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Abstract—We describe a method for enhancing synchroniza- immune to both additive as well as sampling errors. The
tion error correction properties of an array-based LDPC code. trade off would be in the incurred rate loss associated with
The proposed method is based on code expurgation whereby ayhe code modification versus the increased complexity and

linear subcode is retained for message encoding and the remain-I t iated with the af i d h Th
ing input bits are used for protection against synchronization alency associated wi € alorementioned approaches. €

errors. The method is easy to implement and incurs a minimal challenge of the proposed approach lies in determining the
loss in the rate. synchronization error correction capabilities of the code and

in determining its subcode with desired properties.
To emphasize the issues that arise when adequate timing
In many communication systems a binary input messagerecovery is missing, assume that the modulation scheme in
is encoded at the transmitter using substitution-error correcti(iy) is pulse-amplitude (PAM), and more importantly, that we
codeC'(n, k) into a coded sequenee= C'(x). The modulated are operating in the infinite SNR regime where the effect of
version of this sequence is corrupted by additive noise angt) is negligible. As a consequence of the initial frequency

I. INTRODUCTION

arrives at the receiver as a wavefort), error, say whelf; < T, or of the accumulated phase error in
) T, SOme symbol may be sampled more than once (effectively
r(t) = Zcih(t —T) +n(t), @) repeated in the infinite SNR regime).

Assuming that the exact sampling instances are not known,
wherec; is thei*"bit of ¢, h(t) is the modulating pulse, anda coded sequence can give rise to a whole set of received
n(t) is the noise introduced in the channel. sampled versions of(t). When two distinct sequences

Upon receivingr(t), the receiver samples it at time in-and c, result in the same sampled sequence, it is no longer
stances{kT + 7 }. The sequence of samples is fed into thpossible to uniquely determine the coded sequence or its pre-
decoder which produces the most likely input message. Sinpgage x from the received sequenceyen in the noise-free
the traditional decoder is designed to overcome additive noesevironmentWe then say that the codg(n, k) suffers from
introduced in the channel, it is essential that the decoderais identification problem Specifically, letS;(c1) be the set
provided with samples taken at correct time instances. As tbe all strings obtained by applying a repetition tq. If
operating requirements under which timing recovery must I38(c1) () Si(cz2), for ¢; # co is nonempty, we say that;
performed become more stringent, accurate synchronizati@mdc,) is an identification problem causing codeword.
becomes critical for the full utilization of the available coding Several authors have studied codes immune to a deletion or
gains. an insertion of a bit. For example, the so-called Varshamov-

Several authors have studied the problem of accurate tiffenengolts code proposed in [22] and popularized by Leven-
ing recovery. Proposed solutions include building a mowhtein in [12] has been further studied by Ferreira et al., [9],
sophisticated timing recovery block [14], turbo-like approachevenshtein [13], Sloane [18], and Tenengolts [20]. Related
to iteratively determine both sampling points and encodewnstructions were proposed in [3], [4], [10] and [21]. Even
data [16], and multiple hypothesis analysis of the samplirtjough these constructions assure that the code is immune to a
instances [11]. deletion or an insertion of a bit, they do not guarantee any other

As an alternative to more complex and more expensidesirable properties of standard substitution error correcting
timing recovery schemes, we propose to employ the timirngdes, such as linearity and a good minimum Hamming dis-
recovery block as is, and instead modify the decoding prtance. Concatenated codes that correct synchronization errors
cedure and the code itself to compensate for the imperfétve been proposed in [5] and [6].
synchronization. The advantage of the proposed approachn this paper we first present a brief overview of the array-
is that with systematically analyzing the robustness of thmsed low density parity check (LDPC) codes and discuss their
additive error correction code to synchronization errors, omgentification error properties. In Section Il we propose a gen-
could use a subcode of the original code that would hal technique for constructing a code immune to repetitions.



Having established several useful ancillary results in Sectignl < [ < p — 2. Write ¢, ??)[Io'o? ... o'®= V]| asa, +
IV, we then describe how the array-based LDPC code can Eéf;ll ai(eHT =@, + Zf;f ajitay,» Where[z], indicatesz
modified to eliminate the identification problem in Section Vimod p. Sincel < i < p—landl <[ < p—2,i+ 1l
A decoding algorithm appropriate for channels with repetitiomod p # 0, and no term in the summation ds. In addition,
and additive errors is developed in Section VI along withll terms in the summation are distinct, as otherwise there
preliminary simulation results on the modified array-basedould existi,i’, i’ < i such that(i —i')(I + 1) = 0 mod p,
LDPC code. which is impossible forp prime,i,i’ < p—1andl+1 <

_ 2p) [Tyl 2! (=T _—
Il ARRAY-BASED LDPC CODES D 1.(;’?er;3fore,c1 ; [Io'c®...0 ] 0. The proof
for co 4P H,, 1=0is analogous.

and have the parity check matri, ; given by and ending bits, they too result in the identification problem
I s 7 under single repetition. This occurs as long fasis not
I o o2 o1 congruent to 1 or to 2 mocg. Let R; (R2) be the set
I 2 4 L g2- of codewords obtained by cyclically shiftingy (c2) by kp

Hy,; = 7 7 @) positions fork ranging from3 to p. It easily follows that any
: : B o nontrivial linear combination of elements iR; and the same
P linear combination of their counterparts i, also results in
whereo denotes the following x p permutation matrix, the identification problem.
00 ... 0 1 Since, by construction(,, ; 2 C,, j+1, in eachC, ; code
10 ... 0 0 there are therefore at leat2 —1 pairs of codewords causing
s |0 1 ... 0 0] 3) the identification problem. Since different linear combinations
C . of the elements of?; and R, result in different codewords,
00 .. 10 there are therefore at lea@t—! — 2 codewords that cause this
problem. |
We let C), ; be the linear code with the parity check matrix
given in (2). [Il. CONSTRUCTION OF A CODE FOR CORRECTING
Array-based LDPC codes have good performance [8], low MULTIPLE REPETITIONS

encoding complexity [15], are suitable for efficient parallel

decoding [2], [17], and have been proposed for a variety of In this section we show how to construct a code capable of
applications, including digital subscriber lines [7] and maggorrectingt repetitions. Let us first introduce a useful general
netic recording applications [19], [23]. However, as explaindtiansformation, in which we express the number of runs of
below, such code suffers from an identification problem.  the original codeword in terms of the weight of a string in the

Lemma 1:Under a single repetition, there are at leastransformed domain.
2p—1 — 2 identification problem causing codewords d, For C C {0,1}" let C, C C {0,1}"~! be defined as a
for j < p. set of all distinct strings obtained by multiplying eacle,

Proof: Consider two binary stringg; and ce of length ¢ € C with T,, over GF'(2), whereT,, is an x (n— 1) matrix
p? such thatcy is [azas...ap—2a,—1a,a1] and cp is satisfying
[azas...ap—1a,G102] Wherea; (a;) indicates a string of length
p bits with a single 1 (0) in the™ position and 0's (1’s) T, (i, 7) :{
everywhere else.

For example, fop = 5, ¢ is [01000 00100 00010 11110
10000] andes is [00100 00010 00001 01111 01000].

First observe that botéy, andc,, give rise to the same string
c12 after one repetition, where; » is of lengthp? + 1, and is
[a3a4...ap_1ap61a20] (Same aS{Oagag...ap_gap_lapal]). For
example, forp = 5, ¢y andcs can both result in [00100 00010
00001 01111 010000]. . Cris full rank.

We now prove thats, c; are in fact codewords o, ,—1. 3 ossence a repetition ine C corresponds to an insertion

(kp) i ' ' ifti 4
Let cy . denote the .s.trlng obtained by cyclically Shlftmgof a zero in its counterpa® € C. Therefore, to construct
cy to the right bykp positions.

By the quasi-cyclic property of the code [15] it2 code capable of c_:orrectlng = 1.repet.|t|on, .|t suffices
suffices to verify thate, ®P)=[a,a1asas...a, sa, 1] and to construct a code immune to a single insertion of a zero.
P P TETT Consider the sef(m,w,a,r) defined as:

1, ifi=jj+1
0, else.

(4)

If C'is a linear code of length with a generator matrix,
its image undeff}, is a linear code generated loy = GT,.

If ¢ € C hasr runs, theng € C has weight- — 1, and vice
versa. Bothc and its complement (if it exists) result in the
samec. In particular, if the code” is linear and the all-ones
is not a codeword, the mapping undgy is one-to-one, and

Ca <2p>=[61a2a3a4...ap_1ap] SatiSfy C1 (2p) sz)jp—l = 0 and
C2<2p>Hg,p71 = 0. S(m,w,a,r)={ s=(s1,82,...8m) € {0,1}"™:
It easily follows thatc, ?P)[I1...1]7 = 0. Now consider a S si=w,> i is; =a modr}

row-wise submatrix offf,, , 1, [[o'o? ... o!P=1)] for some (5)



and letS (m, (a1,71), (az,r2), ..., (@m, rm)) be the union defined as

over distinct weights, i.e. S(m,w,a,p) = { 5= (51,89, 5m) € {0,1}7 :

m ZZI S = W,
X _ S quzﬁl ib; = a; mod p,
S (m, (a1,71), (a2, 72)y oy (@, Tm)) gS(m,z,az,n). ZZ: i2b, = a5 mod p. (8)
o
Lemma 2:Provided thatr; > i Vi € [0,m], the set St it = a, mod p}
S (m, (a1,7r1), (az,r2), ..., (aw,ry)) IS single insertion of a .
Zero Correcting_ and let S (m, (317])1), (az,p2)7 ceny (am7pm)) be the union

Proof: Since no 1's are introduced in the transmission, it &€" different weights,
sufficient to consider the strings having the same weight, i.e, m
if each set in the disjoint union in (6) is single insertion of aS (m, (a1, p1), (a2, p2); -+, (Am; Pm)) U (m, 1, a1, pr).
zero correcting, so is their (disjoint) union. Suppose a string =1
x belonging to.S(m,i,a;,r;) for r; > i is transmitted. Its
corrupted version (with an inserted zero) arrives at the recei be
as a stringx’. If the receiver can uniquely determirebased

on x’, for all choices ofx andx’, then the sefS(m, i, a;, r; ! N
(m, 4, a7 Proof: It suffices to show that each set(m,l,a,p;)

is single insertion of a zero correcting.
is t-insertions of zeros correcting. Suppose a stringe
Following the analysis of Sloane of a related single delet| m, 1, a,py) is transmitted. After experiencing insertions
correcting code [18], suppose the insertion of a zero OCC[‘Hézeros it is received as a strind. We now show thak is
in the L'E!’Ll p03|tr|:1)ndwh|ch is unknown. The receiver computeg Iways uniquely determined frond'.
a' =32, iy modr. Let iy < i < ... < i, be the (unknown) indices of the
bins of zeros that have experienced insertions. For gach

©)
J_emma 3:If eachp; is prime andp;, > maxt,1), the set
,(a1,p1), (a2, p2), .-, (Am,Pm)) IS t-insertions of zeros
correctlng

a' =371 dx; modr 1 < j <t, computea; = > i7%; mod p;, whereb; is the
= (Zl Ldw Y i+ )xi) modr;  (7) size of thei™ bin of zeros ofx’,
= (ai + R) modr; a;- = Z;U-"il Zjb/ mod p;

=a;+ (# + i)+ ...+ i) modp;, (10)
whereR denotes the number of ones to the right of the inserted

0. SinceR < i < r;, the offsetR mod r; can be uniquely Wherea; is the ;! entry in the residue vectas; (to lighten
determined froma; and ' mod r;, andx is recovered by the notation the subscritin a; is omitted).

deleting a zero immediately preceding tRth 1 inx’ counting  BY coIIectlng the resulting expressions overjland setting
from the right_ [ ] aj = aj a; mod p;, we arrive at

Therefore, if we wish to determine a subcode of a given "o ; .
) . " 7 ay; =11 +1i2 + ... + i modp;
code C' of length n immune to a single repetition, it is "_ 2424 12 mod
sufficient to retain only those codewords which under trans- E,={ 20T T Ty P (11)
formation T, result in strings that are the elements of
S (m, (a1,71), (a2,72), vy (Am, Tm)) fOr m = n — 1. Specifi-
cally, one can let;; = a andr; = r, wherer —1 denotes the The terms on the right hand side of the congruency constraints

upper bound on the weight of a string obtained by appliRg are known as power sums invariables. LetS; denote the
to C. In the remainder we will us&(m, a,r) as a shorthand ;th power sum modp; of {i1, iz, ..., 3},
for such a set.
The construction given in (5) and (6) can be generalized for Si=1f + i3 + ... +if modp,
the correction of multiple repetitions as follows: and letA; denote thek™ elementary symmetric function of
Let w denote the weight of, and defineb; 11 = bir1(s),  {iy,is,...,3,} modp,,
1 < i < w to be the size of the run of zeros immediately
following the ™ 1 in's, and letb; be the size of the run zeros AL = Z Tyy Gy, + - by, MOd py. (13)
immediately preceding the leftmost 1, where by a run of zeros v1 <va<...<vy
we mean the longest contiguous substring consisting of zero
only. If thei™ 1 is immediately followed by another &; = 0,
and if the leftmost bit irs is 1,5, = 0. Moreover, ifs consists
only of zeros,b; = length ofs. We callb; the size of the™
bin of zeros ofs. Se—A1Sk_14+A2Sk_o— A (—=1)F AL S14+(—1) kA, = 0,
Let a = (ay,as, ...,a;), and consider the set(m, w, a, p) (14)

a, =i} +1i5+ ...+ 4 modp;.

12)

%sing Newton’s identities ovef? F'(p;) which relate power
sums to symmetric functions of the same variable set, and are
of the type



for k < t, we can obtain an equivalent systent eqjuations: notation0*1! (1'0*) denotes a binary string of length+ 1

t . consisting of a run of zeros of size (run of ones of sizd)
Zi:l ij mod py followed by a run of ones of size(run of zeros of size).
E dz =3 < Uit mod p (15) Lemma 5:The setP forms ap — 1-dimensional set of

"""" A linearly independent binary strings.
dy = szl i modpy, Proof: The proof is by contradiction. Suppose there exists

where each residuel, is computed recursively from a nontrivial linear combination (simply a sum ovetF'(2))
{dy,...,dr_1} and {a;,a;, ...a, }. Specifically, since the of elements ofP which evaluates to an all-zero string. L&t
largest coefficient in (14) i$, and¢ < p; by construction, be a non empty subset d* with the property that the sum
the last term in (14) never vanishes due to the multiplicaticif its elements is all zeros. Expredsas a disjoint union of

=y
S
[

by the coefficientk. J; and J,. where J; (J,) denotes the subset of elements.jof
Consider now the following equation: which are of the typa‘0* (0*1'), wherel is even and: is odd

. by construction. The cardinalities of and J,. are both even,

H(x —i;) =0 modp,, (16) with at most one being zero. Lgt(j,.) be the string obtained
=1 by summing the elements of(J,.). If J;, (J;-) is empty, setj

(jr) to be an all-zeros string. By construction,|if;| > 0, j;

has both leftmost and the rightmost run being a run of zeros,
e+ ezt + L+ e+ o =0 mod py. (17) with at least one more run (of ones) in between. Moreover,

) ] ) all runs inj; except for its rightmost run are of even length.

By collecting the same terms in (16) and (17), it followg jewise, if |7, > 0, the stringj, has at least three runs, and

that dy = (~1)¢;— modp,. Furthermore, by Lagrange’spoi jts leftmost and rightmost runs are runs of zeros. The

Theorem, the equation (17) has at messolutions. SinCe |efimost run inj, is of odd length, and all other runs are of

ir < pi all incongruent solutions are distinguishable, and thygen, |ength. Irrespective of whethér or J,. or neither of the

the solution set of (17) is precisely the @t is, ..., i} two is empty,j; and j, are always different, and thus the sum
Therefore, since the syster; of ¢ equations uniquely ot alements of/ cannot be an all-zeros string. m

determines the sdli, is, ..., %; }, the locations of the inserted Lemma 6:¥s € P, sH”. = 0, for H, ; given in (2) and
zeros (up to the position within the bin they were inserteg - S A -

in) are uniquely determined, and thusis always uniquely
recovered fromx'.

In particular, fort = 1, the constructions in (5) and (8) ar
related as follows.

Lemma 4:For p prime andp > w, the setS(m,w,a,p)
defined in (5) equals the s&{m, w, @, p) defined in (8), where
G = fmw—amodp for fr, , = (w+2)2m—-w+1)/2 -

and expand it into the standard form

Proof: SinceH,, ; can be viewed as an array of permutation
submatrices, each row off, ; can be viewed as a concate-
€nation of p substrings, where each such substring is of the

type a;, for a; defined in Section Il. Leh be a row ofHp, ;.

As s multiplies h”', the contribution to the product is either

1 or O per constituent substring, depending on whether the
(m+ 1) multiplying constituent substring ia consists of all ones or

. . all zeros. Since the number of constituent substrin ual
Proof: Consider a string = (s1, s2, ..., $m) € S(m,w, a,p), gsetf

" . , to all ones is always even by construction, the progiict is
. .th m . B 1
and letp; be the position of theé™ 1 ins, so that) ;" isi = 010 for alls € P. -

w _ k . .
2i=1 pgh Qbserve thapk - Z?:l bi +k whereb; is the size For j < p, as a consequence of the previous two Lemmas
of the i bin of zeros ins. Write we can form a generator matriZ, ; with rank K where K

Sapi+(m+1)=(b1+1)+ (b1 + b2 +2) + .4 is p(p—j) +j — 1 ([15]) of the array-based LDPC codg, ;,
(b1 + b2+ ... + by +w) + (b1 + b2+ ... + b1 + w+ 1) = such that
Y (w42 = i)b + (w+ 1) (w+2)/2 = _[ G

w+1 . GPJ - am ) (19)
(w=+2)(m —w) + (w+1)(w+2)/2 >, ib; = P

(w+2)@m —w+1)/2 =3, ibi. whereG; is ap—1x p? matrix whose rows are all distinct

Thus, fora = Y7 is; mod p, the quantitya = Emlib elements of the saP. By applying only row manipulations to
modg’p is 0 — é:rlnoép ' =1 '@ agenerator matrix, the matri%?"; (which is K —p+ 1 x p?
Before showing in Section V how to systematically modifi"d thus non empty fof < p) has eaclyp-th column, forl <
fe P, equal to the(gp + 1)-th column. LetG, ; = Gy, ;T2

the array-based LDPC code based on the above approach whi

preserving the linearity of the parent code, we state sevef4i€r€Zy= IS given by (4), and observe that the tpp- 1 rows

useful technical results. of G, ; are all distinct and are of the fori?—110"~tr—1,
for 1 <t < p-—1, and that the bottonik” — p + 1 rows have
IV. AUXILIARY RESULTS zeros in all positions that are multiples pf

Let P be the set of binary strings of length= p? defined Let C, ; be the code generated i6y, ;. Since the all-ones
asP = {s:s = 0P~DP1% or s = 1"0(P~YP} wherep is string is not a codeword if¥’, ;, the matrixG,, ; has full rank.
an odd prime¢t is an even integer] < t < p — 1, and the Lemma 7:No codeword irC,, ; has weightp? —1 or p*—2.



Proof: Suppose first that there exist a codewerd Cp, j The values ofimg, s; and s, are chosen such that
for which ¢T},2 = € has weightp? — 1. It is then necessary that V21
c itself consists of alternating bits. Since the top parthy; - o 9
(cf. (2)) consists of an odd-sized array of identity mg‘g{ées it 1) = ; it; = amodp’, (20)
is impossible to have H,|; = 0. N

Now suppose that there is a codewardvhich produces ! . :
cT,: = € where¢ has weightp?> — 2. It is then necessary defined ags;csz|Ty24p for Tpe given in (4). .
that ¢ has all runs of size 1 except for exactly one run of D'SCUS;S'O” By Lemma 7, the string in (202) has We|29ht
size 2. Suppose that the 2-bit run spans positioaadr + 1. at mostp - L and2thps bglong; 0 thg SE(p” + 1, a,p%),

By the quasi-cyclic property of the code we can assume tH%I{]ereS(p T 1’“_’p_ ) Is defined n Sect|or_1 . .
1< r < p. Let ¢, denote the substring af consisting of To show that it is always possible to find the appropriate
p leftmost bits, and let, denote the substring af spanning V&lUeS Of s1, s2 and my SUChz_tP"’“t (20)~ holds, leti be
the remainingy -+ 1 throughp? positions. Writec[I1...1]” = (0"~ 'mu]G,; and leta’ = 370, (i + 1)a; mod p?. Also
[cice][II...1]T = 1, and observe that the contribution froml€t $ be [msQK_pH]Gm' where¢ = a + 5, for € = cT}e.

cx to the overall result is either an all-ones string of length BY construction every entry ifi in position whose index is a
(if p—1 =2 mod4) or is an all-zeros string of length (if muIﬂp_Ie ofp_|_s prem_sely zero, and the only non-zero entries in
p—1 =0 mod4). Sincec, is neither all-zeros nor aII-ones,g are in positions with indices that are multiplespofExpand
c[IT...I]" #0, andc is not a codeword. m f(V)as

We conclude the section with the following result. £(®)

Lemma 8:For p an odd prime, the sef = {1,p+1,2p+ . p>—1,. _ p>—1,. -

1,...,(p — 1)p + 1,p* + 1} generates the complete residue - Slj 21:1?1 (41 + 35y (0 + Dsit
class modp? in that each0 < b < p?> — 1 can be written as (p*+1)32 1)
a sum of distinct elements 6f mod p?. Then, f(¥) = a’ + Y7 (ip + 1)z; mod »?

Proof: Write b, 0 < b < p*—1 asb = tp+d modp® where  wherez = [§;m.3,], andé; = s; + c1, &2 = o + Cpe.
0<t<p-1landl <d<p Itis sufficient to show that |t follows by Lemma 8 that irrespective of the valué
eacht, 0 <¢ < p—1, can be written as a linear combinationgetermined by the user’s input message) it is always possible
mod p of d distinct elements of the sé¥, = {0,1,2,...,p} to choosez such thatf (¥) = a mod p2. m
for eachd, 1 < d < p. Therefore, by reducing the dimensionality of the input space

If indeedt = 37, n; modp for n; being distinct elements by p—1 and introducing the additional 2 guard bits, we are able
of N,, it follows thattp = Ele n;p mod p? andtp +d = to insure that the transmitted codeword (plus the guard bits)
Zle nip +d mod p? = Zle(nier 1) mod p?, where each does not suffer from the identification problem. The overall
termn;p 4+ 1 in the last sum is a distinct element 6f rate loss is then;% — K_Z,(igl), which is asymptotically zero

Let R, 4 be the sum ofl consecutive integers each taker@s the blocklength tends to infinity.
mod p, starting witha mod p. For1 < d < p — 1, it suffices
to show that the entries in theterm sequence
(Ry.a, Rods o » Rp.a) = (Riay Rig+d, ..., Ria+ (p—1)d) We conclude the paper with the outline of the message
are all distinct modp. Suppose there exist distingt!, 0 < Passing decoding algorithm appropriate for channels with
k,l < p—1 for which Ry 4 + kd = Ry 4 + ld mod p. Then Varying sampling rate.

(k — 1)d = 0 mod p, which is impossible forp prime and ~ Suppose the sequengeof lengthn + 1 bits is received as
d < p. a result of transmitting a codeword of lengthbits through a

noisy channel, followed by a repetition error. For each coded
bit =-; we wish to computeP(z; |y ). We introduce auxiliary
variablesG, which takes values {1,...,n}, andL;, forVi €
[1,n], such thatL; € {—1,0,1}. The variableG denotes the
position of the repetition, andl; denotes the relative location

is satisfied for some arbitrary but fixed constantvherev is

2— . ~ A~
= &+ Zﬁ%l Yi+1)e + (% + 1)82

VI. M ODIFIED DECODING ALGORITHM

For d = p, consider thep-term sequence
(Rop+1 — 0, Rop+1 — 1, ... , Ropt1 — (p — 1)), where each
term in the sequence is a sum @fdistinct elements ofV,,.
Since0, 1, ...,p — 1 are distinct mod, so are all terms in this

sequence. . of the ith bit with respect to the repetition.
Write
V. MODIFIED ENCODING el n on nil
P(zilyt™) = ZZ Z Pz}, LT, Glyi ™). (22)
G LY x\z;

Suppose the cod€), ; with the generator matrig,, ; given
in (19) and of rankkK is used for transmission. Leh,, be the Group the variables as shown in Fig. 1., foK ¢ < n and
binary string of length K — p + 1) bits provided by the user. 1 < k < M, where M is the total number of checks. Note
Denote bym, an auxiliary binary string of length — 1. Let thaty} "' is treated as evidence and not as variables.
¢ = [mgmy]G, ; be the resulting codeword, and let and The junction graph corresponding to these local domains is
so be additional auxiliary single bits. shown in Fig. 2, and has the bidirectional edges between:



local domain local functiony(+)

Even though there ar®(n) computations each involving

O(n) variables per global iteration step, computational com-
plexity can be reduced from»(n?) to O(n) with organized

G} 1
G, L] 1L, =1 1(L<i_DF
0-1(L =)+ (1) (L >i+1)]
{Li,zi} P(yilw:)1(Li = —1)+

1)

calculations, as we now show.

P(yi|zi) P(yit1|z:)1(L; = 0) + P(yit1]|z:)1(L
{z} 1

{ck, (z5,7 € Ni)} I(ck = Djeny j)

Fig. 1.

Local domains and functions.

Fig. 2. Junction graph.

« {G} and{G, L;} for eachl <i <mn,
e {G,L;} and{L;,x;} for eachl <i <mn,
o {L;,z;} and{cy, (z;,i € Ny)}, for each pair(i, k) such
thati € V}, and
o {z;} and{L;,z;} for eachl <i <n.
Observe that
Plat, Lt Glyi ™) o

P(G) 11 (G, L) T1; (L, 20) T,

o) [T plen, (x5,5 € Ni)).
(23)

We have
a;(1), forg<i-1
Bi(g) = { a;(0), forg=1 (26)
a;(-1), forg>i+1
and
=159 (27)
i
The messagé;(L;) is
{ > g>it vilg), for Ly =—1
0i(Li) =< 7v(0), for L; =0 (28)
Zggi_l vi(g), for L; =1

Now the trick is to directly compute all thg directly from
the [e7R

We may thus use a message passing algorithm as in [1] to

try to find P(x;|y? ).

Let all messages be initialized to 1, and ¢et(L;) be the
message sent frofiL;,z;} to {G, L,} at some stage.

The messagg; (G) from {G, L;} to {G} is theng,;(G) =
> ¢(G, Lj)a,(Lj), and the messagg( ) sent from{G}

to {/G Li} is Il c1,0y\ B3(G). Finally, the message from

{G, Li} 10 {Li, 2} 8 0:(Le) = X 9(G, L (G).

The message 7;:(z;) sent from {L;z;} to
{en(ej,g € Ny is op (L, 25)85(Lg) Tiepsp g (%)),
where n;;(z,) is the message frorr{cl,(xj,j € M)} to
{Ljvxj} and 'SZIMENZ\] (Clv (IZ,Z S M))HThl(xl)

Let us write
&i(-1) = Zgzi+1 Yi(9)
= siv1 Lz 33(9)
S 1 (29)
g2i+1 Bi(g)
_ Zgzi+1 B(g)
- a;(—1) ’
where
B(g) [1; Bi(9)
= (Ticy1 519) Bo(9) (Tingi Bil9))
= (iey_ i 1) ,(0) ( L>g+1ai(1)) .
(30)
Similarly,
5;:(0) = (4)
= Hz zﬂ%(i)
_ B0 (31)
= B
B(1)
o (0) °
and
6;(1) > g<io17i(9)
Zg<z—1 174 Bz
B B(g) 32
- Zgiz—l Bi(g) ( )
>g<i—1 B9)

@‘_A

L(l)

The message  «;(L;) is updated to ) ,
Y., ¢(Lj ) Tyew, me(z;), and  message exchange Given ; for 1 < i <n, we can _compute}_[l.gr1 a;(-1)
continues as above. and [];5 .., @i(1) for 1 < g < nin O(n) steps and from
As a result, from (22) one gets these and they,(0), 1 <1 < n, we can compute thé(g),
1 < g < ninanotherO(n) steps. Now, fromthe;, 1 <i<n
P(a;|y?™) Zcp Li,x:)0i(Li) [ me(z:),  (24) we can compute thé;, 1 < < n, in anotherO(n) steps.
keN; The belief at nodg G} is the vector] ], 3; whose coordi-
and we also have nates are thé3(g), 1 < g <n, and are already computed.
n The messages;; and ), ; are analogous to messages
P(G = gly7*!) ~ Hﬁi(g) (25) cc_)mp_uted in a traditi(_)nal message passing algorithm on a
i bipartite graph, so their complexity is alsa(n).
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