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Abstract—Packet content scanning at high speed has become 
extremely important due to its applications in network security, 
network monitoring, HTTP load balancing, etc. In content 
scanning, the packet payload is compared against a set of 
patterns specified as regular expressions.  In this paper, we first 
show that memory requirements using traditional methods are 
prohibitively high for many patterns used in packet scanning 
applications.  We then propose regular expression rewrite 
techniques that can effectively reduce memory usage. Further, 
we develop a grouping scheme that can strategically compile a 
set of regular expressions into several engines, resulting in 
remarkable improvement of regular expression matching speed 
without much increase in memory usage. We implement a new 
DFA-based packet scanner using the above techniques. Our 
experimental results using real-world traffic and patterns show 
that our implementation achieves a factor of 12 to 42 
performance improvement over a commonly used DFA-based 
scanner.  Compared to the state-of-art NFA-based 
implementation, our DFA-based packet scanner achieves 50 to 
700 times speedup.  

I. INTRODUCTION 

Packet content scanning (also known as Layer-7 filtering or 
payload scanning) is crucial to network security and network 
monitoring applications. In these applications, the payload of 
packets in a traffic stream is matched against a given set of 
patterns to identify specific classes of applications, viruses, 
protocol definitions, etc.  

Currently, regular expressions are replacing explicit 
string patterns as the pattern matching language of choice in 
packet scanning applications. Their widespread use is due to 
their expressive power and flexibility for describing useful 
patterns. For example, in the Linux Application Protocol 
Classifier (L7-filter) [1], all protocol identifiers are expressed 
as regular expressions. Similarly, the Snort [2] intrusion 
detection system has evolved from no regular expressions in 
its ruleset in April 2003 to 1131 out of 4867 rules using 
regular expressions as of February 2006. Another intrusion 
detection system, Bro [3], also uses regular expressions as its 
pattern language.  

As regular expressions gain widespread adoption for 
packet content scanning, it is imperative that regular 
expression matching over the packet payload keep up with 
the line-speed packet header processing. Unfortunately, this 
requirement cannot be met in many existing payload 
scanning implementations. For example, when all 70 
protocol filters are enabled in the Linux L7-filter [1], we 
found that the system throughput drops to less than 10Mbps, 
which is well below current LAN speeds. Moreover, over 
90% of the CPU time is spent in regular expression 
matching, leaving little time for other intrusion detection or 
monitoring functions. On the other hand, although many 
schemes for fast string matching [4-11] have been developed 
recently in intrusion detection systems, they focus on explicit 
string patterns only and can not be easily extended to fast 
regular expression matching.  

The inefficiency in regular expression matching is largely 
due to the fact that the current solutions are not optimized for 
the following three unique complex features of regular 
expressions used in network packet scanning applications. 
• First, many such patterns use multiple wildcard 

metacharacters (e.g., ‘.’, ‘*’). For example, the pattern 
for identifying the Internet radio protocol, 
“membername.*session.*player”, has two wildcard 
fragments “.*”. Some patterns even contain over ten 
such wildcard fragments. As regular expressions are 
converted into state machines for pattern matching, large 
numbers of wildcards can cause the corresponding 
Deterministic Finite Automaton (DFA) to grow 
exponentially.  

• Second, a majority of the wildcards are used with length 
restrictions (‘?’, ‘+’). As we shall show later in the 
paper, such length restrictions can increase the resource 
needs for expression matching.  

• Third, groups of characters are also commonly used: for 
example, the pattern for matching the ftp protocol, 
“^220[\x09-\x0d -~]*ftp”, contains a class (inside the 
brackets) that includes all the printing characters and 
space characters. The class of characters may intersect 
with other classes or wildcards. Such interaction can 
result in a highly complex state machine.  

To the best of our knowledge, there has not been any 
detailed study of optimizations for these kinds of regular 
expressions as they are so specific to network packet 
scanning applications. In this paper, we address this gap by 
analyzing these regular expressions and developing memory-
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efficient DFA-based solutions for high speed processing. 
Specifically, we make the following contributions: 
• We analyze the computational and storage cost of 

building individual DFAs for matching regular 
expressions, and identify the structural characteristics of 
the regular expressions in networking applications that 
lead to exponential growth of DFAs, as presented in 
Section 3.2.  

• Based on the above analysis, we propose two rewrite 
rules for specific regular expressions in Section 3.3. The 
rewritten rules can dramatically reduce the size of 
resulting DFAs, making them small enough to fit in 
memory. We prove that the patterns after rewriting are 
equivalent to the original ones for detecting non-
overlapping patterns. While we do not claim to handle 
all possible cases of dramatic DFA growth (in fact the 
worse case cannot be improved), our rewrite rules do 
cover those patterns present in common payload 
scanning rulesets like Snort and Bro, thus making fast 
DFA-based pattern matching feasible for today’s 
payload scanning applications.   

• We further develop techniques to intelligently combine 
multiple DFAs into a small number of groups to improve 
the matching speed in Section IV, while avoiding the 
exponential growth in the number of states in memory.   

We demonstrate the effectiveness of our rewriting and 
grouping solutions through a detailed performance analysis 
using real-world payload scanning pattern sets. As the results 
show, our DFA-based implementation can increase the 
regular expression matching speed on the order of 50 to 700 
times over the NFA-based implementation used in the Linux 
L7-filter and Snort system. It can also achieve 12-42 times 
speedup over a commonly used DFA-based parser. The 
pattern matching speed can achieve gigabit rates for certain 
pattern sets.  This is significant for implementing fast regular 
expression matching of the packet payload using network 
processors or general-purpose processors, as the ability to 
more quickly and efficiently classify enables many new 
technologies like real-time worm detection, content lookup in 
overlay networks, fine-grained load balancing, etc.  

II.PROBLEM STATEMENT 
In this section, we first discuss regular expressions used in 
packet payload scanning applications, then present the 
possible solutions for regular expression matching, and 
finally define the specific problem that we address in this 
paper.  

2.1 Regular Expression Patterns 
A regular expression describes a set of strings without 
enumerating them explicitly. Table 1 lists the common 
features of regular expression patterns used in packet payload 
scanning. For example, consider a regular expression from 
the Linux L7-filter [1] for detecting Yahoo traffic: 
“^(ymsg|ypns|yhoo).?.?.?.?.?.?.?[lwt].*\xc0\x80”. This pattern 
matches any packet payload that starts with ymsg, ypns, or 
yhoo, followed by seven or fewer arbitrary characters, and 

then a letter l, w or t, and some arbitrary characters, and 
finally the ASCII letters c0 and 80 in the hexadecimal form.  

Table 2 compares the regular expressions used in two 
networking applications, Snort and the Linux L7-filter, 
against those used in emerging Extensible Markup Language 
(XML) filtering applications [12, 13] where regular 
expressions are matched over text documents encoded in 
XML. We notice three main differences: (1) While both 
types of applications use wildcards (‘.’, ‘?’, ‘+’, ‘*’), the 
patterns for packet scanning applications contain larger 
numbers of them in each pattern; (2) classes of characters 
(“[]”) are used only in packet scanning applications; (3) a 
high percentage of patterns in packet payload scanning 
applications have length restrictions on some of the classes or 
wildcards, while such length restrictions usually do not occur 
in XML filtering. This shows that compared to the XML 
filtering applications, network packet scanning applications 
face additional challenges These challenges lead to a 
significant increase in the complexity of regular expression 
matching, as we shall show later in this paper.  

Table 1. Features of Regular Expressions  
Syntax Meaning Example 

^ Pattern to be matched 
at the start of the input 

^AB means the input starts with AB. 
A pattern without ‘^’, e.g., AB, can 
be matched anywhere in the input. 

| OR relationship A|B denotes A or B. 
. A single character 

wildcard 
 

? A quantifier denoting 
one or less 

A? denotes A or an empty string. 

* A quantifier denoting 
zero or more 

A* means an arbitrary number of As. 

{} Repeat A{100} denotes 100 As. 
[ ] A class of characters [lwt] denotes a letter l, w, or t. 
[^] Anything but [^\n] denotes any character except \n.  

Table 2. Comparison of regular expressions in networking 
applications against those in XML filtering  

 Snort L7-filter XML filtering 
# of regular expressions analyzed 1555 70 1,000-100,000 
% of patterns starting with “^” 74.4% 72.8% ≥80% 
% of patterns with wildcards “., +,
?, *” 

 74.9% 75.7% 50% - 
100% 

Average # of wildcards per pattern  4.65 7.03 1-2 
% of patterns with class “[ ]” 31.6% 52.8% 0 
Average # of classes per pattern 7.97 4.78 0 
% of patterns with length
restrictions on classes or wildcards 

 56.3% 21.4% ≈0 

2.2 Solution Space for Regular Expression Matching 
Finite automata are a natural formalism for regular 
expressions. There are two main categories: Deterministic 
Finite Automaton (DFA) and Nondeterministic Finite 
Automaton (NFA). In this section, we survey existing 
solutions using these two types of automata. 

A DFA consists of a finite set of input symbols, denoted 
as ∑, a finite set of states, and a transition function δ [14]. In 
networking applications, ∑ contains the 28 symbols from the 
extended ASCII code. Among the states, there is a single 
start state q0 and a set of accepting states. The transition 
function δ takes a state and an input symbol as arguments 
and returns a state. A key feature of DFA is that at any time 
there is only one active state in the DFA. An NFA works 
similarly to a DFA except that the δ function maps from a 
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state and a symbol to a set of new states. Therefore, multiple 
states can be active simultaneously in an NFA.  

A theoretical worst case study [14] shows that a single 
regular expression of length n can be expressed as an NFA 
with O(n) states. When the NFA is converted into a DFA, it 
may generate O(∑n) states. The processing complexity for 
each character in the input is O(1) in a DFA, but is O(n2) for 
an NFA when all n states are active at the same time.  

To handle m regular expressions, two choices are 
possible: processing them individually in m automata, or 
compiling them into a single automaton. The former is used 
in Snort [2] and Linux L7-filer [1]. The latter is proposed in 
recent studies [12, 13] so that the single composite NFA can 
support shared matching of common prefixes of those 
expressions. Despite the demonstrated performance gains 
over using m separate NFAs, in practice this approach 
experiences large numbers of active states. This has the same 
worst case complexity as the sum of m separate NFAs. 
Therefore, this approach on a serial processor can be slow, as 
given any input character, each active state must be serially 
examined to obtain new states. 

In DFA-based systems, compiling m regular expressions 
into a composite DFA provides guaranteed performance 
benefit over running m individual DFA. Specifically, a 
composite DFA reduces processing cost from O(m) (O(1) for 
each automaton) to O(1), i.e., a single lookup to obtain the 
next state for any given character. However, the number of 
states in the composite automaton grows to O(∑mn) in the 
theoretical worst case. In fact, we will show in Section 4 that 
typical patterns in packet payload scanning applications 
indeed interact with each other and can cause the creation of 
an exponential number of states in the composite DFA.  

Table 3. Worst case comparisons of DFA and NFA 
One regular expression of 

length n 
m regular expressions 
compiled together 

 

Processing  
complexity 

Storage 
cost 

Processing  
complexity 

Storage 
cost 

NFA O(n2) O(n) O(n2m) O(nm) 
DFA O(1) O(∑n) O(1) O(∑nm) 
There is a middle ground between DFA and NFA called 

lazy DFA. Lazy DFA are designed to reduce memory 
consumption of conventional DFA [12, 15]: a lazy DFA 
keeps a subset of the DFA that matches the most common 
strings in memory; for uncommon strings, it extends the 
subset from the corresponding NFA at runtime. As such, a 
lazy DFA is usually much smaller than the corresponding 
fully-compiled DFA and provides good performance for 
common input strings. Bro intrusion detection systems [3] 
adopt this approach. However, malicious senders can easily 
construct packets that keep the system busy and slow down 
the matching process. 

Field Programmable Gate Arrays (FPGAs) provide a 
high degree of parallelism and thus can be used to speed up 
the regular expression matching process. There are existing 
FPGA solutions that build circuits based on DFA [16] or 
NFA [17-19]. These approaches are promising if the extra 
FPGA hardware can be embedded in the packet processors. 
FPGAs, however, are not available in many applications; in 

such situations, a network processor or general-purpose 
CPU-based implementation may be more desirable. 
2.3 Problem statement 
In this paper, we seek a fast and memory-efficient solution to 
regular expression matching for packet payload scanning. 
We define the scope of the problem as follows:  
• We consider DFA-based approaches in this paper, as 

NFA-based approaches are inefficient on serial 
processors or processors with limited parallelism (e.g., 
multi-core CPUs in comparison to FPGAs).  Our goal is 
to achieve O(1) computation cost for each incoming 
character, which cannot be accomplished by any existing 
DFA-based solutions due to their excessive memory 
usage. Thus, the focus of the study is to reduce memory 
overhead of DFA while approaching the optimal 
processing speed of O(1) per character.  

• We focus on general-purpose processor-based 
architectures and explore the limits of regular 
expression matching in this environment. Wherever 
appropriate, we leverage the trend of multi-core 
processors that are becoming prevalent in those 
architectures. Nevertheless, our results can be used in 
FPGA-based and ASIC-based approaches as well [20].  
It is worth noting that there are two sources of memory 

usage in DFAs: states and transitions. The number of 
transitions is linear with respect to the number of states 
because for each state there can be at most 28 (for all ASCII 
characters) links to next states. Therefore, we consider the 
number of states (in minimized DFA) as the primary factor 
for determining the memory usage in the rest of the paper.  
Also, due to the need for high performance, we do not 
consider DFAs that use any table compression techniques.  

III.MATCHING OF INDIVIDUAL PATTERNS 
In this section, we present our solution to matching 
individual regular expression patterns. The main technical 
challenge is to create DFAs that can fit in memory, thus 
making a fast DFA-based approach feasible. We first define 
a few concepts key to DFA construction in the context of 
packet payload scanning in Section 3.1. We then analyze the 
size of DFAs for typical payload scanning patterns in Section 
3.2. Although theoretical analyses [12, 14] have shown that 
DFAs are subject to exponential blow-up, here, we identify 
specific structures that can lead to exponential growth of 
DFAs. Based on the insights from this analysis, in Section 
3.3, we propose pattern rewrite techniques that explore the 
possibility of trading off exhaustive pattern matching (which 
real-world applications often allow) for memory efficiency. 
Finally, we offer guidelines to pattern writers on how to write 
patterns amenable to efficient implementation in Section 3.4. 

3.1 Design Considerations 
Although regular expressions and automata theory can be 
directly applied to packet payload scanning, there is a 
noticeable difference in between. Most existing studies on 
regular expressions focus on a specific type of evaluation, 
that is, checking if a fixed length string belongs to the 
language that a regular expression defines. More specifically, 



a fixed length string is said to be in the language of a regular 
expression, if the string is matched from start to end by a 
DFA corresponding to that regular expression. In contrast, in 
packet payload scanning, a regular expression pattern can be 
matched by the entire input or specific substrings of the input. 
Without a priori knowledge of the starting and ending 
positions of those substrings, DFAs created for recognizing 
all substring matches can be highly complex. 

For a better understanding, we next present a few 
concepts pertaining to the completeness of matching results 
and the DFA execution model for substring matching. 
Completeness of matching results 
Given a regular expression pattern and an input string, a 
complete set of results contains all substrings of the input 
that the pattern can possibly match. For example, given a 
pattern ab* and an input abbb, three possible matches can be 
reported, ab, abb, and abbb. We call this style of matching 
Exhaustive Matching. It is formally defined as below:  
Exhaustive Matching: Consider the matching process M as a 

function from a pattern P and a string S to a power set of 
S, such that, M(P, S) = {substring S' of S| S' is accepted 
by the DFA of P}. 
In practice, it is expensive and often unnecessary to 

report all matching substrings, as most applications can be 
satisfied by a subset of those matches. Therefore, we propose 
a new concept, Non-overlapping Matching, that relaxes the 
requirements of exhaustive matching.  
Non-overlapping Matching: Consider the matching process 

M as a function from a pattern P and a string S to a set of 
strings, specifically, M(P, S) = {substring Si of S| ∀ Si, Sj 
accepted by the DFA of P, Si Sj =∩ φ }.  

If a pattern appears in multiple locations of the input, this 
matching process reports all non-overlapping substrings that 
match the pattern. Revisit our example above. For the pattern 
ab* and the input abbb, the three matches overlap by sharing 
the prefix ab. For this example, non-overlapping matching 
will report one match instead of three.  

For most payload scanning applications, we expect that 
non-overlapping matching would suffice, as those 
applications are mostly interested in knowing if certain 
attacks or application layer patterns appear in a packet. In 
fact, most existing scanning tools like grep and flex and 
systems like Snort [2] and Bro [3] implement special cases of 
non-overlapping matching such as left-most longest 
matching or left-most shortest matching. As we shall show 
later this section, non-overlapping matching can be exploited 
to construct more memory-efficient DFAs.  
DFA execution model for substring matching  
In the following discussion, we focus on patterns without ‘^’ 
attached at the beginning. Recall that for such patterns, there 
is no prior knowledge of whether/where a matching substring 
may appear. To handle these patterns, two types of DFAs can 
be created with different execution models: 

Repeated searches. A DFA can be created directly from a 
pattern using standard DFA construction techniques [14]. To 
find the set of matching substrings (using either exhaustive or 
non-overlapping matching), the DFA execution needs to be 
augmented with repeated searches of the input: An initial 

search starts from the beginning of the input, reading 
characters until (1) it has reported all matches (if exhaustive 
matching is used) or one match (if non-overlapping matching 
is used), or (2) it has reached the end of the input. In the 
former case, the new search will start from the next character 
in input (if exhaustive matching is used) or from the 
character after the reported match (if non-overlapping 
matching is used). In the latter case, a new search is initiated 
from the next character in input. This style of repeated 
scanning using DFA is commonly used in language parsers. 
However, it is inefficient for packet payload scanning where 
the chance of the packet payload matching a particular 
pattern is low (such inefficiency is verified in Section 5.3.3).  

One-pass search. In the second approach, “.*” is pre-
pended to each pattern without ‘^’, which explicitly states 
that the pattern can be matched anywhere in the input. Then a 
DFA is created for the extended pattern. As the input is 
scanned from start to end, the DFA can recognize all 
substring matches that may start at different positions of the 
input. Using one pass search, this approach can truly achieve 
O(1) computation cost per character, thus suitable for 
networking applications. To achieve high scanning rate, we 
adopt this approach in the rest of the study. 

3.2 DFA Analysis for Individual Regular Expressions 
Next, we study the complexity of DFA for typical patterns 
used in real-world packet payload scanning applications such 
as Linux L7-filter, Snort, and Bro. The study is based on the 
use of exhaustive matching and one-pass search. Table 4 
summarizes the results.  
• Explicit strings generate DFAs of length linear to the 

number of characters in the pattern.  
• If a pattern starts with ‘^’, it creates a DFA of polynomial 

complexity with respect to the pattern length k and the 
length restriction j. Our observation from the existing 
payload scanning rule sets is that the pattern length k is 
usually limited but the length restriction j can reach 
hundreds or even thousands. Therefore, Case 4 can result 
in a large DFA because it has a factor quadratic in j.   

• Patterns starting with “.*” and having length restrictions 
(Case 5) cause the creation of DFA of exponential size.  

Table 4. Analysis of patterns with k characters 
    Pattern features Example # of states
1. Explicit strings with k characters ^ABCD 

.*ABCD 
k+1 

2. Wildcards ^AB.*CD 
.*AB.*CD  

k+1 

3. Patterns with ^, a wildcard, and  a 
length restriction j  

^AB.{j+}CD 
^AB.{0, j}CD 

^AB.{j}CD 

O(k*j) 

4. Patterns with ^, a class of characters 
overlaps with the prefix, and a length 
restriction j  

^A+[A-Z]{j}D O(k+j2) 

5. Patterns with a length restriction j, 
where a wildcard or a class of 
characters overlaps with the prefix 

.*AB.{j}CD 
.*A[A-Z]{j+}D 

O(k+2j) 
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 Next, we explain the two cases of large DFA sizes, 
namely, Case 4 and Case 5 of Table 4, in more detail.  
Case 4: DFA of Quadratic Size 
A common misconception is that patterns starting with ‘^’ 
create simple DFAs. However, we discover that even with 



‘^’, classes of characters that overlap with the prefix pattern 
can still yield a complex DFA. Consider the pattern 
^B+[^\n]{3}D, where the class of character [^\n] denotes any 
character but the return character (\n). Its corresponding DFA 
has a quadratic number of states, as shown in Figure 1. The 
quadratic complexity comes from the fact that the letter B 
overlaps with the class of character [^\n] and, hence, there is 
inherent ambiguity in the pattern: A second B letter can be 
matched either as part of B+, or as part of [^\n]{3}. 
Therefore, if an input contains multiple Bs, the DFA needs to 
remember the number of Bs it has seen and their locations in 
order to make a correct decision with the next input 
character. If the class of characters has length restriction of j 
bytes, DFA needs O(j2) states to remember the combination 
of distance to the first B and the distance to the last B. 

 
Figure 1. A DFA for Pattern ^B+[^\n]{3}D 

Similar structures in real world pattern sets: 
A significant number of patterns in the Snort rule set fall into 
this category. For example, the regular expression for the 
NNTP rule is “^SEARCH\s+[^\n]{1024}”. Similar to the 
example in Figure 1, \s overlaps with ^\n.  White space 
characters cause ambiguity of whether they should match \s+ 
or be counted as part of the 1024 non-return characters 
[^\n]{1024}. Specifically, an input of SEARCH followed by 
1024 white spaces and then 1024 ‘a’s will have 1024 ways of 
matching strings, i.e., one white space matches \s+ and the 
rest as part of [^\n]{1024}, or two white spaces match \s+ 
and the rest as part of [^\n]{1024}, etc. By using 10242 states 
to remember all possible consequences of these white spaces, 
the DFA accommodates all the ways to match the substrings 
of different lengths. Note that all these substrings start with 
SEARCH and hence are overlapping matches.  

This type of quadratic state problem cannot be solved by 
an NFA-based approach. Specifically, the corresponding 
NFA contains 1042 states; among these, one is for the 
matching of SEARCH, one for the matching of \s+, and the 
rest of the 1024 states for the counting of [\^n]{1024} with 
one state for each count. An intruder can easily construct an 
input as “SEARCH” followed by 1024 white spaces. With 
this input, both the \s+ state and all the 1023 non-return 
states would be active at the same time. Given the next 
character, the NFA needs to check these 1024 states 
sequentially to compute a new set of active states. 

This problem cannot be solved by a fixed string pre-
filtering scheme (used by Snort), either. This is because pre-
filtering can only recognize the presence of the fixed string 
“SEARCH” in the input. After that, an NFA or DFA-based 
matching scheme is still needed in post processing to report 
whether the input matches the pattern and what the matches 
are. Another choice is to count the subsequent characters in 

post processing after identifying the prefix “SEARCH”. This 
approach does not solve the problem because every packet 
(even normal traffic) with the prefix will incur the counting 
process. In addition, intruders can easily construct packets 
with multiple (different) prefixes to invoke many requests for 
such post processing. 
Case 5: DFA of Exponential Size  
Many payload scanning patterns contain an exact distance 
requirement. Figure 2 shows the DFA for an example pattern 
“.*A..CD”. An exponential number of states (22+1) are needed 
to represent these two wildcard characters. This is because 
we need to remember all possible effects of the preceding As 
as they may yield different results when combined with 
subsequent inputs. For example, an input AAB is different 
from ABA because a subsequent input BCD forms a valid 
pattern with AAB (AABBCD), but not so with ABA 
(ABABCD). In general, if a pattern matches exactly j 
arbitrary characters, O(2j) states are needed to handle the 
exact j requirement. This result is also reported in [12]. 
Similar results apply to the case where the class of characters 
overlaps with the prefix, e.g., “.*A[A-Z]{j}D”.  

 
Figure 2. A DFA for pattern .*A.{2}CD 

Similar structures in real world pattern sets: 
In the intrusion detection system Snort, 53.8% of the patterns 
(mostly for detecting buffer overflow attempts) contain a 
fixed length restriction. Out of them, around 80% of the rules 
start with ^; hence, they will not cause exponential growth of 
DFA. The remaining 20% of the patterns do suffer from the 
state explosion problem. For example, consider the rule for 
detecting IMAP authentication overflow attempts, which 
uses the regular expression “.*AUTH\s[^\n]{100}”. This rule 
detects any input that contains AUTH, then a white space, 
and no return character in the following 100 bytes. If we 
directly compile this rule into a DFA, the DFA will contain 
more than 10,000 states because it needs to remember all the 
possible consequences that an AUTH\s subsequent to the first 
AUTH\s can lead to. For example, the second AUTH\s can 
either match [^\n]{100} or be counted as a new match of the 
prefix of the regular expression.  

 
Figure 3. NFA for the pattern .*AUTH\s[^\n]{100} 

It is obvious that the exponential blow-up problem cannot 
be mitigated by using an NFA-based approach. The NFA for 
the pattern “.*AUTH\s[^\n]{100}” is shown in Figure 3. 
Because the first state has a self-loop marked with Σ, the 
input “AUTH\sAUTH\sAUTH\s…” can cause a large number 
of states to be simultaneously active, resulting in 
significantly degraded system performance, as demonstrated 
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by our results reported in Section 5.3.3. Similar to Case 4, 
this problem cannot be solved by a fixed string pre-filtering 
scheme (used by Snort), either.  

 
FigureT 4. DFA for rewriting the pattern .*AUTH\s[^\n]{100} 

 
Figure 5. Transformed NFA for deriving Rewrite Rule (1) 

3.3 Regular Expression Rewrites 
We have identified the typical patterns used in packet 
payload scanning that can cause the creation of large DFAs. 
In this section, we investigate the possibility of rewriting 
some of those patterns to reduce the DFA size. Such 
rewriting is enabled by relaxing the requirement of 
exhaustive matching to that of non-overlapping matching. In 
particular, we propose two rewrite rules, one for rewriting 
specific patterns belonging to the case of quadratic-sized 
DFAs (Case 4 in Section 3.2), and the other for rewriting 
specific patterns that generate exponential-sized DFAs (Case 
5 of Section 3.2). The commonality of the patterns amenable 
to rewrites is that their suffixes address length restricted 
occurrences of a class of characters that overlap with their 
prefixes. These patterns are typical in real-world rulesets 
such as Snort and Bro. For these patterns, as shown in 
Section 3.2, neither the NFA-based solution nor the fixed 
string pre-filtering scheme can handle them efficiently. In 
contrast, our rewrites rules can convert these patterns into 
DFAs with their sizes successfully reduced from quadratic or 
exponential to only linear.  
Rewrite Rule (1)  
As shown in Section 3.2, patterns that start with ‘^’ and 
contain classes of characters with length restrictions, e.g., 
“^SEARCH\s+[^\n]{1024}”, can generate DFAs of quadratic 
size with respect to the length restriction. Below, we first 
explain the intuition behind Rewrite Rule (1) using the above 
example and then state a theorem for more general cases. 

Given the fact that such patterns are used in packet 
scanning applications for detecting buffer overflow attempts, 
it seems reasonable to assume that non-overlapping matches 
are sufficient for reporting such attacks. Based on this 
observation, we propose to rewrite the pattern 
“^SEARCH\s+[^\n]{1024}” to “^SEARCH\s[^\n]{1024}”. 
The new pattern specifies that after matching a single white 
space, we start counting for [^\n]{1024} no matter what the 
content is. It is not hard to see that for every matching 
substring s that the original pattern reports, the new pattern 
produces a substring s’ that is either identical to s or is a 
prefix of s. In other words, the new pattern essentially 
implements non-overlapping left-most shortest match. It is 

also easy to see that the new pattern requires a number of 
states linear in j because it has removed the ambiguity for 
matching \s. 

We provide a theorem (Theorem 1 in the Appendix) for a 
more general case where the suffix of a pattern contains a 
class of characters overlapping with its prefix and a length 
restriction, “^A+[A-Z]{j}”. We prove that this type of pattern 
can be rewritten to “^A[A-Z]{j}” with equivalence 
guaranteed under the condition of non-overlap matching. 
Note that our rewrite rule can also be extended to patterns 
with various types of length restriction such as “^A+[A-
Z]{j+}” and “^A+[A-Z]{j,k}”. Details are omitted in the 
interest of space. 

Using Rewrite Rule (1), we successfully rewrote 17 
similar patterns in the Snort rule set. Detailed results 
regarding these rewrites are reported in Section 5.2. 

Rewrite Rule (2) 
As we discussed in Section 3.2, patterns like 
“.*AUTH\s[^\n]{100}” generate exponential numbers of 
states to keep track of all the AUTH\s subsequent to the fist 
AUTH\s. If non-overlapping matching is used, the intuition 
of our rewriting is that after matching the first AUTH\s, we 
do not need to keep track of the second AUTH\s. This is 
because (1) if there is a ‘\n’ character within the next 100 
bytes, the return character must also be within 100 bytes to 
the second AUTH\s, and (2) if there is no ‘\n’ character 
within the next 100 bytes, the first AUTH\s and the following 
characters have already matched the pattern. This intuition 
implies that we can rewrite the pattern such that it only 
attempts to capture one match of the prefix pattern. 
Following the intuition, we can simplify the DFA by 
removing the states that deal with the successive AUTH\s. As 
shown in Figure 4, the simplified DFA first searches for 
AUTH in the first 4 states, then looks for a white space, and 
after that starts to count and check whether the next 100 
bytes contains a return character. After rewriting, the DFA 
only contains 106 states. 

We derive our rewrite pattern from the simplified DFA 
shown in Figure 4. Applying a standard technique that maps 
a DFA/NFA to a regular expression [14], we transform this 
DFA to an equivalent NFA in Figure 5. For the link that 
moves from state 1 back to the start state in Figure 4 (i.e., 
matching A then not U), the transformed NFA places it right 
at the start state and labels it with A[^U]. The transformed 
NFA does the same for each link moving from state i 
(1≤i≤105) to the start state in Figure 4.  The transformed 
NFA can be directly described using the following regular 
expression:  

“([^A]|A[^U]|AU[^T]|AUT[^H]|AUTH[^\s]|AUTH\s 
[^\n]{0,99}\n)*AUTH\s[^\n]{100}”.    
This rule first enumerates all the cases that do not satisfy the 
pattern and then attaches the original pattern to the end of the 
new pattern. In other words, “.*” is replaced with the cases 
that do not match the pattern, represented by 
([^A]|A[^U]|AU[^T]|AUT[^H]|AUTH[^\s]|AUTH\s[^\n]{0,99
}\n)*.  Then, when the DFA comes to the states for 
AUTH\s[^\n]{100}, it must be able to match the pattern. 
Since the rewritten pattern is directly obtained from a DFA 
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of size j+5, it generates a DFA of a linear number of states as 
opposed to an exponential number before the rewrite.  

We also provide a theorem  (Theorem 2 in the Appendix) 
that proves the equivalence of the new pattern and the 
original pattern for a more general case “.*AB[A-Z]{j}” 
under the condition of non-overlapping matching. Moreover, 
we offer rewrite rules for patterns in other forms of length 
restriction, e.g., “.*AB[A-Z]{j+}”. 

Rewrite Rule (2) is applicable to 54 expressions in the 
Snort rule sets and 49 in the Bro rule set. We wrote a script to 
automatically rewrite these patterns and observed significant 
reduction in DFA size. Detailed simulation results are 
reported in Section 5.2. 

3.4 Notes for Pattern Writers 
As mentioned above, an important outcome of this work is 
that our pattern rewriter can automatically perform both 
types of rewriting. An additional benefit is that our analysis 
provides insight into how to write regular expression patterns 
amenable to efficient DFA implementation. We discuss this 
in more detail below. 

From the analysis in Section 3.2, we can see that patterns 
with length restrictions can generate large DFAs. By 
studying typical packet payload scanning pattern sets 
including Linux L7-filter, Snort, and Bro, we found that 
21.4-56.3% of the length restrictions are associated with 
classes of characters. The most common classes of characters 
are “[^\n]”, “[^\]]” (i.e., not ‘]’), and “[^\]”, used for detecting 
buffer overflow attempts. The length restrictions of these 
patterns are typically large (233 on the average and reaching 
up to 1024). For these types of patterns, we highly encourage 
the pattern writer to add “^” so as to avoid the exponential 
state growth as we showed in Section 3.3. For patterns that 
cannot start with “^”, the pattern writers can use the Rewrite 
Rule 2 to generate state efficient patterns.  

Even for patterns starting with “^”, we need to carefully 
avoid the interactions between a class of characters and its 
preceding character as shown in Rewrite Rule 1. One may 
wonder why a pattern writer uses \s+ in the pattern 
“^SEARCH\s+[^\n]{1024}”, when it can be simplified as \s. 
Our understanding is that, in reality, a server implementation 
of a search task usually interprets the input in one of the two 
ways: either skip a white space after SEARCH and take the 
following up to 1024 characters to conduct a search, or skip 
all white spaces and take the rest for the search. The original 
pattern writer may want to catch intrusion to systems of 
either implementation. However, the original pattern will 
generate false positives if the server does the first type of 
implementation (skipping all the white spaces). This is 
because if an input is followed by 1024 white spaces and 
then some non-whitespace regular command of less than 
1024 bytes, the server can skip these white spaces and take 
the follow-up command successfully. However, this input 
will be caught by the original pattern as intrusion because 
these white spaces themselves can trigger the alarm. To catch 
attacks to this type of server implementation, while not 
generating false positives, we need the following pattern.  

 “^SEARCH\s+[^\s][^\n]{1023}”  

In this pattern, \s+ matches all white spaces and [^\s] means 
the first non white space character. If there are more than 
1023 non return characters following the first non white 
space character, it is a buffer overflow attack. By adding 
[^\s], the ambiguity in the original pattern is removed; given 
an input, there is only way of matching each packet. As a 
result, this new pattern generates a DFA of linear size. 

IV.SELECTIVE GROUPING OF MULTIPLE PATTERNS 
The previous section presented our analysis of the 
complexity of the DFA created for individual patterns and 
two rewrite techniques that simplify these DFA so that they 
could fit in memory. As we mentioned in Section 2.2, it is 
well known that the computation complexity for processing 
m patterns reduces from O(m) to O(1) per character, when 
the m patterns are compiled into a single composite DFA. 
However, it is usually infeasible to compile a large set of 
patterns together due to the complicated interactions between 
patterns. In some cases, the composite DFA may experience 
exponential growth in size, although none of the individual 
DFA has an exponential component. 

In this section, we first present two examples illustrating 
the interactions between patterns, and then use a real-world 
payload scanning ruleset to demonstrate the existence of 
exponential growth in reality. Based on these observations, 
we propose grouping algorithms that selectively divide 
patterns into groups while avoiding the adverse interaction 
among patterns. 

4.1 Interactions of Regular Expressions   
When patterns share prefixes, some states can be merged. For 
example, states 1 and 2 shown in Figure 6 are shared by 
“.*ABCD” and “.*ABAB”. Combining these patterns can 
save both storage and computation.  

 
Figure 6. A DFA for pattern .*ABCD and .*ABAB 

However, if the patterns do not share the same prefix, 
putting m patterns together may generate 2m states. 

Figure 7 shows a composite DFA for matching 
“.*AB.*CD” and “.*EF.*GH”. This DFA contains many 
states that did not exist in the individual DFAs. Among them, 
state 8 is created to record the case of matching both prefixes 
AB and EF. Generally speaking, if there are l patterns with 
one wildcard per pattern, we need O(2l) states to record the 
matching of the power set of the prefixes. In such scenarios, 
adding one more pattern into the DFA doubles its size. If 
there are x wildcards per pattern, then (x+1)l states are 
required. There are several such patterns in the Linux L7-
filter. For example, the pattern for the remote desktop 
protocol is “.*rdpdr.*cliprdr.*rdpsnd”, and the pattern for 
Internet radio is “.*membername.*session.*player”. Snort 
also has similar patterns and the number of “.*” in a pattern 
can go up to six.    
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Figure 7. A DFA for pattern .*AB.*CD and .*EF.*GH 

4.2 Interactions of Real-world Regular Expressions   
We study the pattern interactions of the Linux L7-filter [1] in 
this section. If 70 patterns are compiled separately into 70 
DFAs, each DFA has tens to hundreds of states. The total 
number of states is 3533. When we start to group multiple 
patterns into a composite DFA (we select patterns with a 
random order), the processing complexity decreases. 
However, the total number of DFA states (i.e., the sum of the 
composite DFA and those ungroup ones) grows over 136,786 
with just 40 patterns, as illustrated by the increasing dotted 
line in Figure 8. We could not add more patterns into the 
composite DFA because it exceeded the memory limit in the 
test machine that we used (1.5 GB). However, not all patterns 
cause significant DFA growth. Only some patterns (e.g., 
pattern 12, 37, and 38 as shown in Figure 8) lead to 
significant growth of the DFA. These patterns all contain 
large numbers of wildcards, and sometimes have classes of 
characters. For example, pattern 12 contains a fixed length 
(20) of wildcards, pattern 37 contains three unrestricted 
wildcards (“.*”), and pattern 38 contains 19 classes of 
characters, 4 unrestricted wildcards, and 8 length restricted 
wildcards.  
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Figure 8. DFA Size and Processing Complexity of Multiple 

Patterns (Unsorted order) 

4.3 Regular Expressions Grouping Algorithms 
As discussed above, certain patterns interact with each other 
when compiled together, which can result in a large 
composite DFA. In this section, we propose algorithms to 
selectively partition m patterns to k groups such that patterns 
in each group do not adversely interact with each other. As 
such, these algorithms reduce the computation complexity 
from O(m) to O(k) without causing extra memory usage.   

We first provide a formal definition of interaction: two 
patterns interact with each other if their composite DFA 
contains more states than the sum of two individual ones. To 
calculate the number of states in the composite DFA, we first 
construct an NFA by adding a new start state, twoε edges 

leading to the individual DFA, a new accepting state, and 
two ε edges from the DFA accepting states to the new 
accepting state, as shown in Figure 9. Then we run the NFA 
to DFA conversion algorithm and the DFA minimization 
algorithm to obtain the composite DFA.  

ε

ε

ε

ε

 
Figure 9. Composite NFA for two DFAs 

We use the information on pairwise interaction to group a 
set of m regular expressions. The intuition is that if there is 
no interaction between any pair selected from R1, R2, and R3, 
the composite DFA of R1, R2, R3 is not likely to exceed the 
sum of individual ones. We validate this point using 
empirical results in Section 5.3.1. 

We devise grouping algorithms both for multi-core 
processor architecture, where groups of patterns can be 
processed in parallel among different processing units, and 
for general processor architecture, where the DFA for one 
group corresponds to one process or thread. Next, we present 
the algorithm for the former architecture first and then the 
algorithm for the latter.  

In multi-core architecture, there are multiple parallel 
processing units.  Their number is usually limited, e.g., 16 in 
Intel IXP2800 NPU, which is much smaller than the number 
of patterns. Hence, one DFA per pattern per processing unit 
is infeasible. Our goal is to design an algorithm that divides 
regular expressions into several groups, so that one 
processing unit can run one or several composite DFAs. In 
addition, the size of local memory of each processing unit is 
quite limited. For example, the newly architected IBM cell 
processor has 8 synergistic processor elements, each with 
128KB local memory [23]. Hence, we need to keep grouping 
patterns until they meet the local memory limit. The pseudo-
code of the algorithm is provided below.   

In this algorithm, we first compute the pairwise 
interaction of regular expressions. With this pairwise 
information, we construct a graph with each pattern as a 
vertex and an edge between patterns Ri and Rj if they interact 
with each other. Using this graph, we can start with a pattern 
that has least interaction with others, and then try to add 
patterns that have least interactions into the same group. We 
keep adding until the composite DFA is larger than the local 
memory limit. Then we proceed to create a new group from 
the patterns that remain ungrouped. 
______________________________________________________________________________ 
For regular expression Ri in the set 

For regular expression Rj in the set 
 Compute pairwise interaction of Ri and Rj 

Construct a graph G(V, E) 
V is the set of regular expressions, with one vertex per regular 

expression 
E is the set of edges between vertices, with an edge (Vi, Vj) if Ri 

and Rj interact with each other.  
Repeat 

New group (NG) = φ  
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Pick a regular expression that has the least interaction with 
others and add it into new group NG 

Repeat 
Pick a regular expression R has the least number of edges 

connected to the new group 
 Compile NG ∪ {R} into a DFA 
 if this DFA is larger than the limit  
  break; 
 else 
  Add R into NG 
Until every regular expression in G is examined 
Delete NG from G 

Until no regular expression is left in G 
______________________________________________________________________________ 

Algorithm for Multi-core Processor Architecture with 
limited total memory size 

General processor architecture. In the general 
processor architecture, if there are multiple composite DFAs 
to be run, the processor executes each of them sequentially. 
Usually all the DFAs are kept in the main memory for the 
performance purpose. Since the memory is shared among all 
DFAs, we want to group all patterns into the smallest number 
of groups (hence the smallest number of DFA) while not 
exceeding the available memory size. It is clear that finding 
the smallest number of groups is an NP hard problem. In this 
work, we apply heuristics to find a small number of groups 
that can serve as a good approximation. The pseudo-code of 
our algorithm for the general processor architecture is shown 
in the following.  
_____________________________________________ 
Leftover memory L = Total memory  
For regular expression Ri in the set 

Compute the DFA size Di for Ri 
Leftover memory -= Di 

 
Repeat 

New group (NG) = φ  
Pick a regular expression which has the least interaction with 

others and add it into new group NG 
Repeat 
 Pick a regular expression R that has the least number of 

edges connected to the new group 
 Compile NG ∪ {R} into a DFA 
  if D(NG) > +L*|NG|/(#left patterns) ∑

∈NGR
i

i

RD )(

  break; 
 else 
  Add R into NG 
Until every regular expression in G is examined 
Leftover memory L -= D(NG) - ∑

∈NGR
i

i

RD )(   

Delete NG from G 
Until no regular expression is left in G 
____________________________________________ 

Algorithm for General-Processor Architecture 

Different from the multi-core case, in this algorithm we 
first compute the DFA of individual patterns and compute the 
leftover memory size. At any stage, we always try to 
distribute the leftover memory evenly among the ungrouped 
expressions, which is the heuristics that we apply to increase 

the number of grouping operations, hence reducing the 
number of resulting groups. In this algorithm, we group 
patterns using a similar routine as the previous algorithm. 
However, we stop grouping when the size of the composite 
DFA (denoted as D(NG)) exceeds its share of the leftover 
memory. Here, the DFA’s share of the leftover memory is 
calculated using the formula = (Leftover memory L) * 
(Number of patterns in the group) / (Number of ungrouped 
patterns).  

Discussion: Grouping multiple regular expressions into 
one composite DFA is a well known technique to enhance 
matching speed. Our algorithms focus on picking the right 
patterns to be grouped together. Similar to our approach, 
systems like Bro group patterns into one group, instead of 
several groups. They adopt a lazy DFA-based approach, 
where they cache commonly used DFA states and extend the 
DFA at run-time if needed. The distinction between our 
approach and Bro’s approach is that our grouping algorithm 
produces scanners of deterministic complexity. The lazy 
DFA-based approach, although fast and memory efficient on 
most common inputs, may be exploited by intruders to 
construct malicious packets that force the lazy DFA to enter 
many corner cases [15]. Our fully-developed DFA does not 
have performance degradation under such attacks. 

V.EVALUTION RESULTS 
We implement a DFA scanner with rewriting and grouping 
functionality for efficient regular expression matching. In 
this section, we evaluate the effectiveness of our rewriting 
techniques for reducing DFA size, and the effectiveness of 
our grouping algorithms for creating memory-efficient 
composite DFA. We also compare the speed of our scanner 
against a DFA-based repeated scanner generated by flex [25] 
and a best-known NFA-based scanner [26]. Compared to the 
DFA-based repeated scanning approach, our DFA-based one 
pass scanning approach has 12 to 42 times performance 
improvements. Compared to the NFA-based implementation, 
our DFA scanner is 50 to 700 times faster on traffic dumps 
obtained form MIT and Berkeley networks. 

5.1 Experimental Setup 
To focus on regular expressions commonly used in 
networking applications, we select the following three 
complex pattern sets: The first is from the Linux layer 7 filter 
[1] which contains 70 regular expressions for detecting 
different protocols. The second is from the Snort system [2] 
which contains 1555 regular expressions for intrusion 
detection. The last one is from Bro intrusion detection system 
[3] with a total of 2781 regular expressions.   

We use two sets of real-world packet traces. The first set 
is the intrusion detection evaluation data set from the MIT 
DARPA project [24]. It contains more than a million packets. 
The second data set is from a local LAN with 20 machines at 
the UC Berkeley networking group, which contains more 
than six million packets. The characteristics of MIT dump 
are very different from Berkeley dump. MIT dump mostly 
contains intrusion packets that are long, with the average 
packet payload length being 507.386 bytes. In the Berkeley 
dump, however, most packets are normal traffic, with 67.65 
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bytes on average in the packet payload. A high percentage of 
the packets are ICMP and ARP packets that are very short. 

We use Flex [25] to convert regular expressions into 
DFAs. Our implementation of the DFA scanner eliminates 
backtracking operations [25]. It only performs one-pass 
search over the input and is able to report matching results at 
the position of the end of each matching substring.  

All the experimental results reported were obtained on 
PCs with 3.4 Ghz CPU and 3.7 GB memory. 

5.2 Effect of Rule Rewriting 
We apply our rewriting scheme presented in Section 3.2 to 
the Linux L7-filter, Snort and Bro pattern sets. For the Linux 
L7-filter pattern set, we do not identify any pattern that needs 
to be rewritten. For the Snort pattern set, however, 71 rules 
need to be rewritten. For Bro, 49 patterns (mostly imported 
from Snort) need to be rewritten using Rewrite Rule 2. For 
these patterns, we gain significant memory savings as shown 
in Table 5. For both types of rewrite, the DFA size reduction 
rate is over 98%.  

Table 5. Rewriting effects  
Type of Rewrite Rule 

Set 
Number 
of 
Patterns  

Average 
length 
restriction 

DFA 
Reduction 
Rate 

Snort 17 370 >98% Rewrite Rule 1: 
(Quadratic case) Bro 0 0 0 

Snort 54 344 >99%1 Rewrite Rule 2: 
(Exponential Case) Bro 49 214.4 >99%1 

17 patterns belong to the category for which Rewrite Rule 
1 can be applied. These patterns (e.g., “^SEARCH\s+[^\n] 
{1024}”)  all contain a character (e.g., \s) that is allowed to 
appear multiple times before a class of characters (e.g., [^\n]) 
with a fixed length restriction (e.g., 1024). As discussed in 
Section 3.2, this type of pattern generates DFAs that expand 
quadratically in the length restriction. After rewriting, the 
DFA sizes come down to linear in the length restriction. A 
total of 103 patterns need to be rewritten using Rewrite Rule 
2. Before rewriting, most of them generate exponential sized 
DFAs that cannot even be compiled successfully. With our 
rewriting techniques, the collection of DFAs created for all 
the patterns in the Snort system can fit into 95MB memory, 
which can be satisfied in most PC-based systems.  

5.3 Effect of Grouping Multiple Patterns  
In this section, we apply the grouping techniques to regular 
expression sets. We show that our grouping techniques can 
intelligently group patterns to boost system throughput, while 
avoiding extensive memory usages. We test on three pattern 
sets: the Linux L7-filter, the Bro http-related pattern set and 
the Bro payload related pattern set. The patterns of L7-filter 
can be grouped because the payload of an incoming packet is 
compared against all the patterns, regardless of the packet 
header information. For the Bro pattern set, as most rules are 
related to packets with specific header information, we pick 
the http related patterns (a total of 648) that share the same 
header information, as well as 222 payload scanning patterns 

                                                           
1 Note, we use over 99% because some of the patterns create too many states 
to be compiled successfully without rewriting. 99% is obtained by 
calculating those successful ones. 

that share the same header information. Note that we do not 
report the results of using the Snort rule set because its 
patterns overlap significantly with those of the Bro rule set.     

5.3.1 Interaction of Patterns 
For all three pattern sets, a majority of patterns are non-
interactive, particularly in Bro http patterns set where all 
patterns are non-interactive. As a result, most patterns in 
these rulesets can be combined pair-wise. This nice property 
offers a significant potential for our grouping algorithms to 
produce small numbers of groups. To achieve that, one 
assumption that our grouping algorithms use needs to be 
verified. As stated in Section 4.2, the assumption is that if 
three patterns are pair-wise non-interactive, it is highly likely 
that the size of the composite DFA will not exceed the sum 
of the individual sizes. We verify this assumption with the 
real world pattern sets. Table 6 shows that this assumption is 
valid for over 99.8% of the cases from all three pattern sets.  

Table 6. Interaction of regular expressions 

 No-interaction 
Pair-wise 

Pair-wise No-interaction 
lead to No-interaction 

three patterns 

Linux L7-filter 71.18% 99.87% 
Bro http  100% 100% 

Bro payload  93.3% 99.99% 
 

5.3.2 Grouping Results 

We apply our grouping algorithms to all three pattern sets 
and successfully group all of them into small (<5) numbers 
of groups. For the Bro’s http pattern set, since patterns do not 
interact with each other, it is possible to compile all 648 
patterns into one composite DFA of 6218 states. The other 
two sets, however, cannot be grouped into one group due to 
interactions. Below, we report results obtained using our 
grouping algorithm for the multi-core architecture in Table 7, 
where local memory is limited. The results for the general 
processor architecture are in Table 8.  
Table 7. Results of grouping algorithms for the multi-core 

architecture 
7 (a) Linux L7-filter (70 Patterns) 

Composite DFA 
state limit  Groups Total Number 

of States 
Compilation 

Time (s) 
617 10 4267 3.3 

2000 5 6181 12.6 
4000 4 9307 29.1 

16000 3 29986 54.5 

7(b) Payload patterns from Bro (222 Patterns) 
Composite DFA 

state limit  Groups Total Number 
of States 

Compilation 
Time (s) 

540 11 4868 20 
1000 7 4656 118 
2000 5 5430 780 
6000 4 9197 1038 

Table 7(a) shows the results for Linux L7-filter pattern 
set. We start by limiting the number of states in each 
composite DFA to 617, the size of the largest DFA created 
for a single pattern in the Linux L7-filter set. The actual 
memory cost is 617 times 256 next state pointers times 
log(617) bits for each pointer, which amounts to 192 KB. 
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Considering that most modern processors have large data 
caches (>0.5MB), this memory cost for a single composite 
DFA is comparatively small.  Our algorithm generates 10 
groups when the limit on the DFA size is set to 617. It 
creates fewer groups when the limit is increased to larger 
numbers. As today’s multi-core network processors have 8-
16 engines, it is feasible to allocate each composite DFA to 
one processor and take advantage of parallelism.  

With our grouping algorithms, we can decrease the 
number of pattern groups from 70 (originally ungrouped) to 3 
groups. This means that, given a character, the generated 
packet content scanner needs to perform only three state 
transitions instead of the 70 state transitions that were 
necessary with the original ungrouped case. This results in a 
significant performance enhancement (show in Section 
5.3.3). 

For Bro’s payload pattern set, we can group more 
patterns into one group. As Table 7(b) shows, starting from 
540, the largest individual DFA size, the grouping algorithm 
can group 222 patterns into 11 groups. As the DFA state 
limit increases,  the number of groups decreases down to 4. 

Table 8. Results of grouping algorithms for general 
processor architecture 

8(a) Linux L7-filter (70 Patterns) 

Total DFA 
state limit Groups 

Total 
Number of 

States 

Compilation 
Time (s) 

3533 12 3371 5.602 
4000 10 3753 7.335 

10000 5 7280 37.928 
32000 3 25215 49.976 

8(b) Payload patterns from Bro (223 Patterns) 
Composite 
DFA state 

limit  
Groups 

Total 
Number of 

States 

Compilation 
Time (s) 

5221 6 4697 1050 
8000 4 6854 1030 

Table 8 demonstrates that the grouping algorithm for the 
general processor architecture can effectively reduce the 
number of groups generated as the memory limit imposed on 
the algorithm is increased.  In addition, the total number of 
DFA states is close to the memory limit, showing the 
algorithm can fully utilize the memory allocated to the packet 
scanner. Note that we start memory limit at 3533 DFA states 
for Linux L7-filter which is the total number of the states of 
individual DFAs. Our simulation results show that we can 
group 70 patterns into 12 groups with no extra memory usage.  
Similarly, we start 5221 DFA states for Bro payload set, 
which is the sum of 233 individual DFAs. Even without extra 
memory, we can decrease the number of groups from 233 to 
6.  

Beyond the effectiveness, Table 7 and Table 8 also 
present the running time of our grouping algorithms. This 
overhead is a one-time cost. In networking environments, the 
packet content scanner operates continuously until there are 
new patterns to be inserted to the system. As patterns in the 

Linux L7-filter or Bro system do not change frequently, the 
occasional overhead of several minutes is affordable. In 
addition, we do not need to regroup all patterns given any 
new pattern. We can just compute its pairwise interactions 
with existing patterns and pick a group that yields least total 
interactions. This type of incremental update computation 
time is in average less than 1 second on the Bro payload 
pattern set.  

5.3.3 Speed Comparison 
We compare our DFA-based algorithms with the starte-of-
the-art NFA-based regular expression matching algorithm. 
Both L7-filter and Snort systems use this NFA-based library. 
We also compare it with the DFA-based repeated scan 
approach generated by flex [25]. The results are summarized 
in Table 9. Our DFA-based one pass scanner is 47.9 to 704 
times faster than the NFA-based scanner. Compared to DFA-
based repeated scan engine, our scanner yields a performance 
improvement of 1244% to 4238%. Also note that although 
these dumps have dramatically different characteristics, our 
scanner provides similar throughputs over these dumps 
because it scans each character only once. The other two 
approaches are subject to dramatic change in throughput (1.8 
to 3.4 times) over these traces, because they need to do 
backtracking or repeated scans. Of course, we admit that the 
memory usage of our scanner is 2.6 to 8.4 times the NFA-
based approach. However, the largest scanner we created 
(Linux L7-filter, 3 groups) uses 13.3MB memory, which is 
well under the memory limit of most modern systems.  

Table 9. Comparison of the Different Scanners 
Throughputs 

(Mb/s) 

 
MIT 
dump 

Berkeley 
dump 

Memory 
Consumption 

(KB) 

NFA 0.98 3.4 1636 
DFA RP 16.3 34.6 7632 

Linux 
L-7 

DFA OP 3 groups 690.8 728.3 13596 
NFA 30.4 56.1 1632 

DFA RP 117.2 83.2 1624 
Bro 

Http 
DFA OP 1 group 1458 1612.8 4264 

NFA 5.8 14.8 1632 
DFA RP 17.1 25.6 7628 

Bro 

Payload 
DFA OP 4 groups 566.1 568.3 4312 

NFA—NFA-based implementation  
DFA RP – Flex generated DFA-based repeated scan engine 
DFA OP – Our DFA one pass scanning engine 

VI.CONCLUSION AND FUTURE WORK 

We considered the implementation of fast regular expression 
matching for packet payload scanning applications. While 
NFA-based approaches are usually adopted for 
implementation because naïve DFA implementations can 
have exponentially growing memory costs, we showed that 
with our rewriting techniques, memory-efficient DFA-based 
approaches are possible. In addition, we presented a scheme 
that selectively groups patterns together to further speed up 
the matching process. Our DFA-based implementation is 2 to 
3 orders of magnitude faster than the widely used NFA 
implementation and 1 to 2 orders of magnitude faster than a 
commonly used DFA-based parser. Our grouping scheme 
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can be applied to general processor architecture where the 
DFA for one group corresponds to one process or thread, as 
well as to multi-core architecture where groups of patterns 
can be processed in parallel among different processing units. 
In the future, it would be an interesting study to apply 
different DFA compression techniques and explore tradeoffs 
between the overhead of compression and the savings in 
memory usage.  
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Appendix 
Theorem 1:  Pattern P1 “^A[A-Z]{j}”  is equivalent to the 
original pattern P2 “^A+[A-Z]{j}” for detecting non-
overlapping shortest string. 
(1) Any input matching P1 must match P2 as well, and the 

shortest matched string S1 for P1 is the same as the 
shortest matched sting S2 for P2. 

Proof:  For any input matching P1, it must match pattern P2 
because we can use “\s” to match “\s+” and the remaining j 
characters as [A-Z]{j}. Next we prove their matched string S1 
and S2 are identical.  For P1, there is only one way of 
selecting S1 and its length is j+1. There maybe multiple 
ways of selecting S2 (same start position, overlapping 
strings), with length from j+1 to infinity. If we pick the 
shortest match, its length would also be j+1. In addition, S1 
and S2 must start from the beginning of the input due to the 
requirement of ^. Given that they have the same length, S1 
and S2 must be identical. 
(2) Any input matching P2 must match P1 as well, and both 

patterns report matching of the same shortest string. 
Proof: For any input matching P2 “^A+[A-Z]{j}”, it must 
have x “A”s (x>=1) matched as “^A+”,  y “A”s and z [A-Z] 
characters (starting from a none “A”) matched as “[A-Z]{j}” 
(y>=0, z>=0, y+z=j).  This input must match P1 “^A[A-
Z]{j}” because the input have x-1+y+z>=j [A-Z] characters 
after the first A. Similar to (1), the shortest matched strings 
are the same. 
Since pattern starts with ^, P1 and P2 report at most one 
match for one line. Given (1) and (2), P1 and P2 report the 
same results for any input, hence they are equivalent.  
Theorem 2. Patter P1 “.*AB[A-Z]{j}”  can be rewritten as 
pattern P2 “([^A]|A[^B]|AB[A-Z]{j-1}[^(A-Z)])*AB[A-
Z]{j}”. These two patterns are equivalent for detecting non-
overlapping strings. 
Proof: It is trivial that these two patterns are equivalent when 
the input does not contain AB\s because none of them match 
the input. It is also trivial if the input only contains one AB\s. 
Next, we prove the case where we have multiple ABs without 
[^(A-Z)] in between and they are within j bytes to the first AB 
through (1), (2) and (3).  
(1) Any input not matching P2 does not match P1 either. 
Proof:  Since the input does not match P2, there must be a 
[^(A-Z)] character within the next j bytes of the first AB, this 
character must also be located within j bytes to the following 
ABs. Hence, P1 will not be matched either. 
(2) Any input matching P2 must match P1. P2 and P1 

generate matching results at the same position. 
Proof: For any input matching P2, it must report matching 
result at j positions after the first AB.  If there is no [^(A-Z)] 
character within the next j bytes to one of the ABs, then there 
will not be [^(A-Z)] within the next j bytes to the first AB 
because there is no [^(A-Z)] in between of these ABs. 
Therefore, the match result of P1 will be generated j bytes 
after the first AB as well. Hence, S1 and S2 are the same.  
(3) P1 and P2 report the same number of matches. 
Proof: When there are multiple ABs without [^(A-Z)] 
between them and they are within j bytes to the first AB. P1 

http://www.pcre.org/
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would only report one match, because these ABs are within j 
bytes and their matching strings overlap with each other. P2 
would report one match too. Hence, P1 and P2 report the 
same number of matches. If there are multiple non-
overlapping patterns in the input (ABs are at least j apart or 
with [^(A-Z)] in between), P1 and P2 still report the same 
number of matches because we can divide the input to 
segments, where only one match is reported in one segment.   
Given (1), (2) and (3), for any input, patterns P1 and P2 
report the same matching results and hence they are 
equivalent.  
 


	Regular Expression Patterns
	Solution Space for Regular Expression Matching
	Problem statement
	Design Considerations
	DFA Analysis for Individual Regular Expressions
	Regular Expression Rewrites
	Notes for Pattern Writers
	Interactions of Regular Expressions
	Interactions of Real-world Regular Expressions
	Regular Expressions Grouping Algorithms
	Experimental Setup
	Effect of Rule Rewriting
	Effect of Grouping Multiple Patterns
	Interaction of Patterns
	Grouping Results
	Speed Comparison
	Appendix

