
Analogies Are Like Bowling Balls, or Why Analogies
to English Need Some Explanation to Help Students

Learn Scheme

Clint Eric Ryan

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-75

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-75.html

May 22, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Analogies Are Like Bowling Balls,
or

Why Analogies to English Need Some Explanation to Help Students Learn
Scheme

by

Clint Eric Ryan

B.S. (University of Arkansas at Fayetteville) 2000

A thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Senior Lecturer Michael Clancy, Chair
Lecturer Brian Harvey
Professor Marcia Linn

Spring 2006

The thesis of Clint Eric Ryan is approved:

Chair Date

Date

Date

University of California, Berkeley

Spring 2006

Analogies Are Like Bowling Balls,

or

Why Analogies to English Need Some Explanation to Help Students Learn Scheme

Copyright c© 2006

by

Clint Eric Ryan

i

To my wife

Clarissa

to whom I dedicate pretty much everything.

ii

Contents

Contents ii

List of Figures v

List of Tables vii

Acknowledgments ix

1 Introduction 1

1.1 Problem Statement . 1

1.2 Lists . 1

1.3 Words and Sentences in CS 3 . 5

1.4 Classroom Observations . 6

1.5 Motivation . 8

1.6 Goals and Design . 9

2 Theory 10

2.1 Misconceptions . 10

2.2 Analogy, Similarity, and Structure Mapping 21

3 Materials and Methods 26

3.1 Population . 26

3.2 Differences Among Semesters . 29

3.3 Interviews . 42

3.4 Interview Procedure . 63

iii

3.5 Scoring . 64

3.6 Possible Treatments . 65

4 Results 66

4.1 One-Word Sentences . 66

4.2 Empty Words and Sentences . 81

4.3 Essential Elements of English and Scheme Sentences 92

4.4 What Students Did Not Say About English, Scheme, and Collections 94

4.5 Comparison of Sentences and Lists . 95

4.6 Other Observations . 97

5 Discussion 99

5.1 Summary of Results . 99

5.2 Sources of Mistakes . 100

5.3 Success or Failure of Treatments . 107

5.4 Limitations and Weaknesses . 109

6 Conclusions and Future Work 111

6.1 Conclusions . 111

6.2 Implications for Instruction . 112

6.3 Future Work . 115

References 121

Bibliography 126

A Interview Questions 127

A.1 Spring A . 127

A.2 Summer A . 134

A.3 Fall A . 135

A.4 Spring B . 141

B Changes in the Curriculum 142

B.1 Additions to Summer A . 142

iv

B.2 Additions to Fall A . 144

B.3 Additions to Spring B . 145

C A Quick Introduction to Scheme 148

C.1 Scheme Basics . 148

C.2 Working with Words and Sentences . 150

C.3 Working with Lists . 152

C.4 More Advanced Scheme . 152

v

List of Figures

2.1 Incorrect Logo and Correct BASIC for the Same Problem 11

3.1 An Analogy for Words . 34

3.2 Comparing English and Scheme . 35

3.3 Comparing English and Scheme, Revised . 37

3.4 WebScheme Activity on Empty Words and Sentences 38

3.5 Defining Terms . 38

3.6 Question O5, negate-all . 47

3.7 Question O6, divide-by-largest Main Handout 47

3.8 Question O6, divide-by-largest Test Cases Handout 48

3.9 Question O6, divide-by-largest Code Handout 48

3.10 Question E5, number-spell . 52

3.11 Question E6, sum-of-square-roots . 53

4.1 Questions O1–O4, butfirst and butlast of One-Word Sentences 66

4.2 Question O5, negate-all . 71

4.3 Summary of Question O6, divide-by-largest 75

4.4 Questions E1 and E2, Creating Empty Sentences 81

4.5 Questions E3 and E4, empty words and sentences 84

4.6 Question E6, Empty Words as Errors . 90

4.7 Question E7, Placing an Empty Word in a Sentence 91

4.8 Questions P1 and P2, Essential Elements of Sentences 92

5.1 Warning from Exploring Computer Science with Scheme 103

vi

B.1 An Analogy for Words . 143

B.2 Comparing English and Scheme, Summer A 144

B.3 Comparing English and Scheme, Fall A and Spring B 145

B.4 Defining Terms . 146

B.5 WebScheme Activity About Empty Words and Sentences 147

vii

List of Tables

3.1 Number of Students Enrolled and Interviewed 28

3.2 Exam Scores . 29

3.3 Changes in Class Format Between Semesters 39

3.4 Differences Between Semesters . 39

3.5 Curriculum Changes by Semester . 40

3.6 Topics by Week for Spring A–Spring B . 41

3.7 Possible Elements of a Mapping Between English and Scheme 43

3.8 Possible Elements of a Mapping Between Collections and Scheme Sentences 44

3.9 Common Mistakes and Possible Reasons for Them 45

3.10 Spring A Interviews . 57

3.11 Summer A Interviews . 58

3.12 Fall A Interviews . 59

3.13 Spring B Interviews . 61

4.1 One-word Sentence Creation, butfirst . 67

4.2 One-word Sentence Creation, butlast . 67

4.3 Semester Summary for the butfirst and butlast of Two- and Four-word
Sentences . 70

4.4 Responses to the Negate-all Question . 70

4.5 Semester Summary for the negate-all Question 75

4.6 Responses to the Divide-by-largest Question, Test Cases 76

4.7 Responses to the Divide-by-largest Question, Code 77

4.8 Semester Summary for the divide-by-largest Question 80

viii

4.9 Creating Empty Sentences . 82

4.10 Semester Summary for Taking the butfirst of a One-word Sentence 84

4.11 Sentences of Empty Words . 85

4.12 Semester Summary for Sentences of Empty Words 88

4.13 Mistakes for (number-spell 11000) . 88

4.14 Putting (bf 1) in a Sentence . 91

4.15 Essential Elements of English and Scheme Sentences 93

4.16 Averages for Sentence and List Questions 95

5.1 Students’ Problems in the Spring A Semester 101

5.2 Improvements from Spring A . 101

5.3 Success and Failure of Treatments . 109

ix

Acknowledgements

My thanks to Michael Clancy, Nate Titterton, Brian Harvey, and Dan Garcia for being

my mentors. I feel very fortunate to have learned and to continue to learn from you all. I

also owe a debt to Jieae Goo, Jennifer Tsang, Emily Watt, and Kathy Chong for helping

me talk to students. Without you, I never could have hoped to gather information from so

many CS 3 students. Finally, I would like to thank my students, from whom I learned so

much.

1

Words should mean what they mean.

That’s what words are for. Once words

start meaning more than one thing, it’s

not a language, it’s a lottery.

Satan, Old Harry’s Game

Chapter 1

Introduction

1.1 Problem Statement

Many common misunderstandings among students learning to program in Scheme in-

volve lists, which are containers for data. In particular, students confuse the procedures

that assemble or disassemble lists. Every course deals with this problem in its own way.

For example, three of the most commonly used introductory Scheme books favor avoiding

or delaying some or all of the details of lists. Berkeley’s CS 3 “Introduction to Symbolic

Programming” class replaces lists with words and sentences during the first part of the

semester. This study is intended to discover what kinds of mistakes students in CS 3 make

with words and sentences, why they make them, and what can be done to avoid them in the

future. In particular, I have focused on how students understand the concept of “empty”

for words and sentences, as well as the difference between words and one-word sentences.

1.2 Lists

A list is a type of data that is used to hold and group together other data. For example,

a list might be used to represent a date by holding the day, the name of the month, and

2

the year. When written on paper or typed on a computer, it begins with a left parenthesis,

contains zero or more elements, and concludes with a right parenthesis. For example, the list

(8 october 1977) contains the elements 8, october, and 1977. While a list may contain

several individual elements, it is one single object. Thus, a Scheme program would treat (8

october 1997) as one list rather than as two numbers and the symbol october.

Difficulties With Lists

There are several aspects of lists that often confuse students. First, as mentioned above,

a list is a single object rather than many objects grouped together. Students who are new

to lists often write programs that treat the elements of lists as though they were not in

a list. For example, students asked to work with a list of two numbers that represents a

measurement in feet and inches should write programs that extract each number from the

list as needed, but many write programs that deal directly with the two numbers as though

they were not in a list at all.

Another source of confusion is that lists can contain any kind of data that Scheme

supports. This includes numbers, symbols (like october), boolean values (true and false),

and, in particular, other lists. Just as students learning about set theory in mathematics

have difficulty understanding sets inside sets (Zazkis & Gunn, 1997), students learning about

lists in Scheme classes may have trouble understanding lists inside lists. For example, a

list of lists might be used to represent a list of dates: ((16 september 1980) (11 june

1934) (18 august 1990)). This list contains three elements, although some students

would believe it contains nine. The first thing in the list is the list (16 september 1980),

but some students would think it is 16. For students who overcome these difficulties, there

is still the potential confusion of dealing with a list inside a list inside a list inside a list

inside a list.

Many problems with lists involve taking them apart and putting them together. Two

lists can be combined in several different ways. (1 2) and (3 4) could be combined into

3

a single list with four numbers, (1 2 3 4), one list which contains two numbers and a list

of two numbers, ((1 2) 3 4), and a list of two lists, each with two numbers, ((1 2) (3

4)). Furthermore, different procedures are required to extract the number 4 from each of

these three lists.

A similar problem is that adding or removing things on the left side of a list is different

from adding or removing things on the right side of a list. For example, putting the number

1 into the list (2 3) to produce (1 2 3) is different from combining the list (1 2) and

the number 3 to produce the same result. This is due to the way Scheme represents lists

internally, and it may seem entirely illogical until students learn about the inner workings

of Scheme.

Students have difficulty properly using parentheses and quotes (Davis, Linn, Mann, &

Clancy, 1993). Parentheses are used to show where lists begin and end, but they are also

used for a number of other purposes in Scheme programs. Quotes (written ’) identify lists

and symbols as data rather than as code.1 While problems with parentheses and quotes

are not unique to the learning of lists, they certainly make learning lists more difficult.

With three different ways to build lists, a student trying to produce the list of dates de-

scribed earlier could end up with (16 september 1980 11 june 1934 18 august 1990)

or ((16 september 1980) (11 june 1934) 18 august 1990). For a student who has

trouble seeing that this second list contains five items instead of three or nine, and who

may not have a solid understanding of how to access the individual components of each

date, even if the list was correct, this situation can be extremely confusing.

Approaches to Lists in Popular Textbooks

One of the standard introductions to computer science using Scheme is The Structure

and Interpretation of Computer Programs (Abelson, Sussman, & Sussman, 1996). This
1Scheme lists can look a lot like Scheme programs, and symbols can look a lot like Scheme procedure

names. See Appendix C for an explanation of this and a quick introduction to Scheme in general.

4

book introduces students to a number of advanced topics, such as recursion, higher-order

procedures, and order of growth before it introduces lists or any data types other than

numbers and procedures. As a result, early examples involve finding roots of functions or

computing the Fibonacci numbers in a logarithmic number of steps. The first full proce-

dure students are exposed to is square, followed by sum-of-squares and a program that

calculates the sum of the squares of x + 1 and 2x. Students who love mathematics may be

fine with these exercises, but others may not remain in the class long enough to experience

anything else.

How to Design Programs: an Introduction to Programming and Computing (Felleisen,

Findler, Flatt, & Krishnamurthi, 2001), on the other hand, introduces lists late and slowly.

Students must wait until chapter 9 to begin working with them, and at that point they

learn only one method of constructing lists: they can add something to the front of a list.

While this does keep students from getting confused, it also makes lists rather uninteresting

and clunky, and it forces students to type more. For example, the list (1 2 3 4 5) would

have to be written as (cons 1 (cons 2 (cons 3 (cons 4 (cons 5 empty))))).

Simply Scheme (Harvey & Wright, 1994) replaces lists with “sentences” and symbols

with “words” in the first part of the book, although students are later introduced to lists.

Sentences are like lists that can only contain words, and words are groups of symbols: letters,

digits, and other characters. Although there are several ways to build a list, in this approach

there is only one way to build a sentence. The two sentences (a) and (sentence) are put

together into (a sentence) in the same way that the word a and sentence (sentence), the

sentence (a) and word sentence, and the two words a and sentence are.2 This avoids most

of the problems described earlier. In particular, sentences were intended to be symmetric—

adding or removing things on the left side of a sentence is as easy as adding or removing

things on the right side.
2This sentence demonstrates some of the confusion that students learning Scheme might encounter. A

cleaner version would be “The two sentences (xar) and (zevox) are put together into (xar zevox) in the
same way that the word xar and sentence (zevox), the sentence (xar) and word zevox, and the two words
xar and zevox are.”

5

Furthermore, words can be manipulated in almost the same way as sentences. Sentences

hide much of the complexity that confuses students, but the combination of sentences

and words allow students to solve reasonably interesting problems. For example, students

studying recursion can easily write a program that converts individual words or whole

sentences from English to Pig Latin.

1.3 Words and Sentences in CS 3

Since the Spring semester of 2001, the U.C. Berkeley CS 3 “Introduction to Symbolic

Programming” class has used the Simply Scheme textbook. This book defines a sentence

as a list that contains zero or more words and a word as a group of zero or more characters.

That is, B, x-303, and scheme are all words, as are the one-letter word q and the empty

word "".3 Words can be combined into larger words through the word procedure. For

example, (word ’wo ’r ’d) produces the word word. Sentences are created through the

sentence procedure, which can be abbreviated as se. For example, (sentence ’this ’is

’a ’sentence) produces (this is a sentence).

While different procedures are used to create words and sentences, the same procedures

are used to take them apart. One can get the first letter (technically a one-letter word)

of a word or the first word of a sentence with the first procedure. For example, (first

’this) is the word t, and (first ’(this is a sentence)) is the word this. Similarly,

the procedure last will return the last letter of a word or word of a sentence. One can

discard the first letter of a word or word of a sentence with butfirst, also written as bf. For

example, (butfirst ’this) is his, while (butfirst ’(this is a sentence) is (is a

sentence). The butlast procedure discards the last letter of a word or word of a sentence.

For example, (butlast ’this) is thi, while (butlast ’(this is a sentence)) is (this
3The empty word itself has no letters. The quotation marks are there because neither the Scheme

interpreter nor human programmers could make sense of the empty word if it were to be written literally,
using zero characters. For a quick introduction to words, sentences, and other relevant details of Scheme,
see Appendix C (starting on page 148).

6

is a). Taking the first or butfirst of an empty word or sentence causes Scheme to

produce an error message, since there is no element to take or discard. Taking the last or

butlast of an empty word or sentence causes an error message for the same reason.

1.4 Classroom Observations

As a teaching assistant (TA), I noticed certain common mistakes related to words and

sentences. These mistakes were not limited to struggling students. For example:

• One of the early assignments in CS 3 is to write a program that converts a mea-

surement in feet and inches, represented as a sentence of two numbers, to a mea-

surement in inches. The solution is to take the first number out of the sentence,

multiply it by twelve, and add it to the second number, as in this fragment of code:

(+ (* (first measurement) 12) (first (butfirst measurement))). Most stu-

dents make at least one of two mistakes. One is that they write the program to work

with two numbers that are not in a sentence. The other is that they only take the

butfirst of the measurement, which gives them a sentence containing the second

number instead of the second number itself. In my experience, the first mistake is

easily corrected by explaining to the student that the Scheme program will see the

sentence rather than the individual numbers, unless they specifically instruct it to look

inside the sentence. Students almost never repeat this mistake. The second mistake

is not so easy to correct, and students repeat it throughout the semester. One of the

best students in one of my classes made this mistake, and when I asked him why,

he explained that (butfirst ’(1 2)) should produce the number 2 instead of the

sentence (2), because a one-word sentence is useless.

• Students spent several days writing a program that spelled out numbers. For example,

if the program were given 1000000025, it would produce the sentence (one billion

twenty five). The suggested solution was to break up the number into groups

7

of three digits and process each group separately. Many students’ programs inserted

empty words into the sentence for every group of three zeros: when given 1000000025,

they produced (one billion "" "" twenty five). A few students noticed this and

corrected the problem. Some never noticed. Many asked if this was acceptable, which

was a reasonable thing to do. However, they were surprised when they were told it

needed to be fixed. These students argued that their code was correct because the

empty words were not really anything.

• Students were asked to write a procedure to find the largest number in a sentence.

Many wrote code that returned this number in a sentence, and they seemed to think

it was unreasonable for the TA to ask them to fix this.

• Students were asked to debug a procedure that was intended to find the longest word

in a sentence. This procedure had two bugs. The first was an obvious mistake in

how the code dealt with sentences (it had two calls to butfirst when it should only

have had one), while the second was that it returned a sentence containing the longest

word rather than the word itself. The students posted their corrected versions and

comments in an online forum. Of the sixteen students who answered this question, all

corrected the first problem and none corrected the second. Six students even posted

examples that showed the word in a sentence. The next activity asked them to post

the kinds of values that the code should return. Nine of the sixteen students, including

four who had posted examples of the code producing sentences, said that it returned

words. The other seven correctly noticed that the program produced sentences.

• On one exam, students were shown a line of Scheme code that produced a sentence.

They were asked what each part of that line did and then what the end result would

be. One of the parts produced an empty word, and while most students realized it

would do so, many nevertheless omitted the empty word from the sentence.

• Students who added error-checking code to their programs often returned empty words

and sentences instead of error messages. For example, on a timed midterm, several

8

students wrote procedures that required a sentence with at least two words, produced

a number if they were given such a sentence, and returned () or "" if they were not.

Students were not required to write their code to check for errors like this.

These mistakes, as well as others I have seen, can be described by four general observa-

tions. First, students did not seem concerned when procedures that should have returned

words returned one-word sentences, or vice versa. Second, students treated empty words

(words with no letters, written "") and empty sentences (sentences with no words, writ-

ten ()) as things that were not important and could be ignored. Third, students acted

as though one-word sentences did not exist, and that taking the butfirst of a two-word

sentence should return the second word by itself instead of in a sentence. Finally, some

students appeared to treat empty words and sentences as ways to say “error.”

I initially suspected that students were making two fundamental mistakes. First, they

had assumed that empty words and sentences, as well as one-word sentences, had no purpose

in Scheme. Second, they assumed that the presence or absence of parentheses was more

of a cosmetic issue than a programming issue. Just as a student writing a “Hello, World!”

program might consider “hello world” to be close enough, CS 3 students considered hello

and (hello) or (one billion seventeen) and (one billion "" "" seventeen) to be

close enough. I had no good explanation for why some students considered empty things

to mean “error.”

1.5 Motivation

These mistakes may seem small and easy to fix. All teachers need to do is to remind

their students that sentences need parentheses and that the butfirst of a sentence always

returns a sentence. Why are they worth studying? While these mistakes may seem minor,

they are certainly not easy to fix. Several lab activities ask students to differentiate between

9

words and one-word sentences, and yet many students forget this as soon as they finish one

of the problems. Students often continued to make these mistakes throughout the semester.

There are two major problems with students holding these misconceptions throughout

CS 3. First, these mistakes keep students from really understanding how their programs

work. Often, the best way to understand a programming concept is to trace through a

sample program line by line. Tracing, however, requires students to know exactly what

each bit of the code does. Students who do not know how butfirst works can often write

procedures that use it correctly, but they will become confused if they attempt to examine

a program in detail.

Second, students can develop a false sense of programming itself. One of the hard parts

about learning a new language is understanding that the way you express a concept in your

language is not always the way other people express it in their languages. For example, a

new speaker of Mandarin might want to say, “There is no spoon,” but will have to say “I

don’t have a spoon,” or “It’s not a spoon.” It is important for students to leave CS 3 with

an understanding of when English is useful in programming and when it is not.

1.6 Goals and Design

Most data came from one-on-one interviews with students. During these, students

thought aloud as they answered a set of written Scheme problems and then explained their

reasoning to an interviewer. There were several follow-up questions prepared in case the

students gave expected responses, but interviewers also questioned students spontaneously

if they said anything unanticipated and interesting. Once students had learned lists, in-

terviewers gave some students sentence questions and some students list questions. The

list questions were exactly the same as the sentence questions, except that all references to

sentences had been replaced with references to lists. Although students had been working

with sentences far longer than with lists, they did significantly better on the list questions.

10

Chapter 2

Theory

2.1 Misconceptions

Students make mistakes while learning new material. When this happens, it is a

teacher’s job to understand why. Was it a silly mistake, like dropping the negative on

a number? Was it the result of an educated (or wild) guess? Perhaps it was the result of an

otherwise good idea taken a little too far, or solid reasoning based on a mistaken premise.

Mistakes in this last category are called misconceptions, alternative conceptions, naive be-

liefs, and many other things. The most common term is “misconceptions,” and although

Smith, diSessa, and Roschelle (1993) give a convincing argument that “misconceptions”

are important to learning and should thus be called something else, that term will be used

throughout this work.

While misconceptions have only been studied since the 1970s, the notion of looking at

students’ ideas and trying to understand them, rather than simply counting them right or

wrong, can be traced back to Piaget’s work in the 1920s (for example, 1926/1972). Piaget

showed that while children do not think about the world in the same way as adults, they

11

Logo BASIC
TO main 10 gosub 100 :rem intro
intro 20 gosub 200 :rem init
init 30 gosub 300 :rem play
play 40 gosub 400 :rem check
check 50 IF answer$ = "Y" goto 10
IF :answer = "y [intro] 60 END
END

Figure 2.1: Incorrect Logo and correct BASIC for the same problem.

do work hard to make sense of their world. They may give some very strange answers to

an interviewer’s questions, but they arrived at those answers after some actual thought.

Misconceptions have been cataloged in many fields of study, including meteorology

(Stevens, Collins, & Goldin, 1979), chemistry (Schmidt, 1997), second language learning

(Jarvis & Odlin, 2000), physics (Gentner & Gentner, 1983; McCloskey, 1983), mathemat-

ics (Stacey & MacGregor, 1993; Fischbein & Baltsan, 1998–1999), and programming (Pea,

1986; Taylor, 1990). There are a number of possible sources of misconceptions; the remain-

der of this chapter describes some of them.

Prior Knowledge

Some misconceptions appear to come from students improperly applying knowledge

they already have. Research on students learning to program has focused mostly on the

effects of prior programming languages, although research in other fields has often examined

the effects of more general real-world knowledge.

Lee and Lehrer (1988) studied Logo programmers and found that students with prior

programming experience in BASIC often mistakenly applied BASIC techniques to Logo.

For example, they tried to apply the syntax of a goto loop when asked to write a recursive

procedure, as seen in Figure 2.1. The IF line in the Logo program is a student’s attempt

to start the loop over again at intro, but instead, it calls intro again and then stops.

12

Scherz, Goldberg, and Fund (1990), studying novice Prolog programmers, also found

that students who knew other languages tried to write Prolog as though it was another

language. For example, one student they described as “bright” wrote ancestor(X,Y) :-

parent(X,ancestor(Z,Y)) instead of ancestor(X,Y) :- parent(X,Z),ancestor(Z,Y).

This concept, composition of functions, works quite well in languages like Scheme, C, and

BASIC, but it is not used in Prolog.

Scholtz and Wiedenbeck (1993) studied students who had already learned to program

in Pascal and were in the process of learning Ada or Icon. Students sometimes tried to

apply a plan (a series of steps to achieve one particular goal) that would have worked in

Pascal but not in the new language. In addition, when students found a plan that would

work in both languages, they often tried to apply it in a Pascal-like way that did not work

in the new language. However, Wiedenbeck and Scholtz (1996) performed a longer study in

which students who had several years of experience with Pascal learned Icon. The students

in their study overcame problems with plans over the course of a semester, but they had

trouble adapting to Icon’s mechanisms for control flow.

Kolikant (2005) found that students sometimes counted a program as correct even if it

printed extra (or sometimes incorrect) information and hypothesized that this was due to

students’ experiences with buggy professional software. Kolikant gave students descriptions

of two programs that printed incorrect information. One was described as a complicated

program that displayed a lot of information, while the other was described as a program

to analyze the student’s family tree and produce a list of all the student’s cousins. The

description of the first program also said that it printed one extra bit of information that

it should not have, while the description of the second said that it also printed one uncle.

Students were more likely to judge the second, more personally relevant, program as incor-

rect, even though it had almost exactly the same problem as the first program. Kolikant

also found that students were willing to count an incorrect program as “relatively correct.”

Students admitted that a program had problems but decided that it still worked. College

13

students were more likely to judge incorrect programs as correct or relatively correct than

were high school students. Presumably, the college students had more exposure to defective

commercial software and knew that developing bug-free software was extremely difficult.

Analogical Reasoning

An analogy can be defined as an “inference that if two things agree in certain respects

then they probably agree in others” (Gentner, 1999, p. 17). Abuse of analogies when

reasoning is a special case of the improper application of prior or real-world knowledge.

Stevens et al. (1979) observed that some mistakes made by their meteorology students

were cases of improper applications of analogies. For example, some students compared

clouds to sponges. Both are fluffy, both hold water, and both can release it. However, some

students assumed that increasing pressure on a cloud would cause rain, since increasing

pressure on a sponge would cause it to release the water it had absorbed.

Gentner and Gentner (1983) found that physics students made predictable mistakes

depending on what analogy they used to make sense of circuit diagrams. They found that

students spontaneously applied one of two different analogies. One compared the flow of

electricity through wires to the flow of water through pipes. Batteries were like pumps,

and resistors were very narrow pipes. Students using this analogy accurately predicted the

behavior of two batteries in parallel (one pump on top of another) and in series (two pumps

next to each other), but they had trouble predicting the behavior of two resistors (narrow

pipes) in parallel or in series. The other analogy compared the flow of electricity through

wires to the flow of people moving through hallways. Resistors were like narrow gateways,

but batteries did not have an obvious equivalent. Thus, students using this analogy did a

good job of predicting the results of placing two resistors in series or parallel, but they had

trouble with parallel or series batteries.

14

When Gentner and Gentner tried teaching students using these two analogies, they

got an unexpected result—students using the flow-of-people model did quite well on both

resistors and batteries. The authors were unable to provide a satisfactory explanation for

this. However, one major difference between this experiment and the previous one was

that, when they taught the students the crowd model, they compared the batteries to

loudspeakers shouting encouragement to the people walking the track. Two loudspeakers

right next to each other would probably not be any more effective than one, but arranging

them in series would mean that the walkers would hear encouragement for a longer time,

and thus feel more motivated to keep on walking. Expanding the analogy to provide a

better model for batteries significantly improved the students’ abilities to answer questions.

Natural Language

Many technical words that are used in the sciences also have meanings in everyday

speech. While a student in a mathematical physics class might be unlikely to think a

“Poincaré-invariant generator” is used to produce electricity, what would a student in a

chemistry class think of a “normal salt,” a category which includes things very different

from ordinary table salt? An examination of the treatment of Newton’s laws in five popular

introductory physics textbooks reveals that the laws are usually defined using terms with

both technical and (often multiple) everyday meanings (H. T. Williams, 1999). In one

particularly egregious case, a textbook author claimed that nearly all of the terms used up

to that point, including force, had the same meanings in physics as they had in everyday

life.

It is possible that students with good everyday vocabularies may have more trouble

with such terms than other students (Ryan, 1985a). One study that supports this idea was

carried out on between 4,300 and 7,500 German senior high school students (Schmidt, 1997).

These students were given a series of multiple-choice chemistry questions whose distractors

were taken from the most common mistakes in a pilot study. Each student involved in the

15

experiment was given a random selection of six of one hundred twenty possible questions.

In addition, several groups of students were videotaped while discussing some of these

problems. In one case, 167 students answered questions that dealt with the definition of a

redox reaction; 38% chose only the reactions that involved oxygen. One student explained

that a redox reaction is a reduction and an oxidation, and “oxi” implies oxygen. In this

case, good language skills led the student to the wrong conclusion. Similarly, students asked

about acids and bases used the word neutralization, which was not mention in the question,

to justify saying that the product would have a neutral pH even when the stoichiometry

said it would not.

Spohrer and Soloway (1986) and Bonar and Soloway (1989) saw students learning to

program in Pascal use while as though they were writing in English. In English, “while”

means “as long as X is true, keep doing Y” but in Pascal, it means “If X is true, do Y,

check X again, do Y again, and so on.” Students who assumed while had an English-like

meaning in Pascal assumed that the program would stop as soon as X became false, and

not wait until it was done doing Y.

Pea (1986) also studied computer science students and found that they treated if in

the same way. In English, one might say, “If it is not raining, I’ll go to the store to get

butter and cheese.” In this case, “if” means almost the same thing as “when,” except “if”

does not imply it is raining right now. In programming languages, however, if does not

mean “when.” If a computer were to say, “If it is not raining, I’ll go to the store to get

butter and cheese,” it would look out the window, see that it was raining, and not go to

the store.

Taylor (1990) observed that students reasoned about Prolog by using the rules for

English, but they failed to translate their English conclusions back into Prolog. As a result,

they ended up with incorrect Prolog code that could be read somewhat like English. For

example, when trying to represent the sentence “Any of Misha’s students who work hard will

succeed,” one student wrote succeed(student, misha) :- work hard(student). This

16

could be read in English as “Student of Misha will succeed if student works hard,” but in

Prolog, it means very little.

Höök, Taylor, and Du Boulay (1990) showed that some students learning Prolog stop

thinking in Prolog and start thinking in another domain of knowledge if the variable names

in the program remind them of that other domain. For example, a student presented with

a Prolog program to find even divisors of a number tried to reason about the code with his

knowledge of math instead of reading through the program.

Scherz et al. (1990) found that students assumed that Prolog works like English.

For example, they thought that Prolog could understand English words like “every-

one.” In this case, the student wanted to express “Jane likes everyone,” but wrote

likes(jane,everyone) instead of the correct code, likes(jane,X).

Scherz et al. also noticed that students could be confused when writing about things they

are familiar with in Prolog. Their students wrote a predicate called father, which relates

a father and a son. For example, father(abraham, isaac) tells Prolog that Abraham

is Isaac’s father. The correct way to ask whose father Abraham is would be something

like ?-father(abraham, X), which asks the Prolog system to find a value for X. However,

many students asked, ?-father(abraham). Unfortunately, as it is written, father must

take two arguments, not one. Students did not make this mistake when presented with

logically equivalent Prolog statements that had no connection to English. For example,

when presented with the fact a(b,c), they did not try ?-a(b) to find c.

Davis et al. (1993; 1995a, 1995b) speculate that students’ beliefs about the rules of a

programming language may come from their understanding of the rules of English grammar.

Students who see the rules of a computer language as more guidelines than actual rules may

do so because they see the rules of grammar as similarly flexible.

17

Superbugs

Many small mistakes may be caused by a single deeper misconception. Pea (1986)

studied computer science students and suggested that individual “superbugs” (high-level

mistakes) could be responsible for many smaller mistakes. For example, the confusion over

if, the common assumption that a program would do something “because it wants to,”

and the notion that a computer can fill in the details might all be caused by the confusion

between human discourse and computer discourse.

Similarly, Van Someren (1990) studied students learning Prolog and found that a fairly

small set of malrules could account for many common programming mistakes. In this

study, students had a generally good understanding of the material but had one or two

small misconceptions that caused their programming bugs. For example, both | and , are

used to define a Prolog list. They have different properties, and students who assume they

are interchangeable can make several different mistakes when trying to build or take apart

lists or to understand code that deals with lists.

Because many different mistakes can be caused by a few deeper issues, it is likely that

many misconceptions can be treated by fixing one or two underlying problems.

The Collection Model

Linchevski and Vinner (1988) identified five common misconceptions about set theory

among elementary school teachers. They found that many teachers believed

1. the elements of a set must all share some common property

2. sets must contain more than one element

3. duplicate elements are distinct elements

4. an element of a set cannot also be an element of another set

18

5. two sets are equal if they contain the same number of elements

Fischbein and Baltsan (1998–1999) propose a single underlying model, the collection

model, that unites Linchevski and Vinner’s apparently diverse misconceptions into one

basic misunderstanding. The “collection model” is simply an everyday notion of a real-

world collection. For example, a collection is made up of multiple items that share a

common property, and it may contain duplicate items.

One aspect of the collection model is of particular use when thinking about students’

understanding of words and sentences. Viewing a sentence as a collection makes the idea

of one-word or empty sentences seem absurd. Imagine that a friend asks what you think of

his/her record collection while pointing to a shelf that contains a single record.1

One aspect of real-world collections that is not described by Linchevski and Vinner or

Fischbein and Baltsan is the status of a collection as a thing. Collections seem to switch

between being things unto themselves and merely being composed of things. A collection

might have a value that is greater than the sum of the values of the objects in it, as in

the case of a complete set of state quarters. It may even have its own name and a history

that extends beyond the objects it contains. A sports team, for example, is a collection of

individual players, but it has a life independent of some or all of its current members. On

the other hand, it is quite possible for the objects in a collection to be far more important

than the collection itself. People often treat collections of rare art and artifacts in museums

this way. Most visitors to the Metropolitan Museum of Art are there primarily to appreciate

the paintings; while they may be impressed that so many works of art are together in one

place, that is probably not foremost on their minds.

Collections can switch from being things to being collections of things quite easily,

depending on the circumstances. A collection of all baseball cards printed in the year 1977

is worth far more than the individual cards. If that collection is lost, however, it would
1In an episode of the BBC comedy Father Ted, one character asks where his record collection has gone.

Another character hands a single record to him, saying “You need more than one record to have a collection.
What you have is a record.”

19

not be unreasonable to miss the individual cards. Similarly, when asked to describe one’s

record collection, one might describe a record collection as large, eclectic, or thorough; one

might also describe it by listing individual albums.

Instruction

Some people believe that when students are given the right concepts, they will abandon

their misconceptions. Others believe that misconceptions should be actively challenged;

when students see that their ideas do not work, these people say, they will gladly abandon

them in favor of the right ones. McCloskey (1983), for example, suggests that teachers

discuss misconceptions with their students and carefully explain what is wrong with each

misconception. Similarly, Davis et al. (1993) identified common mistakes with quotes and

parentheses in Common Lisp, a close relative of Scheme. They found that when students

were asked to think about why these mistakes were wrong, those mistakes became much

less common.

However, Collins and Gentner (1987), M. D. Williams, Hollan, and Stevens (1983),

and others have shown that students are quite capable of using multiple lines of reasoning

that can lead to very different answers. McCloskey (1983) found that students distorted

information provided in the classroom to make it work with their misconceptions. Piaget

(1926/1972) found that young children did the same, taking bits of what they had heard in

class and inserting them into their understanding of the world.

Taylor (1990) and Smith et al. (1993) suggest that misconceptions are so durable

because they work, at least in some cases. In Taylor’s case, reasoning about programs

in a natural language sense can be useful—it can help students think in a more abstract

and comfortable way, as long as they remember to translate their natural language results

into the programming world. In fact, Hoadley, Linn, Mann, and Clancy (1996) found that

students were more likely to reuse code they had written if they could think about it in

20

English. Furthermore, while students are still learning to reason in a programming sense,

natural language may be their only reliable way to think about a program.

Smith et al. point out that many misconceptions are actually good ideas that are used

where they should not be. One example they give is the “Denominator Principle” for

comparing fractions. According to this strategy, if both fractions have the same numerator,

the one with the smaller denominator is larger. Both novices and experts might use a

similar trick when the numerators are close but not the same, but experts have a better

sense of what “close” means. Similarly, an expert programmer learning a new language

might consider how a given problem could be solved in a more familiar language, just as

Lee and Lehrer (1988)’s students did. However, the expert would be more careful when

applying the results to the new language.

Thus, many misconceptions are only bad when they are misapplied. When used prop-

erly, they can be very convenient. Telling students that their ideas are wrong will not help,

since the students can think of many instances when their ideas worked perfectly and may

even have been endorsed by the teacher (Smith et al., 1993).

One way to deal with these misconceptions, which are perhaps better called misappli-

cations, is to help the students see how and when they should be applied, and to help them

see what to do when they can not do things the way they want. Smith et al. call this

“knowledge refinement,” and they believe the way to achieve it is to encourage classroom

discussion without confrontation.

Linn and Eylon (in press) describe “knowledge integration,” a perspective that en-

courages students to take advantage of their wide range of ideas. They give four steps to

promote knowledge integration. First, instruction must elicit the ideas that students al-

ready have. Second, instruction should introduce new ideas. Third, instruction must help

students develop criteria for evaluating ideas. Fourth, instruction should help students use

their criteria to evaluate their ideas. Students should compare their original ideas with the

21

new ones provided in class, see which make sense, try to resolve contradicting ideas, and

identify things they do not understand.

2.2 Analogy, Similarity, and Structure Mapping

An analogy is a comparison between two systems that have similar relations among

their constituent parts, although their parts may not share similar attributes. For example,

I might say, “an atom is like the solar system,” meaning that the sun or nucleus attracts

the smaller planets or electrons, which orbit the sun or nucleus. I would not mean that

the nucleus is the size or color of the sun. In contrast, similarity is a comparison between

two systems whose parts have comparable relations and attributes. If a NASA press release

said that a newly discovered solar system was like ours, we could reasonably assume that

in addition to the facts that its sun is larger than its planets and that the planets orbit

the sun, we might also assume that the other sun is yellow and of about average size. A

mere-appearance match is a comparison between two systems whose elements have similar

attributes but not relations. If I compared a beach ball and the sun, all I might mean was

that the ball was round and possibly bright yellow.

How Analogies Work

Structure Mapping

Gentner (1998) gives five steps in the use of analogies. First, a familiar situation, the

base, is retrieved from long-term memory. Second, the base is mapped onto the new situa-

tion, the target. Third, the analogy and the inferences it offers are evaluated. Fourth, the

structure common to both analogies is abstracted. Fifth, one or both of the representations

are adapted to improve the analogical match. Gentner points out that the last two stages

may or may not occur in a given instance. The existence, although not the details, of the

first four steps are accepted by most researchers in the field (Holyoak & Hummel, 2001).

22

The second step of this process, mapping, is the most important one, at least for the re-

mainder of this work. According to Gentner (Gentner, 1983; Medin, Goldstone, & Gentner,

1993; Gentner & Markham, 1997), mapping consists of two steps, structural alignment and

inference projection. Structural alignment is the process of finding the best set of correspon-

dences between the features of two structured representations, while inference projection is

the creation of a series of inferences about the target from what is known about the base.

For example, connecting an atomic nucleus to a sun and electrons to orbiting planets would

be a part of structural alignment, while suspecting that the electrons might be attracted to

the nucleus just like planets are attracted to the sun would be a part of inference projection.

Gentner and her associates give three characteristics of structural alignment. The first

characteristic, and the key to the successful alignment of two systems, is structural consis-

tency. There must be a one-to-one correspondence between objects in the base and objects

in the target. Further, corresponding relations must have corresponding arguments (parallel

connectivity).

The second characteristic is relational focus. That is, analogies focus on shared relations

(function) and not on shared attributes (form).

The third characteristic is systematicity. When connecting relations in the base with

relations in the target, people tend to favor interconnected sets of relations rather than

isolated relations. Furthermore, when many of the relations in a set have been mapped from

target to base, people are quite likely to map the rest. For example, people comparing a solar

system an an atom are likely to know the following about a solar system: ATTRACTS(sun,

planets), ORBIT(planets, sun), CAUSE(ATTRACTS(sun, planets), ORBIT(planets, sun)),

and HOTTER THAN(sun, planets). Because CAUSE connects ATTRACTS and ORBIT,

people who know nothing about an atom are more likely to map these than the isolated fact

HOTTER THAN. Further, people who know that the nucleus of an atom attracts electrons

are much more likely to also map the ORBIT and CAUSE relations.

23

Gentner calls this process structure mapping, and has provided evidence that it also

applies to cases of similarity. However, similarity comparisons do not have a relational

focus. Instead, most or all features of the target are mapped onto the base.

Gentner and Toupin (1986) have shown that transparency, the obvious similarity be-

tween surface features of the base and the target, can have an influence on the ease of

forming an analogy. If systematicity is high (the target and base share many causal fea-

tures), mapping will be relatively easy. If systematicity is low, transparency has a strong

influence on the ease of mapping.

Symbolic Connectionism and Multiconstraint Theory

Holyoak and associates have proposed an alternative to structure mapping called sym-

bolic connectionism (Hummel & Holyoak, 1997; Holyoak & Hummel, 2001). This process,

which relies on a neural network, is more emergent than structure mapping. Symbolic con-

nectionism is based in Holyoak’s multiconstraint theory (Holyoak & Thagard, 1997), which

proposes three general kinds of constraints on mapping. These are similarity, shared rela-

tions between the source and target; structure, consistency and one-to-one correspondence

between relations of the target and source; and purpose, what the reasoner wishes to achieve

with the analogy. Similarity and structure have similar meanings in multiconstraint theory

and structure mapping, but purpose plays little role in structure mapping. These three

constraints are not absolute, as they are in structure mapping. Instead, they are used to

guide the mapping process. This means, for example, that a symbolic connectionist model

such as LISA (Hummel & Holyoak, 1997) would encourage, but not force, a one-to-one

mapping. This appears to be consistent with human behavior, as Spellman and Holyoak

(1996) found that people sometimes map multiple elements of the source to one element of

the target (Spellman & Holyoak, 1996).

One prediction of the LISA model that is supported by Waltz, Lau, Grewal, and Holyoak

(2000) is that working memory is a critical resource for mapping, and that an increase in

24

working-memory load makes people more likely to base their mappings on surface features

rather than on relations. Tohill and Holyoak (2000) have found similar results when sub-

jects’ anxiety levels are increased.

Using Analogies

There are several ways an analogy can provide new information. First, when some

members in a set of connected relations are mapped from the base to the target, the re-

maining relations are often mapped as well. Thus, an analogy automatically provides some

additional information with which to understand the target.

Analogies can be used to generate additional information once the structure mapping is

complete. To make a prediction about the target, one makes a similar prediction about the

base, confirms that the prediction can be mapped to the target, and performs the mapping.

Not all analogies can be used in this way, however. Some people switch between multiple

unconnected analogies in what Collins and Gentner (1987) call a pastiche model. For these

people, many bases are mapped to a single target, but each base maps to only a very tiny

portion of the target. The individual analogies are thus useless in predicting the behavior

of the target. In addition, sometimes someone may use an analogy to explain a concept

to another person without actually using the analogy internally. A physics professor, for

example, might compare electricity in wires to water in pipes to convey certain information

to students, but would never think about water when designing a circuit at home.

Generative analogies are those analogies that are, in fact, used to create new knowledge

and make predictions. Gentner and Gentner (1983) show that water through pipes and

people on a track can be generative analogies in the domain of electrical circuits. If a

person switches from one generative analogy to another, that person can arrive at very

different conclusions (see page 13).

25

Structural alignment, or mapping in general, can also be used to compare and contrast

two systems. Gentner and Markham (1994) found that people found it easier to list differ-

ences between two alignable objects than between two non-alignable objects. It is easier,

for example, to list differences between a mongoose and a weasel than between a mongoose

and a monsoon.

Checking and Improving Analogies

An analogy is a system for generating hypotheses about the target; the hypotheses

must be verified by some other means. Systematicity may provide a limited self-test for a

newly formed analogy (Gentner, 1983). Because groups of connected relations tend to be

mapped, one can detect and eliminate mapping errors by making sure that these collections

are internally consistent. However, Holyoak and Hummel (2001) argue that systematicity

is a guideline, not an inviolable rule, meaning that it may not act as a reliable self-test.

The quality of an analogy can be improved through the final two steps described on page

21. However, before people can abstract the common structure of the base and target and

refine the two to fit more closely together, they must think about the nature of the target,

base, and the analogy that connects them. As was the case with correcting misconceptions,

people need to examine their ideas and refine their knowledge.

26

Chapter 3

Materials and Methods

3.1 Population

All students in the Spring A, Summer A, Fall A, and Spring B sections of Berkeley’s CS 3

were required to attend a one-hour interview. Students were not paid for their participation,

but they did fulfill a course requirement. Most students even found the interviews to be

useful—they saw them as an hour of one-on-one tutoring. In several cases, students tried

to sign up for multiple interviews. Between 10% and 20% of the students in each semester

later dropped the course (see Table 3.1 on page 28), but their responses were not excluded

because the interviews were anonymous.

Not all students in every semester were interviewed. Three students in the Spring A

semester were given an initial version of the first survey; their answers are not included

in this data. Five students in the final round of interviews in Spring A were interviewed

by a new interviewer who did not sufficiently understand what to do. Their answers were

not included in this data. In some cases, students were excused because an interviewer

was unable to attend the interview. Several students felt very nervous when they were

told that the interview would involve Scheme questions. When students looked nervous,

27

the interviewers asked if they wanted to skip the Scheme questions and answer a set of

questions unrelated to Scheme. One student did this, two others were willing to answer the

questions so long as the interviewer looked away, and the rest said they were still willing to

answer the Scheme questions. Some students, especially in Spring B, only tried to sign up

for interviews in the last few days before the end of the semester. Some never attempted to

sign up for any interview. While attending an interview was officially a course requirement,

students who did not attend were not penalized in any way.

Students were allowed to pick one of the three or four rounds of interviews to participate

in. It is possible that this allowed for some self-selection effects, but I believe these would

either have minimized the observed problems and differences between lists and sentences

or have been counteracted by other forces. Students who took part in the last round of

interviews were certainly the survivors of CS 3, and they might be expected to have a better

understanding of the material. While some of this may have happened, many students

involved in the last round were distinctly unmotivated students who had either waited until

the last minute to participate, signed up for one (or even two) earlier interviews and forgot

to show up, or were completely unaware that there were interviews at all until I asked them

point blank in lab, “Have you been interviewed yet?” Many of these students were weeks

behind.

Table 3.1 shows the number of students enrolled at the start of the class and at points

very near every interview, as well as the number of students who took part in every interview

(and percentage of the students enrolled at that point) and the total number of students

who were interviewed. These numbers are approximate. The number of student accounts

created in the UC-WISE course portal was used to determine the number of students

enrolled at the beginning of the semester. Because interviews took place one week before a

midterm, the number of students who took each midterm was used to estimate the number

of students enrolled when that round of interviews occurred. The number of students who

took each final exam was used to estimate the number of students enrolled for the last round

28

Spring A Summer A Fall A Spring B
Initially Enrolled 167 51 224 117
Enrolled by I1 129 36 186 89
Interviewed in I1 37 (29%) 12 (33%) 37 (20%) 19 (21%)
Enrolled by I2 124 35 176 78
Interviewed in I2 34 (27%) 10 (29%) 34 (19%) 20 (26%)
Enrolled by I3 – – 169 77
Interviewed in I3 – – 34 (20%) 13 (17%)
Enrolled by I4 111 32 168 72
interviewed in I4 34 (31%) 11 (34%) 52 (31%) 17 (24%)
Total Interviewed 105 32 157 69
% Dropped After I1 14% 11% 16% 20%

Table 3.1: Number of students enrolled in CS 3 at the time of each interview and the number (and percent of
enrolled students) interviewed in each interview. (I1 is Interview 1, etc.)

of interviews each semester. Spring and Summer A had only three rounds of interviews;

the information for the final round of interviews in those two semesters are categorized as

Interview 4 rather than Interview 3, since they were the final rounds of interviews in those

semesters. The third midterm in the Fall A semester was not graded or recorded in any

way, so the number of students who completed homework or quizzes assigned at the time

the midterm was given out was used. In addition, there was no midterm after the recursion

section of the Spring B semester. The number of students who completed homework or

quizzes at the start of the week when this midterm would otherwise have been given was

used to estimate the number of students enrolled at this point. Midterms rather than

quizzes were used whenever possible, for several reasons. First, many students were behind

on quizzes and homework, and some may have dropped after a given week of interviews but

before they completed the appropriate homework or quizzes. Second, some students never

completed a given homework or quiz even though they were enrolled in the class. Far fewer

students missed a midterm or final than missed a given group of homework and quizzes.

Third, the numbers for the exams were already calculated by the instructors and reported

on the course website.

29

Exam Spring A Summer A Fall A Spring B
Midterm 1 Mean 14/20 (70%) 34.9/40 (87.3%) 20.8/25 (83.2%) 22.8/30 (76%)

Stdev 4.7 5.3 4.3 4.9
Midterm 2 Mean 39.8/50 (79.6%) 34.7/40 (86.8%) 39.7/50 (79.4%) 22.4/30 (74.7%)

Stdev 8.7 5.4 10 5.1
Midterm 3 Mean 29.3/50 (58.6%) 31.1/40 (77.8%) –/– –/–

Stdev 12.1 6.2 – –
Final Mean 70.4/120 (58.7%) 41.1/50 (82.2%) 51/75 (68%) 32/60 (53.3%)

Stdev 24.4 8.9 17 11.8

Table 3.2: Mean exam score/total points (and standard deviation) for each semester.

3.2 Differences Among Semesters

Many things changed from one semester of CS 3 to the next. There were three instruc-

tors in four semesters. Individual topics were emphasized more one semester than another,

even under the same instructor. Each semester had a unique mix of students, as well. These

differences are described below and summarized in Table 3.2 on page 29 and Tables 3.3,

3.4, 3.5, and 3.6 on pages 39–41.

Exam scores in Spring A were generally lower than those in other semesters. The only

exceptions were for Midterm 2, where the average was almost exactly the same as that in

Fall A and slightly higher than that in Spring B. Exam scores for Spring B were lower than

those in Summer or Fall A. Summer A had the highest exam scores of all. In all cases except

for the Midterm 2 in Spring and Fall A, the differences were significant at the p < .05 level,

and most were significant at the p < .01 level. If exam scores are correlated with students’

answers in interviews, students in Spring B should not do as well as those in Fall or Summer

A. Scores are given in Table 3.2.

Common Elements

Each CS 3 class, except for Summer A, took place over a regular semester. Classes filled

the first 15 weeks, while the last week was reserved for final exams. In summer, CS 3 was

taught in only eight weeks, with only the last day reserved for a final exam. All semesters

since at least Fall 2000 included three or four exams. The two or three exams that occurred

30

during the first fifteen weeks of the semester were usually called midterm exams, although

they were not all held near the middle of the term.

The first four or five weeks of the spring and fall semesters were spent introducing

students to Scheme. A midterm was often given at the end of this period. After basic

Scheme, students studied recursion for about four weeks, and then another midterm was

often given. After recursion, students spent several weeks on higher-order procedures. After

higher-order procedures, students were introduced to lists and, briefly, any other topics the

instructor considered important. There was often a midterm at the end of higher-order

procedures; it may or may not have included lists. Final projects occupied students for the

rest of the semester. The final exams were comprehensive. Table 3.6 gives a more detailed

breakdown of the topics in each of the relevant semesters.

In previous semesters, students attended two hours of lecture, two hours of lab, and

one hour of discussion each week. Starting in Summer 2002, and in all of the semesters

described in this thesis (except Summer A), students attended one hour of lecture and

either five hours of lab and one hour of discussion or six hours of lab each week. Because

summer classes take only eight weeks, students spent fourteen hours in lab every week. With

these changes, lab became the place to learn new material; relatively few students attended

lecture because they felt it offered them nothing new. Lab activities were available on the

UC-WISE web portal. Students worked through material at their own pace, while the TAs

and lab assistants were there to offer help when students had trouble. Some TAs or lab

assistants used the system to monitor students and identify those who were having trouble,

but most either dealt with students only when students asked for help or circled the lab

and actively checked up on students. When TAs noticed that many students were having

similar problems, or when they felt there was something important to say, they would stop

the class and conduct a discussion. For further details on the UC-WISE system, see Clancy,

Titterton, Ryan, Slotta, and Linn (2003).

31

Spring A

The Spring A semester was taught by Instructor A, a lecturer with several years of

experience with CS 3. He emphasized the small details of Scheme more than the other

teachers (e.g., “What do you get if you multiply zero numbers together?”); many of his

students said they spent hours typing unusual things into the Scheme interpreter to prepare

for exams. He gave three midterms during the semester. The first covered basic Scheme,

the second covered recursion, and the third covered higher-order procedures and lists. This

encouraged students to study lists, so they should have been reasonably familiar with them

by the time the third round of interviews took place.

This was the first regular (non-summer) semester in which the entire CS 3 class used

the UC-WISE course management system, and it was the instructor’s first time to teach

using these specific activities and in a lab-heavy manner.

Spring A had a wide range of students. Ten percent were Electrical Engineering and

Computer Science (EECS) students, a total of nineteen percent were engineering students,

and the rest came from a variety of other majors. Some mentioned during the interviews

or in lab that they were taking the class just to see what computer science was like. These

students appeared willing to participate in the interviews, possibly because they had been

told that if they did not participate, they would not get their points for class participation

(two percent of their total grade). In any case, students signed up for interview slots almost

as soon as they had the chance. Sign-up sheets were posted in the labs one week before the

start of interviews, and almost all slots were full by the end of the week. Some students

in every round of interviews would forget to show up, but most of these signed up for and

actually participated in the next round.

32

Summer A

Instructor B taught this class. Instructor B had taught CS 3 several times before and

had been a TA for the class for three years. He did not emphasize as many of the little

details as Instructor A. He gave three midterms during the semester, and they covered the

same material as those in the spring. However, Instructor B’s third midterm did not include

lists. The final project, on the other hand, did emphasize lists more than in the previous

semester. The round of interviews that compared lists and sentences was conducted near

the end of the final project, so students should have had some experience using lists.

Instructor B had worked with the UC-WISE system several times. In the summer, CS

3 runs twice as fast and fits into eight weeks. Instructor B did not give regular lectures or

hold regular discussions. Instead, students were in lab three hours per day Monday through

Thursday, with two extra hours on Friday that were generally for catching up. Lecture or

discussion happened whenever the TA or instructor thought something was worth talking

about, and was often in response to frequent mistakes made in lab.

The students were very diverse. Some were high school students and wanted to learn

something new or get an advantage on their college applications. Some were from other

universities and wanted to take classes at Berkeley. Others had just been admitted and

wanted to start one class ahead. These students were so willing to participate in interviews

that I did not need sign-up sheets. I simply asked for volunteers in each lab section, and

within a few minutes I had more students than interviews.

In addition to differences in teacher and pacing, there were several potentially important

changes to the class material. The first was a change in the way domain and range were

taught. The domain of a procedure is the set of acceptable input values, while the range is

the set of things that the procedure can produce given valid inputs. In Spring A, students

were expected to read a mystery program and describe its domain and range, without

understanding what the mystery program was intended to do. Thus, students took the

33

domain to mean whatever values their programs, even if buggy, accepted, rather than only

the values that should have been accepted. Similarly, they took range to mean anything a

procedure could possibly return without actually giving an error message, rather than the

kinds of things a procedure should return when it is given correct arguments. As a result,

students sometimes tried to justify defective code by saying that it matched the domain

and range. This statement is true but worthless when domain and range are based on what

the code happens to do rather than what it should do. Starting in Summer A, substantially

less importance was placed on domain and range during tests, and students were no longer

expected to work with arbitrary mystery procedures.

The second major change was the addition of a page to the second lab, followed by a

discussion. Students had been given a very brief introduction to words and sentences on

the first day, and by the time they reached the new activity, they had been given a formal

introduction to words and sentences. The text to this activity can be found in Figure 3.1.

In the last half of class, the instructor or TA in charge of that lab section ran a short

discussion on this topic, gave a quick demonstration with a Pez r© dispenser, and then gave

the students candy.

The second activity was a homework assignment given at the end of the section on basic

Scheme, but before the midterm review session. In an online discussion, students were asked

to list ways in which English and Scheme were similar or different, and to comment on other

students’ ideas. The text of this assignment is given in Figure 3.2.

At the end of the week, the instructor and TA held a midterm review session. Close to

half of this session focused on the details of Scheme words and sentences and why they are

not like English. Similar activities had been done in discussion or lab sections in previous

semesters, although not at formal midterm review sessions.

The recursion section ended with the number-spelling project, in which students were

asked to take a number like 12345 and convert it into a sentence like (twelve thousand

three hundred forty five). A common mistake in this project was the inclusion of

34

An Analogy for Words
A sentence is a collection of words. A word is a collection of letters. Amazingly
enough, your TA or instructor will now explain how words and sentences are like Pez
candy dispensers. Here’s a basic summary of the argument:

• The sentence or word itself is the dispenser

• Individual words in the sentence or letters in the word are like the candies.

• Individual candies are in a specific order within the dispenser, just like individual
words or letters are in a specific order within the sentence or word.

• With a flip of your finger, you can separate the first candy (first) from the
dispenser and all of the rest of the candies (butfirst). You can use those two
procedures to separate the first word or letter from the rest of the sentence or
word.

• As long as it is your Pez dispenser, it’s OK to take the last candy out. It’s also
OK to take the first or butfirst of a one-word sentence or a one-letter word.

• People collect empty Pez dispensers. I promise I’m not making this up. If you
don’t believe me, check out the Burlingame Pez Museum. It’s equally OK in
Scheme to have an empty sentence (it looks like ()) or an empty word (it looks
like "").

• A Pez dispenser is only empty when it doesn’t have any candy at all in it. You
can’t just say it’s empty if the last thing in there is a candy you don’t like.
Likewise, you can’t say a sentence is empty just because you don’t like what it
contains. If "" is still a word, ("") is not an empty sentence.

Don’t go too crazy with the analogy, though. You can pop the top on a Pez dispenser
even after it’s empty, although you won’t get any candy. If you try to take apart an
empty word or sentence, Scheme throws a fit.

Figure 3.1: A new reading activity added to lab in Summer A and later semesters.

empty words in the sentence in place of a string of zeros: 1000000007 became (one billion

"" "" seven) rather than one billion seven). Thus, many students should have been

exposed to the idea of empty words in sentences.

There were several other changes that were unrelated to the interview questions. Specif-

ically, the lab activities on let and local variables that were given early in the semester,

as well as input/output, graphics, and fractals, which had been given near the end of the

semester, were removed. These activities had no relationship to sentences or lists. Further-

35

Comparing English and Scheme
Both Scheme and English deal with numbers, words, and sentences. Sometimes Scheme
and English agree, but sometimes they do not. These differences can cause all kinds of
trouble on exams.

List as many ways that Scheme and English words, sentences, and numbers are alike as
you can think of. Then list as many ways that Scheme and English words, sentences,
and numbers are different as you can think of. Then comment on what other people
have said. Here are some things to consider:

1. If somebody says “No” in English, it doesn’t really matter if it is the word “no”
or the sentence “No.” You get the idea. How about Scheme? Is (no) the same
as no?

2. How are parentheses used in English? How about Scheme?

3. English doesn’t even have empty sentences or words. What do you think () or
"" are in Scheme?

4. Numbers and words are pretty different in English. For example, it’s OK if you
name a baby after a famous singer. It’s not OK if you name a baby after a famous
number (“This is 2.718281828. Isn’t she cute?”). What about in Scheme?

Figure 3.2: Homework activity given out in Summer A.

more, because input/output, graphics, and fractals were given while students were working

final projects, very few of the Spring A students had seen them by the time they were

interviewed.

Fall A

This semester was again taught by Instructor A. He focused on small details, although

less than he had before. He had three midterms that covered the same material as the three

in the spring, except that lists were not included on the third midterm. The final project

did use lists, but not extensively. However, the final round of interviews occurred near the

end of the projects, and students should have had a reasonable amount of practice with

lists.

36

This semester, the class involved one hour of lecture and about six hours of lab every

week. Teaching Assistants were asked to spend about an hour of lab time every week giving

a discussion, but in reality, discussions varied from about half an hour to an hour.

There were substantially more engineering students. Twenty-nine percent of the stu-

dents were EECS students, and forty-two percent were engineers of some kind. Semesters

with a larger proportion of engineers appear to have a lower dropout rate and may have

higher class averages. This was the semester with the highest concentration of engineering

students. However, these students did not seem motivated to participate in interviews.

Sign-up sheets were still made available one week in advance, but they almost never filled

up. In fact, a fair number of students did not look for an interview slot until the last day

of the last round of interviews. Many students sent e-mails either on the last scheduled

day or on the weekend after the last scheduled day saying that they had just noticed the

interview sign-up sheet and couldn’t find any open times. Because of this, the final round

of interviews was extended by another week.

This semester inherited several features from the summer. First, it downplayed domain

and range and did not include lab activities on variables early in the semester. Second, it

used the Pez r© example, although TAs did not pass out candy. Third, it had a homework

activity that replaced the Summer A “Comparing English and Scheme” discussion. Fourth,

it used the number-spelling project. The text of this replacement activity, an online dis-

cussion given at the start of the third week (near the end of basic Scheme), is shown in

Figure 3.3.

Like Spring A, Fall A covered input/output, graphics, and fractals. The review session

for the first midterm did not spend much time on words and sentences and how they differed

from English.

37

Comparing English and Scheme
Both English and Scheme have things called words and sentences. These are similar,
but not identical. List at least two ways in which English words or sentences are like
Scheme words or sentences and at least two ways in which they are not like Scheme
words or sentences. Also, make at least one intelligent comment on a classmate’s list.

Just so you know, things like “Yeah!” do not count as intelligent responses, no matter
how much thought you put into them.

Figure 3.3: A homework activity give in Fall A and later semesters that replaced the one shown in Figure 3.2.

Spring B

The Spring B semester was taught by Instructor C, who had many years of teaching

experience and was very familiar with the UC-WISE version of CS 3. He did not emphasize

the same kinds of little details that Instructor A did. He also made some changes to the

curriculum, removing unsuccessful activities and writing new ones. He gave two midterms

during the semester. The first covered basic Scheme. The second covered both recursion

and higher-order procedures, but not lists. The final projects, however, made extensive use

of lists.

The organization of this class was similar to that of Fall A. The instructor gave one hour

of lecture every week, and students spent six hours every week in lab. As in the Summer A

semester, discussion was held whenever the TAs felt it was needed.

This was the semester with the fewest engineering students. Five percent were EECS,

and a total of seven percent were engineers of any kind. Students signed up for most of the

available interview times, although this often took more than one week.

There were a number of changes to the course materials in this semester. First, many

of the activities in the early part of the semester were modified to use WebScheme (see

p. 146). Thus, instead of students writing programs or answering questions and judging for

themselves whether they were right or wrong, they entered their programs or answers into

an interactive web page and were shown green check marks when they were right and red

Xs when they were wrong. One of these activities was relevant and is shown in Figure 3.4.

38

Figure 3.4: WebScheme activity on empty words and sentences. It was given in Spring B and later semesters.

Defining Terms
Give good definitions for Scheme words and sentences. Make sure you mention how
they are or are not like English words and sentences. Give this some thought. Once
you submit it, you won’t be able to go back and change what you wrote.

Figure 3.5: A new homework given in Spring B and later semesters.

Students who entered sentences without parentheses were presented with error mes-

sages. Another relevant WebScheme exercise introduced in this semester dealt with empty

words and sentences. In the past, students had been asked to write down explanations for

(butfirst ’(x)) and (butfirst ’x), but they were not required to show their answers to

a TA, and few TAs asked to see the explanations. The WebScheme activity asked students

to type in what Scheme would produce for each of these expressions. Again, students who

typed in incorrect answers were given red Xs or error messages.

The “Comparing English and Scheme” homework was assigned on the second day of

lab, which was when students were introduced officially to words and sentences. Another

homework activity was also assigned on that day. This new homework was not an online

discussion, although it was an online activity. In this case, once students posted their

answers, they were able to see answers submitted by other students in their lab section.

The text of the new homework is given in Figure 3.5.

39

Semester Instructor Lecture Lab Discussion
Spring A Instructor A 1 hour 5 hours 1 hour
Summer A Instructor B as needed 14 hours as needed
Fall A Instructor A 1 hour 5-6 hours 0-1 hours
Spring B Instructor C 1 hour 6 hours as needed

Table 3.3: Instructor and number of hours per week of lecture, lab, and discussion for each semester.

Spring A Summer A Fall A Spring B
Instructor Instructor A Instructor B Instructor A Instructor C
Students 19% engineers mixed 42% engineers 7% engineers

19% EECS eager 29% EECS 5% EECS
eager not eager neutral

in First Interview 129 36 186 89
in Last Interview 111 32 157 72
Lists Tested by midterm final project midterm final project
Other Material small details small details
Midterms 3 3 3 (2 graded) 2
of Interviews 3 3 4 4

Table 3.4: Instructors and students, motivation to learn lists, number of midterms, and number of interviews for
each semester.

There were several other changes that probably had little to do with students’ per-

formance in the interviews. First, the lab activities for trees, graphics, fractals, and in-

put/output were removed. Again, in previous semesters, these activities were given during

the final project, and students generally did not work on them until after the final round of

interviews. Second, the section on higher-order procedures ended with the election project,

in which students wrote a procedure that calculated the winner of a presidential election

when given one sentence describing the number of electoral votes per state and another

describing the popular votes in each state. This project did not deal with empty words or

sentences, one-word sentences, or anything else in the interviews. Third, after the election

project, students worked on a pattern-matching program. This was a large recursive pro-

gram that implemented a limited set of regular expressions. This had very little to do with

any of the issues covered in the interviews, and because it was unpopular, most students

ignored it until classes were over and they were studying for the final.

This information is summarized in Tables 3.3, 3.4, and 3.5.

40

S
em

es
te

r
R

el
ev

an
t

C
h
an

ge
s

fr
om

P
re

v
io

u
s

S
em

es
te

r
O

th
er

C
h
an

ge
s

S
u
m

m
er

A
d
om

ai
n

an
d

ra
n
ge

:
m

in
im

iz
ed

,
st

ud
en

ts
no

lo
ng

er
ex

pe
ct

ed
to

fin
d

do
m

ai
n

an
d

ra
ng

e
of

ar
bi

tr
ar

y
pr

oc
ed

ur
es

to
ke

ep
th

em
fr

om
m

is
us

in
g

th
e

co
nc

ep
ts

to
ju

st
ify

br
ok

en
co

de
P
ez

r ©
an

al
og

y
:

re
ad

in
g

an
d

di
sc

us
si

on
in

la
b

w
he

n
w

or
ds

an
d

se
nt

en
ce

s
w

er
e

co
v-

er
ed

,
co

m
pl

et
e

w
it

h
ca

nd
y,

to
gi

ve
st

ud
en

ts
a

be
tt

er
an

al
og

y
fo

r
em

pt
y

w
or

ds
an

d
se

nt
en

ce
s

C
om

p
ar

in
g

E
n
gl

is
h

an
d

S
ch

em
e:

on
lin

e
di

sc
us

si
on

fo
r

ho
m

ew
or

k
ne

ar
th

e
en

d
of

th
e

ba
si

c
Sc

he
m

e
se

ct
io

n;
st

ud
en

ts
as

ke
d

to
co

m
pa

re
an

d
co

nt
ra

st
E

ng
lis

h
an

d
Sc

he
m

e
se

nt
en

ce
s

fi
rs

t
m

id
te

rm
re

v
ie

w
:

he
av

y
co

ve
ra

ge
of

E
ng

lis
h

an
d

Sc
he

m
e

se
nt

en
ce

s
n
u
m

b
er

-s
p
el

li
n
g

p
ro

je
ct

:
st

ud
en

ts
co

nv
er

t
a

nu
m

be
r

in
to

a
se

nt
en

ce
,
m

an
y

st
u-

de
nt

s
ha

d
em

pt
y

w
or

ds
in

th
ei

r
se

nt
en

ce
s

an
d

th
us

sh
ou

ld
ha

ve
kn

ow
n

th
at

em
pt

y
w

or
ds

co
ul

d
ex

is
t

in
se

nt
en

ce
s

ea
rl

y
la

b
on

va
ri

ab
le

s
re

-
m

ov
ed

,
al

on
g

w
it

h
la

bs
on

in
pu

t/
ou

tp
ut

,
gr

ap
hi

cs
,

an
d

fr
ac

ta
ls

F
al

l
A

P
ez

r ©
an

al
og

y
:

le
ss

em
ph

as
is

an
d

no
ca

nd
y

C
om

p
ar

in
g

E
n
gl

is
h

an
d

S
ch

em
e:

di
ffe

re
nt

on
lin

e
di

sc
us

si
on

fo
r

ho
m

ew
or

k
fi
rs

t
m

id
te

rm
re

v
ie

w
:

di
d

no
t

sp
en

d
m

uc
h

ti
m

e
on

E
ng

lis
h

an
d

Sc
he

m
e

se
nt

en
ce

s

di
d

co
ve

r
in

pu
t/

ou
tp

ut
,

gr
ap

hi
cs

,
an

d
fr

ac
ta

ls

S
p
ri

n
g

B
W

eb
S
ch

em
e

ac
ti

v
it

ie
s:

in
te

ra
ct

iv
e

la
b

ac
ti

vi
ti

es
gi

ve
n

ou
t

on
th

e
da

y
w

or
ds

an
d

se
nt

en
ce

s
w

er
e

co
ve

re
d;

co
nf

ro
nt

ed
st

ud
en

ts
w

ho
w

ro
te

se
nt

en
ce

s
w

it
ho

ut
pa

re
nt

he
-

se
s

or
tr

ea
te

d
em

pt
y

w
or

ds
an

d
se

nt
en

ce
s

as
no

th
in

g
C

om
p
ar

in
g

E
n
gl

is
h

an
d

S
ch

em
e:

as
si

gn
ed

on
th

e
da

y
w

or
ds

an
d

se
nt

en
ce

s
w

er
e

co
ve

re
d

D
efi

n
in

g
T
er

m
s:

on
lin

e
ho

m
ew

or
k,

as
ke

d
st

ud
en

ts
to

de
fin

e
Sc

he
m

e
w

or
ds

an
d

se
nt

en
ce

s,
gi

ve
n

on
th

e
da

y
w

or
ds

an
d

se
nt

en
ce

s
w

er
e

co
ve

re
d

la
b

ac
ti

vi
ti

es
fo

r
in

pu
t/

ou
tp

ut
,

tr
ee

s,
gr

ap
hi

cs
,a

nd
fr

ac
ta

ls
re

-
m

ov
ed

m
or

e
hi

gh
er

-o
rd

er
pr

oc
ed

ur
es

pr
ac

ti
ce

w
it

h
th

e
el

ec
ti

on
s

m
in

ip
ro

je
ct

st
ud

en
ts

w
or

ke
d

w
it

h
a

pa
tt

er
n-

m
at

ch
in

g
pr

og
ra

m
,

w
hi

ch
ga

ve
m

or
e

pr
ac

ti
ce

w
it

h
re

ad
in

g
an

d
w

or
ki

ng
w

it
h

re
cu

rs
iv

e
pr

oc
ed

ur
es

T
a
b
le

3
.5

:
R

el
ev

a
n
t

o
r

si
g
n
ifi

ca
n
t

ch
a
n
g
es

to
th

e
cu

rr
ic

u
lu

m
o
f
ea

ch
se

m
es

te
r.

41

W
e
e
k

S
p
r
in

g
A

S
u
m

m
e
r

A
F
a
ll

A
S
p
r
in

g
B

1
in

tr
o
d
u
ct

io
n

to
S
ch

em
e,

w
o
rd

s
&

se
n
-

te
n
ce

s
in

tr
o
d
u
ct

io
n

to
S
ch

em
e;

w
o
rd

s
&

se
n
-

te
n
ce

s;
co

n
d
it

io
n
a
l
ex

p
re

ss
io

n
s;

m
o
re

w
o
rd

s
&

se
n
te

n
ce

s

in
tr

o
d
u
ct

io
n

to
S
ch

em
e;

w
o
rd

s
&

se
n
-

te
n
ce

s
in

tr
o
d
u
ct

io
n

to
S
ch

em
e;

w
o
rd

s
&

se
n
-

te
n
ce

s

2
co

n
d
it
io

n
a
l

ex
p
re

ss
io

n
s;

m
o
re

w
o
rd

s
&

se
n
te

n
ce

s
In

te
rv

ie
w

1
;

“
D

iff
er

en
ce

B
et

w
ee

n
D

a
te

s”
ca

se
st

u
d
y

co
n
d
it
io

n
a
l

ex
p
re

ss
io

n
s;

m
o
re

w
o
rd

s
&

se
n
te

n
ce

s
co

n
d
it
io

n
a
l

ex
p
re

ss
io

n
s;

m
o
re

w
o
rd

s
&

se
n
te

n
ce

s

3
“
D

iff
er

en
ce

B
et

w
ee

n
D

a
te

s”
ca

se
st

u
d
y

M
id

te
rm

1
;
in

tr
o
d
u
ct

io
n

to
re

cu
rs

io
n
;

a
d
v
a
n
ce

d
re

cu
rs

io
n

“
D

iff
er

en
ce

B
et

w
ee

n
D

a
te

s”
ca

se
st

u
d
y
;
In

te
rv

ie
w

1
co

n
d
it
io

n
a
ls

;
m

o
re

w
o
rd

s
&

se
n
-

te
n
ce

s;
“
D

iff
er

en
ce

B
et

w
ee

n
D

a
te

s”
ca

se
st

u
d
y

4
In

te
rv

ie
w

1
;

v
a
ri

a
b
le

s;
fu

n
ct

io
n
s

a
s

d
a
ta

In
te

rv
ie

w
2
,
“
R

o
m

a
n

N
u
m

er
a
ls

”
ca

se
st

u
d
y
;

m
o
re

k
in

d
s

o
f

re
cu

rs
io

n
;

n
u
m

b
er

-s
p
el

li
n
g

p
ro

je
ct

M
id

te
rm

1
;

“
D

iff
er

en
ce

B
et

w
ee

n
D

a
te

s”
ca

se
st

u
d
y
;
in

tr
o
d
u
ct

io
n

to
re

-
cu

rs
io

n

“
D

iff
er

en
ce

B
et

w
ee

n
D

a
te

s”
ca

se
st

u
d
y

5
M

id
te

rm
1
;

in
tr

o
d
u
ct

io
n

to
re

cu
r-

si
o
n
;
m

o
re

re
cu

rs
io

n
M

id
te

rm
2
;

in
tr

o
d
u
ct

io
n

to
h
ig

h
er

-
o
rd

er
p
ro

ce
d
u
re

s;
h
ig

h
er

o
rd

er
p
ro

ce
-

d
u
re

s
&

la
m

b
d
a
;
b
ri

d
g
e

p
ro

je
ct

In
te

rv
ie

w
1
;
in

tr
o
d
u
ct

io
n

to
re

cu
rs

io
n

in
tr

o
d
u
ct

io
n

to
re

cu
rs

io
n
;

m
o
re

re
-

cu
rs

io
n

6
a
d
v
a
n
ce

d
re

cu
rs

io
n
;
“
R

o
m

a
n

N
u
m

er
-

a
ls

”
ca

se
st

u
d
y

m
o
re

h
ig

h
er

-o
rd

er
p
ro

ce
d
u
re

s
&

la
m

b
d
a
;
in

tr
o
d
u
ct

io
n

to
li
st

s;
st

a
rt

o
f

fi
n
a
l
p
ro

je
ct

s

a
d
v
a
n
ce

d
re

cu
rs

io
n
;
“
R

o
m

a
n

N
u
m

er
-

a
ls

”
ca

se
st

u
d
y

M
id

te
rm

1
;

m
o
re

re
cu

rs
io

n
;

“
R

o
m

a
n

N
u
m

er
a
ls

”
ca

se
st

u
d
y

7
In

te
rv

ie
w

2
;
m

o
re

k
in

d
s

o
f
re

cu
rs

io
n

M
id

te
rm

3
;
tr

ee
s;

fi
n
a
l
p
ro

je
ct

s
In

te
rv

ie
w

2
;
n
u
m

b
er

-s
p
el

li
n
g

p
ro

je
ct

;
m

o
re

k
in

d
s

o
f
re

cu
rs

io
n

a
d
v
a
n
ce

d
re

cu
rs

io
n
;

n
u
m

b
er

-s
p
el

li
n
g

p
ro

je
ct

8
M

id
te

rm
2
;

in
tr

o
d
u
ct

io
n

to
h
ig

h
er

-
o
rd

er
p
ro

ce
d
u
re

s
In

te
rv

ie
w

3
;

li
st

s;
d
ee

p
re

cu
rs

io
n
;

tr
ee

s;
fi
n
a
l
p
ro

je
ct

s;
F
in

a
l
E

x
a
m

M
id

te
rm

2
;

n
u
m

b
er

-s
p
el

li
n
g

p
ro

je
ct

;
in

tr
o
d
u
ct

io
n

to
h
ig

h
er

-o
rd

er
p
ro

ce
-

d
u
re

s

In
te

rv
ie

w
2
;
n
u
m

b
er

-s
p
el

li
n
g

p
ro

je
ct

9
h
ig

h
er

-o
rd

er
p
ro

ce
d
u
re

s
&

la
m

b
d
a

h
ig

h
er

-o
rd

er
p
ro

ce
d
u
re

s
&

la
m

b
d
a

in
tr

o
d
u
ct

io
n

to
h
ig

h
er

-o
rd

er
p
ro

ce
-

d
u
re

s;
la

m
b
d
a

1
0

in
tr

o
d
u
ct

io
n

to
li
st

s
la

m
b
d
a
;
in

tr
o
d
u
ct

io
n

to
li
st

s
el

ec
ti
o
n

p
ro

je
ct

1
1

M
id

te
rm

3
;

in
p
u
t/

o
u
tp

u
t;

fi
n
a
l

p
ro

je
ct

s
In

te
rv

ie
w

3
;

in
p
u
t/

o
u
tp

u
t;

fi
n
a
l

p
ro

je
ct

s
In

te
rv

ie
w

3
;
el

ec
ti
o
n

p
ro

je
ct

;
p
a
tt

er
n
-

m
a
tc

h
in

g

1
2

fr
a
ct

a
ls

&
g
ra

p
h
ic

s;
a
d
v
a
n
ce

d
li
st

p
ro

ce
ss

in
g
;
fi
n
a
l
p
ro

je
ct

s
M

id
te

rm
3

(f
a
u
x
);

a
d
v
a
n
ce

d
li
st

p
ro

-
ce

ss
in

g
;
fi
n
a
l
p
ro

je
ct

s
el

ec
ti
o
n

p
ro

je
ct

;
M

id
te

rm
2
;

b
a
si

c
&

a
d
v
a
n
ce

d
li
st

s

1
3

In
te

rv
ie

w
3
;
fr

a
ct

a
ls

;
fi
n
a
l
p
ro

je
ct

s
fr

a
ct

a
ls

;
fi
n
a
l
p
ro

je
ct

s
li
st

s;
fi
n
a
l
p
ro

je
ct

s

1
4

tr
ee

s;
fi
n
a
l
p
ro

je
ct

s
tr

ee
s;

fi
n
a
l
p
ro

je
ct

s
fi
n
a
l
p
ro

je
ct

s

1
5

d
ee

p
re

cu
rs

io
n
;
tr

ee
s;

fi
n
a
l
p
ro

je
ct

s
In

te
rv

ie
w

4
;
re

v
ie

w
o
f
d
ee

p
re

cu
rs

io
n
;

tr
ee

s;
fi
n
a
l
p
ro

je
ct

s
In

te
rv

ie
w

4
;
fi
n
a
l
p
ro

je
ct

s

T
a
b
le

3
.6

:
T
o
p
ic

s
b
y

w
ee

k
fo

r
ea

ch
se

m
es

te
r.

N
o
te

th
a
t

su
m

m
er

se
m

es
te

rs
h
a
v
e

o
n
ly

ei
g
h
t

w
ee

k
s.

42

3.3 Interviews

Spring and Summer A students were given a choice among three interviews throughout

the semester, while Fall A and Spring B students were given a choice among four. The first

round of interviews was always held the week before the first exam. At this point, students

had learned only basic Scheme. They could manipulate words and sentences and write

simple branching programs, but they could not do loops or recursion. The second round

was always held the week before the second midterm, or the week after the end of recursion

for Spring B (when there was no recursion midterm). Students had just learned recursion,

so in addition to some of the basic questions from the first interview, they were asked about

recursive procedures that contained similar bugs. The third interview for Fall A and Spring

B was held the week before the third midterm (the second midterm for Spring B). This

interview included the questions from the previous interview, along with a question about

higher-order procedures. The final round of interviews was held in the last week of classes

and, because many students forgot to show up for their assigned times, often stretched into

the week after the end of classes. The questions on this interview were exactly the same as

those on the interview before it.

Weekly schedules for all semesters can be found in Table 3.6. Copies of all interview

forms can be found in Appendix A.

Questions and Predicted Mistakes

Hypotheses

The main hypothesis is that most of the mistakes with one-word sentences and empty

words and sentences are caused by students misapplying their real-world knowledge to

Scheme. In particular, students are either assuming that Scheme works the same way

English does or that sentences work the same way real-world collections do.

43

English Sentences Scheme Sentences
Helpful

sentences sentences
words words
meaning to humans meaning to Scheme procedures
sentences are composed of words sentences are composed of words
words are composed of letters words are composed of one-letter words
sentences have meaning sentences have meaning
words have meaning words have meaning
the order of words in a sentence is controlled
by syntax

the order of words in a sentence is controlled
by the requirements of the program

the meaning of a sentence comes from its
words and their order

the meaning of a sentence comes from its
words and their order

capital letters at the start of a sentence (
punctuation marks at the end of a sentence)
capital letters and punctuation marks delimit
sentences

parentheses delimit sentences

Harmful
words are made of letters words are made of letters
parentheses parentheses
parentheses contain words parentheses contain words
parentheses ignored when the words are read parentheses ignored when the words are read
parentheses are optional and can be replaced
with commas or hyphens

parentheses are optional

one-word sentences are rarely correct in formal
English

one-word sentences are not correct

one-word sentences and words are pretty much
the same thing

one-word sentences and words are pretty much
the same thing

Table 3.7: Possible Elements of a Mapping Between English and Scheme Sentences.

Tables 3.7 and 3.8 list possible elements of a mapping between English and Scheme (3.7)

and collections and Scheme (3.8). The mapping from English to Scheme illustrates several

problems. First, it provides a reason to assume that empty sentences have no meaning:

if the meaning of a sentence comes from the words it contains and their order, an empty

sentence must have no meaning. Second, it offers no insight at all about empty words. The

mapping from collections to Scheme also illustrates potential problems. Because sentences

and words operate in very similar ways, collections would have to be mapped to both of

them. Because Gentner’s model predicts that people seek one-to-one mappings, collections

are unlikely to be mapped to both sentences and words. Other problems are listed in

Table 3.9 on page 45.

44

Collections Scheme Sentences
Helpful

collections sentences
collections words
collections can contain subcollections sentences contain words
collections can contain subcollections words contain one-letter words

Harmful
collections can contain individual elements words contain letters
a collection must contain more than one ele-
ment

a sentence must contain more than one word

elements of subcollections are really elements
of the main collection

letters are elements of sentences

sometimes a collection is a thing and some-
times it is a bunch of elements

sometimes a sentence is a thing and sometimes
it is a bunch of words

container parentheses
container(s) for a collection can be ignored
when thinking about the collection

parentheses can be ignored when thinking
about the sentence

subcollections with no elements can usually be
removed

words with no elements can usually be re-
moved

Table 3.8: Possible Elements of a Mapping Between Collections and Scheme Sentences.

Questions About One-Word Sentences

1. What is (bf ’(1 2))? (question O1)

2. What is (bl ’(1 2))? (question O2)

3. What is (bf ’(1 2 3 4))? (question O3)

4. What is (bl ’(1 2 3 4))? (question O4)

There were four questions that dealt with creating one-word sentences. The butfirst

or butlast of a two-word sentence should be a one-word sentence, while the butfirst

or butlast of a four-word sentence should be a three-word sentence. The first and third

problems, which dealt with butfirst, appeared on every interview. The other two, which

dealt with butlast, appeared only on the first round of interviews every semester.

Students using analogies to English or the collection model should have made one of

two characteristic mistakes. First, they might have believed that the butfirst or butlast

of a two-word sentence was a word. With the exception of commands, one-word sentences

45

Mistake English Explanation Collection Explanation
one-word sentences be-
come words

Spoken English does not distin-
guish between the word and a
sentence of one word: “no” vs.
“No.”

A collection with only one el-
ement rarely makes sense: a
record collection with only one
record isn’t really a collection.

parentheses not in-
cluded with sentences,
especially one-word
sentences

Parentheses are typically ignored
when reading. They are far less
important than the words they
contain. Also, they can be re-
placed by commas or dashes.

If a collection has a physical con-
tainer, it is less important than
the collection itself. Parentheses
may be thought of as a container
for the words in a sentence. Fur-
thermore, it is often appropriate
to treat a collection as a bunch of
objects rather than as a collec-
tion. Students may focus more
on the words than on the sen-
tence that contains them.

empty words and
sentences are special
cases/not really words
or sentences

English does not have such
things, so empty words and sen-
tences do not fit with the rest of
the analogy.

A collection of zero elements is
not a collection at all.

empty words or sen-
tences are errors

English does not have such
things, so empty words and sen-
tences do not make sense. Stu-
dents may assume that because
of this, something is wrong. Also,
students may forget about them
unless directly reminded, leaving
them with no convenient way to
explain what happens if all of the
words are removed from a sen-
tence.

It does not make any sense to
talk about a group of zero ob-
jects. There’s nothing there,
which is not an option in Scheme.

empty words are noth-
ing

TAs often describe empty words
and sentences as “nothing” when
focusing on what might be in the
word or sentence: Scheme code
that keeps only the even num-
bers in the sentence (1 3 5) re-
turns “nothing” rather than “the
empty sentence.”

Empty collections aren’t really
collections: a pile of zero records
isn’t a pile or, for that matter,
anything at all.

empty words inside
sentences can be
ignored

Empty words are nothing. Also,
even if empty words make sense
on their own, they are overshad-
owed by the real words in a sen-
tence.

Empty words are nothing. Also,
empty categories within a larger
collection can usually be re-
moved: if a record collection has
no folk albums, why have a tag
on the shelf for folk?

Table 3.9: Common mistakes among CS 3 students and possible English/collection model explanations.

46

are not legitimate in formal English. They are used in spoken English, but in that case,

the content is more important than the form: “No.” (the sentence) means the same as

“no” (the word). Students using the collection model were predicted to believe that one-

element collections were absurd, so the answer should be a word rather than an illogical

one-word sentence. Second, they might omit parentheses around all sentences, even though

they believe they are writing sentences. In English, parentheses are used to group specific

information, not to delimit a sentence. In addition, parentheses themselves are never read.

Students using the collection model should focus entirely on the words. The container for

a collection, if one exists, is not something people often think about.

There were also two more complicated questions that dealt with one-word sentences.

Both of these required students to read and understand recursive procedures, so they were

given on all interviews except for the first of every semester. To prevent students’ issues

with recursion and reading recursive code from getting in the way, interviewers corrected

students whenever they appeared to be confused by recursion.

In the negate-all problem (question O5, Figure 3.6), students were asked to determine

whether or not a recursive procedure worked. However, the real test was whether they would

notice that it produced a word when it should have actually produced a one-word sentence.

Because the interviewers helped students whenever they had trouble with the recursion,

students were likely to decide that negate-all worked unless they noticed that it returned

a number instead of a one-number sentence.

In the divide-by-largest problem (question O6), students were asked to debug several

related recursive procedures. However, the real test was whether they noticed in either the

code or the test cases provided that one procedure (sent-max) produced a one-word sentence

when it should have produced a word. Again, because of help from the interviewers, students

should have either found the bug or given up without discovering it. This problem included

two versions; which version a student got depended on when the interview started. All were

initially given a handout shown in Figure 3.7

47

The procedure negate-all takes a sentence of numbers and swaps their signs. In other
words, it returns a sentence with all of those numbers multiplied by -1. It doesn’t have to
work with an empty sentence. Here’s a version somebody wrote. Does it work? How do
you know? Test it for at least the following sentences: (1), (-1 2 -3), and (10 20 30 40
-50).

(define (negate-all sent)

(if (empty? (bf sent))

(* -1 (first sent))

(se (* -1 (first sent))

(negate-all (bf sent)))))

Figure 3.6: Question O5, negate-all.

You and a friend are working on a homework problem together. Let’s say that this homework
is a group project, so you aren’t cheating. Here is the problem:

Write a procedure called divide-by-largest, which takes a sentence of numbers and divides
every number in it by the largest number. For example, (divide-by-largest ’(1 2 3 4
3 2 1)) should give you (0.25 0.5 0.75 1 0.75 0.5 0.25).
Your friend writes some of the code, but you write the rest. Here is your code:
(define (divide-by-largest sent)

(divide-sentence-by sent (sent-max sent)))

;;divide-sentence-by should take a sentence and a num and divide

;; all of the numbers in that sentence by that num

(define (divide-sentence-by sent num)

(if (empty? sent)

’()

(se (/ (first sent) num)

(divide-sentence-by (bf sent) num))))

You try (divide-by-largest ’(1 2 3 4 3 2 1)) and get an error!

Figure 3.7: Question O6, divide-by-largest main handout.

At this point, students were given one of two possible handouts. Those whose interviews

started on an odd hour were given one shown in Figure 3.8. Ideally, students given this

handout would read the third line (the base case, “sent”) and see that sent-max returns a

sentence. The base case should actually read “(first sent)”.

Those whose interviews started on an even hour were given a handout shown in Fig-

ure 3.9. Ideally, these students should have looked at what sent-max returns, noticed the

parentheses around every number, and realized that it only returned sentences. This bug

48

Here is your friend’s code. Can you find the error?
;;sent-max should take a sentence and return the largest number in it

(define (sent-max sent)

(cond ((= (count sent) 1)

sent)

((> (first sent) (first (bf sent)))

(sent-max (se (first sent) (bf (bf sent)))))

(else (sent-max (bf sent)))))

Figure 3.8: Question O6, divide-by-largest test cases handout.

Your friend sends you some tests that he or she says will prove that sent-max works. Can
you find the error?
> (sent-max ’(55))

(55)

> (sent-max ’(1 2 3 4 3 2 1))

(4)

> (sent-max ’(-3 -2 -1))

(-1)

Figure 3.9: Question O6, divide-by-largest code handout.

was predicted to be at least as easy to identify using the test cases as it was when using

the code, since the test cases clearly showed sentences instead of numbers, while the code

required students to read and infer more.

Students using analogies to English or the collection model were expected to give certain

kinds of answers when explaining the negate-all question. Those using analogies were

expected to notice that it returns a number and not be concerned, because either they

would not see a difference or they would not think that parentheses are important enough

to notice. Those using the collection model were predicted to believe that the procedure

produces a number and believe this to be correct, since a one-number sentence would not

make sense.

Similarly, students using analogies to understand divide-by-largest should either

ignore or never notice the parentheses in the test cases, again because they either did not

consider parentheses important or did not see a difference. Students using the collection

model would be directly confronted with a one-word sentence and, since they would not

49

have a place for this in their view of the world, were expected to ignore them and only

notice the number.

Questions About Empty Words and Sentences

Students were given eight questions that related in some way to empty words or sen-

tences. One of those will not be discussed here, because nearly every student had a great

deal of trouble with it for reasons that are beyond the scope of this research. The remaining

seven are described below.

Two questions dealt directly with creating empty sentences. The second appeared only

on the first interview of every semester, in part to allow room for more complicated questions

and in part because it raised issues not directly related to one-word sentences.

1. What is (bf ’(1)) (question E1)

2. What is (bl ’(1)) (question E2)

Because butfirst discards the first word of the sentence, the butfirst of the one-word

sentence (1) should be the empty sentence, (). Similarly, butlast discards the last word of

the sentence. In a one-word sentence, the first and last words are the same, so the butlast

of the one-word sentence (1) would also be (). Students using either analogies to English

or the collection model were expected to say that both expressions caused error messages

because there was nothing left once the 1 was discarded.

These questions are unique because they were in no way drawn from common mistakes

in lab. Students who had experience with recursion (every student except those in the

first round of interviews every semester) dealt with this exact case a dozen times or more.

Practically every recursive procedure they read or wrote that dealt with sentences took

the butfirst of the sentence at every step and stopped when the sentence was empty or

when the butfirst of the sentence was empty. In my experience, though, students who

50

think that taking the butfirst of a one-word sentence should cause an error message rarely

have problems writing or understanding recursive code that involves taking the butfirst

of a one-word sentence. If students looking at recursive procedures were to follow patterns

instead of thinking about how the code actually works, they might be able to deal with the

program without actually knowing what happens with one-word sentences. For example, I

have seen students who appeared to treat a procedure as “moving to the next word” without

really understanding why it did so. Students who miss E1 should either have made a silly

mistake or have thought about the problem in a new way, most likely one based on their

intuitive understanding of sentences. The same arguments apply to butlast and question

E2.

The next two questions asked students what they thought “empty” meant. Students

who understood an empty word or an empty sentence on its own might still have had

difficulty when confronted with a sentence that contains an empty word.

1. What is (empty? ’(""))? (question E3)

2. What is (first ’(""))? (question E4)

The procedure empty? takes a word or sentence as its argument. It returns true if that word

or sentence contains absolutely nothing, and false otherwise. Because "" is an empty word,

it is not absolutely nothing, and the sentence ("") is not empty. The procedure first takes

a word or sentence as its argument. If the word or sentence contains at least one element

(one letter for a word and one word for a sentence), first will return the first element. If

the word or sentence has nothing inside, first will produce an error message. Because ""

is a real Scheme word and it is in the sentence (""), (first ’("")) should return "".

Students who were using analogies to English should have found these questions confus-

ing, since while they may have accepted empty words as things that stand on their own and

say that there is no word, this interpretation falls apart when it is applied to a sentence.

Sentences, after all, are designed to contain words. Can they contain something that means

51

“no word” instead? Students might also have used natural language to assume that since an

empty word was “nothing,” it should disappear from the sentence. Students who thought

that an empty word was a way of writing “no word” should have said that ("") was empty,

since there were no words, but they should have said that the first of it was "", since

there was still some Scheme object in the sentence. Students who thought the empty word

was “nothing” would probably have said that ("") was empty, since it was pretty much

the same as (), and that taking first of it would produce an error message, again because

trying to take the first of () causes an error message.

Students using a collection model might have assumed that the empty word simply

vanished, since it is usually safe to remove empty things from a collection. For example,

consider a pile of markers on a table. If one or two run dry, they can be thrown away

without a second thought. These students would also probably have said that ("") was

empty and that taking the first of it would cause an error message, for the same reasons

as given above. Some students might also have had trouble because ("") is a one-word

sentence. These students thought that a one-word sentence was the same as the word it

contained, so they saw ("") as "", which is empty.

One question (E5, Figure 3.10) was asked only on the second round of interviews in

the Spring A and Summer A semesters. This question asked whether students thought

extra empty words in a sentence were bad. Students were asked to consider a procedure

called number-spell, shown four possible incorrect return values, one of which contained an

empty word, and asked which incorrect value was most serious and which was least serious.

This question was based on students’ behavior in the Summer 2002 semester. Those

students did write number-spell, and they did make these four mistakes. Students who

believed that empty words disappeared or were overshadowed in a sentence should have

said that option 3 was the least bad, or possibly that it was correct, in particular because

empty words were not really things in the same way that words with letters were. Students

who believed that empty words were regular words were expected to say that 3 was not

52

This summer we had students write a program called number-spell, which takes a number
and returns a sentence with that number written out in words. For example, (number-spell
11000 should give (eleven thousand). Don’t worry, you won’t have to write this!

Students made a lot of mistakes on this. Here are four examples:
1. One student’s program spelled 11000 as (eleven thousand zero zero zero)

2. One student’s program spelled 11000 as (eleven thousand zero)

3. One student’s program spelled 11000 as (eleven thousand "")

4. One student’s program spelled 11000 as (ten one thousand)

Which of these sound like the most serious error to you? Which sound like the least serious?
Why?

Figure 3.10: Question E5, number-spell.

much worse than 2, since both were essentially the same mistake. They might also have

said that option 3 was better than option 2 because it looked better from a human point

of view, or because it was less misleading, since the empty word was clearly not a number,

while zero was. Students in Spring and Summer A were the only ones to see this question.

It was not given to students in the other semesters because they actually did the number-

spelling project, and I did not want students’ actual experience with this program and the

comments from their TAs to influence their opinions. The number-spelling program was

also assigned in Summer A, but interviews were planned to take place several days before

it was assigned. Unfortunately, three of the students were interviewed after they started

working on the problem. They were not asked this question.

One question (E6, Figure 3.11) was asked only on the first round of the Spring A

interviews. In previous semesters, I had seen students write procedures that checked for

invalid arguments and, if there were any, returned empty sentences. This question asked

students to look at one such procedure and explain what the author might have intended.

In this example, sum-of-square-roots makes sure that neither number is negative. If

either one is, sum-of-square-roots returns the empty sentence. Otherwise, it properly

computes the sum of the square roots of the two numbers. Students who used English or a

collection model were expected to say the empty sentence represented an error or was a way

53

Here is something that you might have been asked to do in homework or on a test:
Write a procedure called sum-of-square-roots, which takes two numbers, x and y, finds the
square root of each, and returns the sum of those square roots. x and y will not be negative
numbers.

One student writes this as an answer on the test:
(define (sum-of-square-roots x y)

(if (or (< x 0) (< y 0)) ;;line 1

’() ;;line 2

(+ (sqrt x) (sqrt y)))) ;;line 3

Why did this person include lines 1 and 2?

Figure 3.11: Question E6, sum-of-square-roots.

of returning nothing. Other students were expected to have been confused. It was removed

from later interviews because every student found it completely baffling.

The final question (E7) asked students whether they thought the butfirst of a one-

letter word would produce an error and, if they did not, whether they thought it would

stay in a sentence or disappear. This question was, “What is (every bf ’(1 22 333

4444))?” The procedure every calls bf (butfirst) on every word in the sentence (1 22

333 4444). This may seem strange, but numbers are considered to be words, and their

digits are considered to be letters. The butfirst of 1 is "", because there is only one letter

in 1. The empty word is a real word in Scheme, so it should stay in the sentence. The result

should be ("" 2 33 444). Students who accepted the creation of an empty word by getting

rid of the only remaining letter in a word but who still relied on English to understand it

should have said the answer was (2 33 444), either because they thought empty words

were nothing or because they thought the empty word would be overshadowed by the real

words in the sentence. (In this case, students might have assumed that the empty word

meant “no word” and that it would not be needed in the sentence because there were words

present.)

Students who accepted the creation of empty words but who still relied on the idea

of a collection to understand it should have said the answer was (2 33 444), in this case

because the empty word would be removed by Scheme or or because it was nothing.

54

Questions About the Elements of English and Scheme Sentences

Starting with the first round of interviews in Fall A, students were asked what they

thought the essential elements of English and Scheme sentences were. Students were gen-

erally allowed to interpret the questions, although interviewers would correct them if they

completely misinterpreted a question. The questions were

1. What do you think are the essential parts of an English sentence? (question P1)

2. What do you think are the essential parts of a Scheme sentence? (question P2)

All students, including those who used English or a container model, should have men-

tioned words as essential parts of both English and Scheme sentences. Students who used

analogies between English sentences and Scheme sentences were likely to explicitly compare

and, more importantly, contrast English and Scheme sentences, because finding meaningful

differences between two things is substantially easier for people who already see the two

as similar (Gentner & Markham, 1994). Students with a good understanding of sentences1

should have said that parentheses were also essential to Scheme sentences. Students who

used English to understand Scheme sentences but were careful about how they did so should

have been likely to mention starting an English sentence with a capital letter (equivalent to

an open parenthesis in a Scheme sentence) and ending it with a punctuation mark (equiva-

lent to a close parenthesis in a Scheme sentence). Unfortunately, the issue of comparing and

contrasting was not considered until after the Spring B interviews, so interviewers generally

did not follow up on answers that might have been interesting.
1“Good” in this case does not mean “deep” or “technically correct.” Parentheses are only part of

the textual representation of sentences. A graphical Scheme might use color or some shapes other than
parentheses, while the internal Scheme representations of sentences have nothing to do with parentheses,
colors, or anything even remotely similar. However, perhaps twenty of all interviewed students have even the
faintest idea of anything except textual Scheme; the remaining students should be evaluated in terms of what
they have been taught. In the textual representation of Scheme, the key difference between a sentence and a
bunch of words sitting together is the presence of parentheses. A “good” understanding, when students know
nothing about the internal workings of Scheme, should include the ability to differentiate between sentences
and words as well as the ability to write each in such a way that a fellow programmer or computer can
identify them. This having been said, the only important elements of a sentence are the words it contains.

55

Interviews by Semester

Spring A

There were three rounds of interviews in Spring A. These are described below and

summarized in Table 3.10. The first round of interviews was conducted between February 10

and February 14. This was the fourth week of school and the week before the first midterm.

Thirty-seven students (twenty-nine percent of the class at that time) participated. This

interview contained three parts:

1. Five warm-up questions were intended to get the students talking and thinking. Most

were taken from an old CS 3 exam and were rather difficult. The questions did not

elicit any more comments (students generally thought out loud from the very first

question), and they took a great deal of time. For these reasons, they were dropped

from later interviews.

2. Six questions about sentences and words asked students about the first, last,

butfirst, and butlast of different sentences (questions O1–O4, described on page 44,

and E1 and E2, described on page 49).

3. Three questions asked students about empty words and sentences. Two dealt with

an empty word in a sentence (questions E3 and E4, described on page 50). The third

attempted to determine whether students considered empty sentences to be errors

(question E6, described on page 52).

The second round of interviews was conducted between March 3 and March 7. This was

the seventh week of school and the week before the second midterm. Thirty-four students

(twenty-seven percent of the class at that time) participated. This interview also contained

five parts:

56

1. Three questions about words and sentences were taken from the first interview. Only

the first and butfirst questions (O1, O3, and E1) were kept, to make room for

additional questions.

2. Two questions about empty words in sentences (E3 and E4) were taken directly from

the first interview.

3. negate-all (question O5, described on page 46)

4. number-spell (question E5, described on page 51)

5. divide-by-largest (question E6, described on page 52)

The third round of interviews was conducted between April 21 and April 25. This was

the 13th week of school and two weeks before the end of the semester. Thirty-four stu-

dents (thirty-one percent of the class at that time) participated. Students in this interview

were divided into two groups. Those whose interviews started on even hours were given

list questions, while those whose interviews started on odd hours were given sentence ques-

tions. After these questions, all students were asked another set of questions about their

interactions with their TAs. These questions are unrelated to the topic of this thesis and

will not be discussed further. Seventeen students were given list questions and seventeen

were given sentence questions. This interview was composed of five parts:

1. Negate-all (question O5) was moved to the front of the interview to separate the

two hardest questions (it and divide-by-largest). The list version was exactly the

same, except that all references to sentences were replaced with references to lists.

2. The three sentence and word (first and butfirst) questions from the second inter-

view (O1, O3, and E1) were included. The list version was exactly the same, except

first was replaced with car and butfirst was replaced with cdr.

57

Interview Students Time Questions
1 37 February 10–14 5 warm-up

4th week 6 word/sentence
just before 1st midterm 3 empty

2 34 March 3–7 3 word/sentence
7th week 2 empty
just before 2nd midterm 1 word or one-word sentence

1 empty
1 word or one-word sentence

3 34 April 21–25 either list or sentence questions
13th week 1 word or one-word sentence/list
two weeks before end of school 3 word/sentence or word/list

2 empty
1 word or one-word sentence/list

Table 3.10: Number of students involved, timing, and general kinds of questions for each interview in Spring A.

3. The two questions about empty words in sentences from the first interview (E3 and

E4) were also included. The list version asked the same questions about a null list in

another list.

4. The divide-by-largest question (O6) from the second interview was also included,

although all students were given the test cases first. The list version was exactly the

same, except that all references to sentences were replaced with references to lists.

Summer A

There were three rounds of interviews in the Summer A semester. They are described

below and summarized in Table 3.11. The first was conducted between July 3 and July 7.

This was the second week of the summer semester (equivalent to the fourth week of the other

semesters) and the week before the first midterm. Twelve students (thirty-three percent)

participated. This interview was essentially the same as the first interview in Spring A,

except that it did not include the five warm-up questions. It contained two parts:

1. The six word-and-sentence questions from the first Spring A interview were included.

58

Interview Students Time Questions
1 12 July 3–7 6 word/sentence

2nd (4th) week 2 empty
just before 1st midterm

2 10 July 16–18 3 word/sentence
4th (8th) week 2 empty
just before second midterm 1 word or one-word sentence

1 empty
1 word or one-word sentence

3 11 August 11–14 either list or sentence questions
8th (15th & 16th) week 1 word or one-word sentence/list
last week of class 3 word/sentence or word/list

2 empty
1 word or one-word sentence/list

Table 3.11: Number of students involved, timing, and general kinds of questions for each interview in Summer A.

2. The two questions about empty words in sentences were also included.

The second round of interviews was conducted from July 16 to July 18. This was the

fourth week of class (equivalent to week eight in the regular semester), and the week before

the second midterm. Ten students (twenty-nine percent) took part in this round, but four

of the interview sheets were lost. The interview questions were identical to those from the

second round of interviews in the previous semester.

The third round of interviews was conducted from August 11 to August 14. This was the

eighth week of class (like the 15th and 16th weeks of a regular semester) and took place just

before the final exam. A total of 11 students (34%) took part in this round of interviews.

Questions were the same as those from the third round of the previous semester.

Fall A

There were four rounds of interviews in Fall A. They are described below and sum-

marized in Table 3.12. When students finished the interview questions, they were asked

another set of questions identical to those asked in the final round in Spring A; those ques-

tions will not be discussed here. The first round took place from September 8 to September

59

Interview Students Time Questions
1 37 September 8–12 6 word/sentence

3rd week 2 empty
just before 1st midterm 2 English/Scheme sentences

2 34 October 6–10 3 word/sentence
7th week 2 empty
just before second midterm 2 word or one-word sentence

2 English/Scheme sentences

3 34 November 3–7 3 word/sentence
11th week 2 empty
just before third midterm (faux) 1 word or one-word sentence

2 higher-order/empty
1 word or one-word sentence/list
2 English/Scheme sentences

4 52 December 1–11 either sentence or list questions
15th and 16th weeks 3 word/sentence
last weeks of class 2 empty

1 word or one-word sentence
2 higher-order/empty
1 word or one-word sentence/list
2 English/Scheme sentences/lists

Table 3.12: Number of students involved, timing, and general kinds of questions for each interview in Fall A.

12. This was the third week of the semester and the week before the first exam. Thirty-seven

students (twenty percent) participated. The questions were divided into three parts:

1. The six word-and-sentence questions from the first Spring A interview (O1–O4, E1

and E2) were included.

2. The two questions about empty words in sentences (E3 and E4) were also included.

3. Students were asked to list the essential elements of English and Scheme sentences

(questions P1 and P2, described on page 54).

The second round of interviews took place from October 6 to October 10. This was the

seventh week of school and the week right before the second exam. A total of 37 students

(19%) took part. There were five groups of questions, none of them new:

1. The three word-and-sentence (first and butfirst) questions (O1, O3, E1)

60

2. The two questions about empty words in sentences (E3 and E4)

3. negate-all (O5)

4. divide-by-largest (O6)—again, half of the students were given all code and half

were given some code and some test cases

5. The two questions about the elements of English and Scheme sentences (P1 and P2)

The third round of interviews took place from November 3 to November 7. This was the

11th week of school and the week before the third exam. This exam was actually a “faux

midterm,” meaning that it was given out but not graded. There was a review session for it,

and students took it reasonably seriously. A total of 34 students (20%) took part. However,

this interview took place three weeks before the third interview in Spring A, because there

was one additional test in Fall A. This interview was composed of six parts:

1. The same three word-and-sentence questions (O1, O3, and E1)

2. The same two empty word questions (E3 and E4)

3. negate-all (O5)

4. Two questions about higher-order procedures (question E7, described on page 53, and

one that will not be discussed in this paper)

5. divide-by-largest (O6)

6. The essential elements of English and Scheme sentences (P1 and P2)

The fourth round of interviews took place from December 1 to December 11. It covered

the 15th and 16th weeks of school. These were the final week of class and the week before the

final exam. A total of 52 students took part, although one began to panic when the Scheme

questions came out and was excused. A total of 51 students (31%) answered questions

about either sentences or lists. Students were given list questions if their interviews started

61

Interview Students Time Questions
1 19 February 6–20 6 word/sentence

5th week 2 empty
just before 1st midterm 2 English/Scheme sentences

2 20 March 8–12 3 word/sentence
8th week 2 empty
last week of recursion 2 word or one-word sentence

2 English/Scheme sentences

3 13 April 5–9 3 word/sentence
11th week 2 empty
week before second midterm 1 word or one-word sentence

2 higher-order/empty
1 word or one-word sentence/list
2 English/Scheme sentences

4 17 May 3–7 either sentence or list questions
15th week 3 word/sentence
last week of class 2 empty

1 word or one-word sentence
2 higher-order/empty
1 word or one-word sentence/list
2 English/Scheme sentences/lists

Table 3.13: Number of students involved, timing, and general kinds of questions for each interview in Spring B.

in even hours and sentence questions if their interviews started in odd hours. Twenty-seven

student answered list questions, and twenty-four answered sentence questions.

The sentence questions used in this interview were identical to those used in the third

interview, except that all students started with the test cases for divide-by-largest. The

list questions were almost the same questions, with only a few minor changes. First, all

references to sentences were replaced with lists. All sentence procedures, such as first,

butfirst, empty?, every, and sentence, were replaced with the equivalent list procedures,

such as car, cdr, null?, map, and cons. In addition, while the sentence students were asked

about empty words in sentences, the list students were asked about null lists in lists.

62

Spring B

There were four rounds of interviews in Spring B. They are described below and sum-

marized in Table 3.13. The first round took place from February 16 to February 20. This

was the fifth week of the semester and the week right the first exam. Nineteen students

(twenty-one percent) participated. The questions were the same as those in Fall A.

The second round of interviews took place from March 8 to March 12. This was the

eighth week of school and the last week in which students studied recursion. Had there

been three midterms, the second would have been the next week. A total of 20 students

(26%) took part. The questions were the same as those in Fall A.

The third round of interviews was conducted between April 5 and April 9. This was

the 12th week of school and the week before the second exam. In addition, it appears it

was a very bad week for most students. Many students signed up to participate, but only

13 (17%) made it to the interviews. The questions on this interview were intended to be

exactly the same as those from the third interview in Fall A, but they were not followed

by questions about help-seeking. Unfortunately, due to a miscommunication, half of the

students were given the second interview from Spring A. Additionally, students seemed to

have an unusual amount of trouble answering the questions. Several said that they were

tired and not really trying. All of these factors lead me to ignore this round of interviews.

The fourth round of interviews took place from May 3 to May 7. This was the 15th

and final week of school. A total of 19 students (26%) took part. Students were given list

questions if their interviews started in even hours and sentence questions if their interviews

started in odd hours. Nine student answered list questions, and ten answered sentence

questions. The questions were the same as those in Fall A. Students had been exposed to

lists on the 13th week, and they had been forced to use them in their projects.

63

3.4 Interview Procedure

The basic format of every interview was the same. Each individual student sat in a small

room with an interviewer. There was a brief introduction, during which the interviewer

informed the student that the results would be completely anonymous and would not be

graded. The interviewer also asked the student to think out loud. If the student appeared

to be nervous, the interviewer would ask if the student was willing to answer the questions.

If the student was willing, the interviewer gave the student a blank sheet for scratch work

and answers and another sheet with the questions. As the student worked, the interviewer

took notes on the student’s activities, comments, and questions.

If the interviewer realized that the student did not understand a question, the interviewer

would give an explanation. If the student made a serious mistake on one of the debugging

questions, the interviewer corrected the student. The goal of both of these activities was

to try to make sure that if students got one of the complex problems wrong, they did so

because they had genuine misconceptions rather than simple misunderstandings.

Interviewers were instructed to listen for certain comments during the interview and

to ask follow-up questions if needed. When a student finished the Scheme questions, the

interviewer would go through each question and ask the student how s/he got the answer.

Once the student had explained the reasoning behind all related questions, the interviewer

would say whether those answers were right or wrong, giving explanations if needed.

After a student had explained all of his/her answers and the interviewer had explained

any mistakes, the student was encouraged to talk about the class in general. Students in

Fall A and those taking the final interview of Spring A were also asked a more structured

set of questions about how they interacted with their TAs and how they got help. Some

students used the remaining time to complain about or praise the course, offer suggestions,

ask about unrelated CS 3 topics or other academic matters, or chat.

64

Four different people conducted interviews over the three semesters. One was Inter-

viewer A, a male computer science graduate student. The other three were female under-

graduates. Two, B and C, were computer science majors, and the third, D, was a cognitive

science major. A had seven semesters of experience as a TA for CS 3. B, C, and D had

taken CS 3 and worked as lab assistants for the class. C and D also had experience grading

CS 3 homework and quizzes. A conducted 266 interviews, B conducted 7, C conducted 22,

and D conducted 70. A, B, and D practiced interviews with three students before the first

round of interviews in Spring A and agreed upon standards for the interviews. Interviewers

were given an introduction to give to each student, told when to ask and answer questions,

given a series of questions to ask when students gave certain kind of answers, and told which

kinds of student behavior they should make note of. Interviewer C volunteered to help at

the end of Spring A and was not properly trained before conducting interviews. The five

interviews conducted by this person were discarded and she was retrained before the start

of interviews next semester.

3.5 Scoring

Each question was worth one point if it was answered correctly and zero points otherwise.

If a response was correct as written but the student gave an explanation that indicated they

got the right result for the wrong reason, such as saying that ("") was not empty because

it contained a two-letter word, that answer was counted as wrong.

Students were counted as believing something—for example, that (bf ’(1 2)) pro-

duces the number 2—if they said that they believed it. Students were counted as not

believing something, for example that (bf ’(1 2)) produces the sentence (2), if they said

that they believed something else or thought something else might be true.

The coding was done by one person. A second person was then given twenty interviews

to code. The two agreed on 93% of the 229 items on the interviews.

65

3.6 Possible Treatments

Because the treatments were devised before the author became familiar with the collec-

tion model, they focus almost exclusively on English and Scheme. To be useful, an activity

should either encourage students to examine and refine their Scheme-English analogies or

offer them a more interesting analogy. Two homework problems and one lab activity were

designed to help students overcome their problems.

One homework activity asked students to compare and contrast English and Scheme.

The other asked students to define Scheme sentences and words. Both were intended to

make students think about the relationship between Scheme and English and realize that

they might to do need more than just rely on their knowledge of English words and sentences.

The lab activity was intended to give students a model for empty words and sentences,

since they were unlikely to have one of their own. During the Spring A interviews, one inter-

viewer tried to explain (butfirst ’(1 2)) and empty sentences by comparing a sentence

to a bag of bagels. The bag contains bagels, just as the sentence contains words. Taking the

top bagel out of the bag is like removing the first word from the sentence. The top bagel is

the first of the sentence, while the rest of the bag is the butfirst of the sentence. Taking

out the top bagel from a bag of two bagels leaves one bagel, which is still in a bag. Similarly,

taking the butfirst of a two-word sentence leaves the last word in the sentence. Taking

the last bagel out of the bag results in an empty bag, while taking the last word out of the

sentence returns an empty sentence. The interviewer said the students liked the analogy.

There was, however, one minor problem with this analogy. An empty bag has no value and

could be discarded without a second thought. A good analogy should imply that the empty

sentence does in fact have a value and is a thing. Instead, the lab activity dealt with Pez r©

dispensers. Empty dispensers are still things, and some people collect them. There is even

a museum for them (the Burlingame Pez r© Museum, http://www.pezmuseum.com).

Copies of these activities can be found in Appendix B.

66

Chapter 4

Results

4.1 One-Word Sentences

Questions O1–O4: butfirst and butlast of One-Word Sentences

Most students correctly answered the butfirst and butlast questions (O1–O4, de-

scribed on pages 44–46), but a substantial minority gave wrong answers in the two-word

cases and some gave wrong answers in the four-word cases. The percentages of students

who made mistakes on the butfirst and butlast questions, as well as the percentages of

the total mistakes predicted, are shown in Tables 4.1 and 4.2. The third and fourth columns

(“bf2” and “bf4”) show the numbers and percentages of students giving an incorrect answer

for the butfirst and butlast of two- and four-word sentences. The fifth column (“both”)

shows how many students gave correct answers for both the two- and four-word cases. The

fifth column (“bf2=bf4”) shows how many students gave answers for two- and four-word

O1: What is (bf ’(1 2))?
O2: What is (bl ’(1 2))?
O3: What is (bf ’(1 2 3 4))?
O4: What is (bf ’(1 2 3 4))?

Figure 4.1: Questions O1–O4, butfirst and butlast of one-word sentences.

67

Interview #students bf2 bf4 both bf2 = bf4 #predicted,
#correct, #correct, #correct, #same, %predicted
% correct %correct %correct %same

SpA I1 37 24, 65% 32, 86% 24, 65% 29, 78% 10, 77%
SpA I2 34 28, 82% 31, 91% 28, 82% 31, 91% 4, 66%
SpA I3 Sents 17 16, 94% 17, 100% 16, 94% 15, 88% 1, 100%
SpA I3 Lists 17 17, 100% 17, 100% 17, 100% 17, 100% –
SuA I1 12 9, 75% 10, 83% 9, 75% 11, 92% 2, 67%
SuA I2 6 5, 83% 5, 83% 5, 83% 6, 100% 0, 0%
SuA I3 Sents 5 5, 100% 5, 100% 5, 100% 5, 100% –
SuA I3 Lists 6 4, 67% 5, 83% 4, 67% 5, 83% 0, 0%
FaA I1 37 28, 76% 32, 86% 27, 73% 31, 84% 5, 50%
FaA I2 34 28, 82% 33, 97% 30, 88% 31, 91% 4, 100%
FaA I3 34 33, 97% 33, 97% 33, 97% 34, 100% 0, 0%
FaA I4 Sents 25 24, 96% 24, 96% 24, 96% 25, 100% 1, 100%
FaA I4 Lists 26 23, 88% 24, 92% 23, 88% 25, 96% 3, 100%
SpB I1 19 11, 58% 16, 84% 11, 58% 14, 74% 8, 100%
SpB I2 20 18, 90% 20, 100% 18, 90% 18, 90% 1, 50%
SpB I4 Sents 10 10, 100% 10, 100% 10, 100% 10, 100% –
SpB I4 Lists 7 6, 86% 7, 100% 6, 86% 6, 86% 1, 100%

Table 4.1: Numbers and percentages of students who gave the correct answer for (bf ’(1 2)) and for (bf ’(1 2 3

4)), as well as those who got both correct and who either got both wrong or both right. Also the numbers and
percentages (out of all students who made mistakes) of those who made mistakes of the kind predicted earlier.
Interviews are written as the semester “SpA” for Spring A, “SuA” for Summer A, “FaA” for Fall A, and “SpB” for
Spring B; followed by “I” and the interview number. The final interview in each semester was divided into sentence
questions (“Sents”) and list questions (“Lists”).

Interview #students bl2 bl4 both bl2 = bl4 #predicted,
#correct, #correct, #correct, #same, %predicted
%correct %correct %correct %same

SpA I1 37 24, 65% 32, 86% 24, 65% 29, 78% 6, 46%
SuA I1 12 8, 67% 8, 67% 8, 67% 12, 100% 2, 50%
FaA I1 37 27, 73% 32, 86% 26, 70% 30, 81% 5, 45%
SpB I1 19 11, 58% 16, 84% 11, 58% 14, 74% 8, 100%

Table 4.2: Numbers and percentages of students who got the right answer for (bl ’(1 2)) and for (bl ’(1 2 3

4)), as well as of those who got both correct and whose answers were either both right or both wrong. Also,
numbers and percentages (out of all students who made mistakes) of students who made the kind of mistakes
predicted earlier. Interviews are written as the semester “SpA” for Spring A, “SuA” for Summer A, “FaA” for Fall
A, and “SpB” for Spring B; followed by “I” and the interview number.

sentences that were either both correct or both incorrect. The sixth column shows the per-

centage of students whose mistakes can be explained by either analogies or the collection

model.

Students were counted as making predicted mistakes if they gave any of the following

responses:

1. the correct answer for the four-word case but no parentheses for the two-word case,

and they said that the two-word case did not need parentheses

68

2. the correct answer for the four-word case but no parentheses for the two-word case,

and they were not sure whether the two-word case needed parentheses

3. no parentheses for either answer and they believed that parentheses were not needed

4. no parentheses for either answer and they were not sure whether parentheses were

needed

Students were not counted if they made either of those mistakes but said that they knew

the correct answers and had written the wrong things by mistake.

Students using analogies to English might believe that both answers are sentences but

that sentences do not require parentheses, since parentheses do not delimit sentences in

English, or they might believe that (2 3 4) is a sentence but that (2) is a number, since

English does not deal with many one-word sentences. Students using a collection model

would probably believe that (2) is a number, since a sentence is a collection and thus

requires more than one element. Most of the students whose mistakes with butfirst

were not counted as predicted said that (bf ’(1 2)) returned the sentence 2 (without

parentheses) and claimed to have forgotten to put parentheses. Several others thought that

butfirst meant “second,” so (bf ’(1 2)) should return the word 2, as should (bf ’(1 2

3 4)). Students whose mistakes with butlast were not predicted often thought that the

last element was or involved parentheses, so that taking the butlast would get rid of the

parentheses.

As shown in Table 4.1, mistakes with butfirst tended to decrease as each semester

progressed, but they did not quite disappear. Most of the mistakes made by students can

be explained by students’ use of English or the collection model, especially after the first

interview. In the first interview, students made a number of other mistakes, including

confusing butfirst with first or butlast. Table 4.2 shows that mistakes with butlast

were not as easy to predict, most likely because they were only asked on the first interview

69

each semester. While students did not make many more mistakes with butlast than with

butfirst, they had a wider range of reasons for making their mistakes.

Average scores on these four questions did not significantly improve from semester to

semester (see Table 4.3). However, there were differences among the semesters. Students

in Spring A often thought that either the butfirst of a two-word sentence was a num-

ber or parentheses were not required when writing sentences. Students in later semesters

considered these two possibilities but were not certain.

Students in the first round of interviews in Spring A found questions about the butfirst

or butlast of a two-word sentence to be confusing. Thirty-nine percent of the students

who missed (bf ’(1 2)) (eleven percent of all students that semester) made it very clear

that they believed one-word sentences either did not exist or did not require parentheses.

One student, explaining the difference between one and three elements, said, “If there’s

something left, return that something. . . unless there are more than one somethings. . . then

[they should be returned] in a sentence.” This student went on to say that there was no

use returning one element in a sentence. When talking aloud while working on the (bf ’(1

2)) problem, two students said that the answer should be a word. A student who answered

all of these questions correctly said that, until very recently, s/he1 had not put parentheses

around one-word sentences: “When you use parentheses in English, it doesn’t have a special

meaning. It is just to group things together.” Students were often required to deal with

the butfirst of a two-word sentence during the semester, and they did significantly better

on this question as the semester progressed (p < .05).

Forty-one percent of the students who missed (bf ’(1 2)) in the Fall A semester (six

percent of all students that semester) either were not sure whether the answer should be a

number or thought that it was a sentence but were not sure whether that sentence needed

parentheses. In addition, four students who got the right answer expressed similar concerns.
1Gender data was not collected during the first two rounds of interviews in Spring A.

70

butfirst butlast
Semester #Students two-word four-word Students two-word four-word

#%correct, #,%correct, #%correct, #%correct,

SpA Sents 88 68, 77% 80, 91% 37 24, 65% 32, 86%
SpA Lists 17 17, 100% 17, 100% – – –
SuA Sents 23 19, 83% 20, 87% 12 8, 67% 8, 67%
SuA Lists 6 4, 67% 5, 83% – – –
FaA Sents 130 113, 87% 122, 94% 37 27, 73% 32, 86%
FaA Lists 26 23, 88% 24, 92% – – –
SpB Sents 49 39, 80% 46, 94% 19 11, 58% 16, 84%
SpB Lists 7 6, 86% 7, 100% – – –

Table 4.3: Semester summary for O1–O4, taking the butfirst and butlast of two- and four-word sentences.
Semesters are written as SpA for Spring A, SuA for Summer A, FaA for Fall A, and SpB for Spring B, followed by
either “Sents” for all of the sentence questions from all interviews or “Lists” for the list questions from the final
interview.

Answers by Category for Negate-all (#, %)
Predicted

Semester #Students Correct Sent Not Notice No Problem Depends Other
SpA I2 34 5, 15% 9, 26% 13, 38% 2, 6% 4, 12% 1, 3%
SpA I3 Sents 17 5, 29% 3, 18% 3, 18% 5, 29% 1, 6% 0, 0%
SpA I3 Lists 17 8, 47% 3, 18% 5, 29% 0, 0% 1, 6% 0, 0%
SuA I2 6 1, 17% 2, 33% 3, 50% 0, 0% 0, 0% 0, 0%
SuA I3 Sents 5 3, 60% 0, 0% 0, 0% 1, 20% 1, 20% 0, 0%
SuA I3 Lists 6 3, 50% 1, 17% 1, 17% 0, 0% 0, 0% 1, 17%
FaA I2 34 9, 26% 3, 9% 12, 35% 6, 18% 2, 6% 2, 6%
FaA I3 34 12, 35% 3, 9% 7, 21% 7, 21% 4, 12% 1, 3%
FaA I4 Sents 25 11, 44% 4, 16% 4, 16% 2, 8% 2, 8% 2, 8%
FaA I4 Lists 26 11, 42% 6, 23% 8, 31% 0, 0% 1, 4% 0, 0%
SpB I2 20 2, 10% 3, 15% 8, 40% 5, 25% 2, 10% 0, 0%
SpB I4 Sents 10 2, 20% 0, 0% 3, 30% 5, 50% 0, 0% 0, 0%
SpB I4 Lists 7 3, 43% 2, 29% 1, 14% 0, 0% 1, 14% 0, 0%

Table 4.4: Numbers and percentages of students who gave correct and incorrect answers to the negate-all question,
as well as specific categories of incorrect answers. Interviews are written as the semester “SpA” for Spring A, “SuA”
for Summer A, “FaA” for Fall A, and “SpB” for Spring B; followed by “I” and the interview number. The final
interview in each semester was divided into sentence questions (“Sents”) and list questions (“Lists”).

Unlike students in the Spring A semester, none of these students was certain that a wrong

answer was correct.

Sixty percent of the students who missed (bf ’(1 2)) in the Spring B semester (eight

percent of all students in that semester) either believed that the answer should be a number

or thought the answer was a sentence but were not sure whether that sentence needed

parentheses.

71

The procedure negate-all takes a sentence of numbers and swaps their signs. In other
words, it returns a sentence with all of those numbers multiplied by -1. It doesn’t have to
work with an empty sentence. Here’s a version somebody wrote. Does it work? How do
you know? Test it for at least the following sentences: (1), (-1 2 -3), and (10 20 30 40
-50).

(define (negate-all sent)

(if (empty? (bf sent))

(* -1 (first sent))

(se (* -1 (first sent))

(negate-all (bf sent)))))

Figure 4.2: Question O5, negate-all.

O5: negate-all

Students did not do so well with negate-all (O5, page 46). Their answers generally

fell into four categories of mistakes. Some (counted as “Sent” in Table 4.4) wrote that

negate-all of a one-word sentence would return a sentence. Others (“Not Notice”) wrote

that it returned a number but never appeared to be aware of that fact. When asked, they

said they had written a sentence. Others (“No Problem”) were aware that it returned a

number but did not seem at all concerned. Finally, a few (“Depends”) noticed that it

returned a number but said that whether it worked depended on how it was being used—it

worked well if its results were only for human consumption but it did not work if its results

were to be used by another Scheme program. Several students failed to understand the

code at all or never committed to an answer. These student fall into the “Other” category.

Most of the mistakes were categorized as “Not Notice,” one of the categories predicted

for those who relied on English analogies. In the majority of these cases, students wrote

that negate-all of a one-word sentence returned a sentence and went on with the problem,

never noticing that anything was out of the ordinary. When asked, most of these students

did not show any awareness that they had written a number rather than a sentence. Some,

however, initially wrote down a one-word sentence but corrected it to be a number. When

questioned by interviewers, these students also appeared unaware that anything was wrong.

A small minority of the students in this category used no parentheses around sentences in

72

any of their scratch work. The vast majority of the students in all three of these conditions

either completely ignored the difference between a word and a one-word sentence or almost

immediately forgot about it.

The second most common category of mistake was “Sent.” Students who wrote that

(negate-all ’(1)) returned the sentence (-1) either believed in one-word sentences or

were swayed by the statement that negate-all was supposed to produce sentences. Most of

these students never noticed that the code actually produced a number, but a few initially

wrote down a number and added parentheses later.

The third category of mistakes was “No Problem,” meaning that students were aware

that negate-all produced a number but believed this to be correct, or at least acceptable.

Students generally followed one of two patterns. In the first, they said that negate-all

worked, except for one-word sentences. Then they told the interviewer that the program

worked. In the second, less common pattern, students said that the program worked and

that returning a number in one case and a sentence in another was fine because there was not

really a difference. Both patterns in this category were predicted by analogies to English,

and the second pattern was predicted by the collection model.

The least common but still identifiable category of mistakes was “Depends.” Rather

than saying that negate-all worked or did not work, these students said that it depended

on how negate-all was being used. Like many of the students in the No Problem category,

these students did not see anything particularly wrong with returning a sentence in some

cases and a number in others, at least when a human would be inspecting the results.

However, these students realized that Scheme differentiated between words and sentences,

saying that it would not work if it was to be used with more Scheme code. Most of these

students appeared to believe this second case was rather unlikely. This belief is probably a

consequence of the way CS 3 is taught. Most activities involve procedures that are never

seen again, so students might not develop the idea that real programs involve multiple

73

procedures working together. However, the category itself is predicted by both English and

the collection model.

Predicted answers accounted for 60–85% of the mistakes in almost every semester. There

were a few students who gave wrong answers for other reasons. Some students completely

misunderstood the code and thought that it caused an actual error message. Interviewers

corrected these students and encouraged them to keep working on the problem; most of

these students settled into one of the five standard categories, but a few never did. Some

students looked at each line of the code, decided that it did not contain a bug, and never

considered the procedure as a whole.

The data under “No Problem” in Table 4.4 suggests that there is a difference in how

students think about sentences and lists. In the final interviews of Spring A (SpA I3) and

Spring B (SpB I4), more students correctly answered the list version than correctly answered

the sentence version of this problem. This difference was not significant. However, none of

the students who were given the list version of negate-all answered No Problem. Chi-

square tests show that this is significant for the Spring A and B semesters (p < .03 in

each case). One possible explanation is that according to the rules taught in CS 3, the

list version of negate-all produces an error message no matter what input it is given,

while the sentence version never produces an actual error message. Thus, students who are

aware of negate-all’s behavior should, in the case of lists, have a very good reason to say

negate-all does not work properly.

The “No Problem” and “Depends” answers are consistent with the findings of Kolikant

(2005). Students may have been willing to judge this program as relatively correct because

they saw negating a sentence as somewhat abstract, or they may have done so because of

the way they thought about sentences. However, because students were never willing to

answer “No Problem” for list questions, the latter possibility seems more likely.

74

While students in later semesters were not consistently more likely to give the correct

answer than students in Spring A, their explanations did get better. Table 4.5 shows the

responses for all students by semester.

A number of students in Spring A who gave “No Problem” answers used a defective

understanding of domain and range to justify their statements. These students defined

domain and range as properties of the code itself without any relation to how the code

should perform. The domain was the set of all arguments that this particular version of the

code happened to take without giving an error, and the range was the set of values that

this particular version of the code happened to return, whether or not they were what it

should return. Students explained that the procedure was correct because it matched its

domain and range, and they explained that the domain and range were based on how the

code worked. This circular logic has little to do with analogies to English or the collection

model. When the way domain and range were taught changed in Summer A and later

semesters, students made the same mistakes but had more trouble justifying them.

Students in Spring A were more likely than students in later semesters to say that

negate-all returned a sentence. This difference is significant for Fall A (p < .05) and nearly

significant for Spring B (p < .07). While none of the interventions specifically targeted

this mistake, students may have learned to be more careful when writing parentheses.

Alternatively, they may have learned to be more thorough when reading code.

Students in Fall A did significantly better than those in Spring A. They were more likely

to give the correct answer (p < .05) and more likely to notice that negate-all sometimes

returned a sentence (“Correct” + “No Problem” + “Depends”, also p < .05). Students in

Summer A appeared to do about as well, but comparisons are not statistically significant

because only eleven students answered this question.

75

Answers by Category for Negate-all (#, %)
Predicted

Semester #Students Correct Sent Not Notice No Problem Depends Other
SpA Sents 51 10, 20% 12, 24% 16, 31% 7, 14% 5, 10% 1, 2%
SpA Lists 17 8, 47% 3, 18% 5, 29% 0, 0% 1, 6% 0, 0%
SuA Sents 11 4, 36% 2, 18% 3, 27% 1, 9% 1, 9% 0, 0%
SuA Lists 6 3, 50% 1, 17% 1, 17% 0, 0% 0, 0% 1, 17%
FaA Sents 93 32, 34% 10, 11% 23, 25% 15, 16% 8, 9% 5, 5%
FaA Lists 26 11, 42% 6, 23% 8, 31% 0, 0% 1, 4% 0, 0%
SpB Sents 30 4, 13% 3, 10% 11, 37% 10, 33% 2, 7% 0, 0%
SpB I4 Lists 7 3, 43% 2, 29% 1, 14% 0, 0% 1, 14% 0, 0%

Table 4.5: Semester summary for O5, deciding whether negate-all works correctly. Semesters are written as SpA
for Spring A, SuA for Summer A, FaA for Fall A, and SpB for Spring B, followed by either “Sents” for all of the
sentence questions from all interviews or “Lists” for the list questions from the final interview.

Why does (divide-by-largest ’(1 2 3 4 3 2 1)) result in an error? Students were

given one of two scenarios:

1. Find the error based on a procedure definition. If unsuccessful, find it using test

cases.

2. Find the error based on test cases. If unsuccessful, find it using code.

Figure 4.3: Summary of Question O6, divide-by-largest.

O6: divide-by-largest

Students trying to find the bug in the divide-by-largest question (O6, page 46) made

a number of different mistakes. Virtually every line of the code was, at some point over

the three semesters, blamed for the error. However, interviewers were instructed to correct

students when they appeared confused by the code. In Spring A, students were more likely

to find the bug with test cases than with code. Overall, students were about equally likely

to find the error using either only the test cases or only the code. In the final round of

interviews every semester, all students were given the test cases first. This was done in

part because there were not enough students to divide them both by lists/sentences and by

tests/code and in part because the decision was made after the second interview in Spring

A, when the results suggested that the tests were at least as easy to interpret as the code.

Most students in these interviews found the problem with just the test cases, so few even

saw the code.

76

S
aw

T
es

ts
G

ot
U

si
n
g

T
es

ts
S
em

es
te

r
#

S
tu

d
en

ts
#

C
or

re
ct

,
#

T
ot

al
,

#
1s

t
,

#
2n

d
,

#
T
ot

al
,

#
O

n
ly

,
#

2n
d
,

%
C

or
re

ct
%

T
ot

al
%

1s
t

%
2n

d
%

T
ot

al
%

O
n
ly

%
2n

d

S
p
A

I2
34

19
,
56

%
29

,
85

%
18

,
53

%
11

,
32

%
13

,
45

%
9,

50
%

4,
36

%
S
p
A

I3
S
en

ts
17

15
,
88

%
17

,
10

0%
17

,
10

0%
–

14
,
82

%
14

,
82

%
–

S
p
A

I3
L
is

ts
17

16
,
94

%
17

,
10

0%
17

,
10

0%
–

14
,
82

%
14

,
82

%
–

S
u
A

I2
6

4,
67

%
5,

83
%

4,
67

%
1,

17
%

3,
60

%
3,

75
%

0,
0%

S
u
A

I3
S
en

ts
5

5,
10

0%
5,

10
0%

5,
10

0%
–

5,
10

0%
5,

10
0%

–
S
u
A

I3
L
is

ts
6

5,
83

%
6,

10
0%

6,
10

0%
–

3,
50

%
3,

50
%

–
F
aA

I2
34

21
,
62

%
20

,
59

%
17

,
50

%
3,

9%
7,

35
%

7,
35

%
0,

0%
F
aA

I3
34

31
,
91

%
20

,
59

%
16

,
47

%
4,

12
%

14
,
70

%
12

,
75

%
2,

50
%

F
aA

I4
S
en

ts
25

18
,
72

%
25

,
10

0%
25

,
10

0%
–

17
,
68

%
17

,
68

%
–

F
aA

I4
L
is

ts
26

17
,
65

%
26

,
10

0%
26

,
10

0%
–

15
,
58

%
15

,
58

%
–

S
p
B

I2
20

14
,
70

%
15

,
75

%
11

,
55

%
4,

20
%

7,
47

%
6,

55
%

1,
25

%
S
p
B

I4
S
en

ts
10

9,
90

%
10

,
10

0%
10

,
10

0%
–

8,
89

%
8,

89
%

–
S
p
B

I4
L
is

ts
7

7,
10

0%
7,

10
0%

7,
10

0%
–

7,
10

0%
7,

10
0%

–

T
a
b
le

4
.6

:
N

u
m

b
er

s
a
n
d

P
er

ce
n
ta

g
es

st
u
d
en

ts
w

h
o

sa
w

a
n
d

co
rr

ec
tl
y

a
n
sw

er
ed

th
e
d
i
v
i
d
e
-
b
y
-
l
a
r
g
e
s
t

q
u
es

ti
o
n

u
si

n
g

te
st

ca
se

s.
T

h
is

ta
b
le

re
p
re

se
n
ts

o
n
ly

p
a
rt

o
f

th
e

st
u
d
en

ts
w

h
o

a
n
sw

er
ed

O
6
.

F
o
r

th
e

re
st

,
se

e
T
a
b
le

4
.6

.
C

a
te

g
o
ri

es
a
re

th
e

to
ta

l
n
u
m

b
er

s
o
f
st

u
d
en

ts
in

te
rv

ie
w

ed
(“

#
S
tu

d
en

ts
”
);

n
u
m

b
er

s
a
n
d

p
er

ce
n
ta

g
es

o
f

p
eo

p
le

w
h
o

so
lv

ed
th

e
p
ro

b
le

m
in

a
n
y

w
a
y
;
n
u
m

b
er

s
a
n
d

p
er

ce
n
ta

g
es

o
f
p
eo

p
le

w
h
o

sa
w

th
e

te
st

ca
se

s
in

th
e

co
u
rs

e
o
f
tr

y
in

g
to

so
lv

e
th

e
p
ro

b
le

m
(“

T
o
ta

l”
u
n
d
er

“
S
a
w

T
es

ts
”
),

w
h
o

sa
w

th
e

te
st

ca
se

s
fi
rs

t
(“

1
st

”
u
n
d
er

“
S
a
w

T
es

ts
”
),

a
n
d

w
h
o

sa
w

th
e

te
st

ca
se

s
a
ft

er
h
a
v
in

g
se

en
th

e
co

d
e

(“
2
n
d
”

u
n
d
er

“
S
a
w

T
es

ts
”
);

a
n
d

n
u
m

b
er

s
a
n
d

p
er

ce
n
ta

g
es

o
f
a
ll

p
eo

p
le

w
h
o

so
lv

ed
th

e
p
ro

b
le

m
u
si

n
g

te
st

ca
se

s
(“

T
o
ta

l”
u
n
d
er

“
G

o
t

U
si

n
g

T
es

ts
”
),

w
h
o

so
lv

ed
th

e
p
ro

b
le

m
u
si

n
g

o
n
ly

te
st

ca
se

s
(“

O
n
ly

”
u
n
d
er

“
G

o
t

U
si

n
g

T
es

ts
”
),

a
n
d

p
eo

p
le

w
h
o

so
lv

ed
th

e
p
ro

b
le

m
u
si

n
g

te
st

ca
se

s
a
ft

er
th

ey
h
a
d

se
en

co
d
e

(“
2
n
d
”

u
n
d
er

“
G

o
t

U
si

n
g

T
es

ts
”
).

In
te

rv
ie

w
s

a
re

w
ri

tt
en

a
s

th
e

se
m

es
te

r
“
S
p
A

”
fo

r
S
p
ri

n
g

A
,
“
S
u
A

”
fo

r
S
u
m

m
er

A
,
“
F
a
A

”
fo

r
F
a
ll

A
,
a
n
d

“
S
p
B

”
fo

r
S
p
ri

n
g

B
;
fo

ll
o
w

ed
b
y

“
I”

a
n
d

th
e

in
te

rv
ie

w
n
u
m

b
er

.
T

h
e

fi
n
a
l

in
te

rv
ie

w
in

ea
ch

se
m

es
te

r
w

a
s

d
iv

id
ed

in
to

se
n
te

n
ce

q
u
es

ti
o
n
s

(“
S
en

ts
”
)

a
n
d

li
st

q
u
es

ti
o
n
s

(“
L
is

ts
”
).

77

S
aw

C
o
d
e

G
ot

U
si

n
g

C
o
d
e

S
em

es
te

r
#

S
tu

d
en

ts
#

C
or

re
ct

,
#

T
ot

al
,

#
1s

t
,

#
2n

d
,

#
T
ot

al
,

#
O

n
ly

,
#

2n
d
,

%
C

or
re

ct
%

T
ot

al
%

1s
t

%
2n

d
%

T
ot

al
%

O
n
ly

%
2n

d

S
p
A

I2
34

19
,
56

%
25

,
74

%
16

,
47

%
9,

26
%

6,
24

%
5,

31
%

1,
11

%
S
p
A

I3
S
en

ts
17

15
,
88

%
3,

18
%

–
3,

18
%

1,
33

%
–

1,
33

%
S
p
A

I3
L
is

ts
17

16
,
94

%
3,

18
%

–
3,

18
%

2,
67

%
–

2,
67

%
S
u
A

I2
6

4,
67

%
3,

50
%

2,
33

%
1,

17
%

1,
33

%
1,

50
%

0,
0%

S
u
A

I3
S
en

ts
5

5,
10

0%
0,

0%
–

–
–

–
–

S
u
A

I3
L
is

ts
6

5,
83

%
3,

50
%

–
3,

50
%

2,
67

%
–

2,
67

%
F
aA

I2
34

21
,
62

%
23

,
68

%
13

,
38

%
10

,
29

%
11

,
48

%
10

,
77

%
1,

10
%

F
aA

I3
34

31
,
92

%
22

,
65

%
18

,
53

%
4,

12
%

17
,
77

%
14

,
78

%
3,

75
%

F
aA

I4
S
en

ts
25

18
,
72

%
8,

32
%

–
8,

32
%

1,
13

%
–

1,
13

%
F
aA

I4
L
is

ts
26

17
,
65

%
11

,
42

%
–

11
,
42

%
2,

18
%

–
2,

18
%

S
p
B

I2
20

14
,
70

%
14

,
70

%
9,

45
%

5,
25

%
7,

50
%

5,
56

%
2,

40
%

S
p
B

I4
S
en

ts
10

9,
90

%
2,

20
%

–
2,

20
%

1,
50

%
–

1,
50

%
S
p
B

I4
L
is

ts
7

7,
10

0%
0,

0%
0,

0%
0,

0%
–

–
–

T
a
b
le

4
.7

:
N

u
m

b
er

s
a
n
d

P
er

ce
n
ta

g
es

st
u
d
en

ts
w

h
o

sa
w

a
n
d

co
rr

ec
tl
y

a
n
sw

er
ed

th
e
d
i
v
i
d
e
-
b
y
-
l
a
r
g
e
s
t

q
u
es

ti
o
n

u
si

n
g

co
d
e.

T
h
is

ta
b
le

re
p
re

se
n
ts

o
n
ly

p
a
rt

o
f
th

e
st

u
d
en

ts
w

h
o

a
n
sw

er
ed

O
6
.

F
o
r

th
e

re
st

,
se

e
T
a
b
le

4
.6

.
C

a
te

g
o
ri

es
a
re

th
e

to
ta

l
n
u
m

b
er

s
o
f
st

u
d
en

ts
in

te
rv

ie
w

ed
(“

#
S
tu

d
en

ts
”
);

n
u
m

b
er

s
a
n
d

p
er

ce
n
ta

g
es

o
f
p
eo

p
le

w
h
o

so
lv

ed
th

e
p
ro

b
le

m
in

a
n
y

w
a
y
;
n
u
m

b
er

s
a
n
d

p
er

ce
n
ta

g
es

o
f
p
eo

p
le

w
h
o

sa
w

th
e

co
d
e

in
th

e
co

u
rs

e
o
f
tr

y
in

g
to

so
lv

e
th

e
p
ro

b
le

m
(“

T
o
ta

l”
u
n
d
er

“
S
a
w

C
o
d
e”

),

w
h
o

sa
w

th
e

co
d
e

fi
rs

t
(“

1
st

”
u
n
d
er

“
S
a
w

C
o
d
e”

),
a
n
d

w
h
o

sa
w

th
e

co
d
e

a
ft

er
h
a
v
in

g
se

en
th

e
te

st
ca

se
s

(“
2
n
d
”

u
n
d
er

“
S
a
w

C
o
d
e”

);
a
n
d

n
u
m

b
er

s
a
n
d

p
er

ce
n
ta

g
es

o
f
a
ll

p
eo

p
le

w
h
o

so
lv

ed
th

e
p
ro

b
le

m
u
si

n
g

co
d
e

(“
T
o
ta

l”
u
n
d
er

“
G

o
t

U
si

n
g

C
o
d
e”

),
w

h
o

so
lv

ed
th

e
p
ro

b
le

m
u
si

n
g

o
n
ly

co
d
e

(“
O

n
ly

”
u
n
d
er

“
G

o
t

U
si

n
g

C
o
d
e”

),
a
n
d

p
eo

p
le

w
h
o

so
lv

ed
th

e
p
ro

b
le

m
u
si

n
g

co
d
e

a
ft

er
th

ey
h
a
d

se
en

te
st

ca
se

s
(“

2
n
d
”

u
n
d
er

“
G

o
t

U
si

n
g

C
o
d
e”

).
In

te
rv

ie
w

s
a
re

w
ri

tt
en

a
s

th
e

se
m

es
te

r
“
S
p
A

”
fo

r
S
p
ri

n
g

A
,
“
S
u
A

”
fo

r
S
u
m

m
er

A
,
“
F
a
A

”
fo

r
F
a
ll

A
,
a
n
d

“
S
p
B

”
fo

r
S
p
ri

n
g

B
;
fo

ll
o
w

ed
b
y

“
I”

a
n
d

th
e

in
te

rv
ie

w
n
u
m

b
er

.
T

h
e

fi
n
a
l
in

te
rv

ie
w

in
ea

ch
se

m
es

te
r

w
a
s

d
iv

id
ed

in
to

se
n
te

n
ce

q
u
es

ti
o
n
s

(“
S
en

ts
”
)

a
n
d

li
st

q
u
es

ti
o
n
s

(“
L
is

ts
”
).

78

Table 4.6 shows the total number of students in the interview (“# Students”); numbers

and percentages of students who found the bug using either tests or code (“Correct”);

as well as the numbers and percentages of students who saw the test cases while solving

the problem(“Total” under “Saw Tests”), who were given the test cases first (“1st” under

“Saw Tests”), and who saw the test cases only after they had tried and failed to solve the

problem with code (“2nd” under “Saw Tests”); and the percentages of each of these groups

who actually solved the problem while using test cases (“Total,” “Only,” and “2nd” under

“Got Using Tests”). Table 4.7 shows in the same format the results for students using

code. Both tables show the total numbers of students who answered and the total numbers

and percentages who got the right answer, but the remaining columns deal only with the

students who saw the tests or code, respectively. In general, students who did not find the

bug the first time were unlikely to find it when given all of the information.

There were three keys to finding the error in the divide-by-largest problem. The first

was realizing that sent-max2 returned a one-word sentence instead of a number. The second

was noticing that the result from sent-max was used in arithmetic. The third was realizing

that a one-word sentence would cause an error if it was used in arithmetical operations (in

particular, that dividing a number by a sentence would be an error).

The way to see that sent-max produced a number depended on whether students were

given test cases or code. When given test cases, students had to notice the parentheses

around the numbers that sent-max returned and recognize that these meant “sentence.”

When given code, students had to notice that the code said “If there is exactly one number

left in the sentence, return the whole sentence.” This was written in the code as ((= (count

sent) 1) sent). Students had to recognize that sent meant a sentence and not the word,

and that Scheme would not convert the sentence to a word before finishing sent-max.

The way to see that the sentence returned by sent-max would be used in a numerical

calculation and would thus lead to an error message was the same whether students were
2While these paragraphs deal exclusively with the sentence version of the problem, the same observations

hold true for the list version.

79

given tests or code. First, students had to remember that sent-max returned a sentence as

they read through the code to divide-sentence-by. Second, they had to know that Scheme

would not convert a one-number sentence to a number even if it might be convenient, and

that a sentence with only one number inside did not work just like that number.

Almost all of the students who demonstrated that they had noticed sent-max returning

sentences eventually decided that dividing by that sentence would cause an error message.

After the interview was over, students who had not found the error were shown the test

cases again and asked what (sent-max ’(1 2 3 4 3 2 1)) should return. They all said

it should return “four.” Then they were asked what it actually returned. Some noticed the

sentence at this point, but others said it would return “four.” When these students were

asked to look again, they all noticed that it was a sentence. When asked whether they had

noticed the sentence before, a few said that they had but had not considered it important.

The majority said that they had not noticed the parentheses. However, because they were

asked to remember whether they had noticed something they considered unimportant, the

reliability of their answers is suspect.

The reason many students gave for having missed the sentences was that they were only

looking at what they called “the answer” (the number). This explanation was common

through the semesters, both on this problem and on others. This suggests that, whether

or not students believe in one-word sentences, many of them believe that the values of the

words or numbers are far more important than the quality of “being in a sentence.” This

is not entirely surprising, as it usually takes more code to pick the right words or calculate

the right numbers than it does to put them in a sentence.

The “Correct” columns in Tables 4.6 and 4.8 show a general increase in the frequency

of right answers both within Spring A and between Spring A and later semesters. Students

were 57% more likely to solve this problem at the end of Spring A than they were at the

beginning; this increase is significant (p < .01). Students in semesters after Spring A were

not significantly more likely to identify the error when given tests than were students in

80

Tests Code
Semester #Students #Correct, #Saw, #Correct, #Saw, #Correct,

%Correct %Saw %Correct %Saw %Correct
SpA Sents 51 34, 67% 46, 90% 27, 59% 28, 55% 7, 25%
SpA Lists 17 16, 94% 17, 100% 14, 82% 3, 18% 2, 67%
SuA Sents 11 9, 82% 10, 91% 8, 80% 3, 27% 1, 33%
SuA Lists 6 5, 83% 6, 100% 3, 50% 3, 50% 2, 67%
FaA Sents 93 78, 84% 65, 70%% 46, 71% 53, 57% 29, 55%
FaA Lists 26 17, 65% 26, 100% 15, 58% 11, 42% 2, 18%
SpB Sents 30 23, 77% 25, 83% 15, 60% 16, 53% 8, 50%
SpB Lists 7 7, 100% 7, 100% 7, 100% 0, 0% 0, –

Table 4.8: Semester summary for O6, finding the error in the divide-by-largest procedure. Semesters are written
as SpA for Spring A, SuA for Summer A, FaA for Fall A, and SpB for Spring B, followed by either “Sents” for all of
the sentence questions from all interviews or “Lists” for the list questions from the final interview.

Spring A, but students in semesters after Spring A were more likely to identify the error

when given code. In fact, students given code in the second rounds of interviews for Fall

A and Spring B were approximately twice as likely to find the error as were students given

code in Spring A (p < .01 for Fall A and p < .05 for Spring B). While students were not

much more likely to notice that (4) was a sentence, they were more likely to notice that

sent meant sentence. This difference is consistent with an increased emphasis after Spring

A that sentences are not words and no additional emphasis that sentences need parentheses.

Students in Spring A also said they related parentheses in Scheme to parenthetical

phrases in English. One said that because he did not think that parenthetical phrases were

important in English, s/he did not think parentheses were important in Scheme: “When I

read, I read for content. I don’t remember, ‘Oh, that part was in parentheses.’ ”3 Students

in later semesters still ignored parentheses, but none was able to explain why.

One-Word Sentence Subscale

I attempted to construct a subscale to measure students’ overall understanding of one-

word sentences using O1, O3, O5, and O6, as these were in every semester’s interview. Only

the combination of O1 and O3 were coherent (Cronbach’s alpha > .95), and only after the

Spring A semester. Unfortunately, there are no significant improvements in these scales
3Victor Borge’s “Phonetic Punctuation” routine, in which he proposes that each punctuation mark have

its own sound so that it can be read aloud with other text, draws half of its humor from the absurdity of
spoken punctuation. The other half, of course, comes from Borge’s none-too-sophisticated choice of sounds.

81

E1: What is (bf ’(1))?
E2: What is (bl ’(1))?

Figure 4.4: Questions E1 and E2, creating empty sentences.

from semester to semester. The general lack of coherence supports the idea that students

are using everyday reasoning to answer these questions, because while these questions are

all the same from a Scheme perspective, they are different from a real-world perspective.

4.2 Empty Words and Sentences

E1 and E2: Creating Empty Sentences

Students’ answers to questions about the creation of empty sentences (E1 and E2,

described on page 49) are summarized in Table 4.9. The numbers and percentages of

students who answered E1 and E2 correctly are given in the “Correct” columns. The

numbers and percentages of students who missed E1 or E2 and said the result would be

an error (the predicted mistake) are given in the “Error” columns. Few students actually

missed E1. Most of the ones who did thought that (bf ’(1)) would cause an error because

there would be nothing left. Several of these claimed that they remembered having been

told this, and the rest seemed to think it was logical.

Students who were asked questions O5 and O6 (negate-all and sent-max) had to know

the right answer to trace those programs; only a very few of the students who thought that

(bf ’(1)) caused an error in E1 said that it would cause an error in O5 or O6. Most of

the students who missed E1 never appeared to notice this when solving O5 or O6, but at

least two students did notice and changed their answers to E1.

While at least 80% of the students in each round of interviews eventually reached the

correct answer, most had to think about it first. These people were generally trying to

decide between empty sentences and errors, just like the students who gave wrong answers.

82

(bf ’(1)) (bl ’(1))

Semester #Students #Correct, #SaidError, #Correct, #SaidError,
%Correct %SaidError %Correct %SaidError

SpA I1 37 34, 92% 3, 100% 30, 81% 6, 86%
SpA I2 34 31, 91% 2, 67% – –
SpA I3 Sents 17 15, 88% 2, 100% – –
SpA I3 Lists 17 17, 100% – – –
SuA I1 12 10, 83% 0, 0% 9, 75% 0, 0%
SuA I2 6 6, 100% – – –
SuA I3 Sents 5 5, 100% – – –
SuA I3 Lists 6 6, 100% – – –
FaA I1 37 37, 100% – 27, 73% 0, 0%
FaA I2 34 33, 97% 1, 100% – –
FaA I3 34 31, 91% 3, 100% – –
FaA I4 Sents 25 21, 84% 2, 50% – –
FaA I4 Lists 26 21, 81% 2, 40% – –
SpB I1 19 14, 74% 1, 20% 13, 68% 1, 17%
SpB I2 20 20, 100% – – –
SpB I4 Sents 10 9, 90% 1, 100 – –
SpB I4 Lists 7 6, 89% 1, 100% – –

Table 4.9: Numbers and percentages of students who gave the correct result for (bf ’(1)) and (bl ’(1)), as well as
the percentage of those students who thought the expression would produce an error message. Interviews are written
as the semester “SpA” for Spring A, “SuA” for Summer A, “FaA” for Fall A, and “SpB” for Spring B; followed by
“I” and the interview number. The final interview in each semester was divided into sentence questions (“Sents”)
and list questions (“Lists”).

Furthermore, students’ explanations for this problem were different from their explanations

of O1 and O3. When explaining their answers at the end of the interviews, students often

gave a general explanation of how butfirst worked when discussing (bf ’(1 2)) and said

that the same concepts applied to (bf ’(1 2 3 4)). However, less than one in five of

these students said that the same concepts also applied to (bf ’(1)). Instead, they gave

specialized explanations of butfirst that applied only to one-word sentences. General

explanations of butfirst were along the lines of “Butfirst takes a sentence, gets rid of

the first thing, and returns the rest of the sentence.” Specialized explanations were along

the lines of “Butfirst takes a one-word sentence and, since there is only one word, it

gives you back an empty sentence.” It appears that the majority of these students had not

seriously considered how butfirst might work on one-word sentences or, at least, did not

think of it in the same way they thought of the butfirst of longer sentences.

Students had more trouble with E2, although not as many of them believed that the

butlast of a one-word sentence would cause an error message. This appears to be due

to confusion over the meaning of “last.” While most of the students did give the correct

83

answer and most of the rest said (bl ’(1)) would produce an error, students provided many

additional answers and explanations. Some thought that the sentence (1) was composed of

two elements, 1 and (). The first was 1 and the last was (), so the butlast would produce

1. These students may have reasoned that because the first was 1, the butfirst was (),

and neither could be broken down any more, (1) must be made of the elements 1 and ().

Others thought that the 1 was followed by some kind of invisible space or empty word, and

that butlast removed the blank space and left (1). Some thought that taking the butlast

again would remove the 1, since the blank space was now gone, but others did not. Several

said that because there was no last, the sentence would be returned unchanged.

Like E1, even students who correctly said that (bl ’(1)) was () struggled before

reaching a conclusion. However, instead of trying to decide whether there was anything left

after taking the butfirst, students tried to decide whether there even was a last element

to get rid of. From this, it appears that students have very unexpected models for exactly

what a sentence is and what last and butlast do.

At the start of the Fall B semester, I tried an impromptu experiment with a lab section

of approximately 25 students. I asked one student to start a line at the door and then asked

the rest of the class who the last person in line was. Students said they were not sure that

a line with only one person could have a last person. Thus, students could be relying on

more real-world models to understand what last and, by extension, butlast do.4

As Table 4.10 shows, students did about equally well on (bf ’(1)) in every semester.

The percentage of students who correctly answered (bl ’(1)) dropped every semester,

although not significantly. The only interesting change was that students in later semesters

were much less likely to think that taking the butlast of a one-word sentence would result

in an error message. In Spring A, one student said that the sentence (1) had blank space

on the end that was removed by the butlast procedure, while the other six who gave the

wrong answer expected an error message. Only one student in all of the later semesters
4The statements “He would come in last in a one-man race” and “He would come in first in a one-man

race” have the same logical meaning, but they have very different connotations.

84

Semester #Students #Correct, #SaidError,
%Correct %SaidError

SpA Sents 88 80, 91% 7, 88%
SpA Lists 17 17, 100% –
SuA Sents 23 21, 91% 0, 0%
SuA Lists 6 6, 100% –
FaA Sents 130 122, 94% 5, 71%
FaA Lists 26 21, 81% 2, 40%
SpB Sents 49 43, 88% 2, 33%
SpB Lists 7 6, 89% 1, 100%

Table 4.10: Semester summary for E1, taking the butfirst of a one-word sentence. Since E2 was only asked in the
first round of interviews each semester, it was not included in this table. Interviews are written as the semester
“SpA” for Spring A, “SuA” for Summer A, “FaA” for Fall A, and “SpB” for Spring B, followed by either “Sents” for
all of the sentence questions from all of the interviews or “Lists” for the list questions from the final interview.

E3: What is (empty? ’(""))?
E4: What is (first ’(""))?

Figure 4.5: Questions E3 and E4, empty words and sentences.

said that (bl ’(1)) should produce an error. This is not an improvement, since thinking

that there is no last element or that there is invisible space at the end of a sentence is at

least as bad as thinking that getting rid of the last element of a sentence causes an error.

None of the interventions or changes in the course material focused on last or butlast;

the reasons for this change are unknown.

E3 and E4: Empty Words and Empty Sentences

Table 4.11 shows students’ successes with questions E3 and E4. Students were asked to

tell whether the sentence ("") was empty and what the first of it would be. During the

first round of interviews in each semester, fewer than half of the students correctly stated

that ("") was not empty (as seen in the first “Correct” column). However, students did

improve on E4 over a semester. In Spring A, for example, students were 49% more likely

to answer E4 correctly at the end of the semester than they were at the beginning.

85

Semester #Students empty? first first Both #EmptyHasFirst
#Correct, #Correct, #Error, #Right, %EmptyHasFirst,

SpA I1 37 18, 49% 19, 51% 8, 44% 13, 35% 6, 16%
SpA I2 34 18, 53% 23, 68% 9, 82% 17, 50% 6, 18%
SpA I3 Sents 17 10, 59% 13, 76% 3, 75% 8, 47% 5, 29%
SpA I3 Lists 17 13, 76% 16, 94% 1, 100% 13, 76% 3, 18%
SuA I1 12 7, 58% 6, 50% 3, 50%% 5, 42% 2, 17%
SuA I2 6 5, 83% 5, 83% 0, 0% 5, 83% 1, 17%
SuA I3 Sents 5 5, 100% 5, 100% – 5, 100% 0, 0%
SuA I3 Lists 6 5, 83% 5, 83% 1, 100% 5, 83% 0, 0%
FaA I1 37 13, 35% 28, 76% 3, 33% 12, 32% 16, 43%
FaA I2 34 20, 59% 26, 76% 8, 100% 19, 56% 7, 21%
FaA I3 34 28, 82% 27, 79% 4, 57% 25, 74% 2, 6%
FaA I4 Sents 25 19, 76% 21, 84% 1, 25% 18, 72% 3, 12%
FaA I4 Lists 26 21, 81% 24, 92% 2, 100% 21, 81% 3, 12%
SpB I1 19 7, 37% 11, 58% 0, 0% 7, 37% 4, 21%
SpB I2 20 17, 85% 17, 85% 1, 33% 18, 80% 1, 5%
SpB I4 Sents 10 9, 90% 10, 100% – 9, 90% 1, 10%
SpB I4 Lists 7 4, 57% 6, 86% 1, 100% 4, 57% 2, 29%

Table 4.11: Numbers and percentages of students who gave the correct results for (empty? ’("")) and (first

’("")), as well as of students who said that the answer to the second should be an error, who correctly answered
both questions, and who gave an incorrect but predicted set of answers (“Empty Has First”). The percentages in
the “Error” column are of students who got the question wrong, not of all students. Interviews are written as the
semester “SpA” for Spring A, “SuA” for Summer A, “FaA” for Fall A, and “SpB” for Spring B; followed by “I” and
the interview number. The final interview in each semester was divided into sentence questions (“Sents”) and list
questions (“Lists”).

Students did better when asked what the first of it would be (as seen in the second

“Correct” column). As shown in the “Both Right” column, few of the students in the Spring

A semester or in the early interviews of other semesters answered both questions correctly.

The “Error” column shows the numbers and percentages of students who missed E4

and said it would produce an error message. Most of the students who said it this also

said that the sentence was empty, so they reasoned (correctly) that taking the first of

an empty sentence should cause an error message. While a majority of these students

(correctly) thought that the empty word remained in the empty sentence, some believed

that the empty word actually disappeared.

Some students who said that the sentence was not empty still said that taking the

first of it would produce an error message. These students seemed to believe that while

the empty word was somehow good enough to fit in a sentence, it was not good enough to

stand on its own.

86

Approximately one student in five gave the predicted combination of answers, that ("")

is empty but it has "" as its first element (the “Empty Has First” column). Nearly every

student who gave these two answers explained that, while they knew there was something

inside the sentence (and thus they could take the first), that something was not enough

to make the sentence non-empty. An alternate explanation given by a very few students

was that taking the first of any empty sentence produced an empty word, either because

empty sentences always contain hidden empty words, or there is nothing in the sentence

and thus the first must be nothing (which they wrote as an empty word). Students who

believed that ("") had something in it but was still empty usually said that empty? was

looking for letters or “real” words in the sentence, and the empty word had no letters and

was not, by their definition, a real word.

Some students, even those in later rounds of interviews, had trouble with these two

problems because they did not know that "" was an empty word. Instead, they assumed it

was a word made of two " characters. All but one of these students knew what an empty

word was, but they did not think of it when reading the problems. These students gave the

correct answers, that ("") was not empty and that the first was "". Interviewers pointed

out the empty word and nearly all of these students changed their minds, at least on E3.

They justified this in the same way that the other students did, saying that the empty word

was not a real word.

The percentage of students who missed E4 and said that (first ’("")) produced an

error fluctuated wildly after Spring A. In three rounds of interviews, every student who

missed E4 said the answer should cause an error message. However, in five other rounds of

interviews, half or fewer of the students said this. These changes appear to be due to several

things. First, fewer students missed E4. Second, those who did tended to be extremely lost.

Approximately half of the students who missed E4 did so because they did not know that

"" was the empty word or because they did not understand how first worked. The two

answers given by those confused by first were that (first ’("")) returns " or ("). These

87

students believed that first operated on the letters of a sentence rather than the words of

a sentence, so (first ’(ab)) should return either a or (a). However, most of the students

in the fourth round of interviews in Fall A who missed E4 did so because they were not

sure how to write that (first ’("")) should return an empty word rather than because

they had the wrong kind of answer. Students in other semesters who were not lost tended

to have missed E3, believing that the sentence was empty, and thus that taking the first

would cause an error message.

In general, students improved after the Spring A semester. Students in the first round of

interviews each semester did worse on E3, but they made improvements as the semester went

on. Scores on both questions regularly increased from semester to semester (see Table 4.12).

For E3, students in Summer A and Spring B outscored those in Spring A (p < .05 for both),

and those in Fall A may have (p < .1). For E4, students in Fall A and Spring B outscored

those in Spring A (p < .01 for Fall A and p < .05 for Spring B); scores were not significantly

different between Spring and Summer A. Students in Fall A and Spring B were, of course,

more likely to get both questions right than were students in Spring A (p < .05 for Fall A

and p < .01 for Spring B), and those in Spring B may have been more likely to get both

correct than students in Fall A (p < .1). However, the percentage of students who missed

E3 but got E4 did not change significantly across semesters.

Several changes to the curriculum may have enhanced student understanding. The Pez r©

analogy gave students a model that suggested that empty words and sentences were actual

things and had some sort of value. The number-spelling project forced many students to deal

with empty words in sentences. WebScheme activities in Spring B interrupted students who

answered questions about empty words or sentences with “nothing” or who left the answers

blank, encouraging them to talk to TAs or lab assistants and making them confront the idea

that empty words and sentences do not just vanish. It seems likely that some combination

of these activities contributed to student understanding.

88

Semester #Students empty? first first Both #EmptyHasFirst
#Correct, #Correct, #Error, #Right, %EmptyHasFirst,

SpA Sents 88 46, 52% 55, 63% 20, 61% 38, 43% 17, 19%
SpA Lists 17 13, 76% 16, 94% 1, 100% 13, 76% 3, 18%
SuA Sents 23 17, 74% 16, 70% 3, 43%% 15, 65% 3, 13%
SuA Lists 6 5, 83% 5, 83% 1, 100% 5, 83% 0, 0%
FaA Sents 130 80, 62% 102, 78% 16, 57% 74, 57% 28, 22%
FaA Lists 26 21, 81% 24, 92% 2, 100% 21, 81% 3, 12%
SpB Sents 49 33, 67% 38, 78% 1, 9% 34, 69% 6, 12%
SpB Lists 7 4, 57% 6, 86% 1, 100% 4, 57% 2, 29%

Table 4.12: Semester summary for questions E3 and E4, (empty? ’("")) and (first ’("")). The percentages in
the “Error” column are of students who got the question wrong, not of all students. Interviews are written as the
semester “SpA” for Spring A, “SuA” for Summer A, “FaA” for Fall A, and “SpB” for Spring B, followed by either
“Sents” for all of the sentence questions from all interviews or “lists” for the list questions from the final interview.

Mistake Least Serious Most Serious
(#, %) (#, %)

(eleven thousand zero zero zero) 7, 21% 10, 29%
(eleven thousand zero) 3, 9% 3, 9%
(eleven thousand "") 26, 76% 2, 6%
(ten one thousand) 4, 12% 20, 59%

Table 4.13: Mistakes for the number-spell program and the numbers and percentages of students who thought each
was least or most serious. This data is from the 34 students in the second round of interviews in Spring A.

E5: number-spell and Empty Words in Sentences, Spring A

Table 4.13 shows which of the four possible mistakes for number-spell (page 51) stu-

dents found to be least and most serious for students in Spring A. While the table only

shows the results of the 34 students in Spring A, five students rated several mistakes as

either most or least serious. Three of the six students in the second round of interviews in

Summer A were also asked this question.

All three Summer A students felt that (ten one thousand) was the most serious mis-

take. One student said that all of the rest of the mistakes were equally minor. Another

initially said (eleven thousand "") was the least serious but decided (eleven thousand

zero) was equally minor. The third said that (eleven thousand "") was the least serious,

since it could be easily fixed by replacing the empty word with an empty sentence. The

remainder of this section will focus on the Spring A students.

Nearly three-quarters of the students felt that (eleven thousand "") was the least

serious. Over over half of the students felt that the most serious mistake was (ten one

89

thousand). About a third felt that the worst mistake was was (eleven thousand zero

zero zero). Only two students felt that the worst mistake was (eleven thousand "").

Just three students said that (ten thousand zero) was the least bad; one of those said

it was about equal to (eleven thousand "") and another said that everything except

(eleven thousand zero) was equally okay.

One of the two students who felt that the extra empty word was the worst mistake

explained that s/he did not see any reason for an empty word to be a part of the code, so

whoever wrote the code must have gone out of the way to add it. The second said that

zeroes, unlike the empty word, have absolutely no value.

Thirty-eight percent of those who thought that (eleven thousand "") was the least

serious mistake explained that it should be the easiest to fix. Thirty-one percent said the

empty word was not really anything—it “doesn’t represent anything,” “says there is nothing

after ‘eleven thousand,’ ” “knows not to say anything,” is “not really there,” is a “superficial

error,” or is just junk after the right answer. Twelve percent said that the empty word was

less confusing to look at, either because it was clearly not a number or because it could be

ignored while reading the sentence.

The first reason, that the empty word is easier to fix, might also apply to (eleven

thousand zero). However, only three students said that (eleven thousand "") was one

of the least serious errors, and a total of five students in the entire interview said that the

extra zero and the extra empty word were about the same. Seven of the ten students who

thought that the empty word was easier to fix gave reasonable answers—it should be easier

to search the code for "" than for zero; it should be easier to go through the sentence and

remove "", since while it is possible for zero to belong in the sentence, it is not possible for

the empty word to belong there; or the code could be modified to return the empty sentence

instead (the best solution). These are all justifiable reasons to pick the empty word as being

caused by the least serious bug. The other three said that it would be easy to make it go

away, but they had no idea why.

90

Here is something that you might have been asked to do in homework or on a test:
Write a procedure called sum-of-square-roots, which takes two numbers, x and y, finds the
square root of each, and returns the sum of those square roots. x and y will not be negative
numbers.

One student writes this as an answer on the test:
(define (sum-of-square-roots x y)

(if (or (< x 0) (< y 0)) ;;line 1

’() ;;line 2

(+ (sqrt x) (sqrt y)))) ;;line 3

Why did this person include lines 1 and 2?

Figure 4.6: Question E6, empty words as errors.

Forty-two percent of all of the students who said that the empty word was one of the

least serious errors, half of the students who felt that it was the single least serious error,

or approximately one-third of all of the students in the interview, felt that the empty word

would vanish, know “not to say anything,” not really be there, or would somehow be easier

to remove than the extra zero.

Thirty-five percent of the students who said that the empty word was least serious made

it clear that they were not being forced to choose between it and the extra zero. One-third of

these students rated another mistake as equally minor. The other two-thirds made it clear

either by explicitly comparing the two or by ranking the four answers and putting another

answer between the empty word and the extra zero. Of those who explicitly compared the

two, one-third said it was because the empty word was less confusing to read, while the rest

thought the empty word would vanish or otherwise be unimportant.

E6: Empty Sentences as Errors

None of the students who were asked this question had a ready explanation. When

given some time to think, they all decided that the empty sentence was used to signal an

error, but they were still unable to explain why the empty sentence might be a logical choice

to convey this.

91

Semester #Students #Correct, #Forgot, #Vanishes, #Sentence, #Error,
%Correct %Forgot %Vanishes %Sentence %Error

FaA I3 34 19, 56% 3, 9% 8, 24% 2, 6% 0, 0%
FaA I4 Sents 25 13, 52% 1, 4% 5, 20% 1, 4% 4, 16%
FaA I4 Lists 26 13, 50% 1, 4% 2, 8% 5, 19 2, 8%
SpB I4 Sents 10 7, 70% 0, 0% 1, 10% 1, 10% 1, 10%
SpB I4 Lists 7 3, 43% 0, 0% 0, 0% 4, 57% 0, 0%

Table 4.14: Numbers and percentages of students who gave the correct result for (every bf ’(1 2 3 4)) as well as
for those who gave certain kinds of incorrect answers. Not all student responses are counted here, since some
mistakes did not fit into any of these categories. Interviews are written as the semester “FaA” for Fall A “SpB” for
Spring B, followed by “I” and the interview number. The final interview in each semester was divided into sentence
questions (“Sents”) and list questions (“Lists”).

E7: What is (every bf ’(1 22 333 4444))?

Figure 4.7: Question E7, placing an empty word in a sentence.

E7: Placing an Empty Word in a Sentence

Table 4.14 summarizes the results of question E7. More than half of all students got the

right answer, that (every bf ’(1 22 333 4444)) produces ("" 2 33 444). There were

three general categories of incorrect answers. First, students left out the empty word (the

“Forgot” and “Vanishes” columns). Second, students said that the butfirst of 1 was the

empty sentence rather than an empty word (“Sentence”). Third, students said that taking

the butfirst of 1 would produce an error (“Error”).

Students who said that (every bf ’(1 22 333 4444)) produced (2 33 444) gave one

of three reasons. Some students said they forgot. Some incorrectly thought that (bf 1)

produced an empty sentence, but they correctly reasoned that the empty sentence would

not appear in the final product. Three said that (bf 1) was literally nothing, so it would

have no contribution to the final product. Most of the students who omitted the empty

word correctly said that (bf 1) produces an empty word, but incorrectly said it would not

appear in the final product.

Most of the students who thought that empty words disappeared said they thought

empty words vanished because they worked just like empty sentences. When asked, most of

these students could not explain why empty sentences did not appear in sentences. A few

students who thought that empty words disappeared said that empty words were nothing.

92

P1: What do you think are the essential parts of an English sentence?
P2: What do you think are the essential parts of a Scheme sentence?

Figure 4.8: Questions P1 and P2, essential elements of English and Scheme sentences.

A few others said that empty words were actively removed when sentences were constructed.

The rest of the students could not explain why empty words disappeared.

Empty Word/Sentence Subscale

I attempted to construct a subscale to measure students’ overall understanding of empty

sentences and words using E1, E3, and E4, as these were in every interview. Unfortunately,

no combination of these items was coherent (Cronbach’s α < .8, and usually < .5). Again,

this supports the idea that students are relying on everyday knowledge, since none of these

questions would be related in the real world.

4.3 Essential Elements of English and Scheme Sentences

Table 4.15 shows the percentages of students in each round of interviews who included

starting with capital letters or ending with punctuation among the essential elements of

English sentences, as well as the percentages of students who included parentheses among

the essential elements of Scheme sentences. The three dichotomous variables “Capital,”

“Punctuation,” and “Parentheses” could not be used to form a consistent subscale (Cron-

bach’s α < .7), and students who gave these responses did no better on questions O1–O6 (bf

and bl of one-, two-, and four-word sentences) than anyone else (Chi-square tests showed

p > .1 in all cases). These students may have had some association between sentences and

parentheses in their minds, but they had not integrated their knowledge to the point that

they automatically treated parentheses as delimiters for sentences.

The fourth column shows the percentages of students who explicitly compared or con-

trasted English and Scheme sentences. Available data probably underestimates the number

93

E
ng

lis
h

Sc
he

m
e

S
em

es
te

r
#

S
tu

d
en

ts
#

C
ap

it
al

,
#

P
u
n
ct

u
at

io
n
,

#
P
ar

en
th

es
es

,
#

C
om

p
ar

e,
#

C
on

fu
se

,
%

C
ap

it
al

%
P

u
n
ct

u
at

io
n

%
P
ar

en
th

es
es

%
C

om
p
ar

e
%

C
on

fu
se

F
aA

I1
37

2,
5%

15
,
41

%
27

,
73

%
3,

8%
5,

14
%

F
aA

I2
34

7,
21

%
17

,
50

%
23

,
68

%
2,

6%
3,

9%
F
aA

I3
34

1,
3%

10
,
29

%
20

,
59

%
3,

9%
2,

6%
F
aA

I4
S
en

ts
25

4,
16

%
11

,
44

%
17

,
68

%
6,

24
%

5,
20

%
F
aA

I4
L
is

ts
26

5,
19

%
8,

31
%

14
,
54

%
1,

4%
3,

12
%

S
p
B

I1
19

0,
0%

4,
21

%
14

,
74

%
2,

11
%

9,
47

%
S
p
B

I2
20

2,
10

%
10

,
50

%
17

,
85

%
6,

30
%

4,
20

%
S
p
B

I4
S
en

ts
10

1,
10

%
4,

40
%

2,
20

%
1,

10
%

3,
30

%
S
p
B

I4
L
is

ts
7

1,
14

%
5,

71
%

4,
57

%
1,

14
%

1,
14

%

T
a
b
le

4
.1

5
:

N
u
m

b
er

s
a
n
d

p
er

ce
n
ta

g
es

o
f
st

u
d
en

ts
w

h
o

m
en

ti
o
n
ed

ca
p
it

a
l
le

tt
er

s
o
r

p
u
n
ct

u
a
ti
o
n

a
s

es
se

n
ti
a
l
el

em
en

ts
o
f
E

n
g
li
sh

se
n
te

n
ce

s,
p
a
re

n
th

es
es

a
s

es
se

n
ti

a
l

el
em

en
ts

o
f
S
ch

em
e

se
n
te

n
ce

s,
w

h
o

ex
p
li
ci

tl
y

co
m

p
a
re

d
o
r

co
n
tr

a
st

ed
E

n
g
li
sh

a
n
d

S
ch

em
e,

o
r

w
h
o

co
n
fu

se
d

S
ch

em
e

se
n
te

n
ce

s
a
n
d

co
d
e.

In
te

rv
ie

w
s

a
re

w
ri

tt
en

a
s

“
F
a
A

”
fo

r
F
a
ll

A
a
n
d

“
S
p
B

”
fo

r
S
p
ri

n
g

B
,
fo

ll
o
w

ed
b
y

“
I”

a
n
d

th
e

in
te

rv
ie

w
n
u
m

b
er

.
T

h
e

fi
n
a
l
in

te
rv

ie
w

in
ea

ch
se

m
es

te
r

w
a
s

d
iv

id
ed

in
to

se
n
te

n
ce

q
u
es

ti
o
n
s

(“
S
en

ts
”
)

a
n
d

li
st

q
u
es

ti
o
n
s

(“
L
is

ts
”
).

94

of students who actually compared or contrasted English and Scheme. Many students gave

answers that sounded like they might have been contrasts, but because interviewers did not

ask follow-up questions, only those students who wrote down explicit comparisons or con-

trasts were counted. The data does show that very few students actually compared English

and Scheme.

The final column shows the percentages of students who thought that a “Scheme sen-

tence” meant a “Scheme procedure” or “Scheme code.” These students were told by the

interviewers that a “Scheme sentence” was intended to mean “the kind of data in Scheme

that they had been calling a ‘sentence’ for the entire semester;” some of these students then

changed their answers. One student commented that it seemed more logical for a sentence

to refer to actual Scheme code, while others made a number of connections between English

sentences and Scheme code (procedures as verbs, rules of grammar and syntax, etc.)

4.4 What Students Did Not Say About English, Scheme, and

Collections

Students mentioned most inferences given in Tables 3.7 and 3.8, so this section will

discuss those they mentioned rarely or actively disagreed with. Students had trouble un-

derstanding “meaning” in terms of Scheme sentences. Students answering P1 and P2 often

said that English sentences had meaning, but Scheme sentences did not. They said that the

order in an English sentence was governed by the rules of grammar, while Scheme sentences

could be in any order. One student, on the other hand, thought that Scheme sentences

had more meaning and order than English sentences, since the precise value and position

of each word was important to procedures that operated on sentences.

Students did not treat words as being made of one-letter words or as being collections

of letters in the same way sentences are collections of words. Students expressed some

confusion over this idea when it was mentioned in lab.

95

Percent Correct (Sentences/Lists)
Semester O1 O3 O5 O6 E1 E3 E4 E7 Mean
Spring A 94/100 100/100 29/47 88/94 88/100 59/76 76/90 –/– 76/87
Summer A 100/67 100/83 60/60 100/83 100/100 100/100 100/83 –/– 94/79
Fall A 96/82 96/92 44/42 72/65 84/81 76/81 84/92 52/50 79/77
Spring B 100/86 100/100 20/43 90/100 90/86 90/57 100/86 70/43 84/80

Table 4.16: Percentages of students who got each question correct on the sentences/lists questions in the final round
of each semester, as well as the average score for all but E7.

Students did not mention one-word sentences on questions P1 and P2, and they generally

avoided talking about one-word English sentences.

Students did not compare or contrast words and sentences, but when they were asked

in discussion or in lab, they did not see many similarities between the two. In particular,

they did not feel that sentences were composed of words in the same way that words were

composed of one-letter words.

4.5 Comparison of Sentences and Lists

Table 4.16 shows the differences in total scores for students given sentence questions

and students given list questions in the final round of interviews each semester. The first

eight columns show the percentages of students who got each of the eight questions (seven

in Spring A) correct, while the last column shows the average over the seven questions (O1,

O3, O5, O6, E1, E3, and E4) that were on all three rounds of interviews.

Students in the Spring A semester did better with lists than with sentences on all ques-

tions. When students were given one point for each correct answer, the average score for

students answering sentence questions was 6.1, while the average score for students answer-

ing list questions was 6.94. The average score for students answering list questions was 14%

higher than for students answering sentence questions. A one-way ANOVA confirmed that

this was significant (p < .05).

96

Students in the Spring A semester had the least practical experience with lists out of

all the semesters. They had seen a basic introduction to them in lab, had studied lists for

the third midterm, and had been given further list activities several weeks later. However,

the further list activities were given as lab assignments during final projects, and very few

students even looked at them until projects were complete. Furthermore, their projects did

not make use of lists, so all of their experience with lists came from one week in lab and their

own studying. Many of these students claimed not to be very familiar with lists—they had

to remind themselves of what car, cdr, and null? meant, and they usually resolved their

confusion by comparing a list procedure to the equivalent sentence procedure. Whether or

not these students were comfortable and familiar with lists, they had been working with

sentences far longer than with lists, and their most recent midterm included more questions

that dealt with sentences than with lists. The significantly higher scores for list questions

strongly suggest that they thought about sentences and lists in different ways.5

Several of these students admitted this. One student became upset with the (empty?

’("")) question, saying that it was a silly corner case like the ones on the exams. When

asked what (null? ’(())) was, he said it was obviously not null. Then he looked at

the two questions more carefully, said, “Oh!” and began asking about the goals of the

interviews. Students in the other semesters did not appear to make this distinction.

In later semesters, most or all of the list activities were given in lab before the projects

started, and the projects made use of lists. Students in these semesters had actual hands-on

experience using lists. However, scores on sentence questions increased relative to scores

on list questions in the later semesters. Students in the Fall A semester did better with

sentences than with lists on all questions except E3 and E4, which dealt with (""), but
5Thinking about sentences and lists in different ways is not a bad thing. Sentences and lists are different.

Sentences are flat (no sentences inside sentences), while lists are deep (lists can be inside lists inside lists. . .).
Sentences are symmetric (words can be removed from the left with first and butfirst just as easily as
they can on the right with last and butlast), while lists are not (car and cdr work on the left side of a
list, but no standard Scheme procedures do the same on the right). However, treating sentences and words
differently in the interviews is bad because none of the interview questions dealt with these issues. The
reasoning needed to solve a given list question was the same as that needed to solve the equivalent sentence
question.

97

none of these differences was significant. Students in Spring B did better with sentences

than with lists for all questions except O5 and O6. While only two students answering

the sentence questions correctly said that the negate-all code did not work, the majority

at least noticed that it did not behave consistently; most of the students answering list

questions did not notice this. Only one student answering sentence questions missed O6,

divide-by-largest, while none of the students answering list questions did so. It is thus

not unreasonable to say that students in Spring B did at least as well on sentence questions

as they did on list questions. They did at least as well as students answering sentence

questions in Spring A, except for question O6. They did significantly better on questions

E3 and E4 than students in Spring A (p < .05 for both, using one-tailed t tests), and slightly

better than students answering sentence questions.

4.6 Other Observations

Observations from Interviewers

Interviewers noticed several differences in student behavior between the Spring A

semester and later semesters. First, students in the Spring A semester made explicit refer-

ences to English when explaining their answers to the interviewers or when defending their

answers after being told they were wrong. While students relied less and less on English

as the semester went on, they still tended to defend their answers. They gave essentially

the same kinds of explanations, but without explicitly mentioning English. Students in

Summer A, Fall A, and Spring B almost never used English when explaining their answers,

and they did not try as hard to defend their answers after being told they were wrong. In

fact, students in later semesters often noticed that they had made a mistake when they

were asked to explain how they solved that problem.

The other major difference interviewers noticed was the speed with which students

solved problems. In Spring A, interviews generally took between 30 and 60 minutes. Stu-

98

dents spent much of this time trying to solve question O6, divide-by-largest. One

interviewer described this as “painfully slow to watch.” Even those students who solved O6

spent a long time on it. In the the third round of interviews, students were asked a second

set of questions after they finished the Scheme questions. These questions took between

15 and 20 minutes to complete, and the whole interview typically took an hour or slightly

more. In later semesters, interviews generally took between 15 and 40 minutes, although

some took a full hour. The same second set of questions was asked after the Scheme ques-

tions in Fall A, and most interviews finished in less than an hour. Interviewers felt that

much of this difference was due to the speed with which many students solved O6. In at

least five cases, students found the solution before the interviewers had a chance to put the

handout with test cases down on the table.

Observations of TAs

I have noticed that, when explaining Scheme code to students, TAs often ignore sen-

tences in favor of the words they contain. For example, consider a Scheme procedure that

returns a sentence of all perfect squares between two numbers. If asked to find the perfect

squares between 1 and 10, it would return the sentence (1 4 9). If asked to find the perfect

squares between 26 and 35, it would return (). The technically correct way to describe (1

4 9) is “a sentence of one, four, and nine,” while the technically correct way to describe

() is “an empty sentence.” However, TAs generally say that the procedure returns “one,

four, and nine” or “nothing.” This is a reasonable way to describe what is happening, since

the students will probably be more interested in how the program finds the right numbers

than in how they end up in a sentence. Unfortunately, this encourages students to ignore

sentences without helping them learn when doing so is safe and when it is not.

99

Chapter 5

Discussion

5.1 Summary of Results

This research has several significant results. First, students had difficulty understanding

one-word sentences and empty words and sentences. Some students do not recognize empty

words at all. When asked what should be simple questions, some students struggled with

several possible answers, while others confidently gave incorrect answers and were prepared

to explain why they felt they were correct. Second, students did not have the same difficulty

understanding null or one-element lists. Even though students had been working with

sentences for three months and lists for less than a month, scores on a series of sentence

questions were significantly lower than scores on otherwise-identical list questions. Third,

while treatments did appear to improve students’ performance relative to lists at the end

of the semester, they did not help students with all of their problems. These findings are

summarized in Tables 5.1, 5.2, and 5.3 (the last on page 109).

As shown in Table 5.1, students in the Spring A semester were more likely to write

parentheses around sentences and believe that the butfirst of a two-word sentence should

be a one-word sentence by the end of the semester. They were also more likely to notice

100

when something was a word or a one-word sentence when they wrote or read it. They made

no significant improvements on any of the three problems with empty words and sentences.

In contrast, students in Spring B improved on both parentheses and one-word sentences

containing empty words (p < .01 for all except parentheses around sentences in general, for

which p < .1).

Students in Spring B did not generally do as well as students in other semesters on

the first round of interviews. Furthermore, they often did not do as well in later rounds as

students in Fall A. Some of this may be related to the low number of EECS majors in Spring

B or their lower exam scores when compared to other semesters. However, neither the exam

scores nor the number of EECS majors predict results overall. Spring B students did make

some significant improvements over Spring A students. If the first round of interviews is

ignored, they may have done better on putting parentheses around sentences and treating

the butfirst of a two-word sentence as a one-word sentence. Furthermore, even including

the first round of interviews, they did significantly better on both questions related to

one-word sentences that contain empty words.

5.2 Sources of Mistakes

Sentences: Generative or Surface Analogies?

Students in Spring A did use analogies between English and Scheme, at least when

explaining their answers to interviewers. However, the students might have been using

English only as a surface analogy (used only when explaining their results) rather than as a

generative analogy (used when generating their results). The evidence appears to support

generative analogies.

However, interviewers observed that students in Summer A, Fall A, and Spring B were

more likely to notice that they had made mistakes when they were asked to explain how

they got their answers, and they generally did not argue when they were told their answers

101

Topic Problem Improvement
Sentences Students forget to/believe they do not need to write parentheses

around sentences of more than one word
Most (p < .1)

One-word
sentences

Students forget to/believe they do not need to write parentheses
around one-word sentences when taking the butfirst of a two-
word sentence, or they feel that butfirst should logically produce
a word instead of a one-word sentence

Most (p < .05)

One-word
sentences

Students fail to notice that they have written a word rather than
a one-word sentence

Some (p < .1)

One-word
sentences

Students fail to notice that they have read a one-word sentence
rather than a word

Some (p < .01)

Empty
sentences

Students believe that taking the butfirst of a one-word sentence
will generate an error because there would be nothing left

None

Empty
words
and
sentences

Students believe that a one-word sentence containing only the
empty word is empty

None

Empty
words
and
sentences

Students believe that a one-word sentence containing only the
empty word is empty but that they can take the first of that
sentence

None

Table 5.1: Students’ Problems in the Spring A Semester. The “Improvement” category tells whether students
improved on this issue over the semester. A value of “Most” indicates that the percentage of students who made this
mistake dropped to near zero by the final round of interviews. A value of “Some” indicates that the percentage of
students who made this mistake decreased by the end of the semester, but was still significantly greater than zero. A
value of “None” indicates that the percentage of students did not decrease by the end of the semester.

Problem Second Final Average
Students forget to/believe they do not need to write parentheses
around sentences of more than one word

p < .1 p < .1 –

Students forget to/believe they do not need to write parenthe-
ses around one-word sentences when taking the butfirst of a
two-word sentence, or they feel that butfirst should logically
produce a word instead of a one-word sentence

– p < .01 –

Students believe that taking the butfirst of a one-word sen-
tence will generate an error because there would be nothing
left

p < .1 – –

Students believe that a one-word sentence containing only the
empty word is empty

p < .01 p < .05 p < .05

Students had trouble predicting what the first element of a sen-
tence containing only the empty word would give

p < .1 p ≈ .05 p < .05

Table 5.2: Improvements from Spring A to Spring B. The “Second” column compares the results of the second
rounds of interviews in Spring A and B. The “Final” column compares the results from the sentence versions of the
final rounds of Spring A and Spring B. The “Whole” column compares the results from the sentence versions of all
rounds of the Spring A and B semesters.

102

were wrong. When Spring A students were asked to think about their reasoning, they did

not see any problems. In fact, they were sure they were correct and sometimes resisted

when the interviewers tried to correct them. Students in later semesters, on the other hand,

often noticed that they were wrong when they were asked to examine their reasoning. Of

those who did not notice their own mistakes, almost none put up a fight when interviewers

pointed out the errors. The most logical explanation for this behavior is that the students

in Spring A had what they considered to be a very good reason to give and defend the

wrong answer, while other students did not.

Finally, the differences between list and sentence scores in the final interviews of each

semester argue that Spring A students were operating under a misconception that later

students did not share. Spring A was the only time that students performed better with

list questions than with sentence questions. While students in Spring A had studied lists

in preparation for a midterm, they should not have scored better on list questions than

on sentence questions unless there was some reason for them to develop an understanding

of car, cdr, and null? in a few weeks that was better than the understanding of first,

butfirst, and empty? that they had developed throughout the semester. As Ryan (1985b)

points out, familiar words do not force students to learn technical meanings. Unfamiliar

words do.

Taken together, these observations and data strongly suggest that students in Spring A

had been using English rules for parentheses as a generative analogy. However, this does not

explain why students continued to make similar mistakes in later semesters, when they had

been exposed to several treatments and were no longer using explicit references to English

to justify their answers.

The Collection Model

Students using Simply Scheme in Berkeley’s CS 3 class are not the only ones to forget

parentheses. Oliver Grillmeyer’s Exploring Computer Science with Scheme (1997) features

103

Mistakes to Avoid
Remember that rest returns a list with all but the first element. A com-
mon mistake is to think that

(rest ’(a (b)))
returns (b) instead of the true value returned: ((b)).

Figure 5.1: Warning from Exploring Computer Science with Scheme, page ix.

a warning in a box in the preface shown in Figure 5.1. Exploring Computer Science with

Scheme uses rest to protect students from cdr in the same way Simply Scheme uses

butfirst, so it is possible that Grillmeyer had noticed a similar phenomenon. However,

Van Someren (1990) noted similar behavior among students learning Prolog. Lists in Prolog

are enclosed by square brackets, “[” and “],” which students often dropped. Additionally,

some of them believed that [] was nothing. Because these mistakes have been observed in

several different languages, only one of which involves sentences, it is not unreasonable to

suspect they have a common cause.

The author was not familiar with the collection model until after the Spring B interviews

were concluded, so there were neither questions specifically designed to identify students

who used it nor treatments specifically designed to help students with it. In addition,

because sentences can be thought of as collections of words with just a few additional rules,

it is difficult to say that students are relying on some sort of collection analogy.

The one case in which students using the collection model were predicted to give different

answers than those using analogies to English was question E4, (first ’("")). Students

relying on analogies were expected to say that the sentence was empty and that the first

would produce either the empty word or an error message. Students relying on the collection

model, on the other hand, were expected to say that the sentence was empty and that the

first would produce an error message.

Unfortunately, the results from question E4 only offer limited support for the collection

model. Every student who gave the wrong answer to the list version of this question said

that the answer would be an error, but since so few students answering the list version

104

actually missed this question, this finding is not reliable. Furthermore, students who gave

wrong answers to the sentence version of this question were often very confused about how

first worked or what the empty word was.

Nevertheless, most of the mistakes and comments made by students throughout the

three later semesters can be explained by the collection model. Students tended to focus on

the words in a sentence, often to the exclusion of the sentence itself. When asked about the

elements of a sentence, they gave much higher priority to the words than to the presence

of parentheses. When explaining their answers, they focused almost entirely on the words

in the sentence and dismiss the parentheses. Some students differentiated between “the

answer” and “what Scheme would give.” “The answer” to (bf ’(1 2)) is just 2, while

“What Scheme would give” is (2). Likewise, many students who said that (negate-all

’(1)) returned -1 but showed no indication they knew it was a sentence later explained that

they had only been looking at “the answer.” Students who had trouble finding the error in

divide-by-largest often said the same about the test cases for sent-max, which clearly

showed sentences rather than words. Furthermore, while students contrasting English and

Scheme often pointed out that English sentences could never be empty, they did not mention

one-word sentences. This suggests that they have other reasons for their difficulties with

one-word sentences.

Additionally, TAs and lab assistants reinforced the collection way of thinking when

explaining how some Scheme procedures worked.

More work needs to be done to determine whether the collection model is a significant

source of confusion for students trying to understand sentences and lists. Students could be

asked to create their own analogies for words and sentences. They could also be asked to

compare and contrast either Scheme sentences and English sentences or Scheme sentences

and some easily aligned collection. People find it easier to identify differences between two

objects if they can align those objects easily; if students can find more differences between

105

Scheme sentences and a collection than between Scheme sentences and English sentences,

they are likely using a collection model.

Other Explanations

Several other explanations have been proposed. One is that students confuse “returning

a value” with “printing the answer.” Returning a value is something formal and implies that

Scheme might want to use that value, while printing an answer is relatively informal and

implies that the results are for human use only. In the former case, the difference between

3 and (3) is significant, while in the latter, the difference is not. When explaining their

programs in lab, many students say that Scheme “prints” something when they actually

mean that Scheme returns something. This confusion would explain many of the problems

students had with question O5, as well as those students who argued that there was a

difference between “the answer” and “what Scheme would return.” However, it cannot

explain students’ difficulty detecting sentences in question O6, where the value that Scheme

“printed” was immediately used by another procedure and never shown to a human. It also

cannot explain the students who genuinely thought that (bf ’(1 2)) produced a number

or who thought that ("") was empty. Furthermore, it cannot explain the difference in

scores between students answering sentence and list questions in Spring A.

Some of these problems may also be due to the flexibility of the procedures that deal

with words and sentences. Almost all of these procedures will work with either words or sen-

tences. The sentence procedure will make a sentence out of any combination of words and

sentences, so whether one has the words phonetic and punctuation, the one-word sentences

(phonetic) and (punctuation), the word phonetic and the sentence (punctuation), or

the sentence (phonetic) and the word punctuation, they can all be combined into the

sentence (phonetic punctuation) in the same way. This versatility may de-emphasize

the differences between words and sentences, in part because students do not have to pay

attention to whether they are working with words or sentences, and in part because if they

106

write code that should produce sentences but sometimes produces words (such as question

O5, negate-all), they can safely add a call to sentence without thinking about why their

code does what it does. The procedures that are used to construct lists, on the other hand,

are much more picky about what they will work with. Students are forced to learn the

difference between combining two one-word lists and two words, and they may pay more

attention to data types when they are thinking about sentences. This is a reasonable expla-

nation for many of the students who did not find the difference between words and sentences

important, especially in O5 (negate-all) and O6 (divide-by-largest), but also for those

in O1 and O3 who were not sure whether 2 or 2 3 4 were numbers or sentences. How-

ever, this does not explain why many students believed that (bf ’(1 2)) was actually the

number 2 or why others had trouble with empty words and sentences.

A possible explanation for students’ troubles with empty words is that, while the two

parentheses of empty sentences imply a sentence with no words left, empty quotation marks

do not imply a word with no letters left. Repeatedly taking the butfirst of a sentence

makes it get smaller, while repeatedly taking the butfirst of a word makes it get smaller

only until it becomes empty and (from the students’ point of view) bigger than a one-letter

word. This idea is supported by the number of students who did not recognize "" as the

empty word when they dealt with ("") in questions E3 and E4, but it cannot explain the

students who recognized the empty word in question E5 but said that it “knows not to say

anything.” Nevertheless, this explanation is compatible with the use of analogies or the

collection model.

During interviews, several students proposed that the reason they had trouble with

question O1 was that they thought of numbers and words differently. While they might

have thought (bf ’(1 2)) was the number 2, they would have thought (bf ’(how now))

was the sentence (now). This was never tested during any of the interviews, primarily

because students encountered this situation in lab and made the same mistakes.

107

5.3 Success or Failure of Treatments

The results of the various interventions appear to be mixed. The students of Summer

A appeared to do better than students of other semesters on sentence questions during the

final round of interviews. Their mean scores were significantly higher than those in Spring

A (p < .01). The difference was nearly significant for Fall A (p = .056) and Spring B

(p = .082). It is possible that this difference is due to the small number of students who

participated in the last round of interviews, or because the summer students had more time

to focus on CS 3. However, one key difference between the Summer and Fall A semesters

was that approximately half of the first midterm review session for the summer focused on

the differences between Scheme and English and the behavior of procedures such as first,

butfirst, last, butlast, and empty?, while little of the fall midterm review dealt with

these topics. Summer A was not the first time students had been exposed to a long “Scheme

is not English” discussion. I had tried much the same thing in several previous semesters,

and I had no success. It is possible that, having done the “Comparing English and Scheme”

homework, the students were at least willing to consider alternate lines of reasoning, and

that the review session provided one. Something similar may have happened with empty

words in Spring B. Students in the second round of interviews in Spring B did significantly

better than students in the second rounds of either Spring or Fall A (p < .05), and they

appeared to do better in the final round than either students in Spring A (p < .05) or

Fall A (p > .1, probably due to the small number of students in the final round of Spring

B). On the first day that students worked with sentences, they encountered WebScheme

activities that convinced them their initial suspicions about empty objects were wrong.

These activities were followed perhaps an hour later by the Pez r© analogy, which provided

students with a model for empty words and sentences, something that neither English nor

real-world collections could do.

Students in the final rounds of interviews in Summer A, Fall A, and Spring B did about

as well when given sentence questions as when given list questions, and while those in Fall

108

A and Spring B did not do significantly better than those in Spring A, the results were close

to significance.

Students in later semesters did significantly better on questions about a sentence with

an empty word. This suggests that the Pez r© may have given students a working analogy

for empty words and sentences.

There are several potential reasons for the generally limited success of the treatments.

First, it is possible that students did not really refine their use of English analogies. Even

after the various interventions, some students spontaneously contrasted English and Scheme

sentences, probably because they saw a good connection between the two. Instead of learn-

ing to be careful when using analogies, students may have learned to be careful when talking

to TAs and other CS 3 staff. On several occasions, students who were asked about elements

of English and Scheme said something like, “Oh, not this again!” Students may have been

aware of the emphasis on this topic and thus may have taken care that their explanations

during the interview did not involve analogies to English. This is unlikely, however, as

students proved to have enormous difficulty remembering a series of activities they had

done in lab just one week before the interviews. Students answering question E7 were asked

whether they remembered certain activities that were directly related to the question. Even

among the student who gave the right answer to E7, very few remembered having seen any

of the activities.

Another option is that students were more careful with English analogies, but they found

other reasons to make the same mistakes. It may be that students need more than to be

told to think about the differences between words and sentences. Homework activities like

“Comparing English and Scheme” may help students realize that analogies to English are

not as useful as they might seem, but they do not help the students find other, more useful

models. This is a more likely option, since similar mistakes have been seen in students

taking classes very different from Berkeley’s current CS 3. The collection model is one

possibility, although there could be others.

109

Treatment Success Possible Reason
Pez r© Probable This may have given students an analogy for empty words.

Students said it did not help with other sentence issues. It
was the only activity to target empty words and sentences in
Fall A.

Comparing English
and Scheme (Sum-
mer A)

Unknown This may have encouraged students to consider the normative
explanations given during the midterm. However, it was only
used in one semester.

Comparing English
and Scheme (Fall A
and Spring B)

Probable This may have encouraged students to pay attention to their
use of English and Scheme. It was the only activity in Fall A
that targeted English and Scheme.

Defining Terms Unknown This was only used in Spring B. Students in this semester only
outperformed students in Fall A on empty words and sen-
tences, and this activity does not specifically focus on them.
Given that students sometimes failed to think about empty
words and sentences at all, it is unlikely that they found this
activity very useful.

WebScheme Probable The WebScheme activities encouraged students who thought
that empty words or sentences were literally nothing to talk to
their TAs. This may have primed students to respond well to
the Pez r© analogy. Students in Spring B did better with one-
word sentences containing empty words than either Spring or
Fall A.

Table 5.3: Success and Failure of Treatments.

A third option is that the activities were not properly integrated. Perhaps students

should be asked to think about definitions before a TA conducts a discussion on the nor-

mative meanings for these terms, as suggested by Linn and Eylon (in press).

5.4 Limitations and Weaknesses

The findings described here are limited for several reasons. The most important is that

the interviews were not audiotaped. Data comes from students’ written work and notes

the interviewers made. Interviewers were given a list of utterances to listen for and write

down, and they wrote additional notes whenever a student said something they considered

interesting. As a result, it is impossible to confirm the interviewers’ impressions about the

speed with which students solved problems or their willingness to believe they had made

mistakes. It is also impossible to measure the frequency of certain utterances that only

110

became significant after they were said by so many students. Finally, it is possible that the

interviewers missed some instances of the things they were supposed to mark down.

Individual interviewers may have biased students’ responses, possibly by the way they

read instructions, asked or answered questions, or corrected students. For example, giving

instructions in a certain way for question O6, divide-by-largest, might persuade a stu-

dent to focus on (or avoid) the test cases. However, two of the interviewers conducted a

substantial majority of the interviews, and answers given by the students in each group do

not differ significantly. Unless both interviewers biased students in the same direction, it is

unlikely that interviewers significantly skewed the results.

The main source of data for this project is the students’ scratch work and written

answers. While there are many questions that cannot reliably be answered because of

weaknesses in coding or transcription, the students’ written work, and thus the finding of a

difference in scores between students answering list or sentence questions, should be reliable.

111

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This research has examined some of the mistakes of students learning Scheme in UC

Berkeley’s CS 3 class. Like many students, those I studied had trouble understanding

collections of objects. Simply Scheme describes two kinds of collections. Scheme sentences

are collections of words, and words are collections of one-letter words. Sentences, words, and

many of the procedures in Simply Scheme were given familiar names to make them friendlier

and more understandable than standard Scheme. However, because students recognize these

familiar, friendly names, they assume they know how everything works. English definitions

for sentences and words do not adequately explain the behavior of Scheme sentences and

words. In particular, they do not explain parentheses or empty words and sentences.

Students often hold fast to misconceptions (Chi, 2005; Fischbein, Deri, Nello, & Marino,

1985; Groves & Pugh, 2002; Kim & Pak, 2002; McCloskey, 1983; Taylor, 1990), possibly

because their so-called misconceptions are perfectly valid in other places and at other times

(Smith et al., 1993). English and other natural languages are useful when trying to un-

derstand programming languages, but only under the right circumstances. Merely telling

112

students they are wrong when they write sentences without parentheses or misunderstand

empty words or sentences is the wrong approach. Most students can think of instances

when they successfully used natural language to make sense of Scheme, so they probably

will not understand why it failed this time. Instead, these students need to be confronted

with evidence that their assumptions are wrong and encouraged to think about the limita-

tions of their understanding. In this way, they will develop a better idea of when they can

and cannot safely use natural language to understand Scheme.

Unfortunately, convincing students not to rely too much on natural language does not

correct every mistake. Students appear to fall back on the collection model, another idea

that works well in the real world but not so well in a formal situation like Scheme. If we

want students to develop a solid understanding of parentheses, empty words and sentences,

and how to successfully reason about Scheme, we need to encourage them to think more

about these topics and, when they are ready, provide them with more details.

6.2 Implications for Instruction

Both teachers and students need to be aware of those aspects of a programming language

which overlap with students’ real-world experiences. While it is tempting to assume that

familiarity will help students learn the material, familiarity may also convince them that

there is nothing new to learn. Instructors should not completely discourage the use of

real-world knowledge, since analogies and natural language are powerful tools for problem

solving. Linn and Eylon (in press) suggest four steps for helping students:

1. elicit students’ ideas

2. introduce new ideas

3. help students develop criteria for evaluating ideas

4. help students use their criteria

113

Following these steps, students should be asked to think of real-world meanings for the

terms they will learn. What connotations do the words have? What denotations do they

have? The term “empty,” for example, may mean “meaningless,” “lacking in some specified

quality or object,” or “containing nothing,” while it may also be closely associated with

“nothing” or “zero.” This could be done through a TA-coordinated in-class discussion or as

an online discussion during lab. An example of this kind of activity is the “Defining Terms”

homework, although it would work better as an in-class assignment.

Once students have listed possible meanings for key terms, they should be given a

basic introduction to these terms in the context of the class. A complicated or difficult

introduction may encourage students to quickly adopt real-world meanings rather than

consider the new, technical meanings (Waltz et al., 2000; Tohill & Holyoak, 2000). The

introduction should be enough to allow students to complete the next two steps, but it

should also leave them with enough time to do those steps before class is over.

Once students have both real-world and technical meanings, they need to learn how

to tell which to use. Instruction should help them develop useful heuristics for predicting

the behavior of code and criteria for differentiating between good and bad outcomes in a

program.1 Some of these might be

• Given the choice between giving an error message and producing a reasonable answer,

a program should (probably) produce a reasonable answer.

• Given the choice between giving an error message and producing an answer that is

confusing or wrong, a program should (probably) give an error message.

• It is (usually) better for a program to behave in a consistent way.

• A procedure should do exactly what it is asked to do, not more or less.
1Most students know on some level that programs should behave consistently, produce reasonable answers,

and not give error messages unless they have to, but they do not always know when to apply these ideas.
In a later semester, I wrote (first ’("")), (empty? ’("")), (bf ’(1)), (bl ’(1)), (bf ’(1 2)), (bl
’(1 2)), (bf ’()), (bl ’()), (bf ’(1 2 3 4)), and (bl ’(1 2 3 4)) on the board and asked students to
think of likely results of evaluating each. Students were unsure which results were correct until I proposed
using these rules of thumb.

114

• Data that is worthless in one situation may be valuable in another.

Students could be given small programming problems that each highlight one or two heuris-

tics. Once the students have finished, or at least worked on, all of them, the TA could

conduct a discussion that makes these points explicit.

Finally, once students have real-world and technical definitions and criteria to help

them decide which meanings are most reasonable, instruction should help them understand

the implications of each possible meaning. Students may not realize that there are many

reasonable definitions for a familiar term or that different definitions can be used to reach

very different conclusions about the behavior of a programming language. Depending on

which meaning(s) of empty a student considers, ("") might be empty because it contains

no letters (lacking a specified quality or object), because it conveys no useful information

(meaningless), or because it contains only "", which is empty (empty is like nothing, and

something is empty if it contains nothing). Similarly, it could be non-empty because ""

has some strange meaning to Scheme (not meaningless) or because it contains a word (not

lacking in some specified quality or object, or not containing nothing). This can be done

through a TA-coordinated class discussion in which students are presented with segments

of code and asked to list possible answers and decide which are the most likely. I conducted

one of these discussions after the Spring B semester, and my students were unusually active.

All of this needs to be done early. Many of the students in the Spring A semester

argued when interviewers told them they were wrong and were able to give reasons for

some of their mistakes. While the changes to the Fall A curriculum were not particularly

effective at helping students reach the right answer, they did appear to leave students willing

to consider alternatives. Intervention needs to occur before students have decided that all

of their real-world knowledge is applicable to programming.

Instructors should also give careful consideration to analogies they wish to use in class.

While an analogy may be designed to explain a few points, students might apply it in

other situations and thus reach very non-normative conclusions that, by the instructor’s

115

own explanation, should be correct. An instructor planning to make heavy use of one or

more analogies should make sure students understand when the analogies break down.

6.3 Future Work

There are three primary directions for continued research. First, I could continue search-

ing for models students use to understand sentences and empty objects. Second, I could

examine other issues that I noticed in the interviews but did not actively pursue. Third, I

could examine similar problems in other conditions.

Continuing This Research

Several questions still need better answers. Are students using the collection model? Is

this the only other model they are using? Do they still use any of the English model? There

are several ways to examine students’ preferred analogies during interviews. First, students

could be asked to generate, explain, and work with their own analogies. How accurate and

complete are student-generated analogies? How comfortable are students with them? How

much do their analogies overlap with either English or collections?

Second, students could be asked to compare and contrast English sentences and Scheme

sentences, some suitable instance of a collection and Scheme sentences, and possibly a

student-generated analogy and Scheme sentences. Students should be able to list more

differences between the two that are most alignable (Gentner & Markham, 1994). While

explicitly asking students to compare and contrast will show which pair has the best align-

ment, it will not show which analogies students spontaneously use. Asking students to

describe Scheme sentences and one or more of the alternatives in two separate questions

would allow students to compare and contrast when they feel it is reasonable.

Third, students could be given a set of short problems and asked to predict all reason-

able answers. When I tried this early in the semester, I found that students could list a

116

number of reasonable answers but could not decide which were correct without some sort

of heuristic (see page 113). Students should be able to pick answers if they are told to use

a specific analogy. Does the pattern of answers generated by using English sentences differ

significantly from the pattern generated by using a collection? If the two are essentially the

same early in the semester, will they be different at the end of the semester?

For that matter, if students abandon the English model, what are the results? Smith

et al. (1993) would argue that it is not always wise to get students to throw out a mis-

conception, since many misconceptions are good ideas that have not been properly applied.

Collins and Gentner (1987) and M. D. Williams et al. (1983) give instances of students

making good use of multiple incorrect mental models by considering the predictions of all

of their models, even if each is wrong in some way. One secret to building a superior mental

model appears to be thoughtfully combining multiple inferior models rather than trying to

build up one perfect model at the expense of all others.

Another question unanswered by this research is how students’ native cultures and

languages affect their understanding of sentences and empty objects. One-word sentences

are completely acceptable in Japanese, for example, because the subject can often be implied

by the form of a verb. How are the concepts “empty,” “nothing,” and “collection” treated

in other languages and cultures?

Students interviewed after the first rounds of interviews in Fall A and Spring B ap-

peared much more willing to consider our explanations than students from Spring A. In

several cases, when interviewers explained how sentences and words worked, students were

pleasantly surprised and asked why this had not been mentioned before. Clearly, we need

to take advantage of this. If we wait until students have refined their use of English and

then give them a quick review of the details of words and sentences, will they do better?

What would be the results of giving students different models for empty sentences and

words? It would be good to develop an analogy that, unlike the bagel or Pez r© analogies,

meshes well with words and sentences. Empty words and sentences do not show up in

117

literature. Rather than writing, “He said ‘’,” a good author might write “He said nothing.”

However, there is a precedent for empty words and sentences in sequential art (comic books

and similar media). When drawing a scene in which a character is quite clearly unable to

find anything to say, some artists will draw a full-size word balloon and put only “. . . ” in

it. Space on the page is precious, so the ellipsis must be quite significant. Writer/artist Lea

Hernandez says that she uses them “when the only other thing I could say would involve

the word ‘Fuck!’ ” (personal communication, 21 February 2004). Clearly, while an ellipsis

means the character is saying nothing, the ellipsis itself says a great deal. Two other possible

examples of real-world empty sentences are someone who is completely speechless or who

uses body language to convey a whole thought.

Could the editor students use to write Scheme and the interpreter they use to run

Scheme be modified to help them see sentences and empty words as things? Both of these

programs are capable of color-coding different parts of a Scheme program. If they used

one background color for sentences and another for words, so that a sentence would be a

visually distinct entity, would students be more likely to think of sentences as objects rather

than as collections of objects? Similarly, since empty words or sentences would have the

same background color as other words or sentences, would students think of them as regular

words or sentences instead of special cases? Would the common colors encourage them to

see "" as still a genuine word and () as a genuine sentence?

Examining Related Topics in CS 3

In English, the statement “If today is Saturday or today is Sunday, today is a weekend.

Otherwise, it is a weekday.” means the same things as “If today is Saturday or Sunday, it is a

weekend. Otherwise, it is a weekday.” The question “Is today Saturday or is today Sunday?”

is written in Scheme as (or (equal? today ’saturday) (equal? today ’sunday)).

This is as close to a word-for-word translation as is likely to be found in programming.

Many students, however, assume that a similar word-for-word translation would render the

118

shorter “Is today Saturday or Sunday?” as (equal? today (or ’saturday ’sunday)).

These students are wrong, because while and and or determine whether they have been

given true statements, the true statements are (equal? today ’saturday) and (equal?

today ’sunday), not just the words saturday and sunday. When students who had made

a mistake like this were asked to explain their code, they gave the short English translation.

These students had only been taught to use and and or with true and false statements, and

they had never seen either used in any situation like this. They came up with this use of

and and or on their own, presumably because it sounded logical in English.

Several of the warm-up questions in the first set of interviews in Spring A included

questions that dealt with numbers as words. Students did not do very well on these ques-

tions. Like all other words, numbers can be taken apart with first and butfirst and put

together with word. By and large, students can go through CS 3 without ever caring that

numbers are words. However, there are certain projects that require numbers to be words.

For example, see the description of the number-spelling program on page 51. Do students

have trouble because they do not think of numbers as words in these cases?

A third problem in CS 3 involves the procedures keep and every. These proce-

dures are introduced in the same chapter, but they do very different things. keep acts

as a filter, keeping certain words in a sentence and discarding others. (keep weekday?

’(sunday monday tuesday wednesday thursday friday saturday)) returns the sen-

tence (sunday saturday), assuming that someone has written weekday?. The procedure

every, on the other hand, does something to every word of a sentence. (every square

’(1 2 3 4)) returns the sentence (1 4 9 16). Students run into trouble when they

translate “Keep every weekday” into (keep every weekday? ’(sunday monday tuesday

wednesday thursday friday saturday)).

119

Examining Similar Topics in Other Areas

How do students learning Scheme with other textbooks or different course styles under-

stand empty and one-element lists? Do students who use Simply Scheme in other univer-

sities have the same problems? Do the students in Berkeley’s next computer science class,

CS 61A, have these problems? What differences are there among CS 61A students who

have also taken CS 3 and those who started with 61A?

As Fischbein and Baltsan (1998–1999), Grillmeyer (1997), Van Someren (1990), and

Zazkis and Gunn (1997) have found, students in many situations experience problems similar

to Berkeley’s CS 3 students. To see how much influence words and sentences might have

on students, someone must study students in other Scheme classes. Do students who use

Simply Scheme tend to have more trouble with these topics than students who start with

raw, unpronounceable Scheme? What models do other groups of students use to understand

parentheses or empty objects?

Scheme is not the only language to have empty objects. Most languages can have

empty strings, and many can have empty lists. However, some languages treat empty or

one-element lists differently. Empty words, sentences, and lists are considered “true” in

Scheme, but empty lists are false in languages such as Lisp, Perl, and Matlab, and empty

strings are false in Perl and Matlab. In no case does this make an empty list or string a

non-thing, but it may encourage students to think otherwise. Java has both empty (length

zero) lists and null lists, and the two are quite different.

How do students learning other languages think about one-element lists or strings? Does

someone learning C grasp the difference between the string "a" and the character ’a’? How

do students learning Matlab handle the fact that a number, a vector (a list of numbers),

and a matrix (a list of vectors) are all the same? This would seem to avoid confusion over

one-element vectors, but does it introduce different confusion, above and beyond that of

linear algebra itself?

120

What other related problems do students have with other languages? I have seen some

of the problems students have with “and” and “or” in Java. In Java, “and” is && and “or”

is ||, so code does not look much like English. However, these students thought about it as

though it did. They made a number of mistakes with “and” that worked perfectly well in

English. For example, one wrote something like if(x > 3 && < 7), which he said meant

“If x is greater than three and less than seven.” Another asked if he could write something

like if(x || y < 0) to express “If x or y is less than zero.” After a little bit of thinking,

he decided that it probably would not work, even though he felt it should.

Problems with empty words and sentences may be closely related to problems with

zero that many students have. Students have difficulty understanding zero as a concept

(Bialystok & Codd, 2000; Pepperberg & Gordon, 2005). Furthermore, students who can

(presumably) grasp the idea of zero may have trouble with it in other contexts. For example,

beginning algebra students who can solve y+3x = 5x by moving the 3x to the other side and

subtracting (to get y = 5x− 3x) may have trouble with y +5x = 5x, since the intermediate

step is y = 5x− 5x, and 5x− 5x is “nothing.”

Schoenfeld (1998) describes the problems one class had understanding division with

exponents. The students were fine with something like x5/x3, which comes out to x2, but

they had trouble with problems like x5/x5, which is x0 or 1. Students thought the answer

should be zero, since there was nothing left.

Changing the scale somewhat, how do expert programmers use analogies? Do they use

them frequently or sparingly? What kinds of analogies do they favor? Do they regularly

switch to natural language when trying to make sense of difficult problems, as do Taylor’s

(1990) students? Under what circumstances are they led astray by their analogies? A better

understanding of experts’ analogies could help us understand students’ use of analogies.

121

References

Abelson, H., Sussman, G. J., & Sussman, J. (1996). Structure and interpretation of computer

programs (2nd ed.). Cambridge, MA: The MIT Press.

Bialystok, E., & Codd, J. (2000). Representing quantity beyond whole numbers: Some,

none, and part. Canadian Journal of Experimental Psychology, 54 (2), 117–128.

Bonar, J., & Soloway, E. (1989). Preprogramming knowledge: A major source of miscon-

ceptions in novice programmers. In E. Soloway & J. Spohrer (Eds.), Studying the

novice programmer. Hilsdale, NJ: Lawrence Erlbaum Associates.

Borge, V. (2001). Phonetically speaking - and don’t forget the piano [CD]. Jasmine Music.

The Burlingame Pez Museum. (n.d.). (http://www.burlingamepezmuseum.com)

Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some mis-

conceptions are robust. Journal of the Learning Sciences, 14 (2), 161–199.

Clancy, M., Titterton, N., Ryan, C., Slotta, J., & Linn, M. (2003). New roles for stu-

dents, instructors, and computers in a lab-based introductory programming course.

In Proceedings of the 34th technical symposium on computer science education (pp.

132–136). Reno, NV, United States: ACM Press.

Collins, A., & Gentner, D. (1987). How people construct mental models. In D. E. Holland &

N. Quinn (Eds.), Cultural models in language and thought (pp. 243–265). Cambridge,

UK: Cambridge University Press.

122

Davis, E. A., Linn, M. C., & Clancy, M. J. (1995a). Learning to use parentheses and quotes

in LISP. Computer Science Education, 6, 15–31.

Davis, E. A., Linn, M. C., & Clancy, M. J. (1995b). Students’ off-line and on-line expere-

inces. Journal of Educational Computing Research, 12 (2), 109–134.

Davis, E. A., Linn, M. C., Mann, L. M., & Clancy, M. J. (1993). Minding your ps and qs:

Using parentheses and quotes in LISP. In C. R. Cook, J. C. Scholtz, & J. C. Spohrer

(Eds.), Empirical studies of programmers: Fifth workshop (pp. 62–85). Norwood, NJ:

Ablex Publishing Corporation.

Felleisen, M., Findler, R. B., Flatt, M., & Krishnamurthi, S. (2001). How to design

programs: an introduction to programming and computing. Cambridge, MA: MIT

Press.

Fischbein, E., & Baltsan, M. (1998–1999). The mathematical concept of set and the

‘collection’ model. Educational Studies in Mathematics, 37 (1), 1–22.

Fischbein, E., Deri, M., Nello, M. S., & Marino, M. S. (1985). The role of implicit models

in solving verbal problems in multiplication and division. Journal for Research in

Mathematics Education, 16 (1), 3–17.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive

Science, 7, 155–170.

Gentner, D. (1998). Analogy. In W. Bechtel & G. Graham (Eds.), A companion to cognitive

science (pp. 107–113). Oxford: Basil Blackwell.

Gentner, D. (1999). Analogy. In R. A. Wilson & F. C. Keil (Eds.), The MIT encyclopedia

of the cognitive sciences (pp. 17–20). Cambridge, MA: MIT Press.

Gentner, D., & Gentner, D. R. (1983). Flowing waters or teeming crowds: Mental models

of electricity. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 99–129).

Hillsdale, NJ: Lawrence Erlbaum Associates.

Gentner, D., & Markham, A. B. (1994). Structural alignment in comparison: No difference

without similarity. Psychological Science, 5 (3), 152–158.

123

Gentner, D., & Markham, A. B. (1997). Structure mapping in analogy and similarity.

American Psychologist, 52, 45–56.

Gentner, D., & Stevens, A. L. (Eds.). (1983). Mental models. Hillsdale, NJ: Lawrence

Erlbaum Associates.

Gentner, D., & Toupin, C. (1986). Systematicity and surface similarity in the development

of analogy. Cognitive Science, 10, 277–300.

Grillmeyer, O. (1997). Exploring computer science with scheme. New York, NY: Springer-

Verlag.

Groves, F. H., & Pugh, A. F. (2002). Cognitive illusions as hindrances to learning complex

environmental issues. Journal of Science Education and Technology, 11 (4), 381–390.

Harvey, B., & Wright, M. (1994). Simply scheme: introducing computer science. Cambridge,

MA: The MIT Press.

Hoadley, C. M., Linn, M. C., Mann, L. M., & Clancy, M. J. (1996). When, why and how

do novice programmers reuse code? In D. A. Boehm-Davis & W. D. Gray (Eds.),

Empirical studies of programmers, sixth workshop (pp. 109–130). Norwood, NJ: Ablex

Publishing Corporation.

Holyoak, K. J., & Hummel, J. E. (2001). Toward an understanding of analogy within a

biological symbol system. In D. Gentner, K. J. Holyoak, & B. K. Kokinov (Eds.), The

analogical mind (pp. 161–195). Cambridge, MA: The MIT Press.

Holyoak, K. J., & Thagard, P. (1997). The analogical mind. American Psychologist, 52 (1),

35–44.

Höök, K., Taylor, J., & Du Boulay, B. (1990). Redo “TRY ONCE AND PASS”: The

influence of complexity and graphical notation on novices’ understanding of Prolog.

Instructional Science, 19 (4/5), 337–360.

Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure: A theory

of analogical access and mapping. Psychological Review, 104 (3), 427–466.

124

Jarvis, S., & Odlin, T. (2000). Morphological type, spatial reference, and language transfer.

Studies in Second Language Acquisition, 22, 535-556.

Kim, E., & Pak, S.-J. (2002). Students do not overcome conceptual difficulties after solving

1000 traditional problems. American Journal of Physics, 70 (7), 759–765.

Kolikant, Y. B.-D. (2005). Students’ alternative standards for correctness. In Icer ’05:

Proceedings of the 2005 international workshop on computing education research (pp.

37–43). New York, NY, USA: ACM Press.

Lee, O., & Lehrer, R. (1988). Conjectures concerning the origins of misconceptions in Logo.

Journal of Educational Computing Research, 4 (1), 87–105.

Linchevski, L., & Vinner, S. (1988). The naive concept of sets in elementary teachers. In

Proceedings of the 12 th international conference, psychology of mathematics education

(Vol. 11, pp. 471–478). Vezprem, Hungary.

Linn, M. C., & Eylon, B.-S. (in press). Science education: Integrating views of learning

and instruction. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational

psychology, 2nd edition. Lawrence Erlbaum Associates.

McCloskey, M. (1983). Naive theories of motion. In D. Gentner & A. L. Stevens (Eds.),

Mental models (pp. 299–324). Hillsdale, NJ: Lawrence Erlbaum Associates.

Medin, D. L., Goldstone, R. L., & Gentner, D. (1993). Respects for similarity. Psychological

Review, 100 (2), 254–278.

Pea, R. (1986). Language-independent conceptual ’bugs’ in novice programming. Journal

of Educational Computing Research, 2 (1), 25–36.

Pepperberg, I. M., & Gordon, J. D. (2005). Number comprehension by a grey parrot (Psit-

tacus erithacus), including a zero-like concept. Journal of Comparative Psychology,

119 (2), 197–209.

Piaget, J. (1926/1972). The child’s conception of the world. Towota, NJ: Littlefield Adams.

Ryan, J. N. (1985a). The language gap: Common words with technical meanings. Journal

of Chemical Education, 62 (12), 1098–1099.

125

Ryan, J. N. (1985b). The secret language of science or, radicals in the classroom. The

American Biology Teacher, 47 (2), 91.

Scherz, Z., Goldberg, D., & Fund, Z. (1990). Cognitive implications of learning Prolog—

Mistakes and misconceptions. Journal of Educational Computing Research, 6 (1),

89–110.

Schmidt, H.-J. (1997). Students’ misconceptions—Looking for a pattern. Science Education,

81 (2), 123–135.

Schoenfeld, A. H. (1998). Towards a theory of teaching-in-context. Issues in Education,

4 (1), 1–94.

Scholtz, J., & Wiedenbeck, S. (1993). An analysis of novice programmers learning a second

language. In C. R. Cook, J. C. Scholtz, & J. C. Spohrer (Eds.), Empirical stud-

ies of programmers: Fifth workshop (pp. 187–205). Norwood, NJ: Ablex Publishing

Corporation.

Smith, J. P., III, diSessa, A. A., & Roschelle, J. (1993). Misconceptions reconceived: A

constructivist analysis of knowledge in transition. Journal of the Learning Sciences,

3 (2), 115–163.

Spellman, B. A., & Holyoak, K. J. (1996). Pragmatics in analogical mapping. Cognitive

Psychology, 31, 307–346.

Spohrer, J. C., & Soloway, E. (1986). Analyzing the high frequency bugs in novice programs.

In E. Soloway & S. Iyengar (Eds.), Empirical studies of programmers (pp. 230–251).

Norwood, NJ: Ablex Publishing Corporation.

Stacey, K., & MacGregor, M. (1993). Origins of students’ errors in writing equations. In

A. B. . T. Cooper (Ed.), New directions in algebra education. Brisbane: Queensland

University of Technology.

Stevens, A., Collins, A., & Goldin, S. E. (1979). Misconceptions in students’ understanding.

Journal of Man-Machine Studies, 11, 145–156.

126

Taylor, J. (1990). Analysing novices analysing Prolog: What stories do novices tell them-

selves about Prolog? Instructional Science, 19 (4/5), 283–309.

Tohill, J. M., & Holyoak, K. J. (2000). The impact of anxiety on analogical reasoning.

Thinking and Reasoning, 6 (1), 27–40.

Van Someren, M. W. (1990). Understanding students’ errors with Prolog unification.

Instructional Science, 19 (4/5), 361–376.

Waltz, J. A., Lau, A., Grewal, S. K., & Holyoak, K. J. (2000). The role of working memory

in analogical mapping. Memory and Cognition, 28 (7), 1205–1212.

Wiedenbeck, S., & Scholtz, J. (1996). Adaptation of programming plans in transfer between

programming languages: A developmental study. In D. A. Boehm-Davis & W. D. Gray

(Eds.), Empirical studies of programmers, sixth workshop (pp. 233–253). Norwood,

NJ: Ablex Publishing Corporation.

Williams, H. T. (1999). Semantics in teaching introductory physics. American Journal of

Physics Teachers, 67 (8), 670–680.

Williams, M. D., Hollan, J. D., & Stevens, A. L. (1983). Human reasoning about a simple

physical system. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 131–154).

Hillsdale, NJ: Lawrence Erlbaum Associates.

Zazkis, R., & Gunn, C. (1997). Sets, subsets, and the empty set: Students’ constructions

and mathematical conventions. Journal of Computers in Mathematics and Science

Teaching, 16 (1), 133–169.

127

Appendix A

Interview Questions

A.1 Spring A

First Interview

1. What is (number? (word 1 2 3 4 5))?

2. What does this procedure do?

(define (mystery x)
(if (word? x)

(+ x 0)
x))

3. Describe the domain and range of this procedure:

(define (mystery2 x)
(cond
((word? x) x)
((number? x) (/ x 0))
((boolean? x) #f)
((sentence? x) (first x))
(else x)))

4. Let’s say we already have vowel? written. Now I want to define consonant?. Will

this work?

128

(define (consonant? L)
(not (vowel? L)))

5. If you type (first (’a b)), Scheme gives you just a. If you type (word (first

’(a b)) ’nd), Scheme gives you and. However, if we replace (first ’(a b)) with

a, the answer we know Scheme will give, Scheme complains. This doesn’t seem right.

What do you think is going on here?

6. What is (bf ’(1 2))?

7. What is (bl ’(1 2))?

8. What is (bf ’(1 2 3 4))?

9. What is (bl ’(1 2 3 4))?

10. What is (bf ’(1))?

11. What is (bl ’(1))?

12. What is (empty? ’(""))

13. What is (first ’(""))

14. Here is something that you might have been asked to do in homework or on a test:

Write a procedure called sum-of-square-roots, which takes two numbers, x and y,

finds the square root of each, and returns the sum of those square roots. x and y will

not be negative numbers.

One student writes this as an answer on the test:

(define
(sum-of-square-roots x y)
(if (or (< x 0) (< y 0)) ;;line 1

’() ;;line 2
(+ (sqrt x) (sqrt y)))) ;;line 3

Why did this person include lines 1 and 2?

129

Second Interview

Main Sheet

• What is (bf ’(1 2))?

• What is (bf ’(1 2 3 4))?

• What is (bf ’(1))?

• What is (empty? ’(""))?

• What is (first ’(""))?

• The procedure negate-all takes a sentence of numbers and swaps their signs. In

other words, it returns a sentence with all of those numbers multiplied by −1. It

doesn’t have to work with an empty sentence. Here’s a version somebody wrote.

Does it work? How do you know? Test it for at least the following sentences: (1),

(-1 2 -3), and (10 20 30 40 -50).

(define (negate-all sent)
(if (empty? (bf sent))

(* -1 (first sent))
(se (* -1 (first sent))

(negate-all (bf sent)))))

• This summer we had students write a program called number-spell, which takes a

number and returns a sentence with that number written out in words. For example,

(number-spell 11000 should give (eleven thousand). Don’t worry, you won’t

have to write this!

Students made a lot of mistakes on this. Here are four examples:

c One student’s program spelled 11000 as (eleven thousand zero zero zero)

c One student’s program spelled 11000 as (eleven thousand zero)

c One student’s program spelled 11000 as (eleven thousand "")

130

c One student’s program spelled 11000 as (ten one thousand)

Which of these sound like the most serious error to you? Which sound like the least

serious? Why?

• You and a friend are working on a homework problem together. Let’s say this home-

work is a group project, so you aren’t cheating. Here is the problem: Write a procedure

called divide-by-largest, which takes a sentence of numbers and divides every num-

ber in it by the largest number. For example, (divide-by-largest ’(1 2 3 4 3 2

1)) should give you (0.25 0.5 0.75 1 0.75 0.5 0.25).

Your friend writes some of the code, but you write the rest. Here is your code:

(define (divide-by-largest sent)
(divide-sentence-by sent (sent-max sent)))

;;divide-sentence-by should take a number and divide ;;all of the numbers
in that sentence by that num (define (divide-sentence-by sent num)
(if (empty? sent)

’()
(se (/ (first sent) num)

(divide-sentence-by (bf sent) num))))

You try (divide-by-largest ’(1 2 3 4 3 2 1)) and get an error!

Second Sheet

[This sheet was handed out when students got to Problem 7. It was folded so that

students could see either the code or the test cases, but not both.]

Here is your friend’s code. Can you find the error?

;;sent-max should take a sentence and return the smallest
number in it (define (sent-max sent)
(cond ((= (count sent) 1)

sent)
((> (first sent) (first (bf sent)))

(sent-max (se (first sent) (bf (bf sent)))))
(else (sent-max (bf sent)))))

131

Your friend sends you some test cases that he or she says will prove that sent-max

works. Can you find the error?

>
(sent-max ’(55)) (55) > (sent-max ’(1 2 3 4 3 2 1)) (4) > (sent-max ’(-3
-2 -1)) (-1)

Third Interview

Sentence Questions, Main Sheet

1. The procedure negate-all takes a sentence of numbers and swaps their signs. In

other words, it returns a sentence with all of those numbers multiplied by −1. It

doesn’t have to work with an empty sentence. Here’s a version somebody wrote.

Does it work? How do you know? Test it for at least the following sentences: (1),

(-1 2 -3), and (10 20 30 40 -50).

(define (negate-all sent)
(if (empty? (bf sent))

(* -1 (first sent))
(se (* -1 (first sent))

(negate-all (bf sent)))))

2. What is (bf ’(1 2))?

3. What is (bf ’(1 2 3 4))?

4. What is (bf ’(1))?

5. What is (empty? ’(""))?

6. What is (first ’(""))?

7. You and a friend are working on a homework problem together. Let’s say this home-

work is a group project, so you aren’t cheating. Here is the problem: Write a procedure

132

called divide-by-largest, which takes a sentence of numbers and divides every num-

ber in it by the largest number. For example, (divide-by-largest ’(1 2 3 4 3 2

1)) should give you (0.25 0.5 0.75 1 0.75 0.5 0.25).

Your friend writes some of the code, but you write the rest. Here is your code:

(define (divide-by-largest sent)
(divide-sentence-by sent (sent-max sent)))

;;divide-sentence-by should take a number and divide ;;all of the numbers
in that sentence by that num (define (divide-sentence-by sent num)
(if (empty? sent)

’()
(se (/ (first sent) num)

(divide-sentence-by (bf sent) num))))

You try (divide-by-largest ’(1 2 3 4 3 2 1)) and get an error!

Sentence Questions, Second Sheet

This sheet was the same as that handed out in the second interview.

List Questions, Main Sheet

1. The procedure negate-all takes a list of numbers and swaps their signs. In other

words, it returns a list with all of those numbers multiplied by −1. It doesn’t have

to work with an empty list. Here’s a version somebody wrote. Does it work? How

do you know? Test it for at least the following lists: (1), (-1 2 -3), and (10 20 30

40 -50).

(define (negate-all lst)
(if (null? (cdr lst))

(* -1 (car lst))
(cons (* -1 (car lst))

(negate-all (cdr lst)))))

2. What is (cdr ’(1 2))?

133

3. What is (cdr ’(1 2 3 4))?

4. What is (cdr ’(1))?

5. What is (null? ’(()))?

6. What is (car ’(()))?

7. You and a friend are working on a homework problem together. Let’s say this home-

work is a group project, so you aren’t cheating. Here is the problem: Write a procedure

called divide-by-largest, which takes a list of numbers and divides every number

in it by the largest number. For example, (divide-by-largest ’(1 2 3 4 3 2 1))

should give you (0.25 0.5 0.75 1 0.75 0.5 0.25).

Your friend writes some of the code, but you write the rest. Here is your code:

(define (divide-by-largest lst)
(divide-sentence-by lst (list-max lst)))

;;divide-list-by should take a number and divide ;;all of the numbers in
that list by that num (define (divide-sentence-by lst num)
(if (null? lst)

’()
(cons (/ (car lst) num)

(divide-list-by (cdr lst) num))))

You try (divide-by-largest ’(1 2 3 4 3 2 1)) and get an error!

List Questions, Second Sheet

Here is your friend’s code. Can you find the error?

;;list-max should take a list and return the smallest
number in it (define (list-max lst)
(cond ((= (length lst) 1)

lst)
((> (car lst) (car (cdr lst)))

(list-max (cons (car lst) (cdr (cdr lst)))))
(else (list-max (cdr lst)))))

134

Your friend sends you some test cases that he or she says will prove that list-max

works. Can you find the error?

>
(list-max ’(55)) (55) > (list-max ’(1 2 3 4 3 2 1)) (4) > (list-max ’(-3
-2 -1)) (-1)

A.2 Summer A

First Interview

1. What is (bf ’(1 2))?

2. What is (bl ’(1 2))?

3. What is (bf ’(1 2 3 4))?

4. What is (bl ’(1 2 3 4))?

5. What is (bf ’(1))?

6. What is (bl ’(1))?

7. What is (empty? ’(""))

8. What is (first ’(""))

Second Interview

This was the same as the second interview in Spring A.

Third Interview

The sheets sheets were identical to those in the third interview in Spring A.

135

A.3 Fall A

First Interview

1. What is (bf ’(1 2))?

2. What is (bl ’(1 2))?

3. What is (bf ’(1 2 3 4))?

4. What is (bl ’(1 2 3 4))?

5. What is (bf ’(1))?

6. What is (bl ’(1))?

7. What is (empty? ’(""))

8. What is (first ’(""))

9. What do you think are the essential parts of an English sentence?

10. What do you think are the essential parts of a Scheme sentence?

Second Interview

Main Sheet

1. What is (bf ’(1 2))?

2. What is (bf ’(1 2 3 4))?

3. What is (bf ’(1))?

4. What is (empty? ’(""))?

5. What is (first ’(""))?

136

6. The procedure negate-all takes a sentence of numbers and swaps their signs. In

other words, it returns a sentence with all of those numbers multiplied by −1. It

doesn’t have to work with an empty sentence. Here’s a version somebody wrote.

Does it work? How do you know? Test it for at least the following sentences: (1),

(-1 2 -3), and (10 20 30 40 -50).

(define (negate-all sent)
(if (empty? (bf sent))

(* -1 (first sent))
(se (* -1 (first sent))

(negate-all (bf sent)))))

7. You and a friend are working on a homework problem together. Let’s say this home-

work is a group project, so you aren’t cheating. Here is the problem: Write a procedure

called divide-by-largest, which takes a sentence of numbers and divides every num-

ber in it by the largest number. For example, (divide-by-largest ’(1 2 3 4 3 2

1)) should give you (0.25 0.5 0.75 1 0.75 0.5 0.25).

Your friend writes some of the code, but you write the rest. Here is your code:

(define (divide-by-largest sent)
(divide-sentence-by sent (sent-max sent)))

;;divide-sentence-by should take a number and divide ;;all of the numbers
in that sentence by that num (define (divide-sentence-by sent num)
(if (empty? sent)

’()
(se (/ (first sent) num)

(divide-sentence-by (bf sent) num))))

You try (divide-by-largest ’(1 2 3 4 3 2 1)) and get an error!

8. What do you think are the essential parts of an English sentence?

9. What do you think are the essential parts of a Scheme sentence?

Second Sheet

Here is your friend’s code. Can you find the error?

137

;;sent-max should take a sentence and return the largest
number in it (define (sent-max sent)
(cond ((= (count sent) 1)

sent)
((> (first sent) (first (bf sent)))

(sent-max (se (first sent) (bf (bf sent)))))
(else (sent-max (bf sent)))))

Your friend sends you some test cases that he or she says will prove that sent-max

works. Can you find the error?

>
(sent-max ’(55)) (55) > (sent-max ’(1 2 3 4 3 2 1)) (4) > (sent-max ’(-3
-2 -1)) (-1)

Third Interview

Main Sheet

1. What is (bf ’(1 2))?

2. What is (bf ’(1 2 3 4))?

3. What is (bf ’(1))?

4. What is (empty? ’(""))?

5. What is (first ’(""))?

6. The procedure negate-all takes a sentence of numbers and swaps their signs. In

other words, it returns a sentence with all of those numbers multiplied by −1. It

doesn’t have to work with an empty sentence. Here’s a version somebody wrote.

Does it work? How do you know? Test it for at least the following sentences: (1),

(-1 2 -3), and (10 20 30 40 -50).

138

(define (negate-all sent)
(if (empty? (bf sent))

(* -1 (first sent))
(se (* -1 (first sent))

(negate-all (bf sent)))))

7. What is (every bf ’(1 22 333 4444))?

8. Explain what happens when Scheme evaluates (every square ’())

9. You and a friend are working on a homework problem together. Let’s say this home-

work is a group project, so you aren’t cheating. Here is the problem: Write a procedure

called divide-by-largest, which takes a sentence of numbers and divides every num-

ber in it by the largest number. For example, (divide-by-largest ’(1 2 3 4 3 2

1)) should give you (0.25 0.5 0.75 1 0.75 0.5 0.25).

Your friend writes some of the code, but you write the rest. Here is your code:

(define (divide-by-largest sent)
(divide-sentence-by sent (sent-max sent)))

;;divide-sentence-by should take a number and divide ;;all of the numbers
in that sentence by that num (define (divide-sentence-by sent num)
(if (empty? sent)

’()
(se (/ (first sent) num)

(divide-sentence-by (bf sent) num))))

You try (divide-by-largest ’(1 2 3 4 3 2 1)) and get an error!

10. What do you think are the essential parts of an English sentence?

11. What do you think are the essential parts of a Scheme sentence?

Second Sheet

This was the same as that given out in the second Fall A interview.

139

Fourth Interview

Sentence Questions, Main Sheet

This was the same as that given out in the third Fall A interview.

Sentence Questions, Second Sheet

This was the same as that given out in the second Fall A interview.

List Questions, Main Sheet

Main Sheet

1. What is (cdr ’(1 2))?

2. What is (cdr ’(1 2 3 4))?

3. What is (cdr ’(1))?

4. What is (null? ’(()))?

5. What is (car ’(()))?

6. The procedure negate-all takes a list of numbers and swaps their signs. In other

words, it returns a list with all of those numbers multiplied by −1. It doesn’t have

to work with a null list. Here’s a version somebody wrote. Does it work? How do

you know? Test it for at least the following lists: (1), (-1 2 -3), and (10 20 30 40

-50).

(define (negate-all lst)
(if (null? (cdr lst))

(* -1 (car lst))
(se (* -1 (car lst))

(negate-all (cdr lst)))))

140

7. What is (map bf ’(1 22 333 4444))?

8. Explain what happens when Scheme evaluates (map square ’())

9. You and a friend are working on a homework problem together. Let’s say this home-

work is a group project, so you aren’t cheating. Here is the problem: Write a procedure

called divide-by-largest, which takes a list of numbers and divides every number

in it by the largest number. For example, (divide-by-largest ’(1 2 3 4 3 2 1))

should give you (0.25 0.5 0.75 1 0.75 0.5 0.25).

Your friend writes some of the code, but you write the rest. Here is your code:

(define (divide-by-largest lst)
(divide-sentence-by lst (list-max lst)))

;;divide-sentence-by should take a number and divide ;;all of the numbers
in that list by that num (define (divide-sentence-by lst num)
(if (null? lst)

’()
(cons (/ (car lst) num)

(divide-list-by (cdr lst) num))))

You try (divide-by-largest ’(1 2 3 4 3 2 1)) and get an error!

10. What do you think are the essential parts of an English sentence?

11. What do you think are the essential parts of a Scheme list?

List Questions, Second Sheet

Here is your friend’s code. Can you find the error?

;;list-max should take a list and return the largest
number in it (define (list-max lst)
(cond ((= (length lst) 1)

lst)
((> (car lst) (car (cdr lst)))

(list-max (cons (car lst) (cdr (cdr lst)))))
(else (list-max (cdr lst)))))

141

Your friend sends you some test cases that he or she says will prove that list-max

works. Can you find the error?

>
(list-max ’(55)) (55) > (list-max ’(1 2 3 4 3 2 1)) (4) > (list-max ’(-3
-2 -1)) (-1)

A.4 Spring B

All handouts were the same as those in Fall A.

142

Appendix B

Changes in the Curriculum

These are all of the activities inspired by this research that were added to the CS 3

curriculum. Some of the reasons behind them and observations on their effectiveness are

included here for convenience, but most of the details can be found in earlier chapters.

B.1 Additions to Summer A

An Analogy for Words

This page (shown in Figure B.1) was added to the start of the second day’s lab materials.

Students saw a very basic introduction to words and sentences on the first day, and were

assumed to have done the readings that introduce words and sentences. The idea was to

offer students an analogy for words that explains first, butfirst, and empty words.

This lab reading was assigned to Summer A, Fall A, and Spring B students. In Summer

A, we accompanied it with a brief PezR© demonstration and free candy. Few students gave

any indication that they remembered this analogy during interviews; one who did said

that it helped him with butfirst but not with butlast, since a Pez r© dispenser can only

dispense candy from one end.

143

A sentence is a collection of words. A word is a collection of letters. Amazingly
enough, your TA or instructor will now explain how words and sentences are like Pez
candy dispensers. Here’s a basic summary of the argument:

• The sentence or word itself is the dispenser

• Individual words in the sentence or letters in the word are like the candies.

• Individual candies are in a specific order within the dispenser, just like individual
words or letters are in a specific order within the sentence or word.

• With a flip of your finger, you can separate the first candy (first) from the
dispenser and all of the rest of the candies (butfirst). You can use those two
procedures to separate the first word or letter from the rest of the sentence or
word.

• As long as it is your Pez dispenser, it’s OK to take the last candy out. It’s also
OK to take the first or butfirst of a one-word sentence or a one-letter word.

• People collect empty Pez dispensers. I promise I’m not making this up. If you
don’t believe me, check out the Burlingame Pez Museum. It’s equally OK in
Scheme to have an empty sentence (it looks like ()) or an empty word (it looks
like "").

• A Pez dispenser is only empty when it doesn’t have any candy at all in it. You
can’t just say it’s empty if the last thing in there is a candy you don’t like.
Likewise, you can’t say a sentence is empty just because you don’t like what it
contains. If "" is still a word, ("") is not an empty sentence.

Don’t go too crazy with the analogy, though. You can pop the top on a Pez dispenser
even after it’s empty, although you won’t get any candy. If you try to take apart an
empty word or sentence, Scheme throws a fit.

Figure B.1: An analogy for words.

Comparing English and Scheme

This activity (Figure B.2) was given as a review just before the first midterm. A

similar activity was designed to be given out as homework once students had leaned how

to combine conditionals (like if) and predicates (like empty?) with words and sentences.

This would have put it two labs after students had their first serious introduction to words

and sentences. Unfortunately, that activity was lost in the computer system we used in lab,

so this one was added at the end of the section on basic Scheme.

144

Both Scheme and English deal with numbers, words, and sentences. Sometimes Scheme
and English agree, but sometimes they do not. These differences can cause all kinds of
trouble on exams.

List as many ways that Scheme and English words, sentences, and numbers are alike as
you can think of. Then list as many ways that Scheme and English words, sentences,
and numbers are different as you can think of. Then comment on what other people
have said. Here are some things to consider:

1. If somebody says “No” in English, it doesn’t really matter if it is the word “no”
or the sentence “No.” You get the idea. How about Scheme? Is (no) the same
as no?

2. How are parentheses used in English? How about Scheme?

3. English doesn’t even have empty sentences or words. What do you think () or
"" are in Scheme?

4. Numbers and words are pretty different in English. For example, it’s OK if you
name a baby after a famous singer. It’s not OK if you name a baby after a famous
number (“This is 2.718281828. Isn’t she cute?”). What about in Scheme

Figure B.2: Comparing English and Scheme, Summer A.

This was intended to make students think about the analogies they might use. Ideally,

students would recognize that there were limits to how far they could carry analogies and

would thus be less likely to run wild with them, as they had in previous semesters. Despite

the fact that this activity was given out rather late, it may have helped make students aware

of the limitations of analogies to English.

The activity was given only to Summer A students.

B.2 Additions to Fall A

An Analogy for Words

The PezR© activity was again used this semester, although the TAs did not talk very

much about it or give out free candy.

145

Both English and Scheme have things called words and sentences. These are similar,
but not identical. List at least two ways in which English words or sentences are like
Scheme words or sentences and at least two ways in which they are not like Scheme
words or sentences. Also, make at least one intelligent comment on a classmate’s list.

Just so you know, things like “Yeah!” do not count as intelligent responses, no matter
how much thought you put into them.

Figure B.3: Comparing English and Scheme, Fall A and Spring B.

Comparing English and Scheme

This homework activity (Figure B.3) was intended to be given out the day students were

first formally introduced to words and sentences. However, the system again lost it, and it

was not given out until three labs (one and one-half weeks) later. The goal was to make

students think about the limitations of the analogies they might make between English and

Scheme.

Although given out late, this activity appeared to have some merit. As in the summer

semester, students were less likely to use English to justify their mistakes were more able to

recognize their errors when they made them. This activity was given to Fall A and Spring

B students.

B.3 Additions to Spring B

An Analogy for Words

The PezR© activity was used again this semester, although the TAs did not talk very

much about it or give out free candy.

146

Give good definitions for Scheme words and sentences. Make sure you mention how
they are or are not like English words and sentences. Give this some thought. Once
you submit it, you won’t be able to go back and change what you wrote.

Figure B.4: Defining Terms.

Comparing English and Scheme

This activity was used again this semester, but it was actually given on the day students

were formally introduced to words and sentences.

Defining Terms

This activity (Figure B.4) was also given on the first day students were formally intro-

duced to words and sentences. The goal was to get students to think even harder about

words and sentences in English and in Scheme. It may have some merit, as students per-

formed much better in the interviews this semester. However, the “Comparing English and

Scheme” homework was given on the same day, as were the WebScheme exercises described

on the current page.

Parentheses Are Important

This activity (Figure B.5) was not specifically inspired by this research, but it fit in quite

well. WebScheme is a technology that allows interactive web pages to interpret Scheme. In

this case, students were shown Scheme expressions and asked to predict the results. This

was the first time we had been able to ask such a question and have the computer check

the responses. This appeared to be very helpful. Many students typed in sentences without

parentheses and were surprised to see error messages pop up on their screens. While some

of these students ignored the error message and moved on to other activities without ever

getting the right answer, many asked TAs or lab assistants. In previous semesters, these

147

Figure B.5: WebScheme activity about empty words and sentences.

students would have assumed their parentheses-free answers were correct and would not

have thought about it again until forced to by an error in their code.

Students saw this question in lab the first day they were formally introduced to words

and sentences. It was first given in Spring B. Because it was introduced along with one

new homework and the “Comparing English and Scheme” activity was moved to be on the

same day, it is difficult to say if this activity is at all useful.

Empty

Since Summer 2002, students have been asked to explain (butfirst ’x) and (butfirst

’(x)). When CS 3 started using WebScheme in Spring B, this exercise was changed.

Students were now given a WebScheme activity which asked them to fill in two blanks with

the results of (butfirst ’x) and (butfirst ’(x)). When students left the blanks empty,

WebScheme marked them wrong with bright red Xs. Again, many students decided to ask

someone for an explanation rather than assuming their answers were correct. Students in

Spring B did measurably better on questions involving (""), and a combination of this and

the Pez r© activity may have been responsible.

148

Appendix C

A Quick Introduction to Scheme

This appendix provides a very basic introduction to Scheme as a programming language.

It is aimed at a reader with minimal programming experience and no need to write programs

in Scheme in the future. As such, this appendix will cut some corners and possibly explain

things in a way that would not please a textbook writer or programming teacher.

C.1 Scheme Basics

Scheme is a conversational language, meaning that while it is possible to use it to

write large programs, it is quite convenient to type in little bits of code and get immediate

results. To make Scheme do something interesting, you would use a procedure. Procedures

are chunks of code that tell Scheme how to do some specific thing. Common procedures

include +, -, *, /, as well as others that are not so mathematical. Scheme usually needs

more than just a procedure to do something interesting. Most procedures need some sort

of data to do their jobs. For example, + needs numbers to add together. These additional

pieces of information are called arguments.

Once you have a procedure and enough arguments, you can tell Scheme to do something.

This is accomplished by typing an open parenthesis, then the procedure, then the arguments,

149

and finally a closing parenthesis. For example, to tell Scheme to add 3, 5, and 7, you

would type (+ 3 5 7). This combination of a procedure and its arguments, surrounded by

parentheses, is called an expression. What if you want to do something more complicated,

like 3 + (5 ∗ 7)? Well, you can tell Scheme to multiply 5 and 7 by typing (* 5 7), and

you can tell Scheme to add the 3 by saying (+ 3 (* 5 7)). You can combine as many

expressions as you want.

There are several types of data in Scheme. In CS 3, we usually deal with words,

sentences, and lists. Words are collections of letters, digits, and other characters. For

example, the, yes!, c++, and 888 are all words. Unfortunately, some characters have

special meanings in Scheme. To get around this limitation and use characters like ‘, ,,

and . in a word, you need to put quotation marks around it. Thus, to type it’s into

Scheme, you would actually need to type "it’s". Words can contain any number of letters,

including zero letters. A word with zero letters is called an empty word, and it is written

as "". The quotation marks aren’t actually part of the empty word. They are used as

delimiters, to show you that there really is a word there.

Scheme data (words and sentences) can look a lot like Scheme code (procedures, expres-

sions, etc.). It is possible to have the word first, but there is also a procedure called first.

How can we tell these apart? The solution is to use a ’ (a quote) in front of anything that

Scheme should take exactly as it is typed rather than interpreting it as Scheme code. Thus,

when you want to tell Scheme to do something to the word first, you would type ’first.

You don’t need to quote numbers, since you can’t confuse a number with a procedure.

Sentences are collections of words. Scheme sees a sentence as one object, no matter how

many words it may contain. To help distinguish a sentence from a bunch of words, sentences

are written with parentheses around them: (this is a sentence with 7 words!). Sen-

tences can contain any number of words, even one or zero. An empty sentence is written

as a pair of parentheses: ().

150

Sentences and expressions look a lot alike. You could, if you wanted to, have the sentence

(+ 3 4), but this looks just like the expression that tells Scheme to add 3 and 4. How do

you tell the two apart? Again, you put a ’ in front of the sentence. To tell Scheme that

you want a sentence that looks like math rather than telling Scheme to do math, you would

type ’(+ 3 4). You don’t need to put the quote in front of words in a sentence, assuming

you’ve quoted the sentence. One quote works for everything in the sentence.

Lists are a lot like sentences, except that they can also contain other lists. Two examples

are (this is a list with seven words!) and (this is a list (with another list

inside!)). Lists which contain no elements are called null or empty lists and are written

as (). As with sentences, if you want to type a list into Scheme, you need to add a ’.

Words and sentences were invented just for Simply Scheme, while lists are part of stan-

dard Scheme. Sentences are based on lists, but they are easier to use and less overwhelming.

C.2 Working with Words and Sentences

There are many things you can do with words and sentences. You can take them apart

using the procedures first and butfirst. First takes the first letter out of a word or the

first word out of a sentence: (first ’example) is e, while (first ’(example sentence))

is example. Butfirst, which can be abbreviated as bf, gets rid of the first letter of a word

or the first word of a sentence: (bf ’example) is xample, while (butfirst ’(example

sentence)) is (sentence). Taking the butfirst of a one-letter word gives you an empty

word, while taking the butfirst of a one-word sentence gives you an empty sentence.

Taking the first or butfirst of an empty word or sentence causes Scheme to print out

an error message, since neither the empty word nor the empty sentence contains anything

for you to take out or throw away.

151

It is important to point out again that a sentence can contain a single word, so taking

the butfirst of (example sentence) gives you the sentence (sentence), not the word

sentence.

First and butfirst take sentences apart starting from the left. Two similar procedures,

last and butlast (abbreviated bl), take sentences apart starting from the right. For

example, (last ’sentence) is e, while (butlast ’sentence) is sentenc.

You can also build words and sentences. The procedure word combines the letters of

several words into one larger word: (word ’exa ’mple) produces example. Because word

puts all of the letters into a new word, the empty word might seem to disappear: (word

’wor "" ’d) gives you word, not wor""d. The empty word has no letters (the quotation

marks are not actually a part of the empty word), so it has no letters to contribute to the

new word.

The procedure sentence combines several words or sentences into one larger sentence:

(sentence ’example ’sentence) produces (example sentence). While sentence can

be given words or sentences, it takes all of the words and puts them into a new sen-

tence. This means that while you may see the words from one sentence inside another,

you will never see one whole sentence, complete with parentheses, inside another sen-

tence: (sentence ’(this is one sentence) ’(this is another)) gives you (this is

one sentence this is another). Keep in mind that an empty word is still a word, and it

acts like all other words when put into a sentence: (sentence "" ’(is an empty word))

gives you ("" is an empty word).

When programming, it is important to know when you have an empty word or sentence.

Scheme has a procedure called empty? that will tell you whether a word or sentence is empty:

(empty? 3) will say no, while (empty? "") will say yes. It is important to remember

that empty? only says yes when it is given a word or sentence with absolutely nothing inside.

152

Doing something to every word in a sentence can be very useful. Scheme allows you to

do this with the procedure every. Writing (every butfirst ’(example sentence)) tells

Scheme to take the butfirst of every word in the sentence, giving you (xample entence).

C.3 Working with Lists

Lists are very similar to sentences. You can take them apart using the procedures car

and cdr. Car is the list equivalent of first, while cdr is the list equivalent of butfirst.

There are no list versions of last or butlast.

Lists can be put together using several different procedures. The only one of these

procedures that is important to the thesis is cons, which puts one thing into a list: (cons

’example ’(list)) gives you (example list). Cons does not work very well (at least by

CS 3 standards) if you do not give it a list as a second argument: don’t try (cons ’example

’list). It is also important to know that when lists are combined, it is possible to put one

whole list inside another: (cons ’(this is one list) ’(this is another)) gives you

((this is one list) this is another).

The procedure null? tells you whether a list you have is empty (null). A list is empty

only when it contains absolutely nothing.

The list version of every is called map.

C.4 More Advanced Scheme

The previous sections should explain all of the code used in this thesis, except for

questions O5 and O6. Both of these require an understanding of recursion, which is far

beyond the scope of a quick introduction to Scheme. Simply Scheme provides a good

introduction to recursion.

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Problem Statement
	Lists
	Words and Sentences in CS 3
	Classroom Observations
	Motivation
	Goals and Design
	Theory
	Misconceptions
	Analogy, Similarity, and Structure Mapping

	Materials and Methods
	Population
	Differences Among Semesters
	Interviews
	Interview Procedure
	Scoring
	Possible Treatments
	Results
	One-Word Sentences
	Empty Words and Sentences
	Essential Elements of English and Scheme Sentences
	What Students Did Not Say About English, Scheme, and Collections
	Comparison of Sentences and Lists
	Other Observations

	Discussion
	Summary of Results
	Sources of Mistakes
	Success or Failure of Treatments
	Limitations and Weaknesses
	Conclusions and Future Work
	Conclusions
	Implications for Instruction
	Future Work

	References
	Bibliography
	Interview Questions
	Spring A
	Summer A
	Fall A
	Spring B
	Changes in the Curriculum
	Additions to Summer A
	Additions to Fall A
	Additions to Spring B

	A Quick Introduction to Scheme
	Scheme Basics
	Working with Words and Sentences
	Working with Lists
	More Advanced Scheme

