
Fast and Memory-Efficient Regular Expression
Matching for Deep Packet Inspection

Fang Yu
Zhifeng Chen
Yanlei Diao
T.V. Lakshman
Randy H. Katz

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-76

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-76.html

May 22, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Fast and Memory-Efficient Regular Expression
Matching for Deep Packet Inspection

 Fang Yu, Member, IEEE Zhifeng Chen, Member, IEEE Yanlei Diao, Member, IEEE
T. V. Lakshman , Fellow, IEEE Randy H. Katz, Fellow, IEEE

Abstract—Packet content scanning at high speed has become
extremely important due to its applications in network security,
network monitoring, HTTP load balancing, etc. In content
scanning, the packet payload is compared against a set of
patterns specified as regular expressions. In this paper, we first
show that memory requirements using traditional methods are
prohibitively high for many patterns used in packet scanning
applications. We then propose regular expression rewrite
techniques that can effectively reduce memory usage. Further,
we develop a grouping scheme that can strategically compile a
set of regular expressions into several engines, resulting in
remarkable improvement of regular expression matching speed
without much increase in memory usage. We implement a new
DFA-based packet scanner using the above techniques. Our
experimental results using real-world traffic and patterns show
that our implementation achieves a factor of 12 to 42
performance improvement over a commonly used DFA-based
scanner. Compared to the state-of-art NFA-based
implementation, our DFA-based packet scanner achieves 50 to
700 times speedup.

I. INTRODUCTION

Packet content scanning (also known as Layer-7 filtering or
payload scanning) is crucial to network security and network
monitoring applications. In these applications, the payload of
packets in a traffic stream is matched against a given set of
patterns to identify specific classes of applications, viruses,
protocol definitions, etc.

Currently, regular expressions are replacing explicit
string patterns as the pattern matching language of choice in
packet scanning applications. Their widespread use is due to
their expressive power and flexibility for describing useful
patterns. For example, in the Linux Application Protocol
Classifier (L7-filter) [1], all protocol identifiers are expressed
as regular expressions. Similarly, the Snort [2] intrusion
detection system has evolved from no regular expressions in
its ruleset in April 2003 to 1131 out of 4867 rules using
regular expressions as of February 2006. Another intrusion
detection system, Bro [3], also uses regular expressions as its
pattern language.

As regular expressions gain widespread adoption for
packet content scanning, it is imperative that regular
expression matching over the packet payload keep up with
the line-speed packet header processing. Unfortunately, this
requirement cannot be met in many existing payload
scanning implementations. For example, when all 70
protocol filters are enabled in the Linux L7-filter [1], we
found that the system throughput drops to less than 10Mbps,
which is well below current LAN speeds. Moreover, over
90% of the CPU time is spent in regular expression
matching, leaving little time for other intrusion detection or
monitoring functions. On the other hand, although many
schemes for fast string matching [4-11] have been developed
recently in intrusion detection systems, they focus on explicit
string patterns only and can not be easily extended to fast
regular expression matching.

The inefficiency in regular expression matching is largely
due to the fact that the current solutions are not optimized for
the following three unique complex features of regular
expressions used in network packet scanning applications.
• First, many such patterns use multiple wildcard

metacharacters (e.g., ‘.’, ‘*’). For example, the pattern
for identifying the Internet radio protocol,
“membername.*session.*player”, has two wildcard
fragments “.*”. Some patterns even contain over ten
such wildcard fragments. As regular expressions are
converted into state machines for pattern matching, large
numbers of wildcards can cause the corresponding
Deterministic Finite Automaton (DFA) to grow
exponentially.

• Second, a majority of the wildcards are used with length
restrictions (‘?’, ‘+’). As we shall show later in the
paper, such length restrictions can increase the resource
needs for expression matching.

• Third, groups of characters are also commonly used: for
example, the pattern for matching the ftp protocol,
“^220[\x09-\x0d -~]*ftp”, contains a class (inside the
brackets) that includes all the printing characters and
space characters. The class of characters may intersect
with other classes or wildcards. Such interaction can
result in a highly complex state machine.

To the best of our knowledge, there has not been any
detailed study of optimizations for these kinds of regular
expressions as they are so specific to network packet
scanning applications. In this paper, we address this gap by
analyzing these regular expressions and developing memory-
F. Yu, Department of EECS, University of California Berkeley, Berkeley,
CA 94720 (phone: 510-642-8284; email: fyu@eecs.berkeley.edu).
Z. Chen, Google Inc., 1600 Amphitheathre Pkwy, Mountain View, CA
94043 (email: zhifengc@google.com)
Y. Diao, Department of Computer Science, University of Massachusetts
Amherst, Amherst, MA 01003 (email: yanlei@cs.umass.edu).
T.V. Lakshman, Bell Laboratories, Lucent Technologies, 101 Crawfords
Corner Road, Holmdel, NJ 07733 (email: lakshman@research.bell-labs.com).
Randy H. Katz, Department of EECS, University of California Berkeley,
Berkeley, CA 94720 (email: randy@eecs.berkeley.edu).
 1

 2

efficient DFA-based solutions for high speed processing.
Specifically, we make the following contributions:
• We analyze the computational and storage cost of

building individual DFAs for matching regular
expressions, and identify the structural characteristics of
the regular expressions in networking applications that
lead to exponential growth of DFAs, as presented in
Section 3.2.

• Based on the above analysis, we propose two rewrite
rules for specific regular expressions in Section 3.3. The
rewritten rules can dramatically reduce the size of
resulting DFAs, making them small enough to fit in
memory. We prove that the patterns after rewriting are
equivalent to the original ones for detecting non-
overlapping patterns. While we do not claim to handle
all possible cases of dramatic DFA growth (in fact the
worse case cannot be improved), our rewrite rules do
cover those patterns present in common payload
scanning rulesets like Snort and Bro, thus making fast
DFA-based pattern matching feasible for today’s
payload scanning applications.

• We further develop techniques to intelligently combine
multiple DFAs into a small number of groups to improve
the matching speed in Section IV, while avoiding the
exponential growth in the number of states in memory.

We demonstrate the effectiveness of our rewriting and
grouping solutions through a detailed performance analysis
using real-world payload scanning pattern sets. As the results
show, our DFA-based implementation can increase the
regular expression matching speed on the order of 50 to 700
times over the NFA-based implementation used in the Linux
L7-filter and Snort system. It can also achieve 12-42 times
speedup over a commonly used DFA-based parser. The
pattern matching speed can achieve gigabit rates for certain
pattern sets. This is significant for implementing fast regular
expression matching of the packet payload using network
processors or general-purpose processors, as the ability to
more quickly and efficiently classify enables many new
technologies like real-time worm detection, content lookup in
overlay networks, fine-grained load balancing, etc.

II.PROBLEM STATEMENT
In this section, we first discuss regular expressions used in
packet payload scanning applications, then present the
possible solutions for regular expression matching, and
finally define the specific problem that we address in this
paper.

2.1 Regular Expression Patterns
A regular expression describes a set of strings without
enumerating them explicitly. Table 1 lists the common
features of regular expression patterns used in packet payload
scanning. For example, consider a regular expression from
the Linux L7-filter [1] for detecting Yahoo traffic:
“^(ymsg|ypns|yhoo).?.?.?.?.?.?.?[lwt].*\xc0\x80”. This pattern
matches any packet payload that starts with ymsg, ypns, or
yhoo, followed by seven or fewer arbitrary characters, and

then a letter l, w or t, and some arbitrary characters, and
finally the ASCII letters c0 and 80 in the hexadecimal form.

Table 2 compares the regular expressions used in two
networking applications, Snort and the Linux L7-filter,
against those used in emerging Extensible Markup Language
(XML) filtering applications [12, 13] where regular
expressions are matched over text documents encoded in
XML. We notice three main differences: (1) While both
types of applications use wildcards (‘.’, ‘?’, ‘+’, ‘*’), the
patterns for packet scanning applications contain larger
numbers of them in each pattern; (2) classes of characters
(“[]”) are used only in packet scanning applications; (3) a
high percentage of patterns in packet payload scanning
applications have length restrictions on some of the classes or
wildcards, while such length restrictions usually do not occur
in XML filtering. This shows that compared to the XML
filtering applications, network packet scanning applications
face additional challenges These challenges lead to a
significant increase in the complexity of regular expression
matching, as we shall show later in this paper.

Table 1. Features of Regular Expressions
Syntax Meaning Example

^ Pattern to be matched
at the start of the input

^AB means the input starts with AB.
A pattern without ‘^’, e.g., AB, can
be matched anywhere in the input.

| OR relationship A|B denotes A or B.
. A single character

wildcard

? A quantifier denoting
one or less

A? denotes A or an empty string.

* A quantifier denoting
zero or more

A* means an arbitrary number of As.

{} Repeat A{100} denotes 100 As.
[] A class of characters [lwt] denotes a letter l, w, or t.
[^] Anything but [^\n] denotes any character except \n.

Table 2. Comparison of regular expressions in networking
applications against those in XML filtering

 Snort L7-filter XML filtering
of regular expressions analyzed 1555 70 1,000-100,000
% of patterns starting with “^” 74.4% 72.8% ≥80%
% of patterns with wildcards “., +,
?, *”

 74.9% 75.7% 50% -
100%

Average # of wildcards per pattern 4.65 7.03 1-2
% of patterns with class “[]” 31.6% 52.8% 0
Average # of classes per pattern 7.97 4.78 0
% of patterns with length
restrictions on classes or wildcards

 56.3% 21.4% ≈0

2.2 Solution Space for Regular Expression Matching
Finite automata are a natural formalism for regular
expressions. There are two main categories: Deterministic
Finite Automaton (DFA) and Nondeterministic Finite
Automaton (NFA). In this section, we survey existing
solutions using these two types of automata.

A DFA consists of a finite set of input symbols, denoted
as ∑, a finite set of states, and a transition function δ [14]. In
networking applications, ∑ contains the 28 symbols from the
extended ASCII code. Among the states, there is a single
start state q0 and a set of accepting states. The transition
function δ takes a state and an input symbol as arguments
and returns a state. A key feature of DFA is that at any time
there is only one active state in the DFA. An NFA works
similarly to a DFA except that the δ function maps from a

 3

state and a symbol to a set of new states. Therefore, multiple
states can be active simultaneously in an NFA.

A theoretical worst case study [14] shows that a single
regular expression of length n can be expressed as an NFA
with O(n) states. When the NFA is converted into a DFA, it
may generate O(∑n) states. The processing complexity for
each character in the input is O(1) in a DFA, but is O(n2) for
an NFA when all n states are active at the same time.

To handle m regular expressions, two choices are
possible: processing them individually in m automata, or
compiling them into a single automaton. The former is used
in Snort [2] and Linux L7-filer [1]. The latter is proposed in
recent studies [12, 13] so that the single composite NFA can
support shared matching of common prefixes of those
expressions. Despite the demonstrated performance gains
over using m separate NFAs, in practice this approach
experiences large numbers of active states. This has the same
worst case complexity as the sum of m separate NFAs.
Therefore, this approach on a serial processor can be slow, as
given any input character, each active state must be serially
examined to obtain new states.

In DFA-based systems, compiling m regular expressions
into a composite DFA provides guaranteed performance
benefit over running m individual DFA. Specifically, a
composite DFA reduces processing cost from O(m) (O(1) for
each automaton) to O(1), i.e., a single lookup to obtain the
next state for any given character. However, the number of
states in the composite automaton grows to O(∑mn) in the
theoretical worst case. In fact, we will show in Section 4 that
typical patterns in packet payload scanning applications
indeed interact with each other and can cause the creation of
an exponential number of states in the composite DFA.

Table 3. Worst case comparisons of DFA and NFA
One regular expression of

length n
m regular expressions
compiled together

Processing
complexity

Storage
cost

Processing
complexity

Storage
cost

NFA O(n2) O(n) O(n2m) O(nm)
DFA O(1) O(∑n) O(1) O(∑nm)
There is a middle ground between DFA and NFA called

lazy DFA. Lazy DFA are designed to reduce memory
consumption of conventional DFA [12, 15]: a lazy DFA
keeps a subset of the DFA that matches the most common
strings in memory; for uncommon strings, it extends the
subset from the corresponding NFA at runtime. As such, a
lazy DFA is usually much smaller than the corresponding
fully-compiled DFA and provides good performance for
common input strings. Bro intrusion detection systems [3]
adopt this approach. However, malicious senders can easily
construct packets that keep the system busy and slow down
the matching process.

Field Programmable Gate Arrays (FPGAs) provide a
high degree of parallelism and thus can be used to speed up
the regular expression matching process. There are existing
FPGA solutions that build circuits based on DFA [16] or
NFA [17-19]. These approaches are promising if the extra
FPGA hardware can be embedded in the packet processors.
FPGAs, however, are not available in many applications; in

such situations, a network processor or general-purpose
CPU-based implementation may be more desirable.
2.3 Problem statement
In this paper, we seek a fast and memory-efficient solution to
regular expression matching for packet payload scanning.
We define the scope of the problem as follows:
• We consider DFA-based approaches in this paper, as

NFA-based approaches are inefficient on serial
processors or processors with limited parallelism (e.g.,
multi-core CPUs in comparison to FPGAs). Our goal is
to achieve O(1) computation cost for each incoming
character, which cannot be accomplished by any existing
DFA-based solutions due to their excessive memory
usage. Thus, the focus of the study is to reduce memory
overhead of DFA while approaching the optimal
processing speed of O(1) per character.

• We focus on general-purpose processor-based
architectures and explore the limits of regular
expression matching in this environment. Wherever
appropriate, we leverage the trend of multi-core
processors that are becoming prevalent in those
architectures. Nevertheless, our results can be used in
FPGA-based and ASIC-based approaches as well [20].
It is worth noting that there are two sources of memory

usage in DFAs: states and transitions. The number of
transitions is linear with respect to the number of states
because for each state there can be at most 28 (for all ASCII
characters) links to next states. Therefore, we consider the
number of states (in minimized DFA) as the primary factor
for determining the memory usage in the rest of the paper.
Also, due to the need for high performance, we do not
consider DFAs that use any table compression techniques.

III.MATCHING OF INDIVIDUAL PATTERNS
In this section, we present our solution to matching
individual regular expression patterns. The main technical
challenge is to create DFAs that can fit in memory, thus
making a fast DFA-based approach feasible. We first define
a few concepts key to DFA construction in the context of
packet payload scanning in Section 3.1. We then analyze the
size of DFAs for typical payload scanning patterns in Section
3.2. Although theoretical analyses [12, 14] have shown that
DFAs are subject to exponential blow-up, here, we identify
specific structures that can lead to exponential growth of
DFAs. Based on the insights from this analysis, in Section
3.3, we propose pattern rewrite techniques that explore the
possibility of trading off exhaustive pattern matching (which
real-world applications often allow) for memory efficiency.
Finally, we offer guidelines to pattern writers on how to write
patterns amenable to efficient implementation in Section 3.4.

3.1 Design Considerations
Although regular expressions and automata theory can be
directly applied to packet payload scanning, there is a
noticeable difference in between. Most existing studies on
regular expressions focus on a specific type of evaluation,
that is, checking if a fixed length string belongs to the
language that a regular expression defines. More specifically,

a fixed length string is said to be in the language of a regular
expression, if the string is matched from start to end by a
DFA corresponding to that regular expression. In contrast, in
packet payload scanning, a regular expression pattern can be
matched by the entire input or specific substrings of the input.
Without a priori knowledge of the starting and ending
positions of those substrings, DFAs created for recognizing
all substring matches can be highly complex.

For a better understanding, we next present a few
concepts pertaining to the completeness of matching results
and the DFA execution model for substring matching.
Completeness of matching results
Given a regular expression pattern and an input string, a
complete set of results contains all substrings of the input
that the pattern can possibly match. For example, given a
pattern ab* and an input abbb, three possible matches can be
reported, ab, abb, and abbb. We call this style of matching
Exhaustive Matching. It is formally defined as below:
Exhaustive Matching: Consider the matching process M as a

function from a pattern P and a string S to a power set of
S, such that, M(P, S) = {substring S' of S| S' is accepted
by the DFA of P}.
In practice, it is expensive and often unnecessary to

report all matching substrings, as most applications can be
satisfied by a subset of those matches. Therefore, we propose
a new concept, Non-overlapping Matching, that relaxes the
requirements of exhaustive matching.
Non-overlapping Matching: Consider the matching process

M as a function from a pattern P and a string S to a set of
strings, specifically, M(P, S) = {substring Si of S| ∀ Si, Sj
accepted by the DFA of P, Si Sj =∩ φ }.

If a pattern appears in multiple locations of the input, this
matching process reports all non-overlapping substrings that
match the pattern. Revisit our example above. For the pattern
ab* and the input abbb, the three matches overlap by sharing
the prefix ab. For this example, non-overlapping matching
will report one match instead of three.

For most payload scanning applications, we expect that
non-overlapping matching would suffice, as those
applications are mostly interested in knowing if certain
attacks or application layer patterns appear in a packet. In
fact, most existing scanning tools like grep and flex and
systems like Snort [2] and Bro [3] implement special cases of
non-overlapping matching such as left-most longest
matching or left-most shortest matching. As we shall show
later this section, non-overlapping matching can be exploited
to construct more memory-efficient DFAs.
DFA execution model for substring matching
In the following discussion, we focus on patterns without ‘^’
attached at the beginning. Recall that for such patterns, there
is no prior knowledge of whether/where a matching substring
may appear. To handle these patterns, two types of DFAs can
be created with different execution models:

Repeated searches. A DFA can be created directly from a
pattern using standard DFA construction techniques [14]. To
find the set of matching substrings (using either exhaustive or
non-overlapping matching), the DFA execution needs to be
augmented with repeated searches of the input: An initial

search starts from the beginning of the input, reading
characters until (1) it has reported all matches (if exhaustive
matching is used) or one match (if non-overlapping matching
is used), or (2) it has reached the end of the input. In the
former case, the new search will start from the next character
in input (if exhaustive matching is used) or from the
character after the reported match (if non-overlapping
matching is used). In the latter case, a new search is initiated
from the next character in input. This style of repeated
scanning using DFA is commonly used in language parsers.
However, it is inefficient for packet payload scanning where
the chance of the packet payload matching a particular
pattern is low (such inefficiency is verified in Section 5.3.3).

One-pass search. In the second approach, “.*” is pre-
pended to each pattern without ‘^’, which explicitly states
that the pattern can be matched anywhere in the input. Then a
DFA is created for the extended pattern. As the input is
scanned from start to end, the DFA can recognize all
substring matches that may start at different positions of the
input. Using one pass search, this approach can truly achieve
O(1) computation cost per character, thus suitable for
networking applications. To achieve high scanning rate, we
adopt this approach in the rest of the study.

3.2 DFA Analysis for Individual Regular Expressions
Next, we study the complexity of DFA for typical patterns
used in real-world packet payload scanning applications such
as Linux L7-filter, Snort, and Bro. The study is based on the
use of exhaustive matching and one-pass search. Table 4
summarizes the results.
• Explicit strings generate DFAs of length linear to the

number of characters in the pattern.
• If a pattern starts with ‘^’, it creates a DFA of polynomial

complexity with respect to the pattern length k and the
length restriction j. Our observation from the existing
payload scanning rule sets is that the pattern length k is
usually limited but the length restriction j can reach
hundreds or even thousands. Therefore, Case 4 can result
in a large DFA because it has a factor quadratic in j.

• Patterns starting with “.*” and having length restrictions
(Case 5) cause the creation of DFA of exponential size.

Table 4. Analysis of patterns with k characters
 Pattern features Example # of states
1. Explicit strings with k characters ^ABCD

.*ABCD
k+1

2. Wildcards ^AB.*CD
.*AB.*CD

k+1

3. Patterns with ^, a wildcard, and a
length restriction j

^AB.{j+}CD
^AB.{0, j}CD

^AB.{j}CD

O(k*j)

4. Patterns with ^, a class of characters
overlaps with the prefix, and a length
restriction j

^A+[A-Z]{j}D O(k+j2)

5. Patterns with a length restriction j,
where a wildcard or a class of
characters overlaps with the prefix

.*AB.{j}CD
.*A[A-Z]{j+}D

O(k+2j)

 4

 Next, we explain the two cases of large DFA sizes,
namely, Case 4 and Case 5 of Table 4, in more detail.
Case 4: DFA of Quadratic Size
A common misconception is that patterns starting with ‘^’
create simple DFAs. However, we discover that even with

‘^’, classes of characters that overlap with the prefix pattern
can still yield a complex DFA. Consider the pattern
^B+[^\n]{3}D, where the class of character [^\n] denotes any
character but the return character (\n). Its corresponding DFA
has a quadratic number of states, as shown in Figure 1. The
quadratic complexity comes from the fact that the letter B
overlaps with the class of character [^\n] and, hence, there is
inherent ambiguity in the pattern: A second B letter can be
matched either as part of B+, or as part of [^\n]{3}.
Therefore, if an input contains multiple Bs, the DFA needs to
remember the number of Bs it has seen and their locations in
order to make a correct decision with the next input
character. If the class of characters has length restriction of j
bytes, DFA needs O(j2) states to remember the combination
of distance to the first B and the distance to the last B.

Figure 1. A DFA for Pattern ^B+[^\n]{3}D

Similar structures in real world pattern sets:
A significant number of patterns in the Snort rule set fall into
this category. For example, the regular expression for the
NNTP rule is “^SEARCH\s+[^\n]{1024}”. Similar to the
example in Figure 1, \s overlaps with ^\n. White space
characters cause ambiguity of whether they should match \s+
or be counted as part of the 1024 non-return characters
[^\n]{1024}. Specifically, an input of SEARCH followed by
1024 white spaces and then 1024 ‘a’s will have 1024 ways of
matching strings, i.e., one white space matches \s+ and the
rest as part of [^\n]{1024}, or two white spaces match \s+
and the rest as part of [^\n]{1024}, etc. By using 10242 states
to remember all possible consequences of these white spaces,
the DFA accommodates all the ways to match the substrings
of different lengths. Note that all these substrings start with
SEARCH and hence are overlapping matches.

This type of quadratic state problem cannot be solved by
an NFA-based approach. Specifically, the corresponding
NFA contains 1042 states; among these, one is for the
matching of SEARCH, one for the matching of \s+, and the
rest of the 1024 states for the counting of [\^n]{1024} with
one state for each count. An intruder can easily construct an
input as “SEARCH” followed by 1024 white spaces. With
this input, both the \s+ state and all the 1023 non-return
states would be active at the same time. Given the next
character, the NFA needs to check these 1024 states
sequentially to compute a new set of active states.

This problem cannot be solved by a fixed string pre-
filtering scheme (used by Snort), either. This is because pre-
filtering can only recognize the presence of the fixed string
“SEARCH” in the input. After that, an NFA or DFA-based
matching scheme is still needed in post processing to report
whether the input matches the pattern and what the matches
are. Another choice is to count the subsequent characters in

post processing after identifying the prefix “SEARCH”. This
approach does not solve the problem because every packet
(even normal traffic) with the prefix will incur the counting
process. In addition, intruders can easily construct packets
with multiple (different) prefixes to invoke many requests for
such post processing.
Case 5: DFA of Exponential Size
Many payload scanning patterns contain an exact distance
requirement. Figure 2 shows the DFA for an example pattern
“.*A..CD”. An exponential number of states (22+1) are needed
to represent these two wildcard characters. This is because
we need to remember all possible effects of the preceding As
as they may yield different results when combined with
subsequent inputs. For example, an input AAB is different
from ABA because a subsequent input BCD forms a valid
pattern with AAB (AABBCD), but not so with ABA
(ABABCD). In general, if a pattern matches exactly j
arbitrary characters, O(2j) states are needed to handle the
exact j requirement. This result is also reported in [12].
Similar results apply to the case where the class of characters
overlaps with the prefix, e.g., “.*A[A-Z]{j}D”.

Figure 2. A DFA for pattern .*A.{2}CD

Similar structures in real world pattern sets:
In the intrusion detection system Snort, 53.8% of the patterns
(mostly for detecting buffer overflow attempts) contain a
fixed length restriction. Out of them, around 80% of the rules
start with ^; hence, they will not cause exponential growth of
DFA. The remaining 20% of the patterns do suffer from the
state explosion problem. For example, consider the rule for
detecting IMAP authentication overflow attempts, which
uses the regular expression “.*AUTH\s[^\n]{100}”. This rule
detects any input that contains AUTH, then a white space,
and no return character in the following 100 bytes. If we
directly compile this rule into a DFA, the DFA will contain
more than 10,000 states because it needs to remember all the
possible consequences that an AUTH\s subsequent to the first
AUTH\s can lead to. For example, the second AUTH\s can
either match [^\n]{100} or be counted as a new match of the
prefix of the regular expression.

Figure 3. NFA for the pattern .*AUTH\s[^\n]{100}

It is obvious that the exponential blow-up problem cannot
be mitigated by using an NFA-based approach. The NFA for
the pattern “.*AUTH\s[^\n]{100}” is shown in Figure 3.
Because the first state has a self-loop marked with Σ, the
input “AUTH\sAUTH\sAUTH\s…” can cause a large number
of states to be simultaneously active, resulting in
significantly degraded system performance, as demonstrated

 5

by our results reported in Section 5.3.3. Similar to Case 4,
this problem cannot be solved by a fixed string pre-filtering
scheme (used by Snort), either.

FigureT 4. DFA for rewriting the pattern .*AUTH\s[^\n]{100}

Figure 5. Transformed NFA for deriving Rewrite Rule (1)

3.3 Regular Expression Rewrites
We have identified the typical patterns used in packet
payload scanning that can cause the creation of large DFAs.
In this section, we investigate the possibility of rewriting
some of those patterns to reduce the DFA size. Such
rewriting is enabled by relaxing the requirement of
exhaustive matching to that of non-overlapping matching. In
particular, we propose two rewrite rules, one for rewriting
specific patterns belonging to the case of quadratic-sized
DFAs (Case 4 in Section 3.2), and the other for rewriting
specific patterns that generate exponential-sized DFAs (Case
5 of Section 3.2). The commonality of the patterns amenable
to rewrites is that their suffixes address length restricted
occurrences of a class of characters that overlap with their
prefixes. These patterns are typical in real-world rulesets
such as Snort and Bro. For these patterns, as shown in
Section 3.2, neither the NFA-based solution nor the fixed
string pre-filtering scheme can handle them efficiently. In
contrast, our rewrites rules can convert these patterns into
DFAs with their sizes successfully reduced from quadratic or
exponential to only linear.
Rewrite Rule (1)
As shown in Section 3.2, patterns that start with ‘^’ and
contain classes of characters with length restrictions, e.g.,
“^SEARCH\s+[^\n]{1024}”, can generate DFAs of quadratic
size with respect to the length restriction. Below, we first
explain the intuition behind Rewrite Rule (1) using the above
example and then state a theorem for more general cases.

Given the fact that such patterns are used in packet
scanning applications for detecting buffer overflow attempts,
it seems reasonable to assume that non-overlapping matches
are sufficient for reporting such attacks. Based on this
observation, we propose to rewrite the pattern
“^SEARCH\s+[^\n]{1024}” to “^SEARCH\s[^\n]{1024}”.
The new pattern specifies that after matching a single white
space, we start counting for [^\n]{1024} no matter what the
content is. It is not hard to see that for every matching
substring s that the original pattern reports, the new pattern
produces a substring s’ that is either identical to s or is a
prefix of s. In other words, the new pattern essentially
implements non-overlapping left-most shortest match. It is

also easy to see that the new pattern requires a number of
states linear in j because it has removed the ambiguity for
matching \s.

We provide a theorem (Theorem 1 in the Appendix) for a
more general case where the suffix of a pattern contains a
class of characters overlapping with its prefix and a length
restriction, “^A+[A-Z]{j}”. We prove that this type of pattern
can be rewritten to “^A[A-Z]{j}” with equivalence
guaranteed under the condition of non-overlap matching.
Note that our rewrite rule can also be extended to patterns
with various types of length restriction such as “^A+[A-
Z]{j+}” and “^A+[A-Z]{j,k}”. Details are omitted in the
interest of space.

Using Rewrite Rule (1), we successfully rewrote 17
similar patterns in the Snort rule set. Detailed results
regarding these rewrites are reported in Section 5.2.

Rewrite Rule (2)
As we discussed in Section 3.2, patterns like
“.*AUTH\s[^\n]{100}” generate exponential numbers of
states to keep track of all the AUTH\s subsequent to the fist
AUTH\s. If non-overlapping matching is used, the intuition
of our rewriting is that after matching the first AUTH\s, we
do not need to keep track of the second AUTH\s. This is
because (1) if there is a ‘\n’ character within the next 100
bytes, the return character must also be within 100 bytes to
the second AUTH\s, and (2) if there is no ‘\n’ character
within the next 100 bytes, the first AUTH\s and the following
characters have already matched the pattern. This intuition
implies that we can rewrite the pattern such that it only
attempts to capture one match of the prefix pattern.
Following the intuition, we can simplify the DFA by
removing the states that deal with the successive AUTH\s. As
shown in Figure 4, the simplified DFA first searches for
AUTH in the first 4 states, then looks for a white space, and
after that starts to count and check whether the next 100
bytes contains a return character. After rewriting, the DFA
only contains 106 states.

We derive our rewrite pattern from the simplified DFA
shown in Figure 4. Applying a standard technique that maps
a DFA/NFA to a regular expression [14], we transform this
DFA to an equivalent NFA in Figure 5. For the link that
moves from state 1 back to the start state in Figure 4 (i.e.,
matching A then not U), the transformed NFA places it right
at the start state and labels it with A[^U]. The transformed
NFA does the same for each link moving from state i
(1≤i≤105) to the start state in Figure 4. The transformed
NFA can be directly described using the following regular
expression:

“([^A]|A[^U]|AU[^T]|AUT[^H]|AUTH[^\s]|AUTH\s
[^\n]{0,99}\n)*AUTH\s[^\n]{100}”.
This rule first enumerates all the cases that do not satisfy the
pattern and then attaches the original pattern to the end of the
new pattern. In other words, “.*” is replaced with the cases
that do not match the pattern, represented by
([^A]|A[^U]|AU[^T]|AUT[^H]|AUTH[^\s]|AUTH\s[^\n]{0,99
}\n)*. Then, when the DFA comes to the states for
AUTH\s[^\n]{100}, it must be able to match the pattern.
Since the rewritten pattern is directly obtained from a DFA

 6

of size j+5, it generates a DFA of a linear number of states as
opposed to an exponential number before the rewrite.

We also provide a theorem (Theorem 2 in the Appendix)
that proves the equivalence of the new pattern and the
original pattern for a more general case “.*AB[A-Z]{j}”
under the condition of non-overlapping matching. Moreover,
we offer rewrite rules for patterns in other forms of length
restriction, e.g., “.*AB[A-Z]{j+}”.

Rewrite Rule (2) is applicable to 54 expressions in the
Snort rule sets and 49 in the Bro rule set. We wrote a script to
automatically rewrite these patterns and observed significant
reduction in DFA size. Detailed simulation results are
reported in Section 5.2.

3.4 Notes for Pattern Writers
As mentioned above, an important outcome of this work is
that our pattern rewriter can automatically perform both
types of rewriting. An additional benefit is that our analysis
provides insight into how to write regular expression patterns
amenable to efficient DFA implementation. We discuss this
in more detail below.

From the analysis in Section 3.2, we can see that patterns
with length restrictions can generate large DFAs. By
studying typical packet payload scanning pattern sets
including Linux L7-filter, Snort, and Bro, we found that
21.4-56.3% of the length restrictions are associated with
classes of characters. The most common classes of characters
are “[^\n]”, “[^\]]” (i.e., not ‘]’), and “[^\]”, used for detecting
buffer overflow attempts. The length restrictions of these
patterns are typically large (233 on the average and reaching
up to 1024). For these types of patterns, we highly encourage
the pattern writer to add “^” so as to avoid the exponential
state growth as we showed in Section 3.3. For patterns that
cannot start with “^”, the pattern writers can use the Rewrite
Rule 2 to generate state efficient patterns.

Even for patterns starting with “^”, we need to carefully
avoid the interactions between a class of characters and its
preceding character as shown in Rewrite Rule 1. One may
wonder why a pattern writer uses \s+ in the pattern
“^SEARCH\s+[^\n]{1024}”, when it can be simplified as \s.
Our understanding is that, in reality, a server implementation
of a search task usually interprets the input in one of the two
ways: either skip a white space after SEARCH and take the
following up to 1024 characters to conduct a search, or skip
all white spaces and take the rest for the search. The original
pattern writer may want to catch intrusion to systems of
either implementation. However, the original pattern will
generate false positives if the server does the first type of
implementation (skipping all the white spaces). This is
because if an input is followed by 1024 white spaces and
then some non-whitespace regular command of less than
1024 bytes, the server can skip these white spaces and take
the follow-up command successfully. However, this input
will be caught by the original pattern as intrusion because
these white spaces themselves can trigger the alarm. To catch
attacks to this type of server implementation, while not
generating false positives, we need the following pattern.

 “^SEARCH\s+[^\s][^\n]{1023}”

In this pattern, \s+ matches all white spaces and [^\s] means
the first non white space character. If there are more than
1023 non return characters following the first non white
space character, it is a buffer overflow attack. By adding
[^\s], the ambiguity in the original pattern is removed; given
an input, there is only way of matching each packet. As a
result, this new pattern generates a DFA of linear size.

IV.SELECTIVE GROUPING OF MULTIPLE PATTERNS
The previous section presented our analysis of the
complexity of the DFA created for individual patterns and
two rewrite techniques that simplify these DFA so that they
could fit in memory. As we mentioned in Section 2.2, it is
well known that the computation complexity for processing
m patterns reduces from O(m) to O(1) per character, when
the m patterns are compiled into a single composite DFA.
However, it is usually infeasible to compile a large set of
patterns together due to the complicated interactions between
patterns. In some cases, the composite DFA may experience
exponential growth in size, although none of the individual
DFA has an exponential component.

In this section, we first present two examples illustrating
the interactions between patterns, and then use a real-world
payload scanning ruleset to demonstrate the existence of
exponential growth in reality. Based on these observations,
we propose grouping algorithms that selectively divide
patterns into groups while avoiding the adverse interaction
among patterns.

4.1 Interactions of Regular Expressions
When patterns share prefixes, some states can be merged. For
example, states 1 and 2 shown in Figure 6 are shared by
“.*ABCD” and “.*ABAB”. Combining these patterns can
save both storage and computation.

Figure 6. A DFA for pattern .*ABCD and .*ABAB

However, if the patterns do not share the same prefix,
putting m patterns together may generate 2m states.

Figure 7 shows a composite DFA for matching
“.*AB.*CD” and “.*EF.*GH”. This DFA contains many
states that did not exist in the individual DFAs. Among them,
state 8 is created to record the case of matching both prefixes
AB and EF. Generally speaking, if there are l patterns with
one wildcard per pattern, we need O(2l) states to record the
matching of the power set of the prefixes. In such scenarios,
adding one more pattern into the DFA doubles its size. If
there are x wildcards per pattern, then (x+1)l states are
required. There are several such patterns in the Linux L7-
filter. For example, the pattern for the remote desktop
protocol is “.*rdpdr.*cliprdr.*rdpsnd”, and the pattern for
Internet radio is “.*membername.*session.*player”. Snort
also has similar patterns and the number of “.*” in a pattern
can go up to six.

 7

Figure 7. A DFA for pattern .*AB.*CD and .*EF.*GH

4.2 Interactions of Real-world Regular Expressions
We study the pattern interactions of the Linux L7-filter [1] in
this section. If 70 patterns are compiled separately into 70
DFAs, each DFA has tens to hundreds of states. The total
number of states is 3533. When we start to group multiple
patterns into a composite DFA (we select patterns with a
random order), the processing complexity decreases.
However, the total number of DFA states (i.e., the sum of the
composite DFA and those ungroup ones) grows over 136,786
with just 40 patterns, as illustrated by the increasing dotted
line in Figure 8. We could not add more patterns into the
composite DFA because it exceeded the memory limit in the
test machine that we used (1.5 GB). However, not all patterns
cause significant DFA growth. Only some patterns (e.g.,
pattern 12, 37, and 38 as shown in Figure 8) lead to
significant growth of the DFA. These patterns all contain
large numbers of wildcards, and sometimes have classes of
characters. For example, pattern 12 contains a fixed length
(20) of wildcards, pattern 37 contains three unrestricted
wildcards (“.*”), and pattern 38 contains 19 classes of
characters, 4 unrestricted wildcards, and 8 length restricted
wildcards.

0

10000

20000

30000

40000

50000

60000

1 6 11 16 21 26 31

of patterns compiles together

To
ta

l N
um

be
r o

f S
ta

te
s

Figure 8. DFA Size and Processing Complexity of Multiple

Patterns (Unsorted order)

4.3 Regular Expressions Grouping Algorithms
As discussed above, certain patterns interact with each other
when compiled together, which can result in a large
composite DFA. In this section, we propose algorithms to
selectively partition m patterns to k groups such that patterns
in each group do not adversely interact with each other. As
such, these algorithms reduce the computation complexity
from O(m) to O(k) without causing extra memory usage.

We first provide a formal definition of interaction: two
patterns interact with each other if their composite DFA
contains more states than the sum of two individual ones. To
calculate the number of states in the composite DFA, we first
construct an NFA by adding a new start state, twoε edges

leading to the individual DFA, a new accepting state, and
two ε edges from the DFA accepting states to the new
accepting state, as shown in Figure 9. Then we run the NFA
to DFA conversion algorithm and the DFA minimization
algorithm to obtain the composite DFA.

ε

ε

ε

ε

Figure 9. Composite NFA for two DFAs

We use the information on pairwise interaction to group a
set of m regular expressions. The intuition is that if there is
no interaction between any pair selected from R1, R2, and R3,
the composite DFA of R1, R2, R3 is not likely to exceed the
sum of individual ones. We validate this point using
empirical results in Section 5.3.1.

We devise grouping algorithms both for multi-core
processor architecture, where groups of patterns can be
processed in parallel among different processing units, and
for general processor architecture, where the DFA for one
group corresponds to one process or thread. Next, we present
the algorithm for the former architecture first and then the
algorithm for the latter.

In multi-core architecture, there are multiple parallel
processing units. Their number is usually limited, e.g., 16 in
Intel IXP2800 NPU, which is much smaller than the number
of patterns. Hence, one DFA per pattern per processing unit
is infeasible. Our goal is to design an algorithm that divides
regular expressions into several groups, so that one
processing unit can run one or several composite DFAs. In
addition, the size of local memory of each processing unit is
quite limited. For example, the newly architected IBM cell
processor has 8 synergistic processor elements, each with
128KB local memory [23]. Hence, we need to keep grouping
patterns until they meet the local memory limit. The pseudo-
code of the algorithm is provided below.

In this algorithm, we first compute the pairwise
interaction of regular expressions. With this pairwise
information, we construct a graph with each pattern as a
vertex and an edge between patterns Ri and Rj if they interact
with each other. Using this graph, we can start with a pattern
that has least interaction with others, and then try to add
patterns that have least interactions into the same group. We
keep adding until the composite DFA is larger than the local
memory limit. Then we proceed to create a new group from
the patterns that remain ungrouped.
__
For regular expression Ri in the set

For regular expression Rj in the set
 Compute pairwise interaction of Ri and Rj

Construct a graph G(V, E)
V is the set of regular expressions, with one vertex per regular

expression
E is the set of edges between vertices, with an edge (Vi, Vj) if Ri

and Rj interact with each other.
Repeat

New group (NG) = φ

 8

Pick a regular expression that has the least interaction with
others and add it into new group NG

Repeat
Pick a regular expression R has the least number of edges

connected to the new group
 Compile NG ∪ {R} into a DFA
 if this DFA is larger than the limit
 break;
 else
 Add R into NG
Until every regular expression in G is examined
Delete NG from G

Until no regular expression is left in G
__

Algorithm for Multi-core Processor Architecture with
limited total memory size

General processor architecture. In the general
processor architecture, if there are multiple composite DFAs
to be run, the processor executes each of them sequentially.
Usually all the DFAs are kept in the main memory for the
performance purpose. Since the memory is shared among all
DFAs, we want to group all patterns into the smallest number
of groups (hence the smallest number of DFA) while not
exceeding the available memory size. It is clear that finding
the smallest number of groups is an NP hard problem. In this
work, we apply heuristics to find a small number of groups
that can serve as a good approximation. The pseudo-code of
our algorithm for the general processor architecture is shown
in the following.

Leftover memory L = Total memory
For regular expression Ri in the set

Compute the DFA size Di for Ri
Leftover memory -= Di

Repeat

New group (NG) = φ
Pick a regular expression which has the least interaction with

others and add it into new group NG
Repeat
 Pick a regular expression R that has the least number of

edges connected to the new group
 Compile NG ∪ {R} into a DFA
 if D(NG) > +L*|NG|/(#left patterns) ∑

∈NGR
i

i

RD)(

 break;
 else
 Add R into NG
Until every regular expression in G is examined
Leftover memory L -= D(NG) - ∑

∈NGR
i

i

RD)(

Delete NG from G
Until no regular expression is left in G
__

Algorithm for General-Processor Architecture

Different from the multi-core case, in this algorithm we
first compute the DFA of individual patterns and compute the
leftover memory size. At any stage, we always try to
distribute the leftover memory evenly among the ungrouped
expressions, which is the heuristics that we apply to increase

the number of grouping operations, hence reducing the
number of resulting groups. In this algorithm, we group
patterns using a similar routine as the previous algorithm.
However, we stop grouping when the size of the composite
DFA (denoted as D(NG)) exceeds its share of the leftover
memory. Here, the DFA’s share of the leftover memory is
calculated using the formula = (Leftover memory L) *
(Number of patterns in the group) / (Number of ungrouped
patterns).

Discussion: Grouping multiple regular expressions into
one composite DFA is a well known technique to enhance
matching speed. Our algorithms focus on picking the right
patterns to be grouped together. Similar to our approach,
systems like Bro group patterns into one group, instead of
several groups. They adopt a lazy DFA-based approach,
where they cache commonly used DFA states and extend the
DFA at run-time if needed. The distinction between our
approach and Bro’s approach is that our grouping algorithm
produces scanners of deterministic complexity. The lazy
DFA-based approach, although fast and memory efficient on
most common inputs, may be exploited by intruders to
construct malicious packets that force the lazy DFA to enter
many corner cases [15]. Our fully-developed DFA does not
have performance degradation under such attacks.

V.EVALUTION RESULTS
We implement a DFA scanner with rewriting and grouping
functionality for efficient regular expression matching. In
this section, we evaluate the effectiveness of our rewriting
techniques for reducing DFA size, and the effectiveness of
our grouping algorithms for creating memory-efficient
composite DFA. We also compare the speed of our scanner
against a DFA-based repeated scanner generated by flex [25]
and a best-known NFA-based scanner [26]. Compared to the
DFA-based repeated scanning approach, our DFA-based one
pass scanning approach has 12 to 42 times performance
improvements. Compared to the NFA-based implementation,
our DFA scanner is 50 to 700 times faster on traffic dumps
obtained form MIT and Berkeley networks.

5.1 Experimental Setup
To focus on regular expressions commonly used in
networking applications, we select the following three
complex pattern sets: The first is from the Linux layer 7 filter
[1] which contains 70 regular expressions for detecting
different protocols. The second is from the Snort system [2]
which contains 1555 regular expressions for intrusion
detection. The last one is from Bro intrusion detection system
[3] with a total of 2781 regular expressions.

We use two sets of real-world packet traces. The first set
is the intrusion detection evaluation data set from the MIT
DARPA project [24]. It contains more than a million packets.
The second data set is from a local LAN with 20 machines at
the UC Berkeley networking group, which contains more
than six million packets. The characteristics of MIT dump
are very different from Berkeley dump. MIT dump mostly
contains intrusion packets that are long, with the average
packet payload length being 507.386 bytes. In the Berkeley
dump, however, most packets are normal traffic, with 67.65

 9

 10

bytes on average in the packet payload. A high percentage of
the packets are ICMP and ARP packets that are very short.

We use Flex [25] to convert regular expressions into
DFAs. Our implementation of the DFA scanner eliminates
backtracking operations [25]. It only performs one-pass
search over the input and is able to report matching results at
the position of the end of each matching substring.

All the experimental results reported were obtained on
PCs with 3.4 Ghz CPU and 3.7 GB memory.

5.2 Effect of Rule Rewriting
We apply our rewriting scheme presented in Section 3.2 to
the Linux L7-filter, Snort and Bro pattern sets. For the Linux
L7-filter pattern set, we do not identify any pattern that needs
to be rewritten. For the Snort pattern set, however, 71 rules
need to be rewritten. For Bro, 49 patterns (mostly imported
from Snort) need to be rewritten using Rewrite Rule 2. For
these patterns, we gain significant memory savings as shown
in Table 5. For both types of rewrite, the DFA size reduction
rate is over 98%.

Table 5. Rewriting effects
Type of Rewrite Rule

Set
Number
of
Patterns

Average
length
restriction

DFA
Reduction
Rate

Snort 17 370 >98% Rewrite Rule 1:
(Quadratic case) Bro 0 0 0

Snort 54 344 >99%1 Rewrite Rule 2:
(Exponential Case) Bro 49 214.4 >99%1

17 patterns belong to the category for which Rewrite Rule
1 can be applied. These patterns (e.g., “^SEARCH\s+[^\n]
{1024}”) all contain a character (e.g., \s) that is allowed to
appear multiple times before a class of characters (e.g., [^\n])
with a fixed length restriction (e.g., 1024). As discussed in
Section 3.2, this type of pattern generates DFAs that expand
quadratically in the length restriction. After rewriting, the
DFA sizes come down to linear in the length restriction. A
total of 103 patterns need to be rewritten using Rewrite Rule
2. Before rewriting, most of them generate exponential sized
DFAs that cannot even be compiled successfully. With our
rewriting techniques, the collection of DFAs created for all
the patterns in the Snort system can fit into 95MB memory,
which can be satisfied in most PC-based systems.

5.3 Effect of Grouping Multiple Patterns
In this section, we apply the grouping techniques to regular
expression sets. We show that our grouping techniques can
intelligently group patterns to boost system throughput, while
avoiding extensive memory usages. We test on three pattern
sets: the Linux L7-filter, the Bro http-related pattern set and
the Bro payload related pattern set. The patterns of L7-filter
can be grouped because the payload of an incoming packet is
compared against all the patterns, regardless of the packet
header information. For the Bro pattern set, as most rules are
related to packets with specific header information, we pick
the http related patterns (a total of 648) that share the same
header information, as well as 222 payload scanning patterns

1 Note, we use over 99% because some of the patterns create too many states
to be compiled successfully without rewriting. 99% is obtained by
calculating those successful ones.

that share the same header information. Note that we do not
report the results of using the Snort rule set because its
patterns overlap significantly with those of the Bro rule set.

5.3.1 Interaction of Patterns
For all three pattern sets, a majority of patterns are non-
interactive, particularly in Bro http patterns set where all
patterns are non-interactive. As a result, most patterns in
these rulesets can be combined pair-wise. This nice property
offers a significant potential for our grouping algorithms to
produce small numbers of groups. To achieve that, one
assumption that our grouping algorithms use needs to be
verified. As stated in Section 4.2, the assumption is that if
three patterns are pair-wise non-interactive, it is highly likely
that the size of the composite DFA will not exceed the sum
of the individual sizes. We verify this assumption with the
real world pattern sets. Table 6 shows that this assumption is
valid for over 99.8% of the cases from all three pattern sets.

Table 6. Interaction of regular expressions

 No-interaction
Pair-wise

Pair-wise No-interaction
lead to No-interaction

three patterns

Linux L7-filter 71.18% 99.87%
Bro http 100% 100%

Bro payload 93.3% 99.99%

5.3.2 Grouping Results

We apply our grouping algorithms to all three pattern sets
and successfully group all of them into small (<5) numbers
of groups. For the Bro’s http pattern set, since patterns do not
interact with each other, it is possible to compile all 648
patterns into one composite DFA of 6218 states. The other
two sets, however, cannot be grouped into one group due to
interactions. Below, we report results obtained using our
grouping algorithm for the multi-core architecture in Table 7,
where local memory is limited. The results for the general
processor architecture are in Table 8.
Table 7. Results of grouping algorithms for the multi-core

architecture
7 (a) Linux L7-filter (70 Patterns)

Composite DFA
state limit Groups Total Number

of States
Compilation

Time (s)
617 10 4267 3.3

2000 5 6181 12.6
4000 4 9307 29.1

16000 3 29986 54.5

7(b) Payload patterns from Bro (222 Patterns)
Composite DFA

state limit Groups Total Number
of States

Compilation
Time (s)

540 11 4868 20
1000 7 4656 118
2000 5 5430 780
6000 4 9197 1038

Table 7(a) shows the results for Linux L7-filter pattern
set. We start by limiting the number of states in each
composite DFA to 617, the size of the largest DFA created
for a single pattern in the Linux L7-filter set. The actual
memory cost is 617 times 256 next state pointers times
log(617) bits for each pointer, which amounts to 192 KB.

 11

Considering that most modern processors have large data
caches (>0.5MB), this memory cost for a single composite
DFA is comparatively small. Our algorithm generates 10
groups when the limit on the DFA size is set to 617. It
creates fewer groups when the limit is increased to larger
numbers. As today’s multi-core network processors have 8-
16 engines, it is feasible to allocate each composite DFA to
one processor and take advantage of parallelism.

With our grouping algorithms, we can decrease the
number of pattern groups from 70 (originally ungrouped) to 3
groups. This means that, given a character, the generated
packet content scanner needs to perform only three state
transitions instead of the 70 state transitions that were
necessary with the original ungrouped case. This results in a
significant performance enhancement (show in Section
5.3.3).

For Bro’s payload pattern set, we can group more
patterns into one group. As Table 7(b) shows, starting from
540, the largest individual DFA size, the grouping algorithm
can group 222 patterns into 11 groups. As the DFA state
limit increases, the number of groups decreases down to 4.

Table 8. Results of grouping algorithms for general
processor architecture

8(a) Linux L7-filter (70 Patterns)

Total DFA
state limit Groups

Total
Number of

States

Compilation
Time (s)

3533 12 3371 5.602
4000 10 3753 7.335

10000 5 7280 37.928
32000 3 25215 49.976

8(b) Payload patterns from Bro (223 Patterns)
Composite
DFA state

limit
Groups

Total
Number of

States

Compilation
Time (s)

5221 6 4697 1050
8000 4 6854 1030

Table 8 demonstrates that the grouping algorithm for the
general processor architecture can effectively reduce the
number of groups generated as the memory limit imposed on
the algorithm is increased. In addition, the total number of
DFA states is close to the memory limit, showing the
algorithm can fully utilize the memory allocated to the packet
scanner. Note that we start memory limit at 3533 DFA states
for Linux L7-filter which is the total number of the states of
individual DFAs. Our simulation results show that we can
group 70 patterns into 12 groups with no extra memory usage.
Similarly, we start 5221 DFA states for Bro payload set,
which is the sum of 233 individual DFAs. Even without extra
memory, we can decrease the number of groups from 233 to
6.

Beyond the effectiveness, Table 7 and Table 8 also
present the running time of our grouping algorithms. This
overhead is a one-time cost. In networking environments, the
packet content scanner operates continuously until there are
new patterns to be inserted to the system. As patterns in the

Linux L7-filter or Bro system do not change frequently, the
occasional overhead of several minutes is affordable. In
addition, we do not need to regroup all patterns given any
new pattern. We can just compute its pairwise interactions
with existing patterns and pick a group that yields least total
interactions. This type of incremental update computation
time is in average less than 1 second on the Bro payload
pattern set.

5.3.3 Speed Comparison
We compare our DFA-based algorithms with the starte-of-
the-art NFA-based regular expression matching algorithm.
Both L7-filter and Snort systems use this NFA-based library.
We also compare it with the DFA-based repeated scan
approach generated by flex [25]. The results are summarized
in Table 9. Our DFA-based one pass scanner is 47.9 to 704
times faster than the NFA-based scanner. Compared to DFA-
based repeated scan engine, our scanner yields a performance
improvement of 1244% to 4238%. Also note that although
these dumps have dramatically different characteristics, our
scanner provides similar throughputs over these dumps
because it scans each character only once. The other two
approaches are subject to dramatic change in throughput (1.8
to 3.4 times) over these traces, because they need to do
backtracking or repeated scans. Of course, we admit that the
memory usage of our scanner is 2.6 to 8.4 times the NFA-
based approach. However, the largest scanner we created
(Linux L7-filter, 3 groups) uses 13.3MB memory, which is
well under the memory limit of most modern systems.

Table 9. Comparison of the Different Scanners
Throughputs

(Mb/s)

MIT
dump

Berkeley
dump

Memory
Consumption

(KB)

NFA 0.98 3.4 1636
DFA RP 16.3 34.6 7632

Linux
L-7

DFA OP 3 groups 690.8 728.3 13596
NFA 30.4 56.1 1632

DFA RP 117.2 83.2 1624
Bro

Http
DFA OP 1 group 1458 1612.8 4264

NFA 5.8 14.8 1632
DFA RP 17.1 25.6 7628

Bro

Payload
DFA OP 4 groups 566.1 568.3 4312

NFA—NFA-based implementation
DFA RP – Flex generated DFA-based repeated scan engine
DFA OP – Our DFA one pass scanning engine

VI.CONCLUSION AND FUTURE WORK

We considered the implementation of fast regular expression
matching for packet payload scanning applications. While
NFA-based approaches are usually adopted for
implementation because naïve DFA implementations can
have exponentially growing memory costs, we showed that
with our rewriting techniques, memory-efficient DFA-based
approaches are possible. In addition, we presented a scheme
that selectively groups patterns together to further speed up
the matching process. Our DFA-based implementation is 2 to
3 orders of magnitude faster than the widely used NFA
implementation and 1 to 2 orders of magnitude faster than a
commonly used DFA-based parser. Our grouping scheme

 12

can be applied to general processor architecture where the
DFA for one group corresponds to one process or thread, as
well as to multi-core architecture where groups of patterns
can be processed in parallel among different processing units.
In the future, it would be an interesting study to apply
different DFA compression techniques and explore tradeoffs
between the overhead of compression and the savings in
memory usage.

REFEENCES
[1] J. Levandoski, E. Sommer, and M. Strait, "Application Layer Packet
Classifier for Linux." http://l7-filter.sourceforge.net/.
[2] "SNORT Network Intrusion Detection System." http://www.snort.org.
[3] "Bro Intrusion Detection System." http://bro-ids.org/Overview.html.
[4] L. Tan and T. Sherwood, "A High Throughput String Matching
Architecture for Intrusion Detection and Prevention," Proc. LISA, 2005.
[5] Y. Cho and W. Mangione-Smith, "Deep packet filter with dedicated
logic and read only memories," Proc. FCCM, 2004.
[6] Z. K. Baker and V. K. Prasanna, "Time and area efficient pattern
matching on FPGAs," Proc. FPGAs, 2004.
[7] Z. K. Baker and V. K. Prasanna, "A methodology for synthesis of
efficient intrusion detection systems on FPGAs.," Proc. FCCM, 2004.
[8] M. Aldwairi, T. Conte, and P. Franzon, "Configurable string matching
hardware for speedup up intrusion detection," Proc. WASSA, 2004.
[9] S. Dharmapurikar, M. Attig, and J. Lockwood, "Deep packet inspection
using parallel bloom filters," IEEE Micro, 2004.
[10] F. Yu, R. H. Katz, and T. V. Lakshman, "Gigabit Rate Packet Pattern
Matching with TCAM," Proc. ICNP, 2004.
[11] Y. H. Cho and W. H. MangioneSmith, "A Pattern Matching
Coprocessor for Network Security," Proc. DAC, 2005.
[12] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu,
"Processing XML Streams with Deterministic Automata and Stream
Indexes," ACM TODS, vol. 29, 2004.
[13] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer, "Path
Sharing and Predicate Evaluation for High-Performance XML Filtering,"
ACM TODS, 2003.
[14] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation, Second ed: Addison Wesley, 2001.
[15] R. Sommer and V. Paxson, "Enhancing Byte-Level Network Intrusion
Detection Signatures with Context," Proc. CCS, 2003.
[16] J. Moscola, J. Lockwood, R. P. Loui, and Michael Pachos,
"Implementation of a Content-Scanning Module for an Internet Firewall,"
Proc. FCCM, 2003.
[17] R. Sidhu and V. K. Prasanna, "Fast regular expression matching using
FPGAs," Proc. FCCM, 2001.
[18] R. Franklin, D. Carver, and B. Hutchings, "Assisting network intrusion
detection with reconfigurable hardware," Proc. FCCM, 2002.
[19] C. R. Clark and D. E. Schimmel, "Scalable pattern matching for high
speed networks," Proc FCCM, 2004.
[20] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, J. Turner.,
"Algorithms to accelerate Multiple Regular Expression Matching for Deep
Packet Inspection," Under submission.
[21] "Standard for Information Technology, Portable Operating System
Interface (POSIX)," Portable Applications Standards Committee of IEEE
Computer Society and the Open Group.
[22] C. L. A. Clarke and G. V. Cormack, "On the use of regular expressions
for searching text," Technical Report CS-95-07, Department of Computer
Science, University of Waterloo, 1995.
[23] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy, "Introduction to the Cell multiprocessor," IBM J. RES. & DEV.,
vol. 49, JULY/SEPTEMBER 2005.
[24] "MIT DARPA Intrusion Detection Data Sets."
http://www.ll.mit.edu/IST/ideval/data/2000/2000_data_index.html.
[25] V. Paxson et al., "Flex: A fast scanner generator."
http://www.gnu.org/software/flex/.
[26] Perl compatible Regular Expression, http://www.pcre.org/

Appendix
Theorem 1: Pattern P1 “^A[A-Z]{j}” is equivalent to the
original pattern P2 “^A+[A-Z]{j}” for detecting non-
overlapping shortest string.
(1) Any input matching P1 must match P2 as well, and the

shortest matched string S1 for P1 is the same as the
shortest matched sting S2 for P2.

Proof: For any input matching P1, it must match pattern P2
because we can use “\s” to match “\s+” and the remaining j
characters as [A-Z]{j}. Next we prove their matched string S1
and S2 are identical. For P1, there is only one way of
selecting S1 and its length is j+1. There maybe multiple
ways of selecting S2 (same start position, overlapping
strings), with length from j+1 to infinity. If we pick the
shortest match, its length would also be j+1. In addition, S1
and S2 must start from the beginning of the input due to the
requirement of ^. Given that they have the same length, S1
and S2 must be identical.
(2) Any input matching P2 must match P1 as well, and both

patterns report matching of the same shortest string.
Proof: For any input matching P2 “^A+[A-Z]{j}”, it must
have x “A”s (x>=1) matched as “^A+”, y “A”s and z [A-Z]
characters (starting from a none “A”) matched as “[A-Z]{j}”
(y>=0, z>=0, y+z=j). This input must match P1 “^A[A-
Z]{j}” because the input have x-1+y+z>=j [A-Z] characters
after the first A. Similar to (1), the shortest matched strings
are the same.
Since pattern starts with ^, P1 and P2 report at most one
match for one line. Given (1) and (2), P1 and P2 report the
same results for any input, hence they are equivalent. 
Theorem 2. Patter P1 “.*AB[A-Z]{j}” can be rewritten as
pattern P2 “([^A]|A[^B]|AB[A-Z]{j-1}[^(A-Z)])*AB[A-
Z]{j}”. These two patterns are equivalent for detecting non-
overlapping strings.
Proof: It is trivial that these two patterns are equivalent when
the input does not contain AB\s because none of them match
the input. It is also trivial if the input only contains one AB\s.
Next, we prove the case where we have multiple ABs without
[^(A-Z)] in between and they are within j bytes to the first AB
through (1), (2) and (3).
(1) Any input not matching P2 does not match P1 either.
Proof: Since the input does not match P2, there must be a
[^(A-Z)] character within the next j bytes of the first AB, this
character must also be located within j bytes to the following
ABs. Hence, P1 will not be matched either.
(2) Any input matching P2 must match P1. P2 and P1

generate matching results at the same position.
Proof: For any input matching P2, it must report matching
result at j positions after the first AB. If there is no [^(A-Z)]
character within the next j bytes to one of the ABs, then there
will not be [^(A-Z)] within the next j bytes to the first AB
because there is no [^(A-Z)] in between of these ABs.
Therefore, the match result of P1 will be generated j bytes
after the first AB as well. Hence, S1 and S2 are the same.
(3) P1 and P2 report the same number of matches.
Proof: When there are multiple ABs without [^(A-Z)]
between them and they are within j bytes to the first AB. P1

http://www.pcre.org/

 13

would only report one match, because these ABs are within j
bytes and their matching strings overlap with each other. P2
would report one match too. Hence, P1 and P2 report the
same number of matches. If there are multiple non-
overlapping patterns in the input (ABs are at least j apart or
with [^(A-Z)] in between), P1 and P2 still report the same
number of matches because we can divide the input to
segments, where only one match is reported in one segment.
Given (1), (2) and (3), for any input, patterns P1 and P2
report the same matching results and hence they are
equivalent. 

	Regular Expression Patterns
	Solution Space for Regular Expression Matching
	Problem statement
	Design Considerations
	DFA Analysis for Individual Regular Expressions
	Regular Expression Rewrites
	Notes for Pattern Writers
	Interactions of Regular Expressions
	Interactions of Real-world Regular Expressions
	Regular Expressions Grouping Algorithms
	Experimental Setup
	Effect of Rule Rewriting
	Effect of Grouping Multiple Patterns
	Interaction of Patterns
	Grouping Results
	Speed Comparison
	Appendix

