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Abstract— We describe a method for enhancing synchroniza-
tion error correction properties of an array-based LDPC code.
The proposed method is based on code expurgation whereby a
linear subcode is retained for message encoding and the remain-
ing input bits are used for protection against synchronization
errors. The method is easy to implement and incurs a minimal
loss in the rate.

I. I NTRODUCTION

In many communication systems a binary input messagex
is encoded at the transmitter using substitution-error correcting
codeC(n, k) into a coded sequencec = C(x). The modulated
version of this sequence is corrupted by additive noise and
arrives at the receiver as a waveformr(t),

r(t) =
∑

i

cih(t− iT ) + n(t), (1)

whereci is the ithbit of c, h(t) is the modulating pulse, and
n(t) is the noise introduced in the channel.

Upon receivingr(t), the receiver samples it at time in-
stances{kTs + τk}. The sequence of samples is fed into the
decoder which produces the most likely input message. Since
the traditional decoder is designed to overcome additive noise
introduced in the channel, it is essential that the decoder is
provided with samples taken at correct time instances. As the
operating requirements under which timing recovery must be
performed become more stringent, accurate synchronization
becomes critical for the full utilization of the available coding
gains.

Several authors have studied the problem of accurate tim-
ing recovery. Proposed solutions include building a more
sophisticated timing recovery block [14], turbo-like approach
to iteratively determine both sampling points and encoded
data [16], and multiple hypothesis analysis of the sampling
instances [11].

As an alternative to more complex and more expensive
timing recovery schemes, we propose to employ the timing
recovery block as is, and instead modify the decoding pro-
cedure and the code itself to compensate for the imperfect
synchronization. The advantage of the proposed approach
is that with systematically analyzing the robustness of the
additive error correction code to synchronization errors, one
could use a subcode of the original code that would be

immune to both additive as well as sampling errors. The
trade off would be in the incurred rate loss associated with
the code modification versus the increased complexity and
latency associated with the aforementioned approaches. The
challenge of the proposed approach lies in determining the
synchronization error correction capabilities of the code and
in determining its subcode with desired properties.

To emphasize the issues that arise when adequate timing
recovery is missing, assume that the modulation scheme in
(1) is pulse-amplitude (PAM), and more importantly, that we
are operating in the infinite SNR regime where the effect of
n(t) is negligible. As a consequence of the initial frequency
error, say whenTs < T , or of the accumulated phase error in
τk, some symbol may be sampled more than once (effectively
repeated in the infinite SNR regime).

Assuming that the exact sampling instances are not known,
a coded sequencec can give rise to a whole set of received
sampled versions ofr(t). When two distinct sequencesc1

and c2 result in the same sampled sequence, it is no longer
possible to uniquely determine the coded sequence or its pre-
imagex from the received sequence,even in the noise-free
environment. We then say that the codeC(n, k) suffers from
an identification problem. Specifically, letS1(c1) be the set
of all strings obtained by applying a repetition toc1. If
S1(c1)

⋂
S1(c2), for c1 6= c2 is nonempty, we say thatc1

(andc2) is an identification problem causing codeword.
Several authors have studied codes immune to a deletion or

an insertion of a bit. For example, the so-called Varshamov-
Tenengolts code proposed in [22] and popularized by Leven-
shtein in [12] has been further studied by Ferreira et al., [9],
Levenshtein [13], Sloane [18], and Tenengolts [20]. Related
constructions were proposed in [3], [4], [10] and [21]. Even
though these constructions assure that the code is immune to a
deletion or an insertion of a bit, they do not guarantee any other
desirable properties of standard substitution error correcting
codes, such as linearity and a good minimum Hamming dis-
tance. Concatenated codes that correct synchronization errors
have been proposed in [5] and [6].

In this paper we first present a brief overview of the array-
based low density parity check (LDPC) codes and discuss their
identification error properties. In Section III we propose a gen-
eral technique for constructing a code immune to repetitions.



Having established several useful ancillary results in Section
IV, we then describe how the array-based LDPC code can be
modified to eliminate the identification problem in Section V.
A decoding algorithm appropriate for channels with repetition
and additive errors is developed in Section VI along with
preliminary simulation results on the modified array-based
LDPC code.

II. A RRAY-BASED LDPC CODES

Array based LDPC codes are regular LDPC codes parame-
terized by integersj andp, wherej ≤ p, p is an odd prime,
and have the parity check matrixHp,j given by

Hp,j =

2666664
I I I . . . I
I σ σ2 . . . σp−1

I σ2 σ4 . . . σ2(p−1)

...
...

... . . .
...

I σj−1 σ(j−1)2 . . . σ(j−1)(p−1)

3777775 (2)

whereσ denotes the followingp× p permutation matrix,

σ =

266664
0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

... . . .
...

...
0 0 . . . 1 0

377775 . (3)

We let Cp,j be the linear code with the parity check matrix
given in (2).

Array-based LDPC codes have good performance [8], low
encoding complexity [15], are suitable for efficient parallel
decoding [2], [17], and have been proposed for a variety of
applications, including digital subscriber lines [7] and mag-
netic recording applications [19], [23]. However, as explained
below, such code suffers from an identification problem.

Lemma 1:Under a single repetition, there are at least
2p−1 − 2 identification problem causing codewords inCp,j

for j < p.
Proof: Consider two binary stringsc1 and c2 of length

p2 such that c1 is [a2a3...ap−2ap−1apa1] and c2 is
[a3a4...ap−1apa1a2] whereai (ai) indicates a string of length
p bits with a single 1 (0) in theith position and 0’s (1’s)
everywhere else.

For example, forp = 5, c1 is [01000 00100 00010 11110
10000] andc2 is [00100 00010 00001 01111 01000].

First observe that bothc1 andc2 give rise to the same string
c12 after one repetition, wherec12 is of lengthp2 + 1, and is
[a3a4...ap−1apa1a20] (same as[0a2a3...ap−2ap−1apa1]). For
example, forp = 5, c1 andc2 can both result in [00100 00010
00001 01111 010000].

We now prove thatc1, c2 are in fact codewords ofCp,p−1.
Let c1

〈kp〉 denote the string obtained by cyclically shifting
c1 to the right bykp positions.

By the quasi-cyclic property of the code [15], it
suffices to verify that c1

〈2p〉=[apa1a2a3...ap−2ap−1] and
c2
〈2p〉=[a1a2a3a4...ap−1ap] satisfy c1

〈2p〉HT
p,p−1 = 0 and

c2
〈2p〉HT

p,p−1 = 0.
It easily follows thatc1

〈2p〉[II...I]T = 0. Now consider a
row-wise submatrix ofHp,p−1, [Iσlσ2l . . . σl(p−1)] for some

l, 1 ≤ l ≤ p − 2. Write c1
〈2p〉[Iσlσ2l . . . σl(p−1)]T as ap +∑p−1

i=1 ai(σil)T = ap +
∑p−1

i=1 a[i+il]p , where[x]p indicatesx
mod p. Since 1 ≤ i ≤ p − 1 and 1 ≤ l ≤ p − 2, i + il
mod p 6= 0, and no term in the summation isap. In addition,
all terms in the summation are distinct, as otherwise there
would existi, i′, i′ < i such that(i − i′)(l + 1) ≡ 0 mod p,
which is impossible forp prime, i, i′ ≤ p − 1 and l + 1 ≤
p − 1. Therefore,c1

〈2p〉[Iσlσ2l . . . σ(p−1)l]T = 0. The proof
for c2

〈2p〉HT
p,p−1 = 0 is analogous.

Provided that bothc1
〈kp〉 andc2

〈kp〉 have the same starting
and ending bits, they too result in the identification problem
under single repetition. This occurs as long ask is not
congruent to 1 or to 2 modp. Let R1 (R2) be the set
of codewords obtained by cyclically shiftingc1 (c2) by kp
positions fork ranging from3 to p. It easily follows that any
nontrivial linear combination of elements inR1 and the same
linear combination of their counterparts inR2 also results in
the identification problem.

Since, by construction,Cp,j ⊇ Cp,j+1, in eachCp,j code
there are therefore at least2p−2−1 pairs of codewords causing
the identification problem. Since different linear combinations
of the elements ofR1 and R2 result in different codewords,
there are therefore at least2p−1−2 codewords that cause this
problem. ¥

III. C ONSTRUCTION OF A CODE FOR CORRECTING

MULTIPLE REPETITIONS

In this section we show how to construct a code capable of
correctingt repetitions. Let us first introduce a useful general
transformation, in which we express the number of runs of
the original codeword in terms of the weight of a string in the
transformed domain.

For C ⊆ {0, 1}n let C̃, C̃ ⊆ {0, 1}n−1 be defined as a
set of all distinct strings̃c obtained by multiplying eachc,
c ∈ C with Tn overGF (2), whereTn is an× (n−1) matrix
satisfying

Tn(i, j) =
{

1, if i = j, j + 1
0, else.

(4)

If C is a linear code of lengthn with a generator matrixG,
its image underTn is a linear code generated bỹG = GTn.

If c ∈ C hasr runs, theñc ∈ C̃ has weightr− 1, and vice
versa. Bothc and its complementc (if it exists) result in the
samec̃. In particular, if the codeC is linear and the all-ones
is not a codeword, the mapping underTn is one-to-one, and
G̃ is full rank.

In essence a repetition inc ∈ C corresponds to an insertion
of a zero in its counterpart̃c ∈ C̃. Therefore, to construct
a code capable of correctingt = 1 repetition, it suffices
to construct a code immune to a single insertion of a zero.
Consider the setS(m,w, a, r) defined as:

S(m,w, a, r) = { s = (s1, s2, ...sm) ∈ {0, 1}m :∑m
i=1 si = w,

∑m
i=1 isi ≡ a mod r}

(5)



and let S (m, (a1, r1), (a2, r2), ..., (am, rm)) be the union
over distinct weights, i.e.

S (m, (a1, r1), (a2, r2), ..., (am, rm)) =
m⋃

i=1

S(m, i, ai, ri).

(6)

Lemma 2:Provided that ri > i ∀i ∈ [0, m], the set
S (m, (a1, r1) , (a2, r2), ..., (aw, rw)) is single insertion of a
zero correcting.

Proof: Since no 1’s are introduced in the transmission, it is
sufficient to consider the strings having the same weight, i.e.
if each set in the disjoint union in (6) is single insertion of a
zero correcting, so is their (disjoint) union. Suppose a string
x belonging toS(m, i, ai, ri) for ri > i is transmitted. Its
corrupted version (with an inserted zero) arrives at the receiver
as a stringx′. If the receiver can uniquely determinex based
on x′, for all choices ofx andx′, then the setS(m, i, ai, ri)
is single insertion of a zero correcting.

Following the analysis of Sloane of a related single deletion
correcting code [18], suppose the insertion of a zero occurs
in theLth position, which is unknown. The receiver computes
a′ ≡ ∑m

i=1 ix′i mod ri.

a′ ≡ ∑m
i=1 ix′i mod ri

≡
(∑L−1

i=1 ixi +
∑m

i=L(i + 1)xi

)
mod ri

≡ (ai + R) mod ri

(7)

whereR denotes the number of ones to the right of the inserted
0. SinceR ≤ i < ri, the offsetR mod ri can be uniquely
determined fromai and a′ mod ri, and x is recovered by
deleting a zero immediately preceding theRth 1 inx′ counting
from the right. ¥

Therefore, if we wish to determine a subcode of a given
code C of length n immune to a single repetition, it is
sufficient to retain only those codewords which under trans-
formation Tn result in strings that are the elements of
S (m, (a1, r1), (a2, r2), ..., (am, rm)) for m = n− 1. Specifi-
cally, one can letai = a andri = r, wherer− 1 denotes the
upper bound on the weight of a string obtained by applyingTn

to C. In the remainder we will useS(m, a, r) as a shorthand
for such a set.

The construction given in (5) and (6) can be generalized for
the correction of multiple repetitions as follows:

Let w denote the weight ofs, and definebi+1 = bi+1(s),
1 ≤ i ≤ w to be the size of the run of zeros immediately
following the ith 1 in s, and letb1 be the size of the run zeros
immediately preceding the leftmost 1, where by a run of zeros
we mean the longest contiguous substring consisting of zeros
only. If the ith 1 is immediately followed by another 1,bi = 0,
and if the leftmost bit ins is 1, b1 = 0. Moreover, ifs consists
only of zeros,b1 = length ofs. We call bi the size of theith

bin of zeros ofs.

Let a = (a1, a2, ..., at), and consider the set̂S(m,w,a, p)

defined as

Ŝ(m,w,a, p) = { s = (s1, s2, ...sm) ∈ {0, 1}m :∑m
i=1 si = w,∑w+1
i=1 ibi ≡ a1 mod p,∑w+1
i=1 i2bi ≡ a2 mod p,

. . . . . . . . .∑w+1
i=1 itbi ≡ at mod p}

(8)

and let Ŝ (m, (a1, p1), (a2, p2), ..., (am, pm)) be the union
over different weights,

Ŝ (m, (a1, p1), (a2, p2), ..., (am, pm)) =
m⋃

l=1

Ŝ(m, l,al, pl).

(9)
Lemma 3: If each pl is prime andpl > max(t, l), the set

Ŝ (m, (a1, p1), (a2, p2), ..., (am, pm)) is t-insertions of zeros
correcting.

Proof: It suffices to show that each set̂S(m, l,al, pl)
is t-insertions of zeros correcting. Suppose a stringx ∈
Ŝ(m, l,al, pl) is transmitted. After experiencingt insertions
of zeros, it is received as a stringx′. We now show thatx is
always uniquely determined fromx′.

Let i1 ≤ i2 ≤ ... ≤ it be the (unknown) indices of the
bins of zeros that have experienced insertions. For eachj,
1 ≤ j ≤ t, computea′j ≡

∑w+1
i=1 ijb′i mod pl, whereb′i is the

size of theith bin of zeros ofx′,

a′j ≡ ∑w+1
i=1 ijb′i mod pl

≡ aj + (ij1 + ij2 + ... + ijt ) mod pl,
(10)

whereaj is the jth entry in the residue vectoral (to lighten
the notation the subscriptl in aj is omitted).

By collecting the resulting expressions over allj, and setting
a
′′
j ≡ a′j − aj mod pl, we arrive at

Et =





a
′′
1 ≡ i1 + i2 + ... + it mod pl

a
′′
2 ≡ i21 + i22 + ... + i2t mod pl

. . . . . . . . .

a
′′
t ≡ it1 + it2 + ... + itt mod pl.

(11)

The terms on the right hand side of the congruency constraints
are known as power sums int variables. LetSk denote the
kth power sum modpl of {i1, i2, ..., it},

Sk ≡ ik1 + ik2 + ... + ikt mod pl, (12)

and letΛk denote thekth elementary symmetric function of
{i1, i2, ..., it} modpl,

Λk ≡
∑

v1<v2<...<vk

iv1iv2 · · · ivk
mod pl. (13)

Using Newton’s identities overGF (pl) which relate power
sums to symmetric functions of the same variable set, and are
of the type

Sk−Λ1Sk−1+Λ2Sk−2−...+(−1)k−1Λk−1S1+(−1)kkΛk = 0,
(14)



for k ≤ t, we can obtain an equivalent system oft equations:

Ẽt =





d1 ≡
∑t

j=1 ij mod pl

d2 ≡
∑

j<k ijik mod pl

. . . . . . . . .

dt ≡
∏t

j=1 ij mod pl,

(15)

where each residuedk is computed recursively from
{d1, ..., dk−1} and {a′′1 , a

′′
2 , ...a

′′
k}. Specifically, since the

largest coefficient in (14) ist, and t < pl by construction,
the last term in (14) never vanishes due to the multiplication
by the coefficientk.

Consider now the following equation:

t∏

j=1

(x− ij) ≡ 0 mod pl, (16)

and expand it into the standard form

xt + ct−1x
t−1 + ... + c1x + c0 ≡ 0 mod pl. (17)

By collecting the same terms in (16) and (17), it follows
that dk ≡ (−1)kct−k mod pl. Furthermore, by Lagrange’s
Theorem, the equation (17) has at mostt solutions. Since
it ≤ pl all incongruent solutions are distinguishable, and thus
the solution set of (17) is precisely the set{i1, i2, ..., it}.

Therefore, since the systemEt of t equations uniquely
determines the set{i1, i2, ..., it}, the locations of the inserted
zeros (up to the position within the bin they were inserted
in) are uniquely determined, and thusx is always uniquely
recovered fromx′. ¥

In particular, fort = 1, the constructions in (5) and (8) are
related as follows.

Lemma 4:For p prime andp > w, the setS(m,w, a, p)
defined in (5) equals the setŜ(m,w, â, p) defined in (8), where
â = fm,w − a modp for fm,w = (w + 2)(2m− w + 1)/2−
(m + 1).
Proof: Consider a strings = (s1, s2, ..., sm) ∈ S(m,w, a, p),
and letpi be the position of theith 1 in s, so that

∑m
i=1 isi =∑w

i=1 pi. Observe thatpk =
∑k

i=1 bi + k wherebi is the size
of the ith bin of zeros ins. Write∑w

i=1 pi + (m + 1) = (b1 + 1) + (b1 + b2 + 2) + ...+
(b1 + b2 + ... + bw + w) + (b1 + b2 + ... + bw+1 + w + 1) =∑w+1

i=1 (w + 2− i)bi + (w + 1)(w + 2)/2 =
(w + 2)(m− w) + (w + 1)(w + 2)/2−∑w+1

i=1 ibi =
(w + 2)(2m− w + 1)/2−∑w+1

i=1 ibi.
(18)

Thus, for a ≡ ∑m
i=1 isi mod p, the quantityâ ≡ ∑w+1

i=1 ibi

mod p is fm,w − a mod p. ¥
Before showing in Section V how to systematically modify

the array-based LDPC code based on the above approach while
preserving the linearity of the parent code, we state several
useful technical results.

IV. A UXILIARY RESULTS

Let P be the set of binary strings of lengthn = p2 defined
as P = {s : s = 0(p−t)p1tp or s = 1tp0(p−t)p} wherep is
an odd prime,t is an even integer,1 ≤ t ≤ p − 1, and the

notation0k1l (1l0k) denotes a binary string of lengthk + l
consisting of a run of zeros of sizek (run of ones of sizel)
followed by a run of ones of sizel (run of zeros of sizek).

Lemma 5:The setP forms a p − 1-dimensional set of
linearly independent binary strings.

Proof: The proof is by contradiction. Suppose there exists
a nontrivial linear combination (simply a sum overGF (2))
of elements ofP which evaluates to an all-zero string. LetJ
be a non empty subset ofP with the property that the sum
of its elements is all zeros. ExpressJ as a disjoint union of
Jl andJr whereJl (Jr) denotes the subset of elements ofJ
which are of the type1l0k (0k1l), wherel is even andk is odd
by construction. The cardinalities ofJl andJr are both even,
with at most one being zero. Letjl(jr) be the string obtained
by summing the elements ofJl(Jr). If Jl (Jr) is empty, setjl

(jr) to be an all-zeros string. By construction, if|Jl| > 0, jl

has both leftmost and the rightmost run being a run of zeros,
with at least one more run (of ones) in between. Moreover,
all runs in jl except for its rightmost run are of even length.
Likewise, if |Jr| > 0, the stringjr has at least three runs, and
both its leftmost and rightmost runs are runs of zeros. The
leftmost run injr is of odd length, and all other runs are of
even length. Irrespective of whetherJl or Jr or neither of the
two is empty,jl andjr are always different, and thus the sum
of elements ofJ cannot be an all-zeros string. ¥

Lemma 6:∀s ∈ P , sHT
p,j = 0, for Hp,j given in (2) and

j ≤ p.
Proof: SinceHp,j can be viewed as an array of permutation

submatrices, each row ofHp,j can be viewed as a concate-
nation of p substrings, where each such substring is of the
type ai, for ai defined in Section II. Leth be a row ofHp,j .
As s multiplies hT , the contribution to the product is either
1 or 0 per constituent substring, depending on whether the
multiplying constituent substring ins consists of all ones or
all zeros. Since the number of constituent substrings ofs equal
to all ones is always even by construction, the productshT is
zero for alls ∈ P . ¥

For j < p, as a consequence of the previous two Lemmas
we can form a generator matrixGp,j with rank K whereK
is p(p− j)+ j− 1 ([15]) of the array-based LDPC codeCp,j ,
such that

Gp,j =
[

Gs
p

Gm
p,j

]
, (19)

whereGs
p is ap−1×p2 matrix whose rows are all distinct

elements of the setP . By applying only row manipulations to
a generator matrix, the matrixGm

p,j (which is K − p + 1× p2

and thus non empty forj < p) has eachqp-th column, for1 ≤
q < p, equal to the(qp + 1)-th column. LetG̃p,j = Gp,jTp2

whereTp2 is given by (4), and observe that the topp−1 rows
of G̃p,j are all distinct and are of the form0tp−110p2−tp−1,
for 1 ≤ t ≤ p− 1, and that the bottomK − p + 1 rows have
zeros in all positions that are multiples ofp.

Let C̃p,j be the code generated bỹGp,j . Since the all-ones
string is not a codeword inCp,j , the matrixG̃p,j has full rank.

Lemma 7:No codeword inC̃p,j has weightp2−1 or p2−2.



Proof: Suppose first that there exist a codewordc ∈ Cp, j
for which cTp2 = c̃ has weightp2−1. It is then necessary that
c itself consists of alternating bits. Since the top part ofHp,j

(cf. (2)) consists of an odd-sized array of identity matrices it
is impossible to havecHT

p,j = 0.
Now suppose that there is a codewordc which produces

cTp2 = c̃ where c̃ has weightp2 − 2. It is then necessary
that c has all runs of size 1 except for exactly one run of
size 2. Suppose that the 2-bit run spans positionsr andr +1.
By the quasi-cyclic property of the code we can assume that
1 ≤ r ≤ p. Let cl denote the substring ofc consisting of
p leftmost bits, and letcr denote the substring ofc spanning
the remainingp+1 throughp2 positions. Writec[II . . . I]T =
[clcr][II . . . I]T = cl, and observe that the contribution from
cr to the overall result is either an all-ones string of lengthp
(if p − 1 ≡ 2 mod 4) or is an all-zeros string of lengthp (if
p − 1 ≡ 0 mod 4). Sincecl is neither all-zeros nor all-ones,
c[II . . . I]T 6= 0, andc is not a codeword. ¥

We conclude the section with the following result.
Lemma 8:For p an odd prime, the setS = {1, p + 1, 2p +

1, . . . , (p − 1)p + 1, p2 + 1} generates the complete residue
class modp2 in that each0 ≤ b ≤ p2 − 1 can be written as
a sum of distinct elements ofS modp2.

Proof: Write b, 0 ≤ b ≤ p2−1 asb = tp+d modp2 where
0 ≤ t ≤ p − 1 and 1 ≤ d ≤ p. It is sufficient to show that
eacht, 0 ≤ t ≤ p− 1, can be written as a linear combination
mod p of d distinct elements of the setNp = {0, 1, 2, ..., p}
for eachd, 1 ≤ d ≤ p.

If indeedt ≡ ∑d
i=1 ni modp for ni being distinct elements

of Np, it follows that tp ≡ ∑d
i=1 nip mod p2 and tp + d ≡∑d

i=1 nip + d mod p2 =
∑d

i=1(nip + 1) mod p2, where each
term nip + 1 in the last sum is a distinct element ofS.

Let Ra,d be the sum ofd consecutive integers each taken
mod p, starting witha mod p. For 1 ≤ d ≤ p− 1, it suffices
to show that the entries in thep-term sequence
(R1,d, R2,d, ... , Rp,d) = (R1,d, R1,d +d, ... , R1,d +(p− 1)d)
are all distinct modp. Suppose there exist distinctk, l, 0 ≤
k, l ≤ p − 1 for which R1,d + kd ≡ R1,d + ld mod p. Then
(k − l)d ≡ 0 mod p, which is impossible forp prime and
d < p.

For d = p, consider thep-term sequence
(R0,p+1 − 0, R0,p+1 − 1, ... , R0,p+1 − (p − 1)), where each
term in the sequence is a sum ofd distinct elements ofNp.
Since0, 1, ..., p− 1 are distinct modp, so are all terms in this
sequence. ¥

V. M ODIFIED ENCODING

Suppose the codeCp,j with the generator matrixGp,j given
in (19) and of rankK is used for transmission. Letmu be the
binary string of length(K − p + 1) bits provided by the user.
Denote byms an auxiliary binary string of lengthp− 1. Let
c = [msmu]Gp,j be the resulting codeword, and lets1 and
s2 be additional auxiliary single bits.

The values ofms, s1 ands2 are chosen such that

f(ṽ) =
p2+1∑

i=1

iṽi ≡ a mod p2, (20)

is satisfied for some arbitrary but fixed constanta, whereṽ is
defined as[s1cs2]Tp2+2 for Tp2+2 given in (4).

Discussion: By Lemma 7, the string̃v in (20) has weight
at mostp2 − 1, and thus belongs to the setS(p2 + 1, a, p2),
whereS(p2 + 1, a, p2) is defined in Section III.

To show that it is always possible to find the appropriate
values of s1, s2 and ms such that (20) holds, let̃u be
[0p−1mu]G̃p,j and let a′ ≡ ∑p2−1

i=1 (i + 1)ũi mod p2. Also
let s̃ be [ms0K−p+1]G̃p,j , where c̃ = ũ + s̃, for c̃ = cTp2 .
By construction every entry iñu in position whose index is a
multiple ofp is precisely zero, and the only non-zero entries in
s̃ are in positions with indices that are multiples ofp. Expand
f(ṽ) as

f(ṽ) = ŝ1 +
∑p2−1

i=1 (i + 1)c̃i + (p2 + 1)ŝ2

= ŝ1 +
∑p2−1

i=1 (i + 1)ũi +
∑p2−1

i=1 (i + 1)s̃i+
(p2 + 1)ŝ2

(21)
Then,f(ṽ) ≡ a′ +

∑p
i=0(ip + 1)zi mod p2

wherez = [ŝ1msŝ2], and ŝ1 = s1 + c1, ŝ2 = s2 + cp2 .
It follows by Lemma 8 that irrespective of the valuea′

(determined by the user’s input message) it is always possible
to choosez such thatf(ṽ) ≡ a mod p2. ¥

Therefore, by reducing the dimensionality of the input space
by p−1 and introducing the additional 2 guard bits, we are able
to insure that the transmitted codeword (plus the guard bits)
does not suffer from the identification problem. The overall
rate loss is thenKp2 − K−(p−1)

p2+2 , which is asymptotically zero
as the blocklength tends to infinity.

VI. M ODIFIED DECODING ALGORITHM

We conclude the paper with the outline of the message
passing decoding algorithm appropriate for channels with
varying sampling rate.

Suppose the sequencey of lengthn + 1 bits is received as
a result of transmitting a codeword of lengthn bits through a
noisy channel, followed by a repetition error. For each coded
bit xi we wish to computeP (xi|yn+1

1 ). We introduce auxiliary
variablesG, which takes values∈ {1, ..., n}, andLi, for ∀ i ∈
[1, n], such thatLi ∈ {−1, 0, 1}. The variableG denotes the
position of the repetition, andLi denotes the relative location
of the ith bit with respect to the repetition.

Write

P (xi|yn+1
1 ) =

∑

G

∑

Ln
1

∑

xn
1 \xi

P (xn
1 , Ln

1 , G|yn+1
1 ). (22)

Group the variables as shown in Fig. 1., for1 ≤ i ≤ n and
1 ≤ k ≤ M , whereM is the total number of checks. Note
that yn+1

1 is treated as evidence and not as variables.
The junction graph corresponding to these local domains is

shown in Fig. 2, and has the bidirectional edges between:



local domain local functionϕ(·)
{G} 1

{G, Li} 1 [Li = 1 · 1(L ≤ i− 1)+
0 · 1(L = i) + (−1) · 1(L ≥ i + 1)]

{Li, xi} P (yi|xi)1(Li = −1)+
P (yi|xi)P (yi+1|xi)1(Li = 0) + P (yi+1|xi)1(Li = 1)

{xi} 1
{ck, (xj , j ∈ Nk)} 1(ck = ⊕j∈Nkxj)

Fig. 1. Local domains and functions.

Fig. 2. Junction graph.

• {G} and{G,Li} for each1 ≤ i ≤ n,
• {G,Li} and{Li, xi} for each1 ≤ i ≤ n,
• {Li, xi} and{ck, (xi, i ∈ Nk)}, for each pair(i, k) such

that i ∈ Nk, and
• {xi} and{Li, xi} for each1 ≤ i ≤ n.

Observe that

P (xn
1 , Ln

1 , G|yn+1
1 ) ∝

ϕ(G)
∏

i ϕ(G,Li)
∏

i ϕ(Li, xi)
∏

i ϕ(xi)
∏

k ϕ(ck, (xj , j ∈ Nk)).
(23)

We may thus use a message passing algorithm as in [1] to
try to find P (xi|yn+1

1 ).
Let all messages be initialized to 1, and letαj(Lj) be the

message sent from{Lj , xj} to {G,Lj} at some stage.
The messageβj(G) from {G,Lj} to {G} is thenβj(G) =∑
Lj

ϕ(G,Lj)αj(Lj), and the messageγi(G) sent from{G}
to {G, Li} is

∏
j∈{1,n}\i βj(G). Finally, the message from

{G,Li} to {Li, xi} is δi(Li) =
∑

G ϕ(G,Li)γi(G).
The message τj,k(xj) sent from {Lj , xj} to

{ck(xj , j ∈ Nk)} is
∑

Lj
ϕ(Lj , xj)δj(Lj)

∏
l∈Nj\k ηl,j(xj),

where ηl,j(xj) is the message from{cl, (xj , j ∈ Nl)} to
{Lj , xj} and is

∑
xi,i∈Nl\j ϕ(cl, (xi, i ∈ Nl))

∏
τi,l(xi).

The message αj(Lj) is updated to∑
xj

ϕ(Lj , xj)
∏

k∈Nj
ηk,j(xj), and message exchange

continues as above.
As a result, from (22) one gets

P (xi|yn+1
1 ) ≈

∑

Li

ϕ(Li, xi)δi(Li)
∏

k∈Ni

ηk(xi), (24)

and we also have

P (G = g|yn+1
1 ) ≈

n∏

i=1

βi(g). (25)

Even though there areO(n) computations each involving
O(n) variables per global iteration step, computational com-
plexity can be reduced fromO(n2) to O(n) with organized
calculations, as we now show.

We have

βi(g) =





αi(1), for g ≤ i− 1
αi(0), for g = i
αi(−1), for g ≥ i + 1

(26)

and
γi(g) =

∏

î 6=i

βî(g) . (27)

The messageδi(Li) is

δi(Li) =





∑
g≥i+1 γi(g), for Li = −1

γi(i), for Li = 0∑
g≤i−1 γi(g), for Li = 1

(28)

Now the trick is to directly compute all theδi directly from
the αi.

Let us write

δi(−1) =
∑

g≥i+1 γi(g)
=

∑
g≥i+1

∏
î6=i βî(g)

=
∑

g≥i+1
B(g)
βi(g)

=
P

g≥i+1 B(g)

αi(−1) ,

(29)

where

B(g) =
∏

i βi(g)
=

(∏
i≤g−1 βi(g)

)
βg(g)

(∏
i≥g+1 βi(g)

)

=
(∏

i≤g−1 αi(−1)
)

αl(0)
(∏

i≥g+1 αi(1)
)

.

(30)

Similarly,
δi(0) = γi(i)

=
∏

î 6=i βî(i)
= B(i)

βi(i)

= B(i)
αi(0)

,

(31)

and
δi(1) =

∑
g≤i−1 γi(g)

=
∑

g≤i−1

∏
î 6=i βî(g)

=
∑

g≤i−1
B(g)
βi(g)

=
P

g≤i−1 B(g)

αi(1)
.

(32)

Given αi for 1 ≤ i ≤ n, we can compute
∏

i≤g−1 αi(−1)
and

∏
i≥g+1 αi(1) for 1 ≤ g ≤ n in O(n) steps and from

these and theαg(0), 1 ≤ l ≤ n, we can compute theB(g),
1 ≤ g ≤ n in anotherO(n) steps. Now, from theαi, 1 ≤ i ≤ n
we can compute theδi, 1 ≤ i ≤ n, in anotherO(n) steps.

The belief at node{G} is the vector
∏

i βi whose coordi-
nates are theB(g), 1 ≤ g ≤ n, and are already computed.

The messagesτj,k and ηk,j are analogous to messages
computed in a traditional message passing algorithm on a
bipartite graph, so their complexity is alsoO(n).



10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
10

−4

10
−3

10
−2

SNR (dB)

BE
R

modified decoding of thinned code
modified decoding of original code

simulation parameters:
   no. of iterations: 30
   increments: 0.5 dB
   samples/data pt 3.2*1e6 

Fig. 3. Performance of LDPC (25,12) over AWGN with one repetition

When a code of interest, such as the array-based LDPC
code, suffers from an identification problem, we replace stan-
dard encoding with that of Section V, and impose the overall
congruency constraint (21) on the encoded binary string.

For illustration purposes we provide simulation results in
Fig 2. from an earlier version of the presented decoding
algorithm.

VII. C ONCLUDING REMARKS

In this paper we presented a technique for modifying array-
based LDPC codes for channels in which the varying sampling
rate causes repetition of symbols. While suffering a minimal
loss in the rate, the proposed technique systematically expur-
gates the code such that the resulting code has significantly
improved synchronization error correction properties. Besides
array based LDPC codes, the presented methodology shows
promise for a wider range of permutation matrix based LDPC
constructions. Future work involves extending the proposed
method to other LDPC families as well as incorporating the
correction capabilities for multiple synchronization errors.
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