
Improving Gradient Estimation by Incorporating
Sensor Data

Gregory Donnell Lawrence
Stuart J. Russell

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-58

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-58.html

May 15, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Improving Gradient Estimation by Incorporating Sensor
Data

Gregory Lawrence
Stuart Russell

May 15, 2006

Abstract

A key step in many policy search algorithms is estimating the gradient of the
objective function with respect to a given policy’s parameters. The gradient is typically
estimated from a set of policy trials. Each of these trials can be very expensive and
so we prefer to minimize the total number of trials required to achieve a desired level
of performance. In this paper we show that by viewing the task of estimating the
gradient as a structured probabilistic inference problem, we can improve the learning
performance. We argue that in many instances, reasoning about sensory data obtained
during policy execution is beneficial. In other words, in addition to an agent knowing
how well it performed during each policy run, it is helpful for it to learn “how it feels”
to perform a particular task well. This knowledge is especially useful if we are able
to incorporate prior knowledge specific to the given control task. Examples of using
prior knowledge include setting the conditional independencies between various sensor
variables and choosing the types of conditional probability distributions. In addition,
by using hierarchical Bayes methods we are able to efficiently reuse old data from
trials of other policies. We demonstrate the effectiveness of this approach by showing
an improvement in learning performance on a toy cannon problem and a dart throwing
task.

1 INTRODUCTION

Policy search algorithms have been very effective in learning good policies in the reinforce-
ment learning setting. Successful applications include learning controllers for helicopter flight
[9] and robot locomotion [5]. These algorithms improve a given policy by estimating the gra-
dient of a policy’s value with respect to its parameters from a collection of samples, where
each sample is obtained by executing a policy. This gradient is used to improve the per-
formance measure of the current policy by adjusting the parameters in the uphill direction.
Given this new policy, the process is repeated by evaluating a new set of policies and taking
another hill-climbing step. Each of these samples can be very expensive and so we prefer to

1

minimize the total number of samples required to achieve a desired level of performance. A
number of approaches have been presented to help minimize the number of required samples
[1, 2, 8, 11, 13] and we will show that additional improvements can be made by incorporating
an agent’s sensor data.

During each policy trial, an agent may receive lots of sensory data from its environment.
While the agent’s controller may use this information in deciding which actions to take,
the sensory data is usually ignored in the gradient estimation task 1 and this can result in
inefficient learning. As an example, suppose that an agent’s goal is to aim a cannon so that
when it is fired, the cannon ball hits a target in the distance. Furthermore, suppose that
this agent increases the angle of the cannon and notices that the cannon missed too far.
Normally, our agent will want to reduce the angle of the cannon so that the next shot moves
closer to the target. However suppose that during the previous shot, the agent noticed that
the shot sounded louder than usual. This helps to explain the miss and therefore the agent
should keep the cannon at the same angle. Observing the sensor value helps to explain what
actually happened and consequently, improves the quality of the gradient estimate. These
types of inferences have been exploited when the agent is given a sensor model and perfect
sensing [6]. In this paper, we remove these unrealistic assumptions and explain how we may
construct algorithms that are implementable on real systems.

In addition to ignoring sensor data, many policy search algorithms throw away each
batch of samples after taking a hill-climbing step. Importance sampling estimators have
been applied to reuse old sample data [10, 11]. The key idea is that although the underlying
dynamics of the environment may be unknown and highly nonlinear, we can still compute the
probability that a given policy would have generated the same history observed by executing
another. One drawback to this approach is that the advantages of reusing old samples may
quickly fall off as the current policy moves far away from the generating policy, even if the
value is completely linear in the policy parameters. This occurs when the probability of a
given policy generating the history of another is close to zero and therefore provides neglible
weight in the importance sampling equation.

Our approach will be to view the task of estimating the gradient as a structured proba-
bilistic inference problem. For each task we will present a Bayesian network parameterized
by θ that represents the process of generating the observable data, including a measurement
of the performance. Each hill-climbing step will be made by first evaluating N policies drawn
according to some exploration strategy in order to learn the network parameters θ that best
explain the observed data. Given this parameter, we can compute the gradient of the objec-
tive function and use it as our estimate. Finally, we adjust the policy in the direction of the
gradient in an attempt to increase the objective. We parameterize our Bayesian network so
that the probabilistic relationships that occur between the observable data can differ between
policies evaluated during different hill-climbing steps. However, we enforce parameter tying
by placing a prior distribution over these parameter values. A kernel function measures how

1There are other approaches to reinforcement learning, such as temporal-difference learning, that make
use of this sensory information by learning a value function for each possible state. However, applying these
algorithms can be very difficult in some domains because it may be hard to determine the true state space.
Furthermore, most real problems are only partially observable.

2

“similar” samples obtained during different hill-climbing steps are and is used to construct
an appropriate prior. One advantage of this approach is that different conditional probability
distributions in the Bayesian network can be shared at various strengths.

Section 2 of this paper shows how one may use a Bayesian network to represent the prob-
ability distribution of the sensor variables and performance measure. Section 3 describes a
hierarchical Bayes approach to reuse samples. Section 4 describes how to learn the parame-
ters of the Bayesian network so that we may estimate the gradient (the details are presented
in the appendix sections). We will show the effectiveness of this approach by examining a
toy cannon problem and a dart throwing problem in Section 5 and discuss possibilities for
future improvements in Section 6.

2 INCORPORATING SENSOR INFORMATION

A policy π determines how an agent chooses its actions given its past observations, and the
reinforcement learning goal is to find a policy π∗ that maximizes the objective function. In
this paper we use policy search by hill-climbing through a space of parameterized policies
π ∈ Rd. We adopt the standard objective function which is that an agent should maximize
the expected sum of future reward values. Each policy execution gives a history h, whose
value is the sequence of observation-action pairs. The response function F (h) evaluates each
history and equals the sum of reward values obtained at each time step. Thus the optimal
policy maximizes the expected response E[F (H)|π∗] where the histories H are generated
from π∗.

We will use subscripts to denote the ith policy execution and superscripts to denote the
jth hill-climbing step. Thus in a single run of the algorithm, πj

i represents the ith policy
executed in the jth hill-climbing step.2 In addition, we write πj

0 to denote the nominal
policy used in the jth hill-climbing step (the actual policies that are evaluated will be drawn
according to some exploration strategy).

2.1 TOY EXAMPLE

To illustrate the main contributions of this paper we will examine a toy cannon problem
(Figure 1). In this problem the goal is to fire a cannon ball towards a distant target. The
policy π = (θd, vd)

T consists of a desired cannon angle, 0 ≤ θd ≤ π/2, and desired initial
velocity, vd > 0. In this single-step problem, the policy is perturbed by noise to give the
actual controls x = (θa, va)

T . We assume that the agent has access to a noisy sensor that
measures x and let s = (θs, vs) denote its value. There is additive, zero-mean noise in both
the control and sensor values; the control noise has covariance matrix Σx and the sensor noise
has covariance matrix Σs. The history h for this problem contains both the desired action
π and the sensor value s. The response function is defined to be F (h) = −d(h)2, where d(h)

2To ease explanation we assume that, at each hill climbing step, exactly N policies are evaluated and
that we are currently in the Mth step of the hill-climbing procedure. It is straightforward to relax this
assumption.

3

v

θ

d

Figure 1: The cannon problem.

is the distance from the target to where the cannon ball lands. Maximizing E[F (H)|π] is
equivalent to minimizing the expected squared distance error.

2.2 BAYESIAN NETWORK REPRESENTATION

Figure 2a shows a Bayesian network that represents a single trial in the cannon problem.
The joint distribution of a trial is written as P (πe, x, f, s) = P (πe)P (x|πe)P (f |x)P (s|x). An
exploration policy πe is drawn from a neighborhood centered around the nominal policy for
the current hill-climbing step. Given this policy, the hidden random variable X represents
the actual control, F denotes the response value, and S denotes the sensor value. We assume
that the agent is given a suitable network structure and an appropriate parameterization of
the conditional probability distributions. For the cannon problem, the agent assumes that
each node, except for πe

3, is drawn from a linear-Gaussian distribution conditioned on the
values of its parents. If we assume that for each hill-climbing step the policies are drawn
from a small neighborhood and that the noise is relatively small, then the linear-Gaussian
assumption is accurate. We will assume that the learning algorithm does not know that
there is additive, zero-mean noise and that it does not know the covariance matrices in
advance. If we were to include these constraints, then the learning performance will improve
(e.g., section 5 shows an improvement in learning performance in the case of a known sensor
model).

The advantage of incorporating the sensor variables is in explaining the variance of the
response F . If the agent had access to the hidden variable X, then it could better predict
what the response should be for a particular trial. In general, the agent will never be able to
determine this exactly but some information can be inferred from the sensors. Learning the
relationship between what an agent believes about the actual control X and the response
F is relatively easy, compared to learning the relationship between πe and the response F ,
because the noise has already been partially accounted for.

Let θ = {Ax, bx, Σx, Af , bf , Σf , As, bs, Σs} represent all of the parameters in the Bayesian

3Since the agent always knows the policies it chooses to execute, we do not need to learn the distribution
of πe.

4

F S

X

πe

F

S

πe

F

S

πe

S′

(a) (b) (c)

Figure 2: (a) A Bayesian network that represents the process of executing a policy in the
cannon problem in which the hidden random variable X represents the actual control, F
denotes the response value, and S denotes the sensor value, (b) an alternative network
without any latent variables, and (c) a network that includes quadratic sensor terms S ′ =
(θs, vs, θ

2
s , v

2
s , θsvs)

T .

network.4 The conditional distribution of a node is given by its corresponding parameters
(denoted by subscripts). For example, the mean of random variable X is given by the fol-
lowing linear relationship µx = Axπe + bx and the variance is given by Σx. Given that we
have a suitable network structure for a given problem, we would like to find a parameter θ∗

that best captures the probabilistic relationships among a policy, the sensory information
obtained during policy execution, and the response value. We can learn θ∗ using standard
methods (e.g., maximum likelihood estimation). It may be easier to learn the model pa-
rameters in a Bayesian network that is free of latent variables (Figure 2b). In this case, the
distributions captured by this alternative representation form a superset of those captured
in Figure 2a, where the latent variable constrains the response and sensor nodes to be drawn
from a distribution conditioned on a two-dimensional intermediate value.5 Given θ∗, we
can compute the gradient of the objective function with respect to changes in the policy
node. For the Bayesian network given in Figure 2a the gradient of the objective is written
as ∇πE[F (H)|π] = (AfAx)

T . A basic algorithm is to learn θ∗ from the data obtained during
the current hill-climbing step and follow the gradient provided by the network parameters
θ∗.

Prior knowledge can be used to improved the hill-climbing learning performance. For
example, we may already have access to an accurate sensor model, thereby reducing the the
number of model parameters that need to be learned. An alternative approach is to place

4This parameterization is more general than necessary, according to our problem description, because it
does not exploit certain facts about the cannon problem (e.g., the noise has zero-mean).

5By using the network structure presented in Figure 2b we lose some of the structure inherent in the
problem while making the inference task easier.

5

F

Af

As

M

Π

S

πe

S′

Figure 3: A hierarchical Bayesian network based on Figure 2c that represents the process of
executing policies in the cannon problem. Information is shared between the different steps
via the linear regression coefficients contained within nodes As and Af .

a prior probability distribution on the model parameters using knowledge about the specific
task. Another type of prior knowledge is structural. Suppose that we know that the noise
added to the desired angle θd is independent of the noise in velocity vd. This can be enforced
by constraining the covariance matrices to be diagonal. We can also use prior knowledge in
choosing the kind of conditional probability distributions. For example, in this toy problem,
the mapping between sensor values and the response function (Figure 2b) is better captured
by a quadratic function of the sensor variable. We may add quadratic sensor terms to the
parents of the response node F by adding a deterministic mapping between the observed
sensor value and a node S ′ = (θs, vs, θ

2
s , v

2
s , θsvs)

T .
In Section 5 we show improvements in the learning performance of an agent that in-

corporates its sensor data. Adding the quadratic function of the sensor variables provides
additional improvements and so we will use the Bayesian network shown in Figure 2c from
now on.

3 SAMPLE REUSE

Many policy search algorithms throw away old sample data after taking each hill-climbing
step. However, if the data was obtained from a policy in a different hill-climbing step that
is similar (according to some metric) to the current policy, the data may still be useful in
reasoning about the current policy. Our approach to incorporating sample data from prior
hill-climbing steps will be to assume that the regression coefficients {As, bs, Af , bf} that are
used to parameterize Figure 2c are tied via a hierarchical Bayes model. Figure 3 shows a

6

Bayesian network for the cannon problem where we use plate notation to show that the nodes
contained within the plate are to be copied M times. Decision node Π := {π1

0, π
2
0, . . . , π

M
0 }

contains all of the nominal policies used in the M hill-climbing steps and is used to determine
the level of parameter tying.

Each hill-climbing step has its own regression coefficients, but some of these coefficients
are assumed to be drawn from a joint Gaussian distribution. The covariance of the Gaussian
determines the strength of the parameter tying. Coefficients that are constrained to be equal
will have correlations equal to 1 and those that are independent will have zero correlation.
We consider correlation values that are between these two extremes to give varying levels
of soft parameter tying. These correlations cause the parameter learning to favor solutions
that are similar across the different hill-climbing steps.

The regression coefficients are now considered random and are part of the Bayesian net-
work where we group the offset terms {bs, bf} with their corresponding linear terms {As, Af}.
As an example, the As node in Figure 3 contains all of the linear regression coefficients (in-
cluding the offset terms) used to predict the sensor value given the exploration policy πe

concatenated together and it is written as follows:

As :=
[

b1
s As

1 b2
s As

2 · · · bM
s As

M
]
.

In general, the regression coefficients are contained within a single c×m matrix where c is
the dimension of the child node and m = M(r + 1) where r is the sum of the dimensions of
its parents.

The strength of the parameter tying depends on the nominal policies used for each hill-
climbing step and a set of hyper-parameters determines this relationship. For a particular Π
we have a prior belief on what the regression coefficients for each hill-climbing step should
be before we obtain any data. For example, if Π contains two nominal policies that are
exactly the same, then we should believe that the corresponding coefficients must be equal.
Likewise, if Π contains two nominal policies that are far away from each other then we may
believe that the corresponding coefficients are completely uncorrelated.

We use the matrix normal distribution to represent the prior and perform Bayesian linear
regression [7] for the shared nodes. The density of a matrix A drawn from the matrix normal
distribution is writen as

A ∼ Nc×m(0, V, K)

P (A) = (2π)−
1
2
cm|V |−

m
2 |K|−

c
2

exp

{
−1

2
tr(V −1AK−1AT)

}
,

where V and K are two covariance matrices.
Each node contained within the plate can have regression coefficients drawn from different

prior probabilities which allows us to share different parts of the model at various strength
levels. The Bayesian network in Figure 3 has two sets of regression coefficients where one
set determines the linear relationship between the exploration policy πe and the observed

7

sensor value s and the other determines how the exploration policy πe and quadratic sensor
value s′ relates to the response f . In this problem, the true sensor mapping P (s|πe) is given
by a linear Gaussian distribution which allows us to learn its parameters using samples from
any hill-climbing step (i.e., these parameters can be fully tied). However, the true response
function mapping P (f |πe, s) is only locally linear (Figure 2b) or locally quadratic (Figure 2c)
and therefore the parameter tying strength should depend on the corresponding policies.

The covariance matrix K determines the strength of the parameter tying. The value
of this matrix is determined using a similarity metric defined between the M hill-climbing
steps. We use the following weights to determine the similarity between hill-climbing steps
i and j:

wij := exp
(
−λ(πi

0 − πj
0)

T S(πi
0 − πj

0)
)

+ εδij,

where λ is a scaling term, S is a known matrix that scales each dimension, and ε is a small
constant added to the diagonal to ensure a non-singular weight matrix. Given these weights
we consider covariance matrices of the following form:

K := β

 C−1w11 . . . C−1w1M
...

. . .
...

C−1wM1 . . . C−1wMM

 ,

where C := 1
MN

XXT in order to make parameter learning invariant to changes in scale and
rotation and β is a scaling term. The matrix X contains all of a node’s parent values stored
as a column vector and replicated for each sample. The covariance matrix K determines the
relationship between the different columns of A and therefore gives the correlations between
the same regression coefficients in different hill-climbing steps. If two sample batches are
similar according to the weight matrix, then the corresponding regression coefficients will be
highly correlated. The covariance matrix V determines the relationship between the different
rows of A and we place no restrictions on its value.

4 PARAMETER ESTIMATION

We will generally not know the parameters θ of the Bayesian network that best fit the ob-
served data and so we must learn them from experience. The parameterization of covariance
matrix K prevents us from finding an analytical solution to this problem. We use empirical
Bayes to find an appropriate covariance matrix K by searching over a set of hyper-parameters
to best explain the observed data. Then, given these values, we compute the remaining ele-
ments of θ that maximize the a posteriori estimate of the regression coefficient matrices. The
details of this process are described in the appendix. Finally, we can extract the gradient
of the response with respect to the current policy ∇πM

0
E[F (H)|πM

0] where the histories are
drawn according to the network. Given the network parameters θ∗ we can either compute
the gradient analytically or estimate it by drawing samples from the network. Depending on
the structure of the network it may be difficult to find an analytical solution to the gradient

8

2 4 6 8 10 12 14

−2500

−2000

−1500

−1000

−500

Hill Climbing Step

V
al

ue
Standard
Known Sensor Model
Hierarchical
Hierarchical w/Sensors
Hier. w/Sensors + Quadratic

Figure 4: The learning curve performance of five different policy search strategies in the
cannon problem. The five curves include a standard method, one that uses the true sensor
model, one that uses hierarchical Bayes without any sensor values, one that uses hierarchical
Bayes with sensor variables, and one that adds the quadratic terms. The learning curves
show that including sensory information and quadratic terms are both useful.

(e.g., we may have added non-linear nodes). Instead, we just draw samples in a top-down
fashion.6

5 RESULTS

We ran policy search on the toy cannon problem by learning the Bayesian network parameters
in a manner described by the previous section and then estimating the gradient of the
Bayesian network. The policy parameters were adjusted in the direction of the gradient and
the magnitude of this change was bounded by a constant. At each hill-climbing step we
drew a single sample from 10 different policies and we averaged over 100 hill-climbing runs.
The policies were drawn, according to our exploration strategy, from a Gaussian distribution
centered around the nominal policy. Figure 4 shows the learning curve performance of five
different policy search strategies. The five curves include a standard method, one in which
the sensor model is known, one that uses hierarchical Bayes without any sensor variables,
one that uses hierarchical Bayes with sensor variables, and one that adds the quadratic
terms. The standard method includes using a least squares fit between the policy π and the
response function, ignoring any sensor information. The learning curves show that sensory
information and quadratic terms are both useful. Note that applying hierarchical Bayes
alone does not help as much as it does if we incorporate the sensor data. The case in which
the agent is given the sensor model appears to perform the best.

6We assume that the cost of obtaining these samples is negligible when compared to executing a policy.

9

F

S

D

R

Ad As

Ar

M

Π

πe

Figure 5: A hierarchical Bayesian network that represents the process of executing policies in
the dart thrower problem. The dart release time R is independent of the exploration policy
πe. The sensor node S measures the state of the arm s ∈ R6 right before the dart is released.
The distance node D measures the distance that the dart lands from the bulls eye and the
response function deterministically squares this value to give the appropriate response.

We also applied this technique to a dart throwing task [6]. The objective is to throw a
dart with minimal mean squared error (measured from where the dart hits the wall to the
center of the dart board). The arm is modelled as a three-link rigid body with dimensions
based on biological measurements [3]. The links correspond to the upper arm, forearm, and
hand and are connected using a single degree of freedom rotational joint. The upper arm is
connected to the shoulder at a fixed location. We generated code to simulate the dynamics
of this system using the Open Dynamics Engine.

The arm is controlled by applying torques at each joint. These torques are generated by
a PD-controller that attempts to move the arm through a desired trajectory, specified by a
cubic spline for each joint angle. The starting posture of the arm is fixed in advanced and the
path is determined by interpolating between three other knot positions. These three knots
per joint give us a compact policy representation of 9 parameters. The controller is simulated
for approximately 0.2 seconds and then the dart is released (there is Gaussian noise added
to the release time with σ = 0.01). Additional noise enters the system by perturbing the
torques given by the PD-controller by additive and multiplicative noise. Multiplicative noise
has been shown to explain biological motion [4, 12].

Figure 5 shows the Bayesian network used in the dart throwing task. The sensor node
S measures the state of the arm s ∈ R6 right before the dart is released and its value is
dependent on the given exploration policy πe and the release time of the dart. Since the

10

2 4 6 8 10 12 14

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

Hill Climbing Step

V
al

ue
Standard
Hierarchical w/Sensors

Figure 6: The learning curve performance of two different policy search strategies in the dart
throwing domain. One curve shows the performance of a standard method and the other
shows the performance when using the Bayesian network shown in figure 5. Incorporating
sensor data gives a substantial improvement in the learning performance when compared to
the standard method.

noise in the release time is independent of the policy we can exploit this in the learning
process (i.e., the release node R has no parents other than its regression coefficients). The
distance node D measures the distance that the dart lands from the bulls eye and the response
function deterministically squares this value to give the appropriate response. Figure 6 shows
a substantial improvement in the learning performance of an algorithm that incorporates
sensor data when compared to the standard method. At each hill-climbing step we drew a
single sample from 20 different policies and we averaged over 100 hill-climbing runs. Like the
cannon problem, these policies were drawn from a Gaussian distribution centered around the
nominal policy. The standard method includes using a least squares fit between the policy
π and the response function, ignoring any sensor information.

6 DISCUSSION

We demonstrated how one may incorporate sensor data into the gradient estimation task to
improve the performance of policy search. For the learning problems considered in this paper,
we presented a Bayesian network that represents the probabilistic relationships between the
executed policy, the sensor variables, and the corresponding response. Hierarchical Bayes
methods were used to tie parameters across different hill-climbing steps at various levels of
strength. We presented learning curves that show improvements in the learning performance
of a toy cannon problem and dart throwing task. We feel that additional improvements can
be made in the learning performance by incorporating different kinds of prior knowledge into
the learning task.

11

This paper considers exploiting the conditional independencies present in each learning
task. In addition, we showed that the gradient estimates could be improved by using the
right type of conditional probability distribution for each variable (e.g., a quadratic versus
linear relationship). One area for improvement involves incorporating our knowledge of the
physics behind each task. For example, in the cannon problem we already know the equations
of projectile motion. Thus, given the actual controls, we should be able to accurately predict
the response. Even in cases in which we do not know the equations of motion, we often know
qualitative information about the motion, such as increasing the desired velocity causes the
cannon ball to fly further (i.e., the distance travelled is monotonically increasing as a function
of the desired velocity). One possible approach to incorporating this information is to place
constraints on the signs of the regression coefficients.

References

[1] J. Baxter and P. L. Bartlett. Infinite-horizon policy-gradient estimation. Journal of
Artificial Intelligence Research, 15:319–350, 2001.

[2] Jonathan Baxter E. Greensmith, Peter L. Bartlett. Variance reduction techniques for
gradient estimates in reinforcement learning. In Advances in Neural Information Pro-
cessing Systems, pages 1507–1514, 2001.

[3] B. Garner and M. Pandy. A kinematic model of the upper limb based on the visible hu-
man project (vhp) image dataset. Computer Methods in Biomechanics and Biomedical
Engineering, 2:107–124, 1999.

[4] Christopher Harris and Daniel Wolpert. Signal-dependent noise determines motor plan-
ning. Nature, 394:780–784, 1998.

[5] N. Kohl and P. Stone. Machine learning for fast quadrupedal locomotion. In Proceedings
of the Nineteenth National Conference on Artificial Intelligence, 2004.

[6] Gregory Lawrence, Noah Cowan, and Stuart Russell. Efficient gradient estimation for
motor control learning. In Proceedings of the Nineteenth International Conference on
Uncertainty in Artificial Intelligence, 2003.

[7] Thomas Minka. Bayesian linear regression. Technical report, MIT, 2000.

[8] Andrew Y. Ng and Michael Jordan. Pegasus: A policy search method for large mdps
and pomdps. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial
Intelligence, pages 406–415, 2000.

[9] Andrew Y. Ng, H. Jin Kim, Michael Jordan, and Shankar Sastry. Autonomous helicopter
flight via reinforcement learning. In Advances in Neural Information Processing Systems,
2003.

12

[10] Leon Peshkin and Christian R. Shelton. Learning from scarce experience. In Proceedings
of the 19th International Conference on Machine Learning, 2002.

[11] Christian R. Shelton. Policy improvement for POMDPs using normalized importance
sampling. In Proceedings of the Seventeenth International Conference on Uncertainty
in Artificial Intelligence, pages 496–503, 2001.

[12] Emanuel Todorov and Michael I. Jordan. Optimal control as a theory of motor coordi-
nation. Nature Neuroscience, 2002. submitted.

[13] Lex Weaver and Nigel Tao. The optimal reward baseline for gradient-based reinforce-
ment learning. In Proceedings of the Seventeenth Conference on Uncertainty in Artificial
Intelligence, pages 538–545, 2001.

A EMPIRICAL BAYES

We choose to consider only Bayesian networks in which all of the nodes within the plate
are observed. As a result, the task of finding the best hyper-parameters for each set of
regression coefficients can be done independently. The covariance matrix for a particular
set of regression coefficients is parameterized by two hyper-parameters: λ and β. We use
empirical Bayes to fix these values so that the likelihood of seeing the observed data is
maximized. The log-likelihood of observing the data given a particular covariance matrix K
is written as follows:

`(λ, β) = k − MN

2
log |V | − c

2
log |X̄T KX̄ + I| −

1

2
tr

(
V −1Y (X̄T KX̄ + I)−1Y T

)
,

where k is a constant, Y is a c × m matrix containing the observed child node values, and
X̄ is a specially formatted matrix containing the observed parent values. X̄ is written as

X̄ =


X1 0 0 0
0 X2 0 0

0 0
. . . 0

0 0 0 XM


to ensure that the linear relationship (Y = AX̄) for the data of each hill-climbing step is
given by the correct entries in the A matrix.

For a given covariance matrix K, the matrix V ∗ that maximizes the log likelihood is
given by

V ∗ =
1

N
Y (X̄T KX̄ + I)−1Y T .

13

We search over the hyperparameters (λ, β) using hill-climbing to find a local maximum of
the log likelihood function. These values are then fixed while computing the maximum a
posteriori estimates of the regression coefficient matrices.

B MAXIMUM A POSTERIORI ESTIMATION

Given an appropriate setting of the hyper-parameters, we can find the maximum a posteriori
estimate for the regression coefficients. The log-likelihood of observing the data drawn from
A can be written as follows:

`(λ, β, A) = c− m

2
log |V | − d

2
log |K| −

1

2
tr(V −1AK−1AT)− MN

2
log |V | −

1

2
tr

(
(Y − AX̄)T V −1(Y − AX̄)

)
.

Maximizing the above expression with respect to matrix A gives us the maximum a
posteriori estimate as follows:

A∗ = Y X̄T (K−1 + X̄X̄T)−1.

This estimate is similar to the least squares fit except the addition of a penalty term K−1

that favors solutions that are similar across different hill-climbing steps. There is also a
general shrinkage towards the origin as found in ridge regression.

14

