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Abstract

Theory and Practice of Non-Intrusive Active Network Measurements

by

Sridhar Machiraju

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Randy H. Katz, Chair

Today’s data networks are highly distributed and enormous in scale. The ability to measure them

is vital to both network operators and end-users. Network measurement methods can broadly be

classified intopassive methodsthat rely on data collected at routers, andactive methodsbased on

observations of actively-injected probe packets. Active measurements,the focus of this dissertation,

are attractive to end-users who, under the current network architecture, cannot access any measure-

ment data collected at routers. Network operators use active measurements because they are easy

to conduct, have low overhead and, in contrast to passive data collectionmethods, measure exactly

what normal data packets experience. The most significant disadvantage of active measurements

is the limited accuracy that has typically been achievable using them. One of the main reasons

for this is in the need to be non-intrusive, thus leaving the measured systems uninfluenced by the

observation, fundamentally affecting accuracy.

In this dissertation, we use rigorous theoretical analysis to understand theimpact of non-

intrusiveness on active measurements and investigate how this theory translates into practice. Our

investigation consists of three parts. In the first, we investigate sampling-related issues, i.e., when do

we send probe packets and why? Our starting point is conventional wisdom that says that the “Pois-

son Arrivals See Time Averages (PASTA)” principle implies the need to use Poisson probing. We

show that PASTA does not imply that Poisson probing is optimal because it ignores bias caused by

1



probing intrusiveness and estimation variance. Using rigorous theory and simulations, we motivate

rare probing, preferably at so-calledmixingepochs, as a sound practical strategy. In the second part,

we investigate if observed delays of (non-intrusive) probe pairs can be used toestimate cross-traffic

properties in the single-hop case. Our starting point is the inability of prior works [SKK03] to esti-

mate cross-traffic without hard-to-achieve timing control. We derive whatcan be estimated, in the-

ory, and show that, under a well-motivated assumption, non-intrusive probe pairs can be used to esti-

mate the entire distribution of cross-traffic in an intra-pair interval. Our third part is motivated by the

apparent difficulty in designing non-intrusive active measurements robust to multi-hop queueing ef-

fects; We experience this first-hand with our single-hop cross-traffic estimators. We show that novel

hop-dependent priority queueing primitives can be used to designMeasurement-Friendly Networks

(MFNs), networks in which accurate non-intrusive measurements, which are robust to multi-hop

queueing effects, can be performed. Our primitives not only simplify network management tasks for

network operators but are also easily deployable. In exploring MFNs, we find that nonpreemption

and cross-traffic persistence cause unavoidable inaccuracies that represent, in a sense, fundamental

limitations of active measurements.

Professor Randy H. Katz
Dissertation Committee Chair
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Chapter 1

Introduction

“One good measurement is worth a thousand expert opinions.”

- Grace Hopper, Rear Admiral in the American Navy and pioneer computer scientist.

The ability to measure computer systems is vital for a variety of functions including debug-

ging, managing, optimizing, characterizing, and forecasting. The Internet is no exception. The

scale and distributed nature of the Internet makes measurement very challenging. For instance,

most Internet traffic traverses multiple domains on the path from the source host to destination host.

Typically, these domains are controlled by different administrative entities each of which does not

share intra-domain measurements with other domains. Hence, even on a well-instrumented network

path, no single entity can accessall the available measurement information. Moreover, the scale of

most domains makes intra-domain instrumentation quite costly too. Active network measurement

techniques have been explored as solutions to these unique challenges ofthe Internet. Active mea-

surement techniques estimate network properties by analyzing the end-to-end delays and losses of

probepackets actively injected into the network. Often, probe packets can be replaced by suitably

chosen packets of ongoing data flows.

Since active measurement techniques inject additional (probe) traffic, they inevitably perturb the

system being measured. Therefore, to minimize the impact of measurements on normal data traffic

and to access properties of the unperturbed system, it is highly desirable tokeep the measurements

asnon-intrusiveas possible. However, there is typically a trade-off between non-intrusiveness and
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measurement accuracy. For instance, doubling the probing rate to estimate,say, mean end-to-end

delay on a path, improves estimation accuracy by doubling the number of samples at the cost of

increased intrusiveness (this is not true for arbitrarily high probing rates, though [Rou05]). Recently

[LRL05a] similar trade-offs between non-intrusiveness and accuracy have also been observed in

active measurement techniques to estimate available bandwidth.In this dissertation, we use rigorous

theoretical analysis to understand the impact of non-intrusiveness on active measurements and how

this theory translates into practice under real-world constraints.Thus, we not only design practical

techniques for use by end-users and network operators but also provide insights into when and why

these work, which is of interest to researchers and network modelers developing newer techniques.

Our investigation is structured around asampling-inversionviewpoint [Vei05] of active mea-

surements. This viewpoint decouples the sampling-related problems - when tosend probe packets

- from those related to inversion - how to derive the desired network property from the observa-

tions collected from probe packets. Using rigorous statistical and probability theory, we investigate

fundamental “how-to” questions that arise in the context of both sampling and inversion with non-

intrusive measurements. In the process, we find that the multi-hop nature ofnetwork paths causes

difficult challenges that are only exacerbated by the need to keep measurements as non-intrusive as

possible. This motivates us to explore network primitives that address the twinchallenges of multi-

hop paths and non-intrusiveness thereby making it possible to implement aMeasurement-Friendly

Network (MFN). Our primary focus is on unicast measurements that measure the propertiesof a

particular network path using observeddelaysof probe packets. Probe delays, along with losses,

are the basic observations that can be obtained via active measurements. Our primary focus is on

delays because they are simple, more basic (loss can be considered to be infinite delay) and have

proved to be much more useful in accessing bandwidth-related path properties.

1.1 An Example

We illustrate the various issues that typically arise using an example active measurement prob-

lem. Consider a typical unicast path similar to the one shown in Figure 1.1. The path has multiple

hops, each of which has cross-traffic traversing it. Notice that cross-traffic maypersistfor more than
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Source
Probe

Probe
Destination   

Figure 1.1. A canonical active network measurement setting. Probe packet streams (shown in red)
are sent from the source to destination along the unicast path. They share the path with cross-traffic
(dark solid arrows). The amount of cross-traffic at each hop may be different and is represented by
the different thickness of the cross-traffic arrows. Cross-traffic may persistfor more than one hop
of the path.

1 hop along the path. The cross-traffic arrival processes are, therefore, the only time-varying inputs

to the system. Knowledge of cross-traffic properties is, therefore, desirable to both end-users and

network operators. End-users can use such knowledge for estimating avariety of metrics including

available bandwidth [SKK03, JD03] and per-hop queueing delays [Dow99]. It can also be used to

make decisions on the suitability of the path for jitter-sensitive applications suchas Voice-over-IP.

Knowledge of cross-traffic properties enables network operators to understand the queueing-related

congestion at various hops, their root cause, alleviation strategies and so on.

Any technique to estimate cross-traffic properties has to use observationsof suitable probe

packet streams. Prior active measurements [Pax99, Kes95, SKK03, HS03, JD03] have used obser-

vations of delays experienced by probe packets, pairs and trains. Assume that we decide to use the

observed delays of probe packet pairs for estimating cross-traffic properties. Having decided on

estimating cross-traffic using probe pairs, we are faced with many questions. The most basic ques-

tion is the in-principle potential, i.e., what properties of cross-traffic can weexpect to access using

probe pair delays? Some prior works [SKK03] estimated the average amount of cross-traffic in an

intra-pair interval. Can we infer more, such as the entire Cumulative Distribution Function (CDF)?

Additional questions relate to how we perform in-principleinversion, i.e., specific algorithms to

access such cross-traffic properties using probe pair delays. Invariably, such inversion relies on a
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well-motivated model of the path. One common assumption [SKK03, JD04] is to model the path as

a single hop given that many Internet paths consist of a single predominant bottleneck. Since the ul-

timate goal is to estimate cross-traffic in real systems, we need to design practical techniques based

on the in-principle inversion. In this context, the questions to be addressedinclude those related to

parameter settings, model validation and performance comparison.

All of these questions relate to inversion, i.e., deriving cross-traffic properties from observed

probe pair delays. So far, we ignored how we obtain the latter. For instance, are we justified in

sending a periodic probe stream and using the delays of consecutive probes? A previous method

[SKK03] applied the “Poisson Arrivals See Time Averages” (PASTA) [Wol82] principle to send

probe pairs at Poisson epochs. They reasoned that Poisson pairs provide unbiased estimates. Is this

use of PASTA valid and/or necessary? Bias is with respect to some underlying ground truth. Since

probing perturbs the system, the ground truth is that of the perturbed system [Wol82]. What are the

implications of this especially given the need for non-intrusiveness? All theabove questions center

aroundsampling, i.e., the times at which probe packets should be sent.

1.2 The Canonical Active Network Measurement Setting

In the previous section, we used an example to illustrate the various issues that arise in designing

solutions to active measurement problems. We described them according to thesampling-inversion

viewpoint [Vei05]. In the next section, we discuss broader versions of these issues that form the

focus of this dissertation. First, in this section, we discuss preliminaries that help drive our discus-

sion. These preliminaries clarify our scope and present relevant terminology and other important

concepts such as non-intrusiveness and performance metrics.

Figure 1.1 is also the canonical setting for the measurement techniques that fall within our

scope, namely, a unicast path that often consists of multiple hops. The goalof any active mea-

surement technique is to estimate one of many possible path properties. We refer to this as the

desiredproperty. A typical desired property is the end-to-end delay that packets would experience

along the path. This is of interest to both end-users and network operators. Another property of

interest to end-users is the spare capacity also known as the available bandwidth. This is useful in
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deciding the rate at which applications may inject packets; TCP slow start [Jac88] is a rather crude

but widely-used method for such estimation. More sophisticated methods [JD03] are also known.

Per-hop characteristics such as across-hop delays [Dow99], and busy periods [HVPD04] are also of

interest especially to network operators.

As is clear from the above discussion, active measurement techniques are of interest to both

end-users (e.g., individual hosts, overlays) and network operatorsfor a variety of purposes. End-

users typically use active measurements to optimize end-to-end performance[Jac88, ABKM01]

since they have no access to performance data collected at routers. Researchers have also used

active measurements to characterize network paths [Pax99, ZDP01, HLM+04]. Though network

operators can deploy costly, high-speed passive data collection methods todebug, manage and char-

acterize their intra-domain paths, they often use active measurements as lightweight alternatives that

not only have very low deployment overhead but also directly measure what data packets experi-

ence [SBDR05]. Network operators also use active measurements to debug and characterize paths

in other domains.This is done to obtain competitive information and also to verify service level

agreements (SLAs) [JD03].

Active measurement techniques estimate the desired property by directly observing the delays

or losses that individual probe packets, pairs or trains experience. In this dissertation, our primary

focus is on using delays as theobservedproperty. We do this because delays are simple and have

proved to be more suitable for a variety of problems including bandwidth estimation. Delay is also a

more fundamental quantity because loss can be considered to be infinite delay. In our example prob-

lem earlier, the observed property was the delays of probe pairs. Additional examples of observed

properties are packet losses used by TCP slow start [Jac88] and end-to-end delays of probe trains

[JD03]. The desired and observed properties may be the same when, for example, probe delays are

used to estimate statistics of end-to-end delays [Pax99].

1.2.1 Solution Requirements

Performance of active measurement techniques is typically viewed in terms ofthe related met-

rics of accuracy, speed and overhead of estimation. Accuracy refers to minimizing estimation errors
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that may be due to fundamental limitations of the technique such as modeling errors, or practical

limitations like timing inaccuracies. Accuracy typically increases as more observations are made.

Estimation overhead, a metric that refers to the number of probe packets required for some degree

of accuracy, captures this. Speed combines overhead with the technique’s sending rate and hence,

is a metric that tells us how quickly estimation reaches some degree of accuracy. For instance, in

our example problem, the difference between the estimated and true mean cross-traffic rate would

be a suitable metric of accuracy. The number of probe pairs required to reach within, say,5% of

the true mean is the measurement overhead. The overhead divided by the specified rate of sending

probe pairs is the speed of estimation. Notice that all three metrics are related.

In an ideal world, a measurement technique would benon-intrusive, i.e., the very act of mea-

surement would not affect the system being measured. In reality, no active measurement technique

is non-intrusive since all techniques inject probe packets of non-zerosize. Nevertheless, to minimize

the impact of measurement on existing data traffic and to fulfill the goal of measuring the unper-

turbed system, it is necessary to keep measurements as non-intrusive as possible. However, there

is a fundamental trade-off between estimation performance and non-intrusiveness. This is easily

seen by our earlier observation that estimation performance usually improves with more observa-

tions; With a fixed measurement duration, more observations can be obtainedonly by increasing the

frequency of probing and hence, intrusiveness.

Intrusiveness has also been known to improve estimation robustness - a prime example being

available bandwidth estimation. Techniques to estimate available bandwidth can beclassified into

those that measure it by saturating the bottleneck and observing the resultingqueue buildups [JD03]

and those that attempt to estimate it without causing any such buildups [SKK03]. We consider the

former “fundamentally intrusive” because, unlike the latter, they intrinsically rely on causing larger

delays for normal data traffic. Indeed, these fundamentally intrusive techniques are known to be

more robust to unexpected queueing effects than the latter because the latter rely on fine-grained

timing control. Even among the fundamentally intrusive techniques, recent work [LRL05a] ob-

served that robustness improves with increased intrusiveness. We believe that, even though the

fundamentally intrusive methods can be made effectively non-intrusive byspacing out the probe

trains, it is preferable to not rely on queue buildups. Moreover, on distributed infrastructures such
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as Planetlab [Pla] that have strict rate limits, it is not possible to use the large trains of probe packets

required by the fundamentally intrusive techniques. Hence, in this dissertation, our primary fo-

cus is on measurements that are fundamentally non-intrusive and exploringthe trade-off between

performance and non-intrusiveness of such measurements.

1.3 Non-intrusive Active Network Measurements: Fundamental

Questions

In the above, we motivated the various issues that arise in designing activemeasurement tech-

niques using an example problem. In this section, we describe the broader set of questions implied

by this example. These are the key questions addressed in this dissertation.The questions in this

section are divided into three categories (see Figure 1.2). The first two categories are sampling

(how to obtain the observed property) and inversion (how to obtain the desired property from the

observed property). Recall that we encountered specific questions related to sampling and inver-

sion while discussing our example problem. The third category of questions attempt to use network

architecture design to understand how to tackle certain difficult challenges. These challenges, mo-

tivated by prior works and our investigations into sampling and inversion, relate to the multi-hop

nature of paths and non-intrusiveness.

1.3.1 Sampling

While discussing our example, we alluded to prior work [SKK03] that used the “Poisson Ar-

rivals See Time Averages (PASTA)” principle to send probe pairs at Poisson epochs. This work

argued that, by PASTA, only Poisson probing leads to unbiased estimates. In a bid to encounter

biased estimation, we conducted a simple experiment consisting of two simultaneous probe pair

streams, one of which sent the pairs periodically and the other sent them atPoisson epochs. The

intra-pair separation in both was10ms and the experiment lasted for3000s. We plot the “jitter”,

i.e., the difference between the delays of probe pairs, observed by bothstreams in Figure 1.3. The

top plot shows a (vertically staggered) long-term average and a windowed average of the jitter. The
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Figure 1.2. A schematic of the three categories of questions in non-intrusive active measurements
that we address in this dissertation. Each category impacts the other. For example, the kind of inver-
sion has an impact on the sampling strategy. As another example, fundamentallimits on sampling
may depend on the network architecture. We also summarize our specific contributions in each of
these categories.

bottom plot shows the individual samples of jitter we obtained. We make two observations - the

short-term averages were very close to each other except the portions where a large variance was

observed. Moreover, the long-term averages coincided until the firstregion with large variance and

did not match thereafter; However, the difference is only within a few hundred microseconds. Fig-

ure 1.3 raises many questions regarding the optimal sampling strategy especially the role of PASTA.

A previous more-detailed empirical study [TDDA05] of periodic and Poisson probing also raised

questions regarding the relevance of PASTA.

The above discussion motivates the following questions, answers to which allow us to decide

how we obtain (sample) the observed property in active measurements. We start with the more basic

questions and move to the more detailed questions.

• What is the measure of sampling performance, i.e., how do we compare different sampling
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Figure 1.3. Difference in Packet Pair Delays (“Jitter”) of40-byte packets sent10ms apart. (Top)
Top set of curves are (staggered) long-term averages of the jitter whilethe lower set of curves are
windowed averages of the last100 jitter values. (Bottom) A scatter plot of the individual jitter
samples.

strategies? PASTA guarantees asymptotic convergence, i.e., convergence in the limit. Given

that most measurements consist of a finite number of probes which may be onlya handful, is

asymptotic convergence the goal of a sampling strategy?

• Assuming a measure of sampling performance, what is the optimal sampling strategy?

PASTA has been used to justify Poisson probing, i.e., exponentially-distributed inter-arrival

times. The ease of generating probe packets at fixed inter-arrival times makes periodic prob-

ing a possible sampling strategy.

• Does the sampling strategy depend on the path being measured? The “memoryless” nature

of Poisson probing has been thought to its strength. What memory do, say,probes sent at

uniformly distributed inter-arrivals possess? What about periodic probes?

• Given the desirability of keeping measurements as non-intrusive as possible, how do the an-

swers to the above questions change?
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• PASTA has been applied to observe delays and losses of individual packets[Pax99, ZDP01],

pairs[SKK03], trains [LRLL04], and TCP throughput measurements [Pax99]. Can PASTA be

applied to observe any property? If not, when is PASTA applicable? Whatsampling strategies

should be followed for the other properties?

1.3.2 Inversion

Inversion is the question of “How do we obtain the desired property from the observed prop-

erty?” Broad issues related to inversion that are of interest to us are given below. As before, we start

with the basics and move to the more detailed.

• We discussed how, due to the non-zero size of probe packets, all active measurements are

intrusive. What are the implications of this when the desired and observed path properties are

the same, e.g., end-to-end delay? Can inversion be performed to remove theeffect of probe

packets?

• If the desired and observed properties are different, inversion is necessary. Such inversion is

performed, for example, by measurements that attempt to access available bandwidth using

probe delays [SKK03, JD03]. To perform such inversion, it is necessary to assume a partic-

ular system model. Most existing techniques use a single-hop model with fluid cross-traffic

[JD04]. Given the discrepancy between fluid and packet-based cross-traffic [LRLL04], how

do we model packet-based cross-traffic?

• Cross-traffic can be considered to be the only time-varying input to a unicast path. It influ-

ences delays, jitter, available bandwidth, etc. How do we access cross-traffic properties using

active measurements? In fact, what properties can we even hope to access using fundamen-

tally non-intrusive measurements? For instance, existing cross-traffic estimators [SKK03]

access the mean rate of cross-traffic using close intra-pair gaps. Can we access more, say, the

entire CDF?

• Earlier, we discussed the trade-off between non-intrusiveness and accuracy. In particular,
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existing cross-traffic estimation techniques [SKK03] require very fine-grained control over

probe timings. Is this possible in practice? Can this be relaxed?

• What are the practical implications of the answers to the above questions? For instance, what

intra-pair separation can be used and on what paths?

1.3.3 Architecture Design

In the course of investigating the above questions related to sampling and inversion we find

that it is very challenging to deal with the multi-hop nature of Internet paths especially using only

non-intrusive measurements. This finding motivates the following questions.

• Measurements of what path properties are complicated by the multi-hop natureof paths?

Clearly, end-to-end delay is easy to measure. What about per-hop delays [Dow99]?

• Are the multi-hop nature of paths and non-intrusiveness fundamentally impossible to tackle?

If yes, why? If not, can we use newer primitives to tackle these challenges?

• How can the newer primitives be used to implement Measurement-Friendly Networks

(MFNs), i.e., networks amenable to non-intrusive active measurements? Ifso, in what way

is the measurement-friendliness achieved? What path properties can be measured in such

networks? What techniques can be used to perform such measurements?

• What are the practical deployment issues with such an architecture? Is it easy to deploy them

in a single ISP? What about end-to-end?

• Are there any fundamental limitations of active measurements that cannot simplybe over-

come even in MFNs? Do they impact accuracy? By how much?

1.4 Contributions

In this dissertation, we answer the above questions as broadly as possible. In some cases,

we arrive at answers that are fairly general. In others, we use specific problems to provide new
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insights. Our primary focus is on using observations of end-to-end delay. Though many of our

results are likely applicable when the observed property is loss, we do notconcentrate on this case.

Our contributions are threefold. First, we investigate sampling-related questions and the role of

PASTA in active measurements. We find that PASTA ignores variance as well as the need to remove

the impact of probe packets. We formulate more relevant sampling strategies that can outperform

Poisson probing. Second, we develop a fairly general FIFO-based model that is useful to develop

inversion techniques to estimate bandwidth-related metrics. We use this model to explain existing

techniques and to investigate the problem of cross-traffic estimation for the single-hop case in detail.

We develop in-principle and practical techniques for the latter as well as motivate the hardness

of extending these to analyze multi-hop paths. Third, we use network architecture to understand

the potential and fundamental limits of non-intrusive active measurements especially on multi-hop

paths. Specifically, we design a novel measurement-friendly network thatmakes it very easy to

measure a variety of per-hop and per-path metrics. We now describe ourcontributions in more

detail. Figure 1.4 shows how this dissertation progresses along with the main problems and results

of each stage.

1.4.1 Sampling: The Role of PASTA

Traditionally [IPP, Pax99], the PASTA principle has been used to justify that sending probe

packets, pairs and trains at Poisson epochs is necessary as a way to obtain unbiased estimates. We

investigate whether this is justified or not assuming that inversion is only required to remove the

impact of probe packets on the system and, hence, our observations. We use the theory of Palm

calculus [BB03] to conduct our investigations in a rigorous manner. Palm calculus is ideal because

it provides a framework to study issues related to sampling queueing systems,e.g., when are “event

averages” (what a probe sees) equal to “time averages” (the underlying ground truth).

Using Palm calculus, we model the active measurement setting as a stochastic (random) system

whose evolution depends on the input processes of cross-traffic andprobing packets. This model

is quite general and includes multi-hop systems and a variety of queueing disciplines. The power

of this approach is evident once we realize that the exact nature of queueing (whether it is FIFO,
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Figure 1.4. A flow-chart representing the progression of this dissertation. We show the four stages,
the main problem we address, how we address it and our main results.

fair queueing, etc.) is irrelevant. What is required is only that the system (inparticular, the desired

property) be a deterministic function of the inputs.

In the above setting, we first consider completely non-intrusive probing achieved by sending

zero-sized probes. Clearly, this is not a practically feasible situation. However, doing so allows

us to distinguish the basic issues affecting sampling from the effects of intrusiveness on sampling.

We find that, in the zero-sized probe case, the relevant principle isNIMASTA (Non-Intrusive Mixing

Arrivals See Time Averages). This principle states that zero-sized probes see unbiased estimates

as long as they are sent at so-calledmixingepochs. The mixing property is not unique to Poisson

processes but shared by many others including any independent and identically distributed random

process. For example, probing can be optimized to minimize estimation variance.

Then, we consider probes of non-zero size in which case NIMASTA nolonger holds and the
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Figure 1.5. We plot the trends of the biases and variance, all of which together decide the optimality
of a particular probing stream. All of them increase with intrusiveness, in general. PASTA says that
sampling bias of only Poisson streams is zero. Other (mixing) probing streams have zero sampling
bias when probes are of zero size. Variance typically decreases with increasing number of probes,
for the same intrusiveness level. Note that the trends are not relative to each other. For instance,
variance may be smaller than the inversion bias.

PASTA principle becomes valid. Intuitively, this is because probe packets perturb the system and

hence, only a “memoryless” probing process such as Poisson would be “unbiased towards itself”.

But, the intrusive case is of little interest because intrusive probes only measure the perturbed system

which includes the probes. Unbiased estimates of this system’s properties are of little use in the

absence of suitable inversion techniques that recover the unperturbedsystem properties. Moreover,

to our knowledge, there is no known way to perform such inversion. Hence, simply using PASTA

without inversion is of limited use. The only alternative (known) is to choose a“sweet spot” by

sending probes at a rate that is low enough that inversion is not requiredfor practical purposes but

high enough that we can obtain good estimates within an acceptable time frame. Thus, rare probing

is the best possible strategy. We briefly discuss how rare probing shouldbe in practice.

The only advantage Poisson probes have over mixing probes is the lack ofmemory about them-

selves. This advantage is removed when, to eliminate the need for inversion,probes are made

sufficiently rare. Overall, a probing stream suffers from bias due to lack of inversion and sampling

(which is zero for Poisson). Estimation error is also caused by variance.Thus, whether to use Pois-
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son or some other probing process depends on both kinds of biases andvariance. A suitable probing

process need not be Poisson. In fact, we show via simulations that this is indeed the case. Figure 1.5

presents a simplified picture of the various biases and variance and their relation to intrusiveness.

We also show that there is no basis for sending packet pairs, trains (notindividual probe packets)

or conducting throughput measurements at Poisson epochs. Rather, in all such cases, rare probing

at mixing epochs can be used as an approximation to non-intrusive measurements. How rare prob-

ing should be and whether a particular mixing process is optimal is likely to be dependent on the

cross-traffic characteristics. Our treatment also shows why non-mixing probe streams, e.g., periodic

probes, often suffice in practice. We illustrate all these concepts and results using simulations. We

could not use real Internet experiments since that would require us to calculate “time averages”

which is impossible without very detailed models of routers.

In summary, we show that, contrary to conventional wisdom, diligent use of Poisson probing

is not necessary. However, our work also indicates that determining the optimal probe stream is

extremely hard and likely dependent on the system being measured. Hence, in practice, one of

many reasonably good probing streams can be used.

1.4.2 Inversion: Cross-traffic Estimation with Packet Pair Delays

As discussed above, rare probing eliminates the need for inversion whenthe observed and de-

sired properties are the same. Otherwise, inversion is often required. Ingeneral, a wide variety

of methods can be used for inversion. Exploring all of them is not possible. Instead, we use our

example problem to investigate the potential of probe pairs in accessing cross-traffic properties. We

make four specific contributions. First, our work illustrates how to tackle the inversion problem:

choose an appropriate setting, perform in-principle analysis that not only identifies what can be

done, but also whatcannotbe done. Then, adapt the developed theory to practice. Second, we

introduce a discrete-time FIFO-based framework that is well-suited to answer inversion questions

in data networks especially as compared to fluid-based models used in prior work [HS03]. Third,

we use this framework to introduce how we can perform identifiability analysis, i.e., what properties

we can hope to invert or not, and develop in-principle inversion methods forcross-traffic estimation
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in the single-hop case. We also motivate why it is hard to perform non-intrusive measurements on

a path with multiple hops. Fourth, we demonstrate the power of non-intrusive active measurements

by designing robust practical estimators of cross-traffic under fairly general conditions.

In-Principle Inversion

We consider a one-hop First-In First-Out (FIFO) path which is a reasonable approximation

[HVPD04, SKK03] of typical network paths. We use Lindley’s equation [BB03] from elementary

queueing theory to relate the delays of two probe packets with the traffic thatarrived to the hop

between them. This relation shows that two functionals of cross-traffic areexposed by packet pair

delays. These two functionals represent the average amount and “burstiness” of cross-traffic and

are the only properties that we canhopeto obtain. We then show that, in theory, almost the en-

tire joint distribution of these two functionals can be determined under a reasonable assumption on

cross-traffic. The portion of the joint distribution that cannot be determined depends on the size of

the probes and reflects the cost of intrusiveness. We use a novel andintuitive geometric framework

to explain how such inversion can be achieved once we recognize that certain conditional probabil-

ities involving the delays of the pair form right angles in the space defined bythe two functionals

(see Figure 1.6). Furthermore, certain portions of the joint distribution thatare dependent on the

probe sizes are hidden. We also show that, without any assumption, the system is ambiguous, i.e.,

cross-traffic processes with different joint distributions can give riseto the same packet pair delays.

Moreover, extending this theory to paths with just two hops is hard even under our assumption. We

also show how our estimators and prior methods [JD03, HS03, SKK03] can be made more robust,

by trading off non-intrusiveness, using our analysis framework.

Practical Inversion

Based on the theory we develop, we design practical estimators of averagecross-traffic in

the time between a packet pair and its joint distribution with the other functional representing the

“burstiness” of cross-traffic. We face difficult issues related to estimating CDFs, e.g., monotonicity.

We explore multiple ways in which these issues can be overcome. Using a combination of simu-
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Figure 1.6. Our investigation into the in-principle potential of packet pair methods shows that two
functionals of cross-traffic (B andC) are exposed by such delays. Their joint distribution is non-
zero in a strip of size that is equal to the separation between the pairt. A sub-strip, proportional
to the probe sizex, cannot be inverted. The rest of the probability distribution can be inverted
under a simplifying assumption. This inversion is achieved by noting that conditional probabilities
involving packet pair delays form right angles in this space (as shown).

lations, passively-collected router traces and novel active experiments, we thoroughly benchmark

our estimators. For hops with utilization higher than50%, we can estimate the entire distribution

of cross-traffic with an Mean Squared Root Error of less than0.2. Moreover, this can be done with

much larger intra-pair separation times than previous methods [SKK03] whichmakes them more

robust to noise.

1.4.3 Architecture: Measurement-Friendly Networks

The hardness of measuring multi-hop paths non-intrusively motivates us to understand whether

non-intrusiveness and the multi-hop nature can be simultaneously addressed. We turn to designing

new network primitives that would allow these twin challenges to be tackled. Thenovel network

primitives that we design are based on hop-dependent priority queueing. Specifically, we show

that probe packets that have high-priority (with respect to normal data packets) at all hops except
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a target hop essentially encounter queueing only at the target hop. This hop isolation property

allows individual hops of a multi-hop path to be measured. We also show that low-priority (with

respect to normal data packets) probes, by being transmitted only when there are no normal data

packets, intrinsically measure the queue of the normal traffic. Hence, we explore the design of a

Measurement-Friendly Network (MFN)using hop-dependent high and low priority queueing for

probe packets.

In our proposed MFN, we design a variety of active techniques to measure end-to-endand per-

hop properties such as delays, losses, cross-traffic, capacities andavailable bandwidth. Using simple

simulations, we show that these are quite accurate. However, we find that fundamental inaccuracies

arise, even in our MFN, due to nonpreemptive nature of packet forwarding as well as cross-traffic

persistence. We find that existing Differentiated Services [BBC+98] functionality can be leveraged

to deploy our architecture with minimal overhead within a single ISP. However,issues related to

allowing end-users access to high-priority forwarding makes certain aspects of our architecture

less likely to be deployed end-to-end. We discuss appropriate access control mechanism as possible

solutions. We do not face any such issues if end-users are allowed to use hop-dependent low priority

queueing.

1.5 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we discuss prior work related to our

dissertation. We survey work on active network measurements. In the context of sampling, our sur-

vey shows the pervasive use of PASTA for probe packets, pairs andtrains without much insight into

the various factors that decide the optimal sampling strategy. In the context of inversion, we show

how existing non-intrusive techniques to estimate cross-traffic invariably require very fine-grained

timing control or assume very specific cross-traffic models, thereby limiting their applicability. We

also discuss a few works that have investigated network primitives to improvemeasurement accu-

racy. We find that some of the primitives are limited in scope while the rest of themfocus on using

costly, high-overhead network primitives relying on passive data collection. We also discuss theo-
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retical work in queueing that we use, in our analysis. In Chapter 3, we describe our methodology

and the tools used in this dissertation. Chapters 4-7 form the core of this dissertation.

In Chapter 4, we examine sampling-related questions that arise in the contextof active mea-

surements. Our starting point is the often-used PASTA principle. First, we use simple illustrative

experiments to motivate why PASTA may be of limited relevance. Then, we use Palm calculus

[BB03] to derive rigorous results that provide insights into the empirically observed behavior. We

proposerare probingas a sound practical strategy.

In Chapter 5, we consider a simple one-hop path and two probe packets sent across this hop. We

develop a simple packet-based model to describe the operation of this queueand in particular, relate

the delays of the pair of probe packets. We find that two functionals of cross-traffic can possibly

be exposed by inverting probe pair delays. Then, we show that, assumingthat the delay of the first

probe is independent of the cross-traffic between the pair, almost the entire joint distribution of these

functionals can indeed be obtained. We also demonstrate two negative results. The first is without

the assumption on cross-traffic, fine-grained timing control is essential for non-intrusive inversion.

The second is our single-hop analysis cannot be extended to multiple hops.

In Chapter 6, we use our in-principle inversion technique for cross-traffic to develop practical

estimators. We encounter practical estimation issues, notably, enforcing themonotonicity of esti-

mated CDFs (cumulative distribution functions). We test our estimators using simulations, router

traces and live experiments. We find that, for utilization as low as50%, we estimated CDFs with

(root mean square) error less than0.2 using relatively large intra-pair separation times.

In Chapter 7, we investigate network primitives that guarantee non-intrusiveness and allow in-

dividual hops of a multi-hop path to be isolated. We find that it is possible to design a measurement-

friendly network though cross-traffic persistence and the absence ofpreemption cause some inac-

curacy that cannot be avoided. We present our conclusions and open questions in Chapter 8.
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Chapter 2

Related Work

“We need to haunt the house of history and listen anew to the ancestors’ wisdom.”

- Maya Angelou, American poet, author and civil rights activist.

In this chapter, we discuss prior work related to this dissertation. This includes work in active

network measurements as well as in other areas that we leverage, e.g., queueing theory. We start

with key background material on the history of active network measurementsin Section 2.1. The

rest of this chapter is organized like the dissertation. In Section 2.2, we survey how previously pro-

posed active measurements addressed sampling-related questions. In particular, we show that there

are a number of basic questions surrounding the role of the “Poisson Arrivals See Time Averages

(PASTA)” property in active measurements. In Section 2.3 we discuss the inversion techniques

that prior works have used and motivate our work in Chapters 5 and 6 by showing that existing

techniques are unsuitable for practical, non-intrusive cross-traffic estimation. In Section 2.4, we

discuss prior work on architectural proposals to improve the accuracy of active measurements. We

show that all of them inherently rely on passive data collection mechanisms. Moreover, no prior

work provides insights into the fundamental limitations of active measurements, i.e., how accurate

can active measurements be without such data collection mechanisms and why.We summarize in

Section 2.5.
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2.1 A Brief History of Active Network Measurements

Network measurements have played a key role in the evolution of the Internet.Some of the

earliest and most widely-used measurement tools leverage(d) the ICMP (Internet Control Message

Protocol) error-reporting functionality of IP networks. ICMP messagesare generated, for example,

when the Time-to-Live (TTL) of an IP packet reaches zero, a particular port on a host is unreachable

or a request to generate a “host-alive” message is sent. Mike Muuss’sping [Muu83] program was

one of the earliest tools to use ICMP. Using ICMP Echo requests, it measures the round-trip time to

a destination host. Van Jacobson’straceroute[Jac87] is another widely-used tool that sends a stream

of packets with increasing TTL values to a destination host. ICMP replies aregenerated at various

hops from the source to destination. This enables users of the tool to determine the route from the

source to destination and also, rough estimates of the round-trip times to each of the intermediate

hops.

The proliferation of the Internet led to many studies of end-to-end Internet properties such as

delay and loss. Often, these did not useping. Instead, they relied on advanced tools that sent UDP

and TCP packets of different sizes at specified times. Bolot [Bol93] conducted one of the earliest

such studies using small-sized UDP packets sent at periodic time intervals. Toperform it, Bolot used

theNetDyn[SB93] tool.NetDynhad been developed initially to debug packet forwarding problems

[SGA93]. Paxson [Pax97a, Pax97b, Pax99] performed a large-scale study of routing and packet

dynamics by deploying aNetwork Probe Daemonon various sites of the Internet. In [Pax97a], he

usedtracerouteto measure routing pathologies, stability and other miscellaneous routing character-

istics. In [Pax99], Paxson used a similar experimental setup along with100 Kilobyte TCP transfers

(instead oftraceroute). These transfers were then analyzed to study packet forwarding dynamics.

Since then, many other techniques have been proposed to measure delay,loss and various other

metrics such as capacity and available bandwidth. We discuss these in detail inSection 2.3.

Recognizing the importance of active measurements, many online websites provide access to

measurement data, tools and sometimes, even allow users to conduct live measurements. CAIDA

[CAI] provides many measurement tools, analysis engines and the results of analysis too.Tracer-

oute.org[Tra] allows users to conducttraceroutesfrom any of their servers, located in many coun-
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tries, to any target destination address. The Measurement and Network Analysis (MNA) arm of

NLANR [MNA] also provides many traces and on-demand access-controlled measurement ability.

The Internet End-to-End Performance Monitoring (IEPM) group at Stanford [IEP] provides similar

functionality for sites involved in high-energy physics research. The National Internet Measurement

Infrastructure (NIMI) [PMAM98, PAM00] initiative created a set of tools and system architecture

for deploying a distributed measurement infrastructure in which a diverseset of users can conduct

experiments in a secure manner. The Secure and Accountable Measurement Infrastructure (SAMI)

[SAM] is the successor to NIMI. Recently, a similar infrastructure, Planetlab [Pla] has also become

popular to perform wide-area experiments.

The importance of network measurements has also led to significant standardization efforts at

the Internet Engineering Task Force (IETF). Specifically, the IP Performance Metrics (IPPM) Group

at the IETF [IPP] is devoted to defining suitable performance metrics for Internet measurements

and good rule-of-thumb principles on how to collect such metrics. Currently, they have standard-

ized metrics such as one-way delay, connectivity, one-way loss, round-trip delay and packet delay

variation.

2.2 Sampling

In this section, we review prior work on sampling-related issues of active network measure-

ments, i.e., when to send probe packets. We first identify how this has been addressed in the

networking community. Then, we review recent works that have questioned whether the current

state-of-art is justified or not. Then, we review results from other fields,notably queueing theory,

from where such results have been borrowed.

2.2.1 PASTA

Early active measurements did not investigate the impact of sending probe packets at specified

times. The ease of sending periodic streams made it a natural choice. Hence, programs such asping
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used, as do their modern versions, periodic probe streams. Bolot [Bol93] also used periodic UDP

streams to study wide-area delay and loss.

Paxson [Pax97a, Pax99] was the first to explicitly address the issue of when probe packets

should be sent. Paxson applied the “Poisson Arrivals See Time Averages(PASTA)” principle of

classical queueing theory [Wol82] in the networking context. He deducedthat any active mea-

surement is best performed at Poisson epochs as a way to obtain unbiased estimates. In [Pax97a],

Paxson carried out measurements of the “routing state” in the Internet using traceroutes. Applying

PASTA, he sent thesetraceroutes so that the time intervals between consecutive measurements of

the same virtual path were exponentially distributed. In [Pax99], he appliedPASTA to initiate100

Kilobyte TCP bulk transfers by initiating them at exponential intervals. Thesebulk transfers were

used to study pathological conditions such as packet reordering as wellas characterizing loss and

link capacities.

The IP Performance Metrics (IPPM) Group at the IETF [IPP] built uponPASTA and Paxson’s

results to recommend the use of Poisson sampling, for example, in RFC2330 [PAMM98]. RFC

2330 also observes that non-Poisson probes such as uniform, geometric, additive random, or other

probes can be used for a variety of practical reasons; for example, the interval between Poisson

probes can be arbitrarily large or small, and such probes cannot be implemented in real systems.

Hence, there might be a need to use implementable and “close enough to Poisson” probes, e.g.,

truncated Poisson probes.

Since then, Poisson probing has become part of the conventional wisdomof network measure-

ments. In studying the constancy of delay, loss and throughput, Zhang, et al. [ZDP01] followed

the same methodology used by Paxson in the earlier studies mentioned above. Interestingly, they

performed TCP bulk transfers at periodic intervals rather than exponentially distributed intervals.

To perform their analysis of losses and delays, however, they used Poisson probing. Wang, et al.

[WZJ03] measured round-trip times on various Internet paths by sendingtrains of probe packets.

They used PASTA to justify the sending of these trains at Poisson epochs.

Studies on bandwidth estimation have also relied on PASTA to justify sending packet pairs and

trains at Poisson epochs. Strauss, et al. [SKK03] recommend the sending of packet pairs at Poisson

23



epochs to obtain unbiased estimates. They use these estimates to infer the mean cross-traffic rate

and available bandwidth. In rigorously analyzing available bandwidth estimation techniques based

on packet trains, Liu, et al. [LRLL04] assumed that packet trains sentat Poisson epochs guarantee

unbiased sampling. Other bandwidth estimation studies have ignored PASTA and used periodic

probe trains. Jain, et al. [JD03] sent periodic probe trains as part oftheir pathloadtool to measure

available bandwidth. The individual trains themselves were periodic.

In Chapter 4, we investigate if the extensive extensive use of PASTA in active network measure-

ments, as detailed above, is justified. We find that, for most practical purposes, PASTA is irrelevant

because it does not offer any guidance on how the effect of probe packets can be eliminated. By

considering the resulting bias and estimation variance, we find that non-Poisson probing streams

can be better than Poisson probing streams. We also show that using PASTAto justify sending

packet pairs or trains at Poisson epochs (for example, see [SKK03])is not justified.

2.2.2 Beyond PASTA

Recent work has attempted to better understand the impact of PASTA and the design of esti-

mators for active probing. Bin Tariq, et al. [TDDA05] empirically examine thedifference between

Poisson and periodic sampling, and show that, in many cases, the difference between estimates of

delay and loss obtained with Poisson and periodic probes is not significant.They also state that

PASTA may not apply to multi-hop paths since Poisson probes may not arriveas Poisson streams

at bottleneck links. It is not clear if they refer to measuring per-hop metricsor end-to-end metrics.

Our work in Chapter 4 provides the theoretical framework to clarify and rigorously understand their

observations.

Sommers, et al. [SBDR05] set out to understand the probing process best suited to measure

packet loss. They propose the use of a geometrically distributed packet pair (or packet triple) to

estimate the duration of loss periods. They find that this performs better than Poisson probes. Their

analysis is conducted in a discrete-time setting. Note that the geometric distributionis the discrete-

time equivalent of exponential distribution.

Roughan [Rou05] analyzed Poisson probing as a way to understand theimpact of correlations in
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the observed (delay) process. For analytical tractability, he used a single M/M/1 queue, i.e., Poisson

cross-traffic arrivals with packet sizes distributed exponentially too. Heused this simple one-hop

case to show that such correlations make it less attractive to increase probing rates, and negatively

impact estimator variance. Roughan’s work is similar in spirit to our work in Chapter 4 in that it is

another step towards developing estimators that take not just bias but also variance into account.

2.2.3 On PASTA-like results

We now provide a brief overview of prior works that derived PASTA and related properties.

The problem of identifying the conditions under which observations of a stochastic system coincide

with the stationary distribution of the observed process has a long history, starting with Descloux

in 1967 [Des67]. Wolff named, gave the first rigorous proof for, andpopularized the PASTA prin-

ciple [Wol82], although that principle had been investigated in prior works inless general settings

[Bru71]. Wolff considered any stochastic process which arrivals observedand interacted with. He

showed that the fraction of such arrivals that observe a particular state, e.g., number of customers in

a queueing system, asymptotically converges to the fraction of time the stochasticprocess is in that

state if the arrival process is Poisson.

Melamed and Whitt [MW90] later derived conditions for ASTA (“Arrivals that See Time Av-

erages”) to hold: first, a sufficient condition, which is essentially a weaker version of the Lack of

Anticipation Assumption used by Wolff, then a necessary and sufficient condition for stationary set-

tings. Melamed and Whitt [MW90] also derived theoretical expressions quantifying the amount of

bias as a function of the property being measured and the arrival process. A more detailed survey of

the ASTA-related queueing theory work can be found in [MY95]. Palm martingale calculus [BB03]

is a modern queueing theory framework that is especially useful to understand when event averages

equal time averages. The PASTA property is also derived in this context. We use this theory of Palm

martingale calculus in Chapter 4 to investigate the role of PASTA in active network measurements.
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2.3 Inversion

In this section, we survey the inversion-related contributions of prior works. These are the

background material for our work on theoretical and practical inversion in Chapters 5 and 6. We

start with a discussion on the packet spacing effect on store-and-forward links that is the basis

of most inversion techniques. Then, we survey capacity and available bandwidth - two specific

inversion problems that have received a lot of research attention. We end by discussing inversion

techniques to access other metrics too.

2.3.1 Packet Spacing Effect

One of the earliest requirements for active measurements arose in the context of congestion

control. In his seminal work, Jacobson [Jac88] laid the foundations of many of the mechanisms

found in TCP today. This was made necessary after the Internet, which was still in its infancy,

suffered a series of congestion collapses in1986. This was diagnosed [Jac88] as being due to the

lack of good mechanisms to determine the rate at which packets should be sentinto the network.

Jacobson used a schematic of a single slow link (representing thebottleneck) to illustrate that the

packets of a sender reach the receiver with a spacing that depends onthe bottleneck bandwidth.

Arguing that this spacing is preserved on other higher-speed links, Jacobson motivated the “self-

clocking” mechanism as a good way to ensure that congestion collapses are prevented. His analysis

is simplistic because it ignored cross-traffic packets which may be increase/decrease the inter-packet

spacing. However, the self-clocking mechanism itself is valid and is used in TCP even today.

Keshav [Kes95] analyzed the bottleneck spacing effect in more detailassuminga round-robin

scheduling discipline. Keshav proposed packet-pair based flow control schemes based on this effect.

The basic idea behind this approach was to use packet pairs to estimate theavailable bandwidthto

the flow and send data at that rate. The rate was continuously monitored andhence, dynamically

updated. Rate-based congestion control mechanisms such as NETBLT [CLZ87] also set the sending

rate (over a window of packets) to the spare capacity along the path.

The packet-pair analysis of Keshav [Kes95] is not applicable for most Internet paths, then and

now, because most links use the First-In First-Out (FIFO) scheduling discipline. Bolot [Bol93]
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applied rigorous queueing theory principles to study the inter-packet spacing on such FIFO links.

He observed that cross-traffic packets often cause the inter-probe spacing to be different from the

bottleneck bandwidth. However, a careful analysis showed that the bottleneck spacing can indeed be

extracted. Bolot used the Lindley’s equation [Kle75a, BB03] in this analysis. Later, we also use this

to understand the in-principle potential of active measurements and to designpractical cross-traffic

estimators.

These initial works on packet pairs have led to two kinds of techniques - those that estimate link

capacities and those that estimate available bandwidth. We discuss the former first.

2.3.2 Capacity Estimation

There are two kinds of capacity estimation tools. The first kind use probe packet delays. This

was pioneered by Van Jacobson in atraceroute-like tool calledpathchar[Pat97]. He proposed that

packets of different sizes that expire at the same hop be sent. Return ICMP replies from them are

used to determine the minimum delay taken by each size. If these are the true minimums, the delay

would increase linearly. Linear fitting is used to determine per-hop propagation delay and capacity.

The true minimums are estimated by sending multiple probe packets of each size thatexpire at a

hop. Downey [Dow99] performed extensive measurements withpathchar. His clink [Dow] and

pchar [Pch] are different implementations ofpathchar.

Lai, et al. [LB00] proposednettimer, which used a largetailgatingpacket to significantly reduce

the load ofpathchar-like methods. They also eliminated the requirement for ICMP replies at the

cost of destination cooperation. Pásztor, et al. [PV02a] continued on this theme and proposed the

use ofpacket quartetsto minimize multi-hop queueing effects on capacity estimation.

A second kind of capacity estimation tools estimate only the smallest capacity along apath.

Carter, et al. [CC96] proposedbprobethat used the packet pair dispersion as the narrow link ca-

pacity. However, queueing at other hops can change such dispersion. Hence, they improve the

accuracy of their estimates by employing filtering algorithms that use dispersions seen by pairs of

various sizes. Lai, et al. [LB99] used more sophisticated filtering algorithmsfor the same purpose.

Paxson [Pax99] analyzed the bulk transfer traces he collected to infer bottleneck bandwidth. He ob-
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served multiple modes of packet dispersion. Hence, he usedPacket Bunch Modes (PBM)that used

packet trains of different lengths to recognize pathological conditions such as multi-channel links.

He also used heuristics to choose an appropriate dispersion value as the dispersion representing the

narrow link capacity [Pax97b].

The multi-modal nature of dispersion was studied in more detail by Dovrolis, etal. [DRM01].

In particular, they coined the termasymptotic dispersion rate (ADR)as the most observed packet

dispersion that is different from capacity. They implemented a heuristic-driven tool for capacity

estimation,pathrate. Pásztor, et al. [PV02c] also performed an in-depth analysis of the effect of

packet probe size on capacity estimation. Recently, Kapoor, et al. [KCL+04], proposed a filtering

algorithm that picks out the smallestcombineddelay of the probe packet pair and uses it to calculate

the capacity. The rationale is that the smallest combined delay is caused when both packets do not

see any unexpected queueing except at the bottleneck hop. Their tool, based on this, is calledCap-

probe. Though based on sound principles and mostly accurate, these techniques can sometimes be

negatively affected by queueing. In Chapter 7, we show that our proposed Measurement-Friendly

Network primitives make these techniques much more robust to undesirable queueing effects. Ca-

pacity estimates obtained using them can be used in conjunction with our cross-traffic estimators in

Chapter 6 to estimate available bandwidth. Next, we discuss techniques that estimate spare capacity

along a path.

2.3.3 Bandwidth Estimation

We now discuss techniques that estimate bandwidth-related metrics that help determine the

“spare capacity” along a path. Some of the earliest such techniques werecongestion control tech-

niques. Indeed, as we discussed previously, the packet spacing effect was first described in the

context of Jacobson’s work on TCP congestion control mechanisms [Jac88]. The onset of conges-

tion, noticed when packets are dropped [Jac88], is one of the most widelyused ways by which TCP

data flows determine that they have exceeded the “spare capacity” on the link. Jain [Jai89] proposed

the use of increasing delays to make the same determination. Brakmo, et al. [BOP94] adapted this

principle to TCP and called it TCP Vegas. Given the importance of “spare capacity” in congestion

control, Mathis and Allman [MA] developed a formal definition for this metric. They called it the
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Bulk Transfer Capacity (BTC)and defined it as the sending rate determined by congestion control

algorithms as the Allman, et al. [AP99] discussed received-side techniques to improve the efficacy

of estimating BTC.

Paxson [Pax99] defined the so-calledrelative available bandwidthmetric,β. This metric cal-

culates, in a rough sense, if two consecutive packets of a probe flow had cross-traffic between them

or not. This is used to determine the metric. Ifβ is 1, then there is little cross-traffic and hence,

utilization is close to0. Otherwise, it is close to1. Though it is well-defined, relative available

bandwidth is hard to relate to available bandwidth. This led to techniques that specifically estimate

available bandwidth.

Available bandwidth is defined as the maximum rate that an end-to-end flow canobtain without

reducing the rates of existing flows [JD03]. This is different from BTC because the BTC definition

assumes that the rates of existing flows are reduced upon probing. Carter, et al. [CC96] proposed

using the dispersion of long packet trains to estimate available bandwidth. They built a tool,cprobe,

that implemented their estimation technique. Dovrolis, et al. [DRM01] used extensive simulations

to show that such dispersion is subject to not the available bandwidth but a complex function of hop

capacities and cross-traffic that they termed asymptotic dispersion rate.

Problems with interpreting packet train dispersions have led to techniques that use the same

principle as TCP Vegas [BOP94], i.e., increasing delays imply that the probing rate has saturated

the path and hence, is equal to the available bandwidth. Jain, et al. [JD03]proposed a toolpathload

that sends widely-spaced periodic trains. Using a parametric, heuristic-based algorithmpathload

determines whether the delays of a packet train are increasing or not.Pathloadestimates the avail-

able bandwidth range by iteratively sending trains with various probing rates. The tool, TOPP,

proposed by Melander, et al. [MBG00] is very similar. TOPP sends a trainconsisting of a pair of

packets. Whether or not delays are increasing is determined by observing the delays of the pairs

of packets. Pathchirp [RRB+03] is very similar, too. It sends trains in which the spacing between

packets of a train reduces exponentially. Heuristic algorithms are used to invert these delays to ob-

tain available bandwidth. Finally, Hu, et al. [HS03] proposed IGI and PTR, two similar techniques

that only look at the first and last packet of a probe train.
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All of the above methods that look for increasing delays are fundamentally intrusive because

they have to cause observable increases in queueing delays. Of course, by spacing out probe

packet trains, these are made effectively non-intrusive. In contrast,our work in Chapters 5 and

6 do not rely on queue buildups. Nevertheless, in Chapter 6, we use ourframework to describe

how these prior methods can be made robust to false positives. All these prior works used a

fluid-flow cross-traffic model of a single hop with a packet-based probing model. Recent work

[LRLL04, LRL05b, LRL05a] showed that inaccuracies can arise outof using a fluid-flow cross-

traffic model. Specifically, they showed that packet-based cross-traffic from non-bottleneck links

on a path can add noise to delay measurements. These measurements can makeavailable band-

width measurements inaccurate. The likelihood of inaccuracies is reduced when the length of trains

is increased. Thus, they show the tradeoff between effective non-intrusiveness and estimation ac-

curacy. This tradeoff arises due to the fundamental intrusiveness of such techniques especially on

paths on which more than one hop has significant queueing. Unlike us, theydo not present any new

inversion techniques.

A different set of techniques estimate available bandwidth by subtracting theestimated average

cross-traffic rate from the capacity of the bandwidth-constrained link ofthe path. The capacity itself

is determined using one of the methods we discussed earlier. Spruce [SKK03] uses the delays of

closely-sent packet pairs to estimate average cross-traffic rate. The advantage of these methods is

that they are fundamentally non-intrusive. The disadvantage is that not only are they single-hop but

they also require very tightly controlled intra-pair spacing. Hence, they are not robust to queueing at

non-bottleneck links. In Chapter 5, we develop inversion expressions that do not require such small

intra-pair spacing. We evaluate practical estimators based on them in Chapter 6. Additionally, our

estimators estimate not just the mean cross-traffic rate but also the entire distribution. Other prior

works [ANT01, RCR+00, SM98] focus on cross-traffic estimation specificallyassuminga specific

cross-traffic arrival process, e.g., multi-fractal wavelet, Poisson. Based on this assumption, they

attempt to estimate the parameters describing these processes. In contrast tothe parametric cross-

traffic estimation methods, we make a well-justified assumption that is quite generalin Chapter 5.
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2.3.4 Other Examples of Inversion

Apart from capacity and available bandwidth estimation, inversion techniques have arisen in

other contexts. Many prior works [Pax99, SBDR05, ZDP01] invert observed losses of probe packets

to derive loss characteristics of the corresponding end-to-end path. Paxson [Pax99] was among

the first to observe that droptail queueing leads to bursty, not independent, losses. Zhang, et al.

[ZDP01] studied the time durations over which loss properties are unchanging. They considered

loss episodes, their durations and loss rates. Recent work by Sommers, et al. [SBDR05] considered

techniques that rely on multiple sets of packets to better estimate loss properties.Since we do not

consider loss estimation in this dissertation, we refer the reader to [SBDR05]for a detailed review

of loss estimation techniques.

The toolpathchar[Jac97, Pat97] not only inverts the capacities of individual hops but also the

per-hop propagation delay. This is done by subtracting the delays of ICMP replies from consec-

utive hops. In doing so,pathcharassumes that the ICMP replies encounter negligible queueing.

The minimum of these per-hop delays is considered to be the propagation delay. Downey [Dow99]

considered inverting the observed ICMP round-trip times to obtain per-hopqueueing delays. The

delays from the ICMP replies provide a distribution of end-to-end delay until each hop of the path.

Downey models the distributions as lognormal and deconvolves them. The “deconvolution differ-

ence” in the distributions of delay till consecutive hops is estimated to be the distribution of per-hop

queueing delays. In Chapter 7, we show that this is not true because cross-traffic persistence can

cause an unavoidable bias in estimating per-hop metrics.

Inversion has been used for multicast-based inferences too. For instance, Tsang, et al.

[TYNB04] estimate delay variance on the shared segment from the probe source to two destina-

tions. We do not review other such techniques since we primarily focus on unicast path estimation.

Inversion techniques to estimate the scheduling discipline used have also been proposed. Kuz-

manovic, et al. [KK01] use a single-hop model to reverse-engineer the queueing discipline in a

QoS-enabled model and the parameters of the queueing discipline, e.g., weights of weighted fair

queueing. Wei, et al. [WWZ+05] proposed inversion techniques to classify the type of access links

used at the destination. The field of perturbation analysis [Gla91] addresses the question of estimat-
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ing the characteristics of an unperturbed queueing system from observations of a perturbed system.

But, the questions they answer typically assume very specific models of the system and are not

directly applicable to the Internet.

2.4 Architecture and Fundamental Limitations

As we discussed above, techniques have been proposed for estimating available bandwidth and

cross-traffic properties. Many of them are fundamentally intrusive because they rely on observing

increasing delay trends on saturating available bandwidth. Recent work by Liu, et al. [LRL05a]

showed rigorously that the burstiness of cross-traffic at other hops of a multi-hop path can impact the

accuracy of estimation. Little formal analysis has, however, been done onnon-intrusive techniques

that estimate cross-traffic properties, e.g., [SKK03]. The analysis in [LRL05a] is a step towards

understanding the potential of active measurements. However, their analysis does not provide any

insights into whatcanbe measured. Moreover, they are focused on analyzing multiple input rates

and derive asymptotic results. The potential of active measurement techniques is also faced with

tools such aspathchar [Jac97, Pat97] that estimate per-hop properties such as queueing delays.

Tariq, et al. [TDDA05], on the contrary, state that the lack of Poisson probing to a particular hop

makes it hard to estimate per-hop properties. Thus, it is not clear whether or not per-hop properties

can be estimated or not. In Chapter 7, we propose network primitives designed explicitly to make

active measurements more powerful and accurate. We find that per-hopproperties can be estimated

in our Measurement-Friendly Network architecture except for unavoidable accuracies caused by

nonpreemption and cross-traffic persistence.

Network architecture design has often be used to enable a network with better functionality.

Accurate measurements are no exception. Seshan, et al. [SSK97] proposed SPAND, a network

architecture that allows for multiple users to share information on end-to-endperformance informa-

tion. Varghese, et al. [VE03] showed how router measurements can be used to improve the efficacy

of active measurements. They showed this by designing architectures forestimating traffic matri-

ces and measuring route stability. They used per-prefix traffic counters, etc., in their architectures.

The ICMP protocol was originally an error-reporting protocol. But it has been used extensively
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in active measurements. Luckie, et al. [LMB01] explicitly designed a protocol for aiding active

measurements. Their IP Measurement Protocol (IPMP) overcomes issues related to clock precision

and drift, protocol-dependent forwarding and low overhead. To ourknowledge, no prior architec-

ture improves the efficacy of active measurements without passive data collection mechanisms. Our

Measurement-Friendly Network architecture proposed in Chapter 7 shows that this is possible - we

use hop-dependent priority queueing to better estimate per-hop and path properties non-intrusively.

2.5 Summary

We started this chapter by first discussing the historical evolution of network measurements.

Then, we discussed how previous techniques have approached the sampling-related aspects. We

discussed the conventional wisdom on using the PASTA principle as a motivation to send Poisson

probe packets, pairs and trains. The discussed prior work on PASTA motivate us to better under-

stand the role of PASTA in active measurements in Chapter 4. Then, we discussed a variety of

known inversion techniques. We divided them into those that estimate capacityestimation, spare

capacity and other metrics. In particular, we discussed prior work relatedto using probe packet

pairs. We showed that prior cross-traffic estimation techniques either assume very specific para-

metric models of cross-traffic or require tightly controlled intra-pair gaps. Moreover, the latter only

estimate the mean cross-traffic rate. Our work in Chapters 5 and 6 addresses these shortcomings by

showing how the entire cross-traffic distribution can be estimated using relatively larger intra-pair

gaps. Finally, we used prior work to demonstrate the effects of multi-hop queueing on the accuracy

of active measurements. In addition, all architectural proposals to improveaccuracy have directly

or indirectly relied on accessing more data from routers. No prior work investigates whether similar

levels of accuracy can be obtained from active measurements using network primitives that donot

rely on router data. Consequently, operators of today’s networks rarely rely on active measurements

except for simple end-to-end delay, loss and router-level information. This motivates our work in

Chapter 7 where we design novel forwarding primitives that make a network much more amenable

to active measurements. In that chapter, we also show that unavoidable inaccuracies that arise in our
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proposed architecture are often small or can be overcome. This, along with its ease of deployment,

make our architecture a practical, low-cost alternative to passive measurement infrastructures.
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Chapter 3

Methodology

“Let your intentions create your methods and not the other way around.”

- Peter McWilliams, American author.

In this chapter, we describe our methodology and the tools we used or developed to perform

our work. As discussed in Chapter 1, we investigate three aspects of active network measurements

in this dissertation. These are related to sampling, i.e., when to send probe packets, inversion,

i.e., using the observed delays to access the desired metrics and network architecture, i.e., network

primitives to improve the accuracy of active measurements. For each of these aspects, we followed

a three-pronged approach (see Figure 3.1). First, we used prior works to determine the current

state-of-art and analyzed their shortcomings. Second, we used rigorous theory, simulations and

modeling to understand how these shortcomings can be addressed. Basedon this, we developed

newer insights and techniques. Third, we used simulations and/or real experiments to fine-tune and

validate practical techniques. There was also a feed-forward mechanism in our problem selection

process, i.e., earlier parts of the dissertation influenced later parts. For instance, our investigation

of network architectures in Chapter 7 is motivated by earlier chapters, in which we encountered

challenges related to multi-hop queueing effects.

This chapter is organized as follows. In Section 3.1, we describe the theoretical concepts that

we used in this dissertation. We describe elementary probability and statistics aswell as advanced

ideas from queueing theory. In Section 3.2, we describe the various simulation frameworks that we
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Figure 3.1. A schematic of the methodology followed. For our investigation into sampling-related
aspects, inversion and network architecture, we first used prior workto motivate the target problem
and the shortcomings of existing work. For instance, our investigation in Chapter 4 is motivated by
the lack of prior work thoroughly investigating the role of PASTA. Earlier parts of the dissertation
also influenced later parts. For instance, our investigation of network architectures in Chapter 7,
to improve the accuracy of active measurements, is motivated by the challenges faced in Chapter 4
and 5 due to multi-hop queueing effects. Then, we used one or all of analysis, simulations and
modeling to understand how these shortcomings can be addressed. Finally,we evaluated our new
design/techniques. Our evaluation was performed using simulations, routertraces and/or Internet
experiments.

developed and used. These include existing simulators, modifications to them that were useful as

well as simulators that we developed from scratch. We also describe the analytical tools used to

process the data obtained via simulations. In Section 3.3, we describe the experimental setups we

used to collect traces of real Internet cross-traffic. We summarize in Section 3.4.

3.1 Theoretical Concepts

In this dissertation, we repeatedly use three elementary concepts from probability theory and

statistics [Dur96, Sto95]. We provide an overview of them now. The firstconcept is that ofinde-

pendencebetween random variables. Two random variablesX andY are defined to be independent

if

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) (3.1)
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whereA andB represent a subset of values thatX andY can respectively take. In addition, ifX

andY are independent, then the following is true.

P (X ∈ A|Y ∈ B) =
P (X ∈ A, Y ∈ B)

P (Y ∈ B)

=
P (X ∈ A)P (Y ∈ B)

P (Y ∈ B)

= P (X ∈ A) (3.2)

The first reduction is by Bayes’ theorem [Dur96] and the second by independence. We use condi-

tional probabilities and Equation 3.2 in Chapters 5 and 6. The second concept that we use is related

to that of estimation. Consider a random variable,X, that we are interested in estimating. Denote a

candidate estimator aŝX. Then, thebiasof the estimator isE[X̂ −X]. Every sampleX̂ −X need

not differ by the bias since the latter is only the expectation of the difference. In other words, the

estimated quantity may exhibitvariance. The third concept that we use is that of estimation error.

As explained above, bias and variance represent two ways of quantifying error. A common way of

combining both of them is to use the Mean Square Error (MSE) defined as theE[(X̂ −X)2] which

is also equal tobias2 + variance. The square root of MSE is called the Root Mean Square Error

(RMSE). We use MSE and/or RMSE to quantify performance of estimators.

In Chapter 4, we use Palm Martingale Calculus [BB03] to study sampling-related questions.

Palm calculus is ideal because it answers questions of interest to us, namely, those relating event

averages and time averages in queueing theory. In the active measurement framework, the former

represent what probing sees and the latter represent the underlyingground truth. Using suitable

abstract frameworks and ergodic theory [Pet83], Palm calculus answers such questions.

3.2 Simulations

As always, simulations are a natural way to study the properties of a systemusing an appropriate

model. The inputs and model can be controlled as necessary and any property can potentially be

measured. This helps us understand the fundamental effects in play and tofine-tune parametric

settings. We now describe two simulators that we used and a novel data analysis tool that we

needed for our investigation.
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3.2.1 qsim: A Queueing Simulator

The widely-accepted model of a network path is that it is a queueing system. The First-in

First-out (FIFO) queueing discipline is used predominantly though some access networks use other

disciplines [LPP04, WWZ+05]. The FIFO nature of widely-deployed routers is also validated in

[HVPD04]. Hence, we builtqsim, a tool that simulates a queue or a network of FIFO queues. Since

qsimis not packet-based, it is computationally very efficient.

qsim leveraged the code of a more rudimentary queueing simulatorpsim[P0́1]. The inputs to

qsimare a description of the propagation delays and capacities of various hops along a path. The

cross-traffic arrival processes at each link are specified either using a trace-file or by specifying

specific arrival processes, e.g., Pareto. The probing stream can also be similarly specified and flows

from the first hop to the last hop. The output is configurable in the sense that the arrival and departure

times of each packet stream (cross-traffic and probing) at every hopcan either be captured or not.

qsimworks in stages, each stage considering a single probe packet. At the end of each stage, the

“hop time” is advanced to the arrival time of that stage’s probe packet at that hop. This is done by

considering, in order of arrival, cross-traffic packets. One variable is maintained for each hop, the

time at which the queue (of that hop) would empty if there is no additional cross-traffic. This is used

to calculate the queue size and departure time of the next cross-traffic packet. Suitable variables are

updated and the process is continued for all cross-traffic packets. The output generated includes

packet arrivals and departure times.

Our C implementation ofqsim was done in about2000 lines of code. We used aMatlab

implementation ofqsimfor a single-hop path too.1 Our implementations allowed cross-traffic inter-

arrivals and packet sizes to be generated according to a variety of random processes including ex-

ponential, uniform, constant and Pareto distributions.

3.2.2 ns-2

To generate realistic traffic comprising of TCP flows, web traffic, etc., we also found it necessary

to use a more functional simulator. Our choice was the well-known packet-level simulator,ns-2

1We owe thanks to Darryl Veitch for writing this code
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[Sim]. ns-2 is event-driven and implemented usingC++ andOTcl. The latter provides scripting

functionality to easily invokens-2, the core of which is written inC++.

An ns-2simulation is invoked using anOTcl file that specifies the topology, the capacities and

propagation delays of the various hops and the flows traversing them. Pre-defined flows include

many variants of TCP, UDP-based flows (with inter-arrival times that belong to one of many distri-

butions) and web traffic. Simulations can be configured to collect traces ofpackets traversing any

hop.

The scheduling discipline used at each hop is FIFO, by default. In designing measurement-

friendly networks, we required the use of priority queueing. Priority queueing is implemented in

the Diffserv [BBC+98] modules ofns-2. These modules provide4 queues at each hop, with traffic

being classified into a queue based on its Diffserv codepoint [BBC+98]. The classification scheme

at each hop can be different thereby allowing us to simulate hop-dependent priorities.

We also had to modifyns-2 to accept packet sizes of zero. The modification was minor and

required a few lines of code. This was required to study hypothetical active measurement scenarios

involving probe packets of zero size. Such hypothetical scenarios were studied to understand the

role of intrusiveness with respect to sampling bias in Chapter 4.

3.2.3 Ground Truth Calculator (GTC)

Often, we need to compute the “ground truth” about a network path property. For instance, the

ground truth of end-to-end delay represents the time-averaged behavior in the following sense. Let

D(t) represent the end-to-end delay that a (hypothetical) single packet of size, say100 bytes, would

have experienced if sent at timet. The ground truth end-to-end delay is the functionD(t) over all

time t. The mean ground truth end-to-end delay is the mean of this time-varying function.

In this dissertation, we find it necessary to calculate the ground truth of the inputs (cross-traffic)

and derived path properties (e.g., end-to-end delay, jitter). The formeris easily done since cross-

traffic arrivals are known (we specify them) and the arrivals form a discrete process that is easily

counted. However, accessing the ground truth about derived (continuous time) properties such as

D(t) required us to build aGround Truth Calculator (GTC)described below.
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Figure 3.2. An illustration of the nature ofQ(t), the queue size in units of transmission time.Q(t)
is discontinuous when a new packet arrives. It has a slope of−1 when a packet is being transmitted
and is horizontal when the queue is empty.

We first describe howD(t) can be calculated. Consider a path with a single hop employing the

FIFO scheduling discipline. On such a path,D(t) (delay of a hypothetical packet of sizes bytes) is

equal to the sum of queue size at timet, Q(t), and the minimum delay (consisting of the propagation

and transmission delay), i.e.,

D(t) = Q(t) +
s

C
+ P (3.3)

whereP is the propagation delay andC is the hop capacity. Note thatQ(t) is defined in units

of time, i.e., the amount of time required to service all remaining bytes in the queue.Q(t) can be

calculated using traces of all packet arrivals and departures along withhop capacity and propagation

delay. Three properties ofQ(t) are crucial to this calculation.

• When the queue is draining,Q(t) decreases linearly with slope−1. This is because we define

Q(t) in terms oftimeremaining to drain the queue.

• When a new packet arrives,Q(t) increases (by the transmission time of that packet) instanta-

neously thereby causing a discontinuity.

• Once the queue becomes empty,Q(t) stays constant at0.

These three properties are shown in Figure 3.2. Notice thatQ(t) in a finite time interval is easily
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described using a finite set of points where the slope changes (from/to0, −1 and∞). Hence,

Q(t) in a finite interval can also be efficiently stored in a data structure. Furthermore, it is easy to

calculate statistics such as the mean, Cumulative Distribution Function (CDF) of such a piecewise

linear curve. Hence, in the single-hop case, statistics ofD(t) are also easily calculated using just

packet arrivals, queue capacity and propagation delay.

The above can also be extended to a multi-hop path. Consider a multi-hop path with n hops.

Denote the queue size of hoph at time t to beQh(t). The capacity and propagation delay are

denoted byCh andPh. LetDs(t) be the end-to-end delay of a hypothetical packet of sizes injected

at time t. Ds(t) is the sum of the across-hop delays seen at each of then hops. Moreover, the

queue size seen at a hoph is Qh() at a time that depends on the previous hops. Hence, we have the

following extension of Equation 3.3 to multiple hops

Ds(t) = Q1(t) +
s

C1
+ P1+

Q2(t + Q1(t) +
s

C1
+ P1) +

s

C2
+ P2 + . . .

Qn(t + Q1(t) +
s

C1
+ P1 + Q2(. . .) . . .) +

s

Cn
+ Pn (3.4)

To calculateDs(), we first calculate allQh(t) using the packet arrivals at the various hops. As

before, these can be represented using the finite set of points where theslope changes. These are

then combined using Equation 3.4. SinceDs(t) is the sum of a finite number of curvesQh(), it

also changes slope a finite number of times and can be represented in a compact manner. This

representation can be used to calculate statistics ofDs(t). If the probe packets were derived from

some distribution, the corresponding ground truth was obtained by convolving variousDs(t) with

the packet size distribution.

3.3 Internet-based Experiments

Now, we describe two sources of real-world Internet data that we used. The first source was

a passive collection of cross-traffic arrivals atall interfaces of a router. The second source was a

novel active experiment where we injected packets into an operational network and simultaneously

collected packet traces.
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Figure 3.3. The active packet injection device, the IXIA400T (left) that we used. (Courtesy: IXIA
[Ixi])

3.3.1 Router Traces

To aid our investigation into estimating cross-traffic, we used data from a “full router” experi-

ment [HVPD04]. In this experiment, all interfaces of a router in the Sprint Internet backbone were

monitored using DAG [End] cards. The router had twoOC-48 links of capacity2.4Gbps, three

OC-3 links of capacity155Mbps and oneOC-12 link of capacity622Mbps each. As is discussed

in [HVPD04], one of theOC-3 interfaces is highly utilized (50 − 70%) and mostly carries traffic

input via theOC-48 links. For evaluating our cross-traffic estimators, we used the arrival processes

to thisOC-3 link as our cross-traffic process.

3.3.2 Active Experiments

The second type of Internet-based experiments that we used consisted of active injection of

packets and simultaneous capture. We chose anOC-192 link (capacity of10Gbps), in a large tier-

1 ISP, that was reasonably utilized (around50%, i.e., ρ = 0.5). We injected packets across this

router through a packet injection device. Our active injection device was an Ixia 400T [Ixi] (see

Figure 3.3), a specialized hardware device that is typically used to test routers. This device can be

programmed to send packets of different sizes, header fields at specified times. The programming
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interface that we used was aTcl command-line interface that could be remotely invoked. This

allowed us to generate our probe streams.

The Ixia400T sent packets on anOC-12 link that was connected via an un-utilizedOC-48 link

to our chosen router. Packets were addressed to suitable IP addresses so that they would be output

on the chosenOC-192 link of this router. TheOC-12 input was necessary as a way to control the

maximum load, in the event of misconfiguration. The cross-traffic was not controlled in any way.

We monitored the input OC-48 and output OC-192 links using GPS-synchronized DAG [End]

cards. This provided us with the arrival and departure times of the probepackets. The output

link monitor also provided us with the departure timestamps of the intervening cross-traffic. These

timestamps were accurate to sub-microsecond levels.

3.4 Summary

In this chapter, we first described the methodology that we follow in this dissertation. Our

methodology consists of the use of rigorous probability and queueing theory, simulations to fine-

tune and validate theory and real Internet experiments. The rigorous theory that we described con-

sisted of simple, but useful concepts of independence between randomvariables and performance

metrics of estimators such as bias, variance and MSE (mean square error). We described various

simulation frameworks we used. These included existing simulators such asns-2[Sim] and newer

simulators developed from scratch by us. We also described a novel Ground Truth Calculator (GTC)

that uses traces of packet arrivals to hops of a path to calculate the underlying ground truth of the

system, e.g., queueing delay distribution of a hop. Finally, we described the two different kinds of

router traces that we used. One of them consisted of all packet arrivals to a router while the other

captured all packets transmitted on a link. The latter was novel because we simultaneously injected

probe packets.
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Chapter 4

Sampling: The Role of PASTA

“The universe as we know it is a joint product of the observer and the observed.”

- Teilhard de Chardin, French Jesuit, paleontologist, and philosopher

In this chapter, we investigate sampling-related issues of active network measurements, i.e.,

how do we choose the sending times of probe packets and why? For this chapter, we assume that

the observed and desired properties are the same, e.g., end-to-end delay. Problems for which this as-

sumption is not true typically require a complex inversion step that derives thedesired property from

the observed property. The results of this chapter are also relevant for them. We defer that discussion

to the next two chapters. Our starting point here is the current state of art,the often-used “Poisson

Arrivals See Time Averages (PASTA)” property [Wol82]. PASTA has been used to justify the send-

ing of probe packets (pairs and trains, too) at Poisson epochs in an effort to obtain unbiased estimates

of properties such as end-to-end delay [Pax99], loss [Pax99], available bandwidth [SKK03], bulk

throughput [Pax99], etc. To clarify what Poisson probing, and PASTA can and cannot provide for

active measurements, we start by mapping out the various issues involved inchoosing a probing

stream. We find that two kinds of biases,sampling biasandinversion bias, together with variance

determine the optimal probing stream. Sampling bias may occur when “phase-locking” between the

probes and cross-traffic causes certain system behaviors to be observed less or more frequently than

they actually occur. Inversion bias occurs because the observations obtained via probing include the

impact of probes as well. Note that we use the term “inversion” since removing the impact of probes
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is equivalent to obtaining the desired property from our observations. Variance is caused because

estimation is typically performed by observing a finite number of probe packets. However, PASTA

only states the optimality, with respect to sampling bias, of individual probe packets (not pairs or

trains) sent at Poisson epochs. PASTA neither offers any guidance into understanding inversion bias

nor does it state anything about the estimation variance achieved with Poissonprobing.

To fully understand all these issues, we leverage the theory of Palm martingale calculus [BB03],

which is a modern framework to study sampling-related questions in queueing theory, especially the

relation between event averages (what a probe might observe) and time averages (the underlying

ground truth). We first consider systems that have no inversion bias, i.e.,hypothetical measure-

ment scenarios involving zero-sized virtual probe packets (pairs or trains). We show that such

non-intrusive probe streams will also have zero sampling bias if they or the cross-traffic enjoy the

so-calledmixing [Pet83] property. The mixing property is satisfied by many non-Poisson streams

including those with arbitrary i.i.d. (independent and identically distributed) random inter-arrival

times. Then, we extend these insights to study systems with inversion bias, i.e., practical measure-

ment scenarios with probe packets of non-zero size. We find that there isno known way to remove

inversion bias apart from sending well-spaced probes (pairs or trains). Such arare probingsetting is

easily viewed as an approximation of non-intrusive probing and therefore, justifies the application

of the non-intrusive results. Hence, our final recommendation is that rare probes (pairs or trains)

be sent at epochs that aremixing to avoid sampling bias. We also show, via simple examples, that

non-Poisson probing streams can outperform Poisson streams. Thoughwe only consider end-to-end

delay and related functions such as jitter, our results are also applicable to loss-based metrics.

This chapter is organized as follows. In Section 4.1, we provide a basic overview of PASTA and

related work in active measurements. Using this as motivation, we define the scope of our problem

and provide an overview of our contributions. In Section 4.2, we use the estimation of end-to-end

delay in simple one-hop systems to map out key issues, e.g., the two kinds of biases, estimation

variance, and our key results, e.g., achieving unbiased sampling with mixing probing streams. In

Section 4.3, we introduce powerful mathematical machinery from Palm martingale calculus [BB03]

and use it to prove results on non-intrusive probing achieved with virtual(zero-sized) probes. Using

simulations, we confirm that our results are valid for the tandem (First-In First-Out (FIFO)) route
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models commonly used in active measurements, as well as considerably more realistic models in-

corporating correlation of cross-traffic across hops, and cross-traffic with feedback, e.g., TCP. In

Section 4.5, we extend the results on non-intrusive probing to the practicalcase of non-zero sized

probe packets. We derive our final recommendation ofrare probingat mixing epochs as an effective

way of minimizing both biases. In Section 4.6, we summarize our contributions, namely, the devel-

opment of rare probing as a sound practical strategy given the limited role of PASTA in designing

active measurements.

4.1 Overview

In this section, we first discuss prior work on the “Poisson Arrivals SeeTime Averages”

(PASTA) principle especially in the context of network measurements. We use this to motivate our

problem and define the scope of our investigation. We end this section outlining our contributions.

4.1.1 Motivation - PASTA

Poisson Arrivals See Time Averages (PASTA), is a property applicable tomany stochastic sys-

tems. In essence, it states that observations made of a system at time instants obeying a Poisson

process, when averaged, converge to give the “true” value, which isthe average that an ideal ob-

server would make when monitoring the system continuously over time. A classical queueing theory

example is that the mean number of customers waiting in a queue as seen by Poisson arrivals is equal

to the (time-averaged) mean number of customers waiting. PASTA was first formalized by prob-

abilists, notably in the 1970’s. Wolff, in his classic 1982 paper [Wol82], unified and extended the

then-existing PASTA results. The generality of his formulation, based on the“Lack of Anticipation

Assumption (LAA)”, which requires simply that the past history of the systemnot influence the

arrival times of future observers, did away with the need to prove ergodic theorems for each new

system, and led to PASTA being widely used.

PASTA has been used to justify the sending of probe packets [Pax97a],pairs [SKK03], trains

[LRLL04] at Poisson epochs in an effort to obtain unbiased estimates of quantities of interest. Pois-
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son sampling has been applied for quantities as varied as connectivity [Pax97a], end-to-end delay

[Pax99], loss [Pax99], available bandwidth [SKK03], bulk transfer [Pax99]. Despite the generality

of the PASTA result of Wolff and its widespread use in network measurements, the role and util-

ity of PASTA for active measurements has never been thoroughly addressed in the theoretical and

practical senses (see [TDDA05] for basic empirical questions in this context, though).

4.1.2 Scope of Investigation

As discussed earlier, we use the sampling-inversion viewpoint of active measurements. Our

aim, in this chapter, is to investigate fundamental questions that arise in the context of sampling.

Specifically, how should we choose the sending times of probe packets? Byinvestigating the issues

that impact this choice, we aim to develop a generic recommendation to guide the designers of active

measurement techniques. The issues we investigate are of relevance to allmeasurement problems.

However, the final recommendation depends on whether the desired and observed property are the

same or not. Hence, we find it convenient to assume, for this chapter, thatthe goal is to estimate

statistics about a desired property, say, end-to-end delay, using observations of the same property

obtained via probes. In the next chapter, we consider measurement problems with a desired property

that is different from the observed property. The insights obtained from this chapter are also used

later to explain the fundamental limits of non-intrusive active measurements.

The observed (and desired) property that we consider are end-to-end delay and multi-

dimensional delay-based functionals such as jitter and packet train dispersion. Delay is a simple,

yet important observable in its own right and, apart from loss, forms the basis of all active measure-

ment inferences. The simplicity of delay allows rigorous results to be derived, and yet it provides

a context rich enough to inform the rest of this dissertation and active measurement techniques in

general.

The key questions that we address in this chapter are given below. PASTA is the starting points

for many of these questions given the traditional emphasis on Poisson probing.

• When is PASTA valid in the strict sense?
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• When and in what sense is PASTA useful when it holds? Is Poisson probing necessarily

optimal?

• Are there cases when Poisson probes shouldnot be used? If so, how should probes be sent?

• What role is played by PASTA within the inference problems of network measurements?

• What does PASTA apply to? In other words, Poisson Arrivals See Time Averages, but of

what? Does PASTA hold foranyquantity that may form the object of active measurement?

As is usually the case [Pax99, ZDP01], we assume that the network isstationary. This means

that the system conditions do not change over time. For practical purposes, we require that they

do not change over common measurement timescales [ZDP01]. We also assume that the network

conditions and cross-traffic isergodic. This implies that network conditions, during the times at

which measurement is done, are representative of the average-case network behavior. Rigorous

derivation of results like PASTA require this condition to be true. Finally, we assume that the

probe packets are generated as an stream independent of cross-traffic. This is natural since the

experimenter controls the probing stream.

4.1.3 Contributions

In this chapter, we investigate the universal question faced in designing any active measurement

technique - at what times do we send the probe packets, pairs or trains? Asmentioned earlier, we

assume, in this chapter, that the observed and desired properties are thesame. For such measurement

problems, we find that general methods to remove the impact of probes fromobservations (an

inversion step) is hard. This necessitatesrare probingand consequently, non-intrusiveness becomes

a necessity. This motivates us to first gain insights into hypothetical non-intrusive measurement

scenarios involving virtual probes of zero size and later, extending these to practical measurement

scenarios involving real probes of non-zero size. We give rigorousanswers using Palm martingale

calculus [BB03], a modern branch of queueing theory that studies precisely the questions that we

are interested in - the relation between what an observer sees and the underlying “true” average. We

also illustrate our results using simulation experiments.
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The issues that we investigate are also relevant for measurement problemswith a desired prop-

erty that is different than the observed property. This is discussed in thenext chapter. The issues in

this chapter also help us understand, in Chapter7, fundamental limits to active measurements that

arise due to biased sampling. Our specific findings from this chapter groupnaturally under three

distinct categories, and can be summarized as follows.

Sampling Bias versus Intrusiveness

• PASTA states that Poisson sampling is unbiased. In the non-intrusive case, we show that this

is not unique to Poisson but is shared by a large class of other so-calledmixing sampling

processes.

• PASTA states that Poisson sampling remains unbiased even when observers are not virtual,

but contribute to system load, and that this property is not shared by othersampling processes.

We argue that it does not follow that Poisson is superior, because of variance and inversion

issues, described next.

• We show thatrare probescan be used to avoid issues of intrusiveness and inversion. In such

a scenario, Poisson is no longer special and the only relevant issue is that of variance.

Bias versus Variance

• PASTA is a statement about bias. It is silent on variance, which is nonetheless of equal

importance to estimation.

• There is no general result stating the optimality of Poisson observations with respect to vari-

ance or Mean Square Error (MSE), except asymptotically for MSE in the intrusive case1.

Indeed, optimality would in general require a probing stream which is well matched in some

sense to network characteristics. In Section 4.2.3, we give explicit examples showing that

Poisson probing can be sub-optimal.

1Recall that MSE= bias2 + variance.
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Sampling versus Inversion

• To obtain “what one wants” from what has been observed, an additional inversionstep is

required. For example, what the delay distribution would have been if the probes were non-

intrusive, based on measurements that were free of sampling bias but which were intrusive.

Inversion is typically complex, and in general impacts both bias and variance.

• PASTA is silent on inversion. There is no result stating that Poisson samplingis unbiased, or

otherwise optimal, for the full problem of sampling followed by inversion. Furthermore, the

zero sampling bias of Poisson in the intrusive case is not necessarily an advantage when it

assists in measuring the wrong quantity. It may even be that inversion is impossible, in which

case Poisson sampling cannot magically provide unbiased estimates.

The picture that emerges is that PASTA plays only a very restricted role in network measure-

ments. In a nutshell, estimation based on active network measurements seeks tooptimize total bias

as well as variance performance, and must therefore address both sampling and inversion issues.

PASTA deals only with sampling of the available observable, not with inversionto the final quantity

of interest, is ignorant of variance, and furthermore excludes the low variance potential of alterna-

tive schemes which also enjoy zero sampling bias. In contrast, it’s strength,a lack of sampling bias

even in the intrusive case, is not necessarily relevant given the near universal need for inversion.

Simply stated, PASTA is useful only when the goal is to sendindividual probe packetsand there is

no need to remove the impact of these probes from the observed delays.

4.2 PASTA and Delay: the Issues

In this section, we illustrate the key facts and issues involved in measuring end-to-end delay

using probe packets, and the role of PASTA, in the simple context of a single, FIFO queue fed

by probe traffic and cross-traffic obeying simple models. We start by describing this experimental

setup in Section 4.2.1. This includes the cross-traffic and probe arrivalprocesses that we used. In

Section 4.2.2, we illustrate how and when two different kinds of biases, sampling bias and inversion

bias, arise. Using hypothetical virtual probes of zero size and realistic probes of non-zero size, we
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show that the zero sampling bias is exclusive to Poisson probing only because of the intrusiveness of

probing. We also show the flip side, that is, intrusiveness also causes inversion bias that is non-zero

for all probing streams including Poisson streams. In Section 4.2.3, we use illustrative examples

to show that the variance of Poisson probing may be so large that non-Poisson probing streams

with non-zero sampling bias yield better performance. Finally, in Section 4.2.4,we illustrate one

of our key results - that zero sampling bias in the virtual probe case requires the probing stream or

cross-traffic to possess the so-calledmixingproperty.

4.2.1 Experimental Setup

To conduct the single-hop experiments presented in this section, we used our queueing simu-

lator, qsim. Recall thatqsim implemented the Lindley recursion for a FIFO queue (for example,

see [BB03]) and was implemented inC andMatlab. We used a queue of capacity10Mbps and

zero propagation delay. Two kinds of statistics were collected. First, per-packet delay values, from

which the delays of probes and cross-traffic were extracted. Second, our Ground Truth Calculator

(GTC) was used to obtain the ground truth distributionD of the delay of probe-sized packets in

the system. As it was stored in histogram form, this created a discretization error. However, the

size of the histogram bins was chosen to be small enough that these errorswere negligible on the

scale of the plots given. Similarly, we used long simulations of1000000 probes to make confidence

intervals small or negligible (in the latter case we don’t show them), and employed large warm-up

periods to damp transients.

For the single-hop (with no propagation delay), the ground truth of delay,D, is obtained by

convolving the probe size distribution with the queue size (or waiting time) distribution, W . W

may also be viewed as thevirtual delay processof queueing theory in such a one-hop case. Virtual

delay is the stochastic processW (t), defined for continuous timet ∈ R, which corresponds to the

waiting time a packet of sizex = 0 would experience when sent at timet into the network in steady

state. Because this is also the delay for such a hypothetical zero-sized packet, we refer to this as the

virtual delay. This process represents the ground truth of the delay (of zero-sizedpackets) in the

system.
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M/M/1 Queue

As several of the examples employ the M/M/1 queue, we summarize some relevant properties

here. In the M/M/1 system, packets arrive as a Poisson process of rateλ, and each takes an expo-

nential amount of time, with parameter (and average)µ, to be transmitted. To ensure stability and

stationarity of the system, we require the system utilizationρ = λµ to satisfyρ < 1. It turns out

[Kle75b] that the time a packet spends in the system, i.e., its end-to-end delay,is also exponentially

distributed with parameter̄d = µ/(1 − ρ):

FD(d) = P(D ≤ d) = 1 − e−d/d̄, d ≥ 0, ρ < 1 (4.1)

with meanE[D] = d̄, whereD is the random variable representing the delay of a given packet.

A related but distinct quantity is the waiting timeW of a packet, which is also thevirtual delay

experienced by a zero-sized packet. This distribution:

FW (y) = P(W ≤ y) = 1 − ρe−y/d̄, y ≥ 0, ρ < 1, (4.2)

with meanE[W ] = ρd̄, has an atom at the origin corresponding to the probability1 − ρ of finding

the system empty, resulting in zero waiting time (and zero delay in the case of a zero-sized packet).

Probing Streams

We used the following5 arrival processes as probing processes. These represent a spectrum of

“bursty” behavior. In each case, we also list the distribution of inter-arrival times assuming that the

average isµ:

• Poisson: Exponentially distributed inter-arrival timesτ yielding a Poisson process. This is

a renewal process, i.e., the inter-arrivals are independent and identically distributed (i.i.d)

random variables.

P (τ ≤ T ) = 1 − e−T/µ 0 ≤ τ.

• Uniform: Inter-arrivals distributed uniformly in an interval[µ−a, µ+a] ([0, 2µ] by default).

This is also a renewal process.

P (τ ≤ T ) =
1

2
+

T − µ

2a
µ − a ≤ τ ≤ µ + a.
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• Pareto: Heavy tailed Pareto distribution with finite mean and infinite variance. This is also a

renewal process.

P (τ ≤ T ) = 1 −
(

τ

(D − 1)µ
+ 1

)−D

0 ≤ τ.

We useD = 1.5.

• Periodic: Constant inter-arrival times. This is also renewal but in a very degenerate sense as

inter-arrivals are constant, and is best regarded as a deterministic stream. The random phase,

determining the offset of the periodic grid from the time origin, makes it stationary despite its

rigidity.

P (τ = T ) = 1.

• Exponential (first order) Auto-Regressive 1 (EAR(1)): The EAR(1) [GL80] is a point

process that, like the Poisson process, consists of exponential inter-arrival times of intensity

λ = 1/µ. But, unlike the Poisson process, inter-arrival times are correlated because consecu-

tive inter-arrivals (τn andτn−1) are related to each other via an i.i.d. sequence of exponential

random variables (En) of meanµ and i.i.d. sequence of Bernoulli random variables (In) of

mean1 − α,

τn = ατn−1 + InEn, α ∈ [0, 1).

The correlation structure is that of a positively correlated AR(1) process, namely

Cov (τi, τi+j) = αj , j = 0, 1, 2, . . . . (4.3)

The time constant of this geometric decay translates to a correlation time scale ofτ∗(α) =

(λ ln(1/α))−1, which rises from0 whenα = 0 (the Poisson case), to∞ asα → 1. The

EAR(1) process, as described above, is not i.i.d. because it has correlated inter-arrivals with

exponential marginal.

4.2.2 Bias

In this section, we will use simple examples to illustrate sampling bias and inversion bias. To

show that zero sampling bias is exclusive to Poisson streams only because of intrusiveness, we first

consider hypothetical zero-sized probes. We find that all of our probing streams have zero sampling
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bias in this case. Then, we illustrate PASTA, i.e., this bias remains zero only forPoisson probes

when the probe packets are made intrusive. Finally, we illustrate the flip side of intrusiveness - it

causes an inversion bias that is not zero for Poisson streams.

Sampling Bias in the Non-intrusive Case

Figure 4.1 gives results for each of the above probing streams, with a shared average inter-

probe spacing of10ms, using probes of zero size. Though zero-sized probes are not practical,

they help us understand the issue of sampling bias in isolation. This is becausethere is no issue

of intrusiveness (probes do not affect the system) or of inversion (we are directly measuring what

we wish to measure). We use500 bytes as the average size of cross-traffic packets and0.4 as the

utilization of the single hop.
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Figure 4.1. Sampling bias of delay, non-intrusive case (probe sizex = 0). Left: CDF as seen by
various probing streams, and the true delay distribution. Right: resulting meanestimates. We do
not show the confidence intervals since they were very small. Each probing stream is unbiased.

The grey curve in the plot on the left of Figure 4.1 shows the true CumulativeDistribution

Function (CDF) for the delay of zero-sized probes, calculated from Equation 4.2. As expected,

the curve corresponding to Poisson probes agrees with the true one: asis well known, PASTA

applies to this system. However, the other five curves overlay the true result equally closely. In this

non-intrusive case, the lack of sampling bias of Poisson probingis shared by many other probing

schemes. The (tightly estimated) expected delays in the right plot of the figure confirmthis by

agreeing with the true value in each case. In Section 4.3, our main result is to prove that a wide
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class of processes share this desirable property, and for far more general systems (including most

systems of practical interest) than the simple M/M/1 queue.

Sampling Bias in the Intrusive Case

In Figure 4.2 we consider the same probing arrival streams, but allow the probes to have a

transmission timex > 0 (x is taken to be a constant500 bytes for simplicity, but this is not essential).

As a result, intrusiveness becomes an issue: probes do affect the system, both in load and in more

detailed characteristics. To avoid dealing with inversion issues, we assume that our objective is to

know the true delay, in the full system combining cross-traffic and non-virtual probes, that a packet

of transmission timex would experience. In other words, we still seek to measure the same object

that we have direct access to, through probing.
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Figure 4.2. Sampling bias of delay, intrusive case (x > 0). We do not show results for the “Uniform
in [0.9µ, 1.1µ]” probing stream, to avoid clutter, since they mirror the other results. Left: CDF as
seen by various probing streams, and true delay distributions (one per stream, the closest grey curve
in each case). Right: resulting probe based mean estimates, and true means.Again, we do not show
confidence intervals since they were very small. Each probing stream results in a new true delay
distribution, which is sampled with bias by the probes, except the Poisson case (PASTA).

The mean estimates in the right hand plot of Figure 4.2 confirm that each probing stream results

in a different system behavior (despite equal loads), and shows that each now gives a biased estimate

of its respectiveE[D], with the exception of “Poisson”. Hence, PASTA continues to hold, whereas

the other probing streams, despite being unbiased whenx = 0, now suffer from a bias due to

intrusiveness. The corresponding CDFs in the left hand plot show in greater detail how the systems
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are different for each stream, and how the bias varies as a function of delay. These results illustrate

that PASTA holds in the intrusive case. In Section 4.5, we will state the general conditions under

which PASTA can be expected to hold.

Inversion Bias

We now study inversion bias in isolation. We achieve this by employing Poisson streams exclu-

sively, thereby benefiting from their zero sampling bias in all cases. Furthermore, we let the probe

transmission timex be exponentially distributed with the same mean,µT (= 500 bytes), as for the

cross-traffic packets. This results in a combined system which is still M/M/1, with rateλ = λT +λP

and average transmission timeµT , enabling Equation 4.1 to be used. We use probing traffic of dif-

ferent levels of intrusiveness which increases the link utilization in increments of 0.1 from 0.4 to

0.8.
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Figure 4.3. Inversion bias of delay, range of intrusiveness (x ≥ 0). Left: CDF as seen by Poisson
probing streams of different rate, and true delay distributions (one per stream), as well as the true
un-perturbed delay (with no probes). Right: corresponding mean delays as a function of probe to
total load ratio. PASTA eliminates sampling bias, but total system behavior increasingly deviates
from that of the un-perturbed system.

Figure 4.3 shows the unsurprising but significant fact that increasing the probing load through

increasingλP results in the overall system deviating increasingly far from the original unperturbed

system in whichλP = 0. Consequently, even if an estimate of the true mean (or the CDF) is un-

biased, that estimate is an estimate of thefull (probe + cross-traffic) system,not the unperturbed
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(cross-traffic only) system that one wishes to measure. Thus, what wewant is not what we directly

measure. To obtain the desired unperturbed delay from the observationsof perturbed one requires

an entirely separate inversion step, which, even in this very simple example ofinverting one kind

of delay to another, is highly non-trivial. For other inference objectivescommon in active measure-

ments, such as using packet-pair methods to estimate available bandwidth, the degree of inversion

required, and therefore its potential impact, is far greater. Another way of seeing this is to note that

probes sent as a Poisson process at the sender will not arrive as Poisson process at the bottleneck

link in general, and will also be affected by their onward passage from that link to the receiver.

Thus, the probes are sampling the bottleneck link, but not in a Poisson way,and not in isolation.

We have two contributions to make on the inversion issue. First, we point out that not only

can it be extremely challenging, but more importantly that it is an inherent difficulty for which

PASTA offers no solution. To our knowledge, there are no known general inversion techniques to

remove the impact of probe packets. In the next two chapters, we consider inversion of a different

kind, using delay observations to estimate properties of cross-traffic. Wefind that, even in a simple

one-hop system, unless the cross-traffic obeys certain assumptions, full knowledge of the cross-

traffic process feeding the hop is unobservable. In such a case, strict inversion is impossible even in

principle. This serves to illustrate the hardness of any kind of inversion which PASTA is powerless

to mitigate. Second, in spite of the difficulties described above, there is a general way, therare

probingstrategy to avoid inversion bias in the intrusive case, which we explore in Section 4.5.

There is a substantial literature onperturbation analysis(see [Gla91]) which addresses the prob-

lem of determining the behavior of a perturbed system from that of the unperturbed one. However,

there are no immediate or simple answers to the difficult inversion problems of active measurements.

4.2.3 Bias versus Variance

So far, we focused on the bias of estimators based on a simple average of delays experienced

by probes. We now look into the variance of these estimators. When bias is non-zero, we examine

bias-variance trade-offs in the traditional manner by considering the meansquared error (MSE)

MSE = bias2 + variance. To illustrate only the effect of estimation variance, we ignore inversion
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bias. In other words, the probe-derived estimates are compared to the ground truth in the perturbed

system that includes the probes.
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Figure 4.4. Bias and variance of delay with correlated cross-traffic, non-intrusive case (x = 0). Left:
bias of mean estimates seen by different probing streams as a function of theEAR(1) parameterα
of the cross-traffic, using100000 probes. Right: corresponding estimates of standard deviation.
Although all probing schemes are unbiased, their variances differ, andPoisson isnot the smallest.

Thus far, we have considered cross-traffic packets arriving as a Poisson process. However,

in general cross-traffic will interact with probe traffic in ways which depend on the correlation or

“burstiness” structure of each, and estimation variance will be a function of these interactions. To

show this clearly we need a richer context than the simple “memoryless” structure of the Poisson

process. We use the EAR(1) [GL80] process introduced earlier as a convenient way to generate a

point process which has a well defined correlation time scale.

Figure 4.4 shows the effect of increasingα (and hence, short-time correlation) on the estimation

of mean delay, for four different non-intrusive probe streams of identical rate. In the left plot we

see the expected lack of bias for each stream (note the vertical scale andconfidence intervals, offset

horizontally for visibility), in agreement with the results of Figure 4.1, regardless of the value ofα.

In contrast, the right hand plot shows that the standard deviation of the estimates separate at large

α. This separation clearly exceeds the confidence intervals: the Poisson stream has higher variance

then either Periodic or Uniform. This is a counter-example making the important general point that

Poisson sampling does not imply minimal variance.

We now offer some insight into why Poisson probing gives rise to higher variance than Periodic
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in this case. First note that as the correlations in the cross-traffic increase, so do those of the virtual

delay processW (t) itself. If we could make estimates based onW (t), they would therefore have in-

creased variance2. Each probing scheme samplesW (t), experiences the larger correlation at higher

α, and thereby inherits the larger variance. Exactly how much variance however depends strongly

on the details of the sampling scheme, not merely on the average sampling rateλP . Bearing in mind

that samples which are closer together will be more correlated, periodic probing has the advantage of

guaranteeing a minimum distance between them. It can therefore “jump over” correlation-inducing

bursts, provided that1/λP is large compared with the correlation scale ofW (t). In contrast, in

a Poisson process arrivals may be much closer than1/λP with appreciable probability, increasing

the correlation considerably between such samples. In the example here,1/λP ≈ 20τ∗ even for

α = 0.9, so the periodic stream produces close to i.i.d. samples in all cases.

In Figure 4.5 we consider the intrusive case for a wider range of candidate probing schemes. We

fix α at0.8, and examine dependence as intrusiveness is increased by increasingprobe size, shown

as a function of the fraction of probing load to total load. The leftmost plot shows that (sampling)

bias is now present, and increases withα, for all schemes except for Poisson (by PASTA). The

variance results of the middle plot echo those seen in Figure 4.4: there are schemes which perform

both better and worse than Poisson. The rightmost plot in Figure 4.5 combinesbias and variance,

and we see the trade-offs at work: the relative overall performance of different schemes changes

with α. In particular, as bias becomes stronger for its competitors at, load ratios above0.12, Poisson

begins to outperform Periodic. However, it continues to be outdone by theUniform renewal with

wide support, even though we ignored inversion bias.

In this section, we have presented only a few illustrations of what is a general point: PASTA

is silent on estimation variance, and the performance of Poisson probing, for general cross-traffic

processes, plays no privileged role with regard to variance. The same holds true for MSE, with one

exception. Asymptotically, as the number of samples tends to infinity the varianceof any consistent

estimator will tend to zero, resulting in the asymptotic MSE being equal to the bias squared. In

the intrusive case, this clearly gives the advantage to Poisson probing. In general however, overall

statistical performance is a function of how well the probing stream is adapted to the cross-traffic,

2It is well known [Cox84] that the variance of the sample mean calculated over a time window of given width is
essentially the integral of the correlation function over the correspondingrange of lags.
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Figure 4.5. Bias, Standard Deviation and (Root) MSE of delay with correlated cross-traffic, intrusive
case (x > 0). Left Top: Bias of mean estimates seen by different probing streams forα = 0.8 as
a function of intrusiveness probe load/total load. Right Top: Corresponding estimates of standard
deviation. Bottom: Corresponding

√
MSE =

√

(bias2 + variance). Only the Poisson probing is
unbiased, but the scheme with minimal (Root) MSE depends onα.

and the nature of that traffic. The optimal approach (if any) will also be strongly determined by

the choice of constraints such as measurement duration, probe budget, and acceptable intrusiveness

profile.

4.2.4 The Need for Technical Assumptions

Thus far, we have passed over the issue of technical assumptions. Whilethe numerical examples

offered no contradictions, we have simply assumed that PASTA holds universally. Similarly, whilst
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Figure 4.2 indicated that there exists non-Poisson sampling schemes with zerobias, no comment

was made on which schemes enjoyed this property.
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Figure 4.6. Sampling bias of delay with non-mixing cross-traffic, non-intrusive case (x = 0). Left:
CDF as seen by various probing streams, and the true delay distribution. Right: resulting mean
estimates. Each probing stream is unbiased, expect for periodic.

In fact, such results are only true given suitableergodicityconditions on the cross traffic and

probing processes. Even PASTA requires the system to be ergodic, i.e.,the system behavior is

captured during the time we measure it. It is also important to note that zero bias (across all possible

measurement experiments) is in fact not our objective! To be useful in practice, we also need

measurements to converge to unbiased values on asinglesample path, as we witnessed in each

example thus far. To ensure this, again suitable ergodic conditions are required. We defer a rigorous

description of these issue until the next section, and complete this one with an illustrative example

and intuitive explanation.

Figure 4.6 gives the outcome of a non-intrusive experiment which is identical to that reported

in Figure 4.1, but with one crucial difference: the Poisson arrival times of cross-traffic have been

replaced by periodic arrivals of the same average intensity (packet sizes have not been altered). We

see that each probing stream continues to measure the mean delay, and even the entire delay distri-

bution, without bias, with the exception of the periodic probe stream, which is markedly different.

In fact since the period of the Periodic stream is equal to an integer multiple ofthe cross-traffic

period (equal to10 in this case), the two streams are effectively “phase locked”, and in sucha case

the joint ergodicity conditions are not satisfied. As a result, the probes cannever sample average
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conditions on this sample path alone, but only those found at a particular point in the cycle of the

cross-traffic arrivals. However despite this, since the two periodic streams are independent and sta-

tionary, the phase offset between them is random, and so estimates from theperiodic probing stream

are nonetheless unbiased! This is readily seen empirically if averages over manyindependent ex-

periments are taken.

Despite the rigidity of the periodic cross-traffic, the other probing streams do satisfy the re-

quired joint conditions since they are in themselves allmixingprocesses. This is a stronger form of

ergodicity. Similarly, the joint ergodicity assumptions were satisfied in the casesshown earlier of

periodic probe traffic and either Poisson or EAR(1) cross-traffic, since these latter processes were

mixing. In a loose sense, they provided enough variability to overcome the rigidity of the periodic

probes. We discuss this in more detail in the next section.

4.3 Non-Intrusive Measurement

In the previous section we discussed sampling bias, inversion bias, variance, and contrasted the

intrusive and non-intrusive cases in parallel. We saw illustrative results indicating zero sampling

bias for non-Poisson streams in the non-intrusive case. We also saw thatit is often desirable to

make probing as non-intrusive as possible as a means to minimize inversion bias. This motivates

us to fully understand the role of intrusiveness. To this end, we focus onthe hypothetical non-

intrusive case in this section. We leave the intrusive case and most of our comments on inversion

to Section 4.5. Our aim is to expand in a rigorous way on the observations of Figure 4.1, that

many processes other than Poisson enjoy zero sampling bias in the non-intrusive case. The basis

of our treatment is the machinery of Palm calculus [BB03]. This is ideal for our purpose because

the goal of Palm calculus is to study sampling-related issues in queueing systems. In particular,

it is appropriate to study the relation between event averages (what a probe packet sees) and time

averages (the underlying ground truth). Additional mathematical conceptsused in Palm calculus are

ergodic theory [Pet83] and marked point processes [DVJ88, BB03].We give an overview of these

areas before proving our main results. We then discuss the impact on the choice of probing streams

in practice.
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4.3.1 Setting

We adopt a setting which allows for very general probe traffic, cross traffic, and network mod-

els. There are three assumptions which carry over from the previous section however:stationarity

of the probe traffic, cross-traffic and the network behavior,ergodicityof the cross-traffic, andinde-

pendenceof the probe traffic from the cross-traffic. Stationarity implies that networkconditions do

not change over time whereas ergodicity implies that the network exhibits, during the times of mea-

surement, represents average-case behavior irrespective of the initial conditions. The assumption of

independence is natural since the experimenter controls the probing stream. Later, we see that this

is also necessary to ensure zero sampling bias.

We model probe traffic as astationary point processP of intensityλP . That is, a sample path

of the process is simply the set of times{Tn} at which the (zero-sized) probes arrive, and there

exists a probability lawPP that determines the probability of any event concerning sample paths.

For example, it governs the probability that the first inter-arrival time afterthe time origin:T2 −T1,

exceeds the mean value1/λP (this would be1 for periodic probes ore−1 for a Poisson stream), as

well as the probability thatn probes fall in a time intervalI1 andm in I2, for arbitrary intervalsI1

andI2. No constraints are placed onPP , we allow any structure of probe arrivals provided arrivals

do not coincide.

We model cross-traffic as amarked stationary point processT of intensityλT . As before, this

consists of the arrival times of packets, but now alsomarks, random variables associated with each

packet which give additional information about the traffic. This includes first of all the random

packet size, but also anything else that characterizes the stream. For example, the packet sizes may

depend on the arrival patterns, or packet sizes, of previous arrivals. The probability lawPT governs

all details ofT , both of arrival times and marks.

The model of an end-to-end path typically used in active probing is essentially the tandem

queueing networkof queueing theory. It consists of a set of FIFO queues and transmission links

in series, each with its own independent cross-traffic stream. Packets from a given stream are all

n-hop-persistent(traversingn hops before exiting) and frequentlyn is simply taken to be1 for each

stream. Our network setting does not explicitly define queues in this manner. Instead, it operates in
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Figure 4.7. We abstract a network path into the inputs and the actual networkmechanisms. The
inputs are the cross-traffic process. We only specify that the actual details such as scheduling at the
various hops be a deterministic function of the inputs.

a more abstract setting only requiring that everything not inT actdeterministically on the cross-

traffic and probe inputs (see Figure 4.7. Hence, the results that we use [BB03] and derive cover

more general network settings including the following, provided the technical assumptions above

are satisfied.

• Cross-traffic streams correlated across nodes.

• Cross-traffic with feedback such as TCP.

• Scheduling disciplines such as FIFO, Weighted Fair Queueing [DKS89] and Processor Shar-

ing [PG93] which may differ from hop to hop.

• Probes which follow different paths through a network (modeling load balancing).
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Technically, each of these cross-traffic streams, and their dependencies, are contained in the single

marked point processT , where the marks carry most of the detailed information, such as which

nodes are traversed by a given packet. In this way, much of our general network model, in fact all

of its stochastic components, is subsumed into a rich cross-traffic description. The details of the the

queueing itself is not contained inT but would have to be specified separately if one wished to sim-

ulate the network. Our results hold true provided everything that is not inT acts deterministically

on the cross-traffic and probe inputs.

The final component of the basic setting is to specify theobservedproperty, that is the quantity

related to probes that we have access to. In the case of active measurements, the available data is

simply the arrival times of probes, or equivalently (since the sending timesTn are known), their

end-to-end delays. Since, in this section, we consider only the non-intrusive case, the underlying

observable denoted byZ(t), t ∈ R can be taken to be virtual delay processW (t). Recall that the

virtual delay process is the delay experienced by a zero-sized packetentering at timet.

Our main goal is to learn about the processZ(t). Technically, this reduces to determining the

expectationE[f(Z(t))] of some positive functionf of Z(t). The choice off gives us great freedom

in the kind of statistic we may wish to measure. Good examples already presentedin Section 4.2

are the identity function giving us the mean delay or an indicator function (noting whetherZ(t) is

smaller than some threshold) giving us the entire CDF of delay. Functions to calculate statistics

such as jitter will be considered later.

With the setting established, we now indicate where sampling and inversion fit in toit. Probes

sent at times{Ti} literally sampleZ(t) at those times. Hence, the valuesf(Z(T1)), f(Z(T2)), . . .,

are what is available to estimateE[f(Z(t))]. As we send more probes, we have more samples and

expect our estimates to improve. Specifically, we want the followingasymptotic convergenceto be

(almost surely, i.e., with probability1) true:

lim
N→∞

1

N

N
∑

n=1

f(Z(Tn)) = E[f(Z(0))]. (4.4)

For instance, iff is the identity function, the right hand side is the mean virtual delay to which the

sample mean estimate on the left hand side must converge. Stationarity implies thatE[f(Z(0))] =

E[f(Z(t))] for any timet.
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In the present non-intrusive case our aim of determining statistics of delayis not hampered

by inversion issues. Such inversion is required if any quantityother than delay, such as available

bandwidth, is the desired property. Such inversion is the focus of our next 2 chapters and uses

appropriatef f to study other quantities which are related toZ(t). In such cases, inversion can be

seen as the task of finding the (potentially very complex) functionf which can efficiently extract

the desired parameter from the available delay data.

4.3.2 Ergodic Theory and Palm Calculus

Statements like Equation 4.4, where a “time mean” (the left hand side) is equivalent to an “en-

semble mean” or mathematical expectation (the right hand side), are known collectively as ergodic

theorems [Pet83]. Intuitively, they correspond to systems which are in somesense free enough to

explore, in an unbiased way and on a single sample path, the full range of behavior which one

would find if one could examineall sample paths. Put another way, a single sample path of an

ergodic process will over time come to resemble every other sample path, with more extreme paths

taking appropriately longer to emerge.

In Section 4.3.3 we determine when Equation 4.4 holds. Specifically, we show that Equation 4.4

holds (with zero-sized probes) when either the probe stream of cross-traffic satisfies the so-called

mixing property. Before deriving this important result, we must first introduce key concepts of

ergodic theory and Palm calculus. These formalize the probing problem and allow us to state our

results formally.

The Joint Law and the Product Space

To deal with ergodicity of the system as a whole, we must know the joint law governing both

probe and cross-traffic. Because these are independent, the eventsin the combined system can be

described through theproduct spaceof P andT , denoted byF . It has an associated probability law

P which is the product ofPP andPT .

Intuitively, (F , P ) enumerates all sample paths of the combined system and their associated

probabilities. The following example illustrates this. Consider a system in which probe and cross-
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traffic are each periodic with a period of1 time unit (for simplicity we ignore the marks ofT ). Each

probing sample path is completely determined by itsphasex ∈ [0, 1) = T1, the distance from the

time origin to the first probe. Similarly, the cross-traffic is described by a phasey ∈ [0, 1). Thus,

each sample path of the combined system is uniquely described by(x, y), which is an element of the

product spaceF =[0, 1)× [0, 1). Assuming independence between the streams, the joint probability

P is given by

P ((x, y) ∈ [a, b] × [c, d]) = PP(x ∈ [a, b]) · PT (y ∈ [c, d])

= (b − a)(d − c),

whereb ≥ a, d ≥ c, since the stationarity ofT andP implies that their phases are each uniformly

distributed over(0, 1].

Time Shifts: the θt Framework

For Equation 4.4 to hold, we need an appropriate form of ergodicity. One of the possible pitfalls

is that it is not enough that one or the other, or even both, of the probe process and cross-traffic

process be ergodic in their own right. In fact they must possessjoint ergodicity, defined on the

product space.

We begin by describing ergodicity for a single point process by means of aθt or shift operator.

The shift operator represents a shift in time of valuet ∈ R of the whole sample path (or set of paths)

under consideration. Given such a shift, we can define the important notion of aninvariant event.

Invariant Event: An invariant eventof some point process is an eventA such thatA = θ−t(A)

for all t ∈ R. An example of such a set is the collection of paths which have an infinite number of

inter-arrivals larger than some valuex, because translation would not change this property for any

path inA, soθ−t(A) would contain exactly the same paths.

It follows from Birkhoff’s pointwise ergodic theorem [Pet83] that a point process is ergodicif

and only if all its invariant events are of probability either 0 or 1. The statement we wish to prove,

Equation 4.4, is similar to the Birkhoff theorem but in a joint setting. One can define aproduct shift

that operates, simultaneously but independently, on bothP andT . In terms of this, our aim can be
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reformulated as:

Equation 4.4 holds if and only if all sets of sample paths invariant under the product shift are of

probability either 0 or 1.

To see the significance of this, we continue the “periodic-periodic” examplefrom Section 4.3.2.

Let the eventA be those sample paths where, for alln, Tn − Cn < 0.25, whereTn andCn are

respectively the arrival time of then-th probe andn-th cross-traffic packet. For our phase locked

example, this translates to P(x − y < 0.25) = 0.25. However since the offset between the two

streams is fixed atx − y for all n, A is an invariant event, yet it has probability which is neither0

nor1. Hence, this system is not jointly ergodic, and Equation 4.4 will not hold.

We see that to achieve convergence of the sample based estimates, the probe sampling must not

become phase locked to the cross-traffic. For any given any set of initial conditions, the combined

system must be able to escape any such ‘synchronization’. Conceptually,this is very similar to

our intuitive understanding of ergodicity in the case of a single process. Note that such periodic

behavior may actually occur in IP networks, for example when dealing with a small number of

persistent TCP flows on an access link.

Palm Probability

The right hand side of Equation 4.4 can be written as

E[f(Z(τ))] =

∫

f(Z(τ))P (dZ),

which emphasizes that it is really the full law ofZ as determined byP , represented byP (dZ), that

we would like to determine via measurement. Knowing the probability of any eventA underZ is

equivalent to knowing the law ofZ. Let A be an event defined by some condition onZ(τ). One

could choose for exampleZ(τ) ≥ 1 for someτ , but the important point is that the condition can be

arbitrary. SinceZ is stationary, the probabilityP (A) of A does not dependent onτ (sinceZ is only

a function of the cross-traffic, the probability of this event is well-definedon the product space). In

contrast, thePalm probabilityP0 is the probability that a probe may see an eventA.

P0(A) =
1

λ(b − a)
E

[

∑

Tn∈(a,b]

1Z(Tn)satisfiesA

]

.
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for any positive reala, b. Recall thatλ is the average rate of the (non-intrusive) probing point

process. Hence, the Palm probability is simply the average fraction of probes in(a, b] which observe

the sample path ofZ(.) as belonging toA. Note that the Palm probability does not depend ona, b.

We can immediately establish that when probes and cross-traffic are independent, the Palm

probability and the underlying probabilities are equal.

P0(A) =
1

λ(b − a)
E

[

∑

Tn∈(a,b]

1Z(Tn)satisfiesA

]

=
1

λ(b − a)
E

[

∑

Tn∈(a,b]

1Z(0)satisfiesA

]

= P [A satisfied]
1

λ(b − a)
E

[

∑

Tn∈(a,b]

1
]

= P (A). (4.5)

The first reduction is due to stationarity and independence, and the second to independence. This

result implies that the average over all sample paths of what an independent probe streams sees

(represented byP0) is equal to the ‘ground truth’ (represented byP (A)). As we discussed in

Section 4.2.4, this lack of bias doesnotmean that every instance of a probing stream is good for our

purposes. In fact, for (almost) every sample path to be good we need the ergodicity property which

is the asymptotic convergence of Equation 4.4.

4.3.3 NIJEASTA and NIMASTA

We explained the need for joint ergodicity as a way of avoiding possible ‘phase-locking’ be-

tween the probes and cross-traffic. We now state three key theorems from Palm calculus [BB03]

that build upon this intuition and lead toward determining when sampling bias is zero.

So far, we defined joint ergodicity with respect to (w.r.t.) the underlying system product space

probability P . Analogous definitions can be made by replacingP with the Palm probabilityP0.

Note that ergodicity w.r.t.P0 is defined using just a single shiftθT1
. Since underP0 the first point

lies atT0 = 0, this discrete shiftθT1
has the effect of simply shifting the origin to the next point.

The same shift can be used recursively to move down the probe sequence.

Ergodicity w.r.t.P is quite different from ergodicity w.r.t.P0. The former says that empirical

averages converge for an observer who can access theZ(t) sample path continuously over time.
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In contrast, ergodicity w.r.t. the Palm probability means that empirical averages converge for an

observer who can access only the samplesZ(Tn) for all n. Though ergodicity w.r.tP andP0

represent different properties, the following theorem from [BB03] (Property 1.6.3, pp.52) states

that they are equivalent.

Theorem 1 θt-ergodicity with respect toP is equivalent toθT1
-ergodicity with respect toP0.

Our second theorem, proved in [BB03] (Theorem 1.6.1, pp.47), formalizes our intuition that asymp-

totic convergence (Equation 4.4) is satisfied if the product space is ergodic w.r.t.P0.

Theorem 2 Discrete Pointwise Ergodic Theorem: Assume that(F ,P0) is ergodic w.r.t. the shift

θT1
. Then, for all positive functionsf , the following holds

lim
N→∞

1

N

N
∑

n=1

f(Z(Tn)) = E0[f(Z(0))] =

∫

f(Z(0))P0(dZ).

Finally we have our main result, a very general condition under which Equation 4.4 holds.

Theorem 3 NIJEASTA: If the product space is ergodic w.r.t. the Palm probability and the probing

stream is independent of cross-traffic, then asymptotic convergenceholds.

Proof: By assumption the discrete pointwise ergodic theorem applies, and since the probing and

cross-traffic processes are independent, by Equation (4.5)P can be replaced byP0:

lim
N→∞

1

N

N
∑

n=1

f(Z(Tn))=

∫

f(Z(0))P0(dZ)

=

∫

f(Z(0))P (dZ) = E[f(Z(0))]. ⊓⊔

Thus, asymptotic convergence is guaranteed with an independent probing stream as long as the

product shift is ergodic w.r.t.P0, or equivalently (using Theorem 1)P . This result can be summa-

rized as:

NIJEASTA:

Non-Intrusive Jointly Ergodic Arrivals See Time Averages.

The jointly ergodic assumption of NIJEASTA is similar to the Lack of Anticipation Assumption of
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Wolff in that it states exactly what is required, but does not say when it is true, which can be incon-

venient in practice. Our last theorem is classical ([Pet83], Theorem 6.1, pp.65) and states simple

sufficient conditions under which the joint ergodicity holds, based on the idea ofmixing. A point

processP (or equivalently its shift) is said to be mixing3 if, for all eventsA, B:

lim
t→∞

PP(A ∩ θ−t(B)) = PP(A)PP(B).

Intuitively, mixing is a special (and strong) form of ergodicity where on separation under the shift,

all memory between any setsA andB is lost, so that they ultimately act as independent events.

Theorem 4 The product spaceF of P andT is ergodic whenever at least one of them is a mixing

process, and the other ergodic.

Of the two cases covered in this theorem, that of a mixing probe process haspractical importance,

because although we may suspect that cross-traffic is mixing, say in the Internet backbone where

myriads of random effects wash out deterministic synchronization, we cannot guarantee it. On the

other hand, if we choose to always use probing processes which are mixing, we are assured of satis-

fying the joint ergodicity conditions required for zero sampling bias, regardless of the dynamics of

cross-traffic. To highlight this property, which generalizes PASTA (in the non-intrusive case only!),

we coin:

NIMASTA:

Non-Intrusive Mixing Arrivals See Time Averages.

It is useful to review at this point the observations of Section 4.2. Three kinds of processes appeared

there: stationary renewal processes (with exponential, uniform, or Pareto inter-arrivals), the peri-

odic process (with random phase), and the EAR(1) process. As is wellknown [DVJ88]. renewal

processes are mixing provided that the support of the inter-arrival distribution contains an interval,

and the EAR(1) process is also strongly mixing [GL80]. However, the periodic process is not, al-

though it is (by itself) ergodic. The non-intrusive examples throughout Section 4.2, in particular

in Section 4.2.4, illustrate NIMASTA and NIJEASTA at work, depending on whether cross-traffic

and/or probe traffic is mixing or not.

3In fact, bothweakandstrongmixing can be defined [Pet83]
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4.3.4 From Delay to Jitter

So far we have considered positive functionsf which act onZ at a single time point only. In

fact more general functions of the formf(Z(0), Z(t1), . . . , Z(tk)) can be considered, which gives

access to the temporal structure ofZ. Key examples are then-dimensional distributions of the

process, and thedelay variationor jitter.

Palm Calculus can deal with this greater generality by considering clusters of (non-intrusive)

probes sent at ergodic times times{Tn}. Each cluster consists ofk +1 probes sent at timesTn + ti,

i = 0, . . . k with T0 = 0. Palm calculus can then be applied by formulating the clusters as marks,

the probe process thereby becoming amarkedpoint process (for details see [BB03]). As before,

one can measure the average behavior of any such function without bias. Formally,

lim
N→∞

1

N

N
∑

n=1

f(Z(Tn), . . . Z(Tn + tk)) = E[f(Z(0), . . . Z(tk))] (4.6)

As an example, we show how to measure jitter on a time scale ofτ , that is, we desire the

distribution ofJτ (t) = Z(t + τ) − Z(t). Let the clusters arrive as a renewal process with inter-

arrival distributed uniformly over[9τ, 10τ ]. This process is mixing. Each cluster will consist of two

points, the cluster seed atTn, and a trailing probe atTn + τ . We then simply collect the jitter values

{Jτ (Tn)} and estimate its distribution by forming a histogram (technically, this implies defining

multiple functionsf , each an indicator function for a histogram bin, and counting the hits in each.

These counts are always positive as required, although jitter itself can take either sign).

4.4 Experiments

In this section, we illustrate the non-intrusive results that we have developed so far using simula-

tion experiments. We usedns-2[Sim] to conduct our simulations. In Section 4.2, we demonstrated

our results using simple single-hop simulations. Our goal, in this section, is to present realistic

scenarios that illustrate the universal applicability of NIMASTA. We first show the importance of

NIMASTA by illustrating a carefully constructed example in which periodic probing streams are

biased. We use window-constrained TCP and periodic UDP streams in this example. Then, we

show that NIMASTA is valid when cross-traffic has feedback. We use long-lived TCP flows that
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saturate the path to show this. We then use a suitable definition of “jitter” to show that our extension

to NIMASTA (see Section 4.3.4) is valid too. Finally, we simulate a much more complexnetwork

with both short-lived web traffic and persistent traffic, i.e., cross-traffic that flows multiple links of

the path.
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Figure 4.8. The networks that we used in our simulation experiments.

We used the networks shown in Figure 4.8. Notice that all of them have at least3 hops and are

listed in increasing order of the the complexity of their cross-traffic. We used Pareto cross-traffic

and higher link capacity for the middle hop as a way of simulating the high-speedportion of many

Internet paths. We simulated these networks for more than100 seconds. We used probe streams
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with arrival processes that are periodic, Poisson, uniformly distributedand distributed according to

a Pareto distribution. Recall that, except for periodic probing, the rest are mixing. For all of them,

we used a mean inter-arrival time of10ms. Consistent with the rest of this section, we achieved

non-intrusive probing by using zero-sized probe packets. We compared the probe-derived estimates

with the ground truth obtained using theGround Truth Calculator (GTC)described in Chapter1.

Recall that GTC used arrival and departure logs at all hops to calculatethe ground truth. As the

time resolution of ns-2 is 1µs and packet sizes are an integer number of bytes, we could use link

capacities of at most20Mbps. Larger link capacities caused significant rounding-off errors.

4.4.1 Periodic Effects
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Figure 4.9. Simulation showing the validity of NIMASTA in a multi-hop system, and sampling bias
due to phase-locking. The estimated CDFs are plotted with a large (10000) number of probes. Left
set of curves: periodic cross-traffic on hop1, Right: window-constrained TCP flow on hop1.

We start with Network1 shown in Figure 4.8. Two sets of results are given in Figure 4.9,

depending on whether the cross-traffic on the first hop is periodic, or window-constrained TCP.

In each case the delay marginals show that NIMASTA holds for each of themixing probe traffic.

But, for the periodic probes, the probe traffic and cross-traffic become “phase locked”. We achieve

the phase-locking by choosing the probing period to be commensurate with theround-trip time of

the window-constrained TCP flow on the first hop (right set of curves), and as a multiple of the
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periodicity of the UDP cross-traffic (left set of curves). This illustratesthat, synchronization effects

in the network can cause periodic behavior. This periodic behavior can,in turn, cause periodic

probing to be biased.

4.4.2 TCP-saturated links

0.025 0.03 0.035 0.04 0.045 0.05
0

0.2

0.4

0.6

0.8

1

Delay [sec]

C
D

F

Poisson
Uniform in [0,2µ]
Uniform in [0.9µ 1.1µ]
Pareto
Periodic

0.025 0.03 0.035 0.04 0.045 0.05
0

0.2

0.4

0.6

0.8

1

Delay [sec]

C
D

F

Poisson
Uniform in [0,2µ]
Uniform in [0.9µ 1.1µ]
Pareto
Periodic

Figure 4.10. Simulation results showing the validity of NIMASTA with saturating long-lived TCP
flows. The left plot shows the estimated delay distribution with a small number of probes (100) and
the right plot shows the estimated distribution with a large number of probes (10000).

Next, we use Network2 that replaces the window-constrained TCP flows with long-lived satu-

rating TCP flows. This causes100% utilization on the first and third links and allows us to inves-

tigate if NIMASTA is valid when cross-traffic uses feedback. We plot the results in Figure 4.10.

We show two plots. The left plot shows estimates obtained with100 probes whereas the right plot

shows estimates obtained with10000 probes. This illustrates two things. First, all of them converge

asymptotically. Second, with a small number of probes, variance is significant.

4.4.3 Jitter

Our next set of experiments use Network2 to illustrate the extension to NIMASTA (see Sec-

tion 4.3.4) that considers multi-dimensional functions of end-to-end delay. Specifically, we consider

the difference in delays of two packets sent1ms apart. We call this difference “jitter”. To calculate

the ground truth jitter, we first use GTC to calculate the ground truth virtual delay distribution. The

ground truth of jitter is calculated as the difference between this ground truthvirtual delay and a
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Figure 4.11. Simulation results showing the validity of NIMASTA with multi-dimensional delay
functions. We plot the estimated and ground truth distribution of jitter, the difference in delays of
two zero-sized packets sent1ms apart. The left plot shows the estimated CDF with few probes and
the right plot shows the estimated CDF with a large number of probes.

time-shifted version of it. We compare the ground truth jitter distribution and estimated jitter in Fig-

ure 4.11. To estimate jitter, we sent pairs of (virtual) probes according to thechosen arrival process.

For instance, the time between the closest probes of two consecutive pairsof Poisson probing was

exponentially distributed. We chose this to avoid overlap between the probe pairs. As can be seen

from Figure 4.11, our extension to NIMASTA clearly holds.

4.4.4 Short-lived and Persistent Cross-traffic
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Figure 4.12. Simulation results showing the validity of NIMASTA with a complex network that has
persistent cross-traffic, cross-traffic with feedback (TCP) and realistic cross-traffic (web traffic).
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Finally, we introduce much more complexity by simulating Network3 of Figure 4.8. First, we

add an additional hop of3Mbps to the first hop. Then, the saturating TCP flow is made2-hop

persistent - it traverses the first two hops that the probes traverse, too. In addition, we introduce web

traffic that shares the first hop. We generated web traffic using the example provided withns-2[Sim].

This example uses420 web clients and40 web servers. We plot the results in Figure 4.12. To obtain

these results, we faced a difficulty. We found that the ground truth virtualdelay distribution actually

changed based on the seed of the simulation. This seems to indicate an interesting point - TCP

congestion control and short-lived flows might cause a large variance inthe ground truth itself. Since

addressing this is beyond our scope, we modified our simulations so that all five probing streams

were simultaneously active in one simulation. This ensured that the streams were measuring the

same ground truth. Our results in Figure 4.12 further confirm NIMASTA. Notice that the absolute

delay was of the order of a second. In comparison to this, the variance ofthe CDFs estimated with

few probes is small.

4.5 Intrusive Measurement

The last section dealt with the non-intrusive case, i.e., when probes are of zero size. Here we

consider implications for inversion and sampling bias arising from ‘real’ probes of positive size.

4.5.1 Setting

The general setting of Section 4.3.1 continues to hold, with the key difference that now probes

influence system evolution. This does not affect the existence of the virtual delay processW (t)

(what a zero sized observer would see), nor our final aim, namely to measure Z∗(t), the delay

probes would have observed had they arrived to theunperturbedsystem (if probes were not present).

However there are two important changes:

• Our observableZ(t) can no longer be taken to beW (t), as we use positive-sized probes.

Instead, the probe delays are observables for a “ground truth” that depends on the probe
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packet sizep. This “ground truth” corresponds to the delay that a packet of sizep would

observe when injected into the system at steady state.

• Observations ofZ(t) are not observations ofZ∗(t): an inversion issue arises.

Our goal is to estimateZ∗(t) using observations ofZ(t) at the probing timesTn, and to deter-

mine in what sense, if at all, the following modified form of Equation 4.4 holds:

lim
N→∞

1

N

N
∑

n=1

f(Z(Tn)) = E[f(Z∗(0))]. (4.7)

Notice that this equation defaults to Equation 4.4 if probes are non-intrusive, in which caseZ(t) =

Z∗(t) = W (t).

4.5.2 PASTA

In the intrusive case, probe samplesZ(Tn) may be ‘anticipated’ by the system, resulting in

sampling bias. For instance, consider the uniform renewal process with support on[0.9µ, 1.1µ] of

the left hand plot in Figure 4.5. The negative bias results from the probesonly weakly seeing the

contribution to load of other probes, which arrive at least0.9µ from them.

Sampling bias due to intrusiveness means that Equation 4.5 does not in general hold (at least

for independent probing streams), but in the Poisson case it can be replaced with:

Theorem 5 PASTA: For Poisson probes (intrusive or not) the “memoryless” property of the expo-

nential inter-arrivals implies

P0(A) = P (A). (4.8)

Further, since a Poisson process is mixing, Theorem 4 is true and so the product shift is ergodic.

Therefore, the same set of reductions as in Section 4.3.3 can be applied:

P0(A) = P (A) =⇒ E0[f(Z(0))] = E[f(Z(0))] (4.9)

=⇒ lim
N→∞

1

N

N
∑

n=1

f(Z(Tn)) = E[f(Z(0))] (4.10)

This statement of PASTA in our setting reaffirms the fact that what it provides is unbiased sampling

of (functions of) the total systemZ. This says nothing about Equation 4.7, which includes the

inversion step taking us back to our target,Z∗.
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Experiments

Figure 4.13 illustrates PASTA using simulations with Network1 of Figure 4.8. We used the

same experimental setup as in Section 4.3.3 with one difference. The probe packets had a constant

non-zero sizep. To compare the delays observed by these packets, the ground truth wasthe delay

that a packet of sizep injected at timet would experience. Again, we used ourGround Truth

Calculator (GTC)to calculate this.
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Figure 4.13. Simulation showing the validity of PASTA in a multi-hop system, albeit withinversion
bias, for 4 different packet sizes (intrusiveness levels).

Delay marginals, obtained from50000 probes, are plotted over a range of intrusiveness,

achieved with 4 different probe sizes in Figure 4.13. We used the large number of probes because

our goal was to verify PASTA which is an asymptotic result. The figure shows, as we expect, that

PASTA continues to hold for delay, despite the dangerous periodic components of cross traffic. No-

tice that, the “ground truth” in each of the intrusive experiments is calculated as that corresponding

to the probe size used in that experiment. We also plot the CDF ofW (t), the virtual delay process

in the unperturbed system to illustrate the problem of inversion bias. Inversion bias exists even

w.r.t the ground truth of any positive-sized packet in the unperturbed system too (not shown in the

figure).
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4.5.3 Minimizing Intrusiveness

Conventional wisdom holds that Poisson streams should be used for active network measure-

ments due to PASTA. However, as discussed above, Poisson streams measure the perturbed sys-

tem and offer no guidance on inversion. Hence, in the absence of universally applicable inversion

methods, PASTA alone is of little use. One strategy is to use (e.g. [ZDP01]) a minimally per-

turbative stream to reduce inversion bias. Since packet sizes cannot be made arbitrarily small,

non-intrusiveness is achieved by ‘rare probing’, i.e., making the inter-arrival times large.

Any argument to justify minimal inversion bias due to the “almost non-intrusiveness” of the

probing stream can justify minimal sampling bias too. Specifically, if the inversionbias is consid-

ered negligible due to rare probing, then each probe does not see the effect of previous probes. For

practical purposes, the probing is non-intrusive and by NIMASTA, any mixing process can be used.

PASTA is irrelevant because we are eliminating the advantage Poisson probes have over other mix-

ing probes - lack of “memory” about themselves. In fact, the following generalization of NIMASTA

is the desired result.

Rare Probing: DenotePa to be a dilation of the probing process, i.e.,Pa refers to the probing

process with arrivals at{aTn}. Denote the delay in such a system to beZa(t). Then, we want

lim
a→∞

Ea
0 (f(W a(0))) = E(f(W ∗(0))). (4.11)

Notice that the above limit implies that both inversion and sampling bias go to zero in this limit.

A proof of the above statement for a general class of systems, which allowa Markov state rep-

resentation, is provided in [BMVB06]. While this disallows systems with long-range dependent

cross-traffic arrivals, we believe that similar results do hold, at least for most practical systems.

Figure 4.13 empirically shows this result, too.

Poisson probing has been suggested for packet pairs [SKK03], andpacket trains [LRLL04].

However, there is no theoretical rationale for this. PASTA applies only to a stream of Poisson

packetsthat measuredelays, and cannot justify any inference based on temporal behavior between

probe of a pair, where interactions are not weak or memoryless. In fact,rare probing requires

that packet trains be well separated, so Poisson probing of arbitrary rate (as we saw in section

Section 4.2.3), is likely to be suboptimal.
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The use of rare probes has four advantages. First, it provides access to delays seen by a non-

zero sized packet. Second, it avoids the problem that in fact the Poissonprocess is physically

unrealizable. Third, probe arrivals can be chosen based on other properties such as low variance and

MSE. Finally, as motivated empirically above, the rare probing approach would not be restricted to

single probes, butcould include arbitrary probe patterns, provided that the patterns themselves are

widely spaced. This gives a rigorous justification of a common practice, where separated groups of

non-zero sized probes are sent.

One important question in the rare probing context is “How rare should probing be?”. We do

not provide a definitive answer to this question. In fact, we believe that theanswer is dependent

on the specific properties of the path and cross-traffic. In practice, a good rule-of-thumb would be

to ensure that a new probe packet be sent only after the previous probe packet leaves the network.

Since queues “remember” packets that have left them, this is only necessary and not sufficient.

Viewing rare probing as a way to eliminate the need for inversion, a reasonably small probing

rate of, say1%, of the smallest link capacity is a good rule of thumb. This is already satisfied

by many existing studies, for example, [ZDP01]. A more sophisticated method would be to use

multiple probing rates and use appropriate tests to compare the difference in the resulting estimates.

Insignificant differences would indicate the relatively little perturbation thatall the probing rates

cause and hence, imply acceptable levels of “rarity”. The self-consistency principle [Pax04] behind

such a method is desirable too.

4.6 Conclusion

Our contributions, in this chapter, have been a rigorous analysis of the exact role and relevance

of PASTA in designing estimators of network measurements. Conventional wisdom holds that Pois-

son sampling must be used in network measurements for avoiding bias, and thePASTA property is

cited as the justification for this. In this paper, we use the problem of estimating end-to-end delay to

illustrate that this viewpoint is too simplistic and ignores the key aspect of probing - intrusiveness.

We show that the zero sampling bias property is shared by a large set of so-called mixing processes

when probing is non-intrusive (the NIMASTA property). The zero-bias properties are exclusive to
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Poisson only when probes are intrusive. However, it is extremely challenging to invert the perturbed

system (observed by probes) to access the unperturbed system. Hence, even with Poisson probes,

it is desirable to make them non-intrusive, by sending them as rarely as possible. In such a rare

probing context, the choice of the best probing stream is dependent on the total bias (sampling and

inversion) and variance. Finally, we show that it is incorrect to use PASTA to justify Poisson packet

pairs or trains. Here too, using rare probing at mixing times is a good strategy.

Although we concentrate on active measurements, the general points we make are relevant to

other contexts in traffic measurement. For example, one could consider passive end-to-end mon-

itoring, where the delay between packets which are common to two end points are extracted by

matching packets from link monitor logs at each end. Alternatively, there areimplications for the

choice of packet sampling strategies in routers, currently used to reducethe volume of monitored

traffic.
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Chapter 5

In-Principle Inversion: Cross-traffic

Estimation

“It is the theory that decides what can be observed.”

- Albert Einstein, German-born physicist

In the previous chapter, we investigated the sampling issues that arise in the context of ac-

tive network measurements. Specifically, we investigated the question of whento send individual

probes, pairs and trains to estimate functions of end-to-end delay and multi-dimensional extensions

of delay, e.g., jitter. Our recommendation of “rare probing” was a way to avoid inversion of the

perturbed system property to estimate the unperturbed system property. But, often the goal is to

access system properties such as available bandwidth [JD03], narrowlink capacity [KCL+04]. In

such cases, the inversion step has to estimate the desired system property based on observations of

some other property, usually end-to-end delay. In this chapter and the next, we tackle one such prob-

lem - inverting observed probe delays to access cross-traffic properties. Knowledge of cross-traffic

properties is of importance to network operators because it helps them better understand where and

why congestion occurs, and how it can be alleviated. Cross-traffic estimation is of interest to end-

users, too, given that cross-traffic directly impacts end-user performance metrics such as available

bandwidth [SKK03] and delay jitter. Cross-traffic estimators proposed byprior work are not suit-

able for the Internet due to a variety of reasons. Estimators that assume very specific parametric
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cross-traffic models (see [RCR+00, ANT01, SM98]) can be used only if such an assumption is

known to be valid. Their advantage, however, is that they provide us access to detailed statistics

about cross-traffic. Other cross-traffic estimators [SKK03] make no modeling assumption but only

estimate the first-order moment, i.e., the average cross-traffic rate. Moreover, they often require

very fine-grained control over packet timings which is very difficult at link speeds that are common

in today’s high-speed networks. Hence, one of our goals is to achieve the best of both worlds, i.e.,

access detailed statistics of cross-traffic with minimal modelingandwithout requiring fine-grained

control over packet sending times.

Our focus, in this chapter, is on in-principle inversion methods to access cross-traffic statistics.

In the next chapter, we use these methods to design practical cross-traffic estimators. Throughout,

we choose to use the delays of probe packet pairs as the observed pathproperty. Choosing pairs is

natural since the delays of a pair or train are much more likely to capture the nature of intervening

cross-traffic than individual probe delays. Pairs are chosen over probe trains because trains only

complicate analysis without providing any new insights. Additionally, we assumethat the First-

In First-Out (FIFO) scheduling discipline is used. This is the most commonly used scheduling

discipline in today’s routers and was also recently validated [HVPD04]. Westart our analysis by

investigatingwhatcan be estimated in the case of a single (FIFO-based) hop. Using basic queueing

theory we show that probe pair delays expose two cross-traffic functionals representing average rate

and burstiness. Then, we show that sample path ambiguity arises, i.e., the sameobservations of

delays can be caused by entirely different cross-traffic arrivals, unless we make some assumption

on cross-traffic. Therefore, we assume that the delay of the first probe of a pair is independent of

the cross-traffic trapped between the pair. This is quite general and well-motivated, as we show in

the next chapter using real data. Moreover, this assumption makes inversion tractable by allowing

us to access the CDFs and joint density of the two functionalsalmostentirely. Using an intuitive,

geometric framework, we develop exact inversion expressions and approximate expressions that

prove to be more useful in practice. We refer to the former as Class 1 and the latter as Class 2

expressions. Finally, we investigate adapting our theory to analyze multi-hopscenarios. We find

that such multi-hop analysis is encumbered by two fundamental effects - the unknown persistence

84



properties of cross-traffic, i.e., how many consecutive hops does cross-traffic flow across, and the

unobservable times at which probe traffic arrives at the intermediate hops.

This chapter is structured as follows. We start by discussing, in Section 5.1, prior works related

to cross-traffic estimation. We use this discussion to motivate our target problem. We also provide

an overview of our contributions in this chapter. In Section 5.2, we derivethe two cross-traffic

functionals that are exposed by probe pair delays in the case of a single (FIFO) hop. We also il-

lustrate how sample path ambiguity can arise if we make no assumption about the cross-traffic. In

Section 5.3, we derive (exact) Class 1 inversion expressions under our well-motivated assumption

on cross-traffic. We use an intuitive, geometric framework to derive these expressions. In Sec-

tion 5.4, we develop more useful (approximate) Class 2 inversion expressions. In the next chapter,

we not only validate the aforementioned assumption but also show that estimators based these Class

2 expressions work well in practice. In Section 5.5, we investigate if the developed theory can

be adapted to the multi-hop case. We find that, it is hard to do so due to quantities that are not

observable and unknown cross-traffic persistence properties. We summarize in Section 5.6.

5.1 Overview

In this section, we first survey prior work related to cross-traffic estimation and discuss their

shortcomings. Then, we state our target problem and elaborate on the scope of our investigation.

Finally, we present an overview of our contributions.

5.1.1 Motivation - Bandwidth Inversion Methods

In his work on congestion control, Jacobson [Jac88] first observedthat inter-packet separation

is preserved after the slowest link along a path. Keshav [Kes95] proposed using this to estimate the

bandwidth available to a flow in a network employing round-robin schedulers. Then, Carter, et al.

[CC96] applied these ideas to FIFO-based network paths. They proposed methods to estimate (ca-

pacity and) available bandwidth. Later, Melander, et al. [MBG00] proposed more heuristic methods

to estimate available bandwidth on a FIFO-based path. Their tool, TOPP, usedthe input and output
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rates of packet pairs. Other techniques (see [JD03], [HS03]) extended these ideas and used packet

trains to estimate available bandwidth. The underlying principle behind all of these is that available

bandwidth is the probing rate at which the bottleneck link is saturated. These techniques determine

that the bottleneck link is saturated by observing the resulting increases in delay. For accurate es-

timation, the delay increases must be significant. Hence, they are fundamentally intrusive. These

ideas on causing queue buildups have been adapted to estimate the congested hops along a path

[ASM03, HLM+04]. However, these techniques cannot quantify the available bandwidthon these

hops [HLM+04].

All of the above methods measure available bandwidth and do not directly measure cross-traffic.

Techniques performing direct estimation of cross-traffic are also known. We discussed these pre-

viously in Chapter 2. Below, we discuss them again to re-emphasize their shortcomings. These

techniques use probe delays to measure the amount of cross-traffic “trapped” between them. An

example of such a technique is Spruce proposed by Strauss, et al. [SKK03]. They used a simple

one-hop model to observe that, with intra-pair separation times less than the transmission time of

the first packet, we can obtain the cross-traffic rate using the input and output gap of the pair. Tech-

niques such as Spruce [SKK03] use large packets to ensure that the queue remains busy between

the packet pair. Ribeiro, et al. [RCR+00] also assumed that the queue is busy between a pair.

They used this to estimate the amount of intervening cross-traffic and estimatedcross-traffic prop-

erties assuming a parametric multi-fractal model. The requirement that the queue be busy between

the two probes can often not be ensured. For instance, on a100Mbps link the separation of two

maximum-sized packets (1500 bytes) should be less than120 µs. To estimate available bandwidth,

these methods subtract the (estimated) average cross-traffic rate from capacity estimates. Note that

packet pairs have also been used in estimating capacities, e.g., Capprobe [KCL+04]. Such capacity

estimation methods use minimum filtering to pick out the pair that saw no cross-traffic and use this

to estimate the bottleneck capacity.

A few prior works proposed estimators of cross-traffic assuming that it arrived according to

a specific parametric model. For instance, Ribeiro, et al. [RCR+00] assumed that cross-traffic is

multi-fractal. Sharma, et al. [SM98] proposed estimators of average cross-traffic rate assuming

Poisson cross-traffic. Alouf, et al. [ANT01] too assumed a Poisson arrival process to estimate
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cross-traffic and queue sizes in the single-hop case. The assumption ofa very specific model limits

the use of such techniques.

Recent work by Liu, et al. [LRL05b] investigated the signals that packetpair and train delays

expose. But, their results are asymptotic in nature and mostly help understandinaccuracies that may

arise with the fundamentally intrusive techniques, e.g.,pathload [JD03]. These inaccuracies are

caused because the discrete nature of data traffic can cause queue buildups even when the bottleneck

link is not saturated. Subsequently, Liu, et al. [LRL05a] focused on a standard assumption, made

by most of the above prior works, that a path can be modeled as a single hoprepresenting its

predominant bottleneck. This model, while not accurate, is a reasonable approximation for many

Internet paths. The analysis in [LRL05a] showed that, for fundamentallyintrusive techniques such

as pathload, there is a trade-off between accuracy and intrusiveness. Specifically, the longer a

packet train is, the more is its robustness to queueing on other hops. Nevertheless, such techniques

are more robust to queueing at other hops compared with non-intrusive packet pair techniques,

e.g., Spruce [SKK03]. This is because, non-intrusive techniques approximate the input and output

gap at the bottleneck with the sending and receiving gap. Even moderate amounts of queueing at

other hops can have a huge impact given that the input and output gaps are typically very small.

For purposes of available bandwidth, errors due to the necessary capacity estimation can also lead

to errors with techniques such as Spruce. However, the non-intrusiveness of Spruce and similar

techniques involving probe pairs or small probe trains makes them ideal foruse on distributed

infrastructures such as Planetlab [Pla] which limit user data rates.

5.1.2 Scope of Investigation

The above discussion shows the lack of satisfying answers to two questions. The first is whether

we can design non-intrusive techniques for cross-traffic estimation thatdo not require fine timing

control. Such techniques are naturally of interest in measuring paths with a single predominant bot-

tleneck - a common-case scenario on the Internet. The second question is whether we can extend

such techniques to consider truly multi-hop paths. Our work, in this chapter and the next, answers

the first question by designing cross-traffic estimators for a single hop. We briefly touch upon the

second question in this chapter by motivating why it might be impossible to extend our estima-
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tors to a multi-hop path. Later, in Chapter 7, we propose a novel measurement-friendly network

architecture that can be used to apply single-hop methods including our estimators to multi-hop

paths.

In investigating the problem of cross-traffic estimation, we choose to use thedelays of pairs of

probe packets as our input. Intuitively, pairs are better that individual probes since their delays are

related to each other via the cross-traffic “trapped” between them. We choose pairs over trains not

only because they are easier to analyze but also because such analysiscan arguably be generalized

to packet trains. Hence, the following is our target problem:

Given a knowledge of the measured delays of probe pairs, what can belearned about the probability

laws governing the cross-traffic?

Our objective is to answer the above problem in a rigorous manner. Hence, our first sub-goal is

to investigate what cross-traffic properties wecan learn and what properties wecannot, in theory.

Our second sub-goal is to design in-principle inversion expressions to access cross-traffic proper-

ties. The pros and cons of the few existing cross-traffic estimators, discussed earlier, dictate the

attributes that we desire our inversion expressions to possess. In particular, we want to perform

minimal modeling, yet access detailed statistics. Additionally, we want to performour analysis

without assuming an always-busy queue (between the pair) and/or stipulating the fine-grained tim-

ing required to achieve an always-busy queue. Our third sub-goal is the actual design and evaluation

of practical estimators. This is addressed in Chapter 6.

We use the prevailing hop model consisting of a FIFO queue to which both cross-traffic packets

and probes effectively arrive instantaneously, but flow out deterministically as they are serialized

onto the output link. This abstraction of hop behavior is appropriate in today’s Internet where store

and forward router architectures are common, with fast switch fabrics where through-router delays

are concentrated in output buffers. Recently, Hohn, et al. [HVPD04]validated this abstraction using

real data collected at the input and output interfaces of a router in the backbone network of a tier-1

ISP.
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5.1.3 Contributions

First, we develop a packet-based model of a FIFO queue. Our model is based on Lindley’s

equation [BB03] from queueing theory. Bolot [Bol93] used this equationin his work though many

later works [HS03] only considered a simpler fluid-flow model. Our model also demonstrates that

two functionals of cross-traffic, measuring the average amount and burstiness, relate probe pair

delays. These are, therefore, the only properties of cross-traffic that can be derived from observing

probe pair delays.

To determine whether the cross-traffic functionals can be derived fromprobe pair delays, we

perform a very simple sample path analysis. This shows that the non-linearityof the queue (its

size does not go below zero) causes sample path ambiguity, i.e., the same delayobservations can

be caused by cross-traffic with different properties. The one exception is that, at very small intra-

pair times, the amount of trapped cross-traffic is uniquely determined. This effect has been used

by previous work [SKK03]; But, as we discussed above, the intra-pairtiming is too small to be

enforced, especially on a path with other (underutilized) hops.

Sample path ambiguity implies that, to use large intra-pair times, some assumption aboutcross-

traffic is necessary. For applicability in a variety of systems, we assume thatthe delay of the first

probe is independent of the cross-traffic trapped between the pair. Previous work supports this

assumption as do we, in Chapter 6. Under this assumption, we show that almostthe entire joint

distribution of the two functionals can be inverted. We explain inversion by casting conditional

probabilities involving the observed probe pair delays and the unobserved cross-traffic functionals

into an intuitive, geometric framework. With the help of this framework, we derive inversion ex-

pressions for the marginal of the amount of cross-traffic and the joint distribution. We derive exact

Class 1 expressions and approximate Class 2 expressions. The latter aremore useful in practice

because they adapt to available data, as we will see in Chapter 6. Interestingly, we find that a por-

tion of the joint distribution cannot be inverted. Since its size is proportional tothe probe sizes, it

represents the cost of intrusiveness on observability.

Finally, we explore applying similar theory to analyze multi-hop paths. We find it hard to

do so even for a simple two-hop path. We identify two effects - persistence of cross-traffic and

89



unobservablity of the times at which probe packets reach intermediate hops,as two main reasons

why the multi-hop case might be intractable. We use these insights, in Chapter 7,to develop a

measurement-friendly architecture that allows non-intrusive single-hop methods usable on multi-

hop paths.

5.2 Basics

In this section, we first introduce the system setting we use and notation. Withinthis setting,

we describe the target problem. Then, we use basic queueing theory to explore what properties of

cross-traffic are exposed by probe pair delays. We find that two functionals, which can be considered

to represent the average amount and burstiness of cross-traffic, relate the delays of a pair of probe

packets. These two functionals are not independent; we derive additional expressions involving

them, too. Finally, we show that, unless the intra-pair gap is as small as suggested in [SKK03], the

system is sample path ambiguous. In other words, different cross-traffic processes can cause the

same set of probe pair delays to be observed.

5.2.1 Setting

We consider a single hop of capacityµ that uses a FIFO queue of infinite size. We take the

probes to have a constant size ofp bytes, which are transmitted inx = p/µ time units across the

hop. Probe pairs are sent at times{Tn} with a fixed intra-pair time oft. It is convenient to describe

the input traffic in terms of arandom measureA, whereby thetransmission timeof the cross-traffic

arriving to the queue in a time intervalI is denoted by the random variableA(I).

Our aim is to recover as much information as possible about the cross-traffic described byA.

For this to be feasible, the statistics of the system should not change fundamentally over time, and

the probes must be able to collect representative samples of them. The corresponding technical

assumptions are thatA is stationary, (i.e., for all intervalsI, the statistics ofA(δ + I) do not depend

onδ) and that the system with probes is jointly ergodic. We showed in Chapter 4 that joint ergodicity

is guaranteed by sending these pairs at mixing epochs. The pairs do not need to be rare because our
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aim is not to obtain unbiased estimates of the delays that a pair of packets will observe. We only

want to sample the cross-traffic process in an unbiased way; This is achieved by sending the probe

pairs at mixing epochs. For simplicity, we assume a mixing arrival process that does not cause the

pairs to overlap with each other. If we are sufficiently confident of the mixing properties of the

cross-traffic, we may use a periodic stream in which every pair of consecutive packets is considered

to be a pair (also, see [MVBB05, MVB+05]).

The raw data of a probing experiment are the arrival and departure timesof the probe packets.

Tn,1 andTn,2 are the arrival times of the first and second packets of thenth pair. Similarly,T ′
n,1

andT ′
n,2 are their respective departure times. We assume no propagation delay andsynchronized

sending and receiving times for simplifying analysis. In reality, these assumptions are not often

justified. But, as we discuss in Chapter 6, what is necessary isdelay variation[PV02a], and hence,

these assumptions are not required in practice.

5.2.2 Two Functionals - Average Rate and Burstiness

To derive how the delays of a packet pair are related to cross-traffic,consider the time period

[Tn,1, Tn,2) between the arrival of the packets of thenth pair. If the queue is busy throughout this

time period, the departure time of the second probe is simply determined by the delay of the first

probe, its transmission time and the cross-trafficA([Tn,1, Tn,2)) between the two probes. If the

queue is not busy throughout, then there exists some time instantv after which it is continuously

busy (for example, this may beTn,2 if the second probe arrives at an empty queue). In such a

case, the delay of the second probe is determined only by the cross-traffic that arrives in the time

period[v, Tn,2). Moreover, this delay will be greater than the delay calculated if we had assumed

the queue to be busy throughout. We can use these observations to obtain the following version of

the well-known Lindley’s equation describing FIFO queue evolution (for example, see [BB03])

T ′
n,2 =x+

[(

T ′
n,1 + A([Tn,1, Tn,2))

)

∨ sup
v∈[Tn,1,Tn,2]

(v + A([v, Tn,2))
]

(5.1)

wherex ∨ y denotes the maximum ofx andy. The left hand argument of∨ dominates when the

queue is busy throughout the time period between the packets of the pair. Ifthis is not the case, the

second term dominates the first and determines the departure time of the second probe. Subtracting
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Tn,2 from both sides of Equation 5.1, we get a relationship involving the delaysDn,i = T ′
n,i − Tn,i

T ′
n,2 − Tn,2 = x +

[(

T ′
n,1 − Tn,1 + Tn,1 − Tn,2 + A([Tn,1, Tn,2))

)

∨ sup
v∈[Tn,1,Tn,2]

(v − Tn,2 + A([v, Tn,2)))
]

Dn,2 = x +
[

(Dn,1 + A([Tn,1, Tn,2)) − (Tn,2 − Tn,1))) ∨ sup
v∈[Tn,1,Tn,2]

(A([v, Tn,2)) − (Tn,2 − v))
]

Instead of using absolute delay, it is convenient to work withRn = Dn,1 − x ≥ 0 andSn =

Dn,2 −x ≥ 0 which are the excess delays above the minimum value ofx, the transmission delay of

the probes. In terms of theRn andSn Equation 5.1 becomes

Sn = (x + Rn + Cn) ∨ Bn , (5.2)

where

Cn = A([Tn,1, Tn,2)) − (Tn,2 − Tn,1), (5.3)

Bn = sup
v∈[Tn,1,Tn,2]

(A([v, Tn,2)) − (Tn,2 − v)) . (5.4)

Note thatBn andCn are functionals of the cross-traffic over the interval[Tn, Tn+1) only, and are

neither influenced by the probes nor by the queue state. The following important relationships hold:

1. Bn ≥ 0 (takev = Tn,2),

2. Bn ≥ Cn (takev = Tn,1),

3. Bn ≤ Cn + (Tn,2 − Tn,1) (sinceBn ≤ A([Tn,1, Tn,2)) ).

We can interpretCn as thenet work that arrives in[Tn,1, Tn,2), and it takes values in[−(Tn,2 −

Tn,1),∞). Thus,Cn gives information on theintegral of the cross-traffic over a typical intra-

pair time period. In contrast,Bn gives some information on thepeak. More precisely,Bn is the

queue size that would have been seen at timeTn,2 if we consideredonly the cross-traffic arriving in

[Tn,1, Tn,2). For example,Bn − Cn is maximized when the traffic arriving over[Tn,1, Tn,2) occurs

in a burst just beforeTn,2.

5.2.3 Sample Path Ambiguity

It is clear from Equation (5.2) that we can at most identify the(Bn, Cn) sequence from observa-

tions ofRn andSn. Ideally, we would like to infer the sequence of cross-traffic functionalswithout
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Figure 5.1. A simple illustration of the sample path ambiguity for an arbitrary intra-pair interval.
The top plot shows the queue size over time. The dark shaded boxes belowit represent the probe
packet pair. The x-axis value represents the arrival time and the length of the boxes represents the
size of the packets. The second row of packets represent one sample path of cross-traffic packets.
The third row shows an additional cross-traffic packet whose arrival would not have changed the
observed delays.

making any assumption regarding cross-traffic. However, this is not possible if the queue empties

between the pair. We demonstrate this in Figure 5.1. For the sameBn, different values ofCn give

rise to the same sequence of observed probe pair delays. In other words, sample path ambiguity

occurs as long as modifications of cross-traffic leave unaffected the last busy period. However, if

packets of a pair share the same busy period, ambiguity with respect toCn andAn, the net and total

amount of cross-traffic trapped between them, is eliminated. This is exactly thescenario that tech-

niques such as Spruce [SKK03] hope to exploit. We discussed earlier why this is often not feasible

because the intra-pair timet required to achieve such an “always-busy” scenario is very small. For

instance, on a100Mbps Ethernet link, the maximum packet size is1500 bytes and hence,t cannot

be more than120µs, the transmission time of the maximum packet size.

The existence of sample path ambiguity at the desiredt values implies that we need to make

some assumption on cross-traffic. In the next section, we discuss what this assumption is and how,
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under than assumption, we can invertalmost the entire joint distribution of the two cross-traffic

functionals. For all of our subsequent discussion, we viewRn, Sn, Bn andCn to be particular

instances of respective random variablesR, S, B and C. We find it convenient to restate our

equations using these random variables andt as the intra-pair time (Tn,2 − Tn,1).

C = A([0, t)) − t, (5.5)

B = sup
0≤v≤t

(A([v, t)) − (t − v)) (5.6)

S = [x + R + C] ∨ B. (5.7)

Thus, the only information about cross-traffic that we can hope to obtain from packet pair delays

are statistics of the above two functionals,B andC (including their joint density). Notice that the

marginal distribution ofC also gives us the marginal distribution ofA([0, t)) = C + t.

5.3 In-Principle Inversion

In the previous section, we derived the two cross-traffic functionals exposed by probe pair de-

lays. In this section, we investigate how we to perform inversion in this context, i.e., using the

observed delays to access the two cross-traffic functionals. We develop in-principle inversion ex-

pressions to derive a variety of statistics of the cross-traffic functionalsfrom observed packet pair

delaysirrespectiveof t. The statistics that our expressions derive are not restricted to average cross-

traffic rate (or available bandwidth), unlike previous work, but include the CDFs and joint densities.

We did show in the previous section that such inversion is not possible as longas we do not make

some assumption on cross-traffic. We do make such an assumption, namely, that the cross-traffic is

such that(B, C) is independent ofR. This means that, the delay experienced by the first probe of a

pair is independent of the cross-traffic that arrivesafter its arrival andbeforethe second probe. We

choose this assumption not only because it makes the inversion problem tractable but also because

it a reasonable assumption. In fact, in the next chapter, we provide evidence indicating that this

assumption is valid for Internet traffic for the time scales of the order of intra-pair time periods. Our

performance results in that chapter also bear this out. That this is a reasonable first model of IP

traffic oversmall time-scales of a few seconds has been borne out by other studies too [HVA03].
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This assumption is much more general than assuming that cross-traffic arrivals follow a specific

distribution characterized by a few parameters (as in [RCR+00], for example).

We start this section by introducing an intuitive, geometric framework to explainthe observed

probe pair delays and the cross-traffic functionals. This framework allows us to derive and under-

stand our inversion expressions. Then, we derive inversion expressions to derive the CDFs ofC, the

net amount of cross-traffic arriving during an intra-pair time interval. These are exact expressions

and we refer to them as Class 1 expressions. Finally, we derive inversion expressions to access the

entire joint distribution of the two functionals except for a so-calledambiguity zone. We show that

the size of the ambiguity zone depends on the transmission time of the probe packets and hence,

can be viewed as the cost of the probing intrusiveness.

5.3.1 A Geometric Interpretation

It turns out that the unobservable functionals of cross-traffic and theobservable packet pair de-

lays can be viewed in an intuitive, geometric framework. We describe this framework next. Hence-

forth, we assume that all variables, including time, are discrete. This assumption is not essential, as

the discretization can be made as fine as we wish, and in applications using real data, discretization

is in any case unavoidable.

Unobservables: Cross-traffic Functional Marginals and Joint Densities

We denote the discrete density and the 2-dimensional cumulative distribution function (CDF)

of (B, C) respectively by

h(k, l) = P (B = k, C = l), (5.8)

H(k, l) = P (B ≤ k, C ≤ l), (5.9)

We writec(l) andC(l), l ≥ −t, for the density and CDF respectively of the marginal corresponding

to the variableC, and similarlyb(k) andB(k), k ≥ 0, for B. The relationships listed in Section 5.2

imply thath(k, l) = 0 outside of the diagonally oriented “feasible strip” defined by

feasible strip: (k, l) : k − t ≤ l ≤ k, k ≥ 0, (5.10)
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Figure 5.2 visually shows the feasible strip in the (discrete) two-dimensional space ofB andC.

Squares with white color have a canonical density of0. Marginals ofC, B, c(l) and b(k), are

obtained by summingh(., .) along infinite horizontal and vertical bars in Figure 5.2. We also find it

convenient to define the following “approximations” toc(l) andb(l):

c(k, l) =
k

∑

i=0

h(i, l) (5.11)

b(k, l) =
l

∑

i=−t

h(k, i). (5.12)

The sets ofk, l pairs in the sums definingc(·, ·) andb(·, ·) appear in Figure 5.2 as finite horizontal

and vertical bars respectively. As is clear from Figure 5.2,c(k, l) = c(l) as soon ask ≥ l + t.

k = s1k = s2

−t

−x

0
B

C

l1

l2
fr2

(s2)

fr1
(s1)

Figure 5.2. The discrete2-dimensional space ofB andC. The domain{k, l} where the joint density
h(k, l) of (B, C) vanishes is shown as white. The support of(B, C) is the stripk−t ≤ l ≤ k, k ≥ 0
shown as the light colored band. An observation of(R, S) = (r, s) corresponds to a(B, C) = (k, l)
value lying inside an angle shaped set with corner at(k∗, l∗) = (s, s − r − x). Two angle sets are
shown (shaded), corresponding to Class 1 (corner outside the strip,k = s1), and Class 2 (corner
inside,k = s2). The region where aggregates ofx + 1 = 3 atomic masses are connected is the
ambiguity zonewhere individualh values cannot be directly determined.
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Observables: Conditional Probabilities

Let fr(s) = P (S = s|R = r). We can write down this conditional probability by accounting

the cases when either of the terms in the right hand side of Equation (5.7) equals s. Using our

assumption thatR is independent of(B, C), we can count the various possible(B, C) that give rise

to S = s, R = r from Equation 5.7 and write

fr(s) = P (B ≤ s, C = s − r − x)

+ P (B = s, C ≤ s − r − x − 1) (5.13)

= c(s, s − r − x) + b(s, s − r − x − 1) (5.14)

=H(s, s − r − x) − H(s − 1, s − r − x − 1). (5.15)

This probability corresponds to a sum ofh(k, l) over an “angle shaped” set, with corner at

(k∗, l∗) = (s, s − r − x).

Two examples of angle sets are illustrated in Figure 5.2. A particular observation of S = s given

R = r corresponds to a(B, C) = (k, l) value, which, although unobservable, must lie inside the

angle set defined by(r, s). A given (k, l) value may be included in many angle sets corresponding

to different(r, s), however the mapping between(r, s) and the corner(k∗, l∗) is linear, and hence

uniquely invertible:(r, s) = (k∗ − l∗ − x, k∗). What are the possible locations of the corners? For

a fixedr, ass is increased the corresponding corner values(k∗, l∗) = (s, s − r − x) move upward,

tracing out a line parallel to the main diagonal. Asr decreases these diagonals translate upward.

However, the highest of these, corresponding tor = 0, is not the upper boundary of the strip, but

lies below it on the linel = k − x.

Assuming no constraint on the number of packet pairs, the ergodicity of thesystem implies that

we have access to pairs withR = r ≥ 0 for all values ofr and hence, we can calculate conditional

probabilities,fr(s), involving S andR. Thus, the available information concerningh(k, l) comes

in the form of the probabilities, given byfr(s) for different observed(r, s). All knowledge of the

unobservable cross-traffic functionals must be obtained by combining these conditional probabilities

(or angle sets) in different combinations.

Next, we derive inversion expressions to access statistics of the cross-traffic functionals using
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such conditional probabilities. Our expressions fall into2 classes. The first class of expressions are

exact and provide access toc(l) andh(k, l). Class1 expressions for the marginalc(l) are based on

restricting to cases where the queue is known to be “linear”, that is when it iscertainthat the probes

share the same busy period. The second class of expressions, derived in the next section, are based

on the idea that conditioning on linearity may be too strong to accessc(l), and require too much

data in practice. Hence, the second class of expressions use suitable approximations ofc(k, l) to be

c(l), justified by the idea that we can ignore zones where the density is likely to be small.

5.3.2 Exact Inversion Expressions: Class1

The class1 inversion expressions that we derive calculate the marginal ofC, c(l) and the joint

density of(B, C), h(k, l).

Calculating c(l) using a Single Conditional Probability

The first inversion expression uses the observation from Section 5.2 that B ≤ C + t, which

implies thatB ≤ x + r + C if R = r ≥ t − x. Hence, forr ≥ t − x, Equation (5.7) implies that

P (S = s|R = r) = P (x + R + C = s|R = r)

= P (C = s − r − x|R = r)

= P (C = s − r − x), (5.16)

which is a function of thedelay variationu = s − r. The last step follows from the independence

of R and(B, C) established above. Thus, for each fixedR = r obeyingr ≥ t − x we have

c(l) = fr(l + r + x). (5.17)

In terms of angle sets, the above simply corresponds to taking a corner(k∗, l∗) with l∗ = s− r−x,

andk∗ large enough so that the horizontal component of the angle completely traverses the strip

(fr1
(s1) in Figure 5.2). The vertical component in such cases falls below the strip, and thereby

contains zero probability.
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Calculating c(l) by Combining Multiple Conditional Probabilities

Since the above expression is true for many differentr values, it is desirable to combine them,

as this would make better use of data in the practical case. A general linear combination can be

written as

c(l) =
∞

∑

r=t−x

ar−(t−x)fr(l + r + x), (5.18)

where theai are any set of non-negative weights that sum to unity. Intuitively, a goodchoice is to

select weights that reflects the data available:ar−(t−x) = P (R = r|R ≥ t−x). It turns out that the

resulting expression is the same as if we had set out, looking across differentr values, to explicitly

collect together all relevant observations with constant delay variationu:

P (C = u − x) =
∞

∑

r=t−x

fr(u + r)P (R = r|R ≥ t − x)

=
∞

∑

r=t−x

P (S − R = u|R = r)P (R = r)/P (R ≥ t − x)

=
∞

∑

r=t−x

P (C + x = u, R = r)/P (R ≥ t − x)

=
∞

∑

r=t−x

P (C + x = u, R = r, R ≥ t − x)/P (R ≥ t − x)

=
∞

∑

r=t−x

P (C + x = u, R = r|R ≥ t − x)

= P (C + x = u|R ≥ t − x) = P (S − R = u|R ≥ t − x)

Defininggr(u) to beP (S − R = u|R ≥ r), we get:

c(l) = gt−x(l + x). (5.19)

The collection of(r, s) values used in this expression is illustrated in Figure 5.3(a), where the

shading indicates the corresponding weight. The above expressions essentially choose observations

corresponding to large delay values of the first probe in a pair. The large delay ensures that the

queue is busy until the next probe arrives. The difference between such a delay and the next delay

is used to estimate the distribution of cross-traffic arriving between them.
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          (a)           (c)

          (b)             (d)

Figure 5.3. The various Class 1 and Class 2 inversion expressions use different portions of the
(R, S) space, shown here. Only (d) is an expression to access the joint density. The rest are ex-
pressions for the marginalc(l). (a) Equations 5.19 and 5.28 (shading indicates weights used); (b)
Equation 5.25 (correction terms give the vertical components); (c) Equation 5.27 (uniform weight-
ing overN values ofr); (d) Equation 5.23 (shading indicates term type).

Calculating h(k, l), the Joint Density of(B, C)

Theoretically, the most that could be hoped for is a complete recovery of thedensityh(k, l) of

the joint variable(B, C). We now investigate the extent to which this can be achieved. It is useful

for us to first derive expressions forc(k, l), which represents a finite horizontal bar (fromB = 0 to

B = k at heightl) in Figure 5.2. Using Equation (5.15), we can solve forc(k, l) as follows:

c(k, l) = H(k, l) − H(k, l − 1)

We also defineFr(s), the CDF corresponding tofr(·), which is observable.

Fr(s) =
∑

i≤s

fr(i) = P (S ≤ s|R = r)
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Geometrically, using Figure 5.2,Fr(s) is composed of nested angle sets whose corners lie along a

diagonal that goes down and to the left from(s, s − r − x). Hence,Fr(s) is the “rectangle set”

H(s, s − r − x). We can combine the above two equations to get

c(k, l) = Fk−l−x(k) − Fk−l−x+1(k)

=
k

∑

i=0

[fk−l−x(i) − fk−l−x+1(i)] (5.20)

= fr(r + l + x) + Fr(r + l + x − 1)

− Fr+1(r + l + x), (5.21)

wherer = k − l − x.

To derive expressions forh(k, l), we recall thatc(k, l) andc(k − 1, l) are both finite horizontal

bars of different lengths at the same height. Hence,h(k, l) = c(k, l) − c(k − 1, l). Combining this

relation with Equation 5.20 we can calculate the joint density as,

h(k, l) =
k−1
∑

i=0

[2fk−l−x(i) − fk−l−x−1(i) − fk−l−x+1(i)]+

[fk−l−x(k) − fk−l−x+1(k)] (5.22)

= Fk−l−x(k) + Fk−l−x(k − 1)−

Fk−l−x+1(k) − Fk−l−x−1(k − 1). (5.23)

Equation (5.23) providesh(k, l) using three values ofr, namelyk − l − x andk − l − x ± 1, and

several values ofs. The collection of(r, s) values required is illustrated in Figure 5.3(d).

SinceFr(s) is undefined forr < 0, the above expression forh(k, l) can be used only when

k − l − x ≥ 1. Hence, we in fact cannot determine individualh(k, l) values fork − l ≤ x!

We call this region, marked with smaller rectangles in Figure 5.2, theambiguity zone. However,

Equation (5.20) shows that, for fixedl, we do knowc(l + x, l) which is the sum ofh(k, l) over

l ≤ k ≤ l + x, that is the mass in an aggregate traversing the width of the ambiguity zone (an

exception occurs whenl = −x, whereh(0, l) = c(0, l) is known from Equation (5.20)). Note that

other aggregates involving(k, l) values in the zone cannot be calculated. In particular, the marginal

b(k) of B cannot be determined.

The above can also be explained geometrically in terms of angle sets. The highest placed angles

are those corresponding tor = 0, whose corners correspond to the diagonal comprising the lower
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edge of the ambiguity zone. Since points in the interior of the zone, that isl ≥ k − x − 1, cannot

be corners, it follows that for a givenl ≥ −x theonlyangles passing through points in the zone are

those whose horizontal members align atl = s − r − x. Consequently, it is impossible to resolve

theh(k, l) values in the interior of the zone.

To understandwhy the corners cannot lie in the interior of the ambiguity zone, note that the

horizontal componentc(s, s − r − x) of the angle set(r, s) (refer to Equation (5.15)) corresponds

to (k, l) pairs such that the two probes share the same busy period, whereas the vertical component

b(s, s − r − x − 1) contains scenarios where they do not. Because of the invasive impact ofthe

probe sizex however, theymust be in the same busy period ifl ≥ k − x, which is precisely the

definition of the ambiguity zone.

We conclude with a comment on the role ofx. Since increasingx widens the ambiguity zone

and, if we use an intrusive probing stream, increases delayswithout impactingthe densityh(k, l), it

serves to increase the available range ofr values, thereby improving the applicability of expressions

in Class 1. However, smallerx reduces the ambiguity zone and enablesh to be determined more

fully.

5.4 Approximate Inversion Expressions: Class 2

The Class 1 expressions forc(l) above relied onr ≥ t−x. Thinking ahead to practical situations

with limited data, such values may be rare or even entirely unavailable. Hence,we develop inversion

expressions that do not require the above lower bound onr. However, they are approximate and to

distinguish them from the exact Class 1 expressions, we call them Class 2 expressions. They are

approximate because they assume that certain portions of the strip have zero density. In particular,

we assume thath(k, l) is sufficiently concentrated at smallk andl. Our Class 2 expressions use two

kinds of approximations - weak and strong. They differ from each otherin the portion of the strip

that, they assume, has zero density. In this section, we define each of these assumptions and derive

approximate inversion expressions based on them.
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5.4.1 Weak Assumption

Consider Equation (5.20) for a givenl. If in fact h(k, l) is negligible fork > kl, wherekl ∈

[l, l + t − 1] lies inside the strip, thenc(l) = c(k, l) wheneverk ≥ kl. We refer to this as theweak

assumption. It is reasonable to expect that it holds in many cases, at least for sufficiently largel, as

increasingk corresponds in some sense to “tail” events of low probability. It leads to the following

approximation for each fixedr obeyingr ≥ rl = kl − l − x:

c(l) ≈ Fr(r + l + x) − Fr+1(r + l + x), (5.24)

assumingh(l + r′ + x, l) = 0 ∀ r′ > r.

Equation (5.24) uses only a singler ≥ rl. As in the previous section, it makes sense to combine

different values to reduce variability. Using uniform weights results in a satisfying cancellation of

fr(s) terms, which would not occur if weighted averaging were used. Usingr now as a parameter

obeyingr ≥ rl, we obtain:

c(l) =
1

N

r+N−1
∑

r′=r

[Fr′(r
′ + l + x) − Fr′+1(r

′ + l + x)].

=
1

N

r+N−1
∑

r′=r

fr′(r
′ + l + x)+

Fr(r + l + x − 1) − Fr+N (r + N + l + x − 1)

N
. (5.25)

The first term is the average ofN expressions of the form of Equation (5.17), whereas the second

includesh(k, l) values that are not affected by the weak assumption. In Figure 5.3(b) the(r, s)

values required by the extra terms appear as the vertical lines.

5.4.2 Strong Assumption

If kl is such thath(kl, l) can be considered a tail probability, it is reasonable to expect that

this may also be true ofh(kl, l
′) for l′ values less thanl. This motivates the followingstrong

assumption, which in addition to the weak assumption, supposes thath(k′, l′) vanishes for alll′ < l

whenk′ ≥ kl, or equivalentlyr′ ≥ rl. In other words, all elements directly below, and below and to

the right of, the point(kl, l). It is not difficult to see that, for a fixedr obeyingr ≥ rl = kl − l − x,
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this leads to

c(l) ≈ fr(r + l + x), (5.26)

assumingh(l + r′ + x, l) = 0 ∀r′ > r

and h(l′ + r′ + x, l′) = 0 ∀r′ ≥ r, l′ < l.

As we did with Equation (5.24), we can averageN consecutive values starting from a givenr ≥ rl,

yielding

c(l) ≈ 1

N

r+N−1
∑

r′=r

fr′(r
′ + l + x). (5.27)

The leftmost angle in Figure 5.2 is an example of the terms (angles) in this sum whose corner

lies inside the strip. The stronger assumption has resulted in the loss of the difference term of

Equation (5.25). The corresponding plot Figure 5.3(c) shows that the vertical lines have vanished,

leaving a diagonal set similar to Figure 5.3(a), only with uniform weights.

We can also perform averaging with a natural set of weights as we did with the class1 inversion

methods. Recall thatgr(u) = P (S − R = u|R ≥ r), and letpr(r
′) denote the conditional

probabilitiesP (R = r′|R ≥ r), interpreted as a set of weights which sum to1. Using the strong

assumption one can show that

c(l) ≈
∞

∑

r′=r

fr′(r
′ + l + x)pr(r

′)

=
∞

∑

r′=r

P (S = l + x + R|R = r′)P (R = r′|R ≥ r)

=
∞

∑

r′=r

P (S − R = l + x|R ≥ r)

= gr(l + x). (5.28)

This is formally the same expression as Equation (5.19)! However,r is smaller thant − x, and the

corners of the angles set involved are inside the strip. Just as we did forfr(s), we can define a CDF
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corresponding togr(u), and establish the following identity:

Gr(u) =

u
∑

i=x−t

gr(i) = P (U ≤ u|R ≥ r), (5.29)

=
l

∑

l′=−t

gr(l
′ + x),

=
l

∑

l′=−t

∞
∑

r′=r

fr′(r
′ + l′ + x)pr(r

′),

=
∞

∑

r′=r

pr(r
′)

l
∑

l′=−t

fr′(r
′ + l′ + x),

=
∞

∑

r′=r

pr(r
′)Fr′(r

′ + l′ + x), (5.30)

=
∞

∑

r′=r

pr(r
′)H(r′ + l + x, l), (5.31)

which shows that the CDF corresponding togr(u) can be viewed as a weighted sum of rectangle

sets, with the same (l independent) weights as before.

As with class 1, increasingx has the advantage that a fixed(r, s) observation now corresponds

to an angle which is lower in the strip, whereas the densityh, being independent of probes, has not

changed. Hence, this same(r, s) pair is now more likely to fall into a region where the weak and

strong assumptions hold than before. Each of these advantages is consistent with the intuition that

larger probe sizes increase the chances of probes being in the same busy period, where information

can be extracted aboutc(l). Of course, the disadvantage is the widening of the ambiguity zone

which decreases the observability ofh by increasing the width of the ambiguity zone.

5.5 Multi-Hop Extensions

So far, we rigorously analyzed and developed inversion expressionsto access properties of

cross-traffic flowing across a single FIFO hop. In Section 5.2.3, we discussed that sample path

ambiguity can result at all but very small intra-pair separations. But, under a well-motivated as-

sumption, almost complete inversion of the two cross-traffic functionals is possible. It is natural to

ask if such if such inversion is possible with multi-hop paths. We investigate this by considering

the simplest multi-hop path - a path with two hops. We find that, even with such a two-hop path,

105



inversion is complicated by two factors - cross-traffic persistence and toomany “unobservables”.

We revisit these factors by investigating how they can be eliminated, in Chapter7.

Using the convention of the previous chapter, letT ′
n,i denote the departure time of theith packet

of the thenth pair from the first hop. For simplicity, we assume no propagation delay and hence,

this is also the arrival time at the second hop. LetT ′′
n,i be the departure time of the same packet from

the second hop. Also, letxi denote the transmission time of both probe packets at theith hop. Ai

denotes the measure representing cross-traffic arrival at hopi. Then, we can write the following by

applying Equation 5.1 to the second hop.

T ′′
n,2 =x2+

[(

T ′′
n,1 + A2([T

′
n,1, T

′
n,2))

)

∨ sup
v∈[T ′

n,1
,T ′

n,2
]

(

v + A2([v, T ′
n,2)

) ]

(5.32)

SubtractingTn,2 from both sides, we get the following expression relating the delayDn,2 of the

second probe with the delayDn,1 of the first probe.

Dn,2 = x2 +
[(

Dn,1 + A2([T
′
n,1, T

′
n,2)) − (Tn,2 − Tn,1))

)

∨ sup
v∈[T ′

n,1
,T ′

n,2
]

(

A2([v, T ′
n,2)) − (Tn,2 − v)

) ]

Let ∆′
n denoteT ′

n,2 − T ′
n,1, the difference in the departures from the first-hop of the packet pair,we

get

Dn,2 = x2 +
[(

Dn,1 + A2([T
′
n,1, T

′
n,1 + ∆′

n)) − t)
)

∨

sup
v∈[T ′

n,1
,T ′

n,1
+∆′

n
]

(

A2([v, T ′
n,1 + ∆′

n)) − (t + T ′
n,1 − v) + (T ′

n,1 − Tn,1)
) ]

(5.33)

5.5.1 Cross-traffic Persistence

In Equation 5.33, the time interval over which the cross-traffic of the second hop appears be-

gins with T ′
n,1 which is dependent onA1(.), the cross-traffic arrival process at the first hop. If

cross-traffic was only1-hop persistent, i.e., traversed only one hop of the path,A1 andA2 are in-

dependent. In such a case, stationarity would imply that the cross-traffic arrival from T ′
n,1 onwards

would statistically be the same as the cross-traffic arrival from time0. Hence, Equation 5.33 can be

written in the1-hop persistent case as,

Dn,2 = x2 +
[(

Dn,1 + A2([0, ∆′
n)) − t)

)

∨

sup
v∈[0,∆′

n
]

(

A2([v,∆′
n)) − (t − v)

)

+ (T ′
n,1 − Tn,1)

]

(5.34)
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However, if all cross-traffic to the first hop persists to the second hop,thenA2([T
′
n,1, T

′
n,1 + ∆′

n))

is equal toA1([Tn,1, Tn,2)) scaled byλ, the ratio of the capacities of the two hops. The scaling

factor is required because we measure cross-traffic in units of transmission time. Therefore, in this

persistent cross-traffic case, Equation 5.33 becomes,

Dn,2 = x2 +
[

(Dn,1 + λA1([0, t)) − t)) ∨

sup
v∈[0,∆′

n
]

(λA1([f(v), t)) − (t − v)) + (T ′
n,1 − Tn,1)

]

(5.35)

where,f(v) is a function such thatA1([f(v), t)) always counts the same cross-traffic asA2([v,∆′
n))

and vice versa.

The exact expressions of Equation 5.34 and 5.35 are less relevant to usthan the effect persistence

has on the system evolution. In general, part ofA1(.) may persist toA2(.) in which case the system

is described by an unknown combination of both these expressions.

5.5.2 Unobservable∆′
n and T

′
n,1

Cross-traffic persistence is not the only reason why the two-hop case ishard to analyze. To see

why, assume that we know how persistent cross-traffic is. Say, for instance, it is entirely persistent

and Equation 5.35 is true. Even ifλ andf(.) are known, there are two unobservable quantities,

T ′
n,1 and∆′

n. These represent information about the probe arrivals to the first hop. In practice, a

very rough approximation of these quantities would be the times at which ICMP replies to TTL-

expired “bounding” packets are received. This is known to be inaccurate due to the various known

issues with ICMP replies [LB00, PV02a]. Moreover, dependence between these unobservables

and the observableDn,i makes it unlikely that easy-to-justify assumptions, e.g., our independence

assumption, can be used either.

Above, we motivated why it is inherently challenging to design techniques thatare non-intrusive

andapplicable for use with true multi-hop paths, i.e., paths that cannot be approximated as a single-

hop path. We did not present a formal proof. But, by laying out the reasons why a multi-hop analysis

is difficult, we provide guidance to future work that attempts to solve similar problems. Indeed,

this discussion is a starting point for our design of a measurement-friendly network architecture in

Chapter 7.
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5.6 Conclusions

In this chapter, we tackled the question of the in-principle potential of packet pair methods in

identifying statistics of cross-traffic. First, we analyzed the1-hop FIFO case and showed using

simple queueing theory that probe pair delays expose two functionals of cross-traffic. These func-

tionals can be viewed as representing the average amount and burstinessof cross-traffic. Then, we

showed that, the system is sample path ambiguous unless the intra-pair separation is very small.

To do away with the latter requirement and not use specific parametric models of cross-traffic, we

used the assumption that the delay of the first probe is independent of the cross-traffic functionals

between it and the second probe of the pair. Under this well-motivated assumption, we showed that

almost complete inversion, of the two cross-traffic functionals is possible. We derived inversion ex-

pressions to access the average cross-traffic and the joint density of the two functionals. We derived

exact Class 1 and approximate Class 2 inversion expressions. Finally, weshowed that cross-traffic

persistence and the unobservability of probe traversal at various hops makes a similar analysis of

the two-hop case fundamentally hard.

In the next chapter, we design practical estimators based on the inversionexpressions derived

in this chapter. We find the Class 2 expressions much more useful, in practice, than the Class 1

expressions. We use a combination of simulations, traces and live experiments to evaluate our

estimators as well as justify our assumption. Our illustration of the hardness ofanalyzing multi-hop

paths guides us in the design of measurement-friendly networks, in Chapter7.
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Chapter 6

Practical Inversion: Cross-traffic

Estimation

“In theory, there is no difference between theory and practice; In practice, there is.”

- “Yogi” Berra, American baseball player and manager

In the previous chapter, we derived inversion expressions to estimate statistics of two cross-

traffic functionals in the single-hop case. In this chapter, we use these expressions to define and

evaluate practical estimators of cross-traffic. Our primary focus is on estimating the distribution of

the functional representing the amount of cross-traffic in an intra-pair timeinterval. In designing

estimators for this purpose, we encounter various challenges including those related to data avail-

ability and monotonicity of estimated CDFs. We also provide illustrative results showing that the

joint distribution of the two cross-functionals can be estimated. We use a combination of simula-

tions, traces and live experiments to refine and evaluate our estimators. Our results show that not

only can we estimate the entire distribution of cross-traffic but we can also doso using intra-pair

gaps that are much larger than those used by prior methods [SKK03]. Forinstance, on links that

have a utilization as low as50%, we can use an intra-pair gap that is up to ten times the transmission

time of the largest packet.

This chapter is organized as follows. In Section 6.1, we use key inversionexpressions to for-

mally define the estimators we use. All estimators use a parameterr to select only some of the
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probe pairs. A major portion of this chapter is devoted to investigating howr may be chosen. In

Section 6.2, we use simpleqsimsimulations to understand when and how the data available, to

estimate the density of the amount of cross-traffic, varies. We find a classicbias-variance trade-

off with our estimators that also illustrates the advantage of estimators based on Class 2 inversion

over estimators based on Class 1 inversion. In Section 6.3, we move to estimatingthe CDF (as

opposed to density) and show the advantages of adaptingr for estimation. We also show the advan-

tage of the strong assumption over the weak assumption in estimating a naturally-normalized CDF

and present a modified definition of the strong assumption that is more appropriate for estimating

CDFs. In Section 6.4, we use realistic simulations to develop and compare different varieties of

practical estimators with an adaptiver . We investigate a saturation algorithm to estimate the strong

assumption curve and use this curve to chooser . Since this does not output a monotonic CDF, we

investigate various monotonization algorithms. We also develop a simpler algorithmthat automati-

cally estimates monotonic CDFs by using (adaptively-chosen) constantr . We evaluate the various

estimators that we develop in Section 6.5. We find that our adaptive estimator performs well though

the monotonicity variants do not have much impact on performance. In Section6.6, we present the

results of evaluating the various estimators using packet traces and novellive experiments. We find

that, for utilization as low as0.5, we can estimate CDFs with a (root mean square) error less than0.2

for large intra-pair separations. In Section 6.7, we discuss important practical details such as clock

synchronization. We also show describe natural ways of making our estimators (and prior works)

more accurate by trading off non-intrusiveness. We summarize our contributions in Section 6.8,

namely, how large intra-pair separations can be used to accurately estimate cross-traffic in practice.

6.1 From Inversion to Estimators

In this section, we use the inversion expressions derived in the previouschapter to develop

practical estimators of cross-traffic. We develop three estimators of the density, c(l), of C, the

cross-traffic functional representing thenet amount of cross-traffic in an intra-pair time interval.

We also develop an estimator ofh(k, l), the joint distribution ofB andC, the two cross-traffic

functionals that relate the delays of a pair of probe packets.
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We construct the initial estimators in two steps. First, the observable conditional densities

fr(s) = P (S = s|R = r) andgr(u) = P (S − R = u|R ≥ r) are estimated. To do so, we

simply use the empirical frequencies, denoted byf̂r(s) andĝr(u) respectively, based directly on the

observed packet pair delays(R, S). If there are no samples for a givenr = r′, which is often the

case even thoughfr(s) is typically positive, we set̂fr′(s) = 0 for all s except the largest where we

set the density to 1. If there are none for allr ≥ r′, thenĝr′(u) = 0 for all u, except the largestu.

Such estimators are intuitive, and enjoy the property that they are naturally normalized. By this we

mean that their empirical CDFs,̂Fr(s) =
∑s

i=0 f̂r(i), andĜr(u) =
∑u

i=x−t ĝr(i), monotonically

increase from0 up to1, as a CDF should. In the second step, we select inversion expressionsfrom

the previous section, and replace each of the exact observablesfr(s), gr(u) andFr(s) by their

estimated counterparts.

The first estimators ofc(l) we consider are defined below in Equations (6.1) through (6.3). The

symbolr is used for the free parameter rather thanr, to avoid confusion with the latter’s use as a

sample of the excess delay variableR. Recall that sincel is fixed when estimatingc(l), specifying

r is equivalent to settingk = r + l + x, defining the corner(k∗, l∗) = (k, l) of the leftmost angle

used by the estimator.

ĉ1(l) = ĝr (l + x). (6.1)

ĉ2(l) =
1

N

r+N−1
∑

r′=r

f̂r′(r
′ + l + x). (6.2)

ĉ3(l) =
1

N

r+N−1
∑

r′=r

f̂r′(r
′ + l + x)+ (6.3)

F̂r (r + l + x − 1) − F̂r+N (r + N + l + x − 1)

N
.

Estimatorĉ1 arises from Equation (5.19). It differs from that equation however in that r is not

set tot − x, corresponding to the largest range ofr under Class 1, but is free to take any value

both below and abovet − x. It can therefore be seen to be of either Class 1 or 2, depending on the

situation. We have encountered its Class 2 form already in Equation (5.28).

Estimator̂c2 arises from Equation (5.27). Again, we do not prescribe the value of theparameter

r , but allow it to “operate” as either Class1 or Class2. (see Equation 5.18 and Equation 5.27

respectively).̂c2 can be naturally contrasted to estimatorĉ1 using the samer value.
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Estimatorĉ3 arises from Equation (5.25) which we derived using the weak assumption.It is

similar to ĉ2 but with the addition of correction terms. Unfortunately, these terms have a negative

impact on estimation performance, as we show later.

Estimators2 and3 user = r to r = r + N . To ensure that, for a givenr , they use the same

amount of information aŝc1 we takeN large enough so that each uses all observations ofR ≥ r .

This simplifies comparison and eliminates the need to perform parameter selectionwith respect to

N .

We now define our estimator forh(k, l). We must distinguish between points in the ambiguity

zone and those that are not. Outside the zone, that is fork − l − x ≥ 1, the estimator arises from

Equation (5.23) and is

ĥ(k, l) = F̂k−l−x(k) + F̂k−l−x(k − 1)− (6.4)

F̂k−l−x+1(k) − F̂k−l−x−1(k − 1).

The estimator for the horizontal aggregates in the ambiguity zone follows fromEquation (5.20):

ĉ(l + x, l) = F̂0(l + x) − F̂1(l + x). (6.5)

6.2 Fundamental Properties

Figure 6.1 shows the steps that we take in the next three sections to refine our estimators. In

this section, we investigate the fundamental properties of our estimators assuming that our assumed

model is perfect. To achieve this, we use simulations with simple arrival processes, using a mini-

mum number of parameters, to illustrate important factors affecting the estimatorsabove. We use

more realistic workloads in later sections of this chapter.

This section is organized as follows. In Section 6.2.1, we describe the simple simulation setup

that we use. In Section 6.2.2, we use illustrative simulations to show how the observed data changes

with respect to cross-traffic intensity (or equivalently, link utilization) and burstiness. These help

explain the performance of our estimators later in the chapter. In Section 6.2.3, we show that our

c(l) estimators possess a classic bias-variance trade-off, i.e., any attempt to reduce variance by using
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Section 6.3 C (l) best estimator
1 (SA) curve for CDFs

Saturation algorithm
to estimate SA curve enforce monotonicity

Algorithms to

Figure 6.1. Flowchart illustrating the steps we take in developing our final estimators. In Section 6.2,
we use simple simulations with constant packet sizes to illustrate how available datachanges with
cross-traffic intensity and burstiness. We also illustrate the bias-variancetrade-off. In Section 6.3,
we shift from density estimation to CDFs and define the strong assumption more appropriate for
CDFs. Moreover, among our three estimators, the CDF corresponding toc1(l) is the best. We also
motivate how adaptivity in choosingr can have significant advantages. In Section 6.4, we describe a
saturation algorithm to estimate the strong assumption curve. Then, we use this algorithm to propose
a composite estimator that requires additional algorithms to ensure the monotonicityof CDFs. We
also describe a simpler adaptive estimator that does not require monotonicity. We evaluate all of
these estimators in the later parts of this chapter.

more data inevitably increases bias and vice versa. This trade-off illustrates the innovation of our

approach. In the past, delay observations were divided into two categories according to an (inferred)

busy period/idle period criterion for probes [PV02b]. Although this is a very intuitive approach well

suited to heuristic methods, it is difficult to carry it further. Instead, we employ conditioning with

respect toR, thereby providing a sequence of subsets of probe delay, indexed byr. These subsets

vary in their proportions of probes pairs which share, or not, the same busy period. From each subset

an estimate can be obtained. For large enoughr, the sets fall into Class 1 and therefore contain only

the busy cases, so that estimates based on these are bias free. As we enter Class 2 at smallerr,

this is no longer the case but it remains approximately so until the strong assumption is broken. By

viewing the problem in this way, we have a sequence of estimators of steadily decreasing bias but
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increasing variance asr increases. Thus, there are significant benefits of choosingr adaptively - a

question we address in the next two sections.

6.2.1 Simulation Setup

As with the analysis of Section 5.3, we simulate a fully discretized single-hop system, with

slotted time corresponding to the transmission timeδ = 8d/µ [sec], whered = 10 is the size of the

slot measured in bytes, andµ is the output link capacity. We use theqsimsimulator described in

Chapter 3. Cross traffic arrivals are taken to be Poisson, with constantpacket sizep bytes. In our

discrete setting, the number of Poisson arrivals in each slot is an i.i.d. Poisson random variable with

parameterλδ. The packet transmission times are also integer multiples ofδ. The above cross-traffic

and packet size combination corresponds to a particularly simple example of astationary measure

A that satisfies the assumption of(B, C) being independent ofR due to the “memoryless” nature

of Poisson streams.

We use periodic probing streams with probes of sizep = 40 bytes too, sox = p/d = 4, with

period t = 10p/d = 40 slot units, or the time taken to transmit400 bytes. Due to the Poisson

nature of cross-traffic, periodic probing streams achieve joint ergodicity [MVBB05, MVB +05]. In

this section and the next, it will be convenient to present results either as integers from the slotted

discrete time system,l, k, r, etc. (already normalized byδ), or in units of bytes.

6.2.2 The Issue of Available Data

To understand how the estimators behave, it is essential to know the environment they operate

in. The following paragraphs examine this in detail for the system describedabove with cross-traffic

intensity,ρ = 0.8 andδ = 0.25 [ms] corresponding toµ = 320Kbps.

We begin with Figure 6.2, where the shaded area visualizes the joint densityh(k, l) of (B, C).

The density is concentrated on lines corresponding to whole numbers of packets, and lies away

from the lower edge of the strip for almost alll values. This indicates that the weak and strong

assumption will hold for many corners(k∗, l∗) well inside the strip. The density is particularly

concentrated near thel axis, corresponding to low per-slot “burstiness” of the cross-traffic. The
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Figure 6.2. The densityh(k, l) of (B, C) for ρ = 0.8 (darker tones indicate higher density), and
corresponding contour lines giving probability per ‘pixel’. The density isconcentrated on discretel
values corresponding to whole numbers of packets. The two values ofl used in Figure 6.6,−120/d
and−320/d, are shown (d is the number of bytes per time slot).

superimposed contour lines give an idea of the probabilities corresponding to the “pixels” of this

shading, which were drawn at full slot resolution.1

Knowing where the density becomes negligible tell us whichr values are necessary to measure

it, and therefore informs the choice of the parameter valuer which controls the range ofr used by

the estimators. The next question is, how available are these desirabler values? Or equivalently,

what is the probability that the angle sets they correspond to will be seen? Itis instructive to first

visualize the densitym(r, s) of the packet pair delays(R, S), as seen in the left plot in Figure 6.3.

Mass is concentrated on lines of constantu = r − s at larger, since there the queue cannot empty

between the consecutive probes corresponding tor ands and so they must share a busy period. The

probe separationu is then constrained to be multiples of a cross-traffic packet transmission time.

To see how the densitym(r, s) impacts estimation, it is more useful to transform this informa-

tion on “available data” into a form which is directly readable in the(k, l) plane. Recall that there

1For visual clarity, the contour lines, here and elsewhere, were smoothed to emphasize thel values corresponding to
whole numbers of packets. At otherl values the contours cut in much closer to thel axis.
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Figure 6.3. The densitym(r, s) of (R, S) (left), and its transformation intoangle densitya(k, l)
(right). Darker tones indicate higher density. Contour lines are for probability per “pixel”. Lines of
constantu = r−s are mapped to horizontal lines in the(k, l) plane. The ambiguity zone is between
the the top of the strip and the diagonal line immediately below it. There is no angle density in the
ambiguity zone.

is a 1-1 mapping between(r, s) pairs and angle corners:(k∗, l∗) = (s, s − r − x). Applying this

mapping tom(r, s) induces what we call theangle density, a(k, l). The right plot of Figure 6.3

displays the angle density, together with corresponding contour lines. It allows us to directly see the

available data for each angle set. The affine mapping has taken vertical/diagonal/horizontal lines in

(r, s) space and mapped them to diagonal/horizontal/vertical lines in(k, l) space respectively.
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Figure 6.4. Superimposing angle density onto contours ofh(k, l) for ρ = 0.2 (left) andρ = 0.8
(right). The shading of the right plot is a zoomed-in version of the shadingin the right plot of
Figure 6.3. The angle density is given by the shading, and the cross-traffic density by two contour
lines. The degree of coverage ofh by the angle density varies significantly.

Figure 6.4 gives a representation of angle densitya(k, l) and the cross-traffic densityh(k, l) in

116



the same plot, for a low (0.2) and high value ofρ. To avoid overcrowding the figure, the shading

is given for angle density with no contours, and two contours are given for h, with no shading.

As is clearly seen in the lowρ case, whereh is concentrated is not necessarily where the angle

density is located. More generally, it is clear that to resolveh well across the(k, l) plane, we need a

sufficient “coverage” of angle density, and that whether this is achieved will depend on the number

of observations as well as the queueing statistics (which are a function ofρ, or more precisely, of

the combined cross-traffic and probe traffic processes).

Angle density shows where the “available data” is located in the strip, however estimators make

use ofsetsof angles. Thus, to see what is actually available for an estimator to use, we must sum

over these sets. Recall from the previous chapter (and Equation 5.18) that each choice ofl andr

designates a set of angles whose corners lie at(k, l) wherek ≥ k = r +l+x. The mass contained in

these angles, that available to an estimator, is simply the sum of the angle densitya(k, l) contained

in the horizontal segment defined by a given fixedl andk ≥ k. This is also equivalent the sum

of densitiesm(r, s) such thats − r = u = l + x andr ≥ r . The right plot in Figure 6.5 repeats
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Figure 6.5. Superimposing contours of the ‘available mass’ used by estimators, over the density
h(k, l), for ρ = 0.4 (left) andρ = 0.8 (right). We use the same contours on both plots to contrast
the twoρ values.

theh(k, l) density from Figure 6.2 without the contours. Instead, contours are drawn based on the

density ofavailable massused by an estimator as just defined. Using them, for any givenl we can

easily see which regions in the strip are data rich or data poor from the pointof view of an estimator

of c(l). The answer clearly depends onl. The left plot in Figure 6.5 shows a similar plot forρ = 0.4,

where the coverage is worse.
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In conclusion, we are left with two important questions: whether strong or weak assumptions

hold (and the shape of these regions), and whether there is sufficient data available to an estimator,

depend strongly onl. Furthermore, the interplay between the densitiesh(k, l) and a(k, l) over

the plane is crucial. The feasibility of estimation depends strongly onl, and furthermore there

is an intrinsic difficulty in that the degree of coverage may not be adequate.For low levels of

burstiness/utilization, the marginal ofR is concentrated nearR = 0, resulting in available mass

which is strongly concentrated near(k, l) = (0,−x). But, under these same circumstances,h(k, l)

is concentrated near(k, l) = (0,−t). The overlap of the two is small, and any estimator will

have great difficulty, essentially because the region where the data is needed in order to measure

the (B, C) values which occur, is precisely where data is scarce. Coverage is determined not by

utilization alone but by the spread of(r, s) values seen, which depends onρ, burstiness, as well as

the number of observations.

6.2.3 A Bias/Variance Trade-off at Fixedl
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Figure 6.6. Estimator bias and standard deviation as a function ofr . The horizontal line is the true
value ofc(l). (a) l = −3p/d, or −120 bytes. The bias begins at−80 bytes. (b)l = −8p/d, or
−320 bytes. The bias begins at−280 bytes.
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We now examine estimator performance forl = −3p/d, or −120 bytes in theρ = 0.8 case.

For this value ofl, the right plot in Figure 6.5 shows that conditions are good: the available mass

contour lines shows that the region whereh(k, l) is concentrated is well covered, and also that there

is considerable mass available in the angles both inside and to the right of the strip. Furthermore,

h(k, l) is small for a considerable distance to the left of the bottom edge of the strip. Hence both

ĉ1 and ĉ2 can be expected to perform well either as Class 1 or Class 2. Figure 6.6(a) compares

the mean and standard deviation of the estimators, based onn = 1000 probes, as a function of

the parameterr . The mean and standard deviation were estimated usingN = 1000 independent

experiments, each yielding a single sample for each estimator (and for eachr ). The estimated mean

is shown with1.96σ confidence intervals near the center of the plots. The outer curves are drawn

one standard deviation (of the estimator) to either side of the means.

For r ≥ t − x each estimator operates as Class 1. As expected each gives approximately

unbiased estimates ofc(l) in this case. As expected, the uniform weighting scheme ofĉ2 is less

effective, resulting in larger variance. The correction terms in Equation (6.3) separatinĝc2 and

ĉ3 identically cancel under Class 1 in theory, however estimates of them do not.Effectively an

imperfect estimate of zero is added, resulting in increased bias and variance (not shown).

For r < t − x each estimator operates as Class 2. Asr decreases, we expect each to become

biased. This is indeed what is observed. However, there isno sharp changeat r = t − x, since

the strong assumption holds very well. For example a bound on the total errordue to the assump-

tion: mass ignored plus the undesirable mass included in the angle at(k, l), is only 0.1% ofc(l)

(i.e. (c(l) − c(k, l) + b(k, l − 1))/c(l) = 0.001). At small r however when the strong assumption

finally fails, the bias of̂c1 is much worse, because its weighting scheme was not designed to cope

with the errors inherent in Class 2. As before, the variance ofĉ1 is lower, as greater weight lies in the

data rich zones wherer ands are smaller. Again, the correction terms ofĉ3 worsen its performance

(not shown) relative tôc2. Since they are in the form of a difference of two quantities of similar

size, they are sensitive to errors.

In conclusion, there is a classic bias variance trade off operating, whichbegins once the strong

assumption ceases to hold. This value ofr , which plays the role of theeffectiveClass 1/Class 2

boundary, is clearly visible in Figure 6.6(a) as the point where the bias ofĉ1 begins to be noticeable.
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To the left of this point,c1 has rapidly decreasing variance at the cost of increased bias, whereas

ĉ2 reacts more slowly. Figure 6.6(b) shows an analogous study for a smallerl = −8p/d, or −320

bytes. Similar conclusions on bias and variance hold for each estimator separately. But, the point

marking the beginning of the bias increase now occurs earlier atr = −8p/d, again in line with the

failure of the strong assumption as seen visually in the right plot of Figure 6.5.

Consider now the effect of reducingn, the number of probes, on the results in Figure 6.6. To first

order, the qualitative behavior remains the same, but the standard deviationof estimates increase.

To mitigate this, one could be led to select smaller values ofr to capture more data, and to control

the resulting increase in bias,c2 may becomes more attractive in comparison toc1. Thus, which

estimator is preferable (at least in terms of bias), and in particular the success of a Class 1 inspired

approach, is also dependent on the global amount of data available.

The above demonstrates the value of the Class 2 inspired estimators, and the necessity on not

insisting onalwayshaving linear behavior of the queue for estimation. In earlier packet pair methods

it was crucial that the probes share the same busy periodand were back to back. Here this is not the

case. Class 2 based estimators not only can be used, but they may even out-perform those based on

Class 1 ideas. Furthermore, because of this, greater values oft can be used than before, because the

push into the data-poor regime, to the detriment of Class 1 estimators, is no longer a fundamental

barrier.

6.3 Motivating Adaptation

In this section, we move from the largely illustrative setting that we have used so far to more

realistic and practical settings (see Figure 6.1). First, we begin to use estimators of the CDF and

not density. We do this mainly because individualc(l) values may be so small that estimating all

of them accurately might be a hopeless task. We also move to a simulation framework that is more

representative of the real Internet. In Section 6.3.1, we compare CDF estimates (for the simple

simulations used in the previous section) obtained using the3 estimators ofC(l). We find that the

estimator based on the weak assumption is undesirable because it does not estimate a normalized

CDF. This further justifies our shift to CDF estimation because it incorporates natural constraints
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Figure 6.7. Comparison of CDF estimates (solid dark line) and true CDFC(l) = P (C ≤ l) (thick
grey line). (a)Ĉ1 with r(l) = 4p/d, expectation and 8 samples, bias and variance are small with
ρ = 0.8 but depend onl; (b) Ĉ3, with r(l) = 4p/d, estimates are individually worse and not
naturally normalized.

such as normalization. We also follow up on our discussion on the bias-variance trade-off by il-

lustrating the advantages of choosing an adaptiver for CDF estimation. To investigate adaptive

algorithms, we need to use more realistic simulation settings. We describe them in Section 6.3.2.

Our use of CDFs requires us to redefine the strong assumption for CDFs (as opposed to density).

We do this in Section 6.3.3.

6.3.1 From Density to Distribution

To consider estimates of the CDFC(l), we define CDF estimators, based on the previously-

definedc(l) estimators, as follows

Ĉj(l) =
l

∑

i=−t

ĉj(i), (6.6)

for each ofj = 1, 2, 3, rather than examining the density estimatesĉj(l) directly. To complete

the above definition, we must also specify the parameter valuesr(l) used for eachl. Note, by the

definition above and that of̂c1 (Equation 6.1), we havêC1(l) = Ĝr (l + x).

Figure 6.7(a) compareŝC1(l) with r(l) = 4p/d, again based onn = 1000 probes, againstC(l),

using the same cross-traffic as in Section 6.2.3. The expected CDF (calculated as the average of

N = 1000 experiments) is very close to the true CDF, and the variance, illustrated informally by

the plotting of 10 individual samples, is likewise small. Both however are functions ofl: the bias is
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greatest at smalll, whilst the variance is larger at intermediate values. The lower bias at larger l is

easy to understand from Figure 6.2 given how the diagonalr(l) = 4p/d moves to the right of where

h(k, l) is significant, allowing the strong assumption to hold. Note that, sinceĉ1(l) = ĝr (l + x),

andr(l) is constant, the natural normalization ofĜr (u) is naturally transferred tôC1(l). Thus, even

though estimates of̂c1(l) must eventually be poor whenl is very large, this does not prevent good

behavior of the CDF. This natural normalization is an extremely desirable property.

Figure 6.7(b) offers exactly the same comparison as in plot (a), only forĈ3(l). Because of

the correction terms in Equation (6.3),ĉ3(l) does not possess the natural normalization enjoyed by

both ĉ1 andĉ2. Consequently, the errors in the density (apart from being individually considerably

worse as discussed above) are not constrained to cancel at largel in the same way, leading to CDF

estimates with fundamentally flawed properties. As a result,ĉ3(l) will not be considered further.

From this point on, we omit results for̂C2 too, concentrating solely on̂C1. We do this mainly

because the results for the two are very similar once we go to systems with more realistic packet

sizes and smaller levels of discretization. This is because, under realistic conditions with small

discretization, either0 or 1 samples belong to any given angle set. Consequently, the weights

appearing in the definition of̂c1 become, in a sample path sense, uniform, just like those ofĉ2.

Sinceρ = 0.8 in Figure 6.7(a), there is enough data to provide good estimates at mostl values

of significance. Figure 6.8 shows how the performance ofĈ1(l) drops significantly whenρ = 0.4

(expectation estimates only are shown, again based onN = 1000). The l dependence of the bias

is now strong and clearly visible, as is the dependence on the choice ofr . When moving from

r = 3p/d to the lower diagonal of4p/d, the bias becomes even worse at smalll but improves

markedly at largel. This suggests that an adaptive strategy, wherer(l) truly depends onl, could be

used improve estimation. An example of this is given, where a transition fromĈ1(l) with r = 3p/d

to Ĉ1(l) to r = 4p/d occurs atl = −4p/d (i.e., 6 packets arriving between probes).
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6.3.2 Experimental Setup

We abandon constant packet sizes entirely from now on, and move to the following trimodal

packet size distribution which is similar to that found in the Internet[Spr]:

p(i) =











































0.5, i = 40;

0.1, i = 580;

0.4, i = 1500;

0, otherwise,

(6.7)

The cross-traffic arrival process remains Poisson, i.e., an intervalt consists of a Poisson distributed

number of packets. This is acompound Poissondistribution, which is much more bursty when

p(i) is not concentrated on a single value (the constant packet size case). We calculate the CDF of

this distribution by using a numerical approximation of an exact formula forc(l), being simply the

Poisson-weighted (with parameterλt) sum of terms, where thejth term is thej-fold convolution

of the densityp(·) above. The point-wise error can be controlled and was chosen here to be 10−5,
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negligible compared to other factors. We usen = 1000 probes of40 bytes (conveniently, all packet

sizes integral multiples of the discretization unitd = 10). We denotepmax to be the maximum size

of a packet,1500 bytes andxmax to be its transmission time on the link. Also, we change the link

capacity from320Kbps to a realistic10Mbps.

6.3.3 Redefining the strong assumption

Since we moved to estimating CDFs, we need to redefine the strong assumption in terms of the

CDF ofc(l), C(l). We do this below. We know thatC(l) = H(k, l) for k ≥ l + t. We approximate

this byH(k, l) for k ≤ l + t, thereby potentially ignoring the part of the density nearest the right

hand edge of the strip. Consider the lower angle in Figure 5.2. If we approximateC(l2) by Fr2
(s2),

we are ignoring the density in a triangular region consisting of two squares at height l2 and one

square at heightl2 − 1. Formally, we create an error

es(k; l) = H(l + t, l) − H(k, l) ≥ 0 (6.8)

corresponding to the sum ofh(k, l′) over a triangular region defined byk > k, l′ ≤ l, and the

lower boundary of the strip. Such a definition is different to what we wouldobtain if we assumed

the strong definition of Equation 5.26 over the rangel′ ≤ l. A minor difference is that the new

definition includes the density lying strictly below the corner(k, l), which was previously excluded.

The larger difference is that the previous definition implied that, for anyl, the estimate ofC(l)

would assume zero mass in a region adjacent to the lower edge of the strip forall l′ ≤ l. In contrast,

the new definition neglects only the mass in a triangular region described, anddoes not enterk < k.

Thus, the new definition demands progressively weaker conditions asl increases, compared to the

previous one.

We define thestrong assumption curveat probability thresholdθ as follows:

ks(l; θ) = max(0, arg min
k≥0

es(k; l) < θ) (6.9)

that is, for eachl, the leftmostk value within the strip such that the error due to the strong assumption

does not exceedθ. Figure 6.9 gives examples (estimates made usingN = 1000000) of the strong

assumption curve for three threshold values at high utilization.
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Figure 6.9. Examples ofC(l)-based strong assumption curves forθ = {0.001, 0.01, 0.1} (3 grey
curves) forρ = 0.8. Estimates from the saturation algorithm are also shown for different window
sizesw.

For someθ and l, let k be ks(l, θ). Then,H(l + t, l) − H(k, l) is at mostθ for k ≥ k.

This is because the rectanglesH(k, l) extend beyondH(k, l) and must be progressively better

approximations. Hence,C(l) − Fr(r + l + x) ≤ θ for all r ≥ r = k − l − x. So, any weighted

combination of theseFr(r + l + x) (with weights summing to unity) would differ fromC(l) by at

mostθ. In particular,C(l) − Gr (l + x) ≤ θ. Thus, usingĜr(l + x) to estimateC(l) is consistent

with the new definition too.

6.4 Final Composite Estimators

In this section, we define our final estimators. First, in Section 6.4.1, we propose a window-

basedsaturation algorithmto chooser adaptively as a function ofl. We find that ensuring the

monotonicity of an estimator using an adaptiver is not easy. We explore multiple algorithms to

enforce monotonicity and build a composite estimator incorporating the saturationalgorithm and

these monotonicity algorithms in Section 6.4.2. In Section 6.4.3, we explore a different kind of
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adaptiver estimator that automatically enforces monotonicity. We evaluate these various “final”

estimators in later sections.

6.4.1 Estimating the strong assumption curve

Our guiding principle to chooser(l) follows from the observations of the previous section: if

r(l) can be chosen to match where the strong assumption begins to fail, essentially tracking the

boundary where the density in Figure 6.2 drops off, then the bias-variance trade-off observed in

Figure 6.6 could be well managed for eachl. However, this approach will fail when there is no

data to measure the position of this boundary, as for example in the left plot ofFigure 6.4. In

this low ρ plot, the densityh(k, l) of (B, C), roughly speaking centered about(k, l) = (0,−t)

(note the tiny black region), is well separated from the density of available data, centered about

(k, l) = (0,−x), corresponding to(r, s) = (0, 0), i.e., with high probability the probe delays are

close to the minimum.

Figures 6.10 and 6.11 plot̂Gr(l + x) againstr (rd [bytes]) for fourl values, for low and high

utilization respectively. The noisy curves are several independent estimated functions each based

on a single realization ofn = 500 probes, whereas for comparison, the thick grey curve derives

from a realization employing 1 million probes. Asr increases,Gr(l + x) increases monotonically

to attainC(l) (shown as the horizontal line) atr = t − x = 246 (the full height vertical line). The

estimates roughly follow this pattern. However, since the available data monotonically decreases

with r, the crucial limiting behavior becomes obscured by noise which can take extreme values.

Moreover, the curves show non-ergodic features in that they oscillate about a limiting level which is

not necessarilyC(l) but some random offset from it. As a result, it is not feasible to target the point

lying on a strong assumption curve given by a small thresholdθ.

Therefore, we adopt a less ambitious approach which aims to find the point at which the steadily

increasing phase of the estimate curve saturates. We first smooth the curveto reduce the sample

variability, so that the systematic increase at smallr can be seen more clearly. The intuition is that

when the underlying “expected” curve has saturated, then the variability will cause the curve to

cease to become monotonic despite the smoothing.
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Figure 6.10. Strong curve estimation withρ = 0.2 for (left to right, top to bottom)l =
{4, 60, 140, 300}. The 6 thin lines (resp. single thick grey line) are estimates ofH(k, l) using 500
(resp. 1 million) probes. Ther values selected by the saturation algorithm are shown as vertical
dashed lines, can be compared to the strong assumption valuesks(l; θ) for θ = {0.001, 0.01, 0.1}.

Saturation Algorithm:

1. Select a window sizew (performance insensitive to value).

2. Smooth thêGr(l + x) estimates using a moving average window filter of widthw (the filter

is causal, thus there is an edge effect over the firstw − 1 values).

3. If r = t − x, setr = t − x and exit, else setr to the firstr for which the smoothed curve

ceases to be non-decreasing2.

The algorithm is guaranteed to terminate with a value0 ≤ r ≤ t − x. Note that forl < 0 the
2In the implementation, it was not necessary to actually smooth, but only to see if the new window element entering

on the right is smaller than the one departing.
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Figure 6.11. Strong curve estimation withρ = 0.8 for (left to right, top to bottom)l =
{4, 60, 140, 300}. The 6 thin lines (resp. single thick grey line) are estimates ofH(k, l) using 500
(resp. 1 million) probes. Ther values selected by the saturation algorithm are shown as vertical
dashed lines, can be compared to the strong assumption valuesks(l; θ) for θ = {0.001, 0.01, 0.1}.

minimum r value is constrained by the shape of the strip. In Figure 6.10 and 6.11 values are only

plotted from the first entry into the strip onwards. The full height vertical line marksr = t − x.

As noted above, it is not feasible to locate the pointkx(l; θ) on a strong assumption curve for

a givenθ. By comparing the algorithm outputs in Figures 6.10 and 6.11, given by the thinhalf

height vertical lines, against the thicker vertical lines corresponding toks(l, θ) for two values of

θ, we see that the saturation algorithm outputs indeed do not track any particular θ value. Indeed,

the algorithm is influenced not only by the distance to the saturation levelC(l), but also by the

variability of the curves, which trigger the algorithm to exit once they become too severe in the

downward direction. Thus, in some informal sense, the algorithm is performing a trade-off between

bias and variance rather than being concerned solely with the strong assumption curve (which would
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correspond to emphasizing the bias only). Although this means that, unfortunately, the algorithm

performance cannot be tested in isolation by comparing against a targetθ, it is in other respects en-

tirely appropriate, since as already noted,ks(l; θ) may be inherently impossible to measure without

bias if the coverage ofh is poor. On the other hand, the expectedr(l) curves (projected into the

(k, l) plane) of Figure 6.9, estimated by using a million sample simulation, shows that the algorithm

does on average output a function which roughly correspond to a strong assumption curve (in this

case withθ ≈ 0.001) as originally intended. This graphs also illustrates the fact thatr(l) generally

decreases withl, following the strong assumption curve.

Figure 6.9 also shows the important property of insensitivity of the algorithm with respect to the

window size parameter larger than1. Here,d is 10 bytes andt is 250 slots. Hence,w = 25 (slots)

corresponds tot/w = 10. Since the algorithm performance was good as long asw was neither too

close to0 or t, we use a default value oft/w = 10. Later, we also justify this choice by comparing

performance of CDF estimation with various window sizes.

6.4.2 Defining the Composite Estimator

They are many possible ways in which one could make use ofr(l) to design new estimators.

The example in Figure 6.7(c) at the end of Section 6.3.1 simply moved from one constant-r CDF

estimator to another at a particular value ofl. This simple approach in fact enjoys an important

property. This is the fact that, since constant-r estimators are naturally normalized (i.e., they tend to

1 at largel), so is the new adaptive estimator, and this extends immediately to arbitraryr(l).

One can therefore define ar(l) based estimator as follows. First, calculater(l) as in the previous

section. For each of the differentr values appearing in the function, calculate the corresponding

estimatorĈ1(l) = Gr(l)(l + x). The idea is that by moving between members of this ‘bank’ of

constant-r estimators, we can obeyr(l) whilst simultaneously preserving natural normalization.

This property wouldnot have been achieved if instead, for example, we had tried to adapt the

density estimate instead of the CDF, say by settingĉ(l) = ĝr(l)(l + x).

The disadvantage of the above naive orraw compositemethod is that there is no guarantee that

the resulting CDF is monotonic. The CDF could move downward when we switch toa new member
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of the bank. Thus, although it could be used to estimate a given fixed quantile, it is not useful

for measuring the probability of smaller sets, as it may assign negative probability to them. We

investigate three methods which modify the raw composite estimator to form amonotonic composite

estimator whose sample functions are both normalized and monotonic.

Monotonicity Algorithms applied to raw composite CDF C(l)

• Left-to-Right (L2R) : Move left to right, formingC ′(l) = max(C(l), C ′(l − 1)).

• Right-to-Left (R2L) : Move right to left, formingC ′(l) = min(C(l), C ′(l + 1)).

• Data Pinning: Obtain the numbernl of probes withR ≥ r(l), initialize a setQ of processed

l values to null. In order of decreasing size ofnl, recursively assignC ′(l) = C(l), then

ensure its consistency (enforce monotonicity) at alll values already inQ, then addl to Q.

More precisely:∀l′ ∈ Q, l′ < l, setC ′(l) = max(C ′(l), C ′(l′)) and ∀l′ ∈ Q, l′ > l,

C ′(l) = min(C ′(l), C ′(l′)).

The data pinning algorithm “pins” the estimate at thel values which have the most available data

whilst enforcing monotonicity, proceeding recursively between the pinned values until the entire

function is determined. This corresponds to a kind of constrained intrapolation, weighted by avail-

able data.

Figure 6.12 gives an example of a raw composite estimate based onr(l), together with the

three monotonicity enforcing algorithms just described. The upper curvesare the expected CDF

functions, obtained by averaging overn = 1000 independent experiments. The lower curves show

the standard deviation of the same estimates as a function ofl (using the same vertical scale).

The raw curve shows a reasonably small bias at alll, and a clear lack of monotonicity. Although

this may be due to estimation error of the expected curve, individual sample functions are not

monotonic. As expected, L2R makes the estimate move up, and R2L makes it move down. Perhaps

unexpectedly, Data Pinning shows results which are almost indistinguishablefrom R2L. Since r(l)

mostly decreases with increasing l, R2L and data pinning algorithms perform close to each other.

This is also true for the standard deviation of the two, which is better than that of raw and L2R.

In all cases however, the monotonicity algorithms create significant differences in bias, for small
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Figure 6.12. Statistics of composite estimatorsĈ ′
1(l) based onr(l) with t/w = 10 (t = 250δ and

ρ = 0.2). The raw and three monotonic composite estimators are shown. Monotonicity causes a
large bias (compare upper expected curves with the true CDF in grey) which is not compensated by
a corresponding decrease in standard deviation (lower curves).

changes in standard deviation. Bias is the main problem introduced by the need for an algorithm for

monotonicity.

Three sample paths of each estimator, in a data poor case withρ = 0.1, are shown in Figure 6.13.

Because their behavior is similar, we show Data Pinning but not R2L to reduce clutter. The sample

paths of the raw composite estimator are extreme. Typically they rise to 1 at smalll where there is

no data and hence where bias is extreme, before improving at intermediatel. At largel data is again

scarce but the natural normalization property limits the absolute value of bias.The L2R estimator

performs very poorly as it locks in the terrible performance at smalll due to which (better) estimates

at largerl cannot decrease. Data Pinning (and R2L, not shown) perform much better, but we see

that their variance is considerable. It is important to note that here we are zooming in performance

under very difficult conditions where there is “almost no data” for the estimator to work with. Under

richer data scenarios, all these variants perform quite well.

From these results we learn that there is limited benefit from attempting to “smooth”r(l), as a
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way of reducing the number of values thatr(l) takes and therefore the ill-effects of the monotonicity

algorithm. Even ifr(l) were taken to be piecewise constant with only two values, in data poor cases

we may still be moving between sample CDFs which are very crude, resulting in large errors over

large ranges ofl values. Indeed, in scenarios where angles are so scarce that there are onlyj values

of l where they can be found, the corresponding sample CDF will contain onlyj − 1 jumps, a very

crude approximation of the trueC(l) which has many more. This is typical of problems found in

empirical estimation of discrete (or continuous) densities from limited data.

6.4.3 An Adaptive Constant r Estimator

The monotonicity issues do not arise with the “underlying” estimators that havea constantr .

They are attractive due to their simplicity and deserve to be explored. But, to use such a constantr

estimator, one must select the value of the parameterr . In some cases one may already have a good
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idea of the important parameters controllingh, particularlyρ andt, and thereby have reasonable

values of the marginal ofR, from which appropriate values ofr could be tabulated. For example,

some quantilerq of R may be chosen asr . In practice, this may not be the case. Hence, we use

an adaptive estimator which selectsr according to the following principle: to locate the edge of

available data. That is, it aims to find anr small enough so that some data will lie below it in the

strip (as it is essential that the estimators will have some data to work with), but not to go much

smaller (higher in the strip) than that, in order to avoid bias.

The above principle implies that the appropriate way to measure “data available” is absolute

rather than relative. Accordingly we chooser = min{t − x, r∗}, wherer∗ = F̂−1
r ((n − m)/n)

is ther corresponding to having at leastm observations. When data is plentifulr will default to

r = t − x, asr values to the right of the strip are always bias free. If data is scarce, thisestimator

will choose, for alll, ther that corresponds to at leastm observations. Note thatr depends on the

data used to estimateC(l) itself. Hence, this estimator can no longer be regarded as a constantr

one. Instead, it is a more sophisticated adaptive one with a constantr value at alll. There is still

a need to automatically selectm. We examine performance using a range of differentm values in

Section 6.5.

6.5 Estimator Performance

In this section, we examine the performance of variants ofĈ1, as defined in the previous section,

as a function of cross-traffic, and oft. In Section 6.5.1, we define metrics based on Mean Square

Error (MSE) that are suitable for measuring the performance of CDF estimators. In Section 6.5.2,

we compare the basic estimators (without the monotonicity enforcing algorithms).We find that

our adaptive algorithm to chooser performs better than all other estimators. In Section 6.5.3, we

compare the various monotonicity-enforcing algorithms. We find that performance differences are

seen only when data is neither too scarce or plentiful.

For this section, we continue to use consecutive probes of a periodic stream for quicker simula-

tions since the joint ergodicity conditions are satisfied. The estimator variants and parameter values

are:
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• Constantr :

– r = 0, the naive packet pair heuristic

– r = t − x, pure Class 1 (low bias, high variance)

– r = quantile corresponding tom = 8 on average, i.e.,q = 1 − m/n = .008

• Adaptive constantr :

– m = 2 use very little data (low bias, high variance)

– m = 8 compare adaptive to constant above

– m = 50 use more data (higher bias, lower variance)

• Composite estimator usingr(l):

– Data Pinning: the main candidate (t/w = 10)

– raw: best case for composite method (t/w = 10)

– R2L and L2R: for robustness comparisons

6.5.1 Metrics

We begin with Figure 6.14, where a similar representation to Figure 6.12 is given. We see that

the naiver = 0 estimator has bias so high that its variance function is small, indicating that the great

majority of estimates share the same poor behavior. Usingr = t − x in this case produces very

low bias but high variance, as expected. By entering into the strip and usingr = 219 (the quantile

corresponding tom = 8 on average), we add bias at smalll, but gain reduced variance over alll as

a result. The adaptive version of this estimator, usingm = 8 in a per-estimate sense, improves the

bias performance with no variance penalty. Finally, the raw composite estimatorshows low bias for

mostl values, and lower variance at mostl values, indicating that it is worth pursuing estimators of

this type.

Performance results of the type shown in Figure 6.14 are too detailed to allow coverage of

the parameter space governing cross-traffic characteristics. To assess estimator performance in a
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Figure 6.14. Examples of expectation and standard deviation of estimate functions for ρ = 0.2.
Herer(l) is raw monotonic.

way which combines bias and variance, and examines an entire CDF, we define the following two

measures, each of which returns a single number to evaluate a given samplefunction.

• Sup: E = supl |Ĉ(l) − C(l)|

• L1: E = 1
lq+t+1

∑lq
l=−t |Ĉ(l) − C(l)|,

wherelq theqth quantile ofC(l).

The first of these measures the worst departure from the true CDF overall l, whereas the second

gives a measure of the average departure. We cannot letlq = ∞, as this would be identically zero

for any two distributions, no matter how different, due to the domination of the tailwhereC(l) ≈ 1

out to infinity. Instead, we assess the degree of difference only over the main body of the distribution

by usingq = 0.95.

For each measure the random variableE takes values in[0, 1]. Our performance metrics are the

Mean Square Error (MSE) , defined as

MSE = IE[E ]2 + Var[E ], (6.10)
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of the corresponding measures. We use the square root of MSE, the Root Mean Square Error

(RMSE). These also take values in[0, 1]. The expectation and standard deviation ofE are estimated,

in the usual way, usingN = 1000 independent experiments, and are of interest in their own right,

as components of the MSE.

6.5.2 Basic Estimators

Results are given in Figure 6.15 for the (root) MSE using the Sup and L1 measure. The three

plots sample the(ρ, t) parameter space which controlsh and thereforeC. Figure 6.15(Top) shows

performance as a function ofρ for a fixedt. We see that the naive estimatorr = 0, which blindly

applies the packet pair heuristic, performs very poorly, whereas the Class 1 estimator withr = t−x

performs almost as well as the sophisticated variants onceρ exceeds0.2. This indicates that for

these(ρ, t) combinations there is sufficient data, and the methods are effectively defaulting to using

r = t−x. We see a steady improvement asρ increases, since increasing data leads to lower variance

and hence MSE. The same general results hold for the Sup and L1 norms.Of course, the root MSE

for the L1-norm is smaller than the Sup-norm root MSE.

Figure 6.15(Middle) shows the effect of increasingt by a factor of 4. The effective loss of

available data seesr = t − x performing poorly now untilρ is 0.6, since there is little mass to the

right of the strip, except at very high utilization. Atρ = 0.1, data is so scarce that all methods have

errors which are equal because they are the worst possible, namely equal to1 for somel. Significant

improvement is achieved by using the tuned Class 2 estimators which enter into thestrip, not not

too far, provided thatρ is high enough. The adaptive estimators all perform well. However, the

need to choosem wisely is apparent: asρ increases, largerm performs better, although at still

largerρ, they all default tot − x as so perform identically. The adaptive and constant variants

of m = 8 perform similarly, although the adaptive one is consistently slightly better. Finally, the

raw composite estimator shows uniformly good results, demonstrating a satisfying adaptivity to the

amount of data available.

Figure 6.15(Bottom) shows the effect of increasingt at fixedρ = 0.6 (the first and fourtht

values correspond to those of the Top and Middle plots respectively). Not surprisingly, all methods
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Figure 6.15. Sup-norm and L1-norm performance using trimodal packet sizes. (Top) 7 estimators as
a function ofρ, t = 1.67xmax/d; (Middle) The same estimators witht = 6.67xmax/d; (Bottom)
Dependence ont, with ρ = 0.6. Herer(l) denotes theraw composite estimator.

perform worse at greatert, as there is effectively less data available. There are a couple of exceptions

at the largest twot values. We believe that these are due to the definition of the measures which does

not scale appropriately asC(l) evolves witht. In particular, there is a need to exclude the tail not
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only at largel but also at smalll. As the left tails grows in length ast (recall that IE[C] is proportional

to t), this will reduce the measure at large enought. There may also be some contribution due to

variability in our estimation of these performance curves, which use onlyn = 1000 probes. At

largert, the cross-traffic is effectively less bursty as far as observations byprobes are concerned.

Just as in the case of low utilization, reduced burstiness robs the probes of the variation in delays

they require to obtain data from the required region. In particular it is more difficult to find mass

to the right of the strip. Although errors build quite rapidly for largert, good estimator design has

the potential to slow this growth substantially, whereas the extremest = 0 andt = t − x perform

very badly in general. Again we find that the raw composite estimator successfully adapts to the

changing traffic conditions, whereas for the adaptive estimatorm must be chosen appropriately.

Overall, from Figure 6.15, we find that, for utilization larger than0.5, the intra-pair gap can be

about ten times the transmission time of the largest packet without the estimation error being more

than0.2.

6.5.3 Enforcing Monotonicity

As the raw composite estimator shows considerable promise, we now subject itand its mono-

tonized variants to a more detailed performance study. Figure 6.16 explore the performance over

(ρ, t) space in a similar way as before. In each plot, the three different monotonicity algorithms,

and the raw composite, are compared, for each of three different window sizes. To avoid clutter,

the results for different window sizes have been displaced horizontally using duplicateρ axes. It is

important to emphasize that these results pertain to the (root) MSE of a CDF. Thus, thel value at

which the Sup is found will vary from sample to sample. In contrast, Figure 6.12 showed displayed

expected results for eachl fixed.

The results of Figure 6.16 show a remarkable lack of variation across boththe methods and the

window sizes. Part of this is understandable. For each window size, each monotonicity algorithm

uses the same underlying rawr(l), and so shares the same environment in terms of data availability.

For very larget however we do see that windows sizes that are too large perform poorly, which can

be understood by noting that when data poor, selecting smallerr is necessary to capture the few
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Figure 6.16. Sup-norm and L1-norm performance of various compositeestimators. Theρ access is
repeated for three window sizes: (t/50, t/10, t/2). (a) As a function ofρ, t = 1.67xmax/d; (b) As
a function ofρ, t = 6.67xmax/d; (c) Dependence ont, with ρ = 0.6.

angles that are available, whereas largerw will favor the algorithm triggering at largerr . We also

find that when there is a difference, Data Pinning performs best among themonotonic estimators,

as we might expect from the insights of Figure 6.12. In fact, it performs even better than the
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raw composite, although the differences are typically small. This apparent contradiction can be

explained by noticing that looking at ensemble performance withl fixed, or not, corresponds in fact

to two very different metrics which are not obliged to correspond. We hypothesize that, although

at a fixedl raw is clearly superior (recall Figure 6.12), sample functions are so variable that good

behavior at somel is systematically compensated by worse behavior elsewhere, resulting in a final

performance which is less dependent on the details of the monotonicity algorithm than one might

have supposed. This is good news in the sense that the low bias of the raw composite estimator can

effectively be achieved in a monotonized version, and in particular, the results of Figure 6.15 for the

raw composite, which correspond to the central plots in Figure 6.16, still holdfor the monotonic

variants, especially Data Pinning. Finally, we note that L2R performed marginally better in some

data rich cases (smallt and largeρ) not shown here.

To summarize, in data poor cases, sample functions can be extremely crude and large errors

are made by all methods, for example sample CDFs containing only1 or 2 jumps, which could

have a Sup error of1. This is not apparent when collecting per-l statistics over large numbers of

experiments as in Figures 6.14 and 6.12. On the other hand, if data is plentiful,then the sample

functions are relatively detailed and almost monotonic from the beginning, and so the effect of

the different algorithms is not very large. Thus, the differences between algorithms and methods

manifest themselves in the intermediate zone where data is neither too scarce, nor plentiful.

6.6 Trace Analysis

In this section, we use real data from core Internet routers to demonstrate the performance of

our estimators with real traffic. In Section 6.6.1, we use passively-collected traces of cross-traffic

to compare the various estimators. In Section 6.6.2, we use a novel experimental setup involving

simultaneous passive capture and active packet injection. Our results confirm that our estimators

perform very well in real world conditions. For instance, with link utilization’s that are as low as

0.5, the CDF estimates have an (RMSE) error of less than0.2 with an intra-pair gap that is tenfold

the time taken to transmit the largest packet (of size1500) bytes. We also found that our estimation

of the joint distribution of(B, C) was (visually) similar to the true distribution.
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6.6.1 Trace-driven Simulations

In the first set of experiments, we used real cross-traffic traces from the full router experiment

describe in Chapter 3 (see [HVPD04] too). This experiment recorded all packets entering every

interface of a router in a large tier-1 ISP over a13-hour time period. We modeled the output buffer

of a particular OC-3 output interface that had a reasonably high utilization,and replayed the cross-

traffic that passed through it. The arrival times of this cross-traffic wastaken to be the (recorded)

arrival times to the router. The link was simulated as a FIFO queue.

Data Overview
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Figure 6.17. Traffic characteristics at the chosen OC-3 link. The solid black line shows the byte
intensity measured over1 second intervals. Five5 minute intervals with a spread ofρ values from
0.33 to 0.68 were identified. The dashed and dotted curves are the auto-correlation estimates, based
on looking atA(t) in consecutive periods of durationt = 1ms andt = 0.25ms, calculated over5
minute intervals over the entire duration of the trace.

By using these traces, we do more than make use of a source of realistic cross-traffic. Because

of the complete monitoring, fine-grained detail of all input packets destined tothe chosen output
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link were available. It was therefore possible to reproduce the true(B, C) values, and compare

them to those predicted by the estimatorĥ(k, l).

As they are real traces, we did not control theρ values in the traces a priori. To obtain a spread

of values, we first observed the actual traffic intensity, averaged over 1 second intervals, of bytes to

the OC-3 link. As shown in Figure 6.17, these range fromρ = 0.3 to 0.7. Five5 minute portions

of the trace, identified in order of decreasingρ asP1, P2, P3, P5 (note the change in order) and

P4, were chosen to provide a spread across this range. These had respectiveρ values of0.68, 0.60,

0.51, 0.41 and0.33. We used the cross-traffic arrivals corresponding to these sub-traces to drive the

simulations. The number of packet pairs that can be obtained with rare probing is not large enough

due to the limited duration of the sub-traces. Hence, we use periodic probesto obtain packet pair

observations in this section. Thus, our results may potentially include errorsdue to non-ergodic

behavior and hence, performance with rare probing must be better than what we show. We used

probes of size40 bytes.

We made an attempt to measure the degree to which the cross-traffic obeys theindependence

assumptions at each oft = 0.25ms andt = 1ms. We did this by first splitting the entire13-hour

trace into five minute sub-traces. For each sub-trace, we generated a time series corresponding

to the number of cross-traffic bytes that arrived in non-overlapping intervals of widtht. We then

estimated the 1st lag auto-correlation coefficient for this time series. The motivation for this is

that our independence assumption is true if the cross-traffic measureA(I) has independent incre-

ments in consecutive intervals of durationt. Moreover, independent increments also implies our

assumption is valid with periodic probes too. The auto-correlation test abovedoes not guarantee

independence but provides a good sense of whether the independence assumption is justifiable. The

auto-correlation results for the full router trace are shown as the bottom curves in Figure 6.17. We

see that the auto-correlation is small over the trace and is reasonablyconsistentwith our assumption.

Not surprisingly, it holds better for the larger value oft = 1ms.

Figure 6.18 plots the distribution of excess packet delays, experienced by the trace traffic alone,

for P1 to P5. There is a considerable spread across the different sub-traces, and therefore the

delays experienced by probes in the corresponding experiments will likewise differ, resulting in

different available data and thereby different estimator performance. To get a feeling for the trace
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data, note that the quantiler0.99 is greater than0.25ms in all cases, and not more than1ms except

in P1, P2. This may be compared withxmax, the transmission time of a packet of the largest size

(pmax = 1500 bytes),77µs.
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Figure 6.19 shows a comparison of estimated and measuredh(k, l) for t = 1ms and the sub-

trace with the highest cross-traffic intensity. This corresponds to a1000 packets per second and an
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additional load of320Kbps. Despite the fact that the estimation of a 2-dimensional distribution is

inherently difficult, (although the density is plotted at a resolution above that of δ) it is clear that

the essence of the cross-traffic behavior is being captured by our estimator. Densities in the middle

and bottom of the strip are inaccurately estimated due to very little available data. In practice,

such inaccurate estimates are easily identified since the telescopic nature ofĥ(k, l) causes adjacent

densities to be negative (we plotted them as0)!

Performance

Examples of individual estimates are given in Figure 6.20 to show the effectsof ρ and the

number of probesn. As we can see, each has a dramatic impact on the ability of the estimator to

recover the true CDF. The utilization has the largest impact, and can be thought of as controlling

the overall bias since it affects the range ofR values seen. Increasingn improves the reproduction

of the CDF structure, thereby reducing error in a given sample, or alternatively provides more data

which decreases variance.
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Figure 6.20. We plot sample estimates with different number of probesn for for utilization 68%
and31%, with t = 12.9xmax/d (1ms).

Figure 6.21 shows the analogous results to Figure 6.15 usingn = 500 and a discretization level

of d = 10 bytes per slot. Here thet values are larger than those used before. The relative perfor-

mance across estimators is similar to that seen earlier and the absolute performance is reasonable at

the values ofρ available. The naive (r = 0) and Class 1 (r = t− x) estimators are both not suitable
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Figure 6.21. Estimator Sup-norm and L1-norm performance using routertraces. We use data pin-
ning monotonic algorithm with r(l). (Top) As a function ofρ, t = 6.45xmax/d (500µs); (Middle)
As a function ofρ, t = 25.8xmax/d (2ms); (Bottom) Dependence ont, with ρ = 0.6.

even at the highestρ available to us. The Data pinning algorithm shows better performance than

all the adaptive estimators. The composite estimator, using Data Pinning, is now the best performer
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in all plots and for both the Sup and L1 measures. However we see that forlarge enought, the

difference between estimators begins to diminish as they are asked to deliverthe impossible, with

errors that correspondingly approach the maximum of 1, first in the Sup metric, and then L1.

6.6.2 Active-Passive Experiment

To test our estimators in real network conditions, we conducted novel experiments in which

we sent probe streams along a link in a tier-1 ISP. Our experiments were novel because we simul-

taneously monitored the arrivals and departures to the hop. We describedhow we conducted the

experiment in Chapter 3. Note that the cross-traffic was real Internet traffic and not controlled in

any way. The utilization of the link was around50%. The arrival and departure timestamps were

accurate to sub-microsecond levels and allowed us to calculate the marginal of C. Since the arrival

timestamps of cross-traffic to the output queue could not be measured, we could not calculateB.

Hence we only evaluated the performance of our estimators in calculatingC. Essentially, we per-

formed1-hop probing because, on a multi-hop path, queueing at hops other than the predominant

bottleneck add noise to the observed delays. Quantifying the impact of suchnoise is path-dependent

and out of our scope.

Due to probing load constraints we could only conductN = 10 experiments at a particular

time. We sentn = 250 packet pairs of size40 bytes each, for a range of separationst ∗ d varying

from the minimum possible 625 bytes (t = 500ns) to 40KB (32µs). Utilization levels could not

be controlled in the experiments, however the performance of the estimators could be tested under

operational conditions for a range of timescalest.

The resultingt-dependence performance curves are plotted in Figure 6.22. Under therealistic

conditions of this experiment too, the results, at least fortd ≥ 5, are reminiscent of those seen

earlier. In particular, the composite estimator performs the best, with an errorat most half that of

the commonly usedr = 0 estimator over a wide range oft. Also, ast increases, the performance

worsens much much more slowly using the composite orm = 8 adaptive estimator than the Class 1

estimator withr = t − x. The graphs show that estimates with Sup-norm (L1-norm) RMSE not
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Figure 6.22. Estimator performance in live active/passive experiments. Dependence ont (ρ =
0.50).

exceeding0.35 (0.15) can be obtained even fort∗d about10 times the transmission time ofpmax =

1500 bytes.

For very smallt values near1µs, we see a clearincreasein MSE. There are two possible reasons

for this. First, we observed that errors in our probe generation times (essentially, our control oft)

could be as large as50% over these scales. Second, the independence assumption is much more

likely to break down at these time scales.

6.7 Discussion

In this section, we discuss practical issues related to our analysis and estimators. First, we

discuss how our estimators can be used in practice, especially without knowledge of absolute one-

way delays. Then, we illustrate the power of our approach by demonstratinghow it can be used to

design practical methods with different trade-offs between accuracy and intrusiveness.

6.7.1 Practical Issues

So far, for simplicity, we have assumed synchronized sending and receiving times and no propa-

gation delay. Neither of these assumptions is necessary since our estimatorsonly use delay variation,

S −R, of the excess delaysR andS. In practice, the observed end-to-end delays,R′ andS′ can be
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subtracted from their (observed) minimum values to obtainR, S pairs. Note that the resultingS−R

values are the trueS − R values. Accuracy ofR is not necessary for calculating the conditional

probabilities either. What is required is that two pairs with the sameR value share the same trueR

value. This clearly holds when we subtract the minimum. Inaccurate absoluteR values can cause

us to inaccurately identify the beginning of the Class 1 region. Since our estimators do not use the

boundary, such inaccuracies are also inconsequential.

Our estimators output the CDF and joint distribution of the cross-traffic functionals in time units

(of service at the single hop). Converting this to hop utilization is easy. However, as with prior work

[SKK03], converting this into units of bytes per second requires knowledge of the link capacity.

For instance available bandwidth is the capacity multiplied with1 − ρ whereρ is the utilization.

Any of the well-known capacity estimation techniques, e.g., [Jac97, KCL+04], can be used for this

purpose. Naturally, inaccuracies in capacity estimation would affect available bandwidth estimation

using our estimators.

6.7.2 Trade-off involving Intrusiveness and Accuracy

The inversion framework that we have used in the last two chapters provide new insights into

making our proposed estimators as well as previous estimation techniques robust. We discuss this

now.

Our work was motivated by prior works [RCR+00, SKK03] that tried to ensure that a pair of

probes share the same busy period by sending them very close to each other. By only choosing pairs

in which the first probe saw a large relative delay, we ensured the same without requiring such small

intra-pair separations. We assumed thatR and(B, C) are independent so that this subset of pairs

sees, on average, the same cross-traffic as all the pairs. Our assumption is redundant if we do not

observe values ofR belowt−x, i.e., the two probes always share a busy period. This can be forced

by sending back-to-back “filler probes” before the first packet of the pair. The filler probes would

fill up the queue and ensure that the first packet of the pair saw large delays. The more filler probes

we send, the higher is the probability of not observingR below t − x. This provides a desirable

practical trade-off between intrusiveness and accuracy, i.e., if we send more filler probes we increase
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intrusiveness while improving accuracy and requiring lesser use of ourassumption. Thus, using the

delays of the last two probes of a train is the “better” method of estimation than, for instance, IGI

[HS03] which compares the delays of all consecutive packets of a train.

Filler probes can make fundamentally intrusive methods [HLM+04, JD03, RRB+03] robust too.

These techniques send long packet trains and use “increasing delay trends” to infer the saturation of

available bandwidth. They are forced to use parametrized heuristics to guard against false positives,

i.e., perceived increasing delay trends even though the queue might havebeen idle between some

packets of the train. Such techniques can also be made robust my sending filler probes before the

train. These build up a large enough queue that the queue is very likely to bebusy between the

first and last packet of the probe train. The more filler probes, the higher is the probability of such

“busy-ness”. Hence, available bandwidth saturation can be tested by simply checking if the delay

of the last packet of the train is larger than the delay of the first packet ofthe train.

6.8 Conclusions

In this section, we designed practical estimators based on the inversion expressions derived

in the previous chapter. We encountered a variety of issues, related to estimating CDFs, such as

monotonicity, bias-variance trade-offs. We proposed various estimatorsto tackle these issues. Using

a combination of simulations, router traces obtained from detailed router monitoring experiments

and novel live experiments with active injection and simultaneous passive monitoring, we compared

the various estimators. We found that our estimators allow the intra-pair gap to be about10 times

the transmission time of the largest-sized packet while accurately estimating the entire CDF. Thus,

we provided a generalization of packet pair methods in the sense that much more information can be

extracted with far greater intra-pair separations than has been supposed in the past. Hence, it is much

easier to use (non-intrusive) packet pair probing to paths with a single predominant bottleneck hop.

Our methods also allow simple yet powerful extensions that trade-off intrusiveness for accuracy

too, e.g., by sending an acceptable number of “filler” packets before each packet pair to increase the

observed values ofR.
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Chapter 7

Architecture: Measurement-Friendly

Networks

“Decide what you want, decide what you are willing to exchange for it. Establish your priori-

ties and go to work.”

- H. L. Hunt, American oil tycoon

The multi-hop nature of Internet paths has caused some of the most difficultproblems, e.g.,

multi-hop queueing effects, faced in designing active measurements. Earlier in this dissertation, we

encountered two specific examples of this. In Chapter 5, we found it hardto extend our single-hop

cross-traffic inversion expressions to a multi-hop path. In Chapter 4, wediscussed how our inability

to control probe arrivals at intermediate hops makes it hard to sample those hops in an unbiased man-

ner. The need to measure non-intrusively makes it even more difficult to deal with multiple hops. In

this chapter, we seek to understand if and how these twin challenges of measuring a multi-hop path

and non-intrusiveness can be tackledassumingthat we can use newer architectural primitives. Since

our focus is on active measurements, we discount architectural primitivesthat collect/share data (see

[SSK97], for example) and only consider primitives based on packet forwarding. In the process, we

also hope to understand the fundamental limitations of active measurements. Westart by showing

that each of the two challenges are naturally tackled if measurement packetsare endowed with hop-

dependent (high or low) priorities. This is because probes treated with high priority at a hop do
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not observe any undesirable queueing at that hop. Additionally, probes treated with low priority at

a hop are not only non-intrusive but also intrinsically measure the normal data queue because they

are transmitted only when the latter is empty. We show that these network primitivesdo allow a

wide range of active measurements to measure per-hop and end-to-end metrics. We also find that

the nonpreemptivenature of packet forwarding andpersistenceof cross-traffic cause unavoidable

inaccuracies and biases which can often be overcome though. Our workis important in three ways.

First, it is useful in an immediate practical sense because, by enabling our primitives, network oper-

ators can actively measure their networks non-intrusively. Moreover,such aMeasurement-Friendly

Network (MFN)can be implemented using already-deployed router functionality in a low-overhead

manner. Thus, our architecture is a cost-effective network managementalternative to costly, passive

data collection mechanisms. Second, we allow operators a way to expose the measurement facili-

ties to end-users in a controlled manner. Our focus on non-intrusiveness along with easy-to-deploy

access control mechanisms make it possible to do this in a “safe” manner. Third, our work provides

little-known insights into fundamental limits of active measurements.

This chapter is organized as follows. In Section 7.1, we use prior work to illustrate how multi-

hop paths have been measured and why it has proved to be hard. We alsodescribe our goals and

assumptions and provide an overview of our contributions in this chapter. In Section 7.2, we con-

sider each of our two challenges - the multi-hop nature of paths and non-intrusiveness and describe

how they can be individually tackled using forwarding primitives based on priority queueing. We

use these primitives to describe our proposed architecture for a Measurement-Friendly Network.

In Section 7.3, we describe three basic methods to measure delay-based metrics in our proposed

MFN architecture. In Section 7.4, we describe the various active techniques to measure delay-based

metrics in our proposed architecture. These include techniques to measureper-hop queueing, busy

periods etc. We also briefly discuss how loss can be estimated. In Section 7.5, we discuss tech-

niques to measure bandwidth-related metrics and their pros and cons. We discuss important issues

such as packet marking and deployment overhead in Section 7.6. In Section 7.7, we summarize our

contributions, namely, a cost-effective way by which network operatorscan (actively) measure and

manage their networks accurately without costly, passive data collection mechanisms.
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7.1 Overview

In this section, we survey prior approaches to tackling the multi-hop issue and intrusiveness.

Using this, we motivate our target problem and state our assumptions. We endthis section by

providing an overview of our contributions.

7.1.1 Motivation

Active measurements can be used to measure either end-to-end properties, e.g., end-to-end

delay, or per-hop properties, e.g., cross-traffic arrival processto a particular hop. Measurement of

observable end-to-end properties such as delay and loss, pioneeredby Bolot [Bol93] and Paxson

[Pax99], involves issues mostly related to sampling, i.e., at what times do we send probe packets to

obtain unbiased estimates. We thoroughly investigated this issue in Chapter 4. We saw, however,

that arrival times of probe packets to intermediate hops cannot be controlled. Lack of such control

also makes inversion hard - we saw this in Chapter 5 when we attempted to extendour single-hop

cross-traffic inversion expressions to include the effects of multiple hops.

Previous work has also encountered difficulties stemming from the multi-hop nature of network

paths. Most available bandwidth techniques (for example, [SKK03, JD03]) are fundamentally based

on assuming a single (predominant) hop. Recent work [LRL05a] also showed how queueing at

other hops affects these techniques. Moreover, this is reduced as probing intrusiveness increases.

To our knowledge, TTL expiry is the only known way of measuring multiple hops of a path. For

instance,traceroute[Jac87] uses ICMP replies to TTL-expired probe packets to determine theIP

addresses of various hops along a path.Pathchar [Jac97] and its variants [LB00, PV02a] also

use TTL expiry (and if necessary, the subsequent ICMP responses) to calculate individual hop

capacities and queueing delays. Bottleneck-detection techniques [HLM+04, ASM03] use the queue

buildup ideas of available bandwidth techniques in conjunction with TTL expiryto estimate whether

a particular link is a bottleneck or not. Though all these multi-hop techniques are quite sophisticated,

they are not ideal for a variety of reasons. Those that rely on ICMP replies ignore effects related

to reverse-path queueing and ICMP forwarding anomalies. The bottleneck-detection techniques

are fundamentally intrusive because they rely on queue buildups and arerestricted to providing
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qualitative estimates. Also, it is unclear what kinds of inaccuracies these methods experience and

why.

7.1.2 Scope

The above discussion illustrates three aspects of the current state-of-art on active measurements.

• The multi-hop nature of paths inherently poses a difficult challenge.

• The only known way to (partially) tackle this challenge are network primitives -TTL expiry

and subsequent ICMP generation.

• Even after using these primitives, ensuring non-intrusiveness remains achallenge.

These motivate us to explore additional network primitives that, by tackling the twin challenges

of multiple hops and non-intrusiveness, can be used to architect aMeasurement-Friendly Network

(MFN), i.e.. a network whose per-hop and end-to-end properties can be easilymeasured in a non-

intrusive manner. By explicitly designing a network to be measurement-friendly, we not only influ-

ence current and future network evolution but also wish to understand the fundamental limitations

of active network measurements.

From the early days of the Internet, much research has been done on network architectures.

A few prior works have proposed architectures for better network measurements. Seshan, et al.

[SSK97] proposed SPAND, a network architecture that enables end-users to share performance

measurements obtained by passively observing existing data flows. Varghese, et al. [VE03] pro-

posed a couple of passive data collection functions at routers to simplify complicated measurement

tasks such as traffic matrices. We are motivated by similar principles as them, namely, measure-

ments can be vastly simplified by adding certain well-defined network functions. We differ from

them, however, in that our primary focus is on active measurements and hence, we discount the use

of data collected at routers (see [LMB01], for example) and instead, focus on forwarding primitives

only. The primitives exploited so far have been TTL-expiry and ICMP generation. The original

rationale behind having these primitives was network stability and error reporting. Mahajan, et

al. [MSWA03] suggested augmenting the timestamping mechanisms in ICMP for better user-level
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(fault diagnosis) measurements. Though such mechanisms are useful, they essentially provide ac-

cess to data collected at routers. Also, they do not focus on estimating per-hop metrics and hence,

do not answer questions related to unbiased sampling of individual hops.

Network architecture design necessarily assumes a willingness for change. In recent years,

security problems and competitive concerns have caused network operators to make their networks

less transparent by, for instance, filtering ICMP messages. Yet, MFN architectures providing more

transparency are of practical interest if they allow network operators tobetter measure their own

networks. Moreover, the push to less transparency has not been universal especially in educational

networks. End-user access to better measurement primitives are of interest to such operators as

long as they can control access to them and their use does not lead to more intrusive measurements.

Also, our focus is on IP networks and we assume that all the queues are visible at the IP layer.

Immunity from hidden Layer-2 links and multipath is preferable but not necessary. Also, by default,

we assume that normal data traffic is scheduled according in a FIFO manner. We intend to study

whether or not this is necessary.

The metrics that we consider are of interest to operators and/or end-users and are mostly mo-

tivated by prior work. As discussed earlier, delay is observable. Hence, the rare probing strategy

outlined in Chapter 4 can be used to calculate end-to-end delay-based metrics. These include delay

marginals, minimum delay, jitter and round trip times. Similar per-hop delay metrics include per-

hop propagation delay, queueing delays and busy period durations. The latter refers to the duration

of time for which a queue is continuously transmitting packets before it is idle. Along with utiliza-

tion, it gives a sense of cross-traffic burstiness. Joint statistics of all these metrics are also desirable.

The end-to-end loss metrics include loss episode frequencies and durations. The same metrics on a

per-hop basis are also of interest.

The most basic bandwidth metric is link capacity. Available bandwidth has also received a

lot of attention due to its applicability to a variety of situations including end-to-endcongestion

control, network health monitoring. We are interested in the per-hop and per-path capacity (so-

called narrow link capacity) and available bandwidth. Utilization is obtained by subtracting, from1,

the available bandwidth divided by capacity. As with delays, we are interested in the entire statistics

of available bandwidth. More detailed statistics include the cross-traffic characteristics (burstiness
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may be measured by the functionalB introduced in Section 5.2). Measuring finer metrics than the

aggregate traffic such as flow size distributions are beyond our scope.

7.1.3 Contributions

To our knowledge, our work is the first to address the question of using network primitives to

simplify active measurements. We show that hop-dependent priority queues are powerful enough

to simplify many active measurements. We discuss a variety of techniques that can be used to

measure end-to-end and per-hop properties with very low measurement overhead. Assuming that

high-priority queueing is used as prescribed, these techniques can be considered non-intrusive. Such

an assumption is not acceptable if entities other than the operator, e.g., end-users, are performing

measurements. Our work provides two alternatives - the use of only low-priority queueing and

access control mechanisms. The former exploit the little-known ability of low-priority packets

to measure queues. The latter provides the network operator explicit access control mechanisms

over the use of the MFN primitives. These access control mechanisms allow end-users to perform

measurements while constraining them to be (almost) non-intrusive.

We also discuss how practical issues such as deployment of our MFN primitives. One of the

disadvantages of our architecture is the presence of inaccuracies dueto nonpreemption and cross-

traffic persistence. We discuss why these can be thought to representfundamental limitations of

active measurements. We also show that, often, these inaccuracies can beignored or eliminated.

7.2 Architecture Overview

In this section, we motivate and design our proposed Measurement-Friendly Network archi-

tecture. We start by considering the two challenges of multi-hop paths and non-intrusiveness in

Section 7.2.1. We develop forwarding primitives for measurement packets that individually tackle

each of these challenges. Our primitives are based on hop-dependenthigh and low priority queue-

ing. In Section 7.2.2, we use these primitives to describe our proposed MFNarchitecture and discuss
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important practical issues faced in using this architecture. In later sections, we design techniques to

measure various metrics in MFNs and discuss the impact of these practical issues.

7.2.1 Design Motivation

We consider the multi-hop queueing effects and non-intrusiveness, one-by-one, and develop

network primitives to tackle these two challenges. The challenges automatically motivate the use of

priority queueing.

Hop Isolation Property

Consider the problem of estimating the queue sizes seen by normal data packets on the hops of

a multi-hop path. Such per-hop congestion is essential to route delay-sensitive applications such as

Voice-over-IP (VoIP). In the case of a single-hop path, it is trivial to measure the queue sizes. The

end-to-end delay of a measurement packet is directly proportional to the queue size of the single

hop. However, on a multi-hop path, the end-to-end delay is the sum of the queue sizes at all the

hops. Hence, the single-hop technique based on end-to-end delay is not easily extended to multi-hop

paths. Even if a multi-hop path contains a single predominant bottleneck (with much larger queues

than the other hops), the noise from the other hops cannot be quantified.

The single-hop technique is applicable, though, if measurement packets experience the delay

due to a single, specified hoph of the path. In other words, queueing due to normal data traffic

at hops other thanh should not delay measurement packets. This is possible if the measurement

packets are treated with higher priority than data traffic at all hops buth. In other words, such

hop-dependent priority queueing endows measurement packets with ahop isolation property.

Intrinsic Measurement Property

Consider the challenge of non-intrusive measurements. By definition, non-intrusiveness is

achieved if the measurement packets do not cause the forwarding of normal data packets to be

affected. This motivates a priority-queueing primitive opposite to the above primitive, namely, as-
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signing lower priority to measurement packets. Low priority packets possess what we refer to as the

inherent measurement property. We illustrate this using a simple examplens-2[Sim] simulation of

a single hop that uses a strict2-priority scheduling discipline. Data traffic has normal priority and

only measurement packets have a low priority. The link uses a First-in First-out (FIFO) queue for

each of these priorities. Since the link uses strict priority, a low priority packet is transmitted only

when there is no normal priority packet. This is shown in Figure 7.1 where weplot the size of the

normal-priority queue and the times at which low-priority measurement packetsare transmitted on a

10Mbps link. The queue sizes were calculated using our Ground Truth Calculator (GTC) described

in Chapter 3. We see that transmission times of the measurements packets correspond to the idle

periods of the queue corresponding to the data traffic. Thus, the low priority packets inherently

measure the “idleness” of the normal priority queue.

The inherent measurement property is useful in many ways. For instance, since low priority

packets only use up the idle capacity of a link, their average output rate is never more than the

available bandwidth on the link. Hence, a stream of low priority packets whose rate is greater than

the available bandwidth on a link are non-intrusive (they do not affect existing data traffic) and

yet, measure available bandwidth. Similarly, the transmission times reflect the times at which the

link is idle and, as we shall see later, are also useful in characterizing the busy periods and other

characteristics of cross-traffic.

7.2.2 Measurement-Friendly Network Architecture

The above discussion motivates us to design a MFN using hop-dependentlow and high priority

queueing. Data traffic is considered to have normal priority and hence, data packets are also called

N-packets. Measurement packets may be treated with high, normal or low priority at eachhop and

the priority at different hops need not be the same. Thus, at each hop,a probe packet is a H-probe,

N-probe or L-probe respectively. We use a string of letters from{L, H, N} to denote the priorities

of measurement packets along a path. The first letter indicates the default priority and uses the

subscriptd to denote this. The rest of the letters apply to individual hops, specified bya subscript,

and represent exceptions to the default. For example,HdN2L5 denotes that a measurement packet

has high priority at all hops except hop2 and5 where it has normal and low priority respectively.

157



4.61 4.62 4.63 4.64 4.65 4.66 4.67
0

2000

4000

6000

8000

10000

12000

System Time

Q
ue

ue
 S

iz
e 

(B
yt

es
)

Total Queue Size
Normal Priority Queue Size
Low Priority Sending Times

Figure 7.1. The normal-priority, total queue sizes and low-priority packettransmission times on
a 10Mbps link. The low priority packets are only transmitted when there are no normal priority
packets remaining.

Also, unless specified otherwise, we use priority queueing to refer tostrict priority queueing, i.e.,

packet transmission is in the order H, N, L and packet dropping is in the order L, N, H.

From the next section onwards, we design techniques that use measurement packets with various

combinations of hop-dependent priorities. We assume the ability to signal these priorities on a per-

packet basis. We address practical signaling mechanisms in Section 7.6.2. For ease of exposition,

we assume a single entity performing measurement. We develop techniques to measure a variety of

per-hop and end-to-end metrics. For each metric, we first describe whyit is useful and how it can be

estimated in existing (FIFO-based) networks. Then, we describe a technique to estimate the metric

in our MFN architecture. Using simple, illustrative simulations we evaluate our technique. With

each technique, we repeatedly encounter one or both of the following issues that fundamentally

limit the accuracy and correctness of measurement:

• Nonpreemption: So far, we implicitly assumed preemptive priority queueing, e.g., the trans-

mission of an L-packet is paused when an N-packet arrives and an H-packet pauses the trans-

mission of an N-packet (and L-packet). However, today’s data networks are nonpreemptive.
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A packet-in-transmission is never paused and hence, priorities are usedonly to select the

next packet to transmit. This causes in-transmission L-packets to be intrusive bydelaying

normal data packets. Similarly, H-packets at a hop may experience “residual delays” due to

packets-in-transmission that have low or normal priority.

• Persistence:We also find that persistence of cross-traffic on the path being measuredcauses

dependencies between hops. Since the arrival of probe packets depends on prior hops due

to nonpreemption, persistence can cause dependence between probingpackets and what they

measure. This dependence may lead to unbiased sampling.

In Section 7.6, we discuss the insights offered by our investigation into the inherent limitations

of active measurements especially due to the above issues of nonpreemptionand persistence. We

also comment on important practical issues that need to be addressed for implementing our archi-

tecture, namely, how to achieve non-intrusiveness while using high priorityqueueing, deployment-

related issues such as packet marking and router mechanisms and suitable access control methods.

The latter is necessary when the network operator allows others to exploit the MFN primitives. We

also discuss the implications of having multiple independent measurement streams.

7.3 Basic Methods

In this section, we investigate techniques to infer delay-based metrics in our MFN architecture.

First, we consider sending individual measurement packets with high, normal and low priority at a

target hoph and high priority everywhere else. We see that these packets can be used to estimate

minimum delay (Section 7.3.1), queue size distributions (Section 7.3.2) and busyperiod statistics

(Section 7.3.3) respectively. We find two sources of inaccuracies - nonpreemption and persistence.

In Section 7.3.4, we discuss these and the maximum impact they can have. We find that, in most

practical cases, error due to them can be tightly bounded.
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Figure 7.2. The two-hop systems we used had the same topology with cross-traffic having different
persistence characteristics. In the topology on the left, cross-traffic persisted only for one hop
whereas in the topology on the right, all cross-traffic on the second hop persisted from the first hop.
In general, cross-traffic that isk-hop persistent traversesk consecutive links on the path.

7.3.1 Minimum End-to-End Delay

The minimum end-to-end delay along a path is the sum of the transmission and propagation

times on all hops along the path. Since the transmission time is dependent on the packet size, the

minimum delay is a size-dependent metric. It can be viewed as the best-case delay achievable along

the path. Subtracting it from other metrics such as end-to-end delay makes itpossible to distinguish

congestion-related effects (due to queueing) from the physical limits of sending a packet from one

physical location to another. In the current network architecture there are two ways of estimating

the minimum delay. One way is to use estimates of capacities and propagation delayalong all hops.

Estimating propagation delay, however, requires timestamping functionality at all intermediate hops

and, if absolute minimum delay needs to be estimated, clock synchronization. The minimum delay

can also be estimated as the minimum delay observed by probe packets. Such an estimation method

is accurate whenever at least one probe packet encounters no queueing delay at all hops. The

probability of this occurring depends on the utilization of hops along the path.In the worst case, no

probe packet would encounter empty queues if at least one of the hops ispersistently congested.

In our proposed MFN architecture, the minimum end-to-end delay can be estimated by sending

aHd-probe, i.e., a probe packet treated with high priority onall hops. This probe packet, on account

of its priority, would not see any queueing from normal data traffic. Recall that we are assuming

a single measurement entity; Hence, such probe packets would not see any queueing from other

Hd-probes as long as they are widely spaced. In Figure 7.3, we plot the CDFof delays experienced

by 1000 such packets along the topology and cross-traffic characteristics shown in Figure 7.2. The

cross-traffic we used consisted of three independent Poisson streamswith packets of size40, 576 and
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1500 bytes. We used ns-2 [Sim] to implement these two-hop systems. As described inChapter 3,

we used in-built ns-2 functionality to implement priority queueing. In Figure 7.3, we make two

important observations. First, not all packets observed the minimum delay. Second, even though the

cross-traffic intensities in both topologies was the same, the CDF of probe packet delays changed.
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Figure 7.3. CDFs of end-to-end delay observed by1000 Hd-probes of size100 and1000 bytes.
For both sizes, we sent1000 and100 packets respectively though the average overhead was the
same. The grey vertical bars represent the true minimum end-to-end delay. We also show whether
cross-traffic was1-hop or2-hop persistent. Notice that the lack of preemption causes packets-in-
transmission to add noise to the measured delays.

The reason why all packets did not observe the minimum delay is nonpreemption. At each hop,

the current packet-in-transmission (if any) is completed before theHd-probe is transmitted. This

causes the observed probe delays to have a non-negative noise component,ǫ. On ann-hop path, this

noise may be0, the minimum, if the probe packet encounters no normal data packets on any hop.

In the worst case, each probe packet may just arrive after the largest packet (of sizepmax) at each

hop. Hence,

ǫ ∈
[

0,
pmax

C1
+ . . . +

pmax

Cn

]

. (7.1)

whereCi is the capacity of theith hop. We can remove the effects of the nonpreemption noise by

sending multipleHd-probes hoping that at least one of them would not encounter any packets-in-
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transmission. Note that this can happen with a much higher probability that that of a probe packet

experiencing no queueing in the current architecture. The number of probe packets to send,N ,

before one of them sees no nonpreemption noise is dependent on the probability distribution ofǫ.

The probability distribution depends on various factors including cross-traffic packet sizes, arrival

processes and cross-traffic persistence.

Cross-traffic persistence is the reason behind our second observation in Figure 7.3 that the two

topologies observed different CDFs. Consider the system with1-hop persistent cross-traffic. The

cross-traffic arrival process at consecutive hops is independent. Barring exceptional situations, e.g.,

arrivals to consecutive hops are the result of multi-path forwarding from the same upstream hop,

this is also true in practice. With independent arrivals, each hoph has no packet in its queue with

an independent probability1− ρh, whereρh is the utilization of that hop. The probability of seeing

the minimum delay is equal to the probability of encountering empty queues all along the path and

is given byΠh(1− ρh). Therefore, the average number of probe packets that need to be sent before

one of them experiences the true minimum delay is1/Πh(1 − ρh). The probe packet size does not

affect these calculations. This is clearly seen in Figure 7.3 where the dashed lines just seem to be

shifted horizontally (which corresponds to the difference in transmission times of the measurement

packets).

However, in the case of2-hop persistent cross-traffic, the queue sizes at the two hops are de-

pendent on each other. This dependence causesǫ, the noise due to nonpreemption, to be dependent

on probe sizes. To see why, consider our simulation topology. Assume thatthe second hop has

an empty queue and the first hop is transmitting a576-byte data packet when a100-byteHd-probe

arrives to the first hop. It is delayed by the in-transmission data packet at the first hop. By the

time it arrives to the second hop, the576-byte would be in-transmission there, too. In contrast,

the second hop would have finished transmitting the576-byte had we sent a1000-byteHd-probe.

Thus, the inter-hop dependence causes the noise due to nonpreemption,ǫ, to vary based on probe

size among other factors. This behavior is reflected in the different CDFs(even after accounting

for the difference in transmission times) observed by100 and1000 byte packets in the2-hop per-

sistent path (see Figure 7.3). However, there is no single probe size thatguarantees that, for all

possible cross-traffic arrivals, the fewest number of probes need tobe sent (on average) before one
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of them experiences the minimum delay. Figure 7.3 shows that a small probe packet might be more

likely that a large probe packet to encounter nonpreemption noise due to thesame (large) persistent

cross-traffic packet. But, this situation is reversed if the persistent cross-traffic packet encounters

a small queue from other cross-traffic. In this case, a small probe packet, by arriving to the next

hop quickly, can “overtake” the persistent cross-traffic packet thatpreempted it earlier. Hence, we

recommend that the probes of the smallest possible size be sent with the singular goal of minimal

probing overhead.

7.3.2 Per-hop Queueing

Congestion in a network is caused due to queue buildup. Pinpointing the congested hops is

crucial to network operators who want to alleviate congestion and to end-user/overlays for rerouting

traffic. In the current network architecture, for a single-hop, the delay observed by packets is directly

proportional to the size of the queue at that hop. With multiple hops, the delay includes the sum

of the queueing delays at all hops. Hence, there is no way to infer per-hop queueing delays just by

observing end-to-end delays. With our MFN architecture, however, thequeue size at any individual

hoph can be determined by sendingHdNh packets, i.e., packets treated with normal priorityonly

at hoph and treated with high priority on all other hops. This is a straightforward generalization of

the single-hop method in the current network architecture.

In Figure 7.4, we plot the true and measured CDFs of queue sizes at the second hop of the

topologies shown in Figure 7.2. We simulated these topologies using ns-2. We usedHdN2-probes

for measurements and subtracted the minimum end-to-end delay from their delays to calculate the

queue sizes encountered at the second hop. We used our Ground Truth Calculator (GTC) to calculate

the true distribution of queue size. We used Poisson cross-traffic and uniformly distributed probe

which is justified by NIMASTA in Chapter 4. We find, in Figure 7.4, that the trueand estimated

CDFs differ from each other. Our earlier discussion indicates that nonpreemption might be the

reason. To investigate this further, we plot the “noisy” versions of the true CDFs in Figure 7.4.

These noisy versions are obtained by convolving the true CDF with the distribution of noise due

to nonpreemption at the first hop. To make this convolution simple, we used cross-traffic with a

constant packet size of1500 bytes. Hence, nonpreemption noise is uniformly distributed between
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Figure 7.4. The true and (HdN2-probe) measured queue sizes at the second hop of the paths shown
in Figure 7.2. The legend also shows whether the path had1-hop or2-hop persistent cross-traffic.
We measure queue size in units of transmission time of the enqueued packets. The grey curves
represent the true CDFs.

0 and the transmission time of a1500-byte packet. Convolution of the true CDF with the CDF of

the noise represents what we expect the probes to see if the noise is independent of the queue sizes

encountered by the probes. We see that the noisy CDF does coincide with the measured CDF when

cross-traffic is1-hop persistent.

With 2-hop persistent cross-traffic, however, the noisy version does notcoincide with what the

probes saw. The reason is that, the noise is caused by an in-transmission data packet that is also

enqueued before the probe at the second hop. This causes a dependence between the noise and the

queue seen by the probe and hence, our calculated noisy CDF diverges from the CDF observed by

probes. Based on the data and probe sizes, the probe packet can encounter the same data packet

in transmission at all subsequent hops. Formally, ifQh() represents the time-dependent queue size

of hoph, then we expect ourHdNh probes to reach hoph at timesTi. In practice, nonpreemption

causes the probes to reach hoph at different times and also, adds a non-negative error to the observed
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delay. Thus, we use the following approximation -

Qh(Ti) ≈ Qh(Ti + ǫh,1) + ǫh,1 + ǫh,2 (7.2)

whereǫh,1 is the nonpreemption noise until and excluding hoph and ǫh,2 is the noise from hop

h + 1 onwards. Both these have a distribution similar to that in Equation 7.1. TheQh(.) terms

will have the same distribution if cross-traffic is1-hop persistent in which case only nonpreemption

noise is an issue. Withk-hop persistent cross-traffic, anunavoidable sampling biasresults. Note

that persistenceandnonpreemption together cause this bias. A preemptive system with persistence

would not have caused this bias and neither would a nonpreemptive systemwith no persistence.

7.3.3 Per-hop Busy Periods

Another indicator of congestion is busy periods at hops. These represent time intervals during

which the queue is not empty. In the current network architecture, the best known way to esti-

mate busy periods is to intelligently collect statistics at routers [HVPD04]. In our proposed MFN

architecture, busy period statistics can be estimated using (low priority) L-probes which, we we dis-

cussed in Section 7.2.1, measure the “idleness” of queues. In a single-hop case, an L-probe would

be transmitted only when the current busy period ends. This can be generalized to multi-hop paths

by sendingHdLh-probes. Note that such probes can only tell us when a busy period ended and

not when it started. Hence, they measure the remaining duration of a busy period from an arbitrary

point in time.

In Figure 7.5, we show the result of sendingHdL2 probe packets for the topologies in Figure 7.2.

We used our Ground Truth Calculator to obtain the true distribution of the remaining busy period

duration. We plot the true CDFs, the noisy version of these CDFs and the estimated CDF. As

before, we see nonpreemption noise and, in the case of2-hop persistent cross-traffic, bias due to

persistence and nonpreemption. Figure 7.5 confirms our previous resultsthat, sampling is biased

due to a combination of nonpreemption and persistence.
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Figure 7.5. The true and measured (remaining) duration of busy periods from an arbitrary point in
time. We also plot the noisy versions of the true CDFs obtained by convolving the true CDF with
the distribution of nonpreemption noise.

7.3.4 Sources of Inaccuracies

We saw that noise due to nonpreemption (Equation 7.1) and sampling bias due topersistence

and nonpreemption (Equation 7.2) cause inaccuracies in our proposed MFN architecture. In fact,

these represent fundamental limitations of active measurements, i.e., when weintend to measure

internal network characteristics using probe packets. Note that, both sources of inaccuracies are

eliminated if the network is preemptive; Of course, this is hard to implement in a work-conserving

manner.

How inaccurate do measurements become due to the above factors? First, consider noise due

to nonpreemption. Equation 7.1 bounds the maximum value such noise can take.The upper bound

is affected by the transmission times of the maximum-sized packets on all hops. This implies that

noise is mostly due to the lowest-speed links on a path. For instance, on a path with a 100Mbps

link and a2.4Gbps link, the latter would contribute noise less than5µs, the transmission time of

a 1500-byte packet. The disadvantage is that, to measure the high-speed link, the100Mbps link
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could cause noise up to120µs. However, as in Section 7.3.1, the delays ofHd-probes can be used

to determine the cumulative noise from all hops. Such self-calibration is always desirable [Pax04].

Also, by deconvolving the cumulative noise from delays observed usingHdNh-probes andHdLh-

probes, we can make per-hop queue and busy period estimation accuratetoo. Note, however, that

these estimation methods have noise from all but the target hoph whereas the cumulative noise

includes all hops.

Sampling bias due to nonpreemption and persistence is given by Equation 7.2.By how much

do Qh(Ti) andQh(Ti + ǫ1) differ? It is hard to provide accurate bounds. Hence, we resort to

intuitive arguments to motivate why the difference is small. Consider a two-hop path for whichǫ1

is pmax/C1. The only2-hop persistent cross-traffic that can arrive at the second hop in(T, T + ǫ1)

is the in-transmission packet at the first hop. Thus, in this case, the difference betweenQh(Ti) and

Qh(Ti + ǫ1) is not more than the transmission time of a maximum-sized packet. Now, consider a

three-hop path and assume that the probe packet got delayed by an in-transmission3-hop persistent

cross-traffic packet. If this persistent cross-traffic packet is enqueued at the second hop, the probe

packet can get transmitted before this cross-traffic packet especially ifit is small and arrives quickly

to the second hop. Thus, in-transmission packets at one hop can be effectively preempted at a later

hop and the bias need not accumulate.

7.4 Sophisticated Methods

In this section, we describe more sophisticated methods to measure delay and loss properties. In

each case, we also address how the fundamental inaccuracies due to nonpreemption and persistence

affect these methods. In Section 7.4.1, we present simple extensions, involving multiple probe

packets, to the methods described in the previous section. In Section 7.4.2, we describe how joint

statistics of queue sizes and busy periods can be estimated in our proposedMFN architecture. In

Section 7.4.3, we investigate techniques that do not use high priority. We do so with the goal of

developing techniques that end-users can exploit. In Section 7.4.4, we discuss how our architecture

allows carefully-controlled non-intrusive loss measurements can be made.
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7.4.1 Jitter
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Figure 7.6. Simple plot illustrating that, when we send a pair ofHdNh probes, the intra-pair gap is
distributed around the original gapt due to the noise due to nonpreemption. Since, we used two-
hop systems, persistence does not affect arrival to the second hop.The difference between the two
systems is normal estimation variance.

Techniques similar to those described in the previous section can be extended to probe pairs or

trains as a way of estimating per-hop time-varying delay statistics, e.g., jitter. Forinstance, consider

a pair ofHdNh probes with a time gap oft. Noise apart, their delays can be used to calculate

the queue sizes at hoph t units apart. This is one possible measure of jitter and makes it easy to

understand how the queue size at the target hop varies. As before, nonpreemption and persistence

may cause the following approximation. We assume that, with preemption, the firstprobe would

reach hoph at timeT . Recall thatQh(.) denotes the queue size at hoph.

(Qh(T ), Qh(T + t)) ≈ (Qh(T + ǫ1) + ǫ1 + ǫ2, Qh(T + t + ǫ′1) + ǫ′1 + ǫ′2). (7.3)

Here,ǫ1, ǫ′1 andǫ2, ǫ
′
2 represent the non-negative noise up to (and excluding) hoph and from hop

h+1 onwards respectively. We illustrate the intra-pair gaps obtained with simulations of Figure 7.2
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in Figure 7.6. This figure confirms that nonpreemption can cause the intra-pair gap to vary in an

interval that is twice the transmission time of a1500-byte packet,2.4ms.

7.4.2 Joint Statistics

Closely-sent probes can also be used to infer joint statistics across hopsand of busy periods and

queue sizes. For instance, consider a pair of equal-sized probe packets that areHdNh andHdLh.

Also, let t be the gap between them, with theHdNh being sent first. We know, from our discussion

on jitter above, that the gap between the packets when they reach hoph is t ± ǫ1. The two probes

measure the queue size and (remaining) busy period duration. Note that thesecond probe may have

arrived at hoph during a newer busy period than when the first probe arrived. In anycase, the busy

period duration estimated from the second probe delay is an upper bound on the first probes’ busy

period duration. Due to the noise, we cannot make this a tight upper bound even by usingt = 0.

Notice that we can also send theHdLh followed byHdNh. Probe reordering would indicate that

the busy period lasted more thant.

So far, we have seen thatL-probes at a hop can be used to infer the remaining busy period

duration. It turns out that probe packet triplets can be used to estimate busy period duration. The

probes that need to be sent areHdLh, HdLh andHdNh in order with gaps oft1 andt2. The third

packet, on account of being normal priority, can get sent ahead of theearlier probe(s). Thus, if it

is received first, the busy period lasted longer thant1 + t2. If it is received second, the busy period

lasted betweent2 andt1 + t2 time units. If no reordering occurs, the busy period lasted less thant2

time units.

7.4.3 Non-Intrusive Techniques

The above discussion clearly illustrated the inherent measurement property of low priority

probes. One possible issue with the techniques so far is that they require the probes to be high

priority at all hops buth. This is not an issue if the measurements are being done by the network

operator. Since we are also exploring if end-users can exploit these primitives, we investigate what

can be done without high priority at any hop. Consider replacing the high-priority of the triplets,
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discussed in Section 7.4.2, with normal priority, i.e., we send twoNdLh-probes followed by a

Nd-probe. The same arguments can be applied to infer busy period durationsfrom reordering in-

formation with a crucial distinction. We cannot infer the duration of busy periods. Instead, we can

determine whether or not two normal data packets sent with a time gap oft1 or t1 + t2 would see the

same busy period at hoph. Such information is crucial in determining how long congested periods

at hops last - very useful information for user applications in coping with congestion.

Consider a non-intrusive stream ofLd-probes. The arrival times of these packets represent the

total amount of time these probes had to wait for individual hops to experience idle periods. In a

way, this provides a worst-case bound on the duration of busy periods of any hop.

7.4.4 Measuring Losses

Our proposed architecture also makes it easy to measure loss-related congestion.HdNh-probes

measure the loss rates at hoph seen by normal data packets. In addition, receipt ofHdLh-probes

indicate the presence of idle periods at hoph and hence, the hoph is not continuously congested.

This is useful information since continuous congestion is a much more unstablesituation that is

best avoided and could be the result of excessive network load, badly-provisioned router buffers,

etc. In contrast, occasional losses are acceptable and indeed, common with TCP cross-traffic.

HdLh-probes are advantageous also because they are non-intrusive at the target hoph, which could

potentially be congested.

Our proposed MFN architecture also allows useful loss measurements without using high prior-

ity probes. Consider two simultaneous streams ofNdLh-probes andNd-probes. Losses among the

latter indicate losses somewhere along the path. Losses among the former occur if some hop along

the path has losses or hoph is continuously congested. Thus, discrepancy in the loss rates experi-

enced by these probe streams would imply that hoph is a significantly congested hop. Moreover,

this can be inferred using streams more non-intrusive than streams in the current network archi-

tecture. Sampling biases, resulting from cross-traffic persistence, could cause the two streams to

observe different sets of network conditions. We believe that the non-intrusiveness of this technique

makes it attractive even if biases are possible.
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Note that, in the limit, loss measurements can start withLd-probes and gradually make the

probes normal priority at more and more hops. This ramp up from complete non-intrusiveness

especially in congested network conditions has the attractive property of measuring the system

while minimally affecting it. Losses ofLd-probes can also be used to estimate the starting window

sizes of TCP especially in equation-based congestion control algorithms [FHPW00].

7.5 Bandwidth-based Metrics

As discussed in earlier chapters, active measurements have been used toestimate various

bandwidth-related metrics such as link capacities, available bandwidth and cross-traffic. In the

previous two chapters, we developed very useful cross-traffic estimators. Most of these bandwidth

estimation techniques are essentially single-hop methods [JD04] that have been proposed for use

with multi-hop paths. In this section, we discuss how our proposed MFN architecture aids such

techniques. In Section 7.5.1, we discuss how existing capacity estimation techniques can be used.

In Section 7.5.2, we discuss how our cross-traffic estimators are much morerobust to noise caused

by nonpreemption and persistence than other packet-pair methods which rely on fine-grained timing

control [SKK03]. In Section 7.5.3, we discuss how we can measure time-varying bandwidth metrics

such as available bandwidth, cross-traffic etc.

7.5.1 Capacities

Capacity estimation is primarily of interest to end-users. This is because link capacities change

rarely enough that network operators can and do easily maintain databases with such information.

Due to various overhead issues, the IP-level capacity is often lesser than the rated capacity of links

(see [HVPD04], for example). Non-intrusive capacity estimation methods,therefore, provide in-

formation not easily available to operators. Two different kinds of capacity estimation techniques

are known. The first kind send back-to-back packets assuming that they only see queueing at the

narrow link. The time between the receipt of these two packets is assumed to reflect the capacity

of the narrow link. Since these packets may encounter queueing, minimum filtering algorithms are

used to select the pair that is likely to have seen no queueing. Capprobe [KCL+04] is an example
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of such a technique. With our proposed primitives, sendingHd packets would eliminate all such

queueing effects with the exception of nonpreemption noise.
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Figure 7.7. Plot showing the capacity estimates obtained using output dispersions on a two-hop path
- the principle used in Capprobe [KCL+04]. Two cases are shown - when the narrow hop is before
and after the other hop. In the former case, the downstream hop alters theoutput dispersion. The
minimum filtering proposed in Capprobe [KCL+04] works as seen by the correct (8Mbps) estimate
obtained with the smallest total sum. Nonpreemption is the main reason why minimum filtering
continues to be necessary.

In Figure 7.7, we plot the capacity estimates obtained by using the principles onwhich Capprobe

[KCL+04] is based. We send back-to-backHd-probes and estimate the capacity of the smallest (nar-

row) link using the size of these probes and the gap in their receiving times. We plot these estimates

as a function of the total delays observed by both packets; Kapoor, et al. [KCL+04] proposed using

the pair with the minimum sum to calculate the capacity estimate. We make two observations from

Figure 7.7. As prior works [PV02c, PV02a] showed, downstream hops can and do affect the output

gap from the narrow link. This is seen in our MFN architecture because nonpreemption causesHd-

probes to also see residual queueing in the form of in-transmission packets. Our second observation

from Figure 7.7 is that the minimum filtering algorithm does work. Moreover, if the second hop is

narrow then nonpreemption effects are minimal.
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A second kind of capacity estimation techniques, exemplified bypathchar[Jac97] and its vari-

ants [LB00, PV02a] use the transmission time of packets of various sizes to identify capacities of all

links along a path. Each link is targeted using packets that expire at that links. Some variants [Jac97]

rely on ICMP replies to such expired packets while other variants [LB00, PV02a] rely instead on

effects such as packet tailgating. Again, nonpreemption and persistencecould still add noise even

if we try to eliminate queueing effects by usingHd-probes.

7.5.2 Estimating Cross-Traffic

In Chapters 5 and 6, we explored in detail how the delays of a pair of probe packets expose

cross-traffic characteristics. We designed one-hop cross-traffic estimators that are immediately use-

ful in our proposed architecture for measuring individual hops of an end-to-end path. For instance,

sendingHdNh probe pairs would essentially cause the probe pairs to see queueing delays at hoph.

In particular, Equation 7.3 tells us how accurately the delays of a probe pairreflect the across-hop

delays. Recall that these inaccuracies result from non-preemption andpersistence of cross-traffic.

Our estimators are much more suitable in our proposed MFN architecture because we designed

them with the explicit aim of not requiring them to be arrive close to each otherat the target hop.

In contrast, techniques such as Spruce [SKK03] require the packets toarrive at the hop at precisely-

controlled times. This is not achievable even withHdNh-probes due to nonpreemption noise that

is comparable to the intra-pair separations mandated by techniques such as Spruce [SKK03]. Our

cross-traffic estimation techniques can also be combined with capacity estimatesto calculate avail-

able bandwidth estimates ofindividual hopsof a path.

7.5.3 Available Bandwidth

As discussed in Chapter 2, many fundamentally intrusive techniques to estimateavailable band-

width have been proposed. These rely on saturating the available bandwidth and measuring the

occurrence of saturation by observing the resulting (increasing) delaytrends. Not only are these

fundamentally intrusive they also cannot be used to estimate individual hops.We discussed in Sec-
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tion 7.5.2 that, in our proposed architecture, non-intrusive cross-traffic estimation techniques can be

used to estimate available bandwidth of individual hops.
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Figure 7.8. Plot showing the output rates of low-priority (probe) traffic and normal-priority (data)
traffic from a single hop of capacity10Mbps. The low-priority input rate was higher than the
available bandwidth.

Our architecture lends itself to non-intrusive end-to-end available bandwidth estimation using

only low-priority probe packets at each hop. To see why, we observe that low-priority packets at

any hop capture the idle periods at a hop. Hence, the output rate of low-priority packets from a

single hop is guaranteed to not be more than the available bandwidth. In fact,if the input rate of

such low-priority packets is higher than the available bandwidth, their outputrate would be exactly

the available bandwidth (over some timescale). The advantage is they do not intrude on normal

data packets. We show this in Figure 7.8 where we plot the input and output rates of normal and

low-priority packets to a single10Mbps link. We average the rates over200ms intervals.

In Figure 7.9, we plot the output rates ofLd-probes in our canonical two-hop systems (Fig-

ure 7.2) with1-hop and2-hop persistent cross-traffic. Apart from variation in available bandwidth,

we see little difference in the two cases. Clearly, persistence has no impact. Notice that nonpre-

emption effects are reversed in that they may impact the normal data packets.But, such impact is
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very little because an in-transmission low-priority probe can delay normal data packets in the next

busy period by a time that is at most its transmission time. Low-priority packets canalso be used in

congestion control algorithms such as TCP which essentially attempt to saturatethe available band-

width. For instance, TCP slow start ramps up the sending window (and hence, rate) to fill up the

available bandwidth as quickly as possible. Slow start is an especially hard problem given the con-

flicting goals of fast estimation without being excessively intrusive by sending too much too fast.

With low priority measurement packets, fast estimation is possible without intruding on existing

data packets. Previous work [VKD02] has proposed the use of low-priority for large non-essential

TCP transfers. They do not use low priority for any measurement purposes. However, recent work

[SGF05] alluded to the use of low-priority TCP packets for similar reasons as above, namely, not

intruding while increasing the sending rate.

Bottleneck location techniques [ASM03, HLM+04] have adapted the principles of existing

available bandwidth methods, namely, the observation of increasing delays.Using TTL expiry

they saturate only a few of the hops. But, to not be excessively intrusive, they send probe trains
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that are not very large. In our MFN architecture, non-intrusiveLd-probe trains can be as large as

possible. Along with TTL expiry and increasing delays or even losses ofLd-probes, they can be

used to even quantify the available bandwidth of choke links [HLM+04].

7.6 Discussion

In the previous sections, we saw how a variety of different measurementscan be performed

using probe packets with hop-dependent priorities. It is beyond our scope to define and compare

specific estimators in our proposed MFN architecture. We now discuss important issues that arise

in using our proposed architecture and measurement techniques in practice. In Section 7.6.1, we

revisit the inaccuracy issues discussed earlier in Section 7.3. In Section 7.6.2, we discuss the nec-

essary implementation issues for our architecture, how (probe) packets can indicate hop-dependent

priorities and how priority queueing can be implemented. In Section 7.6.3, we discuss the intrusive-

ness of the various schemes and the implications on allowing end-users to usethem especially high

priority queueing. We also discuss appropriate access control mechanisms to restrict the effect of

end-users performing measurements on normal data traffic. We concludewith a discussion on the

pros and cons of our architecture in Section 7.6.5.

7.6.1 Hop Persistence and Dependence

As discussed in Section 7.3.4, existing data networks and routers implement nonpreemptive

forwarding, i.e., a high-priority packet is delayed for a lower-priority packet that is currently being

transmitted. We believe that the difficulty faced in building preemptive networksand routers makes

it unlikely that they are going to be prevalent any time soon. However, nonpreemption introduces

error that can be bounded and is mostly dependent (see Equation 7.1) onthe transmission time of a

maximum-sized packet on the narrow link of the path. We also saw nonpreemption and persistent

cross-traffic causes inter-hop dependence and an unavoidable sampling bias. We also saw that the

resulting sampling bias is likely bounded similar to nonpreemption noise. Not only isthis noise

relatively small but it can also often be eliminated. Furthermore, such noise isnot relevant in tech-

niques that do not use high priority. Though these sources of noise likelyrepresent fundamental
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limits of active measurements our work shows that their impact can be limited in our MFN archi-

tecture. We observe that, since the noise is inversely proportional to the linkcapacities on a path, its

effect is much lesser within an ISP than end-to-end.

7.6.2 Deployment

Our techniques in the MFN architecture relied on the ability of probe packets tobe treated with a

potentially different priority at each hop. There are two deployment issues. One, how to implement

the priority queueing. Two, how do probe packets indicate per-hop priority. The first issue, im-

plementing priority queueing, requires only the necessary configuration options in current routers.

This is because most routers today have implementations of Differentiated Services [BBC+98] that

allow at least three strict priority queues to be defined. Thus, a network operator only needs to

change the configuration of a router to treat appropriately classified probes with the suitable prior-

ity. Within an ISP, suitably configured filters at the edge of the network can prevent unauthorized

use of the primitives especially high-priority queueing. Currently, we are exploring the feasibility

of deploying our primitives in an operational network.

The second issue, that of probe packets indicating their priority, can be achieved in multiple

ways. In the simplest case, network operators can just configure certain source/destination IP ad-

dresses and ports for each priority if measurements are only temporary. For a more permanent

deployment too, network operators can use any combination of the Type-of-Service (ToS) and ad-

dress fields of IP headers. A more systematic approach is desirable to prevent misconfiguration or

if our proposed priority queueing primitives are exposed to end-users.Adding additional control

information to IP headers has traditionally been difficult. IP options typically cause packets to take

the so-called slow path instead of the fast path used by normal data packets. How many bits are

required to implement all of our proposed functionality? One bit is needed to ensure backwards

compatibility by treating existing data packets have normal priority. A ToS bit thatis set to zero

by default today can be chosen for this purpose. At each hop, we need to be able to specify three

priorities. Assuming at most15 hops on a path, there are315 combinations of priorities. They can

be expressed in17 bits. Given that measurement packets do not need arbitrary port numbers, we

can leverage the16-bit port numbers in addition to ToS bits. Notice that existing routers use port

177



numbers to classify packets and hence, such a scheme can be deployed today. Of course, if only a

subset of priority combinations are used, much fewer bits are necessary. For instance, one ToS bit

can be used to indicateLd-probes.

7.6.3 Impact on Normal Data Traffic

One of our stated goals is to use non-intrusive measurements. An operatorusing our primitives

for internal use controls the amount of probing load. All of our techniques which use high priority

require very few probe packets. Moreover, none of them rely on large probe packet trains. Tech-

niques which use low priority packets are, of course, non-intrusive and do not affect existing data

traffic.

Opening up MFN primitives to end-users, if the operator is motivated to make the network

more transparent, requires a combination of policy and access control. Policy limiting the amount

of probing traffic is essential if end-users are allowed to use high priority. For instance, operators

may rate-limit high priority at each hop to be less than1% of the hop capacity. Since none of our

techniques rely on sending many high-priority packets back-to-back, using a small queue for the

high-priority packets is acceptable.

So far, we assumed that there is exactly one measurement stream. Some of our proposed

techniques may have different interpretations in the presence of multiple independent measuring

streams. For instance, high-priority probing packets from different measurement streams could

cause (high-priority) queueing. Some methods, for example, the use of lowpriority packets to es-

timate available bandwidth, are robust to multiple measurement streams. In this particular case,

other measurement streams can also be considered to be normal data traffic. There are two ways of

solving the problem of multiple measurement streams. One way is to use a small queue for high pri-

ority packets. Thus, end-users can infer the presence of multiple measurement entities by observing

losses. The second way is to have explicit access control mechanisms andfiltering capabilities to

control who can exploit our primitives.
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7.6.4 Additional Metrics

A significantly more complicated metric is the traffic matrix [Sim]. Traditionally, it hasbeen

viewed as a network-wide metric. However, it can be viewed as being a function of cross-traffic rate

and hop persistence. To understand this, consider2 two-hop paths which share the first hop. The

traffic matrix entry from the first hop to each of the second hops is given by the average cross-traffic

rate multiplied by the hop persistence of this traffic, i.e., the fraction of cross-traffic that flows to the

next link. Viewing it this way, traffic matrix estimation is also of interest to us. However, metrics

such as flow durations are out of scope because these distributions canfundamentally change and

still not affect the observed delays. To see this, simply mark every alternate packet of a flow as

belonging to a new flow.

7.6.5 Pros and Cons

Our MFN architecture has many advantages. The primary advantage is thatit helps achieve

our goals of performing accurate active measurements non-intrusively without any additional data

collection mechanisms. Moreover, it uses already-implemented priority queueing primitives and is

arguably minimalistic. Though, we discussed only FIFO-based schedulersfor normal data packets,

our primitives can be applied even if this is not the case. The only requirement is that the low-priority

and high-priority be with respect toall data packets. For instance, routers may treat data packets

with two different priorities (which may be strict or not). As long asL-probes have lower priority

than both kinds of data packets andH-probes have higher priority than both kinds, our primitives

and techniques are applicable. This is especially relevant given that manyaccess technologies have

begun to use non-FIFO queueing disciplines [LPP04, WWZ+05]. Our work also indicates how

networks which implement priority queueing for data traffic can actually be measured much more

easier than today’s networks.

Two issues remain with our architecture. The first is the presence of inaccuracies due to non-

preemption and persistence. We discussed why these inaccuracies can be bounded and often, be

eliminated. Moreover, they appear to be fundamental in the sense that they are unlikely to be elim-

inated without making the network preemptive. It is an open question if other mechanisms can be
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used to overcome these arguably small inaccuracies. The second importantissue with our architec-

ture is the use of high priority. We did show that, low priority alone is often useful especially for

measuring end-to-end losses and available bandwidth. We also discussedrate limiting and access

control mechanisms to limit the impact of high-priority probe packets. Whether or not better for-

warding primitives can be designed is a question for future work that follows from our architecture.

Finally, our architecture is not robust to anomalies such as link layer multiplexing and multi-path

forwarding.

7.7 Conclusions

In this chapter, we focused on the question of designing forwarding primitives to tackle the chal-

lenge of non-intrusively measuring multi-hop path properties. We showed that hop-dependent prior-

ity queueing is an attractive solution to these challenges and can be used to design a Measurement-

Friendly Network (MFN). We sketched a variety of measurement techniques to estimate end-to-end

and per-hop metrics involving queueing delays, busy periods, losses, bandwidth and cross-traffic.

We encountered nonpreemption and persistence as two barriers to accurate estimation. Though,

these are unlikely to be eliminated without a radical change in the way routers are implemented, they

are often small and can be ignored or eliminated. Thus, we provide a cost-effective, easy-to-deploy

network management architecture for network operators - an alternativeto costly, passive data col-

lection mechanisms that typically require network-wide deployment. Moreover, if our proposed

primitives are exposed to end-users, they can use the resulting transparency for better end-to-end

performance and fault diagnosis. Network operators offering our primitives as a value-added ser-

vice can thereby attract more customers. We discussed a variety of practical issues, such as access

control, involved in enabling end-user access and how they can be addressed.
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Chapter 8

Conclusion

“The average Ph.D. thesis is nothing but the transference of bones from one graveyard to

another.”

- James Frank Dobie, American folklorist

In this dissertation, we studied theoretical and practical questions concerning non-intrusive ac-

tive network measurements. In this chapter, we conclude this dissertation witha summary of our

work, open questions and potential for future work. This chapter is alsoorganized like the disserta-

tion. We first discuss sampling followed by inversion and end with architecture design.

8.1 Sampling

In Chapter 4, we studied the sampling-related aspects of active measurements, namely, how do

we choose the times at which probe packets should be sent and why shouldwe make this choice.

Our starting point was the frequently-used “Poisson Arrivals See Time Averages (PASTA)” principle

[Wol82]. PASTA has been used by prior work [Pax97a, Pax99] to justify Poisson probing as the

only way of obtaining unbiased estimates.

Given our emphasis on non-intrusive probing, we started by investigatingperfect non-intrusive

probing to estimate the simplest metric, end-to-end delay. Perfectly non-intrusive probing implied

that probes were of zero size. Though impractical, this allowed us to clearlyunderstand the im-
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plications of intrusiveness on sampling strategies. Using Palm Martingale Calculus [BB03], we

rigorously analyzed the zero probe case. Based on this analysis, we formulated theNon-Intrusive

Mixing Arrivals See Time Averages (NIMASTA)principle. This principle essentially states that, as

long aseithercross-traffic or probe arrivals satisfy the so-called mixing property, unbiased estima-

tion is guaranteed. The mixing property is not restricted to Poisson streams and is satisfied by any

stream with i.i.d inter-arrivals among others.

Upon analyzing the system assuming probes of non-zero size, we foundthat PASTA is the

relevant principle. Thus, non-intrusiveness plays a key role in determining whether or not a sam-

pling strategy has zerosampling bias. But, with intrusive probing, the bias is with respect to the

“intruded-upon”(perturbed) system. Thus, Poisson probing leads to estimates that possess an addi-

tional inversion bias. Inversion bias needs to be removed to access the unperturbed system properties

from our observations of probe delays in the perturbed system.

Both NIMASTA and PASTA are statements about asymptotic convergence, i.e., convergence to

the ground truth assuming a large number of observations that tend to infinity.In practice, we are

forced to work with a small number of samples and hence, estimation variance has a significant im-

pact on estimation accuracy. Thus, in summary, the optimal sampling strategy depends on sampling

bias, inversion bias and variance. Using simple one-hop simulations, we show that, with respect

to a combined measure (root mean square error), non-Poisson streams perform better than Poisson

streams. Furthermore, we motivated the use of a rare probing as a sound measurement strategy. The

reason is that, probing that is rare enough can be considered to be non-intrusive and hence, have no

inversion bias. NIMASTA is applicable and any mixing probe stream can be used in the absence of

analytical tools that calculate the variance of probing streams.

We also showed that the use of PASTA to send probe pairs or trains at Poisson epochs is unjus-

tified. Instead, appropriate extensions of NIMASTA are more suitable andagain, sending pairs or

trains rarely at mixing epochs is the sound strategy.
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8.1.1 Future Work

Our work, while providing important insights into sampling-related issues, raises important

open questions. We discuss them now.

The most important question that we left unanswered was the optimal sampling strategy to be

used. Given that performance is a function of two different biases andvariance, it is possible that

the optimal strategy depends on the underlying cross-traffic properties.Works such as [Rou05] that

calculate the variance of probing streams are steps in the right direction.

A question for future work concerning practical techniques relates to therare probing strategy.

We motivated the latter as a sound measurement strategy. We also alluded to good rules-of-thumb to

determine how rare probing should be. More rigorous analysis is necessary to fully understand this

question. In Chapter 4, we mentioned self-verifying tests, e.g., comparing the estimates obtained

with probing streams of different degrees of rarity, as a possible solution. More investigation into

the pros and cons of such tests is required.

8.2 Cross-traffic Estimation

In Chapters 5 and 6, we explored inversion problem related to accessingcross-traffic properties

using the delays of a pair of probe packets. We summarize that work and discuss potential future

work now.

8.2.1 Theory

First, we used Lindley’s equation [Kle75c] to develop a packet-based analysis that relates the

delays of a pair of probe packets to cross-traffic in the case of a single FIFO hop. We found that two

functionals of cross-traffic,C andB representing the amount of cross-traffic and burstiness, relate

the delays of the pair. Thus, they represent what we can hope to access using probe pair delays.

Then, we showed that, without any assumption on cross-traffic, sample path ambiguity results, i.e.,

different cross-traffic functionals can lead to the same observed delays unless the intra-pair gap is
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very small [SKK03]. In a sense, this represents the fundamental limits of probe pairs without any

assumption on cross-traffic.

To investigate if the intra-pair gap can be increased to acceptable levels, weturned to inverting

the functionals by making some assumption on cross-traffic. For maximum applicability, our goal

was to not use any parametric model of cross-traffic but to use something more general. We assumed

that the delay of the first probe packet is independent of the cross-traffic trapped between the pair.

This assumption makes the system tractable. In fact, it allows the entire CDF ofC and almost the

entire joint density ofC andB. We found that certain regions of the joint density, proportional to

the probe size cannot be accessed and represent the cost of probing intrusiveness.

To access the cross-traffic functionals, we developed exact Class 1 expressions and approximate

Class 2 expressions. The latter were developed with the view of performinginversion in the presence

of very little data. We also tried to extend our single-hop analysis to a multi-hop path. We found that

the inability to control timing at intermediate hops and cross-traffic persistenceessentially make this

a very challenging problem.

8.2.2 Practice

In Chapter 6, we adapted the inversion expressions developed in Chapter 5 for use with practical

estimation. We started by defining three estimators that used a free parameterr . Using simple

illustrative simulations that satisfied our assumption, we investigated the variousfactors affecting

estimation. We found that, as utilization and/or burstiness reduces, the available data for estimation

decreases. At very low utilization, estimation essentially becomes impossible. Wealso found a

classic bias-variance trade-off operating that vividly demonstrated the utility of our Class 2 inversion

expressions. This trade-off also illustrated the innovation of our approach - our ability to choose

certain probe pairs, between which the queue is known to be busy, to perform estimation.

Then, we moved to considering CDF estimation and showed the importance of adapting r .

We also showed how natural normalization of CDFs is desirable and using this, chose one of our

three estimators as the best one to evaluate further. For this estimator, we investigated two ways of

adaptiver . One of them was to use a saturation algorithm that, in loose terms, attempts to estimate
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a so-called strong assumption curve reflecting the bias-variance trade-off. Since the resultingr does

not estimate monotonic CDFs, we explored algorithms to enforce monotonicity. We also explored

simpler constantr estimators.

We used a combination of simulations, router traces and live experiments to evaluate the various

candidate estimators. We found that the saturation algorithm outperformed other estimators and the

various monotonicity algorithms performed very similar to each other. In most ofour experiments,

we found that our estimators can estimate entire CDFs with an error less than0.2 with an intra-pair

separation about10 times what previous works [SKK03] require when the hop utilization is0.5 or

more.

8.2.3 Future Work

We showed how our packet-based framework can be used to design techniques that trade-off

non-intrusiveness for better accuracy using filler probes. Such methods that provide the ability to

control intrusiveness are desirable and worthy of future work.

We used a well-motivated assumption on cross-traffic. It is desirable to investigate ways of

verifying this assumption using observed probe pair delays. Investigatingother such assumptions is

another venue for future work. Also, we did not investigate the impact of probe size on estimation.

It would be interesting to see if multiple probe sizes can be used to improve estimation.

8.3 Measurement-Friendly Networks

In Chapter 7, we investigated network primitives to tackle the twin challenges ofnon-intrusive

active measurements that are robust to multi-hop queueing effects. The latter challenge has often

been encountered by prior works and also by us, in Chapter 5. We showed how hop-dependent

priority queueing can be viewed as a natural solution to these twin challenges. In particular, assign-

ing probes high-priority at a hop makes the normal data queues at that hopinvisible to probes. In

addition, probe packets assigned low priority intrinsically measure the normaldata queue. Thus,
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well thought out combinations of per-hop priorities can be used to make a network measurement-

friendly.

Using simple simulations, we designed active techniques to measure a multitude of per-hop and

end-to-end properties in MFNs. The properties we considered includedper-hop queueing delays,

busy periods, available bandwidth, cross-traffic. The MFN architecture allowed the use of our1-hop

cross-traffic estimators on each hop of a path.

We also encountered unavoidable inaccuracies in MFNs. These are caused by nonpreemption

and persistence of cross-traffic. We motivated why these represent fundamental limitations of ac-

tive measurements. We also analyzed these sources of inaccuracies andprovided lower and upper

bounds on them. These showed that, the inaccuracies are mostly dependent on the transmission

time of a maximum-size packet on the smallest link of the path. This, along with issuesrelated

to allowing end-users to use high-priority queueing, makes some aspects ofour MFN architecture

more suitable for use within an ISP.

We also discussed practical issues related to deploying our proposed architecture. It turns out

our proposed primitives are already implemented in routers and only need to be turned on. We also

discussed how the low-priority queueing primitives can be exposed to end-users without worrying

about added intrusiveness. We also discussed access control mechanisms and rate limits that are

necessary if end-users are allowed to exploit high-priority queueing athops.

8.3.1 Future Work

Our work shows a novel use of architecture design, namely, to improve active measurement.

An open question, in this context, is whether there are additional forwarding primitives that make

active measurements easier. In particular, we required the use of high-priority queueing at certain

hops. Can this be eliminated?

In the context of our MFN architecture, rigorous analysis to bound the inaccuracies due to

nonpreemption and persistence is one avenue for future work. Such ananalysis is helpful to network

operators using our proposed architecture. Also, we briefly discussed various techniques that can

be used in our MFN. Fine-tuning these techniques is necessary before they can be used in practice.
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