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Abstract

Case Study and Experiments of Control over Sensor Networks

by

Phoebus Wei-Chih Chen

Master of Science in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Shankar Sastry, Chair

This report studies some examples of how to integrate control systems with sensor networks.

In particular, we study how a sensor network can be used as the observer in a control

feedback loop for Pursuit-Evasion Games (PEG). Some of the main challenges to using

sensor networks for control are properly modelling the lossy communication channel and

nonuniform sensor coverage of a sensor network, deriving performance parameters/metrics

from the model such as latency and transmission error rate, and devising a control law

which effectively utilizes these performance parameters.

We approach this problem by studying some models and simulations of sensor networks

and by building testbeds and running experiments. First, we simulate the use of a network

connectivity parameter in an optimal path planning controller for pursuit of a target travers-

ing through a sensor network. Then, we look at an example of bounding the performance

of a sensor network control application — finding a probabilistic barrier solution to a single

pursuer/single evader pursuit-evasion game. From the implementation side, we discuss the

design of an indoor and and outdoor sensor network testbed for multiple-target tracking, a

piece of the estimator in the control loop for multiple-evader pursuit-evasion games. Finally,

we discuss some preliminary experimental results of multiple-target tracking on these sensor

network testbeds.
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Chapter 1

Introduction

1.1 Background on Sensor Networks

Recently, there has been great commercial and research interests in a new networked

embedded system platform – wireless sensor networks (WSNs). Wireless sensor networks

consist of small, low power sensor nodes, sometimes called motes or “smart dust”, which

have a radio, power supply, microprocessor, and sensors. These sensor nodes can be dis-

tributed throughout the environment to form ad-hoc networks that route sensed data back

to a gateway of some computing infrastructure. This gateway is often called a basestation

and the computing infrastructure can be a personal computer or a server on the inter-

net. Sensor networks are a step in the direction of ubiquitous, pervasive computing, which

predicts that one day our environment can be seamlessly integrated with computers and

cyberspace [1], [2].

The numerous applications for sensor networks include structural health monitoring [3]–

[5], environment and habitat monitoring [6]–[8], monitoring of manufacturing equipment

[9], security of container shipping, temperature monitoring for office building heating and

ventilation systems, and locating snipers [10]. For many of these applications, wireless

sensor networks are attractive because they remove the high wiring costs in installing sensor

networks. Furthermore, they often are meant to run for years after deployment because the
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hardware and software for these embedded systems are designed with low power battery

operation in mind. In fact, there have been many hardware developments in the last few

years to enable low power sensor network platforms [11]–[13].

Much of the current sensor network research on the software and systems side are in

routing, software architecture, programming abstractions, basic system services like time

synchronization and localization, power management, and crytography/security. On the

theory and modelling side, sensor network research covers distributed signal processing,

sensor placement and coverage, estimation and detection, and models for simulation. While

much progress has been made in both theory and implementation, there are very few the-

oretical tools available for accurately predicting the performance of a sensor network prior

to deployment. Instead, sensor network systems are often built first, then analyzed. In

order to build reliable sensor networks larger than the typical deployment of tens to a few

hundred sensor nodes, the gap between theory and implementation needs to be closed.

1.2 Sensor Networks and Control

The development of wireless sensor networks for gathering data from our physical en-

vironment leads naturally to the development of wireless sensor and actuator networks

(WSANs) to sense and manipulate our environment. In fact, there are already products

on the market for wireless home automation [14], essentially wireless actuator networks for

turning on/off lights and appliances. However, for wireless sensor and actuator networks to

reach their full potential, there needs to be tight coupling between sensing and actuation.

Essentially, a control theory for WSANs needs to be developed.

Fortunately, many of the immediate commercial and home applications involving dis-

tributed actuators do not have strict timing requirements. For instance, WSANs for heating

and ventilation systems most likely would not need millisecond response times. Also, the

actuation modalities are often limited to sending batch commands to equipment connected

to the sensing and actuation nodes. These may be to turn off faulty equipment or switch

equipment to different modes of operation, and do not require intricate coordination be-
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tween different pieces of equipment. WSANs are limited to applications with loose timing

requirements not because there is no market for fast-response, wireless, distributed control

systems, but because the technology is not reliable and mature enough yet.

Wireless sensor and actuator networks can be divided into two classes: those with

mobile actuators and those with fixed, immobile actuators. Fast-response WSANs with

fixed actuators have potential to increase efficiency and throughput of manufacturing by

coordinating production on a factory floor. They may also serve a role in distributed control

of large structures, such as vibration damping of buildings and bridges during earthquakes

or strong winds [15]–[17]. But WSANs with fast response rates will have the largest impact

on applications where the actuators have mobility, particularly in the area of distributed

robotics. In fact, the WSAN itself can be the distributed robots, as is done in [18]–[20].

Teams of distributed robots can be used for search and rescue missions [21] and mapping

unknown terrain [22]. The key research challenges in this area are localization, navigation

through unknown terrain, and coordination of the robots, for example to ensure stable robot

formations [23].

In control theory, we are concerned with the stability, control effort, overshoot, and

settling time of controllers. But in order to design good controllers, we need a model of

the system and an understanding of the quality of our model [24]. This includes a model

of the plant as well as models of the actuators, the observers, and the communication links

between the different components in the control system. Given these models, we wish to

develop controllers and assess their performance. When the resulting system is too complex

or involves modelling uncertainty, we try to derive bounds and guarantees on the controller’s

performance. A good example of this is the work of Sinopoli, et al. [25] which studies how

the the loss rates of communication links between the controller, the observer, and actuator

can affect the stability of a linear control system. The work finds a threshold γ where if

the communication links have a loss rate above γ, the control system will become unstable

over time.

When designing controllers for a wireless sensor and actuator network, we face the chal-

lenge of modelling a system where the actuators, observers, and controllers are distributed

3



Figure 1.1. (left) The classic feedback control loop. (right) Simple feedback control loops of 2 robots

navigating with the aide of a sensor network. In this simple diagram note that the lossy communication

links in red are only within the sensor network and between the sensor network and the controller.

all over the nodes in the network. A design in this general setting must consider how to

decompose a control law so it can be distributed over the processing units of the nodes, and

how to account for loss of synchronization of control commands and observations at differ-

ent parts of the system. We consider a simpler setting, the navigation and coordination

of robots using a sensor network1 as the observer in the system. This “centralizes” most

of the computation and actuation on the robots, and distributes the observation over the

nodes in the network. If we assume an ideal communication channel between the robots and

good computational capabilities on each robot, we confine the modelling of the distributed

system to the sensor network (see Fig. 1.1). The principles behind the control of these

distributed, networked systems can then be studied and generalized to distributed robots

and WSANs.

Our candidate application for studying controllers for sensor networks is the Pursuit-

Evasion Game (PEG), where a group of pursuers try to chase and capture a group of targets.

The topic of pursuit-evasion games has been studied as a generalization of control problems

for many years [26], [27]. Here, instead of modelling the environment as adding noise to

a system, we model the environment as an adversary trying to make the control system

unstable so as to expose the controller’s worst case performance.

Typically, in a pursuit-evasion game the problem is to find regions in the state space of

the game that guarantee capture/evasion under optimal play and the corresponding optimal

control laws. There have been efforts in recent years to bound the performance of such games
1We will use the term ‘sensor network’ interchangeably with ‘wireless sensor networks’ throughout the

text.
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Figure 1.2. The flow of control and observation signals in a (left) traditional pursuit-evasion game and a

(right) pursuit-evasion game over sensor networks. We have separated the actual sensors from the rest of the

sensor network for illustrative purposes. The “sensor network” controls how the sensor readings reach the

pursuer and evader estimators. Note that the controller/pursuit algorithm can control the sensor network

as well – for instance to control congestion, enable more power hungry sensor filtering algorithms, etc. The

dashed arrows indicates that the pursuer can indirectly control an evader if the evader is actively evading.

The challenge is to build a good sensor network estimator/model and a compatible control law, both circled

in red above.

in a probabilistic sense, as in [28] and [29]. Furthermore, in [30] and [31], pursuit-evasion

games have been combined with sensor networks, using the sensor network as the observer

for the pursuers. Figure 1.2 illustrates some of the differences between traditional PEGs

and PEGs over sensor networks.

This report studies some simple models of sensor networks for controllers and describes

the implementation of a sensor network for pursuit-evasion games. While both thrusts

are in the early stages, the goal is to try different methods of modelling a sensor network

and designing control laws and then compare this with reality. The first chapter describes

the issues in modelling a sensor network for control, and studies an example of a path

planning controller for a robot using a sensor network to help it pursue a randomly moving

target. The second chapter describes a model of a sensor network for computing bounds

on the performance of a pursuer in the classic Lifeline pursuit-evasion game described

by Isaacs [26]. The third chapter describes the construction and implementation of two

sensor network testbeds for testing control laws and multiple target tracking, an important

estimation step for pursuit-evasion games with multiple evaders/targets. The fourth chapter

describes the results of a demonstration of a multiple target tracking algorithm on a sensor

network testbed. Finally, we conclude with a roadmap of future research directions.
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Chapter 2

Modelling of Sensor Networks

One of the critical steps when designing control applications that use sensor networks

is the development of a good model of the sensor network as the observer in the system.

Like observers in traditional control systems, the observations from sensor networks are

noisy. Similar to observers in distributed/networked control systems, the communication

link between the observer and the controller may be lossy, leading to missed observations.

However, sensor networks are a special class of observers which possess characteristics that

allow us to say more about how the observations are lossy and noisy.

There are two categories of characteristics which fundamentally define the performance

of a sensor network: static characteristics and dynamic characteristics. Static character-

istics are parameters of a sensor network that are “designed” prior to deployment. They

include the hardware limitations on the sensor nodes such as minimum/maximum radio

range and sensing coverage, the software design decisions such as the type of routing al-

gorithm used to disseminate data and when/how often to transmit data, and the physical

placement of the nodes. The dynamic characteristics are parameters of a sensor network

that are monitored after deployment for a “health status” of the network such as the power

level of the nodes (which is dependent on the network load), the actual radio range and

probabilities of successful transmission as a function of distance for each node, and the

placement/distribution of faulty nodes in the network.
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These characteristics translate to the actual performance of a sensor network in a com-

plex manner. For instance, there is a strong relationship between the physical placement

of the sensor nodes and the quality of the communication links with the controller. The

communication link quality in turn affect the actual routing topology used to gather data,

which also depends on the routing algorithm. The routing topology together with the com-

munication link qualities determines the communication bottlenecks between the sensors

and the controller, which affects congestion. Finally, congestion affects the latency and

transmission success rate of observations to the controller. Similarly, the physical place-

ment of the nodes could affect the noise of the sensing measurements. The data collected

at nearby sensor nodes often are correlated, so a higher node density may imply lower noise

after smoothing the aggregated observations.

From a control engineer’s perspective, we need tools to relate these sensor network

characteristics to parameters that can be used to help design a control law. Some key control

parameters would be latency, transmission failure rate, false negative/false positive rate of

discrete observations or sensing noise for continuous observations. It may be, however,

that a simple number for transmission failure rate is not enough. For instance, because

of congestion or radio interference patterns from external sources, transmission failures are

correlated and may come in bursts. The control law could benefit from information on

the typical duration of transmission failure, and whether the distribution of these lossy

communication time intervals are really random. In a sense, this is the problem of taking

a detailed, node-level model and environment model and translating it to an abstract,

network-level model for use by a controller.

While computing the exact relationship between sensor network characteristics and

control parameters may be hard/impossible, what is really necessary are tools to compute

control parameter performance guarantees given a set of sensor network characteristics. It

is then possible to use these performance guarantees to design a robust control law. We

wish to make statements like the following:

We are given a grid deployment of X nodes running platform Y spaced Z feet
apart, running a simple threshold crossing detector and using routing algorithm
A to route data back to a centralized controller. Assume no node failures and
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an ideal disk radio connectivity model. We can guarantee that the transmission
failure rate is below B percent, and C percent of the packets reach the destination
with latency no more than 100 ms.

The long term goal is to study typical sensor network deployment scenarios and develop

canonical methods for approximating/bounding the control performance parameters. In

the process, it may be useful to define new performance parameters and provide examples

of control algorithms that use them. In the sections below, we describe a simple node-level

model of a sensor network and try to extract a connectivity performance parameter to use

in a path planning control law. In the next chapter, we will look at another example of

computing performance guarantees for a different control application, pursuit with active

evasion, using the same general node-level sensor network model.

2.1 Sensor Network Model

We start by modelling the sensing and communication coverage of individual sensor

nodes with a simple disk model. From these models for individual nodes and their place-

ment, we construct a routing topology using a given routing algorithm and then combine

it with a packet transmission scheme to get a basic model of the communications network.

This sensor network model can be used for target-tracking simulations. In fact, it shares

many characteristics with the sensor network model in [32].

2.1.1 Sensor Network Node Model

We assume that Ns sensor nodes are deployed over the surveillance region R to measure

the position of the target. Let si ∈ R be the location of the i-th sensor node and let

S = {si : 1 ≤ i ≤ Ns}.

2.1.1.1 Sensing Model

Denote the sensing range for node i as Rsi ∈ R. If the target is at x ∈ R and there

exists i such that ri = ‖si − x‖ ≤ Rsi , then sensor i can detect the presence of the target
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with probability

psi =





β
β+rα

i
, if ri < Rsi

0, otherwise
(2.1)

for some appropriate constants α and β. This is similar to the SINR-like communication

model described below in Equation 2.4.

Let xe(t) = [xe1(t), x
e
2(t), ẋ

e
1(t), ẋ

e
2(t)]

T denote the position and velocity of the target.

For simplicity, we assume the following linear measurement model on the measurements y.

y(t) = Cxe(t) + v(t), C =




1 0 0 0

0 1 0 0


 (2.2)

where v is a noise process. For instance, v can be a white Gaussian noise process with zero

mean and covariance Qs. This is used later in Section 2.2 so we can use a Kalman Filter

to estimate the position of a target for tracking and pursuit of the target. Otherwise, v

can be a Uniform noise process, where v(t) ∈ {[r cos θ, r sin θ]T : 0 ≤ r ≤ rq, 0 ≤ θ ≤ 2π}
is a zero mean uniform random variable on a circle with radius rq. This model is used in

Section 3.3 for deriving an “uncertainty ball” for the position of a target when bounding

the performance of a lifeline game.

In real deployments of sensor networks, a sensor may provide ranging and angle to

a detected target rather than position like in Equation 2.2. However, we can use data

fusion from multiple sensors to get position estimates. This is explained in more detail in

Appendix D using a model developed by Songhwai Oh.

2.1.1.2 Communication Model

We assume a disk communication model. Each sensor node i has a maximum radio

transmission and reception range of Rci . Node i can communicate with any other node j

within this communication radius with probability pc. We propose two different communi-

cation models. First, let rij = ‖si − sj‖2, and let Rcij = min(Rci , Rcj ).

9



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Communication Model, α = 2, β = 100

distance between nodes

pr
ob

ab
ili

ty
 o

f r
ec

ep
tio

n

Figure 2.1. Node to node connection probability, based on the model in Equation 2.4.

Linear Communication Model

pcij =





1− rij
Rcij

, if rij < Rcij

0, otherwise
(2.3)

The communication range for each node can be reduced by lowering Rci .

Although this communication model does not match the laws governing radio signal

strength decay, it is the simplest to describe and may be useful for deriving whole-network

models by making calculations more tractable.

SINR-like Communication Model

pcij =





β
β+rα

ij
, if rij < Rcij

0, otherwise
(2.4)

This particular model was chosen because it can somewhat approximate the decay model

in [33] by proper choices of α and β (see Fig. 2.1). Also, it resembles the form of the standard

SINR model except normalized to 1 because it is a probability.

Note that in the SINR-like model, the communication radius Rci can be chosen for each

node i such that any node j within the radius will be connected to node i with a probability

above a threshold probability η. This corresponds with designing sensor nodes that keep

neighbors in their routing tables only if at least η of the packets sent get through.
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2.1.2 Sensor Network Routing Model

Using our disk communication models above, we can generate a communication graph

G = (S,E) where (si, sj) ∈ E if and only if node i can communicate with node j with

nonzero probability. We make as many reasonable simplifying assumptions as possible to

make the analysis tractable, keeping in mind that we can add more complexity to our model

in the future. The model ignores congestion issues by assuming each communication link

e ∈ E transmits/fails independently. The model also assumes that the link probabilities are

static over time.

The choice of a routing algorithm depends on the application being run on the sensor

network. For instance, in data collection, we wish to optimize data flow from many sensor

nodes to one base station. On the other hand, in command dissemination, we wish to

optimize data flow from the base station out to the nodes. We are concerned with tracking

a target with a mobile controller (for instance, a robot pursuing the target) which would

need a routing algorithm optimizing the flow from a group of nodes near the target to a

mobile base station.

Rather than use the routing topology (routing tree/mesh) generated by a particular

implementable routing algorithm for our model of the sensor network, we choose a routing

topology that maximizes the end-to-end transmission success rate (later also referred to as

the connection probability) between any two nodes assuming one transmission per link. This

ideal routing topology may not be achievable by a deployable routing algorithm because

it requires each node to know the global connectivity graph. Nevertheless, there may be

implementable routing algorithms whose generated routing topologies yield transmission

success rates close to that for the ideal routing topology. We may be able to route to local

“distribution-center” nodes near our destination, and each node may not need complete

knowledge of the global connectivity graph to find near-optimal routing paths.

To calculate the end-to-end transmission probability given our routing topology,1 we

assume that there are link level acknowledgements, retransmissions at each link, and a
1In actuality, a lower bound on the end-to-end transmission probability, as we will see in Section 2.1.2.3.
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TTL (time-to-live, like in TCP/IP to count the total number of link transmissions before a

packet is discarded) counter for each packet. The necessity of link level acknowledgements

and retransmissions is because the transmission success rate with no retransmission drops

off exponentially with the number of hops.2 The inclusion of a TTL counter is fitting for

tracking applications because very old observations are less useful to the controller than

new observations and can be discarded.

The routing scheme for delivering a packet is simple and standard. The source node

is given the destination node, finds the next node in the routing path from the routing

topology, and transmits the packet to that node. If it does not hear an acknowledgement,

it transmits again to the same node. Each attempted transmission decrements the TTL,

and when the TTL is 0, the packet is discarded. This is repeated at each node on the path

until the packet reaches the destination.

Thus, our model of the sensor network is a function that takes the positions of the source

and sink for network traffic (the position of the target and the position of the controller

respectively), selects the two nodes in the network with the best connectivity to the source

and the sink, and returns a connection probability for the routing path between these nodes.

This connection probability can be used to design a control law to pursue the target as

described in Section 2.2. The routing topology and routing scheme can be used to simulate

the sensor network and get the latency and success/failure of individual transmissions.

2.1.2.1 Maximum Transmission Probability Criteria

The goal of the routing topology generation algorithm is to find a path that maximizes

ppath =
k∏

i=1

pi (2.5)

where k is the number of hops in a given path and each link has a probability of successful

transmission pi.

Unfortunately, the optimum routing path with respect to the criteria in Equation 2.5
2Even five hops over links with pi = 0.9 would yield an end-to-end transmission probability of ppath ≈ 0.59.

For an extended discussion, see [34].
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may be different from the optimum routing path with retransmissions (see examples in

Section 2.1.2.4). This is usually not a big problem because the optimum non-retransmission

path often has a connection probability and latency path length close to that of the optimum

retransmission path.3

2.1.2.2 Routing Topology Generation

To find the optimum connectivity paths between every node with respect to the criteria

in Equation 2.5, we use a variant of the Floyd-Warshall Algorithm [35], an algorithm to

find the all-pairs shortest paths. Instead of adding path weights in each iteration of the

algorithm, we multiply them, and instead of taking the minimum, we take the maximum.

The input to the algorithm is an Ns×Ns symmetric matrix of transmission probabilities P

where Pij = pcij from the node-level communication model. The output of the algorithm is

an Ns ×Ns predecessor matrix M where entry Mij is the next-hop neighbor when routing

from node i to node j. The Floyd-Warshall algorithm takes O(n3) to compute, where

n = Ns, the number of nodes in the network.

2.1.2.3 Connection Probability Calculation

To calculate the connection probability of a routing path with retransmissions, let us

assume that each packet is assigned a TTL (time-to-live) n and consider a path with k hops.

This connection probability should be greater than ppath from Equation 2.5. We argue that

the excess transmissions m = n − k should be used to retransmit on the worst links and

boost their transmission probabilities to get a lower bound on the connection probability of

a chosen path, p̌path. The rationale for this is simple. Suppose we had one retransmission,

m = 1. During the routing of a packet, the only time that we we would retransmit on a

good link in a path and not retransmit on the worst link in the path is if the good link

failed and the worst link succeeded. Thus, conceptually, when we use the retransmission to

boost the probability of a good link in the path, there is an implicit understanding that the
3A proof of this is currently unavailable. The author is currently looking for an algorithm that efficiently

finds the maximum end-to-end connectivity path with retransmissions.
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Algorithm 1 Generation of Sensor Network Routing Topology (A variation on the Floyd-

Warshall Algorithm)
Input: P

Output: M

D(0) ← P

for j = 1 to Ns do

for i = 1 to Ns do

M
(0)
ij ←





0 if i = j or Dij = 0

i if i 6= j or Dij > 0
end for

end for

for k = 1 to Ns do . Ns is used here as the maximum path length

for j = 1 to Ns do

for i = 1 to Ns do

D
(k)
ij ← max(D(k−1)

ij , D
(k−1)
ik ·D(k−1)

kj )

M
(k)
ij =





M
(k−1)
ij if D(k−1)

ij ≥ D(k−1)
ik ·D(k−1)

kj

M
(k−1)
kj if D(k−1)

ij < D
(k−1)
ik ·D(k−1)

kj

end for

end for

end for

M = M (n)
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transmission over the worst link is on average more successful than the good link. This is

a contradiction.

When designing a controller that uses the sensor network, we need guarantees that a

path connection probability is above a threshold. Therefore, our sensor network model

returns the lower bound on the path connection probability p̌path as the path connection

probability. Algorithm 2 calculates p̌path using as input p(ij), a vector of link probabilities

for the routing path between two nodes i and j, and n, the number of total transmissions

(successful transmissions plus retransmissions) allowed by the routing algorithm.

Algorithm 2 Path Connection Probability Lower Bound Calculation, p̌path

Input: p(ij), n

Output: p̌path

pnew = p(ij)

k = length(p(ij))

m = n− k
for h = 1 to m do

i = arg min(pnew) . The weakest link in pnew

pnewi = 1− (1− p(ij)
i )(1− pnewi )

end for

p̌path =
∏
i p

new
i

2.1.2.4 Routing Model Limitations

The routing topology generated from Algorithm 1 optimizes end-to-end transmission

success rates given no retransmissions. Unfortunately, this routing topology is no longer

optimal when we allow for retransmissions. We illustrate this with two examples. p denoted

below is the success probability of a communication link.

1. Different Path Lengths Scenario (Fig. 2.2, left)
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• Three Nodes A,B,C with source A and destination C. Links are A → B(p =

0.9), B → C(p = 0.9), A→ C(p = 0.8).

• The total number of transmissions is 2. Using the FW-variant, we get the best

path to be A→ B → C with p = 0.81. However, we can retransmit twice using

the shorter link A→ C to get p = 1− (1− 0.8)2 = 0.96.

2. Same Path Length Scenario (Fig. 2.2, right)

• Four Nodes A,B,C,D with source A and destination D. Links are A→ B(p =

0.4), B → D(p = 0.5), A→ C(p = 0.3), C → D(p = 0.64).

• If the number of total transmissions is 2, then the optimal path would be A →
B → D with p = 0.2 (whereas the other path would have p = 0.192). However, if

the number of total transmissions is 3 and we retransmit on the weakest link, the

optimal path would instead be A→ C → D with p = 0.64(1−(1−0.3)2) = 0.3264

(whereas the other path would have p = 0.5(1− (1− 0.4)2) = 0.32).

• Method for generating other examples

Let p1 and p2 be the probability of the weakest link in path 1 and path 2 repec-

tively. Similarly, let P1 and P2 repectively be the product of the probabili-

ties of all the other links in path 1 (or path 2). Let p1 > p2, and of course

0 < p1, p2, P1, P2 ≤ 1.

p1P1 > p2P2 and (1− (1− p1)2)P1 < (1− (1− p2)2)P2

This simplifies to satisfying the inequalities

2− p1

2− p2

p1

p2
<
P2

P1
<
p1

p2
(2.6)

First, pick p1 and p2 such that p1 > p2. Then, select P2/P1 such that Equation 2.6

is satisfied, and scale P1 and P2 to be between 0 and 1.

This implies that the optimal routing topology may be different for each n, the number

of total transmissions. However, if we assume that the routing algorithm only considers links

with high transmission success rates, the range of link probabilities for different links will
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Figure 2.2. Example scenarios with different optimal paths given a different number of total transmissions

with (left) varying length paths and (right) same length paths. See the text for details.

be smaller. This means the non-optimality scenario with different path lengths described

above is less likely to arise. The non-optimality scenario of paths with the same length

described above is less likely to arise in general, which is why a method was described for

generating examples.

Regardless, the routing topology generated by Algorithm 1 is useful for comparison

with routing topologies generated by other deployable routing algorithms and for developing

specialized routing algorithms in the future. An implementation of a deployable routing

algorithm would have to overcome these limitations of Algorithm 1 and the routing scheme

described in Section 2.1.2:

Centralized computation The algorithm requires knowledge of the link quality between

all nodes. It does not take advantage of the sparsity of the graph or that most

connections are to neighboring nodes.

Immediate knowledge of destination The routing scheme assumes the source has im-

mediate knowledge of the sink address. If the controller is moving, this knowledge

may not be immediate.

Large storage requirements per node Each node must store Ns routing paths entries,

one for each potential destination node. This corresponds to storing one row of the

matrix M generated by the algorithm.

No diversity Congestion and interference from external sources have not been considered.

Therefore, the routing topology has only one route between any two pair of nodes. In

a real deployment, link probabilities can fluctuate considerably over time.
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No account for latency The routing topology is not optimized for latency, which is im-

portant for control applications.

2.2 Path Planning through Sensor Networks

The sensor network model derived in Section 2.1 was tailored toward controllers that

needed to track targets. As stated in Chapter 1, we will study pursuit-evasion games

where the sensor network is used as the observer for the pursuit controller. In this section,

to simplify the problem further, we assume that the evader is not actively evading the

pursuer but instead is just a target that travels a random trajectory. This will provide

an example of how a network performance parameter can be incorporated into an optimal

control framework — in this case a path planning problem for the pursuer.

2.2.1 Problem Formulation

For simplicity, consider one pursuer chasing one target in the surveillance region R
covered by sensor nodes. Note that this problem setup can be easily extended to the case

with many pursuers and many targets using the assignment method [31]. Let nx be the

dimension of the target and pursuer’s state space, xp(t) ∈ Rnx be the state of the pursuer

and xe(t) ∈ Rnx be the state of the target/evader at time t for t ∈ N.

The target and pursuer move around R with the vehicle dynamics described below.

The objective of the pursuer is to capture the target while minimizing energy expenditure

and maintaining good connectivity with the network for updates on the target’s position.

Capture is defined as ‖xp(t)−xe(t)‖ ≤ l where l is the radius of capture. A precise definition

of the pursuer objective follows in Section 2.2.3.

2.2.2 Vehicle Dynamics

The state of the pursuer at time t is xp(t) = [xp1(t), x
p
2(t), ẋ

p
1(t), ẋ

p
2(t)]

T , where [x1, x2]

is a position in R along the usual x and y axes and [ẋp1(t), ẋ
p
2(t)] is a velocity vector. The
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control signal is an acceleration input and is denoted by u(t) ∈ R2. A discrete-time linear

dynamic model is used

xp(t+ 1) = Apxp(t) +Bp(u(t) + wp(t)), (2.7)

where wp is a white Gaussian noise process with zero mean and covariance Qp modelling

actuator noise,

Ap =




1 0 δ 0

0 1 0 δ

0 0 1 0

0 0 0 1




Bp =




δ2

2 0

0 δ2

2

δ 0

0 δ




(2.8)

and δ is the sampling period.

The state of the target at time t is xe(t) = [xe1(t), x
e
2(t), ẋ

e
1(t), ẋ

e
2(t)]

T . We model the

dynamics of the target as

xe(t+ 1) = Aexe(t) +Bewe(t) (2.9)

where the control signal we(t) is a white Gaussian noise process with zero mean and co-

variance Qe, and

Ae =




1 0 δ 0

0 1 0 δ

0 0 1 0

0 0 0 1




Be =




δ2

2 0

0 δ2

2

δ 0

0 δ



. (2.10)

2.2.3 Pursuer Control Law

The pursuer knows the dynamic model of the target, but it does not have access to the

control inputs applied by the target. Therefore, it needs updates on the target’s position

from the sensor network to capture the target. The goal of our control law is to choose

a pursuit path that maintains good connectivity with the sensor network as the pursuer

chases after the target. More precisely, we are concerned with whether packets originating

near the target (detections) reach the pursuer.
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Connectivity with the network is a function both of the position of the pursuer and the

position of the target in the network. Let us measure connectivity with the network using the

function γ(t) = γ(xp(t),xe(t)), the probability of the pursuer receiving a packet originating

from a detecting sensor near the target when the target and pursuer are positioned at xe(t)

and xp(t), respectively, at time t. γ(t) can be calculated using our sensor network model

in Section 2.1.2.3. Assuming each node has the same radio communication model, select

the closest node to the target as the source node and the closest node to the pursuer as the

sink node. Then, apply Algorithm 2 to the path between the source and sink to get the

connection probability of the route through the sensor network. For the last hop from the

sensor network to the pursuer, we assume a fixed number of transmission attempts (e.g.

3), with the probability of the last link given by the disk communication model for the last

node (Eqs. 2.3 or 2.4). The product of these probabilities yields γ(t).

We define the relation between connectivity and the error in the estimate on the target’s

position through P (t), the covariance of the estimate of the target’s position at time t.

P (t) = E
[(

xe(t)− E[xe(t)|y1:t]
)(

xe(t)− E[xe(t)|y1:t]
)T ∣∣∣y1:t

]
(2.11)

where y1:t are the observations provided by the sensor network from time 1 to t. Because

the target has linear dynamics, the covariance of the target’s position P (t) can be computed

from the Kalman filter. The covariance of the target’s position can be computed as described

by Sinopoli in [25]:

P (t) = P ′(t)− γ(xp(t),xe(t))P ′(t)CT (CP ′(t)CT +R)−1CP ′(t) (2.12)

where

P ′(t) = AP (t− 1)AT +Qe. (2.13)

Note that P is a function of γ(t), which is in turn a function of xp, which is a function of

u. Therefore, the pursuer can indirectly affect P though its control inputs u. Hence, the

problem can be formulated as finding the control signals minimizing a tradeoff between the

• distance between the pursuer and the target

• control effort
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• error in the position estimate of the target.

We do this in a model predictive control (MPC) framework [36]. Despite lacking a strong

theoretical foundation for bounds on stability and robustness in nonlinear settings, MPC

has been successfully used for many control problems, particularly in chemical engineering.

We choose MPC because is easy to incorporate additional constraints and the controller is

relatively easy to implement. Particularly, if the cost function is convex, the controller can

be easily implemented via a convex optimization solver.

To describe model predictive control, let t0 be the current time and T be a time horizon

beyond t0. In MPC, we predict the outputs of our system over the time horizon using

the previous observations and a process model, in our case the model for the target’s

vehicle dynamics. Then, the controller computes the inputs u∗(t) for t = t0, ..., t0 + T

that optimize a cost function over this time horizon. Next, the controller applies the input

u∗(t0). This entire procedure is repeated at the next time step t0 + 1 — the controller

computes the predicted outputs of the system for the next time horizon by incorporating

new observations, computes the optimal control inputs for the next time horizon, and applies

the input u∗(t0 + 1).

In our problem setup, the finite horizon cost function is:

J(u) = λ1

t0+T−1∑
t=t0

E[‖xp(t)− xe(t)‖2] + λ2

t0+T−1∑
t=t0

‖u(t)‖2

+λ3

t0+T−1∑
t=t0

trace(E[P (t)]) (2.14)

where 0 ≤ λi, λ are weighting constants

u = {u(t) : t0 ≤ t ≤ t0 + T − 1}

The reason for the expectations around P (t) and xe(t) is because xe(t) is a random variable

that depends on we(t), a white Gaussian noise process (Eq. 2.9), and P (t) is a function of

xe(t).

Let us denote the optimal control signals by u∗. Notice that xp and P (t) are functions
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Figure 2.3. (left) Sample sensor node deployment. (right) The corresponding connection probability map

using the sensor model in Equation 2.4. (This figure is best viewed in color.)

of u. Then the optimization problem is as follows:

u∗ = arg min
u

J(u), (2.15)

such that the vehicle dynamics in Equations 2.7 and 2.9 hold.

2.2.4 Convexity Issues

Unfortunately, our optimization problem is inherently nonconvex. This is because γ(t)

is a nonconvex function of xp(t) and xe(t). Recall that we are assuming a disk model for

the communication range of each sensor node. Although a disk is convex, a union of disks

is in general not convex. Furthermore, locally γ(t) decays with increasing distance from

the center of the last hop transmission node. These two factors cause γ to have many local

minima (see Fig. 2.3).

Nonconvexity means that our controller will likely find control inputs that drive the

state to local minima in the cost function and not find the optimal solution. Many differ-

ent approaches were attempted to reformulate the problem and get approximate solutions

but unfortunately none have been very satisfactory. These attempts are described in Ap-

pendix E.
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2.2.5 Simulation and Evaluation

To evaluate the performance of the connectivity-considerate control law described by

Equations 2.14 and 2.15, I wrote a simulator in MATLAB called PEGSim. The main loop

of the simulator takes discrete time steps and simulates the detection and node-level routing

of packets using the sensor network model described in Section 2.1, calculates the pursuer’s

control inputs using the control law described in Section 2.2.3, and simulates the motions of

the pursuer and the target using Equations 2.7 and 2.9. The simulation uses the standard

MATLAB optimization toolbox function fminunc to find the minimum when calculating

the control inputs for the pursuer. The code for PEGSim can be found in Appendix A.1.

The purpose of the simulation was to evaluate whether running our new control law

yields better performance than a naive LQG (Linear Quadratic Gaussian - a Kalman Filter

composed with a Linear Quadratic Regulator) controller. Performance was measured by

the average time to capture the target and the number of runs where the target escaped.

Escape meant that the target was not captured within an alloted time Tg. I also simulated

some controllers that optimized variants of the cost function in Equation 2.14.

2.2.5.1 Isolating the Connectivity Optimization Term

To test whether the optimization problem actually helps the pursuer stay connected to

the network, I remove the pursuit term in our cost function.

Considering only the connectivity term and control effort, we have the optimization

problem:

u∗ =

(
arg min

u
λ1

t0+T−1∑
t=t0

trace(E[P (t)]) + λ2

t0+T−1∑
t=t0

‖u(t)‖2
)

P (t) = P ′(t)− γ(t)P ′(t)CT (CP ′(t)CT +R)−1CP ′(t)

s.t.

P ′(t) = AP (t− 1)AT +Q

γ(t) = γ(xp(t),xe(t)) (as defined in Sec. 2.2.3)

xp(t+ 1) = Apxp(t) +Bp(u(t) + we(t))
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xe(t+ 1) = Aexe(t) +Bewe(t) (2.16)

and all the variables are defined in the same manner as before.

Alternatively, we may wish to bypass the complexity of calculating the expected covari-

ances, and use just a sum of γ(t). The optimization problem then becomes:

u∗ =

(
arg min

u
λ1

t0+T−1∑
t=t0

E[γ(t)] + λ2

t0+T−1∑
t=t0

‖u(t)‖2
)

γ(t) = γ(xp(t),xe(t))

xp(t+ 1) = Apxp(t) +Bp(u(t) + we(t))

xe(t+ 1) = Aexe(t) +Gewe(t) (2.17)

2.2.5.2 Simulation Setup and Results

I simulated the pursuer chasing the target using the LQG controller and the

connectivity-covariance pursuit controller (Eq. 2.14). The simulations were done on 20 au-

togenerated 50× 50 grid regions of 100 uniformly randomly distributed nodes (see Fig. 2.4

for a sample layout). We chose 5 different starting positions for the pursuer and the evader.

This meant that for each type of controller, we ran 100 runs. Capture occurred when the

pursuer was within 1 unit distance from the evader, and escape was when T = 20 time units

had passed without capture. Each simulation step (the time to deliver a packet one hop)

was 0.1 time units.4 The routing algorithm allowed 10 total transmission attempts, with

parameters for the sensing and communication SINR probability models αs = 2, βs = 100

and αr = 2, βr = 50 respectively. For the connectivity-covariance pursuit controller, we

actually use a look ahead horizon of T = 3, or 30 steps, but only allow control inputs

for t = t0 + (0.1, . . . , 1), as is often done in model predictive control so the optimization

algorithm focuses on adjusting control inputs in the closer time horizon. In other words,

we force u(t) = 0 for t > 1. This is slightly different than the formulation in Equation 2.14.

The weighting factors for the terms in Equation 2.14 λ1, λ2, λ3 are all 1.
4This means the time must be rescaled on the equations for the costfunctions and vehicle dynamics above.
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Figure 2.4. Two samples of uniform random distribution of 100 sensor nodes used in the simulations,

with their corresponding sensing and communication radii. The sensing regions are in yellow, and the

communication radius is denoted by a black circle for each node.

Cost Function Capture Rate Average Capture Time
LQG 92 / 100 3.74

Conn-Cov Pursuit 92 / 100 3.83

Table 2.1. Simulation results. Most scenarios yielded similar performance by both control
algorithms, with a few where the connectivity-covariance controller taking longer to capture
the target.

Unfortunately, the performance of the connectivity-covariance pursuit controller did

not show any improvement over the LQG controller (see Table 2.2.5.2 and Fig. 2.5). I

simulated the connectivity-covariance controller and the summed connectivity controller to

better understand the contribution of the connectivity parameter to our control law. In

those simulations, the connectivity-covariance controller often did not move the pursuer

to maintain good connectivity with the nodes near the target. Upon closer investigation,

the problem was found to be the optimization routine getting stuck in local minima. As

mentioned in Section 2.2.4, the many attempts to reformulate the problem have not yet

yielded a good solution. More work, and possibly a drastic change in problem perspective

may be needed.

2.2.5.3 Remarks on Sensor Network Deployment Classification

During the simulations, it became apparent that it would be difficult to sample the

space of sensor network physical deployment layouts effectively for comparison of pursuit
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Figure 2.5. Simulation results for (left) 20 runs using the LQG controller (mean capture time = 4.03,

19/20 captured) and (right) 20 runs using the connectivity-covariance controller (mean capture time = 4.24,

19/20 captured) given the same starting position of the pursuer and the same initial trajectory of the evader

until capture by either algorithm. For each of the 20 runs, the underlying sensor network topology/physical

layout is different, hence not shown. A black line connects a pursuer/target pair when the target is captured.

(This figure is best viewed in color. For more figures, see Appendix C.1.)

control laws. In fact, while one may think that there are many scenarios where an optimal

controller that maintains good network connectivity can capture a target when one that

does naive LQG does not, it is not so clear how to generate such a scenario for testing.

In Figure 2.6, we see a layout of sensor nodes that may have a higher probability of the

target escaping when pursued by a LQG controller. Note that upon receipt of messages,

our connectivity-considerate controller will take a path through sensor nodes. There is a

moment when the target will be out of communication range because of a partition in the

network. This is key: for our connectivity-considerate controller to work better than an

LQG controller that drives straight to the last position of the target, the pursuer must

have difficulty correcting its estimate of the target position when arriving at the target’s

old position. Our connectivity-considerate pursuer will have a better estimate of which

direction the target escapes in, and hopefully move close enough to “catch the scent of the

trail” of the target again. The LQG controller may predict the target position incorrectly

and head off in the wrong direction.

A method to classify the physical layout of different sensor network deployments is

necessary to help in limiting the sensor network sample space when running simulations to

compare the performance of different control laws. For instance, one criterion that affects
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Figure 2.6. Scenario where, with appropriate parameter tuning, we should see capture by the connectivity-

considerate controller and loss of tracking by the naiive LQG controller. (This figure is best viewed in color.)

control law performance is whether the network is partitioned. Another often studied

characteristic is the sensor coverage of the physical space of the deployment.
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Chapter 3

Performance Bounds on the

Lifeline Pursuit-Evasion Game

This chapter attempts to bound the performance of pursuit-evasion games played over

sensor networks, finding initial conditions that can guarantee capture of the evader by the

pursuer. In particular, we study the classic Lifeline game described by Isaacs in [26] when a

deployed sensor network aides the pursuer in locating an evader. This game is of particular

interest because it is an abstraction of the problem of protecting oil pipelines with a sensor

network. In fact in December of 2004, a large effort was made to design sensor network

hardware and software for this problem [37].

Unlike the classic Lifeline game studied by Isaacs, in the game played over the sensor

network the pursuer no longer has perfect information. Furthermore, there is a nonzero

probability that observations do not reach the evader’s position. As a result, the solution

will rely on the notion of a probabilistic barrier. That is, for a fixed probability pconn, we

can find a barrier/surface separating the game state space such that all initial states on one

side of the barrier will result in capture with probability pconn. pconn will depend entirely on

the probabilities associated with the wireless communication channel in the sensor network,

and not with predictions on how the evader will play the game. In this sense, we can still

speak of the pursuer playing against the worst-case behavior of the evader.
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Figure 3.1. Classic lifeline game setup. (Reproduced from [26])

3.1 Background: The Classic Lifeline Game

The classic Lifeline game is described in example 9.5.1 of [26].1 We have a pursuer xp

and an evader xe, both exhibiting simple motion in a half plane bounded by the infinite line

L. The objective of the pursuer is to capture the evader, while the objective of the evader

is to reach L. Capture occurs when ‖xp − xe‖ < l.

3.1.1 Vehicle Dynamics

Only the relative speed of the pursuer and the evader matter, hence the pursuer is

assumed to have speed 1 and the evader to have speed w. Furthermore, to keep the game

interesting, we assume w < 1. Otherwise, the evader can always win the game.

Assume the game is played on an xy-plane R, with L running along the x-axis. The

states of the system are x, the distance between the x-coordinates of the pursuer and the

evader, y1, the y-coordinate of the pursuer, and y2, the y-coordinate of the evader (See

Fig. 3.1). We refer to them collectively as x = (y1, y2, x). The control input for the pursuer

is the steering angle φ and the control input for the evader is the steering angle ψ.

The Kinematic Equations (KE) for the system are:

ẏ1 = cosφ

ẏ2 = w cosψ

ẋ = w sinψ − sinφ (3.1)
1See this reference or Appendix F for the general techniques used below to solve differential games.
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3.1.2 Solution

The Main Equation (ME) for the system is:

max
ψ

min
φ

[(v1 cosφ− v3 sinφ) + w(v2 cosψ + v3 sinψ)] = 0 (3.2)

where v1, v2, v3 are the coordinates of the normal vector to the barrier surface (see Ap-

pendix F for details).

The Retrograde Path Equations (RPE) for the system are:

v̊i = 0, i ∈ {1, 2, 3}

ẙ1 =
v1
ρ1

ẙ2 = −wv2
ρ2

x̊ = v3

(
1
ρ1
− w

ρ2

)
(3.3)

where ρ1 =
√
v2
1 + v2

3, ρ2 =
√
v2
2 + v2

3

The terminal surface C consists of two regions, C1 and C2. C1, the capture surface, is

the exterior of the cylinder with axis along the line {x : x = 0, y1 = y2}. Horizontal slices

of this cylinder correspond to fixing y1, the position of the pursuer relative to L. C2, the

escape surface, is the y2 = 0 plane. Termination on C1 means that the pursuer wins, whereas

termination on C2 means that the evader wins. The semipermeable surface serving as the

barrier must pass through K, the boundary between C1 and C2.

The valid playing region, denoted E , is in the quarter space {x : y1 ≥ 0, y2 ≥ 0} excluding

the region within the cylinder.

K, the intersection of the two terminal surfaces, can be parameterized by

y1 = l cos s

y2 = 0

x = l sin s, −π
2
≤ s ≤ π

2
(3.4)

Using the general procedure for solving games of kind outlined in [26], we get equations
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Figure 3.2. (left) Full barrier solution for the Lifeline game. (right) Barrier solution for the Lifeline game

when the position of the pursuer is fixed with respect to the lifeline. ’X’ marks the position of the pursuer,

the blue line is the barrier, and the red line is the lifeline L. (This figure is best viewed in color.)

describing the barrier:

y1 = (l + τ) cos s

y2 = wτ
√

1− w2 sin2 s

x = (l + (1− w2)τ) sin s (3.5)

The barrier surface is depicted on the left in Figure 3.2. To interpret this graph, fix the

position of the pursuer with respect to the lifeline L by setting y1 constant. This is equivalent

to taking a horizontal slice of the barrier, and is depicted on the right in Figure 3.2. The

capture zone lies above the barrier and the escape zone lies below the barrier.

The optimal control laws on the barrier surface obtained from the ME are given by:

cos φ̄ = −v1
ρ1
, sin φ̄ =

v3
ρ1

cos ψ̄ =
v2
ρ2
, sin ψ̄ =

v3
ρ2

(3.6)

where ρ1 =
√
v2
1 + v2

3, ρ2 =
√
v2
2 + v2

3

v1 = cos s, v2 =
√

(1/w2)− sin2 s, v3 = sin s
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3.2 Sensor Network Model

We assume the same node-level sensor network model used in Section 2.1.1, and use

the same notation. For sensing, we use the linear measurment model in Equation 2.2 with

a uniform noise process v. The communication model can be either the linear communica-

tion model given in Equation 2.3 or the SINR-like communication model in Equation 2.4,

although it could also be from empirical data. All we need is the connection probability pc

for each pair nodes.

We assume that we are given a routing topology, whether it be one generated by any

of numerous routing algorithms for sensor networks like [33], [38] or the ideal topology

generated in Section 2.1.2. Although most available sensor network routing algorithms are

not designed for control applications, we assume they can be adapted by keeping the same

routing topology but changing the transmission control scheme. We assume the same trans-

mission scheme using time-to-live (TTL) counters in Section 2.1.2. Using this assumption

and the routing topology, we can derive an abstracted model for the sensor network to

computer a bound on the performance of the pursuer (the controller).

3.2.1 Abstracted Model for Sensor Network

A sensor network deployment may not be uniform, resulting in “bad” regions (worse

sensing resolution, worse connectivity and latency to surrounding neighbors). In the worst

case scenario for the pursuer, we can assume that the evader will exploit these bad regions

in the network. As such, we will assume the network performs everywhere only as well as

the performance at the worst point in the network.

To simplify the representation of a sensor network, we will abstract it using a n-hop

disk model. This means that given a routing topology, a sensing radius Rs for all nodes,

and a chosen probability of connectivity pconn, we can calculate for each position z in the

playing field a disk of radius rn such that all targets within this disk and within the playing

region R can be detected and have their detections routed to z with probability greater
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Figure 3.3. Illustration of an n-hop disk model for a point z in R. Assuming pconn = 0.9, we would say

that detections from z1 and z2 would reach z with probability greater than or equal to 0.9 in 1 and 3 time

intervals respectively.

than pconn after n total transmissions. In this manner, we can draw disks of radius rn, for

each n, around each point z (See Fig. 3.3).

In the end, we wish to have only one of these n-hop disk models abstracting the entire

sensor network. Naturally, we take the worst case over all points z in the playing field. In

other words, for each ring corresponding to n hops, we take the smallest radius rn given by

all points z in the playing field.

3.2.2 Computation of n-hop Disk Abstraction

To calculate the n-hop disk model for every point in the playing field, we need only

1. check that the entire playing region is covered (no sensing gaps in the sensor network)

2. take the minimum rn in our model from the n-hop disk model of each sensor node

(Ns nodes total).

Here, we are assuming that the pursuer is equipped with a superior transmitter and receiver

such that if the pursuer is within the communication radius of the last node, it receives the

packet with probability 1.

To check for complete coverage of the playing region, one can simply discretize the

entire playing space with spacing d and check coverage at each point by at least one of the
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Ns nodes with their sensing radii reduced from Rs to Rs − d. Of course, we need to also

check that all nodes can communicate with each other, or at least the nodes that are out

of communication range are not needed to cover the playing field.

The calculation of an n-hop disk model for the network given a threshold probability

pconn is described in Algorithm 3. The input to the algorithm is P , an Ns×Ns matrix of

connection probabilities pc, and the number of total transmissions allowed, n. The output is

a vector r = (r1, . . . , rn) that represents the n-hop disk model for the entire network. This

algorithm calls functions NHopNeighbors, getPathProb, getGamma, and getMaxInscribed-

Disk. NHopNeighbors(i, j) just returns the neighbors of node i within j hops, which is

easily obtained from the routing topology. getPathProb(i, k, P ) returns a vector of link

probabilities for each hop on the path between node i and node k. getGamma(ppath, n) is

computed via Algorithm 2 of Section 2.1.2.3 and returns a lower bound on the end-to-end

connection probability along a path. Finally, getMaxInscribedDisk(N j
conn, si, Rs) is simply

a function that returns the maximum radius of a disk centered at si that is covered by all

disks of radius Rs with centers in N j
conn. To compute this, one could make approximations

by discretizing the space.

If we were to assume that all the link probabilities were a constant pc, then we could

calculate the m-hop connection probability given n total transmissions, γm, as

γm = (1− (1− pc)b
m
n

+1c)j(1− (1− pc)b
m
n
c)n−j

j = m mod n (3.7)

This equation comes from using the n−m retransmissions to boost the transmission prob-

ability on the weakest link. Using this equation would simplify the calculations in Algo-

rithm 3.

In any case, r describes delay, n, as a function of distance, rn. This can be converted

to a delay function,

d(r) = arg max
n

(rn : rn < r) , (3.8)

a composition of step functions with non-differentiable points. Should we wish to make d(r)

smooth, we can upper bound the delay function with a polynomial interpolated through the
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Algorithm 3 n-hop disk given threshold probability pconn
Input: S, P , n . see text and Section 2.1 for details

Output: r

for i = 1 to Ns do

for j = 1 to n do

N = NHopNeighbor(i, j)

for k ∈ N do

ppath = getPathProb(i, k, P )

γk = getGamma(ppath, n)

if γk > pconn then

add sk to N j
conn

end if

end for

rij = getMaxInscribedDisk(N j
conn, si, Rs)

end for

end for

∀j, rj = max
i

(rij)
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Figure 3.4. Sample plot of delay as a function of distance, in blue. The red line is a smooth linear

approximation of the delay function, and the black line is a smooth quadratic approximation.

points of discontinuity (See Fig. 3.4). For instance, we can use a “linear” function (the | · |
function), or a quadratic function for the delay to approach∞ faster as the radius increases.

3.3 Formulation of the New Lifeline Game

To account for latency and missing observations because of a sensor network, we intro-

duce a variable for the evader’s uncertainty radius, le, into the classic Lifeline game. Let us

set r = ‖xp − xe‖ =
√

(y1 − y2)2 + x2 and let the delay function, a monotonic function of

r, be written as d(r). Then

le = wd(r) + rq (3.9)

where rq is from the sensing model with uniform noise described in Section 2.1.1.1.

The modified game is set up as follows:

Definition Delayed Game Setup: The new game uses the same KE as the classic lifeline

game (3.1). The evader has perfect information on the position of the pursuer and itself at

the current time t. The pursuer has perfect information on his own position at t, but only

knows the position of the evader at time t− n within a ball of radius rq, where n = d(r) is

the delay before a packet reaches the pursuer with probability greater than pconn as given

by (3.8). The uncertainty ball Be containing the position of the evader at time t has radius

le and is centered at the evader’s measured position xe(t− n).
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Let us call the modified game Game A and define the objectives for the pursuer and

the evader.

Definition Game A — the non-zero sum delayed game: Assume the general setup of the

Delayed Game. The objective of the pursuer is to capture the evader before any of Be

crosses the lifeline. The objective of the evader is to reach the lifeline L without being

captured.

Capture from the evader’s perspective occurs when r < l. Capture from the pursuer’s

perspective occurs when r < l − le, where we assume that le eventually is less than l as xp

approaches xe. Escape from the evader’s perspective occurs when y2 ≤ 0. Escape from the

pursuer’s perspective occurs when y2 − le ≤ 0.

The game terminates when either the evader escapes from the evader’s perspective or

the evader is captured from the pursuer’s perspective. Let CA2 denote the “escape” surface

in the game and CA1 denote the “capture” surface in the game.2

Note that because the objectives of the pursuer and the evader are slightly different, Game

A is no longer a zero-sum game.

We wish to show that there exists a zero-sum game, Game B, where if the evader can

win in Game A starting at position xe
0, he can also win in Game B starting at position xe

0.

This means that Game B is an easier game than Game A for the evader. We choose Game

B to simply be Game A played entirely using the pursuer’s value function.

Definition Game B — the zero-sum delayed game: Assume the general setup of the De-

layed Game. The objective of the pursuer is to capture the evader before any of Be crosses

the lifeline, and the objective of the evader is to make some part of Be cross the lifeline

before capture. Capture occurs when

r < l − le , (3.10)
2We cannot speak of semipermeable surfaces for non-zero sum games, but the notion of a terminal surface

is still valid.
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and escape occurs when

y2 − le ≤ 0 , (3.11)

where again we assume le eventually is less than l as xp approaches xe. The capture and

escape terminal surfaces are CB1 and CB2 respectively.

Game B is a zero-sum game because the objective of the pursuer is the complement of the

objective of the evader.

We can actually interpret Game B as a game where the evader plays in the same frame

of reference/time as the pursuer. Although the control law for the evader controls the

current position of the evader, the evader is playing with respect to the future position

of the pursuer. We assume that the evader can calculate the latency before the pursuer

receives updates on the evader’s current position. Furthermore, the evader can predict the

future position of the pursuer if the pursuer is playing with the optimal policy φ̄ and the

evader knows all past states of the game.

Pursuit-evasion games are naturally games of kind, meaning the outcome of the game

is binary — escape or capture. As such, the players in the game need only play optimally

on a subset of the states of the game. For instance, if a pursuer is close to capturing an

evader when far away from the lifeline, he can choose to be idle for a short period before

pursuing and capturing the evader. This means that there are multiple “optimal” strategies

available to each player that give the same outcome of the game.

To really speak in terms of optimal strategies, we need to embed these two games in

equivalent games of degree, where the value of the game for the players lie in R. The

values would correspond to the time to capture/time to escape for the pursuer and evader

respectively. In the classic Lifeline game, we have for V the value of the game:

V =




−dist(xe,L), evader captured

‖xp − xe‖ − l, evader escapes
(3.12)

Note that V agrees with the original game of kind, with V > 0 corresponding to escape

and V < 0 corresponding to capture. Furthermore, this piecewise definition of V agrees

at V = 0 when the evader is captured just as it reaches L. To maximize/minimize V , the
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pursuer and the evader must play optimally at all times during the game. The embedding

of Game B can be done in a similar manner:

V =




−dist(xe,L) + le, evader captured

‖xp − xe‖ − l + le, evader escapes
(3.13)

Since Game A is a non-zero sum game, there is a different value function for the evader

and the pursuer. Let’s call the value of the game for the evader V e
A, where V e

A ≥ 0 for

escape from the evader’s perspective and V e
A < 0 for capture from the evader’s perspective.

We can define the embedding analogously to Equation 3.12.

Recall from [26] that the strategies φ and ψ are functions of the state, x, and the

derivative of the value function, Vx. Then for game A (B) we can define the pursuer’s

optimal control law as φ̄A (φ̄B) and the evader’s optimal control law as ψ̄A (ψ̄B). We wish

to guarantee that the pursuer can win a game should he play with his optimal strategy.

Theorem 3.3.1. Let the initial state of both Game A and Game B be x0. Assume the

pursuer can win Game B if he plays with strategy φ̄B. Then, if the pursuer plays Game A

with strategy φ̄B, he can force V e
A < 0.

Proposition 3.3.2. Assume the pursuer plays with strategy φ̄B in both Game A and Game

B. If the evader can force V e
A ≥ 0 in Game A, then the evader can win in Game B.

Proposition 3.3.3. Assume the pursuer plays with strategy φ̄B in both Game A and Game

B. If the evader can force V e
A ≥ 0 in Game A using strategy ψ̄A, then the evader can win

in Game B using the same strategy ψ̄A.

Proof. Note that Proposition 3.3.3 implies Proposition 3.3.2. Furthermore, Proposition

3.3.2 is the contrapositive of Theorem 3.3.1. Therefore, if we prove Proposition 3.3.3, then

we have proved the theorem.

We need to show that if the pursuer plays the strategy φ̄B and the evader plays the

strategy ψ̄A for both games, V e
A ≥ 0⇒ VB ≥ 0 (where VB is the value of Game B).

Recall that the KE for Game B is the same as that of Game A, and similar to that of

the Classic Lifeline Game (Eq. 3.1). The main difference lie in the terminal surfaces of the
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games. Note that to reach the “escape” terminal surface of Game A, CA2 , from the playing

region E , one must pass through the “escape” terminal surface of Game B, CB2 . This is

because V e
A ≥ 0 implies that y2 = 0. But note that in Game B, y2 = 0 implies that Be

has crossed the lifeline, or that VB ≥ 0. Therefore, if the evader causes V e
A ≥ 0 in Game A

using ψ̄A, ψ̄A will force VB ≥ 0 in Game B.

3.4 Solution to the New Lifeline Game

We wish to find a probabilistic barrier for Game A, but because Game A is not a

zero-sum game, the techniques developed by Isaacs for differential games cannot be applied

directly to solve it. However, using Theorem 3.3.1, it is sufficient to solve Game B to obtain

a probabilistic barrier and an optimal strategy for the pursuer and apply them to Game A.

The capture zone delimited by the probabilistic barrier for Game B would lie within the

capture zone for Game A.

We begin by defining the terminal surface of Game B. The capture and escape surfaces

are derived from (3.10) and (3.11) using equalities instead of inequalities. The intersection

of the capture and escape surfaces, K, is the solution to

r = l − (wd(r) + rq)

y2 = wd(r) + rq (3.14)

If we assume that the delay function is quadratic with constant coefficient c and value

d0 at r = 0, d(r) = cr2 + d0, then after substitution into (3.14) and solving for K in E we

get:

y2 =
(2wcl + 1)−√

(wcl + 1)2 − 4wc(wcl2 + wd0 + rq)
2wc

(3.15)

Where we chose the smaller of the two solutions to the quadratic equation so l − y2 > 0.

If we assume the delay function is linear with constant coefficient c and value d0 at r = 0,

d(r) = cr + d0, we get:

y2 =
wcl + wd0 + rq

1 + wc
(3.16)
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Recall that r =
√

(y1 − y2)2 + x2. K, the intersection of the barrier with the terminal

surface, is therefore a slice of the tapering cylinder described in Equation 3.14 at the specified

value of y2, which is a circle of radius l − y2. Therefore, we can parameterize K with

parameter s as

y1 = (l − y2) cos s+ y2

y2 = K,

x = (l − y2) sin s, −π
2
≤ s ≤ π

2
(3.17)

where K is a constant given by Equation 3.15 or Equation 3.16, depending on the chosen

delay model. Taking the derivative with respect to the parameter s yields

dy1

ds
= −(l − y2) sin s

dy2

ds
= 0

dx

ds
= (l − y2) cos s (3.18)

We know that the normal vector v should be perpendicular to the barrier. Therefore,

v · dxds = 0 (again, x = (y1, y2, x)). This yields

−v1(l − y2) sin s+ v3(l − y2) cos s = 0

or v1 = cos s, v3 = sin s (3.19)

which is exactly the same v1 and v3 as in the classic lifeline game. Using the same procedure

in [26] we also get v2 =
√

(1/w2)− sin2 s.

In fact, since the KE are the same as the classic lifeline game, we can reuse the RPE in

Equation 3.3. Therefore, the steps for solving the barrier are the same as those in [26].

The final equations describing the barrier in Game B are:

y1 = (l −K + τ) cos s+K

y2 = K − wτ
√

1− w2 sin2 s

x = (l −K + (1− w2)τ) sin s (3.20)

where

K =
wcl + wd0 + rq

1 + wc
(3.21)
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Figure 3.5. Barrier solution for Game B, assuming linear delay. Note that it looks similar to the barrier

for the classic lifeline game. (This figure is best viewed in color.)

for linear delay and

K =
(2wcl + 1)−√

(wcl + 1)2 − 4wc(wcl2 + wd0 + rq)
2wc

(3.22)

for quadratic delay.

Note that Equation 3.20 closely resembles Equation 3.5. See Figure 3.5 for the new

barrier with linear delay (which is similar to the barrier with quadratic delay).

Surprisingly, because the normal vector v and the ME for Game B is the same as those

for the classic lifeline game, the optimal strategies for the pursuer and the evader also are

the same. Mathematically, this comes about because the Kinematic Equations are not

dependent on the state, and hence fij = 0 and v̇i = 0, leading to the simple optimal control

laws in Equations 3.6.

3.5 Extending the Framework

This chapter provides a sample framework for thinking about how to bound the perfor-

mance of pursuit-evasion games on sensor networks. It introduces the notion of calculating

a probabilistic barrier to find capture and escape zones for a lifeline game, and a method

for abstracting a sensor network to an n-hop disk model used in such calculations.

Much work remains to be done to extend this framework. First of all, the approximations

used in this paper provide very loose bounds on the performance of the pursuer, due to loose
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bounds on worse case sensor coverage and communication latency. Also, the problem setup

and the models proposed for the sensor network and players can be enriched considerably.

For example, we should:

• account for consecutive missing packets

• assume false alarms in sensing

• extend the problem to multiple pursuers and evaders

• account for gaps in sensor network sensing coverage

• enrich the vehicle dynamic models

• allow for obstacles in the playing field.

If we extend the problem to multiple pursuers and evaders, we may also want a simple

model of network congestion.

We hope that providing performance guarantees on pursuit-evasion games over sensor

networks will lead to insight on how to provide performance guarantees on general sensor

network control applications. These performance guarantees can then aide in the design

and deployment of sensor networks.
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Chapter 4

Sensor Network Testbeds

To make a connection between theoretical models/simulations of sensor networks and

reality, it is necessary to set up sensor network testbeds to verify that the modelling assump-

tions make sense. This chapter describes the setup of an indoor sensor network testbed with

robots and an outdoor, large-scale, long-term deployment testbed. The construction of both

testbeds was a combined effort of many individuals (see the Acknowledgments section).

One of the main thrusts behind these testbeds was to implement a multiple-target

tracking (MTT) algorithm on the sensor network and study/verify its performance. The

multiple-target tracking problem is the problem of associating detection events with the tar-

gets that generate them. Target disambiguation is part of the estimation step of a feedback

control loop involving the pursuit of targets. This problem has been studied extensively by

Songhwai Oh [39]–[41], especially in the context of receiving detection events over sensor

networks [32], [42]. [31] shows how the output of a multiple-target tracking algorithm can

serve as input to a controller for a pursuit-evasion game. For a brief background on MTT

and particularly Songhwai’s implementation that was tested on our testbeds, the Markov

chain Monte Carlo data association (MCMCDA) multiple-target tracking algorithm, please

see Appendix G.
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Figure 4.1. (left) The indoor robot sensor network testbed. (right) The layout for the deployment, with

the lower left hand corner being the lower right hand corner in the picture.

4.1 Indoor Robot Sensor Network Testbed

A 45 node indoor testbed was designed and deployed for the purpose of studying control

and tracking of robots using sensor networks. This sensor network was deployed in a 9× 5

grid with 2.5 ft spacing (10 ft by 20 ft total) on a plastic mesh netting with room below for

robots to navigate without colliding into the nodes of the network (see Fig. 4.1). The frame

holding up the sensors is constructed of PVC piping and does not contain metal since we

are using magnetometer sensors. The nodes have an ethernet backchannel for programming

and for monitoring the state of the system, but communicates over the wireless radio for

the sensor network applications just as it would in a real world deployment. Furthermore,

the nodes can be perpetually powered by the ethernet backchannel since the channel follows

the Power-over-Ethernet standard, obviating the need to replace batteries.

4.1.1 Hardware Platform

The sensor node platform used for our testbed is the mica2dot [43], an embedded, low-

power, wireless platform running TinyOS [44]. The mica2dot has a 4 MHz ATMega128

processor with 4 kB of RAM and 128 kB of program memory, and a CC1000 radio that

provides up to 38.4 kbps transmission rate. Each node is equipped with a Honeywell

HMC1002 2-axis magnetometer to sense the moving targets. This is the platform that was
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Figure 4.2. eMote (on the left) and assembled mica2dot mote with hardware adapter board (on the

right). The hardware adapter board is the large rectangular printed circuit board, and blocks from view

the magnetometer and power conversion boards that are underneath. The eMote runs a web server and is

assigned a static ip address for access from computers connected to our Power-over-Ethernet switch.

developed and used in the NEST midterm demonstration [45]. A hardware adapter board

was developed for it to operate while wired to the ethernet channel.

The assembled sensor nodes are depicted in Figure 4.2. The hardware adapter board

has four main functions. First, it exposes the essential pins to interface with the eMote

(Ethernet Programming Board) which allows monitoring data to be sent back over the

ethernet and for programs to be downloaded onto the motes. The original design could

not connect to both the eMote and the power conversion board. The power conversion

board is necessary to provide 5 volts to the magnetometer from the 3.3 volt eMote power

source. Second, it exposes an interface that allowed the next generation of motes, the

Telos mote [46], to interface with the mica2dot sensor boards should we choose to change

platforms. Third, it allows for the sensor node assembly to be easily disconnected from the

wired interface and run off a battery without reassembly. Lastly, the board exposes a reset

and off switch for the mica2dot motes. For a schematic of the hardware adapter board, see

Appendix B.

The robots used for tracking and control were COTBOTs, remote control cars controlled

by mica2 sensor nodes that are designed by Sarah Bergbreiter [18] (see Fig. 4.3). The

mica2 nodes could communicate wirelessly with both the mica2dot sensor nodes and with a

basestation computer using the same protocol. For sensing the robots, we strapped a a 1”

46



Figure 4.3. COTSBOTS with a magnet on top in a plastic holder. The mica2 mote is hidden behind the

white shock absorbers. We also placed magnets atop styrofoam columns on the COTSBOTs to bring them

closer to the sensors and to separate it from the electronics. The robots are about 6” long and 3” wide.

diameter, 0.125 inch thick neodymium magnet to the top of the car. The magnetometers

on the mica2dot sensor nodes detect distortions in the magnetic field whenever the robots

drive by [47].

4.1.2 Software

The software running on the sensor nodes are written in NesC [48] and run on TinyOS

[49], an event-driven operating system developed for wireless embedded sensor platforms.

Besides providing a nice framework for writing drivers for hardware components on the

underlying system, TinyOS also allows users to compose an application from a large library

of modular components, including routing layers, time synchronization, power management

policies, and others.

For the indoor robot testbed, a software environment/interface was written to allow

MATLAB robot controller code to be used to control the COTSBOTs (see Appendix A

for references to the code repository). The idea is to do rapid controller development in

MATLAB and test the controller on the COTSBOTs by sending control commands over the

network. The environment relies on software interface code written by Kamin Whitehouse

to bridge MATLAB and the Java communication libraries for TinyOS. It provides basic

functions for command line control and calibration of the COTSBOTs, logging and display

of data from the sensor network, and a framework for running multiple MATLAB sensor
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network applications simultaneously and sharing data structures. For instance, the envi-

ronment provides commands for simultaneously connecting, disconnecting, logging data,

and plotting data of multiple sensor network MATLAB applications written following a

standard format. This has been a rather useful tool for interacting with the sensor network

in real time during experiments.

4.1.3 Sample Applications

A few sample applications have been developed on this testbed. The first was an appli-

cation to test the sensors which lit up the LEDs on the sensor motes when the magnetometer

signal crossed threshold, leaving a trail of lights behind a moving COTSBOT carrying a

magnet. The second was an application to verify the MCMCDA MTT algorithm on a small

scale testbed before applying it to a larger outdoor testbed.

The tracking scenario was that of two crossing targets moving at constant speed. Due to

the small physical size of the network, there is a single supernode and hence no track-level

data association.1 Also, to retain enough distinct data points to form meaningful tracks on

our small testbed, we did not aggregate sensor readings.

The sensor nodes trigger a detection event when
tX

i=t−W+1

p
(xi − xi−1)2 + (yi − yi−1)2 > η, (4.1)

where t is the current detection time, xi and yi are the x and y axis magnetometer readings,

and W is the window size. We chose this detection function because of its low computa-

tion requirement and robust performance, despite a tendency for the bias to drift on the

magnetometers (see [47] for more details). We used W = 5 and η = 80 in our experiments.

We used the Minimum Transmission routing protocol [33] to route the sensor readings

back to a base station for calculations. This algorithm uses link estimation to choose routing

topologies that give good end-to-end reliability.

We performed multiple tests. The results of one is shown in Figures 4.4 and 4.5. The
1See [32] for a discussion on supernodes and track-level data association.
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t = 24.2 sec t = 25.3 sec t = 29.7 sec
Figure 4.4. (top row) Snapshots from the experiment of crossing tracks, proceeding left to right. We are

looking at the grid of nodes from the bottom right corner of the testbed. (bottom row) Corresponding tracks

found by the MCMCDA algorithm at each time step. Reporting sensor nodes are circled in red, postulated

tracks are represented by dashed lines, while established tracks are represented by red solid lines. Note that

the algorithm makes a bad association at t = 25.3 sec, but corrects for it by t = 29.7 sec.

Figure 4.5. (left) Trajectories of targets from the experiment. (right) Final established tracks from

the MCMCDA algorithm with all observations superimposed. There were some false alarms and missing

observations during our experiment, as well as nearby sensings, which were not in the sequences shown

above.

experiments showed that the algorithm performed well in the presence of false alarms and

missing detections.

The next application to develop for this testbed is a controller that uses the sensor

network readings to help steer the COTSBOT. As with most robots, it is very difficult

to accurately calibrate the steering angles on the COTSBOT and its speed, making it

difficult to steer a robot using dead reckoning. While the magnetometers provide rather
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low resolution on the position of the robot, we hope to see whether a robot can repeatedly

trace a circle using just the sensor network to sense its position. This is a critical step before

running simple pursuit-evasion games on this testbed.

4.2 Outdoor Sensor Network Testbed

The next step after verification of the MCMCDA multiple-target tracking algorithm on

the indoor testbed was to verify the MCMCDA MTT algorithm on a larger, long term, out-

door deployment which would more closely resemble the simulations in [32]. The remainder

of this chapter describes the general infrastructure and setup of the large scale testbed,

as well as how it was configured for the multiple-target tracking experiment. Chapter 5

describes the challenges and results of a large scale demonstration of the multiple-target

tracking algorithm to a live audience.

4.2.1 Background: Sensor Network Infrastructure

The outdoor testbed was deployed at the Richmond Field Station (RFS) of UC Berkeley.

The sensor network infrastructure for the RFS testbed was a composition of many research

platforms and services primarily designed by professor David Culler’s students. For details

beyond the descriptions below, see [50].

4.2.1.1 Hardware Platform

A group of computer science students designed the Trio sensor nodes used for the out-

door deployment [51]. The Trio node is a combination of two components from previous

designs: a Telos B mote [46] and a Trio sensor/power conditioning board based off of the

sensor board for the eXtreme Scaling Mote (XSM) [52] and the Prometheus solar power sys-

tem [53]. Figure 4.6 shows the components and the assembled Trio node in a weatherproof

casing.

The Telos B mote is the latest in a line of wireless sensor network platforms developed by
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Figure 4.6. (left) Telos B. (middle) Trio sensor board. (right) Assembled Trio node. On top is the

microphone, buzzer, solar panel, and user and reset buttons. On the sides are the windows for the Passive

Infrared Sensors and a USB port.

UC Berkeley and Moteiv Corporation for the Networked Embedded Systems Technology

(NEST) project. It features an 8MHz Texas Instruments MSP430 microcontroller with

10kB of RAM and 48kB of program flash and a 250kbps, 2.4GHz, IEEE 802.15.4 standard

compliant, Chipcon CC2420 radio. The Telos B mote provides lower power operation than

previous COTS (commerical off the shelf) motes (5.1 µA sleep, 19 mA on) and a radio range

of up to 125 meters, making it the ideal candidate for large-scale, long-term deployments.

The Trio sensor board includes a microphone, a piezoelectric buzzer, x-y axis magne-

tometers, and four passive infrared (PIR) motion sensors. In addition, it contains power

conditioning and solar-power charging circuitry to enable long-term deployments without

changing batteries.

4.2.1.2 Software Services

Similar to the indoor robot testbed, the software running on the sensor nodes run on

TinyOS and are written in NesC. The event detection application running on the nodes rely

on software services developed by David Culler’s students. These services include network

reprogramming [54], a set of services allowing an interactive command line environment to

quickly reconfigure parameters on the nodes [55], routing for dissemination of commands

and collection of data [56], and a multi-moded event generator for testing and detection.2

2I developed this module from a code base provided by Cory Sharp and Gilman Tolle.
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Figure 4.7. Core sensor network software services used by the event detection application for multiple-

target tracking. Other services available on the platform that were not used are not displayed. Detection-

Event can also be included in other applications as a service/module, despite its depiction here as the main

application (see Sec. 4.2.2.2).

(see Fig. 4.7). Unfortunately, due to code size limitations, the final version of the software

did not incorporate, Nucleus [56], a lightweight network management layer that allows a

user to make queries on the network status, although it was helpful during the development

cycle. A summary of the highlights of the services is given below.

The network reprogramming tool, Deluge, allows the user to disseminate program im-

ages wirelessly over the network. It also allows multiple program images to be stored in

flash memory so a reboot command can be sent over the network to switch between pro-

grams. Furthermore, Deluge provides a Golden Image slot that cannot be overwritten by a

wirelessly propagated image, allowing nodes to revert to a guaranteed correct image without

reprogramming the node should there be an operator error programming wirelessly. This

tool was used during the development and testing cycle to share the deployed network with

other users running other programs.

The command line interface for interacting with the sensor network, PyTOS, allows for

remote procedure calls (RPC), setting and querying parameters in an application (Registry

and RamSymbols), and scripting data processing and display functions for incoming data

using Python. The tool was heavily used during the experiment to quickly change event

generation modes, tune detection parameters, and check on the network status. Useful
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scripts were written to display node battery and capacitor voltages and set node locations

during development and testing.

The routing layers consist of Drip for disseminating of commands to the network and

Drain for collecting data from the network. Both protocols were written for the Nucleus

Management System and have been adopted to both send commands from PyTOS to

the network and to collect detection reports from the network. They are relatively low-

bandwidth and robust to communcation link failure, dynamically rebuilding the routing

tree as necessary.

4.2.2 Instrumenting the Multiple-Target Tracking Application

Following the setup in [32] for a hierarchical multiple-target tracking application, the

implementation consists of two main components: the event detection application on the

sensor nodes and the multiple-target tracking algorithm centralized at the basestation.

The use of “supernodes”, sensor nodes with more computational power and longer radio

ranges, to compute tracks on subregions so only track-level associations are necessary at the

basestation was not implemented. The targets to be tracked were people walking through

a field.

4.2.2.1 Sensor Characterization

For the multiple-target tracking application, Michael Manzo and I found the passive

infrared (PIR) sensors to be most effective for sensing human subjects moving through a

sensor field. We ran tests on the XSM mote before the Trio mote was ready, expecting the

same results because the XSM mote had the same sensing circuit and sensors. The acoustic

sensor is inadequate because it requires intensive signal processing and a consistent acoustic

signature from human subjects to be effective. Furthermore, the wind generates significant

noise in the acoustic signal, and our deployment location often had strong gusts of wind.

The magnetometers have difficulty detecting human subjects carrying rare earth magnets

(Five 1” diameter 0.125” thick disk magnets) and large quantities of iron (5 large crowbars)
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at distances beyond 2 meters, with weak signals for large quantities of iron even at a distance

of 1 meter.

The PIR sensors provide an effective range of approximately 8 meters, with sensitivity

varying depending on weather conditions and time of day. Unfortunately, the variability

in the signal strength of the PIR sensor reading prohibits easy extraction of ranging in-

formation from the sensor, and we were relegated to use PIR sensors as binary detectors.

Figure 4.9 shows one of the plots mapping the PIR detection rate/signal strength as a func-

tion of position relative to the sensor. Although it is difficult to see from Figure 4.9, the

configuration of the PIR sensors on the XSM and on the Trio nodes makes detection better

on the sides of the mote than on the corners.

4.2.2.2 The Event Detection Application

The event detection application consists primarily of the DetectionEvent module, a

multi-moded event generator, wired to the Drip and Drain routing services to send reports

back to the basestation. The module provides four modes of event generation – events

generated periodically by a timer, events generated by pressing a button on the mote,

events generated by the raw PIR sensor value crossing a threshold, and events generated

by a three-stage filtering, adaptive threshold, and windowing detection algorithm for PIR

sensor readings developed by the University of Virginia (UVa) [57]. The timer and user-

button generated events serve as diagnostic and testing tools to tell which nodes are alive

and running the proper program image after network reprogramming. For simplicity, no

data aggregation or in-network processing (except when using the UVa filtering algorithm) is

performed on the sensing readings. The raw sensor reading of the simple threshold detector

or a “confidence” value for the filtering and adaptive threshold detector (see [57] for details)

is included with each detection event report. See Appendix A.2 for the reference to the code

repository for this application.
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Figure 4.8. (left) Raw sensor readings experiment setup. The human target was walking and carrying 5

rare earth magnets in his pocket. (right) Raw sensor readings. (top) PIR sensor signal; (top-middle) Y-axis

magnetometer signal; (bottom-middle) X-axis magnetometer signal; (bottom) Acoustic signal. The acoustic

signal was used for ground truth. The target would shout at the PIR sensor as he was walking by.

4.2.2.3 Integration with the MCMCDA Multi-Target Tracking Algorithm

The MCMCDA multiple-target tracking algorithm used in the simulations for [32] was

implemented in MATLAB and C++. The same codebase was run in real time for the

implementation on the RFS testbed, with some modifications. The data from the sensor

network is relayed through a standard TinyOS Java application called SerialForwarder to

MATLAB. The data is then timestamped in MATLAB and stored in a matrix, which is

polled periodically by the MTT algorithm for calculations. The data in the matrix can also
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Figure 4.9. Detection rate for positions surrounding a sensor node. The detection rate is related to the

sensor signal strength. All readings were taken in a meadow with a median grass height of approximately

16 inches. The results are separated into 3 plots, one for each height of the sensor with respect to the grass

height. (This figure is best viewed in color.)

be saved for replaying the tracking scenario later and tuning the MTT algorithm. This

setup is similar to that used for the indoor robot testbed.

Two new simple visualization tools in MATLAB were developed to help test and debug

the event detection application and the integration with MATLAB. One is an oscilloscope

type of application displaying the intensity of sensor readings. The other reads in a con-

figuration file specifying node locations and displays a map of disks representing detection

reports, with color representing event type and size/line thickness representing the intensity

of the sensor reading/how recently we heard the report (Fig. 5.2 was generated from this

tool). These tools are part of the code repository referenced in Appendix A.2.

To overcome the difficulty of using the PIR sensor as a binary detector, Songhwai

developed a multi-sensor fusion algorithm to find the maximum likelihood position of a

target given sensor readings from a set of nodes using spatial correlation (see Appendix G
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for details). The fused detections are used by the MCMCDA multiple-target tracking

algorithm. Since we do not know the number of targets in advance, the fusion algorithm

can provide incorrect and inconsistent position reports to the tracking algorithm. However,

the inconsistency in position reports are later fixed by the tracking algorithm using temporal

correlation.

The next chapter describes a demonstration of the multiple-target tracking algorithm

on this testbed.
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Chapter 5

Demonstration of Multiple-Target

Tracking on Sensor Networks

On August 30, 2005, UC Berkeley had a large demonstration for the conclusion of the

Networked Embedded Systems Technology (NEST) project funded by DARPA. The project

was a collaborative effort of over 15 researchers and staff members that showcased the lat-

est state of the software and hardware technologies as well as the theoretical contributions

for modelling and designing applications to run over sensor networks (see the Acknowledge-

ments Section for the list of participants). The demonstration was held out at the Richmond

Field Station on a sunny day around 11 AM - 12 PM. The main application demonstrating

the integration of all the hardware, software services, and theory was the multiple-target

tracking demo.

5.1 Experimental Setup

The deployment on the day of the demo consisted of 557 nodes. 144 of these nodes were

sectioned off for the multiple-target tracking experiment (see Fig. 5.1). Of the 144 nodes,

6 nodes were faulty on the day of the demo (see Fig. 5.2). The nodes were approximately

placed on a 12 × 12 grid with 5 meter spacing. Their actual locations were obtained via
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Figure 5.1. Map of the main section in the Richmond Field Station deployment. The nodes in red

are mostly those that have been partitioned from the network. The nodes in green are those that have

communicated back to the base station recently. (Picture courtesy of Gilman Tolle. This figure is best

viewed in color.)

GPS1, as displayed in Figure 5.1. During the demonstration, we did not use the nodes’

actual GPS locations but instead assumed they were placed on an exact 5 meter spacing

grid. Despite this, the tracking algorithm was robust enough to accurately track the targets.

The tracking experiment was held on a short grass field, mowed down to about 3 inches

in height. Each node was elevated about 2 feet off the ground via tripods to prevent

obstruction of the PIR sensors by grass and uneven terrain. The nodes were oriented in the

same direction for maximum solar panel exposure throughout the day and for consistency

in laying out the sensing regions. See Figure 5.3 for a photo of the experiment setup.

The gateway to the sensor network was a mote connected to a personal computer,

marked by TOSBase in Figure 5.4. For the purposes of displaying the application to an

audience sitting outside the sensor field, the personal computer routed the data packets back

to a laptop near the audience via ethernet. The laptop then timestamped the returning
10.4 m accuracy at one sampled location
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Figure 5.2. Map of live sensors in the 144 node deployment for testing the multiple-target tracking

algorithm. 6 sensors were dead. (The node in the lower left hand corner is plotted incorrectly and should be

inside the field, 5 grid spaces right and 4 grid spaces up from the lower left hand corner of the deployment.)

Figure 5.3. Sensor deployment for the MTT demo. (The XSM nodes on wooden blocks and foam pads

are part of another concurrent demonstration.)

packets, ran the multi-target tracking algorithm in MATLAB, and displayed the results on

a large screen.

Due to time contraints and the complexity of the experiment, some simplifications were

made to the demonstration. Rather than use the three-stage PIR detection code provided by

the University of Virginia [57], we chose instead to use a simple threshold crossing detector.

While this meant that the threshold on the motes needed to be manually tuned every half

hour for good performance, it was simple, performed well, and was easy to diagnose if any

system parameters were set wrong. Also, the solar-powered charging system was not used
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Figure 5.4. 144-node sensor network setup for the multi-target tracking demo on August 30, 2005.

to power the nodes during the multi-target tracking demo. Instead, all the nodes were

powered via USB cables. Nonetheless, all the communication was wireless.

5.2 Experiments

Four types of tracking experiments were demonstrated: The tracking of one target, the

tracking of two crossing targets, the tracking of three crossing targets, and the tracking and

simulated pursuit of two targets. All targets were walking humans. In all four scenarios,

the tracking algorithm was successful. For an overview of the MCMCDA MTT algorithm,

see Appendix G.

In the three target tracking experiment, the targets entered the field at different times

and two targets crossed paths. This demonstrated the algorithm’s ability to dynamically es-

timate the number of targets and its ability to disambiguate targets at crossing points using

linear models of the targets’ dynamics. Also, one could see the tracking algorithm correct

previous track hypotheses as it received more detections. Furthermore, it demonstrated

that the routing protocol and infrastructure was able to deliver detection events to the

basestation with consistently low latency such that the receive-side timestamps on the data
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Figure 5.5. Estimated tracks with three people walking in the field during (left) and near the end (right)

of the experiment. Note from comparing the two displays that track hypotheses are corrected later as more

detection events arrive. Explanation of the Display : (upper left) Detection panel. Sensors are marked by

small dots and detections are shown as large disks. (lower left) Fusion panel showing the fused likelihood.

(right) Estimated Tracks panel showing the tracks estimated by MCMCDA. (This figure is best viewed in

color.)

Figure 5.6. Two targets pursued by two simulated pursuers before and after crossing paths. The pursuer-

to-evader assignment panel on the right shows the estimated evader positions as stars, their estimated tracks,

and the pursuer positions as squares. Pursuer-evader assignment pairs are denoted by matching colors. (This

figure is best viewed in color.)

packets were accurate enough for the MTT algorithm. Figure 5.5 shows the multi-target

tracking results with three people walking through the field.

In the two target simulated pursuit demo, we had two live crossing targets pursued by

two simulated pursuers. This was a demonstration of the pursuit-evasion game described

in [31]. Each pursuer was running a robust minimum-time-to-capture control law and the

pursuer-evader assignment minimized the total expected capture time, i.e. the time to

capture the last evader. The controller and the tracking algorithm were all running in real

time. The results are shown in Figure 5.6.
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Experiment Duration (sec) Number of Reporting Nodes Number of Reports
1 target 53.5 44 293
2 target 138.5 99 992
3 target 116.4 87 1001

2 target pursuit 136.5 91 819

Table 5.1. Multple Target Tracking Statistics from the Demo on 8/30/2005.

5.3 Preliminary Analysis

Although the demonstration was not instrumented to carry out careful experiments,

we were able to look at a log of the packets received at the TOSBase and extract some

information about the temporal nature of the observations coming from the sensor network.

Table 5.3 shows that in our experiments running under 2 minutes, we got on the order of

300 to 1000 packets with our simple threshold detector.

To get a better sense of the variability of the data rates over time, we made a raster

plot of the arrival of packets over time for the single target tracking demo in Figure 5.7.

Note that the data comes in bursts, though the average report rate appears to be around

10 packets a second. In the three target tracking demo, it appears that the average report

rate reachs around 20 packets a second, as shown in Figure 5.8. However, it is very clear

that at one point during the tracking experiment, there is a large spike in the number of

packets. This was observed to be the case in the other two target tracking demos as well

(See Appendix C.2 for more plots).

A reasonable conjecture is that this spike in traffic only occurs during target track

crossing. This was the case for the 2 target and 3 target tracking demos, but in the 2 target

pursuit demo the spike in traffic occured slightly after track crossing. Nonetheless, the plots

do seem to suggest that the channel goes silent shortly before the flood of reports, which

would indicate the congestion in the network is likely to be the problem. More experiments

need to be done to confirm this. We would like to timestamp at the basestation mote to

make sure that this is not because the processor on the laptop is being overloaded, forcing

MATLAB to timestamp the packets too late.
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Figure 5.7. Raster plots of reports over time by node ID, and the corresponding report rates for the single

target tracking demo. Report rates at time t are calculated from the number of reports in the window before

time t.

Note that as illustrated in the left plot in Figure 5.8, given our simple threshold detector

we often get 6, 7, or sometimes even 10 reports of a detection per node as a target walks by.

This is expected, as the PIR sensor signal is a sinusoid and we report each time it crosses

the threshold. The implementation of the multiple-target tracking algorithm handles this

by grouping together the detections from one node at a specified time interval and treating

it as one detection. A more sophisticated detection algorithm such as the 3-stage adaptive

threshold filter by the University of Virginia would quell reports from the sensor for a

period of time after detection, though figuring how long to quell reports requires some fine

tuning of the algorithm. Quelling reports also removes the redundancy of sending multiple

reports, making the reliability of the routing more critical to the performance of the tracking

algorithm.

In [58], the performance of the multiple-target tracking algorithm was analyzed in sim-

ulation with respect to sensing range, sensor localization error, transmission failure, and
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Figure 5.8. (left) Report raster plots and report rates for the three target tracking demo. (right top)
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is best viewed in color.)

communication delays. To run a similar analysis on the multiple-target tracking implemen-

tation, we would have to know the true position of the targets at each point in time. Also,

the sensing range for the sensor nodes can be emulated by raising or lowering the detection

threshold. There is no need to measure performance with respect to sensor localization

error because sensors in this experiment did not get their positions from a localization al-

gorithm, but from hand placement and an assumption that they lay on a grid. To measure

the transmission success rate while tracking targets, we need to add sequence numbers to

the detection packets. Finally, to get a sense of the latency of the network, we need to ping

the network during the tracking experiment.
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Chapter 6

Conclusion

The field of sensor networks has advanced a lot in the last few years. However, for it

to become a reliable infrastructure for high performance control systems, we must develop

better models and abstractions for treating a deployed sensor network as a whole. This

requires an iterative approach of modelling the network and extracting performance pa-

rameters for use by controllers, and then designing controllers to exploit the information in

these parameters. In the process, we will run into difficulties in modelling the network and

designing the controller (like nonconvexity) that may require us to rethink our assumptions

and approaches.

The first two chapters were attempts at integrating a sensor network connectivity pa-

rameter into an optimal control path planning framework and providing loose bounds on

a simple lifeline pursuit-evasion game played over a sensor network. The last two chapters

described the physical implementation of sensor network testbeds and a multiple-target

tracking algorithm for sensor networks to get a sense of real sensor network performance.

There are many opportunities to extend the work in these areas.

More work is needed on the modelling side for a better model of sensor network data

patterns and its relation to the physical placement of sensors and choice of routing schemes.

Furthermore, some applications may be able to exploit data aggregation and in network

processing, so their implications on a sensor network model needs to be studied as well. We
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also need to develop tighter bounds on the solutions of pursuit-evasion games over sensor

networks. For instance, assuming that the network performs everywhere only as well as

its worst point results in an overly pessimistic estimation of sensor network performance

and should be re-evaluated. Also, simple control experiments involving the indoor testbed

need to be run to understand the basic behavior of sensor networks in a control setting.

The simplest of these experiments would be to steer a robot using only the sensor network.

A multi-target tracking experiment on the outdoor testbed controlling the parameters de-

scribed at the end of Section 5.3 would help us understand the performance of an estimation

application on a large sensor network and point out characteristics that we need to model

carefully.

Once we can properly model sensor networks as a communication medium for control

applications, we can apply this knowledge to the study of distributed robotics. There, we

can consider the issues of adding mobility to the sensor nodes and navigation through a

physical environment. We will also be faced with the challenge of decomposing a controller

for decentralized computation, and studying its robustness with repect to the quality of

the communication channels. While many challenges lie ahead, the potential impact of

control over wireless sensor networks and control over wireless sensor and actuator net-

works/distributed robotics is enormous.
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Appendix A

Code

A.1 PEGSim: Simulation Code for Path Planning over Sen-

sor Networks

The relevant code can be downloaded from http://www.sourceforge.net under the

TinyOS project. It is under: tinyos-1.x/contrib/ucbRobo/tools/matlab/PEGSim

The most important code in the simulator is reproduced below.
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A.1.1 Main Simulation Loop

function PEGSimMain(SNfile,PEfile,Pctrlrfile)
% The main module for the sensor network simulator. This is a discrete
% time simulator. The main loop is structured as follows:
% 1) Check for capture... stop if capture
% 2) Increment Time
% 3) Using the position of the pursuer(s) and evader(s), check if the
% sensor network triggers any readings. Calculate the readings.
% 4) Calculate/create the packets to pass into the pursuer
% 5) Calculate the pursuer(s) policy
% 6) Calculate the evader policy
% 7) Update the change in position of the pursuer/evader using the
% vehicle dynamics and noise model
% 8) Repeat
%
% The module can plot the motion of the pursuer/evader in real time, and
% can also save the trajectory and packet reports.
%
% IMPORTANT FLAGS: ReSimFlag
% ReSimFlag determines whether to resimulate Evader Motion using old
% traces. This flag is not altered in any of the files called by
% PEGSimMain (unless it does not exist, in which case it is set to false),
% and is meant to be altered by the batch simulation script or the user.
% Note that the value of the flag (1, 2, 3, etc.) choose the control cost
% function.
% * Affected data structures are SN and E/E_precomp.
% * It is the responsibility of the user calling PEGSimMain to save
% E to Eprecomp before the resimulation
% * Remember to
% Most values are listed for easy access when debugging
global Pctrlr; % pursuer controller structure
global P; % pursuer structure
global E; % evader structure
global Eprecomp; % for resimulation
global SN; % sensor network structure
global T;
global dT;
global history;
global ReSimFlag;
if isempty(ReSimFlag)

ReSimFlag = 0;
end
Tfinal = 40;
T = 0;
dT = 0.5;
if (nargin == 3)

PEGSimInit(SNfile,PEfile,Pctrlrfile);
elseif (nargin == 2)

PEGSimInit(SNfile,PEfile);
elseif (nargin == 1)

PEGSimInit(SNfile);
else

PEGSimInit(’examples/scen21_25x25_fixedSN.mat’,...
’examples/scen21_25x25_fixedPE.mat’);

%PEGSimInit(’examples/nodes100_25x25_2.mat’); % args: SNfile, PEfile
end
while (~checkCapture) && (T < Tfinal) % args: P,E

T = T + dT;
%% Perfect Information from Sensor Network
% arrTime = T; delay = 0;
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% packets = [0 E.pos(1:2,end)’ 0 T]’; %perfect information on Epos
% rcvpkts = [arrTime ; packets];
[delay packets] = SNSim_ralpha(1); % 1 = NoDelay

% [delay packets] = SNSim_simple(1); % args: P,E,SN; output: negative delay
% means dropped packet

rcvpkts = pktQueue(delay,packets); % args: T
% plotRoute(rcvpkts);
history.delay{end+1} = delay;
history.packets{end+1} = packets;
history.rcvpkts{end+1} = rcvpkts;
%PpolicyLQG(rcvpkts); % args: P,T
PpolicyNonLinOpt(rcvpkts); % args: P,T

% Epolicy; % args: E,T; For now, no evasive action
PSimMove; % args: P,T
ESimMove; % args: E,Eprecomp,T

% plotStepMotion; % args: P,E
drawnow;
disp(sprintf(’T = %d’,T));

end
%plotSN;
plotMotion;
% IMPLEMENTATION NOTES:
% We use global variables for big data structures like P, E, SN in the
% hopes that not copying (pass by value) means it will run faster
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A.1.2 Sensor Network and Routing Generation

function SN = SNSimInit_ralpha(n,dimX,dimY,rt_num,ob_noise,...
alphaS,betaS,etaS,alphaR,betaR,etaR,nodes)

% SNSimInit_ralpha(n,dimX,dimY,rt_num,ob_noise,...
% alphaS,betaS,etaS,alphaR,betaR,etaR,nodes)
% Initializes/Generates Sensor Network Data Structures.
% Use testParams to find appropriate eta, beta, alpha’s.
% Last argument ’nodes’ is optional.
% Sensor Model
% 1) sensors sense (x,y) position
% 2) sensor detection probability: betaS/(betaS+dist^alphaS),
% truncated when p < etaS; betaS unique to each node
%
% Routing/Radio Model
% 1) Mobile-to-Mobile Routing
% 2) Assumes each sensor node knows how to route to every other sensor
% node ("ideal", not implementable)
% 3) Symmetric Links
% 4) No modeling of congestion in the sensor network.
% 5) Per Hop Probability of Transmission: betaR/(betaR+dist^alphaR),
% truncated when p < etaR; betaR unique to each node
% 6) Number of retransmissions: SN.rt_num
% 7) End-to-End transmission probability:
% Find path with maximum probability of transmission to the node
% closest to the pursuer. Then "maximize" the probability of the
% worst hop using the number of retransmissions on the worst hop
% (think binomial distribution). Assume we have SN.rt_num2
% retransmissions on the last hop.
%
% Output:
% SN.nodes k*n column matrix
% [x,y,R_s,R_r]’ % R_r is used to compute the transmission
% probability for the last hop
% SN.linkP n*n Matrix with probabilities of successful 1-hop
% transmission between two nodes.
% SN.connProb n*n Matrix with probabilities of successful end-to-end
% transmission between two nodes.
% SN.routePath n*n cell array of lists (cell array) of nodes in a
% path. Does not include first node, includes last node.
% SN.pathMat n*n Matrix with next hop neighbor when transmitting from
% node i to node j
% SN.wtMat n*n Matrix used for calculating the routePath
global SN; % sensor network structure
SN = struct; % clean out junk from before
if ~(abs(etaS) <= 1) || ~(abs(etaR) <=1) % sanity check

error(’1’,’You’’ve mixed up the arguments for SNSimInit_ralpha’);
end
SN.n = n;
SN.dimX = dimX;
SN.dimY = dimY;
SN.rt_num = rt_num;
SN.ob_noise = ob_noise;
SN.etaS = etaS; % minimum probability
SN.etaR = etaR;
SN.betaS = betaS;
SN.betaR = betaR;
SN.alphaS = alphaS;
SN.alphaR = alphaR;
SN.R_s = (betaS*(1-etaS)/etaS)^(1/alphaS); %minimum sensing radius
SN.R_r = (betaR*(1-etaR)/etaR)^(1/alphaR); %minimum transmission radius
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% good values for alpha,beta,eta: (2,1,0.4)
if (nargin < 12) % need to autogenerate nodes

SN.nodes = [SN.dimX 0 ; 0 SN.dimY] * rand(2,SN.n);
node_betaS = (betaS + rand(1,SN.n));
node_betaR = (betaR + rand(1,SN.n));
SN.nodes = [SN.nodes ;

(node_betaS.*(1-etaS)/etaS).^(1/alphaS);
(node_betaR.*(1-etaR)/etaR).^(1/alphaR);
node_betaS;
node_betaR];

else
SN.nodes = nodes;

end
tic
%% Routing
% Find 1-hop probabilities
SN.linkP = zeros(SN.n);
for i = 1:SN.n

for j = i:SN.n
d = norm(SN.nodes(1:2,i) - SN.nodes(1:2,j));
R = min(SN.nodes(4,i),SN.nodes(4,j));
bI = SN.nodes(6,i);
bJ = SN.nodes(6,j);
if (d < R)

SN.linkP(i,j) = (bI/(bI+d^SN.alphaR)+bJ/(bJ+d^SN.alphaR)) / 2;
SN.linkP(j,i) = SN.linkP(i,j);

end
end

end
% Use a variant of Floyd-Warshall algorithm to find most reliable paths
D = SN.linkP;
P = (D > 0) - eye(size(D));
P = diag(1:SN.n) * P;
for k = 1:SN.n

for i = 1:SN.n
for j = 1:SN.n

[D(i,j), swap] = max([D(i,j) D(i,k)*D(k,j)]);
if (swap == 2)

P(i,j) = P(k,j);
end % update P

end
end

end
SN.pathMat = P;
SN.wtMat = D;
SN.routePath = cell(SN.n);
for i = 1:SN.n

for j = 1:SN.n
path = [];
k = j;
while (k ~= 0 && P(i,k) ~= i)

path = [P(i,k) path];
k = P(i,k);

end
if (k == 0)

path = []; % nodes are not connected
else

path = [path j];
end
SN.routePath{i,j} = path;

end
end
% Find End-to-End routing probabilities
% This matrix will be important in Cost Function Calculations, but not
% so much for actual transmission simulation
for i = 1:SN.n
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for j = 1:SN.n
route = SN.routePath{i,j};
if isempty(route) && (i == j)

SN.connProb(i,j) = 1;
elseif isempty(route)

SN.connProb(i,j) = 0;
else

routeP = [];
for k = 1:size(route,2)-1

routeP(end+1) = SN.linkP(route(k),route(k+1));
end
maxPvec = routeP;
for k = 1:SN.rt_num % boosting minimum link

[min_p ind] = min(maxPvec);
maxPvec(ind) = 1-(1-routeP(ind))*(1-min_p);

end
SN.connProb(i,j) = prod(maxPvec);

end
end

end
time = toc;
disp(sprintf(’Routing took %.4f time to calculate’,time));
if ~isequal((SN.pathMat == 0),eye(size(SN.pathMat)))

disp(’partition exists in network’);
end
% Includes routing length from each node to itself
maxL = 0;
sumL = 0;
sumL2 = 0;
for i = 1:SN.n

for j = i:SN.n
l = length(SN.routePath{i,j});
maxL = max(l,maxL);
sumL = sumL + l;
sumL2 = sumL2 + l^2;

end
end
num = SN.n*(SN.n+1)/2;
SN.meanL = sumL/num;
SN.stdL = sqrt(sumL2/num - (SN.meanL)^2); %E[X^2] = sumL2/num
SN.maxL = maxL;
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A.1.3 Sensor Network Simulation

function [delay, packets] = SNSim_ralpha(NoDelayFlag)
% 1/(R^alpha) Sensor Network Simulator
% Runs simulation of evader detection and routing of information through
% the sensor network to the pursuer.
%
% See SNSimInit_ralpha for more details
%
% Input: global variables P, E, SN, amd T
% Output: packets k*n matrix, k is dim of fields in packet, n is number
% of packets
% [detect_sensor; x; y; send_sensor; timestamp]
% delay number of time steps until packet transmission
global P; % pursuer structure
global E; % evader structure
global SN; % sensor network structure
global T;
if (nargin < 1)

NoDelayFlag = false;
end
detected = [];
% Detection
for i = 1:E.n % this is unnecessary until we augment the dimension of E

x = E.pos(1,end);
y = E.pos(2,end);
for j = 1:SN.n
dX = x - SN.nodes(1,j);
dY = y - SN.nodes(2,j);
R_s = SN.nodes(3,j);
b = SN.nodes(5,j);
r = sqrt(dX*dX + dY*dY);
if (r < R_s) && (rand < b/(b+r^SN.alphaR))

% detection!
detected(:,end+1) = [i; j; x+randn*SN.ob_noise; y+randn*SN.ob_noise];

end
end

end
% Transmission
delay = [];
packets = [];
% For now, route everything to pursuer 1 (there’s only 1 pursuer)
x = P.pos(1,end);
y = P.pos(2,end);
A = [x - SN.nodes(1,:); y - SN.nodes(2,:)];
A(1,:) = A(1,:).*A(1,:);
A(2,:) = A(2,:).*A(2,:);
A = sqrt([1 1] * A);
[r_min closeNode] = min(A);
% step-by-step simulation of packet transmission
for i = 1:size(detected,2)
packets = [packets [detected(2:4,i) ; closeNode ; T]];
route = SN.routePath{detected(2,i),closeNode};
if (length(route) ~= 0) && (route(end) ~= closeNode) % Sanity Check

disp(’Problem with SN route generation’);
disp(sprintf(’route(end) = %d, closeNode = %d, transmit from %d’,...

route(end), closeNode, detected(2,i)));
end
if (length(route) == 0) && (detected(2,i) ~= closeNode)

delay = [delay (-1)]; % no transmission since no route
else
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ttl = SN.rt_num;
currNode = detected(2,i);
k = 1;
while (ttl > 0) && (k <= length(route))

if (rand < SN.linkP(currNode,route(k)))
currNode = route(k);
k = k+1;

end
ttl = ttl - 1;

end
if (currNode == closeNode) % handles node to itself trans as well

% same condition as k > length(route)
% last hop calculation
R_r = SN.nodes(4,closeNode);
b = SN.nodes(6,closeNode);
p_lastHop = b/(b+r_min^SN.alphaR);
while (ttl > 0) && ((r_min > R_r) || (rand > p_lastHop))

ttl = ttl - 1; % doesn’t decrement on success **
end

end %currNode == closeNode...
if (ttl > 0)

% successful transmission!
if (NoDelayFlag)

delay = [delay 0];
else

delay = [delay (SN.rt_num - ttl + 1)]; % +1 for comment ** above
end

else
% no transmission
delay = [delay (-1)];

end %ttl...
end %length(route)...

end
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A.1.4 Control Law Simulation

function PpolicyNonLinOpt(rcvpkts)
% Updates P.control based on data received through the sensor network
% Uses Nonlinear Optimization to compute the controls
global P;
global Pctrlr; % holds the state of the controller estimators, etc.
global history; % make history hold the values of the Pctrlr
global dT;
if ~isempty(rcvpkts)

[maxT maxIndices] = max(rcvpkts(6,:));
lastpkts = rcvpkts(:,maxIndices);
Epos = mean(lastpkts(3:4,:),2); % average over all received latest

% packets; can use other weighting
% later

else
Epos = [];

end
% Seed the estimated state in the controller
if Pctrlr.uninit

if ~isempty(Epos)
Pctrlr.uninit = false;
Pctrlr.E = [Epos; 0 ; 0]; %Guess 0 velocity first
Pctrlr.lastUpdate = maxT;

else
P.control = [0 ; 0]; % Don’t do anything
return;

end
else

% Kalman Filter to estimate Evader State
%Innovation Step
A_e = Pctrlr.Emodel.a;
C_e = Pctrlr.Emodel.c;
G_e = Pctrlr.Emodel.b;
Q = Pctrlr.Q;
R = Pctrlr.R;
E_vec = Pctrlr.E(:,end);
P_mat = Pctrlr.Ecov(:,:,end);
E_vec = A_e*E_vec; % x_k+1|k
P_mat = A_e*P_mat*A_e’ + G_e*Q*G_e’; %P_k+1|k
% Correction Step
if (~isempty(Epos) && Pctrlr.lastUpdate < maxT)

Pctrlr.lastUpdate = maxT;
K = P_mat*C_e’*(C_e*P_mat*C_e’ + R)^-1; % K_k+1
P_mat = P_mat - K*C_e*P_mat; % P_k+1|k+1
E_vec = E_vec + K*(Epos - C_e*E_vec); % x_k+1|k+1

end
Pctrlr.E(:,end+1) = E_vec;
Pctrlr.Ecov(:,:,end+1) = P_mat;

end
% Pursuer State, no need for Kalman Filter
Pctrlr.measPos(:,end+1) = P.pos(:,end)+randn(4,1)*P.meas_std;
% Actual Control Output Calculation Step
% Initial Guess: drive toward the predicted evader position at horizon
% directly
if isempty(Pctrlr.uHoriz)

t = Pctrlr.ch*dT;
u0 = Pctrlr.E(:,end) - Pctrlr.measPos(:,end);
u0 = 2*(u0(1:2) - u0(3:4)*t)/t^2; %a = 2(x-vt)/t^2
u0 = u0*dT;
u0 = u0 * ones(1,Pctrlr.ch); u0 = reshape(u0,[numel(u0) 1]);

else % use previous guess
u0 = [Pctrlr.uHoriz(:,end) ; zeros(2,1)];
u0 = u0(3:end);
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end
tic
options = optimset(’GradObj’,’off’);
switch(Pctrlr.ctrlChoice)

case 1
u = fminunc(@BasicCostFun,u0,options);

case 2
u = fminunc(@SumGammaCostFun,u0,options);

case 3
u = fminunc(@CovGammaCostFun,u0,options);

case 4
u = fminunc(@CovGammaOnlyCostFun,u0,options);

otherwise
%default
u = fminunc(@CovGammaCostFun,u0,options);
%u = fminunc(@BasicCostFun,u0,options);

end
toc
P.control(:,end+1) = u(1:2); %Use only first control value
Pctrlr.uHoriz(:,end+1) = u;
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A.1.5 Connectivity-Covariance Pursuit Cost Function

function J = CovGammaCostFun(u)
% NEED TO ADD GRADIENT CALC
% J = cost(Ppos-Epos) + cost(u) - trace(Cov) with weights
% Input: u nT*1 vector, n is the dimension of the control, h is the
% control time horizon. Stacked u’s, [u(:,1); u(:,2); ...]
% Ouput: Value of the cost, J & g, the gradient
%
% Uses b/(b+x^alpha) radio model.
% Works with PpolicyNonLinOpt.
global P;
global Pctrlr;
global SN; % Placeholder for the Pursuer’s estimate of the sensor network
global testT; % 0 means we are not testing, otherwise represents time.
if (~isempty(testT) && (testT ~= 0))

Epos = Pctrlr.E(:,testT);
Ppos = Pctrlr.measPos(:,testT);

else
Epos = Pctrlr.E(:,end);
Ppos = Pctrlr.measPos(:,end);

end
Gamma = [];
A_p = Pctrlr.Pmodel.a;
B = Pctrlr.Pmodel.b;
A_e = Pctrlr.Emodel.a;
C_e = Pctrlr.Emodel.c;
G_e = Pctrlr.Emodel.b;
Q = Pctrlr.Q;
R = Pctrlr.R;
P_mat = Pctrlr.Ecov(:,:,end);
J = 0;
for t = 1:Pctrlr.ph

Epos(:,end+1) = A_e*Epos(:,end);
if (t <= Pctrlr.ch)

Ppos(:,end+1) = A_p*Ppos(:,end) + B*u(2*t-1:2*t);
else

Ppos(:,end+1) = A_p*Ppos(:,end);
end
% Gamma(t) = Pctrlr.gamma(Ppos(1:2,t),Epos(1:2,t)); % If precomputed
x_p = Ppos(1,end);
y_p = Ppos(2,end);
x_e = Epos(1,end);
y_e = Epos(2,end);
% finding the closest node to the pursuer
F = - [x_p - SN.nodes(1,:); y_p - SN.nodes(2,:)];
F(1,:) = F(1,:).*F(1,:);
F(2,:) = F(2,:).*F(2,:);
F = sqrt([1 1] * F);
[r_minP closeNodeP] = min(F);
% finding the closest node to the evader
G = [x_e - SN.nodes(1,:); y_e - SN.nodes(2,:)];
G(1,:) = G(1,:).*G(1,:);
G(2,:) = G(2,:).*G(2,:);
G = sqrt([1 1] * G);
[r_minE closeNodeE] = min(G);
% Calculate the probabilities
p = SN.connProb(closeNodeP,closeNodeE);
Rp = SN.nodes(4,closeNodeP); %comm radius
if(r_minP < Rp)

b = SN.nodes(6,closeNodeP);
p_lastHop = b/(b+r_minP^SN.alphaR);
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Gamma(t) = p*(1-(1-p_lastHop^3)); %allow 3 retransmissions
else

Gamma(t) = 0;
end
% Calculate Covariance wrt Gamma
P_mat = A_e*P_mat*A_e’ + G_e*Q*G_e’; %P_k+1|k
K = P_mat*C_e’*(C_e*P_mat*C_e’ + R)^-1; % K_k+1
P_mat = P_mat - Gamma(t)*K*C_e*P_mat; % P_k+1|k+1
J = J + trace(P_mat);

end
J = Pctrlr.gWt*J;
if (~isempty(testT) && (testT ~= 0)) %DEBUG

disp(sprintf(’J from Gamma = %.2f’,J));
Gamma

end
for t = 2:Pctrlr.ph+1 %recall that Epos has 2-dim length h+1

x_diff = Epos(:,t) - Ppos(:,t);
J = J + x_diff’*Pctrlr.xWt*x_diff;

end
J = J + u’*Pctrlr.uWt*u;
if (~isempty(testT) && (testT ~= 0)) %DEBUG

disp(sprintf(’J final = %.2f’,J));
end
% IMPLEMENTATION NOTES:
% Evaluates the expected value for Gamma, the probability for receiving a
% packet, given a vector of control inputs u.
% Note that this function depends on the state of the Pursuer and the
% Estimated State of the Evader.
%
% Technically, we should compute Gamma by using NOT the closest node to the
% pursuer but the node with the best connectivity. We’ll fix this later.
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A.2 Implementation Code for Testbeds

The relevant code for both the indoor and outdoor testbed can be downloaded from

http://www.sourceforge.net under the TinyOS project.

Detailed instructions on setting up and using the indoor robot testbed is given at:

http://www.eecs.berkeley.edu/~phoebusc/330NEST/welcome.html . The code for the

indoor testbed is located under the Tinyos SourceForge code repository at: tinyos-1.x/

contrib/ucbRobo . See the README.ucbRobo file in that directory for more details. This

includes configuration/environment setup instructions, MATLAB tools, NesC libraries and

sample NesC applications.

The code for the outdoor testbed is located under the TinyOS SourceForge code repos-

itory at: tinyos-1.x/contrib/nestfe. Much of this code was written by others working

on the NEST project (See the Acknowledgements section). The MATLAB tools described

in Section 4.2.2.3 are in tinyos-1.x/contrib/nestfe/matlab . The event detection ap-

plication is under tinyos-1.x/contrib/nestfe/nesc/apps/TestDetectionEvent .

The documentation for the NEST final experiment and the outdoor testbed is given at:

http://nest.cs.berkeley.edu/nestfe/index.php/Main_Page .

The usage instructions for the event detection application are at:

http://nest.cs.berkeley.edu/nestfe/index.php/Detection_Demo#Tutorial .

The instructions for setting up the multi-target tracking application to run on

the outdoor testbed at: http://nest.cs.berkeley.edu/nestfe/index.php/Detection_

Demo#Tutorial . All of the relevant multi-target tracking code written by Songhwai Oh is

in the TinyOS SourceForge code repository under: tinyos-1.x/contrib/nestfe/matlab/

apps/TestDetectionEvent/hmttpeg .
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Appendix B

Indoor Testbed Interface Board

Schematic

The schematic below needs modifications to add the LM317 Voltage regulator to step

down the voltage feeding into the mica2dot charger board. Without the LM317, the power

circuitry on the charger board would be operating outside its specified operating range,

producing a noisy power line that affects the radio communication on the mote. This was

discovered after manufacturing the board, and was fixed by hand using wirewrap, solder,

and an exacto knife.

The modification to the board involves inserting the LM317 Voltage Regulator between

the signal EPRB power and pin 7 on the four position switch, tying the ADJ pin on the LM317

(the gate) to ground. VIN on the LM317 connects with EPRB power and VOUT connects to

the four position switch.
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Figure B.1. Indoor testbed interface board
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Appendix C

Simulation and Experiment

Figures

C.1 Simulation Results

This section contains additional plots of the simulations for Section 2.2.5.2 comparing

an LQG controller to a connectivity-convariance controller. Each set of plots is for different

starting positions of the pursuer and the evader, with the same experimental setup as

described in Section 2.2.5.2. A black line connecting a pursuer and an evader denotes capture

during that run. Note that the performance of both controllers are nearly identical. Even

changing the weights between the different terms in Eq. 2.14 yields similar performance,

though the difference in the trajectories are a little more pronounced.
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Figure C.1. Simulation results for (left) LQG controller (mean capture time = 3.44, 19/20 captured) and

(right) connectivity-covariance controller (mean capture time = 3.43, 19/20 captured). (This figure is best

viewed in color.)
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Figure C.2. Simulation results for (left) LQG controller (mean capture time = 3.85, 18/20 captured) and

(right) connectivity-covariance controller (mean capture time = 3.92, 18/20 captured). (This figure is best

viewed in color.)
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Figure C.3. Simulation results for (left) LQG controller (mean capture time = 3.47, 18/20 captured) and

(right) connectivity-covariance controller (mean capture time = 3.64, 18/20 captured). (This figure is best

viewed in color.)
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Figure C.4. Simulation results for (left) LQG controller (mean capture time = 3.91, 18/20 captured) and

(right) connectivity-covariance controller (mean capture time = 3.95, 18/20 captured). (This figure is best

viewed in color.)
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C.2 Experiment Results

This section contains additional plots for the multiple target tracking demo on 8/30/2005

described in Section 5.3.
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Figure C.5. Raster plots of reports over time by node ID, and the corresponding report rates for the two

target tracking demo. Report rates at time t are calculated from the number of reports in the window before

time t.
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Figure C.6. Raster plots of reports over time by node ID, and the corresponding report rates for the two

target pursuit demo. Report rates at time t are calculated from the number of reports in the window before

time t.
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Appendix D

Data Fusion Sensing Model

This section describes the sensing model used for simulations from [58] developed by

Songhwai Oh.

As mentioned in Section 2.1.1.1, the sensors typically used in real sensor network deploy-

ments can at best give ranging and angle information to a detection event/target. Sensors

that give ranging information based on signal strength include acoustic, magnetic, and pas-

sive infrared sensors. Thus, signal strength sensing models have been used frequently for

sensor networks [59]–[61]. Sometimes signal strength from these sensors cannot provide

good ranging estimates, and we are reduced to treating the sensors as binary sensors, as

done in Appendix G.2.

But assuming we have better sensors and more sophisticated signal processing algo-

rithms in the future, we could reduce the noise in the sensing signals. A reasonable model

for the sensor’s signal strength would be

zi =





β
1+γriα + wsi , if ri ≤ Rs
wsi , if ri > Rs

(D.1)

where ri = ‖si − x‖ and α, β, and γ are constants specific to the sensor type. Assume zi is

normalized such that wsi has the standard Gaussian distribution.

Note that this sensing model is similar to the detection probability model in Equa-

tion 2.1. Instead of using the detection probability model in Equation 2.1, we can simply
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Figure D.1. Single target position estimation error. (Monte Carlo simulation of 1000 samples; Unity

corresponds to the separation between sensors; Sensor model: α = 3, γ = 1, η = 2, and β = 3(1 + γRα
s ).)

look at when the sensor’s signal strength crosses as threshold η, where wsi introduces ran-

domness so we can speak of a detection probability.

For each i, if zi ≥ η, where η is a threshold set for appropriate detection probabilities

and false-positive probabilities, the node transmits zi to its neighboring nodes, which are

at most 2Rs away from si, and listens to incoming messages from neighboring nodes less

than 2Rs away. Note that this approach is similar to the leader election scheme in [60] and

we assume that the transmission range of each node is larger than 2Rs.

For a given node i, if zi is larger than the signal strength reported by all incoming

messages, zi1 , . . . , zik−1
, and zik = zi, then the position of the evader is estimated by node

i as

y =

∑k
j=1 zijsij∑k
j=1 zij

. (D.2)

The estimate y corresponds to computing a “center of mass” on the positions of the sensing

nodes weighted by their respective signal strengths. Then, node i transmits this observation

y up the routing tree in the sensor network. If zi is not larger than all the sensor signal

strengths reported by the incoming messages, node i just continues sensing. Although an

individual sensor cannot give an accurate estimate of a target’s position, as more sensors

collaborate, the accuracy of estimates improves as shown in Figure D.1 taken from [58].

Using thie weighted sensing model, we can approximate the linear sensing model in

Equation 2.2. We can reduce the noise covariance Qs in Equation 2.2 by increasing the
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number of collaborating sensor nodes for each detection. This can be done by using Fig-

ure D.1 to choose the appropriate Rs.
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Appendix E

Attempts to Resolve Nonconvexity

This section documents the various attempts to resolve the nonconvexity issues men-

tioned in Section 2.2.4.

Note that our control problem can be cast in the Nonlinear Model Predictive Control

(NMPC) framework, similar to [62]. In [62], the problem was to navigate a helicopter

through an “urban canyon” of buildings and obstacles to a chase a moving target. There,

the cost terms contributing to the nonconvexity of the cost function repelled the helicopter

from the obstacles. On the other hand, in our problem setup of navigating a robot through

a sensor field, the cost terms contributing to the nonconvexity of the cost function attract

the robot to local minima around certain sensors.

Good performance in the helicopter navigation problem is measured by the helicopter’s

ability to avoid crashing into obstacles. The helicopter does not get stuck in local min-

ima because as the target moved away, the cost for remaining stationary increases. Good

performance in the sensor network robot navigation problem is measured by whether the

robot could capture a target in less time than if it used a LQG controller. So the ideal path

would actually want to remain close to local minima in some scenarios, but drift away in

other scenarios. If the robot does not balance this tradeoff properly, it will operate in the

two extremes of

1. staying near a sensor node (local minima) and not chasing after the target, or
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Figure E.1. Sample probability of connectivity map for scenario on the left of Figure 2.3 using the sensor

model in Equation 2.4 without accounting for the last hop transmission probability. (This figure is best

viewed in color.)

2. chasing after the target with no regard to network connectivity, and behaving like the

LQG controller.

Coupled with the difficulty of designing a good scenario to test these controllers, as men-

tioned in Section 2.2.5.3, we see why even such a simple demonstration of incorporating

sensor network quality information into a control law is a nontrivial task.

E.1 Separation of γ to Convex Components

One attempt to sidestep the issue of nonconvexity involves separating the cost terms

into convex and nonconvex components (technically, concave and nonconcave, but we will

not make a distinction between concave and convex here). Notice that local minima exist

in the cost function because the connection probability γ drops off with distance from the

last-hop transmitting node. If we calculate γ by only considering the link probabilities

in the routing graph and ignore the last hop transmission to the pursuer, in effect only

calculating p̌path from Algorithm 2, we can remove the local minima (See Fig. E.1). Let’s

call this new function γ̂. Although we have removed the local minima (in the strict sense

where all neighbors have larger values) γ̂ has many points with a gradient of zero. Thus,

most gradient descent algorithms on γ̂ will stop whenever they reach a flat region in the

cost function, just as if they are stuck in local minima.
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Also, despite not having local minima, γ̂ is not quasiconvex. This is because the sublevel

sets of γ̂ are a union of disks, and in general are not convex. Thus, optimization methods

for quasiconvex functions will not work. (For a discussion on quasiconvex functions and

finding their optimum by reducing the problem to a series of feasibility tests, see Boyd and

Vandenberghe’s book on optimization [63].)

E.2 Lagrange Dual

Another attempt at sidestepping the issue of nonconvexity is to find an approximation

to the optimization problem by taking the Lagrange dual of Equation 2.17.

The Lagrange dual function g : Rm × Rp → R is

g(λ, ν) = inf
x∈D

L(x, λ, ν)x∈D = inf
(
f0(x) +

m∑

i=1

λifi(x) +
p∑

i=

νihi(x)
)

(E.1)

Unfortunately, it is not clear how to go about computing the Lagrange dual function

of Equations 2.16 or 2.17, because the Lagrange dual of these functions involve taking an

infimum over the control input u. u is related to the cost function through γ, which makes

writing the Lagrange dual function in closed form difficult/impossible.

E.3 Heuristics for Convex Approximations of γ

Another possible approach is to approximate γ by trying to smooth out its local minima.

One heuristic method is to take the weighted average (weight by distance) of the connectivity

probability from the three closest neighbors within transmission range. This, unfortunately,

has no guarantees that the resulting function is convex (See Fig. E.2).

Yet another approach to approximate γ with a convex function, though tricky to im-

plement, is to “draw a line between the peaks” of γ. What this means mathematically is

that at a point between two or three nodes, the connectivity is the weighted sum of the

peak connectivity of those nodes. This approach only makes sense when you consider nodes

within radio communication range of each other. An optimization routine moving up the
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Figure E.2. Connectivity map when we take the weighted average of γt from the 3 closest connected

neighbors. The “notches” in its curvature show that this is not a convex function.

gradient of such a function would have a tendency to follow the routing tree. This approx-

imation warrants some further investigation, particularly on whether the convergence rate

of gradient descent optimization algorithms on this function would be acceptable.

E.4 Alternate Formulation:

Ensuring Connectivity Above a Threshold

An alternate formulation of the problem takes advantage of the results by Bruno Sinopoli

in [25] which compute the critical connectivity probability, γc,1 for our controlled system to

remain stable.

The reformulated problem would be to find a set of controls that minimizes an

LQR/LQG objective function while satisfying the constraint of only moving through por-

tions of the network where the probability of receiving detections from the predicted future

position of the target is above γc. We are assuming here that detections are routed to all

the nodes within communication range of xp, and these nodes broadcast the detection to

the controller with a fixed number of retransmissions (for simplicity, we assume one retrans-

mission). Furthermore, we assume the communication links of all the routes fail/succeed

independently. For simplicity, we assume that only the nearest node to xe(t) detects the

target at time t and sends the detection to all nodes within communication range of xp.
1This is a switch of notation from [25] where γc was denoted as λc.
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Let ri = ‖xp − si‖, and denote the set of nodes within communication range of xp by

Nc(xp) = {i : ri ≤ Rci}. Let pconn be the connection probability between the controller

and the detecting node. The controller successfully receives a detection when it is delivered

by one of the routes with node i ∈ Nc(xp) successfully.

Let p̌ipathpi, be the probability of each route with node i. p̌ipath is the end-to-end trans-

mission success rate between the sensor nodes on the routing path and is computed via

Algorithm 2. pi is the last-hop connection probability to the pursuer, which is given by one

of the node-level communication models (Eqns. 2.3 or 2.4). Given the position of the target

and a static network layout, p̌ipath is a constant.

The constraint pconn ≥ γc becomes

∨

i∈Nc(xp)

p̌ipathpi ≥ γc (E.2)

We are dealing with “Or-ed” constraints, meaning that one of many constraints needs to be

satisfied. As pointed out by Schouwenaars et al. in [64], in general these types of constraints

do not lead to nice convex optimization formulations. Fortunately, these are probabilities so

we can rewrite condition E.2 in terms of the probability that transmission along all routes

fail:

1−
∏

i∈Nc(xp)

(1− p̌ipathpi) ≥ γc (E.3)

Although this problem formulation is not easily handled by gradient descent algorithms,

we can try to convert our nonconvex optimization problem to a geometric programming

problem. The motivation is that not all geometric programming problems are convex, but

they can be transformed into a convex optimization problem by a change of variables and

a transformation of the objective and constraint functions, as shown in [63]. Geometric

programming is described briefly below, followed by two (failed) attempts to convert the

problem into a geometric program.

In the derivations below, we make a change of variables, replacing the position of the

pursuer xp(t) with the distance of the pursuer to each neighboring node i, denoted by ri.
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Given the positions of at least three neighboring nodes and their distances to the pursuer

ri = ‖xp − si‖, we can reconstruct xp(t).

E.4.1 Geometric Programming

This section is an excerpt from [63].

One class of nonconvex optimization problems that can be converted to convex problems

are geometric programming problems. Geometric programming problems are of the form:

min f0(x) (E.4)

subject to fi(x) ≤ 1, i = 1, . . . ,m (E.5)

hi(x) = 1, i = 1, . . . , p (E.6)

where f0, . . . , fm are posynomials and h1, . . . , hp are monomials. The domain of this problem

is D = Rn++; the constraint x Â 0 is implicit.

A monomial is a function f : Rn → R with domf = Rn++, defined as

f(x) = cxa1
1 x

a2
2 · · ·xan

n (E.7)

where c ≥ 0 and ai ∈ R. Note that this is not to be confused with the standard definition

of a monomial in algebra, in which the exponents must be nonnegative integers.

A posynomial is a sum of monomials. That is

f(x) =
K∑

k=1

ckx
a1k
1 xa2k

2 · · ·xank
n (E.8)

where cj ≥ 0.

E.4.2 Geometric Programming using the Linear Communication Model

We start the derivation by assuming the linear node-level communication model pro-

posed in Equation 2.3 without a cutoff communication radius Rci for simplicity. This means

we are assuming that ri < Rci , or that all nodes are within one-hop radio communication

range of xp.
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Let pi = 1 − ri
Rci

instead of the piecewise linear function in Equation 2.3. Then Equa-

tion E.3 becomes

1−
Ns∏

i=1

(1− p̌ipathpi) ≥ γc

1−
Ns∏

i=1

(1− p̌ipath(1−
ri
Rci

)) ≥ γc

1−
Ns∏

i=1

(Ci + p̌ipath
ri
Rci

) ≥ γc where Ci = 1− p̌ipath

1− γc ≥
Ns∏

i=1

(Ci + p̌ipath
ri
Rci

)

1 ≥ 1
1− γc

Ns∏

i=1

(Ci +
p̌ipath
Rci

ri)

Note that 1
1−γc

∏Ns
i=1(Ci +

p̌i
path

Rci
ri) is a posynomial in ri, meaning this is a valid geometric

programming constraint.

Unfortunately, the full piecewise linear communication model in Equation 2.3 changes

the posynomial to
1

1− γc
∏

i∈Nc(xp)

(Ci +
p̌ipath
Rci

ri).

Because the terms in the product depend on the location of xp, this expression/constraint

changes depending on the control input! Unlike the SINR model to be discussed in Sec-

tion E.4.3, we cannot ignore the presence of a cutoff communication radius or we will be

dealing with negative probabilities for nodes outside of one-hop communication range of xp.

So in conclusion, the linear decay model does not convert nicely to a geometric program.

E.4.3 Geometric Programming using the SINR Communication Model

We assume the SINR node-level communication model in Equation 2.4. Again, we do

not use a cutoff communication radius Rci to avoid the issues encountered in Section E.4.2.

First of all,

1− p̌ipathpi = 1− p̌ipath
β

β + rαi
=

(β + rαi )− p̌ipathβ
β + rαi

=
(1− p̌ipath)β + rαi

β + rαi
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=
Ci + rαi
β + rαi

where Ci = (1− p̌ipath)β.

Using this, the constraint becomes

1−
Ns∏

i=1

(1− p̌ipathpi) ≥ γc

1−
Ns∏

i=1

Ci + rαi
β + rαi

≥ γc

1− γc ≥
Ns∏

i=1

Ci + rαi
β + rαi

(E.9)

0 ≥
Ns∏

i=1

(Ci + rαi )− (1− γc)
Ns∏

i=1

(β + rαi )

1 ≥ 1 +
Ns∏

i=1

(
(1− p̌ipath)β + rαi

)
− (1− γc)

Ns∏

i=1

(β + rαi )

1 ≥ 1 +
2Ns∑

k=1

ckr
αI(k,1)
1 r

αI(k,2)
2 r

αI(k,3)
3 . . . r

αI(k,Ns)
Ns

(E.10)

where I(k, j) =





1, if b k
2j c > 0

0, if b k
2j c = 0

and ck =
(
(1− p̌ipath)n − (1− γc)

)
βn

where n = Ns −
Ns∑

i=1

b k
2i
c

The right side of Equation E.10 is a posynomial if ck are all positive. But if all ck are

positive, then the terms are all positive and the inequality is only satisfied if all the terms

are zero. This problem cannot be converted to a geometric program. This difficultly arises

because in Equation E.9,
∏Ns
i=1(Ci + rαi ) is a posynomial and

∏Ns
i=1(β + rαi ) is a posynomial

but their quotient is not necessarily a posynomial.
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Appendix F

Background: Differential Games

F.1 Solving Pursuit-Evasion Games of Kind

This section is a summary/overview from [26] chapters 8 and 4, assuming some knowl-

edge of Games of Degree.

The Lifeline game is known as a Game of Kind, where the value of the game V is -1 for

capture or 1 for escape. Thus, the pursuer wishes to minimize the value of the game while

the evader wishes to maximize the value of the game. Although the value of the game V is

not differentiable, we can view a Game of Kind as a game embedded in another Game of

Degree with differentiable V . This V would have only a terminal cost and no integral cost.

V ≥ 0 is interpreted to mean escape while V < 0 means capture.

A solution to a Game of Kind involves finding regions in the state space guaranteeing

victory for the pursuer or the evader should they play using optimal policies. These re-

gions are known as the Escape Zone, EZ, and the Capture Zone, CZ. This involves finding

barriers S between these regions, called semipermeable surfaces or SPS. They are called

semipermeable surfaces because by the unilateral action of the evader (pursuer), the state

of the game cannot penetrate the surface in the direction favoring the pursuer (evader).
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F.1.1 Solving for the Barrier

Assume the Kinematic Equations for the game are:

ẋj = fj(x, φ, ψ) (F.1)

Finding the barrier of the game involves solving equations similar to the Main Equation

and Path Equations for a Game of Degree, but with a change of interpretation. Instead of

a derivative of the value of the game V , we use a vector v = (v1, . . . , vn) that is normal to

the barrier surface. The length of v is unimportant so long as it does not equal 0, but v

must point toward the escape zone EZ. The modified Main Equation becomes:

min
φ

max
ψ

n∑

i=1

vifi(x, φ, ψ) = 0 (F.2)

Using an argument similar to those used to derive the original Path Equations, we get:

v̇j =
∑

i

vifij where fij =
∂fi
∂xj

and the retrogressive path equations (RPE) become

x̊j = −fj(x, φ̄, ψ̄) (F.3)

v̊j =
∑

i

vifij(x, φ̄, ψ̄) (F.4)

where x̊ = dx
dτ , τ = −t, and φ̄ means the optimal control for φ (and similarly ψ̄ is the optimal

control for ψ).

The general procedure for solving Differential Games is to start from the terminal surface

of the game, C (the end conditions, where the value of the game is known), and use the

RPE to integrate backwards in time and find the value of the game throughout the state

space of the game.

The terminal surface C can usually be parameterized as an (n− 1) dimensional surface:

xi = hi(s1, . . . , sn−1) (F.5)

Note that there are parts of the terminal surface C that will never be reached under

optimal play of both players. For instance, let’s assume it is advantageous for the evader to
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avoid termination. If at points infinitesimally close to a subset of C, the evader can force

min
φ

max
ψ

n∑

i=1

vifi(x, φ, ψ) > 0 (F.6)

where v is the normal to C pointing into the playing space, then the game can never end.

These parts of C are called the nonuseable part, or NUP. Similarly, the points on C that can

be reached under optimal play are called the useable part, or UP, and the (n− 2)-manifold

separating the two regions is called the boundary of the useable part, or BUP.

We are interested in integrating backwards from the BUP to get a barrier separating

the CZ (region that reaches the UP under optimal play) from the EZ. Let’s parameterize

the BUP as

D : xi = hi(s1, . . . , sn−2) (F.7)

to get the n equations describing the initial conditions of xi. We only need n− 1 equations

describing the initial conditions of v, the normal vector to C, because the magnitude of v

does not matter. The orientation of v can be deduced from where the playing region of the

game lies with respect to C. The normality of v with respect to C requires that

∑

i

vihij = 0 for j = 1, . . . , n− 2 where hij =
∂hi
∂sj

(F.8)

This yields n−2 equations, which together with the Main Equation yields the n−1 equations

neede to describe v.

F.1.2 Finding the Optimal Control

Note that since the value of the game is binary, there is technically no notion of “optimal

control” for any points not on the barrier C. A player can delay “playing optimally” until

he comes arbitrarily close to the barrier without crossing it.

If we embed games of kind into an equivalent game of degree, then we can talk about

calculating the optimal control with respect to the value function in the game of degree.
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F.1.2.1 Equations for Games of Degree

Value Function V ∫
G(x, φ, ψ)dt+H(s) (F.9)

Main Equation

Version 1 (ME1)

min
φ

max
ψ

n∑

j=1

[Vjfj(x, φ, ψ) +G(x, φ, ψ)] = 0 (F.10)

where Vj =
∂V

∂xj

Version 2 (ME2)

∑

j

Vjfj(x, φ̄, ψ̄) +G(x, φ̄, ψ̄) = 0 (F.11)

where φ̄ = φ̄(x, Vx) and ψ̄ = ψ̄(x, Vx)

Path Equations (includes Kinematic Equations)

V̇k = −
{∑

i

Vifik(x, φ̄, ψ̄) +Gk(x, φ̄, ψ̄)

}
(F.12)

ẋk = fk(x, φ̄, ψ̄) (F.13)

where fik =
∂fi
∂xk

and Gk =
∂G

∂xk

Retrogressive Path Equations

V̊k =
∑

i

Vifik(x, φ̄, ψ̄) +Gk(x, φ̄, ψ̄) (F.14)

x̊k = −fk(x, φ̄, ψ̄) (F.15)
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F.1.2.2 Optimal Control for Games of Degree

Instead of integrating the RPE from the BUP (Eq. F.7), we integrate the RPE from

the entire terminal surface (Eq. F.5). Also, we substitute in

∂H

∂sk
=

∑

i

Vi
∂hi
∂sk

, k = 1, . . . , n− 1 (F.16)

for Equation F.8.

Integrating the RPE gives us 2n functions for xi and Vi in terms of the n arguments

τ, s1, . . . sn−1. We can then invert the first n of the functions and solve for τ and s1, . . . sn−1

in terms of xi. This can then be substituted into the second n functions for Vi, giving us

Vi(x1, . . . , xn). This can then be integrated to get V within an additive constant, which is

fixed by the known value of V on C.

Finally, we can get the optimal strategies by substituting xi and Vi into φ̄ = φ̄(x, Vx)

and ψ̄ = ψ̄(x, Vx) that accompanied ME2.

F.2 Step-by-step Solution of the Classic Lifeline Game

Continued from Section 3.1. Again, all this material is from Isaacs [26].

Taking the derivative of K given in Equation 3.4 with respect to the parameter s yields

dy1

ds
= −l sin s

dy2

ds
= 0

dx

ds
= l cos s (F.17)

We know that the normal vector v should be perpendicular to the barrier. Therefore,

v · dxds = 0 (again, x = (y1, y2, x)). This yields

−v1l sin s+ v3l cos s = 0

−v1 sin s+ v3 cos s = 0

which gives v1 = cos s, v3 = sin s (F.18)
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Given the ME in Equation 3.2, we know that the optimal controls are given by

cos φ̄ = −v1
ρ1
, sin φ̄ =

v3
ρ1

(F.19)

cos ψ̄ =
v2
ρ2
, sin ψ̄ =

v3
ρ2

(F.20)

where ρ1 =
√
v2
1 + v2

3, ρ2 =
√
v2
2 + v2

3

Therefore, an alternate form of the ME, ME2, is

−ρ1 + wρ2 = 0 (F.21)

Combining the ME2 with the values of v1 and v2 in Equation F.18 yields:

ρ1 =
√
v2
1 + v2

3 = 1

ρ2 =
1
w

=
√
v2
2 + sin2 s

v2 = ±
√

(1/w2)− sin2 s

where ± is + to make v2 point in the right direction (towards escape, the direction which

the evader wishes to maximize).

Integrating the RPE given these values for v using K as the starting condition yields

Equations 3.5. Note that in this problem, the integration is easy because v̊i = 0 and the

state variables never appear on ther right hand side of the equation.
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Appendix G

Background: MCMCDA

Multiple-Target Tracking

This section is a summary/exerpt from [58] with some additional information on multi-

sensor fusion from Songhwai Oh.

In [40], Markov chain Monte Carlo data association (MCMCDA) is presented. The

MCMCDA tracking algorithm can track an unknown number of targets in real-time and

is an approximation to the optimal Bayesian filter. It has been shown that MCMCDA

is computationally efficient compared to the multiple hypothesis tracker (MHT) [65] and

outperforms MHT under extreme conditions, such as tracking when there is a large number

of targets in a dense environment with low detection probabilities and high false alarm

rates [40].

MCMCDA has many features that make it appropriate for tracking targets using sensor

networks. Unlike some tracking algorithms like Joint Probabilistic Data Association (JPDA)

[66], MCMCDA can autonomously initiate and terminate tracks. MCMCDA is robust

against transmission failures because transmission failures are just another form of missing

observations, which is handled by the algorithm. Also, MCMCDA performs data association

using both current and past observations, so delayed observations, i.e., out-of-sequence

measurements, can be easily combined with previously received observations to improve
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the accuracy of the estimates. Furthermore, MCMCDA requires less memory than other

tracking algorithms since it maintains only the current hypothesis and the hypothesis with

the highest posterior. It does not require the enumeration of all or some of the hypotheses

as in [65], [67]. Last, the algorithm is scalable because it can be extended in a hierarchical

manner.

To our knowledge, the algorithm presented below is the first general multiple-target

tracking algorithm for sensor networks which can systematically track an unknown number

of targets in the presence of false alarms and missing observations while being robust against

transmission failures, communication delays and sensor localization error.

G.1 Multiple-Target Tracking

G.1.1 Problem Formulation

Let T ∈ Z+ be the duration of surveillance. Let K be the number of objects that appear

in the surveillance region R during the surveillance period. Each object k moves in R for

some duration [tki , t
k
f ] ⊂ [1, T ]. Notice that the exact values of K and {tki , tkf } are unknown.

Each object arises at a random position in R at tki , moves independently around R until

tkf and disappears. At each time, an existing target persists with probability 1 − pz and

disppears with probability pz. The number of objects arising at each time over R has a

Poisson distribution with a parameter λbV where λb is the birth rate of new objects per

unit time per unit volume, and V is the volume of R. The initial position of a new object

is uniformly distributed over R.

Let F k : Rnx → Rnx be the discrete-time dynamics of the object k, where nx is the

dimension of the state variable, and let xk(t) ∈ Rnx be the state of the object k at time t.

The object k moves according to

xk(t+ 1) = F k(xk(t)) + wk(t), for t = tki , t
k
i + 1 . . . , tkf − 1, (G.1)

where wk(t) ∈ Rnx are white noise processes. The white noise process is included to model
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non-rectilinear motions of targets. The noisy observation (or measurement1) of the state of

the object is measured with a detection probability pd. Notice that, with probability 1−pd,

the object is not detected and we call this a missing observation. There are also false alarms

and the number of false alarms has a Poisson distribution with a parameter λfV , where λf is

the false alarm rate per unit time per unit volume. Let n(t) be the number of observations

at time t, including both noisy observations and false alarms. Let yj(t) ∈ Rny be the j-th

observation at time t for j = 1, . . . , n(t), where ny is the dimension of each observation

vector. Each object generates a unique observation at each sampling time if it is detected.

Let Hj : Rnx → Rny be the observation model. Then the observations are generated as

follows:

yj(t) =





Hj(xk(t)) + vj(t) if j-th measurement is from xk(t)

u(t) otherwise,
(G.2)

where vj(t) ∈ Rny are white noise processes and u(t) ∼ Unif(R) is a random process for

false alarms. We assume that targets are indistinguishable in this paper, but if observations

include target type or attribute information, the state variable can be extended to include

target type information. The multiple-target tracking problem is to estimate K, {tki , tkf }
and {xk(t) : tki ≤ t ≤ tkf }, for k = 1, . . . ,K, from observations.

G.1.2 Solutions to the Multiple-Target Tracking Problem

Let y(t) = {yj(t) : j = 1, . . . , n(t)} be all measurements at time t and Y = {y(t) : 1 ≤
t ≤ T} be all measurements from t = 1 to t = T . Let Ω be a collection of partitions of Y

such that, for ω ∈ Ω,

1. ω = {τ0, τ1, . . . , τK};

2.
⋃K
k=0 τk = Y and τi ∩ τj = ∅ for i 6= j;

3. τ0 is a set of false alarms;

4. |τk ∩ y(t)| ≤ 1 for k = 1, . . . ,K and t = 1, . . . , T ; and
1Note that the terms observation and measurement are used interchangeably.
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Figure G.1. (a) An example of measurements Y (each circle represents a measurement and numbers

represent measurement times); (b) an example of a partition ω of Y (associations are indicated by dotted

lines and hollow circles are false alarms).

5. |τk| ≥ 2 for k = 1, . . . ,K.

An example of a partition is shown in Figure G.1 and ω is also known as a joint association

event in literature. Here, K is the number of tracks for the given partition ω ∈ Ω and |τk|
denotes the cardinality of the set τk. We call τk a track when there is no confusion although

the actual track is the set of estimated states from the observations τk. We assume there is

a deterministic function that returns a set of estimated states given a set of observations,

so no distinction is required. The fourth requirement says that a track can have at most

one observation at each time, but, in the case of multiple sensors with overlapping sensing

regions, we can easily relax this requirement to allow multiple observations per track. A

track is assumed to contain at least two observations since we cannot distinguish a track

with a single observation from a false alarm, assuming λf > 0. For special cases, in which

pd = 1 or λf = 0, the definition of Ω can be adjusted accordingly.

Let e(t − 1) be the number of targets from time t − 1, z(t) be the number of targets

terminated at time t and c(t) = e(t−1)−z(t) be the number of targets from time t−1 that

have not terminated at time t. Let a(t) be the number of new targets at time t, d(t) be the

number of actual target detections at time t and g(t) = c(t) + a(t)− d(t) be the number of

undetected targets. Finally, let f(t) = n(t)− d(t) be the number of false alarms. It can be

shown that the posterior of ω is:

P (ω|Y ) ∝ P (Y |ω)
T∏

t=1

pz(t)z (1− pz)c(t)p
d(t)
d (1− pd)g(t)λ

a(t)
b λ

f(t)
f (G.3)

where P (Y |ω) is the likelihood of measurements Y given ω, which can be computed based

on the chosen dynamic and measurement models.
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There are two major approaches to solving the multiple-target tracking problem [68]:

the maximum a posteriori (MAP) approach and the Bayesian (or minimum mean square

error (MMSE)) approaches. The MAP approach finds a partition of observations such that

P (ω|Y ) is maximized and estimates states of targets based on the partition which maxi-

mizes P (ω|Y ). The MMSE approach seeks the conditional expectations such as E(xkt |Y ) to

minimize the expected (square) error. However, when the number of targets is not fixed,

a unique labeling of each target is required to find E(xkt |Y ) under the MMSE approach.

In this paper, we take the MAP approach to the multiple-target tracking problem for its

convenience.

G.2 Multi-Sensor Fusion Algorithm

In order to obtain finer position reports from binary detections, we use spatial correla-

tion among detections from neighboring sensors. The idea behind the fusion algorithm is

to compute the likelihood given detections assuming there is a single target. This is an ap-

proximation since there can be more than one target. However, any inconsistencies caused

by this approximation are fixed by the tracking algorithm using temporal correlation.

For each sensor i, let Ri be the sensing region of i. Ri can be in an arbitrary shape but

we assume that it is known to the system in advance. Let yi ∈ {0, 1} be the detection made

by sensor i, such that sensor i reports yi = 1 if it detects a moving object in Ri, and yi = 0

otherwise. Let pi be the detection probability and qi be the false detection probability of

sensor i. Let x be the position of an object. For the purpose of illustration, suppose that

there are two sensors, sensor 1 and sensor 2, and R1∩R2 6= ∅ (see Fig. G.2 (a)). The overall

sensing region R1 ∪ R2 can be partitioned into a set of non-overlapping segments. The

likelihoods of points in each segment are the same and they can be computed as follows.

P (y1, y2|x ∈ S1) = py11 (1− p1)1−y1q
y2
2 (1− q2)1−y2 (G.4)

P (y1, y2|x ∈ S2) = qy11 (1− q1)1−y1py22 (1− p2)1−y2

P (y1, y2|x ∈ S3) = py11 (1− p1)1−y1p
y2
2 (1− p2)1−y2 ,
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Figure G.2. (left) Sensing regions of two sensors 1 and 2. R1 is the sensing region of sensor i and R2 is the

sensing region of sensor 2. (right) Non-overlapping partition of sensing regions from (left). S1 = R1 \ R2,

S2 = R2 \R1 and S3 = R1 ∩R2.

Figure G.3. Detections of two targets by a 10 × 10 sensor grid (targets in × (red), detections in (blue)

disks, and sensor positions in small dots).

where S1 = R1 \ R2, S2 = R2 \ R1 and S3 = R1 ∩ R2 (see Fig. G.2 (b)). Hence, for

any deployment we can first partition the surveillance region into a set of non-overlapping

segments. Then, given detection data, we can compute the likelihood of each segment as

shown in the previous example.

An example of detections of two targets by a 10×10 sensor grid is shown in Figure G.3.

In this example, the sensing region is assumed to be a disk with a radius of 7.62m (10

ft). We have assumed pi = 0.7 and qi = 0.05 for all i. From the detections shown in

Figure G.3, its likelihood can be computed efficiently as follows (see Figure G.4). First, for

each non-overlapping segment Sj , pick a point in Sj and compute its likelihood similar to

(G.4). Then assign the computed likelihood to the whole segment Sj .

There are two parts in this likelihood computation: the detection part (terms involving
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Figure G.4. Likelihood of detections from Figure G.3. (This figure is best viewed in color.)

pi) and the false detection part (terms involving qi). Hereafter, we will call the detection part

of the likelihood as the detection-likelihood and the false detection part of the likelihood as

the false-detection-likelihood. Notice that the computation of the false-detection-likelihood

requires measurements from all sensors. However, it is may not feasible for wireless sensor

network to exchange detection data with all other sensors. In order to avoid computation of

the false-detection-likelihood and distribute the likelihood computation, we use a threshold

test instead. The detection-likelihood of a segment is computed if there are at least nd

detections, where nd is a user-defined threshold. Using nd = 3, the detection-likelihood of

detections from Figure G.3 can be computed as shown in Figure G.5. The computation

of the detection-likelihood can be done in a distributed manner. Assign a set of non-

overlapping segments to each sensor such that no two sensors share the same segment

and each segment is assigned to a sensor whose sensing region includes the segment. For

each sensor i, let {Si1 , . . . , Sin(i)
} be a set of non-overlapping segments, where n(i) is the

number of segments assigned to sensor i. Then, if sensor i reports a detection, it computes

the likelihood of each segment in {Si1 , . . . , Sin(i)
} based on its report and reports from

neighboring sensors. A neighboring sensor is a sensor whose sensing region intersects the

sensing region of sensor i. Notice that no report from a sensor means no detection.
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Figure G.5. Detection-likelihood of detections from Figure G.3 with threshold nd = 3. (This figure is best

viewed in color.)

Finally, based on the detection-likelihood of detections, we compute position reports

by clustering. Let S = {S1, . . . , Sm} be a set of segments whose detection-likelihoods are

computed. First, randomly pick Sj from S and remove Sj from S. Then cluster around Sj

with the remaining segments in S whose set-distance to Sj is less than the sensing radius.

The segments clustered with Sj are then removed from S. Now repeat the procedure until

S is empty. Let {Ck : 1 ≤ k ≤ K} be the clusters formed by this procedure, where K is

the total number of clusters. For each cluster Ck, its center of mass is computed to obtain

a fused position report, i.e., estimated positions of targets. An example of position reports

are shown in Figure G.6.

G.3 Markov Chain Monte Carlo Data Association (MCM-

CDA)

This section presents an algorithm for solving the multiple-target tracking problem

described in Section G.1. We develop a Markov chain Monte Carlo (MCMC) sampler to

solve the multiple-target tracking problem.
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Figure G.6. Estimated positions of targets based on the detection-likelihood shown in Figure G.3 are

marked by black circles. (This figure is best viewed in color.)

MCMC-based algorithms play a significant role in many fields such as physics, statistics,

economics, and engineering [69]. In some cases, MCMC is the only known general algo-

rithm that finds a good approximate solution to a complex problem in polynomial time [70].

MCMC techniques have been applied to complex probability distribution integration prob-

lems, counting problems such as #P-complete problems, and combinatorial optimization

problems [69], [70].

MCMC is a general method to generate samples from a distribution π on a space Ω by

constructing a Markov chain M with states ω ∈ Ω and stationary distribution π(ω). We

now describe a MCMC algorithm known as the Metropolis-Hastings algorithm. If we are

at state ω ∈ Ω, we propose ω′ ∈ Ω following the proposal distribution q(ω, ω′). The move

is accepted with an acceptance probability A(ω, ω′) where

A(ω, ω′) = min
(

1,
π(ω′)q(ω′, ω)
π(ω)q(ω, ω′)

)
. (G.5)

Otherwise the sampler stays at ω so that the detailed balance is satisfied. If we ensure that

M is irreducible and aperiodic, M converges to its stationary distribution by the ergodic

theorem [71].

The MCMC data association (MCMCDA) algorithm is described in Algorithm 4. MCM-
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Algorithm 4 MCMCDA
Input: Y, nmc, ωinit, X : Ω→ Rm

Output: ω̂, X̂

ω = ωinit; ω̂ = ωinit; X̂ = 0

for n = 1 to nmc do

propose ω′ based on ω (see Figure G.7)

sample U from Unif[0, 1]

ω = ω′ if U < A(ω, ω′)

ω̂ = ω if p(ω|Y )/p(ω̂|Y ) > 1

X̂ = n
n+1X̂ + 1

n+1X(ω)

end for

CDA is a MCMC algorithm whose state space is the Ω described in Section G.1.2 and whose

stationary distribution is the posterior (G.3). The proposal distribution for MCMCDA con-

sists of five types of moves (a total of eight moves). They are

1. birth/death move pair;

2. split/merge move pair;

3. extension/reduction move pair;

4. track update move; and

5. track switch move.

The MCMCDA moves are graphically illustrated in Figure G.7. Each move proposes a new

joint association event ω′ which is a modification of the current joint association event ω.

For a detailed technical description of each move, see [40], [68]. The inputs for MCMCDA

are the set of observations Y , the number of samples nmc, the initial state ωinit, and a

bounded function X : Ω→ Rn. At each step of the algorithm, ω is the current state of the

Markov chain. The acceptance probability A(ω, ω′) is defined in (G.5) where π(ω) = P (ω|Y )

from (G.3). The output X̂ approximates the MMSE estimate EπX and ω̂ approximates the
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Figure G.7. Graphical illustration of MCMCDA moves (associations are indicated by dotted lines and

hollow circles are false alarms). Each move proposes a new joint association event ω′ which is a modification

of the current joint association event ω. The birth move proposes ω′ by forming a new track from the set of

false alarms ((a) → (b)). The death move proposes ω′ by combining one of the existing tracks into the set

of false alarms ((b) → (a)). The split move splits a track from ω into two tracks ((c) → (d)) while the merge

move combines two tracks in ω into a single track ((d) → (c)). The extension move extends an existing track

in ω ((e) → (f)) and the reduction move reduces an existing track in ω ((f) → (e)). The track update move

chooses a track in ω and assigns different measurements ((g) ↔ (h)). The track switch move chooses two

tracks from ω and switches measurement-to-track associations ((i) ↔ (j)).

MAP estimate arg maxP (ω|Y ). Notice that MCMCDA can provide both MAP and MMSE

solutions to the multiple-target tracking problem.

We have shown that MCMCDA is an optimal Bayesian filter in the limit, i.e., given a

bounded function X : Ω→ Rn, X̂ → EπX as nmc →∞ [68]. Also it has been shown that

MCMCDA is computationally efficient compared to MHT and under extreme conditions

outperforms MHT with heuristics such as pruning, gating, clustering, N -scan-back logic

and k-best hypotheses [68].
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