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Abstract— Discrete-event (DE) models are formal system spec-
ifications that have analyzable deterministic behaviors in terms
of event values and time stamps. However, since time is only
a modeling property, they are primarily used in performance
modeling and simulation. In this paper, we extend discrete-event
models with the capability of mapping certain events to physical
time and propose them as a programming model, called PTIDES.
We seek analysis tools and execution strategies that can preserve
the deterministic behaviors specified in DE models without paying
the penalty of totally ordered executions. This is particularly
intriguing in time synchronized distributed systems since there
is a consistent global notion of time and intrinsic parallelism
among the nodes. Based on causality analysis of DE systems,
we define relevant dependency and relevant orders to enable out-
of-order executions without hurting determinism and without
requiring backtracking. For a given network characteristic, we
can check statically whether deploying the model in the network
can preserve the real-time properties in the specification.

I. INTRODUCTION

Network time synchronization has the potential to signifi-
cantly change how we design embedded real-time distributed
systems. In the past, time synchronization has been a relatively
expensive service. For many applications, it is not really
required, since a logical notion of time (which constrains the
ordering of events) is sufficient for correctness [15]. Loose
coupling of model time with physical time is sufficient for
many interactive distributed systems, such as computer games,
where human-scale time precision is adequate. In many em-
bedded systems, such as manufacturing, instrumentation, and
vehicular control systems, much higher timing precision is es-
sential. Engineers designing such systems resort to specialized
bus architectures, such as time triggered architectures, CAN
bus, or FlexRay (http://www.flexray.com/). Time synchroniza-
tion over standard networks, such as provided by NTP [19],
does not have adequate time precision for such applications.
The recent standardization (IEEE 1588 1) of high-precision
timing synchronization over ethernet that is compatible with
conventional networking technologies promises to significantly
change this picture. Ongoing work in time synchronization
for wireless networks (see for example RBS [20]) also show
considerable promise. Implementations of IEEE 1588 have
demonstrated time synchronization as precise as tens of
nanoseconds over networks that cover hundreds of meters,
more than adequate for many manufacturing, instrumentation,

1http://ieee1588.nist.gov

and vehicular control systems. Such precise time synchro-
nization enables coordinated actions over distances that are
large enough that fundamental limits (the speed of light, for
example) make it impossible to achieve the same coordination
by conventional stimulus-response mechanisms.

A key question that arises in the face of such technologies
is how they can change the way software is developed. Ideas
include elevating the principles of time triggered architectures
to the programming language level, as done for example in
Giotto [12], and augmenting software component interfaces
with timing information. In this paper, we describe a program-
ming model that uses distributed discrete-event techniques [5],
[8], [21], but rather than using them for accelerated simula-
tion as previously, we use them as a temporally integrated
distributed programming model. Our method relies on time
synchronization with a known precision. The precision is
arbitrary, so the method applies equally well to extremely fine
precision (as is possible with IEEE 1588) as to coarse precision
(as achieved by NTP). We call the resulting model PTIDES,
Programming Temporally Integrated Distributed Embedded
Systems.

discrete-event semantics is typically used for modeling
physical systems where atomic events occur on a time line. For
example, hardware description languages for digital logic de-
sign, such as Verilog and VHDL, are discrete-event languages.
So are many network modeling languages, such as OPNET
Modeler2 and Ns-23. Our approach is not to model physical
phenomena, but rather to specify coordinated real-time events
to be realized in software. Execution of the software will first
obey discrete-event semantics, just as done in DE simulators,
but it will do so with specified real-time constraints on certain
actions. Our technique is properly viewed as providing a
semantic notion of model time together with a relation between
the model time of certain events and their real time.

Our premise is that since DE models are natural for
modeling real-time systems, they should be equally natural
for specifying real-time systems. Moreover, we can exploit
their formal properties to ensure determinism in ways that
evades many real-time software techniques. Network time
synchronization makes it possible for discrete-event models
to have a coherent semantics across distributed nodes. Just as
with distributed DE simulation, it will not be practical nor

2http://opnet.com/products/modeler/home.html
3http://www.isi.edu/nsnam/ns
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efficient to use a centralized event queue to sort events in
chronological order. Our goal will be to compile DE models
for efficient and predictable distributed execution.

We emphasize that while distributed execution of DE mod-
els has long been used to exploit parallel computation to
accelerate simulation [21], we are not interested in accelerated
simulation. Instead, we are interested in systems that are intrin-
sically distributed. Consider factory automation, for example,
where sensors and actuators are spread out physically over
hundreds of meters. Multiple controllers must coordinate their
actions over networks. This is not about speed of execution
but rather about timing precision. We use the global notion of
time that is intrinsic in DE models as a binding coordination
agent.

For accelerated simulation, there is a rich history of tech-
niques. So-called “conservative” techniques advance model
time to t only when each node can be assured that they have
seen all events time stamped t or earlier. For example, in the
well-known Chandy and Misra technique [6], extra messages
are used for one execution node to notify another that there
are no such earlier events. For our purposes, this technique
binds the execution at the nodes too tightly, making it very
difficult to meet realistic real-time constraints.

So-called “optimistic” techniques perform speculative ex-
ecution and backtrack if and when the speculation was in-
correct [13]. Such optimistic techniques will also not work
in our context, since backtracking physical interactions is not
possible.

Our method is conservative, in the sense that events are
processed only when we are sure it is safe to do so. But we
achieve significantly looser coupling than Chandy and Misra
using a new method that we call relevant dependency analysis.

Reflecting the inadequacy of established methods, there has
recently been considerable experimentation with techniques
for programming networked embedded systems. For example,
TinyOS and nesC [9] are designed for programming wireless
networked sensor nodes with extreme resource constraints.
Although TinyOS/nesC does not address real-time constraints,
it provides an innovative concurrency model that supports
creating very thin software wrappers around hardware (sensors
and actuators). It also blurs the traditional boundary between
the programming language and the operating system. Another
interesting example is Click [14], which was created to sup-
port the design of software-based network routers. Handling
massive concurrency and providing high throughput are major
design goals in Click, although again it does not address real-
time constraints.

An innovative embedded software programming system that
does address real-time is Simulink with Real-Time Workshop
(RTW), from The MathWorks. Simulink is widely used for
designing embedded control systems in applications such as
automotive electronics. RTW generates embedded programs
from Simulink models. It leverages an underlying preemptive
priority-driven multitasking operating system to deliver deter-
minate computations with real-time behavior based on rate-
monotonic scheduling [17]. It includes some clever techniques
to minimize the overhead due to interlocks in communi-
cation between software components. Giotto [12] simplifies

this scheme, achieving a model that is amenable to rigorous
schedulability analysis, at the expense of increased latency.
The Timed Multitasking [18] (TM) model extends this princi-
ple to a more event-driven style (vs. periodic).

A rather different approach is taken in the synchronous
languages [2]. These languages have a rather abstracted notion
of model time and no built-in binding between model time
and physical time. In this notion, computations are aligned
with a global “clock tick,” and are semantically instanta-
neous and simultaneous. For example, SCADE [3] (Safety
Critical Application Development Environment), a commercial
product of Esterel Technologies, builds on the synchronous
language Lustre [11], providing a graphical programming
framework with Lustre semantics. Of the flagship synchronous
languages, Esterel [4], Signal [10], and Lustre, Lustre is the
simplest in many respects. All the synchronous languages have
strong formal properties that yield quite effectively to formal
verification techniques, but the simplicity of Lustre in large
part accounts for SCADE achieving certification for use in
safety critical embedded avionics software.4 Although highly
concurrent, synchronous languages are challenging to run on
distributed platforms because of the notion of a global clock
tick.

Our emphasis is on efficient distributed real-time execution.
Our framework uses model time to define execution semantics,
and constraints that bind certain model time events to physical
time. A correct execution will simply obey the ordering
constraints implied by model time and meet the constraints
on events that are bound to physical time.

This paper is organized as following. Section II motivate our
programming model using a distributed real-time application.
Section III develops the relevant dependency concept using
causality interfaces [16], and defines the relevant order on
events based on relevant dependency to formally capture the
ordering constraints of temporally ordered events that have
a dependency relationship. A distributed execution strategy
based on the relevant order of events is presented in section
IV. In section V, we show how to analyze whether a discrete-
event specification is feasible to be deployed on distributed
nodes. Future work is discussed in section VI.

II. MOTIVATING EXAMPLE

We motivate our programming model by considering a
simple distributed real-time application. Suppose that at two
distinct machines A and B we need to generate precisely
timed physical events under the control of software. Moreover,
the devices that generate these physical events respond after
generating the event with some data, for example sensor data.
We model this functionality with an actor that has one input
port and one output port, depicted graphically as follows:

Device

4The SCADE tool has a code generator that produces C or ADA code that
is compliant with the DO-178B Level A standard, which allows it to be used
in critical avionics applications (see http://www.rtca.org).
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This actor is a software component that wraps interactions with
the device drivers. We assume that it does not communicate
with any other software component except via its ports. At
its input port, it receives a potentially infinite sequence of
time-stamped values, called events, in chronological order. The
sequence of events is called a signal. The output port produces
a time-stamped value for each input event, where the time
stamp is strictly greater than that of the input event. The time
stamps are values of model time. This software component
binds model time to physical time by producing some physical
action at the real-time corresponding to the model time of each
input event. Thus, the key real-time constraint is that input
events must be made available for this software component to
process them at a physical time strictly earlier than the time
stamp. Otherwise, the component would not be able to produce
the physical action at the designated time.

Figure 1 shows a distributed DE model to be executed on a
two-machine, time-synchronized platform. The dashed boxes
divide the model into two parts, one to be executed on each
machine. The parts communicate via signal s2. We assume
that events in this signal are sent over a standard network as
time-stamped values.

The Clock actors in the figure produce time-stamped
outputs where the time stamp is some integer multiple of a
period p (the period can be different for each clock). Upon
receiving an input with time stamp t, the clock actor will
produce an output with time stamp np where n is the smallest
integer so that np ≥ t. There are no real-time constraints on
the inputs or outputs of these actors.

The Merge actor has two input ports. It merges the signals
on the two input ports in chronological order (perhaps giving
priority to one port if input events have identical time stamps).
A conservative implementation of this Merge requires that no
output with time stamp t be produced until we are sure we
have seen all inputs with time stamps less than or equal to
t. There are no real-time constraints on the input or output
events of the Merge actor.

Clock Device

Merge

A

Display

Clock Device

B

s1

s2

s3

s4 s5

s6 s7

Fig. 1. A simple distributed instrumentation example.

The Display actor receives input events in chronological
(time-stamped) order and displays them. It also has no real-
time constraints.

A brute-force implementation of a conservative distributed
DE execution of this model would stall execution in platform
A at some time stamp t until an event with time stamp t or
larger has been seen on signal s2. Were we to use the Chandy
and Misra approach, we would insert null events into s2 to
minimize the real-time delay of these stalls. However, we have
real-time constraints at the Device actors that will not be met
if we use this brute-force technique. Moreover, it is intuitively
obvious that such a conservative technique is not necessary.
Since the actors communicate only through their ports, there
is no risk in processing events in the upper Clock-Device loop
ahead of time stamps received on s2. Our PTIDES technique
formalizes this observation using causality analysis.

To make this example more concrete, we have in our lab
prototype systems provided by Agilent that implement IEEE
1588. These platforms include a Linux host and simple timing-
precise I/O hardware. Specifically, one of the facilities is a
device driver API where the software can request that the
hardware generate a digital clock edge (a voltage level change)
at a specified time. After generating this level change, the
hardware interrupts the processor, which resets the level to its
original value. Our implementation of the Device actor takes
input events as specification of when to produce these level
changes. That is, it produces a rising edge at physical time
equal to the model time of an input event. After receiving an
input, it outputs an event with time stamp equal to the physical
time at which the level is restored to its original value. Thus, its
input time stamps must precede physical time, and its output
events are guaranteed to follow physical time. This physical
setup makes it easy to measure very precisely the real-time
behavior of the system (oscilloscope probes on the digital I/O
connectors tell it all).

The feedback loops around the two Clock and Device
actors ensure that the Device does not get overwhelmed with
requests for future level changes. It may not be able to buffer
those requests, or it may have a finite buffer. Without the
feedback loop, since the ports of the Clock actor have no
real-time constraints, there would be nothing to keep it from
producing output events much faster than real time.

This model is an abstraction of many realistic applications.
For example, consider two networked computers controlling
cameras pointing at the same scene from different angles.
Precise time synchronization allows them to take sequences
of pictures simultaneously. Merging two synchronous streams
of pictures creates a 4D view for the scene (three physical
dimensions and one time).

PTIDES programs are discrete-event models constructed
as networks of actors, as in the example above. For each
actor, we specify a physical host to execute the actor. We
also designate a subset of the input ports to be real-time
ports. Time-stamped events must be delivered to these ports
before physical-time exceeds the time stamp. Each real-time
port can optionally also specify a setup time τ , in which
case it requires that each input event with time stamp t be
received before physical time reaches t − τ . A model is said
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to be deployable if these constraints can be met for all real-
time ports. Causality analysis can reveal whether a model is
deployable, as discussed below in section III.

The key idea is that events only need to be processed in
time-stamp order when they are causally related. We defined
formal interfaces to actors that tells us when such causal
relationships exist.

III. RELEVANT DEPENDENCY

Model-time delays play a central role in the existence
and uniqueness of discrete-event system behavior. Causality
interfaces [16] provide a mechanism that allows us to analyze
delay relationships among actors. In this section, we use
causality interfaces to derive relevant dependencies among
discrete events. Relative dependencies are the key to achieving
out of order execution without disobeying the formal semantics
of discrete-event specifications.

A. Causality Interfaces

The interface of actors contains ports on which actors
receive or produce events. Each port is associated with a
signal. A causality interface declares the dependency that
output events have on input events. Formally, a causality
interface for an actor a with input ports Pi and output ports
Po is a function:

δa : Pi × Po → D (1)

where D is an ordered set with two binary operations ⊕ and
⊗ that are associative and distributive. That is,

∀d1, d2, d3 ∈ D,

(d1 ⊕ d2)⊕ d3 = d1 ⊕ (d2 ⊕ d3)
(d1 ⊗ d2)⊗ d3 = d1 ⊗ (d2 ⊗ d3)
d1 ⊗ (d2 ⊕ d3) = (d1 ⊗ d2)⊕ (d1 ⊗ d3)
(d1 ⊕ d2)⊗ d3 = (d1 ⊗ d3)⊕ (d2 ⊗ d3)

(2)

In addition, ⊕ is commutative,

d1 ⊕ d2 = d2 ⊕ d1.

The ⊗ operator is for serial composition of ports, and the ⊕
operator is for parallel composition. The elements of D are
called dependencies, and δa(p1, p2) denotes the dependency
that port p2 has on p1.

For discrete-event models, D = R0 ∪ {∞}, ⊕ is the min
function, and ⊗ is addition. With these definitions, D is a
min-plus algebra [1]. Note that these operators are defined on
model time.

Given an input port p1 and an output port p2 belonging to an
actor a, δa(p1, p2) gives the model-time delay between input
events at p1 and resulting output events at p2. Specifically, if
δa(p1, p2) = d, then any event e2 that is produced at p2 as a
result of an event e1 at p1 will have time stamp t2 ≥ t1 + δ,
where t1 is the time stamp of e1. For example, a Delay
actor with a delay parameter d will produce an event with
time stamp t + d at its output p2 given an event with time
stamp t at its input p1, so δDelay(p1, p2) = d. Note that the

p1 p2 p5

p6

p7

p3 p4

A

B

C

p8 p9

Fig. 2. A composition of actors.

causality interface gives the worst case (the smallest possible
delay). An actor may produce an event e2 with a larger time
stamp, or may produce no event at all in response to e1, and
the actor still conforms with the causality interface.

A program is given as a composition of actors, by which
we mean a set of actors and connectors linking their ports.
Given a composition and the causality interface of each actor,
we can determine the dependencies between any two ports
in the composition by using ⊗ for serial composition and
⊕ for parallel composition. For example, to determine the
dependencies for ports in the composition shown in figure 2,
we need to determine the function:

δ : P × P → D

where P = {p1, p2, ...p9}
(3)

We form a weighted, directed graph G = {P,E}, called the
dependency graph, as shown in figure 3, where P is the set
of ports in the composition. If p is an input port and p′ is an
output port, there is a edge in G between p and p′ if p and p′

belong to the same actor a and δa(p, p′) < ∞. In such a case,
the weight of the edge is δa(p, p′). If p is an output port and
p′ is an input port, there is an edge between p and p′ if there
is a connector between p and p′. In this case, the weight of
the edge is 0. In all other cases, the weight of an edge would
be ∞, but we do not show such edges. Note that this directed
graph could by cyclic, and the classical requirement for a DE
model to be executable is that the sum (or ⊗) of the edge
weights in each cycle be greater than zero [16].
∀p, p′ ∈ P , to determine the value of δ(p, p′), we need to

consider all the paths between p and p′. We combine parallel
paths using ⊕ and serial paths using ⊗. In particular, the
weight of a path is the sum of the weights of the edges along
the path (⊗). The ⊕ operator is minimum, so δ(p, p′) is the
weight of the path from p to p′ with the smallest weight. For
example, δ(p1, p7) is calculated as:

δ(p1, p7) =min(ph1, ph2), where
ph1 =δA(p1, p2) + 0 + δC(p5, p7),
ph2 =δA(p1, p2) + 0 + δB(p3, p4) + 0 + δC(p6, p7)

(4)

Note that paths with infinite weight in parallel with any path
that is shown in our graph would have no effect, which is why
we do not show such paths. If there is no path from a port p
back to itself, then δ(p, p) = ∞.

Note that these dependency values between ports do not
tell the whole story. Consider the Merge actor in figure 1. It
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p1

p2

p5

p7

),( 21 ppAδ

),( 75 ppCδ

p3

),( 43 ppBδ

),( 76 ppCδ

p4

p6

p9

p8

),( 98 ppBδ
),( 93 ppBδ

Fig. 3. A graph for computing the causality interface of a composition of
actors.

has two input ports, but when we construct the dependency
graph, we will find that there is no path between these ports.
However, these ports have an important relationship, noted
above. In particular, the Merge actor cannot react to an event
at one port with time stamp t until it is sure it has seen all
events at the other port with time stamp less than or equal to
t. This fact is not captured in the dependencies. To capture it,
we define relevant dependencies.

B. Relevant Dependency

Based on the causality interface of actors, the relevant
dependency on any pair (p1, p2) of input ports specifies
whether an event at p1 will affect an output signal that may
also depend on an event at p2.

The relevant dependency between ports in a composition
is calculated in a way similar to the dependency above, but
we aggregate some of the ports into equivalence classes.
Specifically, considering an individual actor a, two input ports
p1 and p2 of a will be “equivalent” if there is an output port
that depends on both. Formally, p1 and p2 are equivalent if

∃p ∈ Po, such that δa(p1, p) < ∞ and δa(p2, p) < ∞,

where Po is the set of output ports of a.
For example, in figure 2, assume that both input ports of

actor C affect its output port, i.e. that δC(p5, p7) < ∞ and
δC(p6, p7) < ∞. Then p5 and p6 are equivalent.

In addition, we assume that if any actor has state that is
modified or used in reacting to events at more than one input
port, then that state is explicitly treated as an output port.
Thus, with the above definition, two input ports are equivalent
if they are coupled by the same state variables of the actor.
For example, in figure 2, port p9 might represent the state of
actor B. If both input ports p3 and p8 affect the state, then the
dependencies are δB(p3, p9) = δB(p8, p9) = 0, and p3 and p8

are equivalent.
We next modify the dependency graph by aggregating ports

that are equivalent to create a new graph that we call the
relevant dependency graph. Consider the graph in figure 3.
Suppose, as above, that p5 and p6 are equivalent and p3 and
p8 are equivalent. Then the relevant dependency graph for the
model in figure 2 becomes that shown in figure 4.

Note that in the relevant dependency graph, there is a
path from p8 to p6 that was not present in the dependency
graph. Thus, although events at p8 do not affect events at

p5 & p6

),( 75 ppCδ

),( 43 ppBδ

),( 76 ppCδ

p2 p3 & p8

p4

),( 98 ppBδ

),( 93 ppBδ

Fig. 4. The relevant dependency graph for the model in figure 2.

Clock Device

Merge Display

p1

p2

p3
p6

p4

p5

p7 p8

Fig. 5. The motivating example with names of ports.

p6 (they have no dependency), there is nonetheless a relevant
dependency because events at p3 affect events at p9 (which are
also affected by events at p8) and at p6. These effects imply
an ordering constraint in processing events at p8 and p6.

Below we will show that the relevant dependency induces a
partial order on events that defines the constraints on the order
in which we can process events.

The relevant dependency for a composition of actors is
constructed as follows. Let Q be the set of equivalence
classes of input ports in a composition. For example, q3,8 =
{p3, p8} ∈ Q in figure 2. Then, the relevant dependency is a
function of the form

d : Q×Q → D

where for example in figure 2,

Q = {q1, q3,8, q5,6} = {{p1}, {p3, p8}, {p5, p6}}.

Similar to ordinary dependencies, relevant dependencies are
calculated by examining weights of the relevant dependency
graph. ∀q, q′ ∈ Q, to determine the value of d(q, q′), we need
to consider all the paths between q and q′. We again combine
parallel paths using ⊕ and serial paths using ⊗. In particular,
the weight of a path is the sum of the weights of the edges
along the path (⊗). The ⊕ operator is minimum, so d(q, q′) is
the weight of the path from q to q′ with the smallest weight.

When the relevant dependency is d(q, q′) = r, r ∈ R0, this
means that any event with time stamp t at any port in q′ can
be processed when all events at ports in q are known up to
time stamp t− r.

When the relevant dependency is d(q, q′) = ∞, this means
that events at any port in q′ can be processed without knowing
anything about events at any port in q.

Figure 5 shows a portion of the model in figure 1 and names
each port. The causality interface for each actor in the model
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Clock Device

Merge Display

p1

p2

p3
p6

p4

p5

p7 p8

Delay p9 p10

Fig. 6. The motivating example with a delay actor.

is:
δClock(p1, p3) = 0

δDevice(p4, p5) = d0

δMerge(p6, p7) = 0
δMerge(p2, p7) = 0

(5)

where d0 > 0 is the response delay of the digital output device
(i.e. the minimum model-time delay across the Device actor).

Recall that p4 is a real-time port. It is easy to check that
the relevant dependency in this composition d(q2,6, q4) is ∞,
where using the same notation as above, q2,6 = {p2, p6} and
q4 = {p4}. This means that events at p4 can be processed
without knowing anything about events at p2 or p6. This is
precisely the result we were after. It means that the arrival
events over the network into p2 need not interfere with meeting
real-time constraints at p4. This would not be achieved with
a Chandy and Misra policy. And unlike optimistic policies,
there will never be any need to backtrack.

If we modify the model in figure 5 by adding a Delay
actor with a delay parameter d, we get a new model as shown
in figure 6. The relevant dependency becomes d(q2, q6,10) =
d. Now an event with time stamp t at p6 can be processed
if all events with time stamps smaller than or equal to t −
d at p2 have been processed. With the same assumptions as
discussed in section II (an event with model time t is produced
at physical time t by the Device process, and the network
delay is bounded by C), at physical time t − d + C we are
sure that we have seen all events with time stamps smaller
than t − d at p2. Hence, an event e at p6 with time stamp t
can be processed at physical time t−d+C or later. Note that
although the Delay actor has no real-time properties at all
(it simply manipulates model time), its presence loosens the
constraints on the execution.

IV. EXECUTION BASED ON THE RELEVANT ORDER

What we gain from the dependency analysis is that we can
specify which events can be processed out of order, and which
events have to be processed in order.

A. Relevant Order

We define the relevant order as follows. Suppose e1 is an
event with time stamp t1 at a port in q1 and e2 is an event
with time stamp t2 at a port in q2. Then

e1 <r e2 ⇔ t1 + d(q1, q2) < t2.

We use notation <r for the relevant order. It is straightforward
to show that this is a partial order on events. We interpret

e1 <r e2 to mean that e1 must be processed before e2. Two
events e1 and e2 are not comparable, denoted as e1||re2, if
neither e1 <r e2, nor e2 <r e1. If e1||re2, then e1, e2 can be
processed in any order. What we mean by “processed” is that
the actor that is the destination of the event is fired, meaning
that it is executed and allowed to react to the event.

B. Execution Strategies

We now design execution strategies based on the relevant
order to enable out of order execution without hurting deter-
minism. One execution algorithm may work as follows:

1) Start with E, a set of events in the event queue.
2) Choose r ⊂ E, s.t. each event in r is minimal in E.
3) Process events in r, which may produce a set of new

events E′.
4) Update E to (E \ r) ∪ E′.
5) Go to 2.

An event e is minimal in E if ∀e′ ∈ E, e <r e′, or e||re′.
This strategy, however, fails when there are events coming

over the network. The pitfall here is that it assumes all the
events that have been generated in the system are in E, but in
a distributed system with network delays, this is not true.

An input port is called a network port if it receives events
from external hardware. Here we use the word network in a
loose sense, which covers both communication network and
external I/O. For the model shown in figure 5, p2 is a network
port as it receives events from another computer. Both p1

and p6 are also network ports as they receive events from
an external device. Let Pd denote the set of network ports in
a composition.

For network ports, we assume that events that are received
on those ports have time stamps that are related to physical
time. Specifically, let ∆p be a non-negative real number
associated with network port p. Then we assume that an event
with time stamp t on port p will be received at real time no
later than t + ∆p. We call ∆p the network delay associated
with port p.

For any input port p, let Q(p) denote the equivalence class
that contains p. An event e with time stamp t at a port p is said
to be ∆-minimal if e is minimal in E, and the current physical
time is no less than T = maxp′∈Pd

{t−d(Q(p′), Q(p))+∆p′}.
That is, an event is ∆-minimal if it is minimal in E and we
are assured that we have seen all events that are less than it
in the relevant order.

The execution algorithm becomes:
1) Start with E, a set of events in the event queue.
2) Choose r ⊂ E, s.t. each event in r is ∆-minimal in E.
3) Process events in r, which may produce a set of new

events E′.
4) Update E to (E \ r) ∪ E′.
5) Go to 2.
If the clocks in the distributed systems are not perfectly

synchronized, we also need to take into account the time
synchronization error to the estimated physical time T . In
particular, if the difference of the clock time between any two
nodes in the systems is bounded by ξ, we need to wait until
the current physical time is T + ξ to make sure e is minimal.
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Fig. 7. Model in figure 5 with a delay actor.

V. TOWARDS DEPLOYABILITY ANALYSIS

A key requirement for preserving runtime determinism of
PTIDES programs, as we mentioned in section II, is that
each event e with model time t at a real-time port must be
received before the physical time exceeds t − τ , where τ
is the setup time of the real-time port. We call a PTIDES
program deployable if this requirement can be guaranteed.
We are interested in statically checking deployability for a
given PTIDES program and a system characteristic such as
communication delay and execution time bounds. In this
section, we describe a partial solution.

When the execution time is negligible comparing to the net-
work delays and setup time, deployability checking becomes
straightforward by using the relevant order of events under
our new execution strategy. Let Pn denote the set of network
ports in a composition and Q(p) denote the equivalence class
containing port p. For a real-time port p, if there is a port
p′ ∈ Pn such that the relevant dependency d(Q(p′), Q(p)) <
∞, then there are order constraints on the events at p′ and
p. That is, an event received at p′ with model time stamp
t′ < t−d(Q(p′), Q(p)) is less than (in the relevant order, <r)
an event e with model time stamp t at p. Hence the event e
cannot be processed until we are sure that all events at p′ with
time stamp less than t− d(Q(p′), Q(p)) have been received.

For the worst case, when the network delay achieves its
upper bound, we need to wait until the physical time reaches
Tp(p′, t) = t−d(Q(p′), Q(p))+∆p′ . Recall ∆p′ is the network
delay at port p′, i.e. an event with model time t′ can be received
at p′ as late as physical time t′ + ∆p′ . If for all p′ ∈ Pn,
Tp(p′, t) ≤ t− τ , i.e.,

∆p′ + τ ≤ d(Q(p′), Q(p)),

then we call the real-time port p deployable. We can guarantee
that an event e at port p is processed before the physical time
reaches the model time of e. A system is deployable if all its
real-time ports are deployable.

As an example, consider again the system shown in figure
5, where Pn = {p1, p2, p6} is the set of network ports and
Pr = {p4} is the set of real-time ports. Assume the set up
time for p3 is 0. Assume the network delay ∆p2 is C, and
∆p1 = ∆p6 = C ′. We can perform the following analysis.

The real time port p4 only has relevant dependency with the
network port p1. It has no relevant dependency with the other
two ports in Pn, i.e. d(Q(p2), Q(p4)) = d(Q(p6), Q(p4)) =
∞. The dependency d(Q(p1), Q(p4)) = 0, which is less than

the network delay of port p1. This indicates that the system
is not deployable. To see this, consider an event e with model
time t that can be received at physical time t + C ′ at port p1.
Assume t0 + nα ≤ t ≤ t0 + (n + 1)α, where α is the period
of the clock, and t0 is the time of the first event) of the clock.
As a result of e, the Clock actor produces an output event e′

with model time t0 + (n + 1)α to p4 at physical time t + C ′.
Since the model time t of the event e may be arbitrarily close
to t0 +(n+1)α, the event e′ at p4 cannot be processed before
the physical time reaches its model time.

If we change the system by adding a Delay actor with
a delay parameter d ≥ C ′ as shown in figure 7, the system
becomes deployable. In particular, the distributed ports for this
new system are p2, p6 and p9. The real time port p4 now
only has relevant dependency with p10. Note that the relevant
dependency d(Q(p10), Q(p4)) = d. In order for the system to
be deployable, d ≥ C ′ is sufficient.

The analysis discussed above is the beginning of what
allows us to statically check whether a PTIDES specifica-
tion is feasible to be deployed over a network of nodes.
A full analysis, when the execution time is not negligible,
requires integrating relevant dependency analysis with real-
time scheduling and worse case execution time analysis on
individual nodes. This is an interesting future direction.

VI. CONCLUSIONS

This paper describes the use of discrete event models as
programming specifications for time-synchronized distributed
real-time systems. We call the technique PTIDES, Program-
ming Temporally Integrated Distributed Embedded Systems.
We limit the relationship of model time to physical time to
only those circumstances where this relationship is needed,
and provide an execution model that permits out of order
processing of events without sacrificing determinacy and
without requiring backtracking. We give a formal foundation
based on the concepts of relevant dependency and relevant
order. The resulting foundation is particularly valuable in
time-synchronized distributed real-time systems, since we can
take advantage of the globally consistent notion of time as
a coordination channel. Based on relevant orders, we can
statically analyze whether a given model is deployable on a
network of nodes, given we know the network delays.

We are building PTIDES programming interface in Ptolemy
II [7] and a runtime system on Agilent prototype devices with
IEEE 1588 time synchronization. PTIDES is implemented
based on the classical discrete event (DE) domain in Ptolemy
II, extending it with real-time semantics. We are leveraging
ongoing work in the Ptolemy Project on code generation.
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