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Abstract

Design of a Multi-Channel Medium Access Control Protocol

for Ad-Hoc Wireless Networks

by

Hoi-Sheung Wilson So

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jean Walrand, Chair

Typically, a device in an ad hoc wireless network has a tunable radio allowing it to listen or

transmit on one channel at a time. To ensure maximum connectivity, all devices tune their

radio to the same channel. However, as node density increases, the interference worsens,

resulting in lower throughput per device.

Some of the interference is unnecessary. Modern radios can switch channels rapidly

(i.e., tune to different frequencies quickly). Given multiple available channels, devices in a

neighborhood can potentially transmit on different channels simultaneously to increase the

network throughput.

This dissertation explores whether it is possible to exploit the existence of multiple

channels and the ability of radios to switch between them quickly to increase network

throughput without a central coordinator.

The thesis starts by showing that if a radio can modulate the entire available spectrum,

splitting it into smaller channels does not increase capacity. However, since there is al-

ways an engineering limit as to how wide a channel can be, multi-channel MAC should be

viewed as a practical way to increase throughput when more spectrum is available, without

hardware changes.

We first classify existing multi-channel MAC protocols into four categories based on

their operation principle: Dedicated Control Channel, Split-phase, Common Hopping, and

1



Parallel Rendezvous. Then, we compare these four approaches through both analysis and

simulation. All approaches apart from Parallel Rendezvous suffer from control channel

congestion when channels are numerous and communication tend to be short.

Using the best performing approach, Parallel Rendezvous, as a skeleton, we designed

our own multi-channel MAC protocol called McMAC. To prove that McMAC is practical

and to discover any hidden issue, we implemented the salient features of McMAC on an

experimental hardware platform and evaluated its performance.

In summary, through analysis, simulation, and experiments, we show that it is possible

to increase throughput of an ad hoc wireless network by using multiple channels efficiently

even though each node can only use one channel at a time.

Professor Jean Walrand
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Overview

Typically, in a wireless data network, all devices use the same channel (i.e. the same

frequency) so that they can easily communicate with each other. For example, in a home

wireless network, the access point connected to the Internet communicates with all wireless-

enabled computers using the same frequency. This approach allows devices to discover each

other easily. However, as the number of devices increases, the throughput share of each

device decreases due to contention of the wireless medium. However, not all such contention

is necessary. Imagine a wireless home network scenario in which a user is streaming a video

stored on a DVD player to a television in another room. At the same time, others are playing

a video game running on a PC by sending the screen output to a projector wirelessly. Both

the video stream from the DVD player to the TV and that from the PC to the projector

have to compete for the wireless medium. In this scenario, if two channels are available,

the two pairs of devices can easily use two different channels so each stream enjoys the full

speed of the radio. However, today’s technology only give users two choices. Either all

four devices use the same channel and suffer low throughput, or each pair uses a different

channel but then the DVD player can never communicate with the projector. The first

choice may not seem so bad until the number of devices increases, which reduces the share

of throughput each device gets proportionally. When devices and channels are numerous,

the gain in the total network throughput by flexibly using multiple channels together can

be tremendous.
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This dissertation explores whether it is possible to exploit the existence of multiple

channels and the ability of radios to switch between them quickly to increase network

throughput without a central coordinator.

Our research shows that it is possible to design a distributed medium access control

(MAC) protocol which coordinates nodes to use multiple channels efficiently. Using this

protocol, each node hops across all channels in a pseudo random fashion independently

of each other. This enables the load balancing of data and control traffic on all available

channels. This protocol does not require any change to existing commercial off-the-shelf

radios. Only software modifications are necessary.

Multi-hop wireless networks and mobile ad hoc networks present many additional chal-

lenges such as routing and the hidden terminal problem. In this thesis, we only explore the

problem in a one-hop neighborhood. The results of our research can be the building block

of a multi-hop version of the multi-channel MAC protocol. Care has been taken to avoid

making assumptions that would invalidate our approach upon such extension.

1.2 Motivation

1.2.1 Motivating Scenario

Wireless communication is a very valuable tool in disaster relief scenarios. After a

disaster strikes, existing wired infrastructure and even cellular phone networks are often

destroyed due to power generator failures and cable cuts. To effectively coordinate different

agencies in a disaster relief scenario, it is very important to quickly restore communications

to the affect area such that damages can be assessed and resources can be directed to people

needing the most help.

In this situation, wireless ad hoc networks is a promising technology. In contrast to wired

networks, ad hoc networks can self-organize the wireless relay nodes within the network to

find quickly a path from any source to any destination without human supervision. A multi-

hop ad hoc network forwards data packet in a bucket brigade fashion along the chosen path.

2



Disaster

1 2 3 64 5 7 8 9 10 11 12 13 14

Internet

Connection

Wireless relay nodes (i.e., routers) self−organize into an ad hoc network.

Affected Area

Figure 1.1. Temporary relay routers with the left most node having a direct high speed
connection to the Internet.

Inefficiencies of Single Channel MACs

Today, commodity wireless local area network equipment operate at speeds ranging from

11Mbps to 54Mbps per channel. In a multi-hop wireless network, the throughput achievable

is much lower than the speed of the radio because the indicated speed does not take into

account the medium sharing effects of a multi-hop wireless network. First, nodes cannot

transmit and receive at the same time. Second, when a node transmits, all of its neighbors

cannot receive from another node. Fortunately, quite often, several channels are available.

One can increase network throughput by allowing adjacent nodes to transmit on different

channels simultaneously. Consider the disaster relief scenario mentioned earlier. To setup a

temporary wireless network to carry information to an area that has been cut off from the

Internet or phone network, a number of wireless relay devices are placed linearly along a

road to form a chain network as shown in Fig.1.1. Each node in the network has one radio

tunable to one of the two available channels. The leftmost device has a direct high speed

wired connection to the Internet. Consider the case in which the rightmost node of the

network needs to download a large document via the Internet connection. For simplicity,

we model it as a unidirectional flow of packets being forwarded from the leftmost node to

the right. The goal to maximize the throughput of the flow. Due to interference, for a node

to receive a packet from its left neighbor correctly, it cannot be within two hops of another

sender.

For simplicity, assume that time is slotted, all the packets are of equal length, and the

nodes are synchronized. In this situation, if only one channel can be used, nodes 1, 5, 9

. . . can transmit at the same time while the other nodes must remain quiet (see Fig.1.2).

In the next time slot, nodes 2, 6, 10 . . . can transmit. During each time slot, the fraction

of nodes transmitting is 1/4, and hence the throughput should be approximately 1/4 of
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Figure 1.2. Only one channel is available.
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Figure 1.3. Two channels are available.

the link speed. A similar result was verified in a testbed in [15]. Next, consider the case

where 2 channels (twice the total bandwidth) are used. Nodes 1, 5, 9 . . .. can transmit on

channel 1 while nodes 3, 7, 11 . . . transmit on channel 2. In the next time slot, nodes 2,

6, 10 . . . transmit on channel 1 while nodes 4, 8, 12, . . . send on channel 2 (see Fig.1.3).

The throughput of the network has doubled from 1/4 to 1/2 of the link speed. Clearly, a

distributed multi-channel MAC protocol using two channels is unlikely to achieve exactly

twice the throughput of a single channel MAC in a network of arbitrary topology. However,

the example shows there is a huge potential for network throughput to increase significantly

when multiple channels are available. Using today’s technology, however, only one channel is

used even though many channels are usually available. Note that in the preceding example,

we have doubled the throughput without increasing the transmission speed of each radio.

For a network using M channels, the network throughput can potentially be increased

by M times under ideal conditions. In reality, the gain will be less than M times, but if M

is large, the network throughput is still significantly higher than using a single channel only.

For example, in the U.S., IEEE 802.11a standard [10] defines 12 non-overlapping channels

each of 54Mbps. Even though in practice, using all 12 channels will not achieve 12 times

the throughout (54×12=648Mbps), the potential increase is still very large.

1.2.2 Single Wideband Channel vs. Multiple Channels

A Medium Access Control (MAC) protocol is a protocol which coordinates the access

to the transmission medium among different senders. For a wireless network, the medium

is usually defined by a range of frequency also known as a band or a channel that a device

can use to transmit information. A natural question is why one divides up the available

bandwidth into several channels, and then invents a MAC protocol that uses multiple
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Figure 1.4. A simple four-node network.

channels. Given a fixed amount of available spectrum, one can envision a wide band radio

transmitting information over the entire spectrum forming a single super-channel. When

only one channel is available, a traditional single channel MAC protocol suffices. The

obvious question is whether there is any gain in breaking down a wide band channel into

several narrower bands.

Simple Case

Consider first a very simple case shown in Fig.1.4 with four nodes. Node A sends to

B only while C sends to node D exclusively. Nodes A and C are very close to each other

while B and D are close to each other. Assume that each device transmits at a maximum

power spectral density of P [W/Hz] in an environment with background white noise having

a constant spectral density of No[W/Hz]. Due to path loss, the average received power is

Pr[W] where Pr < P . We further assume that a fixed bandwidth of W [Hz] is available

for this network. One can create one channel with W [Hz] that is time shared between

the two pairs of nodes or two independent channels of W/2[Hz] each. (Note: in practice,

due to imperfect filters, a guard band is needed between the two channels, but we ignore

the issue here.) Information theory tells us that using one channel of WHz wide, the

capacity of the network is: C1 = W log2(1 + Pr

NoW ) which is time shared by two node pairs.

Using two narrower channels each of W/2[Hz], two senders can each have a capacity of

C2 = W
2 log2(1 + Pr/2

No(W/2)) which is exactly half of C1. Therefore, the per sender share of

the capacity remains the same.
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Network Case

To see that splitting a channel into smaller sub-channels does not increase capacity in

general, we consider the following wireless network model. Time is slotted. The network is

modeled as a set of device nodes N and a set of links L represented as a Boolean connectivity

matrix. L(u, v) is 1 if and only if u can send data to v, where u and v are distinct nodes in N.

The interference between links is modeled as a set of conflicts C where ((s1, r1), (s2, r2)) ∈ C

iff s1 cannot send to r1 when s2 is sending to r2. This model of conflict between links is

quite general.

We define a schedule S(t, f, u, v) to be a 4-D boolean matrix specifying who should send

data to whom during each time slot on each channel. If S(t, f, u, v) equals 1, it means that

during time slot t, node u sends to node v using channel f . f is between 1 and M , where M

is the number of channels available. M is 1 if the spectrum is not sub-divided into multiple

channels. For a schedule to be feasible, two conditions must be satisfied.

Condition 1 states that two interfering links cannot be active at the same time:

∀t ∀f,
∑

((s1,r1),(s2,r2))∈C

S(t, f, s1, r1) + S(t, f, s2, r2) ≤ 1

Moreover, the radio of each node u can either listen or transmit, but not both, on at

most one channel during each time slot. Condition 2 states that:

∀t ∀u,
∑

1≤f≤M

∑

s

S(t, f, s, u) +
∑

1≤f≤M

∑

r

S(t, f, u, r) ≤ 1

To establish that using multiple channels does not provide any gain compared to a

single super channel, we prove that a schedule S that is feasible under an M -channel model

is also feasible under a 1-channel model using M times more time slots in a transformed

schedule S′. As illustrated earlier, the capacity of a link is double that of a link with half

the bandwidth if the transmit power scales with the bandwidth. Therefore, in a 1-channel

model, since each channel is M times wider than in the M -channel model, the capacity of

each link is also M times higher. It takes only 1
M of time to transmit the same amount of

information using a super channel. As a result, even though S′ uses M times more time

slots as S, both schedules finish in the same amount of real time.

Theorem: the capacity of a network in which the available spectrum is not sub-divided

is at least that of a network in which the spectrum is divided into M channels and each

node can only use one channel at a time.
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Proof: Suppose S is a feasible schedule under an M -channel model. We transform S

into a new schedule S′ which uses only 1 channel but M times as many time slots. For each

time slot in S, we schedule the transmission on each of the M channels in M time slots,

namely, for t ≥ 1, S′((t − 1)M + f, 1, u, v) = S(t, f, u, v).

Since condition 1 is satisfied under S, the set of links active during each time slot on

each channel is guaranteed to be free of conflict. As a result, the set of links active during

each time slot of S′ is also free of conflict on channel 1. Since there is only 1 channel in S′,

condition 1 is satisfied in S′.

S satisfies condition 2 which implies that a node cannot both transmit and receive on

the same channel during any time slot. As a result, under S′, no node will transmit and

receive during the same time slot. Condition 2 is therefore also satisfied under S′.

S′ uses M times as many time slots as S, but since it takes only 1
M of time to transmit

the same amount of information using a super channel of M times the bandwidth, both

schedules finish in the same amount of real time.2

The converse of the theorem is not true because a network consisting of two nodes can

only achieve 1
M of the throughput under the M -channel model compared to a 1-channel

model.

1.2.3 Practical Reasons for Multiple Channels

Even though using multiple channels does not provide any capacity gain, there are still

three practical reasons for dividing available bandwidth into sub-channels. The first two

are administrative while the third is technical. First, multiple wireless networks using the

same MAC protocol technology but owned by different people may co-exist in the same

area. This is often the case for home wireless networks in densely populated areas. Using

different channels for separate networks allows the networks to coexist without interference.

If only one channel is available, nodes from different networks must coordinate with each

other so that they do not transmit simultaneously or else the network performance can

degrade substantially. Coordination among nodes from separate networks is very difficult

when the interfering links across the networks are weak. Current wireless MAC protocols

tackle this problem by simply dividing the spectrum into several independent channels so

that separate but collocated networks can operate without interference.
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The second reason for designing multi-channel MAC is that the spectrum available for a

particular wireless network often varies from one country to another. Due to historical and

political reasons, it is often impossible to assign the same frequency band in every country.

Consequently, a wireless network technology is designed to operate at one of several possible

frequency bands depending on location. Furthermore, the bandwidth available varies from

one country to another. Instead of defining a different standard for every region, multiple

channels are defined in the same standard. A subset of these channels can be used in each

region. Usually, each resulting channel is narrower than the entire spectrum available in

each country. By standardizing on the bandwidth of each channel, a the same tunable radio

silicon chip can be used in many different countries. The set of channels that can be used

in various countries is configured in software when the user installs the driver.

The third reason is that there is ultimately a limit as to how much bandwidth a radio

can modulate efficiently and economically. The challenge in building a very wide band

radio lies in the design of a wide band low-noise amplifier on the transmitter side and a

good linear filter on the receiver side. As technology progresses, the bandwidth limit will

increase. However, given the widest band radio one can build economically, it is always

possible to apply a multi-channel MAC protocol to allow a network to utilize even more

bandwidth than is possible with any single node. Therefore, we see multi-channel MAC as

both orthogonal and complementary to the use of wide band radios.

In the near future, regulations, engineering limits, and the need for simple spectrum

management will continue to exist. We therefore expect new wireless network designs to

have multiple channels and make use of tunable radios. The combination of frequency agile

radios and multiple channels provides a fertile ground for performance improvement and

motivates our search for an efficient multi-channel MAC protocol that can adapt to the

number of available channels and maximize the network throughput.

1.3 Problem Definition

We define a channel to be a frequency range over which two nodes communicate. The

available bandwidth is divided into M channels of equal bandwidth. Two pairs of nodes

communicating on different channels are assumed to not interfere with each other. Each

node has one tunable radio which allows it to send or receive on any of the channels.
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Switching channel takes a fixed amount of time. The radio is half-duplex which means that

a node cannot transmit and receive at the same time.

A Medium Access Control (MAC) protocol is a set of rules that nodes follow when

accessing the medium. The design of a MAC protocol balances the need for high throughput

and low medium access delay with fairness among different nodes. Traditionally, all nodes

that communicate with each other use the same channel. A multi-channel MAC protocol

is different in that nodes communicate over several channels simultaneously.

Given that multiple channels are available, we want to design a multi-channel MAC

protocol that efficiently uses as many channels as possible without assuming a particular

traffic pattern.

We limit the scope of the problem by making the following assumptions:

1. Single Hop We only consider a single hop wireless network in which all nodes are

within the communication range of each other. All of our simulation and analysis are

based on this model. However, our protocol specification takes into account hidden

nodes and does not break down when applied to a multi-hop network, although the

performance may be affected.

2. No Relay For a multi-hop network to be useful, packets must be forwarded over

multiple hops from the source to the destination. We do not consider routing at the

network layer or forwarding in the link layer. To achieve the best performance, relay

nodes should coordinate among themselves the receiving and sending of packets. Our

work focuses only on communication between direct neighbors.

3. Equal Link Quality The links between nodes can have different rates due to variable

link quality. We ignore that possibility. We also assume that all channels work equally

well for any particular node pair.

4. Quality of Service We currently do not consider applications that have strict delay

or throughput requirements.

5. Unicast Only We focus only on delivering unicast traffic in this thesis. Broadcast

is also a very useful communication primitive. For example, the Address Resolution

Protocol (ARP) relies on broadcast to resolve the IP address of a node into its MAC

address. In this particular case, the neighbor discovery mechanism of a multi-channel

MAC protocol can easily provide this function. Fortunately, there is no need for
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broadcast to support the functionality provided by ARP. However, broadcast is still

needed in other cases.

1.4 Organization of Dissertation

The rest of the dissertation is organized into 6 chapters. We first survey the state-

of-the-art in various related research areas in Ch.2. We will also provide the background

knowledge useful in understanding the chapters to follow. Then, in Ch.3, we describe our

plan to tackle the design problem and the rationale behind our approach. Before we design a

new protocol, we need to understand the merits and shortcomings of any existing solutions.

Therefore, in Ch.4, we classify known approaches to the problem into four categories and

discuss the pros and cons of each. The evaluation is based on both analysis and simulation.

Next, having understood the advantages of each approach, we choose the most promising

approach and design a complete multi-channel MAC protocol in Ch.5. The design rationale

will be discussed as well. Next, we present an implementation of a selected subset of the full

protocol on an experimental hardware platform in Ch.6. The practical challenges together

with our solution to them will be discussed in details. The performance of the protocol will

be measured in a series of benchmarks to validate the design. Finally, Ch.7 summarizes the

findings of our research and points to open problems that have yet been addressed.
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Chapter 2

Background and Related Research

2.1 Multi-Channel MAC Protocols

Multi-channel MAC protocols can be divided into those using a single or multiple trans-

ceivers (radios) per node. Another way of categorization, as suggested in [19], is by the

mechanism sender-receiver pairs use to agree on a data transfer channel. In such way,

multi-channel MAC protocols can be classified into four categories:

• Dedicated Control Channel Examples are DCA (Dynamic Channel Alloca-

tion) [32], DCA-PC (Dynamic Channel Allocation with Power Control) [33] and DPC

(Dynamic Private Channel) [9].

• Split-Phase Both MMAC [25] and MAP (Multichannel Access Protocol) [6] are

examples.

• Common Hopping Examples include CHMA (channel hoping multiple access) [31],

CHAT (Channel Hopping multiple Access with packet Trains) [30], and Hop-

Reservation Multiple Access(HRMA) [28].

• Parallel Rendezvous Examples of this approach include SSCH (Slotted Seeded

Channel Hopping) [5] and McMAC [23].

Within the Parallel Rendezvous category, there are two protocols proposed in the research

literature – SSCH and McMAC. In both protocols, each node has one radio and uses a
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channel hopping sequence. Although they differ in the way the hopping sequences are used,

both protocols require synchronization. SSCH requires all nodes synchronize their hopping

times, while McMAC does not. This thesis studies and implements a variant of McMAC.

2.2 Time Sync

Time synchronization is a long-standing problem in distributed systems. In some con-

texts such as in NTP[18], it refers to the distribution of a reference real-time clock to multiple

devices connected by a network. In others, it refers to the establishment of a common clock

without any real-time requirements. An example of such protocols is the Flooding Time

Synchronization Protocol [16]. In this thesis, we are only concerned with pair-wise synchro-

nization between 1-hop neighbors. Therefore, we use the term synchronization to refer to

the prediction of the current clock of 1-hop neighbors only.

Time synchronization among only 1-hop neighbors is a considerably simpler problem

due to the following reasons:

• There is no need to agree on a common clock. Hence, there is no convergence issue

as each node estimates their neighbors’ clocks separately.

• Queueing and medium access delays happen at only the sender, which is known to

the sender.

• The propagation delay is bounded by the longest distance between two possible neigh-

bors.

To account for queueing and medium access delays accurately, the outgoing packets

should be time-stamped as closely as possible to the physical layer of the network stack. In

our implementation of McMAC, we reuse the time-stamping techniques and implementa-

tions by Maroti et al. [16].
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Chapter 3

Methodology

3.1 Overview

We approach the MAC protocol design problem in 3 steps: (i) understanding the prob-

lem and existing solutions, (ii) designing an improved solution, and (iii) implementing and

evaluating our proposed solution.

There has been a large number of existing protocols proposed to date. It is therefore

necessary to understand the fundamental differences of various approaches to solving the

same problem. Having understood the pros and cons of them, we choose one which works

best in most scenarios, and design a complete MAC protocol following that approach. Fi-

nally, we attend to the practical problems of implementing the proposed protocol. Through

the exercise of implementing a simplified protocol including only the salient features of

the full proposal, we hope to discover potential difficulties that were either neglected or

intentionally ignored in the analysis or simulation.

3.2 Understanding Existing Approaches

Researchers have proposed a number of protocols that exploit frequency agile radios and

multiple available channels in many ad hoc wireless networks to increase capacity. The core

design issues of multi-channel MAC protocols are about determining (i) the current channel

on which a receiver is listening and (ii) whether the medium on that channel is idle. Different
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protocols proposed in the literature differ in how they tackle these two challenges. These

choices have a direct impact on the delay and throughput characteristics of the protocol.

Unfortunately, most of these proposals have been compared to the baseline case of a

single channel MAC protocol. There have been only scant studies comparing these protocols

against each other under identical operating conditions. As a result, it is not clear which

design approach would be the most fruitful under what kind of traffic load and network

conditions.

We believe that before rushing to propose yet another multi-channel MAC protocol,

one should understand how these existing protocols differ from each other fundamentally

(if they do), and what performance tradeoffs they imply. Towards this goal, a detailed

simulation comparison of each and every protocol would give us the absolute numbers in a

handful of scenarios, but not a better overall understanding of how these approaches perform

differently under what conditions. An analytical approach to the comparison would give

us more insight into the performance of the different protocols, but we inevitably have to

make many simplifying assumptions in order to keep the analysis tractable.

We decided to take a hybrid approach. We first generalize the larger number of protocols

and classify them into a small number of design approaches. We then build analytical models

for each of the few approaches in Ch.4. Through analysis, we can get a better understanding

of the important characteristics of workload that affect the throughput performance of each

approach. Then, we simulate a more optimized version of each protocol under more realistic

traffic conditions to see if the general trends of performance differences still hold. Simulation

also allows us to evaluate the delay performance of each approach much more easily than

through analysis. This understanding of the intrinsic strengths and weaknesses of various

design approaches will help guide the design of a new multi-channel MAC protocol that

performs well under a wide variety of conditions.

3.3 Proposing a New Solution

In Chapter 5, we use the insights from the analysis and simulation of the previous chapter

to drive the design of a new multi-channel MAC protocol. In designing of this protocol,

we use two guiding principles extensively: generality over optimality and robustness via

randomization.
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The principle of generality over optimality says that it is better to design a system which

performs well over a wide variety of conditions than one that performs extremely well only

in certain situations when the application scenario is not known precisely. The rationale

behind this principle is that a MAC protocol is a fundamental protocol upon which different

types of applications may build. If an application scenario is known precisely, it is often

possible to further improve the performance of the MAC protocol by finding and exploiting

special properties of the scenario. Once a protocol has been optimized for known scenarios,

it can be too complicated to adapt to a specific application for further gains. Following the

principle of generality over optimality, we made the following decisions:

• Multi-hop Compatibility Even though we only consider 1-hop networks in this

dissertation, we intend our design to be compatible in a multi-hop ad hoc network.

We therefore avoid design choices that would make our protocol perform poorly or

behave incorrectly when not all nodes are in the same neighborhood.

• No Specific Traffic Assumptions For the simplicity of analysis, we assume that

the traffic load among all nodes are symmetric. However, we remove such assumptions

in the simulation to ensure that we are not optimizing our protocol for one particular

traffic pattern.

• Simplicity over Performance The fear of adding too much complexity into a proto-

col is that it will never make it to any working system because it takes too much effort

to implement. We opt to keep the protocol as simple as possible without sacrificing

robustness or load-balancing capability.

The principle of robustness via randomization suggests that we randomize key aspects

of the protocol to increase robustness against random channel errors and potential deadlock

among nodes. Here are a few examples of how we apply this principle to our design:

• Random Channel Hopping Nodes hop according to their individually chosen ran-

dom hopping sequences to load-balance traffic across different channels and achieve

resilience to noise on a particular channel.

• Discovery The backup mechanism for discovering neighbors is by simple beaconing at

randomly chosen times and channels. Despite its simplicity, this randomized algorithm

can discover all neighbors in a reasonable amount of time. Because we make minimal

assumptions about the nodes, this backup discovery mechanism is very robust.
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• Scheduling In our protocol, nodes use a randomized scheduler to determine the order

in which receivers are served to prevent deadlock. Using a deterministic scheduler,

two nodes trying to find each other persistently can easily lead to a deadlock.

3.4 Implementation of a Prototype

In Chapter 6, we present a prototype implementation of our proposed protocol. The

goal of implementing a prototype is three fold:

1. Prove Feasibility We hope to prove that the Parallel Rendezvous approach is indeed

practical and robust.

2. Understand Complexity We also hope to discover potential problems ignored in

analysis (for tractability) or neglected in simulation through this implementation ex-

ercise. Implementation forces us to consider all the protocol details and weigh this

added complexity against the benefits of using a multi-channel MAC protocol.

3. Gain Hardware Design Insights An implementation will allow us to identify im-

portant features of the hardware platform necessary to achieve good performance.

These will serve as guidelines when designing future radio specifically for multi-channel

MAC protocols.

The optimization of the various algorithm parameters necessary to achieve the best

performance in an actual system is not among our objectives.

Evaluation of MAC protocols through a real implementation is often very difficult due to

the lack of a suitable hardware platform. MAC protocols have hard real-time requirements

on the order of micro-seconds which can only be satisfied if the protocol logics are mostly

implemented in hardware rather than in software. As a result, very few platforms can

provide both speed and flexibility, and all of them are very time consuming to program.

Luckily, since our major goals are to discover potential implementation difficulties and

prove feasibility, a slower but flexible platform is sufficient. Based on our protocol require-

ments, we first evaluate many potential hardware platforms and then choose one that best

fits our needs. Next, we run micro-benchmarks to measure the performance of the platform.

The results allow us to determine the right parameters to be used with the newly designed
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protocol. For example, how often a node hops channel is dependent on the channel switch-

ing time of the radio. We selectively implement a subset of the most salient features of the

protocol that are most likely to present implementation difficulties. Finally, we measure

the performance of our implementation and reflect on our experience of the implementation

exercise.
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Chapter 4

Comparison of Multi-Channel

MAC Approaches

4.1 Introduction

Researchers have proposed protocols that exploit the multiple channels available in

802.11 and other wireless networks to increase capacity. These protocols are for networks

in which orthogonal channels, such as disjoint frequency bands, are available. Using a

multichannel MAC protocol, different devices can transmit in parallel on distinct channels.

The parallelism increases the throughput and can potentially reduce the delay, provided

that the channel access time is not excessive. Protocols differ in how devices agree on the

channel to be used for transmission and how they resolve potential contention for a channel.

These choices affect the delay and throughput characteristics of the protocol.

There have been only limited studies comparing these protocols under identical oper-

ating conditions. In this chapter, we compare several existing and one new multi-channel

MAC protocols. As may be expected, different protocols are preferable depending on the

operating conditions. Our objective is to contribute to the understanding of the relative

merits of different designs. We first use analytical models to gain insight into the strengths

and weaknesses of the various protocols. We then use simulations to obtain more accurate

comparisons assuming more realistic traffic patterns. We consider only the case of a single

collision domain where all the devices can hear one another.
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In Section 4.2, we describe the protocols that we compare in this chapter. Section 4.3

presents simplified analytical models of the protocols. Section 4.4 discusses the numerical

results that result from the analytical models and compares the performance of the proto-

cols. Section 4.6 describes results of simulations of more realistic models of the protocols.

Section 4.7 concludes the chapter with some comments about the lessons of this study.

4.2 Description of Protocols

There are many variations on multichannel protocols. Our first step is to classify them

based on their general principles of operation. We then describe representative protocols of

the different classes. We also comment on the many variations that have been proposed for

such protocols.

4.2.1 Principles of Operation

Devices using a multichannel MAC protocol exchange control information in order to

agree on the channel for transmitting data. In single rendezvous protocols, the exchange of

control information occurs on only one channel at any time. That single control channel

can become the bottleneck under some operating conditions. Parallel Rendezvous protocols

allow multiple devices to use several channels in parallel to exchange control information

and make new agreements. This approach alleviates the rendezvous channel congestion

problem but raises the challenge of ensuring the idle transmitter and receiver visit the same

rendezvous channel.

In the subsequent sections, we describe the following protocols and their variations:

1. Dedicated Control Channel (single rendezvous using two radios): devices use one

radio to constantly monitor the control channel.

2. Common Hopping (single rendezvous using one radio): devices hop together quickly

and stop upon agreement for transmission.

3. Split Phase (single rendezvous using one radio): devices periodically tune to the

control channel together.

4. McMAC (parallel rendezvous using one radio): transmitter jumps to receiver’s slow

hopping sequence.
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4.2.2 Dedicated Control Channel

Every device has two radios. One radio is tuned to a channel dedicated to control mes-

sages; the other radio can tune to any other channel. In principle, all devices can overhear

all the agreements made by other devices, even during data exchange. This system’s effi-

ciency is limited only by the contention for the control channel and the number of available

data channels.

Fig. 4.1(a) illustrates the operations of Dedicated Control Channel. In the figure, chan-

nel 0 is the control channel and channels 1, 2, and 3 are for data transmission. When device

A wants to send to device B, it transmits an RTS (request-to-send) packet on the control

channel. That RTS specifies the lowest-numbered free channel. Upon receiving the RTS,

B responds with a CTS (clear-to-send) packet on the control channel, confirming the data

channel suggested by A. The RTS and CTS packets also contain a Network Allocation Vec-

tor (NAV) field, as in 802.11, to inform other devices of the duration for which the sender,

the receiver, and the chosen data channel are busy. Since all devices listen to the control

channel at all times, they can keep track of the busy status of other devices and channels

even during data exchange. Devices avoid busy channels when selecting a data channel.

Examples of this approach include DCA (Dynamic Channel Allocation) [32], DCA-

PC (Dynamic Channel Allocation with Power Control) [33] and DPC (Dynamic Private

Channel) [9].

The major advantage of Dedicated Control Channel is that it does not require time

synchronization–rendezvous always happen on the same channel. The disadvantage of this

protocol is that it requires a separate control radio and a dedicated channel, increasing cost

and decreasing spectral efficiency when few channels are available.

4.2.3 Common Hopping

In this approach, devices have only one radio. Devices not exchanging data cycle through

all channels synchronously. A pair of devices stop hopping as soon as they make an agree-

ment for transmission and rejoin the common hopping pattern subsequently after transmis-

sion ends.

The Common Hopping protocol improves on Dedicated Control Channel in two respects:

1) it use all the channels for data exchange; 2) it requires only one transceiver per device.
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Figure 4.1. Basic operations of different MAC approaches.

As shown in Fig. 4.1 (b), the hopping pattern cycles through channels 0, 1, 2 and 3. When

device A wants to send to device B, it sends an RTS to B on the current common channel.

If B receives the RTS properly, it returns a CTS on the same channel. Devices A and B

then pause hopping and remain on the same channel during data transfer while the other

idle devices continue hopping. When they are finished, devices A and B rejoin the common

hopping sequence with all the other idle devices. It is possible that the common hopping

sequence wraps around and visits the channel A and B are using before they finish data

exchange. Idle devices sense the carrier and refrain from transmitting if it is busy.

While A and B are exchanging data, they are unaware of the busy status of the other

devices. Hence, it is possible that a sender sends an RTS to a device that is currently
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busy on a different channel. Another issue with this approach is that devices hop more

frequently. State-of-the-art integrated circuits implementations of tri-mode 802.11a/b/g

radios require only about 30µsec for its voltage-controlled oscillator (VCO) to settle [34],

but commercial off-the-shelf 802.11b transceivers require about 150 to 200µsec to switch

channels [17]. Considering that an RTS in 802.11b takes only about 200 − 300µsec, the

hopping time penalty is not negligible. The approach also requires devices to have tight

synchronization. Examples of this design approach include CHMA (channel hoping multiple

access) [31] and CHAT (Channel Hopping multiple Access with packet Trains) [30].

4.2.4 Split Phase

In this approach, devices use a single radio. Time is divided into an alternating sequence

of control and data exchange phases, as shown in Fig. 4.1 (c). During a control phase, all

devices tune to the control channel and attempt to make agreements for channels to be

used during the following data exchange phase.

If device A has some data to send to device B, it sends a packet to B on the control

channel with the ID of the lowest numbered idle channel, say, i. Device B then returns

a confirmation packet to A. At this point, A and B have agreed to use channel i in the

upcoming data phase. Once committed, a device cannot accept other agreements that

conflict with earlier agreements. (Note that when hidden nodes are prevalent, the sender

and the receiver might have a very different view of which channels are free. A more

sophisticated agreement protocol is then needed, as proposed in [25].)

In the second phase, devices tune to the agreed channel and transfer data. The protocol

allows multiple pairs to choose the same channel because each pair might not have enough

data to use up the entire data phase. As a result, the different pairs must either schedule

themselves or contend during the data phase. In the analysis, we assume that at most one

device pair can be assigned to each channel, so there is no need for scheduling or contention.

In the simulations, we assume random access as suggested in MMAC [25].

The advantage of this approach is that it requires only one radio per device. However, it

requires time synchronization among all devices, though the synchronization can be looser

than in Common Hopping because devices hop less frequently. Examples of this approach

are MMAC [25] and MAP (Multichannel Access Protocol) [6]. Their main difference is that
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the duration of the data phase is fixed in MMAC whereas it is variable in MAP and depends

on the agreements made during the control phase.

4.2.5 Parallel Rendezvous

Parallel rendezvous protocols differ from the previous three in that multiple device pairs

can make agreements simultaneously on distinct channels. The main motivation is to over-

come the single control channel bottleneck. However, since there are multiple rendezvous

channels, special coordination is required so that two devices can rendezvous on the same

channel. One solution is for each idle device to follow a “home” hopping sequence and for

the sending device to transmit on that channel to find the intended receiver. Examples of

this approach include SSCH (Slotted Seeded Channel Hopping) [5] and McMAC [23].

In SSCH there are as many hopping sequences that each device can follow as there are

channels. Each sequence is uniquely determined by the seed of a pseudo-random generator.

Each device picks multiple (e.g., 4) sequences and follows them in a time-multiplexed man-

ner. When device A wants to talk to B, A waits until it is on the same channel as B. If A

frequently wants to talk to B, A adopts one or more of B’s sequences, thereby increasing

the time they spend on the same channel. For this mechanism to work, the sender learns

the receiver’s current sequences via a seed broadcast mechanism.

In McMAC, each device picks a seed to generate an independent pseudo-random hopping

sequence. When a device is idle, it follows its default hopping sequence as shown in Fig. 4.1

(d). Each device puts its seed in every packet it sends, so its neighbors eventually learn

its hopping sequence. For simplicity, devices are assumed to hop synchronously. The

hopping can be made less frequent than Common Hopping to reduce the channel switching

and synchronization overhead. When device A has data to send to B, A flips a coin and

transmits with some probability p during each time slot. If it decides to transmit, it tunes

to the current channel of B (e.g., channel 1) and sends an RTS. If B does not reply with a

CTS, either due to an error or because B is busy, then A tries again later by coin flips. If B

replies with a CTS, both A and B stop hopping to exchange data. Data exchange normally

takes several time slots. After the data exchange is over, A and B return to their original

hopping sequence as if there was no pause in hopping.

SSCH and McMAC are similar in that they allow devices to rendezvous simultaneously
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on different channels. In the rest of the chapter, we focus on McMAC as an example protocol

in this category.

4.2.6 Protocol Variations

In this chapter, we compare four generalized approaches to designing multi-channel

MAC protocols. An actual protocol includes fine adjustments that deviate from the gen-

eralized scheme. Instead of incorporating all possible variations of the four schemes in our

analysis and simulation, we briefly mention several proposed improvements and discuss their

effects qualitatively.

For Dedicated Control Channel, it is possible to use the control channel for data transfer

when all other channels are busy. For Split Phase, adaptation of the duration of data and

control phases was proposed by [6]. [24] suggests advertising the number of packets for each

destination in the rendezvous message to achieve better load balancing across channels.

4.3 System Model and Analysis

In this section, we describe and analyze simplified models of the protocols. The objective

of the models is to enable numerical comparisons of the performance characteristics of the

protocols under identical operating conditions. The following simplifications are made for

all the protocols:

1. Time is divided into small slots, with perfect synchronization at slot boundaries;

2. Nodes contend for medium using the ALOHA protocol. Under this model, each node

wanting to transmit flips a coin during each time slot. With some probability ptx, it

will transmit. If exactly one node transmits, the packet is successfully received by the

receiver. Otherwise, collision occurs and the slot is wasted.

3. Upon making an agreement, the devices can transmit only one packet (one may think

of a ”packet” as the amount of data that can be transferred per channel agreement);

4. The packet lengths are independent and geometrically distributed with parameter q

(i.e., with mean 1/q);

24



5. Devices always have packets to send to all the other devices; in each time slot, an idle

device attempts to transmit with probability p.

The first simplification enables us to use discrete time models. The second one allows

for a simple model to account for the overhead of contention. The third one reduces the

efficiency of all the protocols since it requires a new agreement for every packet. The fourth

simplification is needed to construct simple Markov models. We use the fifth simplification

to identify the throughput of the protocols.

These simplifications allow us to form a Markov chain whose state Xt is the number

of communicating pairs at time t. When Xt = k, 2k devices are involved in data transfer

while the other N − 2k devices are idle. The maximum number of pairs is bounded by the

number of MD of data channels and bN/2c, half the number of devices. Accordingly, the

state space of Xt is

S := {0, 1, . . . ,min(b
N

2
c,MD)}.

The number MD of data channels is equal to M for all approaches except Dedicated Control

Channel for which MD = M − 1 since a channel is reserved for control.

A state transition happens when new agreements are made or existing transfers end.

Let S
(i)
k and T

(j)
k respectively denote the probability that i new agreements are made and

the probability that j transfers terminate in the next slot when the state is k. The state

transition probability pkl from state k at time t to l at time t+1 can be expressed as follows:

pkl =

k
∑

m=(k−l)+

S
(m+l−k)
k T

(m)
k . (4.1)

In this expression, m is the number of transfers that terminate and its value is between

(k − l)+ and k. At least (k − l)+ transfers should terminate to have l pairs in the next slot

and k is the maximum number of terminating transfers. Also, the probability T
(j)
k that i

transfers finish when the system is in state k is given by the following expression:

T
(j)
k = Pr[j transfers terminate at time t|Xt−1 = k]

=

(

k

j

)

qj(1 − q)k−j.
(4.2)

Equation (4.1) is further simplified in the single rendezvous protocols such as Dedicated

Control Channel or Common Hopping because S
(i)
k = 0 for all i > 1. Indeed, at most one
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additional pair can meet in the next slot in a single rendezvous protocol. Accordingly, for

such protocols, the equation becomes

pkl = T
(k−l)
k S

(0)
k + T

(k−l+1)
k S

(1)
k (4.3)

where T
(j)
k = 0 when j < 0.

The average utilization ρ per channel can be obtained as

ρ =

∑

i∈S i · πi

M
(4.4)

where πi is the limiting probability that the system is in state i and S is the state space of

the Markov chain. One obtains πi by solving the balance equations of the Markov chain.

We then derive the total system throughput by multiplying ρ by the channel transmission

rate and by MD, the number of data channels.

4.3.1 Dedicated Control Channel

Devices constantly monitor the control channel and keep track of which devices and

data channels are idle. When a device has packets to transmit to an idle receiver, it sends

an RTS message for that idle receiver on the control channel. If it hears the RTS, the

receiver replies to the sender with a CTS. Then both the sender and the receiver tune to

the agreed channel to start transmission.

An agreement is made when exactly one idle device attempts to transmit an RTS on

the control channel. Hence, the success probability S
(i)
k in the next time slot, given that k

pairs are communicating in the current slot, is:

S
(i)
k =















(N − 2k)p(1 − p)(N−2k−1), if i = 1;

1 − S
(1)
k , if i = 0;

0, otherwise.

(4.5)

The transition probabilities (4.3) can be rewritten as follows:

pkl =



























0 if l > k + 1

T
(0)
k S

(1)
k , if l = k + 1;

T
(k−l)
k S

(0)
k + T

(k−l+1)
k S

(1)
k , if 0 < l ≤ k;

T
(k)
k S

(0)
k if l = 0.

(4.6)
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We obtain the system throughput Rd as

Rd = (M − 1)Cρd (4.7)

where C is the channel capacity and ρd is the data channel utilization that we calculate

using (4.4); the subscript d refers to the Dedicated Control Channel approach.

4.3.2 Common Hopping

The analysis of this protocol is very similar to that of the Dedicated Control Channel,

but with three differences: 1) devices do not track the status of each other; 2) some slots are

busy and unavailable for control messages; 3) the switching penalty is incurred whenever a

device hops.

Information about Other Devices

Even if an RTS is sent without collision, the receiver may not respond because it might

be busy on a different channel. When a device is sending or receiving, it cannot keep

track of others. At best, idle devices can keep track of the agreements that others make.

However, this information becomes stale once the devices become busy. We approximate

this situation by assuming that the sender selects the receiver uniformly out of N − 1 other

devices and that the probability that the selected receiver is not busy is N−2k−1
N−1 .

Busy Slots

The protocol can make a new agreement only when the current common hopping channel

is idle. We model this effect by considering that the probability that idle devices can use a

given slot to make an agreement is (M − k)/M when k channels are busy.

Combining the effects described in the previous two points, the success probability S
(i)
k

now becomes:

S
(i)
k =















(N − 2k)p(1 − p)(N−2k−1) N−2k−1
N−1

M−k
M , if i = 1;

1 − S
(1)
k , if i = 0;

0, otherwise.

(4.8)

The factor N−2k−1
N−1 in (4.8) is the probability that the receiver is one of the N − 2k − 1

idle devices other than the transmitter among the other N − 1 devices. The last term M−k
M
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is introduced to represent the chance that the common hopping channel is busy when k

channels are busy.

Channel Switching Penalty

Let ts and tp denote the duration of one slot and the channel switching penality re-

spectively. One slot in the Common Hopping protocol has duration t′s = ts + tp. Since

the hopping penalty does not occur when devices transmit data in the other schemes, we

can think of each slot as being slightly longer in Common Hopping, which results in a

higher packet termination probability q. To make a fair comparison, one should choose

q′ = q ·
ts+tp

ts
. The system throughput Rc is as follows:

Rc = MCρc (4.9)

where C is the channel capacity and ρc is the utilization of the system that can be calculated

using (4.4). The subscript c denotes Common Hopping. Note that the multiplier is M

instead of M − 1 in Dedicated Channel.

4.3.3 Parallel Rendezvous

We analyze McMAC [23] in this section. In McMAC, each device has a home pseudo-

random hopping sequence defined by a seed. Eventually, through broadcast, every device

knows the seed of the other devices and can determine their home channel at any given

time.

In McMAC, a device is unaware of which devices and channels are idle. We assume

that any idle device is equally likely to have any channel as its current home channel and

that these home channels are independent. When a device is idle, it attempts to transmit

in the next time slot with probability p. In that case, the device chooses another device at

random and goes to its channel.

To make j new agreements the following conditions must hold:

(1) The number A of devices that attempt to transmit should be at least j.

(2) The devices attempting to transmit should be on a channel without other attempts.

Let O denote the number of channels where those isolated attempts take place; we

call these channels “one-attempt channels.”
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(3) The channel where a device attempts to transmit should be idle. We designate by I

the number of idle channels among the O one-attempt channels.

(4) Designate by J the number of transmitters out of I who can find a receiver that is

idle and does not attempts to transmit. Then J = j.

We compute the probability S
(i)
k by conditioning on the values of O, I and A. We can

write

S
(j)
k =

∑

o,i,a

P [A = a]P [O = o|A = a]P [I = i|O = o,A = a]

× P [J = j|I = i, A = a,O = o]

• P [A = a] =
(N−2k

a

)

pa(1 − p)(N−2k−a) for a ≥ j;

• P [O = o|A = a] is the probability that o devices out of a are in a channel without other

attempts given that a devices attempt. This probability is the same as the probability

that o urns out of M contain exactly one ball after we throw a balls independently

and uniformly in M urns. If we let Y n
i be the number of urns with i balls at the n-th

throw, then (Y n
0 , Y n

1 ) is a Markov chain and the probability distribution of Y a
1 can

be computed recursively over n = 1, . . . , a from the transition probabilities of that

Markov chain.

• P [I = i|O = o,A = a] is the probability that i channels out of o one-attempt channels

are idle, which is equivalent to the probability that exactly o− i out of o one-attempt

channels are busy. Recall that k out of M channels are busy. We pick k busy chan-

nels out of M uniformly and also pick o one-attempt channels out of M uniformly,

independently of each other. The intersection of the two sets corresponds to busy

one-attempt channels. The conditional distribution of I is given by

P [I = i|O = o,A = a] = P [I = i|O = o] =

(

k
o−i

)(

M−k
i

)

(M
k

) .

The first equality comes from that I and A are conditionally independent given O.

The denominator is the number of ways to select k busy channel out of M . The

numerator is the number of ways to select o − i one-attempt channels among k busy

ones and to select i one-attempt channels among M − k channels.

• We approximate the probability that a sender that attempts to transmit alone in

an idle channel finds its receiver by ps = N−2k−a
N−1 . Moreover, we assume that the
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i transmitters are independently successful in finding their receivers. Let J be the

number of successful senders who are alone in an idle channel and are able to find

their receiver successfully. Then,

P [J = j|I = i, O = o,A = a] = P [J = j|I = i, A = a]

=

(

i

j

)

pj
s(1 − ps)

(i−j).

4.3.4 Split-Phase Approach

In Split-Phase, time is divided into alternate control and data phases with durations c

and d, respectively. Let R(n) be the throughput of the n-th period. By ergodicity,

lim
n→∞

∑n
i=1 R(n)

n
→ Rs

where Rs is the expected throughput per period of the Split Phase approach.

We designate by Kn the random number of agreements made during the n-th control

phase and we define

φc
i := P (Kn = i), for i = 0, 1, 2, . . . , γ := min

(

c, b
N

2
c

)

. (4.10)

The above probability can be computed using the following recursive relationship on the

duration c:

φc
i = si−1φ

c−1
i−1 + (1 − si)φ

c−1
i , (4.11)

where si is the probability that an agreement is made in a slot when i pairs of nodes have

already made an agreement. Nodes who have already made an agreement do not contend

for medium. Hence, si = (N − 2i)ptx(1 − ptx)N−2i−1 where ptx is the probability of a node

deciding to transmit in each slot according to the ALOHA model. Note that φc
0 = (1− s0)

c

and φc
i = 0 when i > c.

Let R(i, d) denote the average throughput in the duration of d when i agreements are

made in the control phase. Then the channel utilization ρs can be computed using the

following equation:

ρs =
1

(c + d)M

γ
∑

i=1

φc
iR(i, d). (4.12)

The system throughput Rs is

Rs = MCρs (4.13)
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where C is the channel capacity.

The throughput R(i, d) when i new agreements are made in the control channel cannot

be larger than Md. If we assume perfect distribution of i agreements over M channels, each

channel has either l or l+1 agreements where l := b i
M c. Since the packet size is geometrically

distributed, the channel that has l agreements can be utilized up to min
(

∑l
j=1 Yj , d

)

slots

where the Y ′
j s are geometrically distributed random variables. Therefore, the averaged

throughput can be upper-bounded as follows:

R(i, d) ≤ (M − r)E



min





l
∑

j=1

Yj, d







 + rE



min





l+1
∑

j=1

Yj, d







 (4.14)

where r is the number of channels with l + 1 agreements. Thus (M − r) is the number of

channels with l agreements.

Let Wl be
∑l

j=1 Yj. By conditioning on Pr(Wl ≤ d),

E[min(Wl, d)] = d(1 − Pr(Wl ≤ d)) + E[Wl|Wl ≤ d]Pr(Wl ≤ d) (4.15)

One can then calculate (4.15) numerically using an appropriate negative binomial distrib-

ution.

The right side of (4.14) is an upper bound since we assume perfect alignments among

l pairs or l + 1 pairs in each channel. The real throughput can be smaller due to collision

among l pairs. However, we can use the right side as an approximation when the value l is

small.

If c is too short, the multiple channels may not be utilized; On the other hand, if c is

too long, the packet may suffer the long delay and under utilization. Therefore, choosing

appropriate values for c and d is crucial to the performance of this scheme.

It is possible for multiple pairs of nodes to be assigned to the same channel because there

are fewer channels than the number of successful sender/receiver pairs in the control phase.

Therefore, in addition to the contention in the control phase, there is also competition

for medium in the data phase. In MMAC[25], senders contends for medium in the data

phase using RTS/CTS. To simplify the analysis, however, we assume that the different pairs

use the medium completely efficiently in the data phse without wasting any time due to

contention or control packet overhead.
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4.4 Numerical Results

In this section, we compare the different protocols using the analytical models that

we have described so far. Several approximations were made in the analysis presented in

the previous section. To verify that such approximations are reasonable, we compared the

analytical results to Monte Carlo simulations of the protocol models. We call this set of

simulations SimLite to distinguish them from more sophisticated simulation scenarios to

be introduced later. We also vary the parameters such as the number of channels, channel

switching time, number of devices to observe their effects on the throughput.

We created two simulation scenarios: 802.11b and 802.11a. In the 802.11b scenario,

there are 20 devices, three channels, and each channel has a data rate of 2 Mbps. In

the 802.11a scenario, there are 40 devices, 12 channels with a rate of 6 Mbps each. The

time it takes for an RTS/CTS exchange are 812µs and 200µs respectively in 802.11b and

802.11a scenarios. The channel switching time is 100µs by default. For Split Phase, the

default control phase/ data phase durations are 20ms/40ms for 802.11b and 10ms/10ms

for 802.11b. The packets have a random length with a geometric distribution with average

length of 1 KB or 10 KB. Since there is no queueing, one should think of the packet length

as the amount of data a device can transfer after each channel agreement. Nonetheless, we

will continue to use the term packet length throughout this section. Fig. 4.2 and Fig. 4.3

show that the analytical throughput models of all 4 approaches are in close agreement with

SimLite for both 802.11b and 802.11a scenarios. This shows that the approximations we

made in our analysis are reasonable.

4.4.1 802.11b Scenario

Fig. 4.2 shows the throughput results of four different protocols under the 802.11b

scenario.

Dedicated Channel Protocol. The protocol can use only two channels out of three for data

which limits its maximum throughput to 4 Mbps which is much less than Common Hop-

ping or McMAC. Given that constraint, however, Dedicated Control Channel still achieves

3.8Mbps.

Parallel Rendezvous Although the control channel is not saturated, McMAC still per-

forms the best for both short and long packets because (i) it uses all three channels for data
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Figure 4.2. Throughput predicated by analysis vs. simulation (SimLite) under 802.11b
settings.

transfer, and (ii) it does not have any quantization overhead of Common Hopping since it

can reuse a channel as soon as the previous transfer has finished. Common Hopping cannot

reuse a channel until the common hopping sequence has wrapped around to it. For long

packets, McMAC achieves a remarkable 5.5 Mbps out of 6 Mbps.

Split-phase Approach. The throughput of Split Phase is the lowest for 1 KB packets

and close to the lowest for 10 KB packets even though we have optimized the durations of

the control and data phases (i.e., c and d) to be 20 msec and 40 msec.

4.4.2 802.11a Scenario

The bar chart on the right of Fig. 4.3 shows the throughput results of the four different

protocols under the 802.11a scenario.

Parallel Rendezvous. McMAC achieves about 31Mbps in the small packet size case (left)

and 60Mbps for the large packet size case (right). Note that Dedicated Control Channel

performs slightly better than McMAC when packets are large, but recall that it uses two

radios.
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Figure 4.3. Throughput predicated by analysis vs. simulation (SimLite) under 802.11a
settings.

Control Channel Congestion. In single rendezvous protocols where there is only one

control channel, a combination of short packets and a large number of channels can cause

control channel congestion as shown on Fig. 4.3. The best possible throughput for single

rendezvous channel protocols can be estimated as follows. On average, one agreement is

made every 1/Psucc ≈ e = 2.718 slots. After each agreement, a 1 KB packet is transferred

on average. Since it takes 6.8 slots to transfer 1 KB packet (200µ sec per slot), the max-

imum throughput achievable by any single rendezvous protocol under these assumptions

is (6.8/e) × 6Mbps ≈ 15Mbps. Dedicated Control Channel, Common Hopping and Split

Phase achieve 15Mbps, 9Mbps, and 8Mbps respectively.

Dedicated Channel with Long Packets. Observe that Dedicated Control Channel

achieves more than 63Mbps when the average packet size is 10Kbyte. With a large average

packet size, the control channel no longer is a bottleneck because for the same amount of

data traffic, the number of channel agreements required is greatly reduced. Moreover, when

12 channels are available, using one of them for control traffic is a small overhead to pay.

34



4.4.3 Scaling Number of Channels

Fig. 4.4 shows the throughput (y-axis) when using different numbers of channels (x-axis)

for two average packet sizes. In order to ensure that we have enough number of nodes to

effectively use all the available channels, we set the number of devices in each simulation to

be 6 times the number of channels. We assumed that the bandwidth per channel is 2Mbps.

The slot time is equal to 812µs while the channel switching time is 100µs. For Split Phase,

we assume the control and data durations to be 20 msec and 40 msec respectively.
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Figure 4.4. Throughput vs. number of channels. Average packet size is 1Kbyte (a) or
10Kbytes (b).

McMAC scales well with an increasing number of channels while the single rendezvous

protocols do not. In Fig. 4.4(a) where packets are smaller, the throughput of all the single

channel protocols (Split Phase, Dedicated Control Channel, Common Hopping) flatten out

when the number of channels is more than 6 because of the congestion on the control

channel. With longer packets, the flattening of the curves starts to occurs later. This shows

that the single rendezvous protocols can use more channels efficiently in such case. However,

the bottleneck of the control channel is only delayed, but not avoided. As we increase the

number of channels, eventually, the single control channel will become the bottleneck and

limit the throughput of the system.

In [24](Fig.11), So et al. show that the performance of Split Phase is better than Dedi-

cated Control Channel as the number of channels increases via simulation. They compare

MMAC, a Split Phase algorithm with a Dedicated Control Channel approach, DCA, using
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3 to 6 channels. The aggregate throughput of MMAC with 6 channels was about 3.7Mbps

while that of the DCA was 2.3Mbps. The overall trend of their results are opposite to that

of our findings shown in Fig.4.4. The discrepancy stems mainly from two differences. First,

in the channel scaling study of [24] (Fig. 11), the authors assume a sender can send multiple

packets to the same receiver within each data phase due to queueing. Second, they assume

that the traffic among different device pairs are disjoint, such that each receiver will only

communicate with one sender. When the traffic is non-disjoint but queueing is still present,

[24] shows the performance gap between the two approaches narrows.

4.4.4 Sensitivity to Packet Size

Fig. 4.5 shows the performance with different average packet sizes (x-axis) when the

number of channels is 3 (left) and 12 (right). The throughput of all schemes increases

with the size of packets which can be explained by the increase in the data transfer du-

ration after each channel agreement. Observe in the left plot (three channels case) that

the Dedicated Control Channel becomes worse than Split Phase with packet sizes larger

than 5KB. Dedicated Control Channel is bounded by 4Mbps since one channel is used for

control messages. The performance of Split Phase depends very much on the packet sizes.

Its throughput increase from 1.2Mbps with 1Kbyte packet to 3.5Mbps with 5Kbyte packet.

It is recommended that the Split Phase transmit as much as possible when a mobile gains

access to the medium to maintain reasonable channel utilization. However, even when the

packet size is large, it is still worse than the others in the right plot (12 channels). Another

interesting observation in the right plot is that the slope of Dedicated Control Channel is

very steep when packet are short. As the control channel congestion alleviates quickly with

larger packets, the throughput increases rapidly.

4.4.5 Switching Penalty

Fig. 4.6 shows the performance with increasing switching penalty from 100µs to 2000µs

when the number of channels is 3 (left) and 12 (right), respectively. The commercial off-the-

shelf 802.11b transceivers require about 150 to 200µsec to switch channels. The throughput

of Common Hopping and McMAC decrease faster whereas that of Split Phase and Dedicated

Control Channel are almost insensitive to the switching time. This is because the first two
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Figure 4.5. Throughput vs. packet size. (a) Slot Time = 812µs. Switching Time = 100µs.
2Mbps/channel. (b) Slot Time = 200µs. Switching Time = 100µs. 6Mbps/channel.

approaches are based on hopping and incur a penalty every time they hop. When the

switching penalty is high, Dedicated Control Channel and Split Phase are more efficient.

4.5 Simulation Model

We developed a slotted-time simulator in Matlab to compare the different protocols in

more realistic settings. All nodes have the same time slot boundaries. They can hear each

other in this 1-hop network. Packets are lost due to collision but not to random noise.

There are three major differences between the simulation and the analytical model. The

first is the existence of per-destination packet queues in each device in the simulator in order

to the effects of queueing and delay. Second, the traffic models in the simulations are more

realistic. Third, several protocol improvements are added in the simulations.

The assumptions and key features of the simulator are as follows:

• Coarse-Grained Discrete Time: The simulator works in discrete time. Each slot cor-

responds to the time required for making an agreement (e.g., RTS and CTS).

• Modeling of CSMA/CA Medium Contention: In the analytical model, we approxi-

mated the transmission success probability using the slotted ALOHA model. The
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Figure 4.6. Throughput vs. Switching Penalty. (a) Slot Time = 812µs. 2Mbps/channel.
(b) Slot Time = 200µs. 6Mbps/channel.

carrier-sense feature in today’s radios in effect reduces the penalty of a collision from

hundreds of micro-seconds (packet time scales) to carrier-sense slots (micro-seconds).

We introduce a parameter, the contention success probability psucc, to model the

medium contention mechanism. During each time slot, with probability psucc, a winner

is chosen randomly among all the devices contending for the medium on that channel.

By picking appropriate values of psucc we believe that this model can approximate

the behavior and performance of CSMA/CA. One may argue that this model is an

oversimplification of the situation. However, since this approximation is used for all

models, it should result in a fair comparison.

• Queueing of Packets: Each device stores packets in per-destination queues. To im-

prove performance, a sender can send multiple packets to the same destination back-

to-back without contention after every packet. Once a device starts sending data, it

continues until either its queue for this destination becomes empty, a preset medium

occupancy limit is reached, or in the case of Split Phase, that the data phase has

ended.

• Traffic Models: We use two classes of traffic: constant bit rate (CBR) which models

voice or video traffic and file transfers. Traffic generation will be discussed in more

detail in the upcoming Sec.4.5.1.

• Split-Phase: For the Split-Phase protocol, to increase performance, we allow multiple
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pairs to share a channel in the same data phase if no more free channels are available,

as in MMAC [24]. More details can be found in Sec.4.5.2.

4.5.1 Traffic Generation

Two types of traffic are generated: CBR and file packets. The CBR traffic models voice

or video flows with periodic packet arrival of a particular size. File traffic is modeled as

i.i.d. packet arrivals among all node pairs. File traffic is unidirectional. During each time

slot, a packet will arrive at node i for any other node j with some probability. The arrival

of packets at every (i,j) pair is i.i.d. in each of the time slots. The probability of arrival is

determined by the desired file traffic load, number of nodes, average packet size, and the

number of channels.

CBR traffic generation is based on a simple periodic packet arrival model between

pairs of nodes who engage in bi-directional conversation. Each node talks to δ distinct

communication partners. We call δ the degree of communication. At the beginning, all

nodes have no CBR connections. Therefore, node 1 has δ free degrees initially. We choose

δ neighbors uniformly at random and create δ CBR connections between node 1 and them.

Next, we examine node 2. Node 2 has either δ or δ − 1 free degrees, depending on whether

node 1 has a connection to it. For each of the free degree, a distinct neighbor for which

it does not already have a connection is chosen randomly. We proceed similarly to create

connections for each node until either all nodes have δ distinct communication partner, or it

is not possible to create any more connections because no more distinct neighbors are left.

The latter can happen deterministically when the number of nodes and δ are both odd. It

can also happen by chance. When it happens, the process of generating a traffic pattern

restarts from scratch.

4.5.2 Improvements to Split-Phase

During the control phase, all nodes go to the first channel to meet their receivers.

Senders only attempt to make a channel agreement with a receiver if not both of them are

already committed to a channel in the upcoming data phase. We assume nodes can overhear

all control packets in the control phase and so they know which nodes are committed. When

a sender successfully finds its receiver, they choose a data channel with the fewest number
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of known pairs of sender/receiver. (This is different from assigning node pairs to channels

in a round-robin fashion.)

At the beginning of the data phase, uncommitted nodes go to the last channel which

is likely to be less congested. During the data phase, sender nodes have to compete for

medium for a second time because multiple pairs can choose the same data channel. This

contention is also modeled by picking a successful sender/receiver pair with some fixed

probability as is the case in the control phase.

Since we assume nodes can overhear all the control packets in the control phase, they

know which nodes are present in the same channel. Nodes can send packets to any other

node on the same channel regardless of whether they have made an agreement or not. Once

a contention is successful, the data channel is reserved for the pair until either the data

phase ends or that the sender has run out of packets to send to this receiver, whichever

occurs first.

4.6 Simulation Results

4.6.1 Impacts of Receiver Contention

For multi-channel MAC, the ideal traffic pattern is a disjoint one in which each sender

only communicates with one receiver, and vice versa. When the traffic is non-disjoint, it

is possible for a sender to pick a busy receiver, thereby wasting precious medium time.

To investigate the impact of receiver contention, in this section, we vary the number of

simultaneous CBR connections per device. Each device sets up CBR connections to δ

distinct destinations. The first device chooses δ different destinations. The rest of the

nodes choose up to δ destinations if they are involved in less than δ connections. Only

destinations who have less than δ connections are eligible. A larger value of δ corresponds

to more contention for receiver devices which will likely lower efficiency and increase delays.

Fig. 4.7 shows the throughput of various schemes as δ increases under the 802.11b

settings. Fig. 4.8 shows the throughput under the 802.11a settings. The graphs on the left

correspond to δ = 1 and the right ones to δ = 5. Next, we summarize our observations.
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Figure 4.7. Avg per packet delay vs. CBR traffic load. Left: δ = 1; Right: δ = 5; 802.11b
settings.

4.6.2 Throughput Degradation

Given a fixed load, as δ increases, the average amount of data sent over each pair of

devices decreases. Therefore, one expects a shorter communication to take place after each

channel agreement. As a result, the frequency for making channel agreements increases,

thereby decreasing the throughput for all schemes.

Moreover, for Split Phase, a further decrease in the throughput results as δ increases

because each sender has to visit more receivers to deliver its packets. When these receivers

have chosen different channels during a data phase, a sender can only deliver a fraction of

packets to the subset of receivers on the same channel, resulting in further loss of efficiency.

For Common Hopping, each device cannot keep track of which other devices are busy.

When δ = 1, the receiver is always available when a sender successfully wins contention on

the common hop since each receiver talks to only one sender. However, when δ is large,

the probability that any particular receiver is available approaches N−2k−1
N−1 where k is the

number of busy device pairs. This probability is small when the fraction of devices that

are busy is large (i.e., high utilization and a small total number of devices compared to

the number of channels). As a result, the last few channels are more difficult to be used

efficiently.

For McMAC, the cause of degradation is similar to that of Common Hopping. How-
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Figure 4.8. Avg per packet delay vs. CBR traffic load. Left: δ = 1; Right: δ = 5; 802.11a
settings.

ever, since it allows parallel rendezvous, McMAC suffers less than Common Hopping when

channel agreement traffic increases.

Finally, in Common Hopping, after a channel has been reserved by a pair of nodes, this

channel cannot be reused by another pair until the common hopping sequence visits this

channel again M − 1 slots later where M is the number of channels. In other words, the

medium can only be reserved in multiples of M − 1 slots. When δ increases, the amount

of data to transmit after each channel agreement decreases, and so a larger fraction of the

M − 1 slots is wasted. In 802.11a, 12 channels are available compared to 3 in 802.11b. This

explains why the throughput degradation of Common Hopping as δ increases is more severe

in the 802.11a scenario.

4.6.3 Insensitivity of Dedicated Channel

From Fig.4.7 (i.e., 802.11b scenario), we observe that Dedicated Control Channel is

insensitive to the degree of communication because it knows the channel and device busy

status perfectly by using a second radio. Since one of the three channels is set aside for

control communication, the increase rendezvous traffic due to an increase in δ is easily

absorbed by the abundance of control channel capacity. As the number of available channels

increases to 12 in 802.11a (Fig.4.8), the cost of using an extra channel for control purposes is
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relatively small. The unique ability to know the channel and busy status of device precisely

allows Dedicated Control Channel to achieve very good performance.

4.6.4 Delay Curves of Dedicated Channel

The delay curves of Dedicated Control Channel in Fig.4.8 are not convex under the

802.11a settings and this requires some explanation. Using Dedicated Control Channel,

a pair of devices must first rendezvous on the control channel. Second, they transfer one

or more packets on the agreed data channel. The two stages saturates under different

conditions.

The rendezvous process can generate at most 1
e or 0.3679 new agreement during every

slot, on average. (We assume contention is successful with probability psucc = e.) In

the 802.11a scenario, each 1024-byte packet lasts roughly 7 time slots. If there were no

queueing, to fully utilize the 12 channels, the rendezvous process must generate 12/7 > 1

new channel agreements per time slot which is impossible. Therefore, the control channel

saturates before the data channels do, as the load increases.

When the control channel saturates at a load of roughly 1
e/12

7 or 21.46%, the throughput

is (0.2146 × 6 Mbps/channel ×12 channels) or 15.45 Mbps. Threfore, at a load under

15.45 Mbps, the delay is very low because both stages are under-utilized. Once the first

stage starts to saturate, the delay increases quickly for the first time. This explains the first

jump in the delay at around 15 Mbps.

As the load increases, the number of queues waiting to be serviced in stage 1 remains

constant due to the fixed periodic traffic pattern, the average service delay in stage 1 is

relatively insensitive to load. Since the total delay is dominated by the stage 1 delay before

the second stage saturates, the delay rises very slowly. Finally, when the load approaches

the capacity of the data channels, the second stage saturates, and hence the delay increases

rapidly again.

4.6.5 Impact of Limiting Medium Occupancy Time

In this subsection, we evaluate the delay performance using a mixture of long-lived CBR

flows and some file transfers. Allowing a device to transmit until the queue becomes empty

can help achieve a higher throughput because more data can be transferred per channel
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agreement. However, the delay and/or jitter experienced by CBR flows might be worse

because we do not treat CBR traffic differently from file traffic. We are interested in the

effects of limiting the maximum occupancy time on the average delay experienced by CBR

flows.

We randomly pair up each device with another and add a CBR connection between

them. The degree of communication is therefore 1. The CBR connections have the same

data rate, and sum up to 10% of the channel utilization. Then we start random i.i.d. file

transfers with geometrically distributed lengths among every pair. The mean file size is

10KB. The arrival rate of the files is adjusted to give a total offered load between 10% (i.e.,

no file traffic) to 90% (i.e., 80% file traffic). MAC protocols send both types of packets

equally in a first-come-first-served order for the same destination.

We ran the simulation experiments with two sets of network parameters. However,

due to the similarity between the two, we present only the results pertaining to the 802.11a

scenario. Fig. 4.9 shows the delay experienced by CBR traffic under 802.11a with occupancy

limits of (a)3.3 ms and (b)10.5 ms respectively. Fig. 4.10 shows the same delay under 802.11b

settings with occupancy limits of (a)4.6 ms and (b)15.5 ms respectively. The jitter curves

follow the same trend as the delay ones, and are omitted.
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Figure 4.9. The effects of medium occupancy limit on delay v.s. throughput under the
802.11a scenario. Graph (a) shows the case when senders have to relinquish the medium
more quickly (3.3ms) than in (b) (10.5ms).

In all cases, the increase in the medium occupancy limit reduces the delay for the CBR

traffic. Furthermore, the standard deviation of delay (not shown) is almost identical in
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Figure 4.10. The effects of medium occupancy limit on delay v.s. throughput under the
802.11b scenario. Graph (a) shows the case when senders have to relinquish the medium
more quickly (4.6ms) than in (b) (15.5ms).

value to the delay. Quite suprisingly, both delay and jitter are lower as one increases the

medium occupancy limit. Allowing devices to occupy the medium longer not only benefits

the file transfer traffic by increasing throughput, but also the CBR traffic by reducing delay

and jitter for all.

Simulation results show that Split Phase does not benefit from a longer medium occu-

pancy limit. As seen in Fig. 4.7 and Fig. 4.8, when the traffic is non-disjoint, the performance

of Split Phase is severely impacted because a device can only communicate with a small

subset of others during each data phase. Due to the small amount of traffic sent to each

destination, a longer occupancy limit is not helpful.

Common Hopping improves tremendously as one increases the occupancy limits indi-

cating that the rendezvous process is indeed a bottleneck. McMAC improves moderately

but not drastically because the reduction in rendezvous traffic has less effect on parallel

rendezvous protocols because rendezvous is less of a bottleneck.

The throughput of Dedicated Control Channel increases dramatically as the medium oc-

cupancy limit increases under the 802.11a settings with 12 channels because the rendezvous

is indeed the bottleneck. It improves only a little in the 802.11b case with three channels

(Fig.4.10) because rendezvous is not the bottleneck.
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4.7 Conclusion

We classified various multi-channel MAC protocols into 4 generalized categories: Ded-

icated Control Channel, Common Hopping, Split Phase, and McMAC. We then compared

them using analysis and simulation. We developed analytical models for the four protocols

using Markov chains and simulated them in a time slotted simulator under a variety of

operating conditions. The findings are summarized in Tab.4.1. Overall, when channels are

numerous and packets are short, control channel congestion occurs in all single rendezvous

protocols.

Parameter Dedicated Split Common
Investigated Control Phase Hopping McMAC

Channel

Scalability to Long pkts – Good Limited Limited Good
Many Channels Short pkts – Limited

Sensitivity to Many channels – High
Packet Length Few channels – Low High High Medium

(Lower is better)

Sensitivity to Channel
Switching Time Low Low Very High High
(Lower is better)

Sensitivity to Receiver
Contention Low Medium High Medium

(Lower is better)

Table 4.1. Summary of comparison of four representative protocols under different operating
conditions.

Finally, we found that when MAC protocols do not schedule various packet types (e.g.,

real-time video and file transfers) differently, allowing a sender to transmit multiple back-to-

back packets to the same destination after rendezvous is highly beneficial. The throughput,

delay, and jitter of all packets types improve, using any of the four protocols.
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Chapter 5

Design of a New Protocol:

McMAC

5.1 Protocol Design Rationale

In the previous chapter, we compared the performance of four major approaches to

designing multi-channel MAC protocols. When channels are numerous and the amount

of data transfer is short after each rendezvous, single rendezvous protocols all suffer from

control channel congestion. To get around this problem, consider the following simple

protocol called McMAC without Hopping :

• Home Channel: Each node independently and randomly chooses one of the channels

as its home channels as shown in 5.1. When the node is idle, it simply listens on its

home channel for any packets belonging to itself.

• Initialization: During startup, each node scans through all channels to discover

neighbors. Existing nodes beacon periodically on their home channels. The newcomer

can either passively listen for beacons or actively send out broadcast probe packets to

quickly solicit responses.

• Receiving: To receive, a nodes simply listens on its home channel for any incoming

packets.
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Figure 5.1. McMAC without Hopping. Nodes independently choose their home channels.

• Sending: To send a packet, the sender first determines the home channel of the

receiver. Once determined, the sender tunes its transceiver to the receiver’s home

channel. It then follows normal CSMA medium contention procedure to send the data

packet. See Fig.5.2 for an illustration. If the data packet is successful, the receiver

returns an acknowledgement. Otherwise, the sender returns to its home channel and

tries again after a random backoff delay.

The advantage of this protocol is that different pairs of nodes can rendezvous on different

channels simultaneously, thereby avoiding the bottleneck of a single contention channel.

This simple protocol would work well if the active receivers are distributed uniformly over

all the channels. However, if busy receivers happen to choose the same channel, that channel

would become very congested while others remain idle. Therefore, this simple protocol is

insufficient for application scenarios demanding a high throughput.

The basic idea of McMAC is to improve on the simple protocol by requiring each node to

use a pseudo-random hopping sequence instead of a constant channel as its home sequence.

This serves two purposes: load-balancing and robustness. Since the home channel of each

node is random, it is very unlikely that busy receivers choose the same home channel all

the time. Traffic is therefore spread over every channel. Once the sender has successfully

contacted the receiver, both of them pause hopping while they transfer data to increase

efficiency. Fig.5.3 shows 4 nodes hopping in a pseudo-random fashion independently of

each other. Certain channels might not have any occupants during certain times. The

hopping pattern of a node is completely specified by the integer seed used to generate the

sequence and the index of the current hop into the sequence.

Another benefit of using a hopping sequence is that an interferer or jammer on a fixed

channel will only degrade the performance of McMAC, rather than causing service outage.

This is because a receiver changes its channel many times a second following its home se-
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Figure 5.2. Using McMAC without Hopping, node A changes its channel to send data to
B.
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Figure 5.3. McMAC with Hopping. Each node picks a seed and generates an independent
hopping sequence to use as their home channel. The hopping sequence of A is 1-2-4-2-3-1-. . .

quence. A receiver would only stay on a jammed channel for a small fraction of a second

before hopping again. By using a hopping sequence, McMAC avoids interference proactively,

rather than changing its home channel reactively after jamming is detected. Without con-

stant hopping, upon detecting a jamming signal, a receiver would have to search for a new

home channel and then inform all neighbors of its new home channel. The problem is that

notifying all neighbors takes significantly longer than simply waiting for the next hop. The

disadvantage of using hopping is that neighbors must track the hopping boundaries of each

other using a time synchronization mechanism. Fortunately, only pairwise synchronization

is necessary.

5.2 Protocol Description

In this section, we describe the details of the McMAC protocol while making only

general assumptions of the radio hardware used. Because certain parameters such as the

receive-to-transmit turnaround time are hardware dependent, we will list such parameters,

and give only a rough range for such parameters. In the next chapter, we will present a

specific instance of McMAC that is tailored to our experimental hardware platform. To

facilitate the description of the protocol, we divide the description of the protocol into 5

components:

1. Random Channel Hopping: Devices hop according to a pseudo-random hopping

sequence of their choice. This home sequence is fixed although temporary deviation

is allowed.

2. Discovery: When a device is turned on, it discovers its 1-hop neighbors and adds

them to its neighbor table. Subsequently, it adds neighbors to or removes them from

the list when network topology changes.
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3. Synchronization: Each node estimates the relative speed of the clocks of its neigh-

bors accurately in order to track the hopping boundaries of its neighbors.

4. Rendezvous: In order for a node to send a data packet, it must decide when to

change its channel to match its receiver’s. It also needs to decide when to send and

when to listen for incoming packets. Multiple nodes may decide to send at the same

time on the same channel. The access to the medium must be resolved in a fair and

efficient manner.

5. Scheduling: Each node may simultaneously have data to send to several neighbors.

Scheduling is concerned with the order in which a sender visits its receivers which

affects the efficiency of the protocol. For example, choosing the neighbor with the

most data packets queued may increase throughput.

5.2.1 Random Channel Hopping

Time is divided into Small Slots (Ts) and Big Slots (Tb). Each Small Slot should be

roughly equal to the shortest time it takes for the radio to detect a carrier when using

Carrier Sense Multiple Access (CSMA). Typical values should be on the order of 10µs.

Each Big Slot consists of an integer multiple of Small Slots and should be about an order

of magnitude longer than the time it takes to switch channel. A Big Slot always begin on

a Small Slot boundary. Nodes hop to the next channel in its hopping sequence whenever it

crosses a Big Slot boundary.

McMAC intentionally allows nodes to keep independent slot boundaries to avoid requir-

ing global synchronization within the same network. Hence, nodes do not hop at the same

time in general. Fig.5.4 shows the unaligned slot boundaries of two nodes. If nodes were

required to hop at the same time (i.e., all nodes must establish a global clock), two problems

would arise. First, nodes must re-align their slot boundaries whenever two disjoint networks

merge. Changing the hopping boundaries can cause transient confusion among neighbors

and packet losses. In the worst case, if network partition and merging occurs frequently

enough, it may even create instability as different sets of nodes with different original global

clocks try to converge on a new common hopping boundary. Second, as the clocks of various

nodes inevitably drift apart, each node must compensate for their drift with respect to the

global clock. Additional logic is required at each node to make sure they hop according to

the global clock, rather than their local clocks.
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Big Slot boundaries (i.e., hopping boundaries) of node B

.. . ... . .

Small Slots

.. . . .. . .

Time

Big Slot boundaries (i.e., hopping boundaries) of node A

Figure 5.4. Each node keeps independent slot boundaries. Hopping occurs at Big Slot
boundaries.

Figure 5.5. Each Big Slot is divided into different sections.

The internal structure of each Big Slot is shown in Fig.5.5. Each node hops from one

channel to another at the beginning of each slot, so some time is reserved for channel

hopping. Next, there is a guard time to make sure that nodes that are not perfectly

synchronized can still communicate. During the contention window of a receiver, any sender

may try to send a packet to it. Depending on the length of the packet, the packet will

continue a different amount into the data window. The data window should be long enough

for a maximum size data packet together and the corresponding ack packet.

The hopping sequence of each node is generated using the same pseudo-random genera-

tor, with independently chosen seeds. Each device chooses its own seed randomly at startup

time, and this seed never changes. Ideally, each device will have a unique MAC address

(e.g., Ethernet, 802.11) which can be used directly as the seed. On hardware platforms

where the MAC address is longer than the number of bits allowed for a seed, a hash of the

MAC address can be used, but the uniqueness of seeds can no longer be guaranteed.

In the rare case where two devices choose the same seed, they might still choose different

Big Slot boundaries because they started at different times. In the worst scenario in which

their seeds are equal and their Big Slot boundaries coincide, there will be performance

degradation only if the two devices happen to be both very active receivers. Furthermore,

since the crystal oscillator clocks of different devices inevitably run at slightly different rates,

the performance degradation in such rare case is not permanent. It should last the time
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it takes for two clocks to drift 1 Big Slot apart. Assuming a typical drift of 10 parts per

million (ppm) and a Big Slot of 4ms, the degradation will last about 400 seconds. However,

if the drift is smaller than 10ppm, the degradation period will last longer proportionally.

Therefore, we cannot rely solely on the natural skew between clocks without independent

random hopping sequences to achieve load balancing.

The sequence chosen by a device is known as its home sequence. There are no stringent

requirements for the random hopping sequence generated as long as the sequences generated

using different seeds behave almost like independent random sequences. Exact statistical

independence of these sequences is unimportant because randomness is required for load

balancing only, rather than for protocol correctness. In particular, since senders change

their channels to meet their receivers when they have packets to send, there is no need

for such hopping sequences to coincide frequently. For example, a suitable linear congru-

ential generator by Park and Miller[20] of the form X(t) = 16807X(t − 1) mod (2k − 1)

can be used to generate the hopping sequence. In this case, X(0) is the seed, and

X(1) mod M,X(2) mod M, . . . would be used as the hopping sequence where M is the

number of channels. As a counterexample, generating different sequences by cyclic-shifting

a fixed short pseudo-random sequence would not be acceptable for McMAC because different

sequences generated in this fashion are highly correlated.

For our purpose, we do not need to use the full period of a pseudo-random hopping

sequence. Nodes can let their channel hopping sequence repeat after a fixed number of

hops (say k hops). To save computation, a node can pre-compute the first k numbers

from the hopping sequence of each of its neighbor. As long as the period k is much larger

(e.g., 10 times) than the number of available channels, the hopping sequence will perform

satisfactorily for load balancing.

5.2.2 Discovery

Discovery is the process in which nodes learn about their current one hop neighbors and

their corresponding hopping signatures. The hopping signature of a node is its seed used

for hopping sequence generation together with its current local clock value. The hopping

signature alone completely specifies the hopping pattern of a node. The clock value is also

used for its neighbors to synchronize with it.

As in illustration, suppose a node uses a 32-bit local clock which ticks at 1MHz. Small
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Big Slot Index

Small Slot Index

32−bit Micro−second Counter

8−Bit 4−Bit15−Bit 9−Bit

(Index into Hopping Sequence)

Figure 5.6. In this example, nodes use a 1 MHz clock. Nodes change channel when the last
12 bits of the clock reads 0.

Slots are 16µs each. Each Big Slot consists of 256 Small Slots (i.e., 4096 µs). We further

assume that the random hopping sequence repeats after 512 hops. Fig.5.6 illustrates the

meaning of the different bits in a local clock.

In McMAC, every packet sent includes the hopping signature of the sender, namely

the 32-bit current time and the seed of the sender. Since the seed is often the same as

the sender’s MAC address which is already present in the MAC header, it can be omitted

entirely to save space. The space overhead is therefore only a time stamp. The time stamp

should be taken when the packet is sent on the medium, after any queueing and processing

delays in the MAC layer to ensure accuracy. The accuracy of this time stamp is vital to

the estimation of a neighbor’s clock rate.

Discovery in McMAC relies on two mechanisms: primary and backup. Using the primary

mechanism, when a node turns on, it monitors the default discovery channel for beacons

from existing nodes for 10 seconds. The default discovery channel can be any of the available

channels. Without loss of generality, we assume the default discovery channel is channel 1.

After 10 seconds, the newcomer starts following its home hopping sequence. From then

on, the newcomer beacons once every second with a small randomized delay while following

its home sequence to ensure that it beacons on all channels with equal probability. In

addition, it also beacons at least once every 2 seconds when its home sequence lands on

the default discovery channel (channel 1). If the beacon on the default discovery channel is

delayed for any reason (e.g., medium is busy), a node must retry as soon as possible such

that the 2-second rule is maintained.

When a node receives a beacon packet, if the sender is a new neighbor, the receiver

records the hopping signature of the sender consisting of the time stamp and the seed of the
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sender. Otherwise, the synchronization algorithm uses the sender’s time stamp to update

the receiver’s estimation of the sender’s clock drift, such that it can accurately predict the

sender’s home channel in the future. Fig.5.8 shows the logic used by each node to beacon

and discovery its neighbors.

As an optimization to further shorten discovery times, whenever a new neighbor is

discovered, the receiver sends an empty courtesy packet with a time stamp and its seed on

the home channel of the sender after a small randomized delay on the order of a second.

Finally, to deal with neighbors who have left the network, a neighbor is removed from the

neighbor table if no beacon has been received from this neighbor after a timeout period.

Note that it is not necessary to receive a packet of specifically the beacon type in order

to discover a node. Every packet sent in McMAC contains the sender’s MAC address (which

is also its seed) and the sender’s time stamp. This information suffices for discovering the

neighbor’s hopping signature. The beacon packets are there to ensure even otherwise idle

nodes beacon periodically to speed up discovery and prevent them from being timed out by

their neighbors.

In addition to sending beacons, it is also possible to ask a neighbor for a list of its known

neighbors. In such case, the receiver of the list must verify that each node listed is indeed

a reachable neighbor of its own. For simplicity, this approach is not included as part of

the McMAC protocol specification. Instead, this gossiping process can be considered as an

enhancement to McMAC in the future.

Effectiveness of Discovery Mechanisms

Normally, since each node is required to beacon once every 2 seconds on channel 1,

listening on channel 1 for 2 seconds is sufficient to discover all existing nodes in a neighbor-

hood. To account for packet loss, each node listens for 10 seconds on this default channel.

We expect this primary discovery mechanism to be sufficient in most cases. In the rare

event that the primary mechanism fails to discover all neighbors, each node also beacons

on all channels randomly every second. For every beacon, there is some chance that a node

which did not receive before will now hear it. Eventually, the receiver will have heard at

least one packet from this sender which is sufficient to discover the node. In Sec.5.3.1, we

analyze the delay it takes for a newcomer to discover all existing nodes through passive

listening while hopping. In Sec.5.3.2, we study the delay for a newcomer to be discovered
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algorithm)

Local Time

Ideal Clocks(slope=1)

packets received at these times

Sender’s Time (Time stamps carried in incoming packets)

Slope approx. 1

Actual clocks

(estimated by synchronization

Figure 5.7. The receiver uses a synchronization algorithm to estimate the drift of the
sender’s clock with respect to its own clock.

by all of its neighbors if only the newcomer sends beacons. In practice, McMAC uses both,

together with sending a courtesy HELLO packet to a newly discovered neighbor.

5.2.3 Synchronization

Synchronization is the process in which two neighbors estimate and compensate for

the difference in their clock speeds. Fig.5.7 shows the basic idea of the synchronization

algorithm. In McMAC, every packet contains the current time of the sender. When received,

the receiver time-stamps it using its local clock. By plotting receiver’s time stamp vs. the

sender’s time stamp of a sequence of incoming packets, one expects to see a line of slope

very close to 1. By observing the difference between the actual line and the ideal line of

slope 1, the receiver can estimate the rate at which the sender’s clock drifts apart from its

own. Since the sender hops according to the sender’s clock, carefully estimating the drift is

essential to the receiver’s ability to track the sender’s hopping sequence and boundary. In

order to understand the details of the synchronization mechanism, we must first understand

the nature of the clock drift problem. For this reason, we defer the detailed description of

the synchronization procedure until the next chapter in Sec.6.4.

All packets (data, acknowledgements, beacons) including those that are overheard can be
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used for synchronization because every packet sent contains the sender’s time stamp. This is

very important because when the network traffic load is high, the medium is congested and

beacon packets might be lost. If synchronization depends on only beacon packets, neighbors

might become poorly synchronized when traffic load is heavy, causing packet losses.

5.2.4 Rendezvous

Rendezvous is the process in which the sender sends a packet to a specific receiver given

that the sender has an accurate estimate of the current home channel of the receiver. The

sender must also balance the time it spends sending versus receiving. If a node spends all

time sending, it will not receive any packets. Using McMAC, rendezvous can happen on

multiple channels simultaneously among several pairs of senders and receivers. The choice

of which receiver to send to first is the job of the scheduler which is described in Sec.5.2.5.

At the end of the current Big Slot before a new Big Slot begins, a node decides if it wants

to transmit or receive in the upcoming Big Slot. Fig.5.8 shows the flow chart of deciding

whether to send or receive at the beginning of each Big Slot. If it has no packets to transmit

(i.e., it is idle), it simply tunes its radio to its next home channel according to its hopping

sequence and listens for incoming packets until the Big Slot ends. Otherwise, it flips a coin.

With probability ptx, it will transmit; with probability 1 − ptx, it will listen. Ideally, ptx

should be adaptive to the traffic load of the network. When the load is high, each node

has a smaller time share of the spectrum, so it should spend more time listening. Hence,

ptx should be smaller. When the medium is not busy, the sender should try to transmit

more often to reduce the medium access delay, so ptx should be larger. For simplicity, we

used a fixed ptx of 0.2. It turns out that the performance of McMAC in terms of delay and

throughput is not very sensitive to the choice of ptx as long as ptx is much less than 1.

Upon deciding to send, the scheduler chooses the appropriate receiver. The sending

procedure is illustrated in Fig.5.9. The sender then goes to the current home channel of

the receiver at the beginning of its upcoming Big Slot. Within each Big Slot is a number of

consecutive Small Slots known as the contention window. The sender picks a random Small

Slot within the contention window to begin transmission. During the contention window

before its scheduled transmission time, it listens. During the target Small Slot for which the

transmission is scheduled to begin, the sender senses for a carrier. If the medium is idle, it

begins transmission. Otherwise, it aborts the transmission and return to its own channel.
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It is possible for the sender to overhear another packet while waiting for its target Small

Slot. In such case, the received packet is processed as usual. If the packet lasts beyond the

target Small Slot, the sender will return to its home channel after processing the incoming

packet.

After the packet is sent and successfully received, the receiver returns an Ack packet

if it has no data to send in reverse. If it has, it can return a Data packet with the Ack

bit set instead. Each data packet contains a More-Data bit which signals to the receiver

whether to expect more packets from this sender. If the sender sets this bit, the receiver

should expect at least one more data packet from this sender. The receiver will return 1

Ack packet (or Data + Ack packet) for each data packet received. This back and forth

process continues until both sides clears their More-Data bit. McMAC allows packet trains

because the overhead of rendezvous and acquiring the medium is higher in a multi-channel

MAC than in a single-channel MAC. To amortize these costs, nodes are allowed to send

multiple packets after rendezvous. The procedure of incoming packets and the generation

of Ack or Data + Ack packets in response is described in detail in Fig.5.10.

5.2.5 Scheduling

A multi-channel MAC protocol should schedule packets destined for different neighbors

carefully to prevent head-of-line blocking and to improve performance. Head-of-line blocking

occurs in a multi-channel situation when a node has packets to send to multiple receivers,

but the receiver of the first packet in the queue is busy communicating with another node.

In principle, the sender can send the second packet in the queue to another receiver using

a different channel to avoid head-of-line blocking.

In McMAC, we assume that each sender keeps a separate queue for each neighbor to

avoid head-of-line blocking. There are many ways a sender can decide which receiver to

send to first when multiple queues are backlogged. We use a simple randomized algorithm

(shown in Fig.5.11) to select a receiver.

At the beginning of a new Big Slot, the sender lists all neighbors for which it has packets

waiting to be sent. For these destinations, it determines the beginning of their Big Slots

starting within its own upcoming Big Slot. (Note: Big Slot boundaries of different nodes

do not coincide.) If at least one neighbor happens to have the same home channel as itself

during the upcoming Big Slot, one of such neighbors will be chosen as the destination.
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The rationale for favoring receivers on the same home channel is that when the network is

congested, it is likely that a sender can find one receiver with the same home channel. By

sending in one’s home channel, the sender can count down to the target transmission time

(i.e., waiting to acquire the channel) while listening for its own packets.

However, if no receiver shares the same home channel during the next Big Slot, the

sender must deviate from its home channel in order to send. First, among the channels for

which there is a receiver, one will be selected uniformly at random. Second, a receiver will

be chosen among those on that channel with equal probability. This two step procedure

ensures that the sender does not favor channels containing many receivers during the next

Big Slot to avoid an increased chance of collision.
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Figure 5.8. This state diagram shows the basic operation of McMAC when a node is not
active sending. It only sends beacons and listens for incoming packets.
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Figure 5.9. This state diagram shows the operation of a node when it is actively sending a
data packet.
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Figure 5.10. This state diagram shows the operation of the receiver
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Figure 5.11. This state diagram shows the basic scheduler which favors a receiver who
happen to be on the same channel as itself during the upcoming Big Slot. This is done to
minimize the time a sender deviates from its home hopping sequence.
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5.3 Protocol Evaluation

5.3.1 Delay of Discovering Existing Nodes

In this section, we calculate the expected time it takes for a new node joining a 1-hop

multi-channel network to discover all existing neighbors via passive listening. In the next

section, we calculate the time for a newcomer to be discovered by its neighbors through

active beaconing. This gives us an estimation of how long it takes for all neighbors to be

discovered if the primary neighbor discovery method somehow fails. It turns out that the

expected time to achieve both is roughly the same. The expected delay scales linearly in

the number of channels M and the average beacon intervals 1/r, but only logarithmic in

the number of neighbors N .

First, we calculate the expected time for a newcomer to discover all existing neighbors

via passive listening. We make the following assumptions:

1. Time is slotted. Each packet takes 1 slot time.

2. There are N existing nodes in the network.

3. During every slot, each of the N nodes chooses one of the M channels as its home

channel uniformly at random in an i.i.d. fashion.

4. Each of the N existing nodes sends a beacon packet on its home channel with proba-

bility q independently during each time slot.

5. When a new node X joins the network, it chooses an independent hopping sequence.

It listens for beacon packets from existing nodes while hopping.

6. We consider only the one hop neighborhood around the new node.

7. If more than one existing node beacons on the same channel during the same time

slot, no packet will be heard by anyone due to collision.

8. When exactly one node beacons on the current home channel of X, node X hears the

beacon and discovers the sender.

We analyze the expected time for the new node to hear at least one packet from each of

its neighbors by separating the analysis into two steps. First, we focus on those time slots in
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which exactly one node beacons on the same channel as X. We will use the term rounds to

denote such events. We first calculate the expected number of rounds until another existing

node is heard. Second, we focus on the time between successive rounds.

Let the time slots during which X successfully receives a beacon packet be T1, T2, . . ..

Let di be the round index during which X discovers i-th new neighbor. Therefore, the times

for which X discovers a new neighbor are Td1
, Td2

, . . . , TdN
. For convenience, we define Td0

to be 0. We also define Di to be Tdi
− Tdi−1

.

E[TdN
] = E

[

(Td1
− Td0

) + (Td2
− Td1

) + . . . + (TdN
− TdN−1

)
]

(5.1)

= E
[

D1 + D2 + . . . + DN

]

(5.2)

= E[D1] + E[D2] + . . . + E[DN ] (5.3)

Notice that Dj is the delay to receive a packet from a previously unknown node

after having heard from j − 1 nodes. The number of rounds contained in Dj is a

geometrically distributed r.v. with a success probability of rj = 1 − j−1
N . That is,

Pr[Dj contains k rounds] = (1 − rj)
k−1rj . Consequently,

E[Dj ] = 1/rj . (5.4)

Note that,

E[dN ] = 1 +
1

1 − 1/N
+

1

1 − 2/N
+ . . . +

1

1 − (N − 1)/N
(5.5)

=
N

N
+

N

N − 1
+

N

N − 2
+ . . . +

N

1
(5.6)

= N
( 1

N
+

1

N − 1
+ . . . +

1

1

)

(5.7)

= N

N
∑

i=1

1

i
. (5.8)

Since

1 +
1

2
+ · · · +

1

n
>

∫ n

1

1

x
dx = ln(n) >

1

2
+

1

3
+ · · · +

1

n
,

ln(n) < 1 +
1

2
+ · · · +

1

n
< ln(n) + 1.

In fact, the Euler’s constant γ is defined to be:

γ = lim
n→∞

n
∑

k=1

(

1

k
− ln(n)

)

≈ 0.57721566 . . . .
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Therefore,

E[num of rounds till TdN
] ≈ Nln(N). (5.9)

During each time slot, the probability that any existing node will beacon in the same

slot as the new node is r/M . Since each existing node hops and beacons independently, the

probability that exactly 1 of the N existing node beacons on the same channel as the new

node is N r
M

(

1− r
M

)N−1
. The expected time between each round is

(

N r
M

(

1− r
M

)N−1
)−1

.

Since which node wins a round is independent of the round index,

E[TdN
] ≈ Nln(N)

(

N
r

M

(

1 −
r

M

)N−1
)−1

(5.10)

= ln(N)

(

r

M

(

1 −
r

M

)N−1
)−1

. (5.11)

In general, since there are many channels and r less than 1, M
r is large. As a result,

(

1 −
r

M

)N−1
=

(

(1 −
1
M
r

)
M
r

) r
M

(N−1)
(5.12)

≈ e−
r

M
(N−1). (5.13)

The average number of nodes trying to beacon is r × N , which must be much smaller

than M , or else the channels will be flooded with only beacon messages. When r � M
N−1 ,

we can approximate
(

1 − r
M

)N−1
by 1 according to (5.13). Therefore,

E[TdN
] ≈

Mln(N)

r
.

5.3.2 Delay of Discovering a New Node

In this section, we calculate the expected time for a newcomer to be discovered by its

neighbors through active beaconing. The following assumptions are made:

1. Time is slotted. Each packet takes one slot time.

2. There are N existing nodes in the network.

3. Each of the N existing nodes hops according to its own independent hopping sequence.

Each node listens on one of the M channels in an i.i.d. uniformly-random fashion.
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4. When a new node X joins the network, it starts sending beacon packets with proba-

bility p during each time slot.

5. We consider only the one hop neighborhood of the newly arrived node.

6. A beacon packet sent by the newcomer is heard by all nodes listening on that channel

during that time slot without error. Nodes on other channels do not hear this beacon

packet.

7. Since only the newcomer is beaconing, there is no collision.

During each time slot, X beacons with probability p. Suppose we only consider those

time slots for which X beacons. We label all such slots beacon rounds. The number of

beacon rounds it takes for each of the existing nodes to discover X are i.i.d. geometric

random variables with a success probability of 1/M during each round. Let Ri be the

number of beacon rounds necessary for existing node i (1 ≤ i ≤ N) to hear the first packet

from X. Define R = max(R1, R2, . . . , RN ). During each beacon round, whether an existing

node hears the newcomer is independent of whether other existing nodes do.

Pr[R ≤ k] = Pr[R1 ≤ k ∩ R2 ≤ k ∩ · · · ∩ RN ≤ k] (5.14)

= Pr[R1 ≤ k]Pr[R2 ≤ k] · · ·Pr[RN ≤ k] (5.15)

=
(

Pr[R1 ≤ k]
)N

(5.16)

=
(

1 − Pr[R1 > k]
)N

(5.17)

=
(

1 − (1 −
1

M
)k

)N
(5.18)

Pr[R = k] = Pr[R ≤ k] − Pr[R ≤ k − 1] (5.19)

=
(

1 − (1 −
1

M
)k

)N
−

(

1 − (1 −
1

M
)k−1

)N
(5.20)

The expected number of beacon rounds required for every neighbor to have received a

packet from X is:

E[R] =

∞
∑

k=1

kPr[R = k] (5.21)

=

∞
∑

k=1

k

(

(

1 − (1 −
1

M
)k

)N
−

(

1 − (1 −
1

M
)k−1

)N
)

. (5.22)
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The variance of R is:

var(r) = E[R2] − E[R]2 (5.23)

=
∞
∑

k=1

k2Pr[R = k] −

( ∞
∑

k=1

kPr[R = k]

)2

. (5.24)

The number of slots between each successive beacon round are i.i.d. geometric random

variables with mean 1/p. Furthermore, these random variables are independent of the

number of beacon rounds required (R). Therefore, the expected time T till all neighbors

have received a packet from X is:

E[T ] = E[interval between 2 successive beacon round]E[R] (5.25)

=
1

p

∞
∑

k=1

k

(

(

1 − (1 −
1

M
)k

)N
−

(

1 − (1 −
1

M
)k−1

)N
)

. (5.26)

Equation 5.26 is precise, but it does not give a good intuition of how discovery time

depends on p, M , and N . Next, we derive an approximation for E[T ] to get a better

intuition.

E[max{R1, . . . , RN}] = E[max{R1, . . . , RN−1}]+

E[max{R1, . . . , RN} − max{R1, . . . , RN−1}]
(5.27)

E[max{R1, . . . , RN} − max{R1, . . . , RN−1}] (5.28)

= E[(RN − max{R1, . . . , RN−1})1{RN > max{R1, . . . , RN−1}}] (5.29)

= E[(RN − max{R1, . . . , RN−1})|RN > max{R1, . . . , RN−1}]× (5.30)

Pr[RN > max{R1, . . . , RN−1}] (5.31)

= E[RN ]Pr[RN > max{R1, . . . , RN−1}] (5.32)

= MPr[RN > max{R1, . . . , RN−1}] (5.33)

Since R1 . . . RN are i.i.d., Pr[RN > max{R1, . . . , RN−1}] ≈ 1/N . This approximation

would be exact if Ri’s were continuous random variables. We therefore expect this approx-

imation to be valid when M is large.
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Hence,

E[max{R1, . . . , RN}] = E[max{R1, . . . , RN−1}]+

E[max{R1, . . . , RN} − max{R1, . . . , RN−1}]

≈ E[max{R1, . . . , RN−1}] + M
1

N

= M

N
∑

i=1

1

i

≈ Mln(N).

(5.34)

As a result, the expected time till every neighbor has heard at least one packet from X

is:

E[T ] ≈

Mln(N)

p
(5.35)

Summary

In conclusion, the time it takes for a newcomer X to be heard by all existing node turns

out to be approximately the same as the time it takes for X to hear one packet from every

existing neighbor assuming that they beacon with the same probability p in each slot. This

time is equal to Mln(N)
r . This delay scales linearly in the number of channels M and the

average beacon intervals 1/p, but only logarithmic in the number of neighbors N .
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Chapter 6

Prototype and Experiments

6.1 Practical Challenges

In Ch.4, the performance of the Parallel Rendezvous approach was found to be better

than or equal to the other three under most situations. However, this approach, similar

to the Common Hopping approach, requires 1-hop neighbor pairs to synchronize and is

therefore more complex than the Dedicated Control Channel approach.

Evaluation of MAC protocols through an actual implementation is often very difficult.

MAC protocols usually require nodes to following very strict real-time requirements on the

order of micro-seconds. In order not to violate such requirements, most MAC protocols

are implemented partly in hardware and partly in firmware using a micro-controller. As a

result, there are very few platforms that can provide both the flexibility to easily implement

new MAC features and the speed to handle packets at link speed. To ensure compatibility

of proposed MAC protocols on existing hardware, many new MAC protocols proposed for

mesh networks choose to build on top of an existing single-channel MAC protocol.

There are several implementations of mesh network MAC protocols using multiple radios

per node. Examples of such research systems include the Multi-radio Unification Protocol

(MUP) [2] and Hyacinth [22]. There are also a number of companies [12][13][14] that build

mesh network routers using multiple interfaces per node. All of these protocols build on top

of 802.11 transceivers to avoid modifying the firmware or hardware of commercial 802.11

chipsets. Therefore, these protocols have to use multiple radios per node in order to use
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more than one channel. We are not aware of any implementation of multi-channel MAC

protocols using a single transceiver per node.

In particular, we are keen on implementing a simple variant of McMAC called McMAC-

Light on actual hardware. Through the implementation experience, we hope to achieve

these goals:

1. Prove Feasibility We hope to prove that the Parallel Rendezvous approach is in-

deed practical and robust. All multi-channel MAC protocols using one radio per node

requires some form of synchronization. Protocols requiring time synchronization is

often considered fragile. If a node loses synchronization with a neighbor, it will not

be able to communicate with it at all, making it impossible to re-synchronize. For-

tunately, McMAC require only synchronization between 1-hop neighbors, not global

synchronization. Furthermore, even if a node loses synchronization with one of its

neighbors, it does not affect its ability to communicate with the others.

2. Understand Complexity We also hope to discover potential problems ignored in

analysis (for tractability) or neglected in simulation through this implementation ex-

ercise. Implementation forces us to consider all the protocol details and weigh this

added complexity against the benefits of using a multi-channel MAC protocol. For

instance, the level of sophistication of the time synchronization protocol necessary to

achieved the required synchronization cannot be easily studied through simulation.

3. Gain Hardware Design Insights An implementation will also allow us to identify

important features of the radio necessary to achieve good performance. These will

serve as guidelines when designing future radio specifically for multi-channel MAC

protocols.

6.1.1 Methodology

We start by comparing the pros and cons of several potential hardware platforms in

Sec.6.2. Based on the comparison, the most promising platform is chosen. We then bench-

mark the target hardware platform to better understand the limitations of the platform in

terms of throughput, channel switching time, and clock drift. The test results are presented

in 6.3. In Sec.6.4, we described the most difficult challenge we face in our implementation:

trying to synchronize the neighbors within 200µs of each other.
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Next, we describe the modifications and simplifications made to McMAC, taking into

consideration the limitations of our test platform. In Sec.6.5, we describe the resulting

simplified version of McMAC called McMAC-Light which is implemented on our hardware

platform. Finally, in Sec.6.6, we evaluate the performance of McMAC-Light and discuss

our implementation experience.

6.2 Platform Selection

We investigated several potential hardware platforms. First, there is a choice of dif-

ferent controllers. Some platforms such as CaLinx[7] uses an FPGA as a controller while

others such as the motes [21] use micro-controllers (MCU). The CaLinx platform is designed

specifically for a digital logic design class at UC Berkeley. The Telos mote platform, also

from UC Berkeley, is designed for low-power wireless sensor networking. In addition to hav-

ing different controllers options, we also had a choice of different radio technologies ranging

from pure software radio [1], to ASIC 802.11[11][17] and ASIC 802.15.4[3] radios. For our

purpose, we require programmability in all aspects of the MAC layer, but we do not care

about the physical layer. Therefore, ASIC radios are a better choice than software radios be-

cause they are simpler to program. FPGA-based platforms offers higher performance than

micro-controller based ones, but they also require us to program at the Hardware Descrip-

tion Language level which prolongs development time. FPGA-based boards are also more

expensive. Finally, for ASIC radios, we had a choice between 802.11[26] and 802.15.4[27]

based radios. IEEE 802.15.4 radios are designed for use in wireless sensor networks or lower

data rate applications. Therefore, for high throughput systems, 802.11 based radios are

more suitable. However, to achieve a high throughput, 802.11 chipsets tend to implement

a lot of the MAC features specific to 802.11 in hardware. As a result, the level of control

at the MAC level is reduced which is unacceptable because we require tight control of the

timing of packets we send and the packet format. The following table summarizes the pros

and cons of the different platforms:

We decided to use a micro-controller based platform with an ASIC radio. We found

several such platforms with different features. At the end, we chose the Berkeley Telos

Mote [29] platform running TinyOS. The advantages of this platform is the availability of

extensive free software and relative low cost of hardware which allows us to buy up to tens of
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FPGA FPGA + Micro- Commercial
Software ASIC controller 802.11
Radio Radio + ASIC Radio Ref. Design

Example Polarizone SDR Telos[21] Atheros [11]
Platform Design Bench [1] CaLinx[7] SmartStudio[4] Maxim [17]

Programming
Abstraction C or C or

Level HDL HDL Assembly Assembly

PHY/MAC Parts of
Programmability PHY + MAC MAC MAC MAC

MAC Source
Code Availability Little Little Some Some

Development
Time Long Long Short Short

Unit Cost (USD) $1000’s $100’s ∼$100 ∼$20

Throughput High High Lower High

Table 6.1. Summary of comparison of different hardware platforms.

nodes. The downside of this platform is that the micro-controller is relative slow, compared

with the radio, thereby artificially limiting the throughput of a node.

Telos uses a 16-bit micro-controller running at 4MHz. It has 10KB of RAM and an

ASIC DSSS radio conforming to the IEEE 802.15.4 standard rated at 250Kbps. Our MAC

protocol was designed from scratch and it does not conform to the ZigBee standard. Each

Telos mote has a USB connection for downloading program and communicating with a PC.

Finally, it has a 32758Hz crystal oscillator clock yielding a resolution of 30.5µs.

6.3 Platform Evaluation

In order to guide the precise specification of the protocol, we conducted micro-

benchmarks to measure the performance of the Telos mote platform.

6.3.1 Channels

IEEE 802.15.4 standard has 16 channels in the 2.4GHz range. However, due to energy

spill over and imperfect filtering, one cannot use all 16 channels simultaneously without

interference. Our experiments found that at most every other channel can be used simulta-

neously without interference. Hence, we use only up to 8 channels in all of our experiments.
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We measured the time it takes to switch channel directly by issuing a channel switch com-

mand and measuring the time it takes. The result is very consistent at 305µs.

6.3.2 Throughput

It takes about 150µs after the packet is assembled in memory before it can be put on

the air. Most of this time is spent in sending the packet from the micro-controller to the

radio chip over a serial bus bit by bit. The default size of packets in TinyOS is 44 bytes,

including a preamble, a MAC header, a 28-byte payload, and a CRC checksum field. Each

packet therefore lasts about 1.4 ms at the data link speed of 250Kbps. As a result, in the

best case, one expects to send no more than 645 packets per second. In practice, one can

send much fewer packets per second from a user application in TinyOS even if MAC-level

contention backoff is completely disabled. Our preliminary experimental results show that

two nodes can only transfer about 150 packets per second.

6.3.3 Clock Drift

Before we can solve the synchronization problem, we need to know the degree of clock

drift on the Telos platform. In general, the error in clocks can be attributed to three

factors: (i) long-term average deviation of the clock speed from the ideal real-time clock,

(ii) short term variation of the clock speed from the long-term average due to variable

ambient temperature, and (iii) errors in the time stamping process.

To minimize the third kind of error, time stamps should be done with the help of

hardware. We reuse the time-stamping techniques and implementation by Maroti et al.

[16] since they use the same TinyOS platform as ours. Using their method, the sender

first transfers the outgoing packet into the buffer of the radio chip. The time stamp field

of the packet is left empty. Second, the sender signals the radio to start transmitting the

packet. The preamble and the start-frame-delimiter is prepended to the packet by the chip

automatically. When the radio starts transmitting the start-frame-delimiter, it generates

an interrupt to the micro-controller. This interrupt causes the micro-controller to read the

crystal oscillator clock and write the time into the empty time stamp field of the packet

whose preamble has just been transmitted.
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6.3.4 Long Term Drift

We carried out an initial experiment to quantify the degree of clock drift on the Telos

platform, we use 19 devices. One device serves as a poller which periodically sends out

broadcast packets to solicit time stamps from each of the 17 devices. When each of the 17

devices receives a periodic broadcast, it time stamps the incoming packet using its 32-bit

local clock which ticks at 32,768 Hz, and sends the time stamp packet to the base station.

The last device acts as the base station to forward all received packets to the attached PC.

Fig.6.1 shows the relative clock drift of each node with respect to the average of the 17

clocks. The x-axis shows the reference time in hours. The average of the 17 clocks is used

as the reference time because we do not have a better reference clock. The y-axis shows

the difference between the clock reported by a particular node and the average time stamp

reported by the 17 nodes, measured in seconds. Due to the definition of the reference clock,

about half of the clocks are faster than the reference. The maximum drift between the

fastest and the slowest clocks is about 0.6 seconds over a period of 8 hours, which amounts

to about a 21 ppm (i.e., 2.1 × 10−5) maximum drift.

6.3.5 Outlier

There is inherently some small error in the time stamping at the senders and at the

receivers. However, during our 8-hour experiment, we observed twice that a receiver erro-

neously added a huge delay of over 2 ms to an incoming packet. We are unable to pinpoint

the source of such error, but we speculate that the micro-controller of the receiver has

taken a high-priority interrupt during the reception of the packet, thereby delaying the

time stamping interrupt of the incoming packet. For each of these two instances, we con-

cluded that the receiver, rather than the sender, is to be blamed because only 1 out the

17 receivers observed a large error for that packet. Using the average of the receive time

reported by all nodes except 14 and 15 as the reference time, Fig.6.3.5 and Fig.6.3.5 show

the differences between the reference time and the receive time stamps reported by nodes

14 and 15 respectively. Clearly, nodes 14 and 15 are in sharp disagreement with all others

for those two packets in question. We therefore conclude those large errors occurred in

the receivers. Throughout other experiments, we also observe an increase in the number of

occurrences of such errors when the node is busier, which reinforces our conjecture that the

errors are due to delayed interrupts.

75



0 1 2 3 4 5 6 7 8
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Reference Time (Hour)

C
lo

ck
 D

rif
t o

f E
ac

h 
N

od
e 

w
.r

.t.
 A

vg
 C

lo
ck

 (
S

ec
on

d)

Figure 6.1. Relative clock drift of 17 nodes over 8 hours.

76



2.2 2.3 2.4 2.5 2.6

−1150

−1100

−1050

−1000

−950

−900

Avg Time Reported by Node #1..13,16,17 (Hour)

T
im

e 
R

ep
or

te
d 

by
 #

14
 −

 A
vg

 T
im

e 
(x

30
.5

us
)

Figure 6.2. Deviation of the clock of node 14 from the average reported by all nodes.
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Figure 6.3. Deviation of the clock of node 15 from the average reported by all nodes.
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Line

Ideal Clocks(slope=1)

Receive Time
Stamps Reported
by Node i

Receive Time Stamps Reported by Node  j

broadcast packets received by both i and j

Time Stamps
Actual

Fitted Straight

Figure 6.4. For each of the beacon packets received by both i and j, we plot the received
time stamps reported by j against those reported by i. Next, we fit a straight line through
it. The difference between the straight line and the actual curve is the estimation error.

6.3.6 Short Term Drift Variation

The 17 curves in Fig.6.1 are virtually straight but not exactly so. Therefore, each node

has to continuously estimate the drift of their neighbors’ clocks using its own imperfect local

clock. As a first step towards understanding the clock drift variation over time, we choose

arbitrarily 5 pairs among the 17 nodes and plot the receive time stamps reported by node j

against those reported by another node i. This would be almost a straight line with a slope

very close to 1. Then we fit a straight line through these points using a least squared error

(LSE) method. Fig.6.4 shows the idea. Finally, we subtract the straight line from the curve

to see the estimation error. Figs. 6.5 6.6 6.7 6.8 6.9 show the residual estimation error for

5 arbitrarily chosen pairs (2,17), (17,11), (11,2), (11,16), and (17,16) respectively.

We observe a few things from these curves:

1. We see some fine noise in the estimation noise. Since the clock resolution is 1 tick (or

equivalently 30.5µs), any estimation error below 1 tick is caused by quantization.
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Figure 6.5. Residual Error of Estimation by Regressing Time Stamps of Node 2 on Time
Stamps Reported by Node 17.
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Figure 6.6. Residual Error of Estimation by Regressing Time Stamps of Node 17 on Time
Stamps Reported by Node 11.
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Figure 6.7. Residual Error of Estimation by Regressing Time Stamps of Node 11 on Time
Stamps Reported by Node 2.
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Figure 6.8. Residual Error of Estimation by Regressing Time Stamps of Node 11 on Time
Stamps Reported by Node 16.
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Figure 6.9. Residual Error of Estimation by Regressing Time Stamps of Node 17 on Time
Stamps Reported by Node 16.

2. Certain nodes such as 2, 11, and 17 have clocks that have good short term stability.

The general shapes of Figs.6.5 6.6 6.7 are fairly smooth. This is a good news because

it means the drift rate of clocks vary slowly for these nodes (at least when they

experience about the same temperature). We can correct a large fraction of such

estimation error by adaptively estimating the drift rate by examining recent history.

3. Node 16 has poorer short term stability as evident in the presence of more wiggles in

Figs.6.86.9.

4. Among the pairs we examined, the curve in Fig.6.7 for node pair (11,2) has the most

rapid change in slope. The estimation error changes from +64 ticks at the beginning

of the experiment to -16 ticks at the end of 2 hours. This indicates that the relative

drift of the two clocks changes about (64 + 16) × 30.5µs over a period of 2 hours,

which is equal to 0.34 ppm. In general, this short-term variation of drift between two

nodes is much smaller than the long-term drift shown earlier in Fig.6.1 which is two

orders of magnitudes larger, on the order of 21ppm. Even so, one cannot ignore this

short term variation because they can build up errors over time.
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6.4 Time Synchronization

In the previous section, we have roughly quantified the clock drift between neighbors.

This understanding allows us to investigate different clock synchronization algorithms in this

section. To send to receivers, the senders need to know the hopping boundaries accurate

to within a small fraction of the Big Slot. Otherwise, the sender might have arrived at the

receiver’s channel either too early or too late. For the platform we use, the time it takes

to switch channel is 305µs (10 ticks). It means that hopping period should be much longer

305µs. We therefore believe that synchronizing neighbors to within 6 ticks (i.e., ±183.1µs)

95% of the time should be sufficient for our purposes.

To investigate different algorithms for clock synchronization easily, we first collected a set

of time stamps from a set of nodes. Then, we simulate different synchronization algorithms

under identical packet loss conditions using the collected time stamp traces. Finally, we

implement the best algorithm on actual hardware. This greatly simplifies programming

because we have the full resources of a PC rather than an embedded micro-controller.

6.4.1 Experimental Setup

In this section, we describe a set of experiments designed to capture time stamps traces

for emulating different synchronization algorithms. We set up 16 nodes within the range of

each other to each send out beacon packets every 10 seconds. Each beacon packet contains

the following information:

1. SrcID (2 bytes): Node ID of the sender.

2. SrcSeqNum (2 bytes): Sequence number of the beacon packet from this sender.

3. SrcClock (4 bytes): 32-bit local time stamp of the sender when the packet is sent.

Upon reception, the receiver sends a log packet containing the received packet and the

following information over the USB port to an attached PC.

1. DstID (2 bytes): Node ID of the receiver.

2. DstClock (4 bytes): Local clock of the receiver.
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Therefore, when a node beacons, it triggers a total of 15 log packets, one from each of

its neighbors. The packets contain sufficient information to emulate any synchronization

algorithm based on nodes periodically broadcasting beacon packets. We can also detect

packet losses in our experiment.

6.4.2 MMSE

A standard approach for clock synchronization is by iterative Minimum Mean Squared

Error (MMSE) estimator on a recent history of time stamps as in [8]. Let yi’s denote the

sender’s time stamps of the beacon packets and xi’s be the receiver’s time stamps. The

index i is the sequence numbers of the beacon packets. We model the relationship between

the two as: yi = sij(xi − xo) + εi where ε is the error due to the time stamping (on both

the sender and the receiver sides). sij is the ratio of the speeds of j’s clock to i’s clock. xo

is the value of i’s clock when j first starts.

The estimation process goes as follows. The senders send out beacon packets periodically

containing the senders’ local time stamps (yi’s). The receivers time stamp each beacon

packet (xi’s). Based on the recent history of (xi, yi) pairs, the receiver predicts the sender’s

time stamp in the incoming packet. This prediction is called ŷi. The prediction error is

y − ŷi. The standard error of estimation is defined to be the square root of the the mean of

the (y − ŷi)
2.

Since there are 16 nodes, there are 16 × 15 × 2 = 480 sender/receiver pairs. A syn-

chronization algorithm being tested is run between every pair, yielding 480 standard error

figures. We use the median and the maximum of these 480 numbers as the figure of merit

for different synchronization algorithms.

It is reasonable to try the MMSE estimator using a variable number of recent

send/receive time stamp pairs. If the errors are normally distributed, the MMSE esti-

matator is the same as the maximum likelihood estimator(MLE), which should perform

very well.

The devices such as the motes have very limited memory and processing power, it

might not be feasible to remember a large number of previous sample points for regression.

However, for now, we ignore the implementation constraints and assume that devices are not

resource constrained. We want to know if MMSE performs well enough for our application,

given that clock drift rates are not constant, and that errors are not necessarily Gaussian.
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Figure 6.10. Maximum and Median Standard Error of Estimation among All Node Pairs
vs. History Length. Data points are 10 seconds apart.

For example, as we saw in Sec.6.3.5 some time stamp errors are clearly outliers probably

caused by delayed interrupts.

In this section, we use the most recent k pairs of local (receiver’s) and remote (sender’s)

time stamps to feed into a standard MMSE estimator. By varying k, we attempt to find

the optimal number of points that should be used to achieve the highest accuracy. If the

estimator uses too few points, the error in the time stamp samples would dominate and

reduce accuracy. However, if too many points are used, the estimator cannot quickly track

changes in short-term clock drift variation.

Fig.6.10 shows the maximum (upper curve) and the median (lower curve) estimation

errors as the number of data points used in regression varies from 5 to 100. As expected,

the errors first drops but eventually rises again.

The optimal occurs around 30 data points which corresponds to 300 seconds in real-

time since the beacons are 10 seconds apart unless there is packet loss. Packet loss ratio

between pairs ranges from 0% to 4% with most being below 1%. Therefore, the optimal

synchronization algorithm based on MMSE should use about 5 minutes of history.
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6.4.3 Recursive Estimation

In the previous section, we assumed that the nodes can remember as many sample points

as necessary. However, typical low-cost devices have only limited memory. In particular,

Telos motes have only up to 10KB of memory to be shared by all applications and the

operating system. Each time stamp pair takes 8 bytes. Assuming a beacon interval of 10

seconds, to achieve the optimal estimation error requires keeping 30 points or 240 bytes

per neighbor. On a different hardware platform, perhaps even more history needs to be

remembered. This severely limits the number of neighbors possible.

Therefore, it is preferable to use a recursive algorithm that keeps a smaller constant

amount of memory per neighbor and allows an incremental update when a new time stamp

pair is observed. Next, we will investigate a recursive estimation algorithm which gives

earlier points geometrically lesser weight depending on age instead of equal weights.

Using the same notation as before, xi and yi represent the receiver’s and sender’s time

stamps. ŷi denotes the receiver’s estimation of the sender’s time stamp. We restrict our-

selves to only linear estimators of the form:

ŷi = bo + b1xi

We define the objective of the regression to be minimizing the residual sum of squares

as defined below:

RSS =

n
∑

i=1

γn−i(yi − ŷi)
2 =

n
∑

i=1

γn−i(yi − bo − b1xi)
2

Setting ∂RSS
bo

= 0, we have:

∂RSS

bo
= −2

n
∑

i=1

γn−i(yi − bo − b1xi) = 0

Equivalently,

β̂o

n
∑

i=1

γn−i + β̂1

n
∑

i=1

γn−ixi =

n
∑

i=1

γn−iyi (6.1)

Similarly, by setting ∂RSS
b1

= 0, we have:

−2
n

∑

i=1

γn−ixi(yi − β̂o − β̂1xi) = 0
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Therefore,

β̂o

n
∑

i=1

γn−ixi + β̂1

n
∑

i=1

γn−ix2
i =

n
∑

i=1

γn−ixiyi (6.2)

Solving (6.1) and (6.2) directly would yield the desired βo and β1, but it would require

remembering all xi’s and yi’s as before.

To allow recursive computation of βo and β1, we first define the followings:

σ1,n =

n
∑

i=1

γn−i

σx,n =

n
∑

i=1

γn−ixi

σy,n =

n
∑

i=1

γn−iyi

σxy,n =
n

∑

i=1

γn−ixiyi

σx2,n =
n

∑

i=1

γn−ix2
i

The immediate consequence of the definition is that σ1,n, σx,n,σy,n,σx2,n, and σxy,n can

be calculated recursively. For example,

σx,n =

n
∑

i=1

γn−ixi =

(n−1
∑

i=1

γ(n−1)−ixi

)

γ + γn−nxn = σx,n−1γ + xn (6.3)

.

Similarly,

σ1,n = γσ1,n−1 + 1 (6.4)

σy,n = γσy,n−1 + yn (6.5)

σx2,n = γσx2,n−1 + x2
n (6.6)

σxy,n = γσxy,n−1 + xnyn (6.7)

By now, we can incrementally update σ1,n, σx,n, σy,n,σx2,n, and σxy,n and hence there is

no need to keep any time stamps after they have been used to update these 5 variables. The

amount of storage needed per neighbor is reduced from the original 30 time stamp pairs
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(i.e., 60 numbers) down to 5 numbers. Furthermore, as n increases, σ1,n = 1−γn

1−γ approaches

1
1−γ which is a constant requiring no updates.

The normal equations (6.1) and (6.2) can be rewritten as:

β̂oσ1,n + β̂1σx,n = σy,n (6.8)

β̂oσx,n + β̂1σx2,n = σxy,n (6.9)

Solving (6.8) and (6.8), we have:

β̂o =
σx,nσxy,n − σx2,nσy,n

σ2
x,n − σx2,nσ1,n

(6.10)

β̂1 =
σx,nσy,n − σ1,nσxy,n

σ2
x,n − σx2,nσ1,n

(6.11)

Using iterative MMSE, one design parameter is the number of points to remember

for the estimation. In recursive estimation, the forgetting factor γ is important. Fig.6.11

shows the effect of using different values of γ in the estimation accuracy. The x-axis shows

the value of γ used, while the y-axis shows the median and maximum standard error of

estimation among all pairs. In general, the performance of recursive estimation is not as

good as iterative MMSE. However, in practice, both algorithms produces an estimate with a

standard error that is less than one clock tick. Any error below one clock tick is completely

overwhelmed by the quantization error. Therefore, there is no practical difference in terms

of performance. Also notice that as γ increases the estimation error first reduces slowly,

reaches an optimum around 0.925, and then increases very quickly. Therefore, it is safer

to err on the side of a smaller γ. It is much more detrimental to forget too slowly than to

forget too quickly.

6.4.4 Recursive Estimation without Overflow

The solution presented in equations (6.10) and (6.11) are not suitable for direct imple-

mentation because of overflows. As n increases, σx,n, σy,n, σx2,n, and σxy,n all grow without

bound and will eventually overflow.
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Figure 6.11. Maximum and Median Standard Error of Estimation among All Node Pairs
vs. γ. A larger γ gives more weight to earlier points.

Take σx,n =
∑n

i=1 γn−ixi as an example. First the wrapping of xi needs to be addressed.

Second, as time goes on, the local clock of the receiver xi increases. The sum σx,n is at least

as big as xi because the weight γn−i is equal to 1 for the most recent sample. Eventually,

the variable containing σx,n overflows.

An important observation is that only the relative values of xi and yi are important.

Adding a constant offset to the clocks of the senders and receivers does not change the

essence of the regression. The motivation for adding an offset to xi is such that by carefully

choosing the offset, we can make the most recent samples of xi to be close to 0, and

earlier samples take on large negative values. In the sum, earlier sample points have an

geometrically decreasing weight which quickly approaches zero, therefore the sum σx,n =
∑n

i=1 γn−ixi becomes bounded.

To illustrate, suppose we add an offset of −k and −c to xi and yi respectively. This

amounts to a change of variables from xi and yi to zi = xi − k and wi = yi − c. We want to

compute σz,n, σz2,n, σw,n, and σzw,n using σx,n, σy,n, σx2,n, and σxy,n without redoing the

recursive computation from scratch.
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σz,n =
n

∑

i=1

γn−izi =
n

∑

i=1

γn−i(xi − k) =
n

∑

i=1

γn−ixi −
n

∑

i=1

γn−ik = σx,n − kσ1,n

Similarly,

σz2,n =

n
∑

i=1

γn−iz2
i =

n
∑

i=1

γn−i(xi − k)2 = σx2,n − 2kσx,n + k2σ1,n

σw,n =
n

∑

i=1

γn−iwi =
n

∑

i=1

γn−i(yi − c) = σy,n − cσ1,n

σzw,n =
n

∑

i=1

γn−i(xi − k)(yi − c) = σxy,n − kσy,n − cσx,n + kcσ1,n

To further simplify, we choose k = σx,n/σ1,n and c = σy,n/σ1,n.

Therefore,

σz,n = 0 (6.12)

σz2,n = σx2,n −
σ2

x,n

σ1,n
(6.13)

σw,n = 0 (6.14)

σzw,n = σxy,n −
σx,nσy,n

σ1,n
(6.15)

After the change of variables, we can calculate ẑi and get ŷi by adding c to it. The

estimation is exactly the same as if we had never changed the variables. In addition, if we

changed our variables twice, first by an amount of (k1, c1), then again by (k2, c2), the result

is the same as changing the variables by an amount of (k1 + k2, c1 + c2). The beauty of

this is that if we change variable after each iteration by making σw,n and σz,n both zero

and then renaming z as x and w as y, we can avoid overflowing σx,n, σy,n, σx2,n, and σxy,n

completely. Algorithm 1 shows the complete recursive algorithm for updating the sums and

calculating ŷi.
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/* Initialization */
γ = 0.9 /* Tunable parameter */
read(x1,y1) /* From first beacon packet */
i = 1 /* num of beacons received so far */
k = x1
c = y1
σ1 = 1
σx = σy = σx2 = σxy = 0

while (True)
read(xi,yi) /* From incoming beacon */
i = i + 1
x′ = xi − k
y′ = yi − c
if (i ≥ 3) /* Need 2 points before we can predict */

ŷi = β̂1x
′ + c /* Estimated send time */

εi = y − ŷi /* Estimation error */
endif

/* Update sums */
σ1 = γσ1 + 1
σx = x′

σy = y′

σx2 = γσx2 + x′2

σxy = γσxy + x′y′

/* Change of variable */

σz2 = σx2 − σ2
x/σ1

σzw = σxy − σxσy/σ1
k = k + σx/σ1
c = c + σy/σ1

β̂1 = σzw/σz2

/* Renaming variable */
σx2 = σz2

σxy = σzw

end while

Algorithm 1: Recursive estimation algorithm without overflow.
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6.4.5 Computational Efficiency

So far we have ignored the problem of computational efficiency. Since the time stamps

are 32-bit long, we have carried out all arithmetic in 64-bit double precision floating point

numbers to prevent loss of precision. However, many low cost platforms including our Telos

motes do not support floating point numbers in hardware. Worse, the GNU C compiler we

use supports only single-precision floating point operations for our motes. If we use only

single-precision floating point numbers to implement Algorithm 1, the estimation error

would become unacceptably large.

As a result, we can either port a software double precision arithmetic library to our

platform, or we can try to carefully craft our calculation to use only single precision floating

point numbers. We decided to go with the latter solution because even if we can do double-

precision calculation in software, it will still be very slow.

IEEE single precision floating point numbers have 23 bits of mantissa, 8 bits of exponent,

and 1 bit for the sign. To minimize any loss of precision, we have to ensure that the

intermediate numbers in the calculation do not require more than 23 bits of precision.

Since each time stamp is already 32-bits, it presents a difficult challenge.

In order to overcome this, we rely on several important observations. First, yi increases

at 32768 ticks/second, but yi − xi grows at the relative drift rate between 2 neighbors’

clocks which was measured to be no more than one tick per second in Sec.6.3.4. Instead of

regressing the sender’s time stamp yi on the receiver’s time stamp xi, we can regress yi −xi

on xi. Algorithm 1 can be readily reused by feeding it (yi − xi, xi) instead of (yi, xi). The

only other change is that the estimated sender’s time stamp is now ŷi +xi instead of ŷi. By

using yi − xi, the magnitudes of σy, σw, σxy, and σzw are much smaller.

Unfortunately, the optimization just mentioned does not reduce magnitude of σx2. In

order for all calculations to fit in single precision floating numbers without much loss of

precision, we need to reduce xi. The synchronization algorithm regresses y − x on x, but

the magnitude of these two numbers are vastly different. This is because they increase

at vastly different rates. The quantity y − x represents the drift between the clock of the

sender and that of the receiver. Therefore, its magnitude grows at the drift rate between

the two nodes. Under normal operating conditions, we measured the drift to be no more

than 30ppm. Since each tick is 30.5µs, the magnitude of y − x increases by no more

than 1 every second. In contrast, x is the receiver’s clock which increases by 32768 every
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second. Therefore, x is a much larger quantity than y−x with many more bits of precision.

However, since y − x has only few bits of precision, these extra bits of precision in x do

not significantly affect the accuracy of the prediction. We exploit this fact and ignore the

least 12 signification bits of x in our regression calculation with almost no loss in prediction

accuracy.

In addition, the most significant bits turns out to be also unimportant. As an example,

suppose that neighbors are timed out after 2 minutes. In 2 minutes, only the lower order

21 bits may change. Therefore, one can safely ignore the 11 higher order bits of the 32-bit

time stamp without any confusion due to wrap-around. Combining these two observations

about x, we can throw away the upper 11 bits and the lower 12 bits of the 32-bit time

stamps. Therefore, the value of x can now fit in 9 bits taking on an integer value between

0 and 511, as opposed to 0 and 232 − 1. As a result, σx, σx2 , σxy, and σz are now much

smaller.

Using a combination of the above mentioned optimizations, we are able to carry out

all the calculation specified in Algorithm 1 using only integers and single-precision floating

point numbers.

6.5 McMAC-Light Protocol Description

Having addressed the challenge of synchronization, we now present a simplified version

of McMAC that we have implemented on the motes, called McMAC-Light. The goal of the

implementation is to prove that McMAC is a practical protocol even though it requires a

certain level of synchronization.

6.5.1 Random Channel Hopping

Time is divided into Small Slots of 1/32768 seconds (i.e. 30.518us) each. The duration

of each Small Slot is defined to be the same as the a hardware clock tick for simplicity.

Each node keeps a 32-bit counter which increments by 1 every tick. Each Big Slot consists

of 128 Small Slots and therefore lasts 3906.3 us. Fig.6.12 shows a Big Slot is divided into 4

periods: channel switching time (12 Small Slots/366µs), guard time(6 Small Slots/183µs),

contention window (32 Small Slots/977µs), and data window (78 Small Slots/2380µs).

A node hops at the beginning of every Big Slot in a pseudo-random fashion over all
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Figure 6.12. Breakdown of a Big Slot.

channels. Only the first 128 numbers from the pseudo random hopping sequence are used.

The hopping sequence then repeats every 128 Big Slots. The channel switching time of

12 Small Slots allows more than enough time for nodes to hop at the beginning of a Big

Slot. A node cannot send or receive during this period. The slot boundaries of different

devices need not coincide. A Big Slot begins when the last 7 bits of the local clock become

0. Therefore, by extracting the last 7 bits of the current clock and the seed of the sender

node, one can predict its future hopping sequence. Together, we call the 32-bit local clock

and the seed the hopping signature of a node. For this implementation, each device has a

unique 16-bit MAC address which is used directly as the seed.

A guard time is present right before the contention window to ensure that even though

senders not perfectly synchronized to their receivers, they will not pick a time to start

sending before the receiver has switched to the appropriate channel. The contention window

allows multiple senders to contend for the medium using CSMA. There is no backoff in

McMAC-Light. Data packet transmission starts somewhere within the contention window,

and extends into the data window. After a successful unicast packet such as a data packet

or a probe packet, the receiver returns an ack packet after a gap of 192µs, as mandated in

IEEE 802.15.4 standard[27].

6.5.2 Discovery

Discovery is the process in which devices learn about their current 1-hop neighbors and

their corresponding hopping signatures. Every packet sent includes a hopping signature

that includes the 16-bit seed of the sender (same as the MAC address) and the current

32-bit local clock. These values are stored in the payload of a TinyOS packet encapsulated

inside an 802.15.4 frame as shown in Fig.6.13. A Big Slot begins whenever the last 7 bits of

the clock equal 0. The 32-bit time stamp stored in a packet corresponds to the local clock

value when the start-frame-delimiter (SFD) of a MAC-level frame is sent. Upon receiving

a packet, the receiver can immediately predict the future hopping sequence of the sender.

The same 32-bit time stamp is also used for synchronization as described in Sec.6.4.
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Figure 6.13. Frame format of a McMAC beacon or probe packet encapsulated inside an
802.15.4 frame.

Figure 6.14. Frame format of an 802.15.4 ack packet.

When a device first turns on, it announces its presence by broadcasting beacon packets

periodically with its hopping signature while hopping on its home sequence. Each node

starts broadcasting beacon packets after a random delay between 0 to 1 seconds of power-

up. After sending each beacon, it sets another timer to beacon again Tb seconds plus a

randomized delay between 0 and 3.9ms (i.e., between 0 and 127 small slots) later.

When a beacon packet is received, the receiver notes the local time and the node ID of

the sender. This signature is added to the neighbor table to allow the receiver to predict

the sender’s hopping sequence and send packets to it. If a neighbor has not been heard

from after a timeout period, the neighbor is removed from the neighbor table and the

synchronization table.

6.5.3 Synchronization

Synchronization refers to the process in which a node estimates and compensates for the

difference in their clocks. Nodes rely on the beacon packets, not only for initial node discov-

ery, but also for synchronization. A node keeps a 32-bit counter ticking at 32768Hz. Each

incoming beacon packet contains the time stamp of the sender. When received, the receiver

time stamps it using its local clock. Pairs of such corresponding sender-side and receiver-

side time stamps are fed into the recursive estimation algorithms for time synchronization

presented in Sec.6.4.4 with all the optimizations in Sec.6.4.5.
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6.5.4 Rendezvous and Scheduling

Rendezvous is the process in which a sender sends a packet to a specific receiver given

that the sender has an accurate estimate of the current home channel of the receiver.

Rendezvous can happen on multiple channels simultaneously among several pairs of senders

and receivers. A multi-channel MAC protocol optimized for throughput should schedule

packets destined for different neighbors carefully to prevent head-of-line blocking and to

improve performance. Since we only aim at proving that McMAC is practical, the scheduler

uses a simple First-Come-First-Served (FCFS) policy.

At the beginning of a slot, if a data packet arrives at the sender, the sender first checks

the neighbor table to find out when the next Big Slot of the receiver starts. Second, it picks

a Small Slot within the contention window of this Big Slot. Third, it changes its channel to

the home channel of the receiver during this Big Slot. It then waits until the desired Small

Slot. Right before sending, the sender senses the medium for a carrier to check that there

is not a nearby node sending. If so, it cancels the pending packet and returns to its own

home channel. Packets are not retried if the medium is busy in McMAC. If the packet is

successfully sent, it waits for an ack from the receiver. The ack packet is generated by the

hardware and follows the 802.15.4 standard ack frame format as shown in Fig.6.14. There

are no TinyOS or McMAC-Light information in an ack packet.

Each node also sends out beacon packets. Beacon packets are sent periodically on the

home channel of the sender. When a beacon packet is due, the sender picks a Small Slot

uniformly and randomly within the contention window of its upcoming Big Slot. It waits

until the chosen Small Slot, senses the medium, and sends the beacon if the medium is idle.

6.6 McMAC-Light Evaluation

6.6.1 Time Sync Experiments (Exp.T)

In the first set of experiments denoted Exp.T, we want to measure the effectiveness of

the time synchronization mechanism in a realistic setting. We setup N nodes in a 1-hop

network. They hop over M channels according to their own random hopping sequences.

Hopping is suspended when an incoming packet is detected. A node resumes hopping when

it has received either (i) a complete packet if that is a broadcast packet or that packet is
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destined for itself, or (ii) a complete header of a unicast packet if the packet is not destined

for itself.

Each node sends out beacons at 1s or 5s intervals. Each beacon packet contains the

sender’s node ID and the sender’s time stamp txT ime. Beacon packets are not retried if the

medium is busy at the time of transmission. In addition, each node sends a probe packet

to a randomly chosen neighbor every second. These probe packets are not useful in this set

of experiments. They will be used and explained in Sec.6.6.2 to follow. These same traffic

pattern is used for both experiments to ensure consistency. In fact, except for the different

instrumentation code, the nodes are running the same code in both experiments.

When a node receives a beacon, it uses the receive time stamp (rxT ime) to estimate the

sender’s send time (estiTxT ime). The estimation error is |txT ime − estiTxT ime|. Since

we know that clocks do not drift more than 30ppm apart, to combat outliers, a node checks

the estimation error and accepts it only if the estimation error is within the maximum drift

possible since the previous packet received from this sender. For each accepted beacon, the

node sends 〈rxT ime, estiTxT ime, txT ime, error〉 tuple over USB to a PC for logging.

The accuracy of time synchronization depends on the frequencies of received beacons

which also depends on the number of beacons each node is able to send. At the end of the

experiment, each node reports the total number of beacons it is able to send.

Because we add 6 ticks of guard time near the beginning of each Big Slot after each

hop, a node can tolerate errors within 6 ticks in the clock estimation without any error in

the calculation of a neighbor’s home channel during the transmission contention window.

However, an error of over 6 ticks does not necessarily imply an error in the estimation of

the receiver’s channel during this window. This is because a node hops only once every 128

ticks.

The following Tab.6.6.1 shows the results for an 1-hour experiment. All numbers except

maxerror are averages over the number of nodes N .

As expected, the estimation errors decrease as the beacon frequency increases. The fact

that estimation errors increase as the number of nodes increases is unexpected.
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Experiment ID T.1 T.2 T.3 T.4 T.5 T.6

Num of Nodes (N) 16 8 4 16 8 4

Num of Channels (M) 8 8 8 8 8 8

Beacon Interval (k)[sec] 1 1 1 5 5 5

Max error [ticks] 94 26 18 46 23 19

Mean Error [ticks] 1.097 1.072 1.020 1.522 1.222 0.990

Std. Dev. of Error [ticks] 1.489 1.418 1.366 2.590 1.905 1.482

% with <= 3 tick Error 98.72 98.82 99.27 91.14 94.27 97.26

% with <= 6 tick Error 99.96 99.95 99.88 96.94 98.98 99.45

# Beacons sent 3429 3457 3453 696 690 698

# Beacons accepted 5153 2451 1067 755 355 182

# Beacons accepted per neighbor 343.5 350.2 355.5 50.3 50.8 60.8

Table 6.2. Results of McMAC-Light time synchronization experiments (Exp.T).

6.6.2 Channel Tracking Experiments (Exp.C)

In the second set of experiments, we want to evaluate the combined effectiveness of the

synchronization and channel tracking mechanism to allow senders to find their receivers

under light load. A direct measure of this effectiveness is the fraction of the number of

unicast packets sent that are received correctly.

This experiment builds on the previous experiment. In addition to the beacon broad-

casting in the sync experiment every k seconds, each node sends a probe packet every j

seconds to a randomly chosen neighbor. The probe packets are mock data packets. As in

the sync experiment, to avoid repeated collisions, each node sends a probe packet every j

with a random delay between 0 and 127 small slots (i.e., 0 to 3.9ms).

All nodes enable hardware acknowledgement generation, known as autoack. The hard-

ware automatically generates an ack frame after receiving an incoming frame with a correct

CRC, a matching destination address, and with the acknowledgement request flag set. After

sending a probe packet with autoack enabled, the sender waits a period of 75 ticks (i.e.,

2.29ms) for the ack frame. At the end of this timeout or at the reception of the ack frame,

whichever occurs first, the sender logs whether the transmission was successful and whether

an ack is received. Neither beacon nor probe packets are retransmitted.

In principle, since each probe packet, like any packet, contains a time stamp of the

sender, it can allow any node overhearing it to synchronize with the sender. Therefore, any

probe or data packets can act as beacon packets. This would reduce control overhead of
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our protocol. However, our particular radio platform requires autoack be enabled only if

hardware address filtering is also enabled. Hardware address filtering disallows overhearing

of unicast packets. To allow fastest and simple ack generation, we decided to use hardware

autoack. Thus, only the intended receiver will accept the probe packet; other nodes that

overhear the probe packet will not receive it. There are potentially other ways to generate

acks quickly while allow overhearing, but we leave it as a future enhancement since the

results show that synchronization works well enough with the use of beacon packets alone.

Experiment ID C.1 C.2 C.3 C.4 C.5 C.6

Num of Nodes (N) 16 8 4 16 8 4

Num of Channels (M) 8 8 8 8 8 8

Beacon Interval (k)[sec] 1 1 1 5 5 5

Probe Interval (j)[sec] 1 1 1 1 1 1

# sent probe packets 27127 13570 6794 18194 9824 4681

# received probe packets 25501 13080 6590 17362 9516 4614

# acked probe packets 25001 12772 6503 16870 9367 4540

% received / sent 94.01 96.39 97.00 95.43 96.87 98.57

% acked / sent 92.16 94.12 95.72 92.72 95.35 96.99

Table 6.3. Results of McMAC-Light channel tracking experiments (Exp.C).

The results of this set of experiments are shown in Tab.6.6.1. The results follow the

trends of the time synchronization experiments in 6.6.1 with more frequent beaconing

slightly increasing the chance that a node receives a probe from its sender. Senders are

able to find their receivers over 94% of the time. There were some ack packet losses on the

order of 2-3%, but overall, over 92% of probe packets are acked. There are several reasons

why a receiver fails to receive a probe packet, which we can improve on:

1. Synchronization Error If the sender is not synchronized with the receiver well

enough, it can miscalculate the receiver’s current channel and cause a probe packet

to be lost. However, this is not the most likely reason when the nodes beacons every

second. As we see in the previous section, nodes are synchronized over 99% of the

time in such case.

2. Receiver Busy Sending The receiver has to send probe packets to others as well,

so it might have deviated from its home channel. This will cause the sender to be

unable to locate its receiver correctly.

3. Receiver Busy Receiving After receiving a packet, the receiver has to move the
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packet from the buffer in the radio into its main memory of the micro-controller.

During this time, another packet cannot be received.

4. Receiver Deviation from Home Sequence A node pauses hopping when the

beginning of a packet is received. If a node receives a packet near the end of its Big

Slot, it will prevent it from hopping to the channel of its current big slot.

There are at least three reasons why ack packets are lost:

1. Noise The ack packets are corrupted by random noise.

2. Collision There is a gap of 12 symbol periods (i.e., 192µs) between the probe frame

and the ack. It is possible that another sender starts transmitting during this gap

and causes a collision.

3. Receiver Hops Away By the time the autoack frame is sent, the receiver has crossed

big slot boundary and has hopped away from the channel on which the probe frame

was received. However, this would happen only if the receiver started receiving the

probe frame near the end of its big slot, which is probably caused by the sender’s

being poorly synchronized to the receiver.

6.7 Summary

Using off-the-shelf sensor network hardware, we have shown that it is possible to synchro-

nize 1-hop neighbors as the nodes beacon periodically following random hopping sequences.

The hardware platform we use is very limited in terms of computational power and mem-

ory capacity. The operating system we use does not support real-time operations and the

clocks we use has a coarse granularity of only about 30µs. The radio is not optimized for

high speed hopping either. Despite all these constraints, we show that 1-hop neighbors can

synchronize to within 200µs 97% of times. This level of pair-wise synchronization is enough

for the purpose of parallel rendezvous multi-channel MAC protocol such as McMAC.

As the design of radios improves, we expect the channel switching time to go down

to further benefit parallel rendezvous protocols. We also expect in a typical hardware

platform optimized for throughput (rather than power consumption as is the case for sensor

networks), one would use a more powerful micro-controller to control the radio with the

following effects:
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• Higher Throughput: our current system is throughput-limited by the speed of the

micro-controller, not by the radio. We expect this bottleneck to be removed.

• Tighter Synchronization: one major source of time synchronization error is the

error in time stamping of incoming and outgoing packets. Using a faster micro-

controller will reduce interrupt handling time. Further, it will enable the use of real-

time OS to further reduce the jitter in handling time stamping interrupts, resulting

in more accurate time stamps.

We therefore expect parallel rendezvous protocols to be a very practical way to increase

the network throughput of an ad hoc wireless network in which each node has only one

radio and where the traffic pattern is more or less uniform among neighbors.
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Chapter 7

Summary

7.1 Future Work

As mentioned in Sec.1.3, we focused our study on single hop wireless networks carrying

only best-effort traffic. There are also a number of simplifying assumes we made. In this

section, we mention a few of such areas where further work is required to bring McMAC

into reality.

Since McMAC was designed to use only pair-wise local synchronization, extending the

network to multi-hop networks does not affect the ability of neighbors to track the clocks

and hopping sequences of their neighbors. However, there are other issues that might come

up:

• Hidden Node Problem Hidden nodes may exist in a multi-hop network. In such

case, immediately after switching to a new channel, a sender waiting to send may

listen for a carrier and thinks the medium is idle when, in fact, another node is

sending. If the sender starts sending, it may interfere with an existing conversation.

The severity of the hidden node problem depends on the carrier sense sensitivity of

the sender and the fading/shadowing environment. In general, if the carrier sense

range is significantly larger than the communication range of a node, this problem is

less severe.

• Relaying A multi-hop network must support some form of end-to-end relaying. Re-

laying can be done either at the network layer using an ad hoc routing protocol or

at the link layer using a forwarding scheme. Routing at the network layer is usually

more flexible and can use any available wireless links. Forwarding at the link layer
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usually restricts itself to choosing links on a subset of links such as a spanning tree.

Forwarding using only a spanning tree is much easier to implement because packets

travel either to or from the root of the tree. Whether to use network layer or link

layer relaying is still an open issue for McMAC.

• Relay Scheduling Regardless of the exact forwarding mechanism used, a packet

received at an intermediate node must be re-sent to the next hop quickly to reduce

the end-to-end delay. While the receiver is forwarding the packet to the next node

along the forwarding path, the original sender must not try to send another packet

to this receiver. Without any coordination, this process can be inefficient. Since a

large fraction of the traffic sent by a node can be due to forwarded packets rather

than locally generated ones, optimizing this case is essential to the performance of the

network.

There are also a number of other desirable improvements that should be considered:

• Voice/Video Support Real-time voice and video are an important class of applica-

tions. Voice have a very stringent delay, jitter, and packet loss requirement. Buffered

streaming video requires a high throughput guarantee, but delay jitter is unimportant.

Real-time video requires both high throughput and low jitter. To effectively support

video and voice traffic, McMAC needs to be extended to support constant bit rate

(CBR) flows with periodic packet arrivals.

• Multiple Radios McMAC currently supports only one radio per node. If a node

has more than one radio, there are at least two ways they can be used. One way is to

treat the radios as if they were independent. Each radio would have a different seed

and hence a different random hopping sequence. When a node beacons, it includes

the seeds of all of its radios. To send a packet, the sender uses one of its free radios to

send to one of the radio of the receiver. Another way to use multiple radios is to use

the same seed for all radios. Therefore, nodes only need to broadcast one seed. When

the first radio becomes busy (i.e., either sending or receiving), it deviates from its

default hopping sequence. At this time, the second radio turns on to replace the first

radio. If a node has multiple radios, it can send and receiver to multiple neighbors at

the same time.

• Broadcast McMAC does not have any mechanism to support broadcast specifically.

One can certainly broadcast the same packet multiple times to try to cover as many

102



neighbors as possible, but this is inefficient if broadcast packets are very frequent.

Another idea is to divide time into two phases: broadcast periods and unicast periods.

During broadcast periods, all nodes tune to the same channel for broadcast traffic.

• Receiver Scheduling McMAC currently serves receivers in a random order. This

is done to avoid deadlocks. However, a random schedule does not have a bound on

the maximum service delay which is undesirable. Depending on the objective such as

minimizing jitter or maximizing throughput, different scheduling disciplines be used.

7.2 Conclusion

The investigation into designing a multi-channel MAC protocol for wireless networks

was based on a simple observation: there are several channels available in an ad hoc 802.11

network, but only one is used for the entire network. As the traffic intensity increases, the

throughput share of each node decreases very rapidly. Further more, if a flow travels over

several hops, the amount of resulting traffic it generates is enormous. The obvious question

is whether one can use all available channels to increase throughput. The answer is yes.

On one hand, as shown in Sec.1.2.2, if it is possible to build a radio that makes use of the

entire available spectrum, there is no capacity gain by breaking up the spectrum into several

channels. On the other hand, regulations and engineering limits often result in the creation

of multiple channels. In such case, the use of a multi-channel MAC can potentially increase

the total throughput of the network by a factor proportional to the number of available

channels, if the traffic is uniform among neighbors. Therefore, multi-channel MAC protocol

should be viewed as a complementary software approach to increasing the throughput which

rides on top of any advancement in radio hardware design.

Throughout our study, we have focused on the single hop wireless network. Therefore,

issues such as routing and relay scheduling were not investigated. However, the McMAC

protocol was designed with an eye to extend it to multi-hop networks. Therefore, we

specifically avoided requiring global synchronization. Our proposed McMAC should be

viewed as the building block for a multi-hop version of the multi-channel MAC protocol.

Before introducing a new protocol, we surveyed the existing literature on multi-channel

MAC protocols carefully. The major issue in the design of such protocols is the mechanism

nodes use to agree on a channel for data transfer. Since the nodes have only one radio, there
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is a challenge in locating the receiver. We found that many of them share the same principle

of operation. We generalized the rendezvous mechanisms into four categories: Dedicated

Control Channel, Split-phase, Common Hopping, and Parallel Rendezvous. Through both

analysis and simulation, we studied the pros and cons of each approach and the conditions

under which they perform well. Only Dedicated Control Channel uses two radios, the others

use one only. It serves as a benchmark for the other schemes.

Apart from Parallel Rendezvous, all three other approaches suffer from congestion in

the common control channel. Control channel congestion happens when many channels are

available or the transfer length after each rendezvous is short. Different approaches suffer

to a different extent, but none of them can avoid this problem.

When control channel congestion does not happen, the Dedicated Control Channel

usually performs the best among the three. Under this approach, each node tunes one of its

two radios to the control channel permanently, and hence nodes have up-to-date information

about which channels and nodes are busy. This gives it performance advantage when each

node needs to communicate with a large number of neighbors. Moreover, it does not require

any synchronization. The downside of this approach is that each node must have 2 radios.

The advantage of Common Hopping is that it requires only one radio per node. However,

after each successful rendezvous, the sender reserves the medium for a fixed amount of time

even if it does not have enough data to fully utilize the entire duration. This allocated

duration grows linearly with the number of available channels. As a result, as the number

of channels grows, the wastage also increases. Common Hopping also requires very tight

global synchronization.

The Split-phase approach is very simple to implement and requires only very coarse

time synchronization. However, its performance is very sensitive to the duration allocated

to the control phase versus the data phase. Furthermore, this approach does not work well

when each node needs to communicate with a large number of neighbors. Control channel

congestion is also the worst using this approach.

Parallel Rendezvous protocols show good promise in terms of data throughput and the

ability to effectively use many channels. The major difficulty with Parallel Rendezvous is

the requirement of tight synchronization among neighbor pairs.

To prove that Parallel Rendezvous is a viable approach, we designed McMAC using this

approach. The guiding principles of our design are: (i) generality over optimality and (ii)
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robustness via randomization. We specified the full McMAC protocol state machines, and

chose a subset of features for implementation. The implementation serves two purposes: to

prove feasibility and to discover any hidden complexity.

Through the implementation exercise, we learnt that the most difficult challenge in

implementing McMAC is the time synchronization among neighbor pairs. Consequently,

we designed a synchronization method based on recursive estimation. This method can

correct both long term clock drift and short term variation by keeping a few numbers per

neighbor. Experimental results show that nodes only need to broadcast once a second to

keep the synchronization between nodes to within ±200µs over 99% of the time. If it were

not because of limitations of the hardware platform we use, these beacon packets could be

piggy-backed on data packets to further reduce overhead and increase accuracy. Overall,

the synchronization and rendezvous mechanism work well together to deliver 19 out of every

20 data packets sent.

In conclusion, our implementation shows that McMAC is practical. There are still

a number of desirable features which are not included in the current protocol proposal,

namely deterministic delay bounds, bandwidth guarantees, and multi-hop network sup-

port. However, the major stumbling block in terms of time synchronization and tracking

neighbors random hopping sequence have been resolved and verified through experiments.

The synchronization mechanism indeed keep nodes well synchronized even though they

hop randomly and the beacons are not guaranteed to arrive periodically. Furthermore,

our analysis and simulation both show that McMAC can achieve much higher throughput

than single rendezvous protocols by avoiding control channel congestion. As a result, we

expect McMAC to perform especially well in real applications when channels and nodes are

numerous.
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