On the Price of Heterogeneity in Parallel Systems

Philip Brighten Godfrey
Richard M. Karp

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-81
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-81.html

May 28, 2006

Copyright © 2006, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

On the Price of Heterogeneity in Parallel Systems

P. Brighten Godfrey; Richard M. Karp!

May 28, 2006

Abstract

Suppose we have a parallel or distributed system whose nodes have limited capacities, such as processing
speed, bandwidth, memory, or disk space. How does the performance of the system depend on the amount of
heterogeneity of its capacity distribution? We propose a general framework to quantify the worst-case effect
of increasing heterogeneity in models of parallel systems. Given a cost function g(C, W) representing the
system’s performance as a function of its nodes’ capacities C' and workload W (such as the completion time
of an optimum schedule of jobs W on machines C'), we say that g has price of heterogeneity o when for any
workload, cost cannot increase by more than a factor « if node capacities become arbitrarily more heteroge-
neous. We give constant bounds on the price of heterogeneity of several well-known job scheduling and graph
degree/diameter problems, indicating that increasing heterogeneity can never be much of a disadvantage. On
the other hand, with the introduction of timing constraints such as release times or precedence constraints
on the jobs, the dependence on node capacities becomes more complex, so that increasing heterogeneity may
be quite detrimental.

*Computer Science Division, UC Berkeley, Berkeley, CA 94720. Supported by a National Science Foundation Graduate Research
Fellowship. Email: pbg@cs.berkeley.edu.
fComputer Science Division, UC Berkeley, Berkeley, CA 94720. Email: karp@cs.berkeley.edu.

1 Introduction

Suppose we have a parallel system whose nodes have capacities, such as processing speed, bandwidth, memory,
or disk space. How does the performance of the system depend on the amount of heterogeneity of its capacity
distribution? More concretely, in distributed system A, all nodes have the same capacity; system B has the
same total capacity but there is higher variance among the nodes’ capacities. Which system do we expect to
perform better?

Of course, the answer depends on the particular system and its notion of performance. If we are in the
business of routing packets in an overlay network and capacity corresponds to the number of neighbors a node
can maintain, we might construct a logarithmic-diameter network in the homogeneous case but a star graph
with diameter 2 in the extreme case where one node has most of the system’s capacity. Thus, the latency
of routes through the overlay network will be lower in the latter, more heterogeneous scenario. On the other
hand, consider a cluster running a simulation consisting of ten parallel jobs which have equal computational
requirements. Ten 1000 MHz processors can complete the jobs almost twice as fast as the more heterogeneous
system consisting of nine 1100 MHz processors and one 100 MHz processor.

In many cases, basic intuition or observing behavior at extreme points — such as in the overlay example
above — gives a good sense of whether higher variation in capacity improves performance. However, back-of-
the-envelope calculations cannot address the following:

1. Precise justification of intuition. For example, when processing a batch of jobs, having fewer fast
processors is typically assumed to be better than more slow processors, when the total speed is constant.
The example of a 10-processor cluster above shows a case where that intuition is not quite correct. By
how much can this intuition possibly be violated?

2. Comparison across systems to gain insight about the structure of optimization problems. What
characteristics of a problem determine whether heterogeneity is generally good for it? For that matter,
what precisely does it mean for heterogeneity to have a generally good effect?

These questions are best answered in a quantitative framework which can model the effect of heterogeneity
on many systems. Although some particular systems have been studied (see Section 3), to the best of our
knowledge a general model has not been proposed. In this paper, we propose one such model and show several
basic results within it.

Model. After using majorization to quantify “amount of heterogeneity”, we study what we call the price of
heterogeneity. Informally, a cost function g(C, W) describing a system’s performance has price of heterogeneity
« when for any workload W and capacities C, cost cannot increase by more than a factor « if C' becomes
arbitrarily more heterogeneous. In the job scheduling example, W specifies the job lengths, C' specifies the
processor speeds, and g(C, W) is the minimum completion time of any schedule of jobs W on processors C.

The price of heterogeneity characterizes the worst-case increase in cost due to increasing heterogeneity, which
can address Question 1 above. For example, if heterogeneity always helps, then the price of heterogeneity of
the cost function is 1. At a high level, we could hope to classify a parallel system’s price of heterogeneity as
being either constant, in which case increasing heterogeneity can never be much of a disadvantage, or unbounded,
indicating that increasing heterogeneity can be quite detrimental. By classifying multiple systems in this way,
we may begin to answer Question 2.

An important special case of our model is when capacities are restricted so that there are m nodes of capacity
n/m and n —m of capacity 0. In this case, increasing heterogeneity (according to the definition we will give in
Section 2) corresponds to decreasing m, and thus decreasing parallelism. Our upper bounds can be viewed as
bounding the maximum benefit of additional parallelism, at fixed total capacity.

In addition to providing theoretical insight, if we have a cost function that is a good model of a real system,
a practical application of the price of heterogeneity is to provide test cases that are provably close to the worst
possible capacity distribution. This is useful, for example, when testing a system which the designer wishes to
be deployable in a wide range of (possibly unknown) capacity distributions. In Section 9, we will discuss one
such case, load balancing in distributed hash tables.

‘ Problem ‘ Price of heterogeneity ‘ Reference ‘

Minimum makespan scheduling =2—-1/n Theorem 2

Scheduling on related machines, various objective functions 0(1) Corollaries 1, 2
Precedence constrained scheduling, general jobs O(logn) Corollary 3
Precedence constrained scheduling, unit-length jobs <16 Corollary 6
Scheduling with release times, job lengths € [1, k] Q(k) Theorem 5
Minimum network diameter, bounded degree <2 Theorem 6

Table 1: Bounds on the price of heterogeneity shown in this paper.

Results. Our bounds on the price of heterogeneity are summarized in Table 1. In this paper we focus on
scheduling problems, but we also give a network design example to show the generality of the model. Most of
the upper bounds are obtained via what we call the Simulation Lemma, which shows how to use one set of
capacities to “simulate” another. The Simulation Lemma may also be useful in contexts other than the price
of heterogeneity; for example, it is easy to show that for any fixed set of capacities, as job lengths become
arbitrarily more homogeneous, optimal makespan can increase by a factor of 2 and no more.

In addition, we show two lower bounds. First, we observe that if jobs have release times before which they
cannot be executed and we wish to minimize average or maximum job latency, the price of heterogeneity is (k)
when job sizes are in [1, k|. Second, we separate precedence constrained scheduling (PCS) from the scheduling
problems with known constant price of heterogeneity by showing that the simulation method can lengthen
makespan by a factor of ©(n), intuitively because of dependencies between jobs on different processors. An
interesting and apparently nontrivial open question is whether PCS has ©(1) price of heterogeneity.

These results show that increasing heterogeneity can’t be much of a disadvantage for basic scheduling
problems, but the combination of timing constraints and variable job lengths can produce a complex dependence
on the capacity distribution.

The rest of this paper is as follows. We present our model in Section 2 and related work in Section 3. We
introduce the Simulation Lemma in Section 4, and bound the price of heterogeneity of various cost functions
in Sections 5-8. In Section 9, we discuss a scenario in which our results provide a worst case for testing. We
conclude in Section 10.

2 Model

To define what it means for one capacity distribution C’ to be more heterogeneous than another distribution C,
we use the majorization partial order. Given two nonnegative vectors C' = (cq,...,¢,) and C' = (¢},...,d,),

rn
we say that C’' majorizes C, written C’ = C, when

k k n n
vk Z C/[i] > Z ¢y and Z ¢ = Z Ciy
i=1 i=1 i=1 i=1

where c|;) denotes the ith largest component of C.

Majorization is a standard way to compare the imbalance of distributions; see [13] for a general reference.
Some of its properties are as follows. Restricted to vectors with Y ' | ¢; = n, majorization defines a partial
order whose bottom L = (1,...,1) is the homogeneous distribution, and whose top T = (n,0,...,0) is the
centralized distribution. Two other intuitive measures of the amount of heterogeneity in a system are variance
var(C) = ﬁzyzl(q — ||C]|/n)? and negative entropy —H(C) = Y., cilogyc;. Although variance and
entropy disagree on the ordering of vectors in general, majorization is consistent with both, in the sense that
C’ = C implies var(C’) > var(C) and —H(C") > —H(C).

For our purposes, a cost function is a function g : C x W — R*, where C C R" is the set of legal node capacity
vectors and W is arbitrary additional problem-specific information. Typically, g(C, W) will represent the cost
of the optimal solution to some combinatorial problem with node capacities C' and workload W. However, one

could also examine, for example, the cost of approximate solutions produced by a particular algorithm. We can
now define our main metric.

Definition 1 The price of heterogeneity (PoH) of a cost function g : C x W — R™ is
g(C", W)

sup A
w.c.cr: c=<cr,wew 9(C, W)

A PoH of 5/4 would say that for any capacities C' and C’ = C, distribution C’ can handle any workload with
cost at most 25% higher than C. That is, as heterogeneity increases, performance cannot get much worse.’

Note that an assumption of this model is that the nodes have the same “type” of capacity, so two nodes with
the same amount of capacity are equivalent.

3 Related Work

In several systems, it has been recognized that a heterogeneous capacity distribution is significantly preferable
to a homogeneous one. For example, heterogeneity in the participating nodes’ bandwidth constraints can reduce
route lengths in distributed hash tables (DHTS) [9,15] and in unstructured peer-to-peer file sharing systems [4],
and can improve load balance in DHTs [8]. In supercomputing, designs using a few fast processors and many
slower processors have been evaluated against homogeneous systems [2,3]. These studies generally look at
specific capacity and workload distributions. Our model is complementary since we examine the worst case over
all capacity distributions and workloads.

Closer to our model, Yang and de Veciana [20] studied a branching process model of a BitTorrent-like content
distribution system in its transient phase, such as during the arrival of a flash crowd. The analysis showed that
expected service capacity increases as the distribution of node bandwidth becomes more heterogeneous, in the
sense of increasing convex orderings (which generalize majorization to random variables).

As mentioned in the introduction, an important special case of our model is when capacities are restricted so
that there are m nodes of capacity n/m and n — m of capacity 0. Price of diversity upper-bounds the increase
in cost as m decreases. In queuing theory, a well known result is that among M/M/m queues (m servers of
speed n/m with exponential job service times), m = 1 is optimal [17]. However, for various other job service
time distributions, mean response time may be minimized when m > 1 (see [19] and the references therein).
Intuitively, this is because having several servers keeps many small jobs from being held up by one big job. This
corresponds to the super-constant price of heterogeneity of scheduling with release times (Section 7).

4 The Simulation Lemma

A natural way to show that the heterogeneous capacities C’ are as good as the more homogeneous capacities
C is to “simulate” C using C’. More specifically, we would assign C-nodes to C’-nodes according to some
f:A{1,...,n} = {1,...,n}, and show that each C’-node i can “simulate” the work previously performed by the
subset of C-nodes f~!(i). For most natural cases, a prerequisite for this technique to succeed is that the total
capacity simulated by each C’-node i is not much more than its own capacity c}:

Definition 2 For capacity vectors C and C' = C, an a-simulation of C with C’ is a function f: {1,...,n} —
{L,....n} such that 3_,c ;-1 ¢j < acj, for alli.

It is NP-complete to decide whether a 1-simulation exists (see Appendix A). The main result of this section is
that a (2 — 1/n)-simulation always exists.

Lemma 1 (Simulation Lemma) For any capacity distributions C and C' = C, a (2 — 1/n)-simulation ezists
and can be found in time O(nlogn).

'Price of heterogeneity can also be viewed as a generalization of Schur concavity. A function g is Schur concave when C’ = C
implies g(C") < g(C). One could say that g is a-approzimately Schur concave when C' = C implies g(C’) < a-g(C). Then g(C,W)
has PoH « if and only if g(C, W) is a-approximately Schur concave in C for every W.

- J000-00 - 0000-0C

‘QIS

- JUUU-Ud o= Uddd -oo

Figure 1: Two families of examples showing the tightness of the Simulation Lemma. Here & = 2 —1/n. In both
examples, every assignment of C' to C’ gives some element of C’ at least « times its capacity.

The bound is exactly tight, as exhibited in Figure 1. In the remainder of this section, we prove the lemma,
and then use it to provide sufficient conditions for a cost function to have constant price of heterogeneity
(Theorem 1). In later sections, we will see that a number of optimization problems satisfy those conditions.
Proof: Let « = 2— % The following algorithm produces an a-simulation f : {1,...,n} — {1,...,n}. Begin by
sorting the two capacity vectors in decreasing order. Maintain a vector of available capacities A = (aq,...,an,).
Initially, A = (0,...,0). For each i =1 to n, perform the following steps:

1. Set a; < .
2. Let j € {1,...,4} be such that a; > ¢;/a.
3. Set f(i) < j and aj < a; — ¢;/a.

The algorithm can be implemented in O(nlogn) time by storing A in a heap and taking j to be the maximum
element. It remains to be shown that (1) in each iteration, a suitable j satisfying a; > ¢;/a can be found, and
(2) the resulting f is an a-simulation.

We show (1) first. After Step 1 of the ith iteration, the total capacity that has been added to A is Ezzl e
and the total capacity that has been subtracted is 22;11 ¢k /. So the total capacity remaining in A after Step
1 of the ith iteration is

i i—lc c 7 i c

i k

S-S - Gy

o o [0
C

> 24 (1-= E i "= C
> a+< a>k:1ck (since C" = C)

; 1
> —+i-<1——>ci (since ¢1 > -+ > ¢;)
« «

=@ (o0

Moreover, at step i there are < i positive entries of A, so some entry must be > 7 + (1 — é) ¢;. Plugging in
i <nand a =2 — 1/n, this expression reduces to ¢;/a. Thus, a suitable j can be found.

We now show (2), i.e., that Zief*l(j) ¢i < acj for each j. Note that a; first became positive by setting
a; = c;-. Each time we set f(i) < j for some %, the capacity assigned to entry j increased by ¢;, and a; decreased
by ¢;/a. Since a; > 0 always, the total capacity assigned to j is < ac;-. [|

Theorem 1 Suppose a cost function g satisfies the following properties:

1. g(C,W) is nonincreasing in each component of C;

2. g(C,W) is a symmetric function of the components of C;
3. g(3-C,W) < B-g(C,W) for all C and W; and

4. g(D,W) < g(C,W), where D is formed from C by replacing components i and j with ¢; + ¢; and 0,
respectively, for any C, W, i, and j.

Then the price of heterogeneity of g is < (3.

Proof: Let C' and C’ be capacity distributions such that C' = C. We must show ¢g(C', W) < 3 g(C,W).

. d
Let f be a 2-simulation as given by the Simulation Lemma, in which, for each i, 2¢; > > ief16) G </ e;. Let

E = (e1,...,e,). We have

g(C’\ W) < B-g(2C",W) (Property3)
B-g(E,W) (Propertyl and 2C" > E)
g

-g(C, W) (repeated application of Properties 2 and 4).

ININ A

5 Scheduling on Related Machines

We now apply the results of the previous section to the problem of scheduling on related machines. We are given
a set J of jobs, each with a length ¢(j), and an n-vector C' of processor speeds. We must schedule the jobs on
our n machines so that each machine is executing at most one job at any time. Machine ¢ completes each job
J in time £(j)/c;, so if it is given jobs J;, it can finish its jobs in time ¢; = £(J;)/c;, where £(J) := > . ; £(j).
The most common measure of the cost of a schedule is its makespan: the time until the last job (equivalently,
processor) finishes. We begin by analyzing the price of heterogeneity of the cost function ¢g(C, .J), defined as the
minimum makespan of any schedule of jobs J on processors C.

5.1 A first example: Minimum Makespan Scheduling

The following theorem illustrates the basic technique we will use in later bounds on the PoH. For concreteness
of exposition, we use the Simulation Lemma directly, rather than Theorem 1. Unlike our later results, in this
case we provide matching lower and upper bounds. The lower bound transfers from that of the Simulation
Lemma (Figure 1) because both the lemma and the makespan consider the maximum amount of work assigned
to a machine.

Theorem 2 The PoH of minimum makespan scheduling is 2 — 1/n.

Proof: We begin with the upper bound. Given any machine speeds C' and C’ = C, and any schedule of jobs
J on machines C' with makespan M, it is sufficient to produce a schedule of the jobs on the C’-machines with
makespan 2M .

Suppose jobs Jj, C J are scheduled on machine & in the C-schedule. Let f : C' — C’ be the mapping defined
by the Simulation Lemma. We schedule jobs J; on C’-machine f(k). To analyze this schedule’s makespan, we
introduce a simple but important fact:

Fact 1 For any schedule of jobs on processors of speeds c1, . .., cp (“parallel schedule”), there is a serial schedule
of those jobs on a single processor of speed c1 + --- + ¢ (“serial schedule”) such that each job completes before
or at the same time as it did in the parallel schedule.

Proof: Schedule jobs on the single processor in order of their completion time in the parallel schedule, with
ties broken arbitrarily. Consider any job j and suppose its completion time in the parallel schedule is ¢t. In the
parallel schedule, the total length of all jobs completed by time ¢t must be < Zle t-c;. Then the new schedule

completes these in time < (Zle t- ci> Jlecr+ - +c) =t]

5

Now let F(i) := f~!(i) be the set of C-machines mapped to C’-machine i, and let s = > ker(i) Ck De the
total speed of these machines. By Fact 1, a machine of speed s could complete jobs F(i) in time < M. By the
Simulation Lemma, ¢; > s/(2 — 1/n), so each C’-machine i completes its jobs in time < (2 — 1/n)M.

To show the lower bound, we can use either pair of capacity vectors in Figure 1, in both cases with n
unit-length jobs. The reader can verify that OPT(C,J) = 1, but OPT(C',J) > 2 —1/n. |

5.2 General objective functions of job completion times

Fact 1 is actually much stronger than was necessary to bound the makespan: it bounds the completion time of
all jobs, not just the last. This property lets us analyze a large class of objective functions.

Let h : R™ — RT be a function of the job completion times. We say h is S-bounded when h(2t) < - h(t)
for all t. Examples of 2-bounded objective functions sometimes used to evaluate the quality of a schedule are
the average job completion time and the L,-norm of the job completion times, i.e., h(t) = (> 1 ¢)1/ P for
p > 1. The squared completion time, h(t) = >, 7, is 4-bounded.

Corollary 1 Suppose h : R™ — R™T is a nondecreasing, (3-bounded function of the job completion times. Let
g(C,J) be the minimal value of h over all schedules of jobs J on machines C. Then g has PoH < [3.

Proof: We apply Theorem 1. Properties 1 through 3 follow directly from those on h and the fact that completion
times are inversely proportional to processor speed. Property 4 follows from Fact 1. [|

Note that the above corollary applies even in the case that h is not symmetric, as in the case of weighted
average completion time with some jobs weighted more than others.

5.3 General objective functions of machine completion times

We may similarly consider bounded functions h of the machine completion times. In this case we require that
h is a symmetric function of its arguments. The following follows easily from Corollary 1 by considering the
completion time of the last job on each machine. We omit the proof.

Corollary 2 Suppose h : R® — R™ is a nondecreasing, 3-bounded function of the machine completion times.
Let g(C,J) be the minimal value of h over all schedules of jobs J on machines C. Then g has PoH < 3.

An interesting open problem would be to obtain tighter bounds for the L,-norm of machine completion times
as a function of p. For the Li-norm in particular, the PoH is 1 since the optimal assignment places all tasks on
the fastest machine, and that machine is always at least as fast in the C’-distribution as in the C distribution.

5.4 A complementary result

We observe that the Simulation Lemma can also be used to describe the effect of heterogeneity of job length
distributions. Theorem 2 showed that as capacities C' become more heterogeneous, the minimum makespan
OPT(C,J) can’t get much worse, for any fixed job lengths J. The following theorem says that as the job lengths
become more homogeneous, the makespan can’t get much worse, for any fixed node capacities.

Theorem 3 Let J and J' be vectors of job lengths with J' = J. For any C, OPT(C,J) <2-OPT(C,J).

Proof: Let f:J — J' be a 2-simulation, which exists by the Simulation Lemma. Then if J'-job j is executed
on machine i in the optimal schedule, we place the J-jobs f~1(j) on machine 4. Since f is a 2-simulation, this
at most doubles the total length of jobs placed on ¢, and hence the completion time of any machine at most
doubles. [

6 Precedence Constrained Scheduling

In the precedence constrained scheduling (PCS) problem [7], we are given node capacities C, a set J of jobs,
a length £(j) for each j € J, and a partial order <; on J. We must schedule the jobs on the nodes as before,
with the added constraint that if j; <; jo then job j; must complete by the time jo begins. The cost is the
minimum makespan of such a schedule.

The key difficulty in transferring the simulation technique to PCS lies in adapting Fact 1. When merging
the work of two machines of capacities ¢; and ¢y into one machine of capacity cj + co, it is no longer sufficient to
show that the completion time of each job does not increase. To satisfy precedence constraints without a global
modification of the schedule, one would have to devise a schedule for which the start time of each job does not
decrease.

In fact, we show that the direct application of the simulation technique cannot possibly succeed: having
each C’-machine perform the work of some subset of the C-machines can result in a factor O(n) inflation of the
makespan (Theorem 4). Intuitively, mapping several C-machines onto one C’-machine reduces parallelism.
The result is that a sequence of short jobs must occasionally be interrupted by long jobs, during which time
other machines have to remain idle while waiting for the short jobs to finish.

However, the simulation technique can be applied in an LP relaxation of PCS [5], intuitively because that
LP lets a single machine run multiple jobs in parallel. This produces an O(logn) upper bound on the PoH
(Corollary 3). Moreover, we can also show the analog of Fact 1 in the special case that job lengths vary by at
most a constant factor, albeit at a constant factor increase in schedule length (Corollary 6).

6.1 A lower bound for the simulation technique

The following theorem shows that having each C’-machine perform the work of some subset of the C-machines
can result in a factor n/4 inflation of the optimal makespan. This is tight within a factor of 4, because we
can always schedule jobs on only the fastest machine (which in the C’-machines is at least as fast as in the
C-machines), resulting in a factor < n increase in makespan.

Theorem 4 There exist capacity vectors C and C' = C and an instance of precedence constrained scheduling
(C,J,¢,< ;) with an optimal schedule of makespan OPT which maps jobs to machines according to h : J —
{1,...,n}, such that any schedule for instance (C',J,£,<;) which places job i on machine f(h(i)) for some

f:A{1,....,n} = {1,...,n} must have makespan > 1_%(1)-71-OPT.

Proof: We take C' = (1,...,1) and C' = (2,...2,0,...,0), i.e. n/2 machines of speed 2. The problem instance
is as follows. We have n groups of jobs, indexed 1 through n. Group i consists of £~ jobs of length k’. We
choose a convenient k later. The optimal C-schedule places group ¢ on machine i:

Nodes Jobs
1 k
2 K2
n k™

The set of precedence constraints is the maximum set for which the above schedule is valid. That is, we
have a constraint j; — jo iff job j; completes by the time job j starts. Note that the resulting makespan on
the C'-machines is k™, and this is optimal since no machine is idle until all jobs are complete.

Now suppose that we map the C-machines to C’-machines according to some f : {1,...,n} — {1,...,n},
and we restrict ourselves to executing the group-i jobs on C’-machine f(i) as in the theorem statement. We
seek to lower-bound the makespan of any such schedule.

Define a group as obstructing if it is assigned by f to a machine which is also assigned a group of smaller
jobs. Let g1, ..., gm be the obstructing groups, with g1 < --- < g,,,. Note m > n/2 since there are n groups and

only n/2 machines with positive capacity. Let ¢(g;) be the time spent executing group g; during which no job
from any larger obstructing group is being executed. Note that the makespan of the schedule is > "™, ¢(g;).
We now lower-bound each t(g;). First we need a key fact:

Fact 2 While any job from an obstructing group g; is executing, at most 2k% 7~ jobs in any smaller group
7 < g; can execute on any other machine.

Proof: Let = be a g; job, and let D be the set of group-j jobs executed on any machine during . We wish to
upper-bound |D|.

Since g; is obstructing, there is some smaller group on the same machine. Let Y be the set of those smaller
jobs. To handle boundary cases cleanly, augment Y with two “marker jobs” v, and 2, both of zero length, with
~1 at the beginning of the chain of dependencies in Y and ~» at the end. We may assume w.l.0.g. that v is the
first job executed on its machine and -5 is the last.

Since a machine can only execute one job at a time, there exist two jobs y1,y2 € Y such that y;’s immediate
successor is 9, y1 is been executed before x, and yo is executed after z. Thus, since y; has completed when z
starts, D cannot include any jobs on which y; depends. Similarly, since yo has not yet completed, D cannot
include any jobs which depend on yo. Thus, D includes only group-j jobs that, according to the precedence
constraints, can execute concurrently with y; or yo. The total length of such jobs is at most the length of y; plus
the length of yo, which is < 2k%~1. Since each group-j job has length k7, we have |D| < 2k9 =1 /kJ = 2k9:—7—1,
as desired. [|

Now consider some obstructing group g;. By Fact 2, the number of g;-jobs executed during a job of length
k9 is < 2k9~9i~1. Since there are k"9 jobs of length k% the total number of gj-jobs executed during longer
obstructing jobs is

m n
> krOokseTl < 2 YU Rl < on s e
1=j+1 i=j+1

Since there are k"9 group-g; jobs to begin with, the number of group-g; jobs not executed during longer
obstructing jobs is > k"9 — 2n - k"9 ~1 = (1 — 0(1))k" 9% for k = n? (recall k is arbitrary). The time per job
is k9 /2 since all C’-machines have speed 2. Thus, we have that ¢(g;) > (1—o(1))k" 9% - k% /2 = 1 (1—o(1))k" =
(1 —o(1))-OPT.

Since this is true for all obstructing groups, we have that the makespan of the (C’-schedule is at least
> e tlgg) = m- 2(1 —o(1)) - OPT. As noted above, m > n/2, which proves the theorem. |

6.2 Upper bounds

We begin with an upper bound for the general case of PCS. Chudak and Shmoys [5] gave a linear programming
relaxation of PCS which formed the basis of their O(logn)-approximation algorithm, which is the best known.
The full proof appears in Appendix B.

Corollary 3 The PoH of precedence constrained scheduling is O(logn).

Proof: (Sketch) The LP relaxation does not include the constraint that a machine executes at most one job
at a time. It is thus easy for one fast machine to simulate the work of several slow machines, so we can apply
the Simulation Lemma to show that the optimal solutions to the LP have O(1) PoH. By the main result of [5],
the optimal solution to PCS is at most O(logn) times the LP’s solution. |

We next note several special cases where bounds can be obtained using straightforward techniques. The first
theorem says that PCS has a property which is necessary, but not sufficient, for O(1) PoH: the homogeneous
distribution is within a constant factor of the worst case.

Corollary 4 Let OPT(C',W) be the optimal makespan of an instance W of PCS with capacities C'. Then
OPT(C', W) <4-OPT(L,W) for any C’', where 1. = (1,...,1).

Proof: (Sketch) Produce distribution D from C’ by setting to 0 any element ¢ with ¢, < % Clearly,
OPT(C'",W) < OPT(D,W). Schedule the jobs on D using Graham’s classic list scheduling algorithm [10];
the standard lower bounds show a 2-approximation of OPT (D, W), but also apply to OPT (L, W) at an addi-
tional factor 2 increase in schedule length.]

Corollary 5 Restricted to instances with a constant number of distinct machine speeds, PCS has PoH O(1).

Proof: Follows from the result of [5] that the optimal values of the LP relaxation are within O(1) of the true
optimum when there are O(1) distinct machine speeds.]

Corollary 6 The PoH of precedence constrained scheduling with unit-size jobs is < 16.

Proof: See Appendix C. [

7 Scheduling with release times

The last scheduling problem we consider is scheduling with release times. We must produce an offline schedule
of jobs J on machines C' as in scheduling on related machines, except that we are also given for each job j € J
a release time r(j) before which j may not be executed. Our cost function g(C,(J,7)) is the minimal total
response time of any schedule of jobs J with release times r on machines C. We define total res onse time as
the sum over all jobs j of the time j spends in the system normalized by its length: HHG)/e=r(j) M /) where t(j

is the start time of job j and c is the capacity of the machine on which it is run.

Similar release time constraints appear in Garey and Johnson [7], but we borrow the response time ob-
jective from queuing systems such as [19], in which it is known that decreasing parallelism — i.e., increasing
heterogeneity — can significantly increase response time (see discussion in Section 3).

It is easy to observe that even moving from two machines to one can be quite disadvantageous. As in PCS,
reduced parallelism causes short jobs to be held up by long jobs. The full proof appears in Appendix D.

Theorem 5 The price of heterogeneity of scheduling with release times with job sizes in [1, k| is Q(k).

Proof: (Sketch) Let C' = (1,1) and C’" = (2,0). Suppose J consists of mk jobs of size 1 arriving at times
0,1,...,mk — 1 and m jobs of size k arriving at times 0, k,2k,...,mk — k. These can be scheduled as they
arrive on the C-machines, for a total response time of ©(mk). Now consider scheduling these jobs on the single
C’-machine of nonzero capacity. Either ©(m) long jobs are delayed for time ©(km) until all short jobs are
complete, or each of ©(m) long jobs delays ©(k) short jobs for time O (k) each. Picking m = k?, in either case
total response time is (k?), compared with ©(k3) for the C-machines. []

8 Network construction

In designing a communication network, a typical goal is to minimize the number of hops between any two nodes,
subject to bounds on the maximum number of links incident to each node. For example, in placing physical
links between nodes of a supercomputer or cluster, each node may have a limited number of network ports. In
an overlay multicast network, each link may involve forwarding a stream of multicast data, so the degree of
a node would be limited by its available bandwidth. Constructing such networks with low maximum latency
between nodes involves a classic tradeoff [6] between degree and diameter.

In this section we will study how the optimal diameter changes as the degree bounds become more hetero-
geneous. Note that in the following formulation, we do not make use of the “workload” parameter of the cost
function.

Definition 3 (Minimum Graph Diameter) Given positive integer degree bounds C = (c1,...,¢n), MinDiam(C)
is the minimum diameter of a graph G in which deg(i) < ¢; for all nodes i.

Theorem 6 The price of heterogeneity of MinDiam is < 2.

Proof: (Sketch) We'll show MinDiam(C') < TREE(C') < TREE(C) < 2-MinDiam(C), where TREE(C)
is the diameter of the least-height tree with degree bounds C. The first inequality is obvious, and the third
follows from the fact that the diameter of the best graph is at least the height of the best tree, which is half the
tree’s diameter.

The second inequality says that TREFE has PoH 1. This can be shown as follows. By an interchange
argument, in the optimal tree, if ¢; > ¢; then level(i) < level(j), where level(-) denotes distance from the root.
We use the standard fact that if ¢’ = C then C’ can be produced from C by a sequence of transfers of capacity
from lower- to higher-capacity nodes [13]. If we transfer one unit of capacity (a unit bound on the degree) from
J to i, where ¢; > ¢;, then we can transfer the associated subtree as well, which cannot increase the height of
the tree since level(i) < level(y). []

We did not apply the Simulation Lemma because the capacities specify hard constraints which cannot be
violated (Condition 3 of Theorem 1 is not satisfied). Note that one could instead seek to minimize degrees
subject to an upper bound on the diameter, in which model Theorem 1 does show a O(1) PoH.

9 A worst case for testing

In this section, we discuss how the price of heterogeneity can provide a worst case for testing, using load balancers
for distributed hash tables (DHTS) as an example.

Most DHTs have been designed without knowledge of their eventual adoptive environment, which might be
a homogeneous cluster, a worldwide managed system like PlanetLab [1] (whose nodes vary in memory and disk
space by a factor of four and eight, respectively?), or a peer-to-peer system like Gnutella (whose nodes vary in
bottleneck bandwidth by at least three orders of magnitude [16]). With such a wide range of target deployments,
it may be valuable to test under a capacity distribution which would bound the system’s performance in any
deployment scenario. If we have a cost function g(C, W) which models the system well, and if g has PoH «,
then the system’s cost under homogeneous capacities is within a factor a of the worst case, for any workload W,
any fixed n, and any fixed total capacity. We next argue that in the case of DHT load balancing, it is possible
to produce such a cost function g which is a reasonable model of the system.

Several proposed DHT load balancers [8,12] assign ownership of objects stored in the system by first parti-
tioning the objects among wvirtual nodes, and then placing virtual nodes on physical nodes. Each virtual node
has an associated load, such as the rate of incoming requests for objects stored on it. The goal is to assign
virtual nodes to physical nodes in a load-balanced way.

More specifically, suppose we desire to minimize the mean latency experienced by users of the system. Define
the load on a virtual node as the number of users u; connected to it, and model the latency experienced by a user
connected to physical node i as u;/c¢;, where u; is the total number of users connected to i. This problem can be
modeled by scheduling on related machines with the objective of minimizing the square of the completion time
of each machine. Corollary 2 implies that this problem has PoH 4. If the DHT load balancer finds assignments
of virtual to physical nodes that are within a factor « of optimal, then mean latency will be within a factor 4«
of its worst under homogeneous capacities, for any pattern of load on the virtual servers.

10 Conclusion

We have taken some initial steps toward analyzing the effect of heterogeneity in distributed systems. There are a
number of directions for future research. First, our bounds could be tightened; resolving the question of whether
precedence constrained scheduling has constant price of heterogeneity is of particular interest. Second, one could
analyze other cost functions, such as scheduling with random, rather than adversarial, jobs; resource constrained
scheduling [7]?; or the Nash equilibria of network congestion and load balancing games [11,18]. Regarding the
latter, note that if a game has price of anarchy « and its social optima have price of heterogeneity (3, then the
Nash equilibria have price of heterogeneity < o/, but better bounds may be possible. Additionally, Suri et
al [18] have asked whether the price of anarchy itself decreases when machine speeds in their load balancing
game become heterogeneous. Our framework may have relevance in answering that question.

A third direction is to broaden our model. Extending the notion of heterogeneity to allow nodes to have
multiple kinds of capacity, or in general more than one attribute, may greatly broaden its applicability.

2As of February 16, 2005, CoMon [14] reported memory between 0.49 and 1.98 GB and disk size between 32.7 and 264.7 GB
among PlanetLab nodes. Data was unavailable for some nodes.
31t is easy to show that the PoH of resource constrained scheduling is at most that of PCS.

10

Acknowledgments

The authors thank Christos Papadimitriou, Satish Rao, Scott Shenker, and Ion Stoica for helpful discussions.
David Molnar, Lakshminarayanan Subramanian, and the anonymous reviewers provided useful comments.

References

[1] Planetlab. http://www.planet-lab.org/.

[2] V. A. F. Almeida, I. M. M. Vasconcelos, J. N. C. Arabe, and D. A. Menascé. Using random task graphs to
investigave the potential benefits of heterogeneity in parallel systems. In Proc. ACM/IEEE conference on
Supercomputing, 1992.

[3] Virgilio Almeida and Daniel Menascé. Cost-performance analysis of heterogeneity in supercomputer archi-
tectures. In Proc. ACM/IEEE conference on Supercomputing, 1990.

[4] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker. Making Gnutella-like
P2P systems scalable. In Proceedings of ACM SIGCOMM, 2003.

[5] F. A. Chudak and D. B. Shmoys. Approximation algorithms for precedence-constrained scheduling problems
on parallel machines that run at different speeds. In Proc. 8th Ann. ACM-SIAM Symp. on Discrete
Algorithms (SODA), pages 581-590, 1997.

[6] Francesc Comellas and Charles Delorme. The (degree, diameter) problem for graphs. http://www-
mat.upc.es/grup de grafs/grafs/taula_delta d.html.

[7] Michael R. Garey and David S. Johnson. Computers and Intractability: a guide to the theory of NP-
Completeness. W. H. Freeman and Company, 1979.

[8] Brighten Godfrey, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp, and Ion Stoica. Load bal-
ancing in dynamic structured P2P systems. In Proc. IEEE INFOCOM, Hong Kong, 2004.

[9] P. Brighten Godfrey and Ion Stoica. Heterogeneity and load balance in distributed hash tables. In Proc.
IEEE INFOCOM, 2005.

[10] R. L. Graham. Bounds on multiprocessing timing anomalies. In Bell Sys. Technical Journal, pages 1563—
1581, 1966.

[11] E. Koutsoupias. Coordination mechanisms for congestion games. In Sigact News, December 2004.

[12] Jonathan Ledlie and Margo Seltzer. Distributed, secure load balancing with skew, heterogeneity, and churn.
In Proc. INFOCOM, 2005.

[13] Albert W. Marshall and Ingram Olkin. Inequalities: Theory of Majorization and its Applications. Academic
Press, 1979.

[14] KyoungSoo Park and Vivek Pai. Comon: A monitoring infrastructure for PlanetLab.
http://comon.cs.princeton.edu/.

[15] Sylvia Ratnasamy, Scott Shenker, and Ion Stoica. Routing algorithms for DHTs: Some open questions. In
Proc. IPTPS, 2002.

[16] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A Measurement Study of Peer-to-Peer File
Sharing Systems. In Proc. MMCN, San Jose, CA, USA, January 2002.

[17] S. Stidham. On the optimality of single-server queueing systems. In Operations Research, volume 18, pages
708-732, 1970.

11

[18] Subhash Suri, Csaba D. T6th, and Yunhong Zhou. Selfish load balancing and atomic congestion games. In
Proc. SPAA, 2004.

[19] Adam Wierman, Takayuki Osogami, Mor Harchol-Balter, and Alan Scheller-Wolf. How many servers are
best in a dual-priority FCFS system? In Performance Evaluation, to appear.

[20] Xiangying Yang and Gustavo de Veciana. Service capacity of peer to peer networks. In Proc. INFOCOM,
2004.

A NP-completeness of SIMULATION

Definition 4 The decision problem SIMULATION is as follows: given o > 1, C, and C' = C, is there an
a-simulation of C with C'?

Fact 3 SIMULATION is NP-complete.

Proof: Clearly the problem is in NP. To show NP-hardness we reduce from PARTITION [7]. In that problem,
we are given a set S of n positive integers, and must decide whether there exists an R C S for which }° _p7 =

% ZSES 8.

Normalize the elements of S so that) g5 =mn. Set a =1, C = S and C' = (4, 3,0,...,0). If ¢’ = C,
then (o, C,C") is a valid instance of SIMULATION, and it is easy to verify that S can be partitioned in half iff
there exists a 1-simulation.

If ' # C, then Zle c’m < Zle cjj for some k, where c|; denotes the ith largest component of C. Since
C' has only two positive elements, this must happen for & = 1, which implies that ¢; > 5. In this case there

can be no perfect partition of S, so we can map onto any “no” instance of SIMULATION. [|

B Proof of Corollary 3

Proof: In the mixed-integer program of Chudak and Shmoys [5], machines are divided into groups of equal
speed, and jobs are assigned to machine groups. For our purposes, we may assume w.l.o.g. that all machines
have different speeds, in which case the program becomes the following. Variable z;; € {0,1} represents the
assignment of job j to machine k, and ¢(j) represents the completion time of job j. We seek to minimize the
makespan D subject to

En::nkj =1 Vje€J (each job is on some machine) (1)

k=1
%é@(j)mkj <D Vk: ¢, >0 (machine k must finish by time D) (2)
] xr; =0 Vk: ¢y =0 (zero-capacity machines aren’t used) (3)
Zn: E(]C)% < t(y) Vg (completion time is at least processing time) (4)

k=1

k: g(jc)jkj <t(j)—t(j') V4 <sj (precedence constraints) (5)
) t(j) <D V5 (all jobs completed by time D). (6)

Let LP be the relaxation of this program where x; € [0, 1], and let LP(C), LP(C"), OPT(C), and OPT(C")
denote the optimal values of LP and of precedence constrained scheduling, with some given capacities C' and
C’" » C and workload (J,¢,<y). For any C and C' = C, we will show OPT(C’) < O(logn) - LP(C") <
2-O(logn) - LP(C) < O(logn) - OPT(C). The first inequality is due to [5]; the last is due to the fact that LP
is a relaxation of PCS. We show the second inequality by verifying the conditions of Theorem 1 for the optimal

12

values of LP. Properties 1 through 3 follow directly, with 5 = 2. For Property 4, let (x;;) be an optimal
solution to LP(C'), and suppose ¢} = ¢1 + ¢2, ¢4 =0, and ¢} = ¢ for i € {2,...n}. We show (x;ﬂj) is a feasible
solution for LP(C") with the same makespan D and completion times ¢(j), where for all j, 2; = z1; + z2;,
z; = 0, and for k € {2,...,n}, z}; = zy;. Constraints (1), (3), and (6) are obviously satisfied. To verify (4)
and (5), note that the time to process a job doesn’t increase:

E(])x;gj 15 + X2 xkj a:k
=07 | =22 < J
> s g (2t s 5

k k>2

Finally, (2) is satisfied since

n

1, 1 1N
a Zé(])xﬁ] = Zg(j)(x]_] + 1’2]) < max o Z€ x1]7 . 25(3)332]' <D
=t J=1 j=1

c1+ co 4
J=1

C Proof of Corollary 6

Proof: Consider any capacities C, C’ = C, and jobs J, and suppose the best schedule on the C-machines
executes job j on machine m(j) during [t(j), t(j) +1/cm(j))- It is sufficient to show a C” schedule such that each
job is executed within [16 - ¢(j), 16 - (¢(j) + 1/cp(;))]- We first modify the schedule to make it more convenient:
execute each job j at a time which is a multiple of 1/ Cm(j)> and round the machine speeds down to the nearest
power of 2. Each of these modifications at most doubles the length of the schedule. Let C* and ¢*(-) be the
resulting capacities and execution times.

Now let f be given by the Simulation Lemma. Consider the machines f~'(i) for some 4. First, we merge
each pair of machines mq,mo € f~1(i) for which Cmy = Cm, Dy replacing them with a machine of capacity 2¢;,
We revise the execution time of each job j as t*(j) = t*() if m(j) = mq, and t*(j) = t*(j) + 3 1/ if
m(j) = mg. Completion times do not increase since the machine capacity has doubled, and jobs do not overlap
since each ¢*(j) was a multiple of 1/¢,,(;). Iterating this merging of the machines in f~'(i), we are left with k
machines my, ..., m;, of unique power-of-two capacities 2',...,2* (some may be missing).

We can now schedule these machines’ jobs on a single machine m of capacity 27! without changing the
range of time in which each job is executed, as follows. Break time into slots of length 1/2**! the length
necessary to process one job on machine m. For each job j; on machine my, there are two available slots within
its scheduled time [t*(j1), t*(j1) + 1/2]. Place each in one of these arbitrarily. For each job j, on machine
my_1, there still remain two available slots within the larger time [t*(j2), t*(j2) 4+ 1/2"71], so we can recursively

schedule the jobs on machines my_1,...,m1 in the same manner.

Now, the Simulation Lemma guarantees that ¢; > 35 Eee F13) Cme = %-2’“. We used a machine of speed 2F+1,
so this increases the makespan by a factor of 4. Combining thls with our earlier modification of the schedule,
the corollary follows. n

D Proof of Theorem 5

Proof: Let C = (1,1) and C’ = (2,0). Suppose J consists of mk jobs of size 1 arriving at times 0,1,...,mk—1
and m jobs of size k arriving at times 0, k,2k, ..., mk — k. These can be scheduled as they arrive on the C-
machines, for a total response time of ©(mk). Now consider scheduling these jobs on the single C’-machine of
nonzero capacity. For any schedule, we have one of two cases:

In Case 1, fewer than 1/2 of the large jobs are scheduled during time [0, km|. Then > m/2 large jobs wait,
on average, at least time km/2 before they are executed. After normalizing by job length, we have that the
total response time of just these jobs is > 5 - kTm . % = 0(m?).

In Case 2, at least 1/2 of the large jobs are scheduled during time [0, km|. Ignoring all large jobs except
these, we can produce an optimal such schedule by setting ¢(j1) = r(j1) for each small job j;, and inserting each

13

large job j, at its specified time ¢(j2), delaying the small jobs only as much as necessary. Since each large job
takes time k/2 to execute on the machine of capacity 2, we must delay starting ©(k) small jobs by time O (k)
each, so total response time increases by ©(k?). This occurs for each of > m/2 large jobs that we insert, for a
total slowdown of > ©(mk?).

Finally, since m is arbitrary, take m = k? so in either case total response time is Q(k*), compared with
O(k?) for the C-machines. []

14

