,i + 3) andcy(i,7 + 3) for i € Comis at least 3. In addition, if, belongs to the
constituent quadruplets ef, andc; that are complements of each other, the distance between
Ca(ph — 3,p5, — 1) andcy(p), — 3,p, — 1) is at least 3. Similarly, iy} belongs to the constituent
quadruplets o€, andc;, that are complements of each other, the distance betageh p; + 3)
andcy, (py, p) + 3) is also at least 3. Therefore, the Hamming distance betwgen, p, — 1) and
Cw(py, py— 1) is atleasB x [ /4, thereby making the overall distance betwégiandc,, be at least

Iy + 3ly/4 + 13, which is again strictly greater thax—3.

3) Finally, considerc, and c;, with constituent quadruplets '0110’ and '1001’. Again, the
Hamming distance between andc, is either2™~! or 2™, and the constituent quadruplet pairs

starting at the same positionsdp andc;, each contribute either 0 or 4 to it.

For the case whep, — p| = 3, ; is either O or 4, so that the Hamming distance between
Ca(py, py — 1) andcy(p), ph — 1) is either at least O fol, = O or at least 1 fot, = 4. In the former
case, the Hamming distance betw@gmandcy, is at leas2™ !, and in latter case it is lea®t ' —3.
In particular, form > 4, 2™~ — 3 is strictly bigger thare™ 3. Form = 3,2™1 -3 = 2m=3, Then
c, andcy, would have to be complements of each other in the quadruplets experiencing deletions,
and would have to be the same in their other quadrupletcker c;, being either ‘00001111’ or
'11110000',c, is then either3(10) or ¢3(01) andcy, is eitherc, + ¢3(10) or ¢, + ¢3(01) or vice
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versa. Observe that these are precisely the codeword pairs listed at the beginning of the proof for

j =3andm = 3.

If p, —p| > 3 we again consider constituent quadruplets contained within posjtiond and
ph — 41N ¢, andcy, that start at the same positions and we denote the set of their starting positions
by Tot (the setT'ot is non empty as long g andp, belong to non-adjacent quadruplets). Let
Combe the subset df'ot whose elements index complement quadruplets,iandc;,, and let
Sam = Tot — Com.

Then the Hamming distance betweeyt: + 1,7 + 4) andcy, (4,7 + 3) for i € Comis either 1
or 2, and we denote their total number fyands’, respectively such that + si = |Conq. The
Hamming distance between (i + 1,i + 4) andcy (7,7 + 3) for i € Samis either 2 or 3, and we
similarly denote their total number by ands), respectively, where) + s = |San. In addition,
if p, belongs to the constituent quadrupletsc@fandc,, that are complements of each other, the
distance betweed,(p, — 3,p, — 1) andcy(p), — 3, p5 — 1) is either 1, 2, or 3, which we denote
by t, and is either 0, 1, or 2 if those two quadrupletgirandc;, are the same, in which case we
denote it byt. Let J, = 1 if these two quadruplets are complements and/jet= 0 otherwise.
Finally, the distance betweédn (p}, pi + 3) andéy(p), p) + 3) is 0, 1, 2, or 3 if the corresponding
quadruplets irc, andcy, are the same, when is denoteditbyand isl, 2, 3, or 4 if these quadruplets
are complements, when is denotedtbyLet ./, = 1 for complement quadruplets ang = 0 for

the same.

The overall Hamming distance betwe&pandc,, is theni; + Jit + (1 — Jy)t? + s + 253 +
259 + 385 + Jots + (1 — Jo)t3 + I3. Observe that] + s3 + J; + Jo = 1o /4.

Sincet} > 1 andt} > 1 we have

di(€asCh) > L+ Ji+s1+sy+ Jo+ 13
[
1
ZdH(CCUCb) Z 2m—3 .

v

Equality holds in this sequence of inequalities if and onlsfc,, c;) = 2™ (i.e. c, andc, are
not complements of each othet),= 0, I3 = 0, s = 0, s = 0, s1 = 0, and one of the following

four cases holds:
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@) (J1, o) = (1,1) and(t], t3) = (1,1),
(b) (J1, J2) = (0,1) and(#?, 1) = (0, 1),
(€) (J1, J2) = (1,0) and(1,t9) = (1,0),
(d) (J1, J2) = (0,0) and(#?,t9) = (0,0).

Sincel; = 0 andl; = 0, all constituent quadruplets ity (1,p] — 1) andcy(1,p] — 1) as well
as inca(ph + 1,2™) andcy, (py + 1,2™) are pairwise the same. Singg= s = 0, the constituent
quadruplets spanning positiops + 4 throughp, — 4 in ¢, andcy, are pairwise complements of
each other. Moreover, sineé = 0 they are actually alternating '1001’ and '0110’ é¢g and are
alternating ‘0110’ or '1001’ incy,, or vice versa. The quadrupletsdég andcy, to which p} (p))
belongs are the same.if = 0 (J> = 0), and otherwise they are complements. Therefore, for all
four casesg, + ¢y, is of the type 0...01...10...0, with possibly one run of zeros empty (but not both
as therc, andc;, would be complements), and is such that it belongs(ta). Specifically,ca+cp
is eitherc?”(10), ¢i*(01), or ¢*(00), and byp, — p}, > 3, m is at least 3. Since}*(00) ¢ C(m)
for m = 3, no new pairs can result from this analysis in this case, so we may assume from now on
thatm > 4.

Let p; andp, be the positions of the leftmost and the rightmost t.in+- c,. Thenp is either
p or p; — 4, depending on the value of and on the format of, + ¢, and likewisep), is eitherp,
or p, + 4, depending on the value df andc, + c. In particular, forc, + ¢, equal tocj*(10), J;

must bel andp) = p;, and forc, + ¢, equal toc}*(01), J, must bel andp), = p,

Form > 5, since there are at leasf2(2™2) — 2 contiguous alternating ‘0110’ and '1001’
(or vice versa) spanning positiops+ 4 andp), — 4 in c,, and sincep;, p, ) is either(1,2™!) or
(2m=141,2™) or (2™~2+1, 3x2™~2), by the concatenation principle it follows that all quadruplets
spanning positiong; andp, in c, are alternating ‘0110’ and '1001’, or vice versa. It then follows
that under the set of constrairfls = 0,13 = 0,59 = 0,s§ = 0, s; = 0), c, can only be7"(01) or
¢7"(10) for j = 3+ 2™~%, andcy, is thenc, + ¢*(10), ca + ¢1*(01), or ¢, + ¢*(00), or vice versa.
It remains to determine whether these candidate codeword pairs satisfy one of the (a) through (d)
cases.
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From the structure of the candidate codeword pairs, it follows for example that all six codeword
pairs achieveD™, for (Jy, Jo,t1,t5) = (1,1,1,1), with deletions in positiongp;, p2) = (2™ ! +
1,2™) for ca + ¢, = ¢*(01), in positions(py, p2) = (1,2™71) for ¢, + ¢, = ¢(10), and in
positions(py, p2) = (272 + 1,3 % 2™2) for ¢, + ¢, = ¢*(00), such that both individual values

of ¢, andcy, per pair are possible.

Form = 4 andm = 5 the pairs of codewordéc,, ¢, } achieving the proposed’”; can be
identified directly, and they have the same format as codewords achiByjngfor m > 5. This

concludes the proof of the lemma.

We next determine the minimum Hamming distance between the elements of sets associated

with distinct codewords of the modified code that result from the repetition of a single bit.

Forc € C(m), let S,(c) denote the set of strings obtained by applying the repetition of a single
bit to c. Recall thatS,(c) denotes the set of strings obtained by applying the deletion of a single
bit to c.

Lemma 10 For c,, ¢}, distinct codewords ir@(m), let R(ca, c,) be the smallest Hamming dis-
tance between, andt, wheret, ranges over all elements in the s&t(c,) andt,, ranges over

all elements in the se%,(c,). Let R R(ca,cp). Then form > 2,

min
m
Rmin

Ca,Cp Eé(m),ca;écb

= 2™73 4 1. Further, form > 3, R(ca, cp) = 2™ 4 1 only forc, = ¢/*(01) or ¢}*(10) for
J = 3x2™73 andc,, eitherc, + ¢*(10), or c, + ¢{*(01), or vice versa, and in addition fon > 4,

cp, is alsoc, + ¢*(00), or vice versa.

Proof: We first observe thal < R(ca,cp) — D(ca,cp) < 2, WhereD(c,, cp) is as defined in
Lemma 9. To see this, considegr obtained by deleting a bit in, in positionp,, ands;, obtained
by deleting a bit incy, in positionp,. Forp, < py, du(Sa,sp) = dg(ca(l,ps — 1), cu(1,p, —
1)+ dg(ca(pa + 1,90), €b(Pas 2o — 1))+ du(ca(py + 1,n),cu(py + 1,n)). Fort, € S,(c,) and
t, € S.(cp) such that the bit in positiop, (p,) is the bit that gets repeated tg (t,), write
dp(ta, tp) aSdp(ca(l,pa — 1),cu(1,pa — 1)) + di+ dr(ca(pa + 1,06), Cb(Pa,ps — 1)) + da+
dy(ca(pp+1,mn),cp(pp+1,n)), whered; = ca(pa) + cb(ps) andds = ca(py) +cn(py). Therefore,
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0 < dy(ta,ty) — dy(sa,sp) = di + d2 < 2. A similar argument gives the same inequality for

Pa > pp. Taking the minimum over allp,, py,), the claim of this paragraph follows.

By Lemma 9,D. = 2™73 so thatR™,, is at most2™ > + 2. We use the nomenclature

introduced in Lemma 9 to determine the codewargls:;, for which D(c,, c,) yields the proposed

bound onR(c,, cp), i.e. the codewords for which(c,, cp,) is at mos2™ 3 + 1.

1) Let us first consider the case when the constituent quadrupletsare ‘0110’ and 1001’
and incy, are '0000" and '1111’, or vice versa. From the proof of Lemma 9 it follows fh@t,, ¢y, )
is at leas™ 2, as is thenR(c,, c,,). The proposed lower bound can only be metifor= 3. By
checking all cases, forn = 3, it follows that R(c,, c},) is at leastl, thus exceeding the proposed
lower bound.

2) Suppose now that the constituent quadruplets are '0000’ and '1111’ irchatidc;,. From
the proof of Lemma 9 it follows thab(c,, c,) is at leasB x 23, and thusR(c,, cp,) is strictly

greater than the proposed lower bound.
3) Finally, considect, andcy, with constituent quadruplets '0110’ and '1001".

We assume that;, p), Ca, v, l1, lo, I3 as well agt?, 1, 19, £3, s, si, 9, ands) are as defined

in the proof of Lemma 9.

In the notation of Lemma 9, if, — p}| = 3, D(ca,cp) is at leas™ ! — 3, thus exceeding
9m=3 4 1 for m > 4. Form = 3, there are four codewords ifi(m) having '0110" and 1001’
as constituent quadruplets. It follows by direct checking @t,, cy,) = 23 + 1 = 2 only for
c, ='01101001’ or '10010110’ and;, = c, + ¢3(01) or ¢, = ¢, + ¢3(10), or vice versa. In the
remainder we will assume. > 4.

Forp, — p| > 3, in the notation of Lemma 9, the overall Hamming distance betwgamdc,,

dpr(€a,Cp) = Iy + Jit] + (1 — J)t) + 87 + 255 + 259 + 385 + Joty + (1 — J)t) + 13, (3)

wheres} + s + J; + J, =[5 /4.

As established in Lemma 9, fali; (C,, ¢p,) to equal2™ 3 for m > 4 it is necessary that, is
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¢"(01) or ¢*(10) for j = 3 % 2™~%, andcy, is eitherc, + ¢*(10), ca + ¢*(01), O cq + ¢1*(00), Or
vice versa. By direct checking it follows th&(c,, c},) is precisely2™=3 + 1 for all six codeword

pairs (since the deletions iy andc,, yielding D, are such that one of them belongs to a run of

min

size 2 and the other belongs to a run of size 1).

It remains to determine,, c, for which dy(c,, ¢,) equals2™~3 + 1, and such that both dele-
tions occur in runs of size bigger than 1. Using the expression in (3) it followsith@t,, cp) =
2m=1 = 0,13 = 0, s = 0, s3 = 0, (call this set of conditions (*)) and one of the following
holds:

@) (J1, J2) = (0,1) and (), t3, s3) = (0,2,0),
(b) (J1,J2) = (0,1) and(#), t3, s3) = (1,1,0),

(€) (J1, J2) = (1,0) and(t1, 19, s3) = (2,0,0),

(d) (Jy, J2) = (1,0) and(t1,19, s3) = (1,1,0),

(e) (Jl, Jg) = (0, 0) and(t?, tg, S%)

(1,0,0),
() (J1, J2) = (0,0) and(¢9, 13, s3) = (0,1,0),
(@) (J1, 12) = (1,1) and(ty, t3, s3) = (2,1,0),
(h) (J1, Jo) = (1,1) and(t1,t1, s3) = (1,2,0),
(i) (J1,J2) = (0,1) and (), 43, s3) = (0,1, 1),
() (J1, J2) = (1,0) and(t;, t3, s3) = (1,0,1),
(K) (J1,J2) = (0,0) and(ty, £5, s3) = (0,0,1),
() (J1,J2) = (1,1) and (¢}, 43, s3) = (1,1, 1),

Sincel; = 0 andls = 0, all constituent quadruplets ity (1, p} — 1) andcy(1,p; — 1) as well
as inc,(ph + 1,2™) andcy, (py + 1,2™) are pairwise the same. Singg= s = 0, the constituent
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quadruplets spanning positiop’s + 4 throughp, — 4 in ¢, andcy, are pairwise complements of

each other. Therefore, for all caseg,+ c, is of the type 0...01...10...0, with possibly one run of

zeros empty (but not both as thepandc;, would be complements), and is such that it belongs to
First observe that for cases (a) through (h), the common constiaiat 0, along with the

constraint set (*) is the same as the set of constraints on the same parameters established in the

proof of Lemma 9. As given in the proof of Lemma 9, under the set of constrdints 0,3 =

0,59 = 0,55 = 0,s3 = 0), ca can only be*(01) or ¢j*(10) for j = 3% 2™~%, andcy, can only then

bec, + ¢[*(10), ca + ¢*(01), or c, + " (00), or vice versa. Observe that these codeword pairs are

already established in the earlier case whigfc,, ¢,) = 2™3 was analyzed (though it can also

be verified that these candidate codeword pairs satisfy at least one of the (a) through (h) cases, and

with deletions in appropriate runs of size 2 result in strings with Hamming disgtfice+ 1).

The remaining cases (i) through (I) all share the same constraintjthat1, which implies
that all constituent quadruplets spanning positiphs+ 8 throughp, — 4 in c, andc, are the
complements of their left neighboring quadruplets, except for one constituent quadruplet which is

the same as its left neighboring quadruplet.

Let p, andp, be the positions of the leftmost and the rightmost &jn+ ¢y, so that(p,, p,.) is
either(1,2™~1) or (2™~! +1,2™) or (22 + 1,3 « 2™~2). Depending on the values df and
Jo and the structure of, + cy, p) Is eitherp, — 4 or p; andypj, is eitherp, + 4 or p,, so that all
constituent quadruplets spanning positipns 8 throughp, — 4 in ¢, andcy, are the complements
of their left neighboring quadruplets with the exception of one constituent quadruplet which is the

same as its left neighboring quadruplet.

Form > 5, by the concatenation principle it follows that this singular constituent quadruplet
must be the one starting at the posititht ' +1 so thatc, + ¢y, is ¢*(00). Moreover, the constituent
quadruplets spanning positiops= 2™~2 + 1 and2™~! are then alternating ‘0110’ and '1001’ (or
vice versa), followed by alternating 1001’ and 0110’ (or vice versa) that span position's+ 1
andp, = 3 x 2™, As aresult, it follows that, is ¢;*(11) or ¢j* ,(00) for j = 3+ 2™~ — 1, and
cp, is eitherc, + ¢]*(10), ca + ¢*(01), or c, + ¢*(00), or vice versa. However, in all cases, when

dg(Ca, €,) = 2™3 + 1, not both deletion errors can be in runs of size bigger than 1 (which can be
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verified by direct checking of all possible constraint sets as given by (i) through (1)), and therefore
R(ca, cp) is strictly greater thag™ 3 + 1.

Form = 4,5 it can be checked directly that the only codeword pairs achie¥jn@., ¢,) =
2m=3 1 1 under the current constraints are the same as:for 5. Again, not both deletions can

occur in runs of size 2, and thu(c,, c,,) is again strictly greater thaz*—3 + 1. |

4.2 Decoding algorithm

In this subsection, we first propose a bounded distance decoding schetﬁ’(erfpwhich corrects
one deletion and up t@™* — 1 substitution errors. We outline the algorithm and discuss its
correctness and complexity.

A common technique for decoding a codeword in a Reed-Mullgn) code that has experi-
enced a certain number of substitution errors involves computing a fast Hadamard transform of the
received string, [15§4, Ch.14]. Specifically, the received strindof lengthn) is multiplied by a
Hadamard matrix{,, to formsH,,. The computation is done efficiently by starting with the binary
strings of lengthn = 2™ and carrying outn stages, each of which involves= 2" additions
of integers, to return the integer valued strid,, of lengthn. Subsequently one needs to find
the coordinate in this integer string of maximum absolute value. The complexity of the overall

algorithm is therefore normally quoted @$n logn).

In our situation, let € C'(m) for m > 5 be the transmitted codeword. Lebe the received
string obtained frone by one deletion and at mo®t—* — 1 substitution errors. Thus, the received
strings is of lengthn — 1. The objective is to recover from s. In principle one could construct
strings of lengthn by inserting either O or 1 at each positiondrand compare each resulting
string with candidate codewords frotﬁ“(m), which would be equivalent to performir2g standard
decoding operations. The complexity of such an algorithm woul@®p€ logn). However, it is
possible to do much better.

For any codeword € C'(m), write ¢ = [¢"[¢"], where¢” and&” are each of length™ !,

In particular, the transmitted codewaoeds written asc = [cL|cR}. From the received stringwe
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creates’ = [s(1)...s(2™ )] ands® = [s(2m~1 —1)...s(2™ — 1)]. Each of these strings is of

length2m1,

If the location of the deletion is in the second half of the codeword, $fés obtained fronc’
by at mos™—* — 1 substitution errors. Further, for evetye C'(m) other thanc andc + ¢/*(01)

we have
di(s®, &") > dy(c® &) —dy(sh,ck) > 2m 2 — (2™ — 1) > 2™t

If one uses the fast Hadamard transform to comguté0] H,,, the coordinate with maximum
absolute value will then correspond to either the pair comprisedanfd its bitwise complement
or the pair comprised af + ¢{*(01) and its bitwise complement. Further, there will be at most two

competing locations for the maximum absolute value.

Similarly, if the location of the deletion is in the first half of the codeword, this obtained
from c® by at most2™—* — 1 substitution errors, so by using the fast Hadamard transform to
compute[0[s”] H,, the coordinate with maximum absolute value will correspond to either the
pair comprised o€ and its bitwise complement or the pair comprise@ efc}*(10) and its bitwise
complement. Again, there will be at most two competing locations for the maximum absolute

value.

Thus, inO(nlog n) operations we will be presented with at m8standidates for the transmit-
ted codeword. We may now go the naive step of considering allitharings of length got by
inserting either O or 1 at each positiond@mnd compare each resulting string with each of tisese

candidate codewords. ti(n) operations we will arrive at the true codeword.

There are some obvious inefficiencies in the algorithm just described. For instance, it is not
really necessary to compare the received string with the columps, ¢iiat correspond to strings
in C'(m) that are not inC'(m). An analysis of this inefficiency could save a constant factor. The
second stage could also undoubtedly be improved, but this is less interesting because the over-
all complexity is dominated by the first stage. Since using the first stage as described has the
significant practical advantage that the existing hardware which is used to decode when there is
no deletion can also be used when there is a deletion, we have preferred to describe the overall

algorithm as above.
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Finally, along similar lines, we propose a bounded distance decoding scherﬁ*«énfx)rfor
m > 4 which corrects one repetition and upx6—* substitution errors and discuss its correctness
and complexity. Let be the received string obtained fraftby one repetition and at mogt*—*
substitution errors. Thus, the received string of lengthn + 1. As before, for any codeword
¢ € C(m), write¢ = [¢*|e”], wherec” andé™ are each of lengt™~. The transmitted codeword
c is written asc = [c%|c®]. From the received string we creates” = [s(1)...s(2™"!)] and
s = [s(2m~1 +1)...s(2™ — 1)]. Each of these strings is of leng2t 1.

If the location of the repetition is in the second half of the codeword, #hda got fromc” by

at most2”~* substitution errors. Further, for evetye C(m) other tharc andc + ¢/*(01) we have
di (st e*) > dy(ct e¥) — dy(sh,ct) > 2m=2 —om~t 5 gm=t

If one uses the fast Hadamard transform to compstéo] 4,, the coordinate with maximum
absolute value will then correspond to either the pair comprisedaofd its bitwise complement
or the pair comprised af + ¢{*(01) and its bitwise complement. Further, there will be at most two

competing locations for the maximum absolute value.

Similarly, if the location of the deletion is in the first half of the codeword, théris got
from c* by at most2™~* substitution errors, so by using the fast Hadamard transform to com-
pute [O|SR} H,, the coordinate with maximum absolute value will correspond to either the pair
comprised ofc and its bitwise complement or the pair comprised:of ¢{*(10) and its bitwise

complement. Again, at most two locations will compete for the maximum absolute value.

Thus inO(n log n) operations, there will be at mo$tandidates for the transmitted codeword.
We may now again follow the naive way and consider all2hestrings of lengthn obtained by
inserting either 0 or 1 at each positions@nd compare each resulting string with each of tisese
candidate codewords. Using this approach){m) operations the true codeword will follow.

5 Conclusion and Future Work

In this paper we studied the performance of a Reed-Muller RM) code, as an instance of a

substitution-error correcting code, over channels in which, in addition to substitution errors, a
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sampling error can cause synchronization errors. Specifically, we studied the cases where the
synchronization error results in the deletion of a single bit and where it results in the repetition of
a single bit. The model we worked with is aimed at handling the kinds of errors that can occur
in a variety of applications, such as magnetic recording and wireless transmission, in the absence
of adequate timing recovery. Our approach to handling synchronization errors is to start with a
good substitution-error correcting code, to analyze which codeword pairs cause the identification
problem, and then find a linear subcode of as high a rate as possible that would both provide
protection against substitution errors and be robust to the synchronization errors. The rate loss
incurred from using the subcode and the increase in the complexity of the decoding algorithm
should of course be reasonably small for such an approach to work.

Another contribution of this paper is to develop several structural properties of thé,RM(
codes, which where motivated by this point of view. These structural properties may be of interest
in their own right.

In general, we provided an analysis that is combinatorially much tighter than might be needed
for our immediate concerns. These combinatorial results may also be of independent interest.
Specifically, we enumerated all pairs of codewords of the RMJ codes that suffer from an
identification problem over a channel allowing for the deletion of a single bit. We introduced a
pruned linear subcode of the RM{:) code, with the loss of one information bit, which does not
suffer from the identification problem under the deletion of a single bit. Given a pair of codewords
in the pruned code the appropriate notion of distance between them over a channel permitting
synchronization errors is the minimum Hamming distance between any pair of strings which are
derived respectively from each codeword after the application of such synchronization error. We
gave a combinatorially tight analysis of the the minimum distance of the pruned code for this
notion of distance for both the case of the deletion of a single bit and the case of the repetition of a
single bit. Specifically, we explicitly identified all pairs of codewords of the pruned code for which
the post-synchronization error Hamming distance equals the corresponding post-synchronization

minimum distance of the pruned code.

Finally, we provided a bounded distance decoding algorithm, suitable for the use of the pruned
code over a channel where in addition to possibly one deletion error (respectively one repetition

error), substitution errors can occur as well. The complexity of this algorithm is of the same order
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as that of the usual fast Hadamard transform based decoding for theZRMf{ode. What is more,
the proposed algorithm can in fact be essentially run on the same hardware platform as in the case

without synchronization errors.

There are of course many codes that are superior tolRM(codes in several respects (for in-
stance, having higher rates). Future work would involve studying the behavior under our synchro-
nization error model of other families of codes with good substitution-error correcting properties.
The analysis should also be broadened to include more general models in which several repetitions
and deletions are simultaneously allowed. As in this paper, the aim of such an analysis would be
to find pruned versions of such codes, with low rate loss and only moderate increase in decoding
complexity, which would not only have good substitution error-correcting capabilities but would
also provide protection against the sampling errors of interest. Additional work-in-progress of ours
along these lines has been reported in [8].
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