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Chapter 1

Introduction

Designing embedded software for safety-critical, real-time feedback control applications is a

complex and error prone task. The challenges derive from design and implementation costs, time-

to-market pressures, late detection of errors introduced early into the design, manual implementa-

tion of software, and the need for hardware to test the software (using embedded target platforms

or prototypes), amongst other problems. Typical safety-critical applications, like steer-by-wire ve-

hicles, contain a model of the components computing control laws and interacting with a plant

using sensors and actuators, as illustrated in Figure 1.1. The control laws are implemented on an

execution platform composed of a software layer (i.e. middleware, operating system, etc.) and

a hardware layer (i.e. processing elements, communication channels, etc.). A model, or model

of computation (MoC), is a mathematical abstraction that explains or predicts the behavior of a

physical artifact or phenomenon. Well-defined mathematical models are often useful in the design

of such systems because they allow the use of formal validation and analysis techniques, and they

reduce ambiguity in capturing design specifications and translating specifications to an implemen-

tation, or deployment. The model is often times created in a visual, interactive environment using

block diagrams or flowcharts, however visual representation is not necessary. The benefits of a

model-based design are that models may be reused in various steps in the design and development

of systems, they may be simulated to validate or clarify the behavior, they may be debugged before

software is written, and they help facilitate automatic code generation which aid to reduce coding

errors and coding time. Furthermore, formal analysis techniques may be used to quantitatively

analyze models.

Fault tolerance is an important aspect of safety. It is the ability for a system to behave correctly

in the presence of component failures, and it is commonly used in safety-critical applications. The
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Figure 1.1. An example feedback control system composed of a plant and an execution
platform implementing control algorithms.

aerospace and automotive industries offer numerous examples of such applications. A number of

methods are used in various domains to achieve fault tolerance. Some methods include validation,

time redundancy (performing the same operations a number of times and evaluating the results),

or error correction (information redundancy). An additional method to achieving fault tolerance is

duplicating hardware and software components, a solution that is often more expensive than needed.

In safety-critical applications such as automotive electronics, a subset of the functionalities must

be guaranteed while other functionalities are not critical to the safe operation of a vehicle. In this

case, the designers must make sure that a critical subset is operational under the potential faults

of the architecture (i.e. using hardware and software redundancy).

1.1 Motivation

A model of computation called Fault Tolerant Data Flow (FTDF) was recently introduced in

a proposed interactive design flow [21] to describe, at the highest level of abstraction, the design of

fault tolerant requirements on the functionality of a system. One of the key parts of the design flow

is a mapping of functionality onto a chosen architecture under a set of constraints. The mapping

takes as input the behavior of the system represented by FTDF, the architecture for which the

application is mapped onto, and a set of constraints which satisfies the design requirements. The

result of the mapping process is a schedule of FTDF components that are mapped to the given
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architecture satisfying the input constraints. From this mapped schedule, a series of analysis steps

may be taken to further refine the schedule before deploying the system onto a target platform

that may be used for rapid prototyping or a real implementation. The analysis techniques allow

the designer to evaluate the mapped schedule before deployment to determine the system cost or

measure the amount of fault coverage achieved. The analysis capabilities and software synthesis

from a mapped schedule to an implementation allow the designer to quickly and efficiently explore

the design space by hinting on changes that may be made on the functionality, architecture, or

mapping process, and perhaps derive a better fault coverage or achieve a lower implementation

cost. A complete design flow for this kind of application must maintain a consistent model at every

step, from specification to deployment. A single model that captures the requirements and used for

implementing synthesis (i.e. code generation, fault trees for fault tree analysis, etc.) and analysis

(i.e. timing analysis, reliability analysis, etc.) techniques, can alleviate many of the problems of

designing complex systems, which are typically done by a team of designers. The overall synthesis-

based design flow is discussed further in Chapter 2.

This work is motivated by the following scenario, where a designer wishes to rapidly prototype

a system using FTDF. The designer could take the results of a mapping such that the constraints to

that mapping process are satisfied, and then implement an execution on a target platform. But, the

designer has no way of evaluating how good the fault coverage or cost of implementation happens to

be. The addition of a fault tree synthesis tool in the design flow will allow the designer to not only

implement a system that satisfies input constraints, but the designer could evaluate a system that

also meets specified dependability requirements. The information from a dependability analysis

could tell the designer the difference in cost or fault coverage for multiple system mappings. Then,

using the same system model which produced the fault tree for dependability analysis, the designer

could proceed (if satisfied with results of the analysis) to deploy the model on a target system for

rapid prototyping. This process can be done quicker and more efficient than if the analysis and

deployment are manual. On the other hand, the designer may not have the necessary information

to make a reasonable assumption regarding the behavior or timing requirements of the system

under design. The designer could quickly generate a prototype of the system with little effort,

and possibly use the timing information from the prototype to specify better timing constraints or

validate the correct behavior of the system when faults are injected (or encountered from normal

operation). A software synthesis process that synthesizes a FTDF model to executable code and

fault tree synthesis process that generates a fault tree for analysis adds additional capabilities to a

synthesis-based design flow that can be completely automated.

This thesis enhances and complements the work presented in [21] for a synthesis-based design
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methodology in two important aspects. First, it addresses a method that facilitates code generation

from a FTDF model, including the synchronization, communication, and redundancy management

mechanisms required to deploy the system on a distributed architecture. The deployment gives an

early feedback of the system under development from an executable simulation on a host or on a

target platform that is representative of the final target system. Second, it presents a formal ap-

proach to analyzing dependability of a system. The approach is based on the automatic synthesis of

a fault tree from a mapped FTDF model. The fault tree allows the use of existing fault-tree analysis

tools, such as the Item Toolkit [7], to analyze the deployments and score them on a dependability

dimension. The tools described in this paper are already integrated into the synthesis-based design

flow described in Chapter 2 and shown in Figure 2.3. As a result of these new additions, designers

can quickly evaluate the dependability of multiple candidate systems, and when the designer is

satisfied with the quality of the design, the system can quickly reach a deployment phase using

automatic code generation. Furthermore, automatic code generation enables rapid prototyping for

design space exploration. These two new aspects find their natural positioning in the overall design

flow described in Chapter 2, however, they can be valuable design and analysis tools independent

of the automatic mapping phase described in [21]. If designers are interested in describing the re-

dundant (i.e. using replica software and multiple hardware components) FTDF mapping manually

by bypassing the automatic mapping phase, they can still take advantage of the automatic code

generation, fault tree synthesis and analysis. These two aspects further complement one another

since the analysis capability of the design flow provides a method to analyze the structure of a sys-

tem, whereas the deployment resulting from code generation provides the mechanism to analyze or

validate the behavior of the system. Both aspects enable design exploration by providing feedback

to the designer.

1.2 Organization of Report

The remainder of this report is organized as follows. Chapter 2 reviews the proposed synthesis-

based design methodology for which this work integrates into. Chapter 3 gives an overview of the

FTDF MoC. Chapter 4 discusses the synthesis of implementation code from a FTDF model. In that

chapter, the runtime platform for a FTDF implementation is described, and a modeling environment

for constructing a FTDF application that is executed by the runtime platform. Chapter 5 discusses a

formal description of the fault tree analysis technique which includes a fault tree synthesis algorithm.

In Chapter 6 results from two examples are presented to illustrate software synthesis and fault
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tree analysis capabilities from a mapped FTDF model. Chapter 7 summarizes this paper with

conclusions and a brief discussion of future work.
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Chapter 2

Synthesis-Based Design Methodology

A synthesis-based design methodology is proposed that involves the designer in an interactive

design method for exploring the redundancy versus cost trade-off of safety-critical systems specified

using the FTDF MoC. Software replication is used to achieve fault tolerance: critical routines are

replicated statically (at compile time) and executed on separate electronic control units (ECUs),

and the processed data is routed on multiple communication paths to withstand channel failures.

For the sake of simplicity, the fault model used in this paper is fail silence [11]. Fail silence assumes

that components either provide correct results or do not provide any result at all. Other common

fault models might include value errors or Byzantine fault models.

The design methodology generates a valid fault-tolerant deployment of a feedback control sys-

tem given as a FTDF graph by specifying the fault-tolerant binding. A fault-tolerant binding

ensures that for each fault scenario, or failure pattern [5], the execution of a corresponding subset

of the actors in the FTDF graph, G must be guaranteed. Figure 2.1 illustrates a FTDF graph for

a paradigmatic feedback-control application, the inverted pendulum control system. In the exam-

ple, the controller is described as a bipartite directed graph G where the vertices, called actors

and communication media, represent software processes and data communication. In addition,

Figure 2.2 is a possible platform graph, PG, where vertices represent ECUs and communication

channels and edges describe their interconnections. The example repeats the following sequence at

each period Tmax: (1) sensors are sampled, (2) software routines are executed, and (3) actuators

are updated with the newly-processed data. In order to guarantee correct operation, the worst-case

execution time (WCET) among all possible iterations must be smaller than the given period, Tmax

(a real-time constraint for this example). Moreover, the control algorithms must be executed in
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spite of the possible platform faults. Figure 2.3 illustrates the proposed interactive design flow

where designers

• specify the controller (the top-left FTDF graph);
• assemble the execution platform (the top-right PG);
• specify a set of failure patterns (subsets of PG);
• specify the fault tolerance binding (fault behavior);

A synthesis tool automatically derives a fault-tolerant schedule as a result of the mapping in

Figure 2.3 that uses a timing analysis engine and other analysis techniques in a verification tool

to check whether the fault-tolerant behavior and the timing constraints are met. Dependability

analysis adds another dimension to the analysis capabilities of this flow. For example, if more than

one solution is found, one would like to assess precisely their dependability to correctly explore the

fault-tolerance versus cost trade-off. Once the designer is satisfied with the analysis and accepts

the metrics produced, then a deployment via code generation may take place. One might use the

deployment to further evaluate the system design.
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Figure 2.3. Proposed design flow.
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Chapter 3

Fault Tolerant Data Flow (FTDF)

Fault Tolerant Data Flow is a synchronous [4] model of computation: every actor executes

once per iteration, satisfying the precedence order dictated by the data dependencies. Then the

next iteration may start. FTDF is designed to address the specification of fault-tolerance in safety-

critical, real-time feedback control systems. Furthermore, FTDF is a data flow [16] [14] variant

that targets efficient periodic executions and alleviates ambiguous specifications in the design,

modeling, analysis, and validation of safety-critical feedback control systems. The structure of

FTDF enables formal analysis and automatic synthesis tools and techniques. This section reviews

the fundamental components of an FTDF model: tokens, actors, and communication media. An

FTDF graph structure provides the structural dependencies amongst components in a FTDF model.

3.1 Tokens

Tokens are encapsulations of data. In addition, in the FTDF domain, tokens are appended with

two fields: a valid field and an epoch field. The valid field is used to record the Boolean outcome

of some fault-detection algorithm (e.g. majority voting, checksum, CRC) since FTDF is designed

to be fault model independent. Moreover, an actor may explicitly mark any of its output tokens as

invalid to inform downstream actors of some error. An actor receiving a token can check the token’s

validity before attempting to use it. The epoch field is used in an execution as a synchronization

mechanism for the distributed processes.

11



3.2 Actors

In an actor-oriented design framework [15], actors are functional components that execute and

communicate with other actors in a model. An actor contains ports that are connected via an

abstraction of communication channels. In FTDF, this abstraction is referred to as a medium.

Actors also contain a firing rule and a firing function to specify the behavior of an actor. A firing

rule is a guard condition that must be satisfied by input signals to the actor. The firing function

executes a body code that implements a particular functionality of the actor.

Formally, an actor may be defined as a data flow process [16] where: F : Sn → Sm, as a

mapping between a n-tuple set of input signals to a m-tuple set of output signals where S = T ∗∗

and T ∗∗ is the set of finite and infinite sequences, including ⊥n, of data type T . In addition, a firing

rule that dictates when an actor can fire, given as U ⊂ Sn such that ∀u ∈ U , each u is finite and

no two elements of U are joinable, and a firing function, f : Sn → Sm, such that ∀u, f(u) is defined

and finite. These elements yield a data flow process, F such that F (s) = f(u).F (s
′
) if ∀u ∈ U ,

such that s = u.s
′
, otherwise F (s) =⊥n, where ⊥n∈ Sn is the n-tuple of empty sequences. Given

that definition of data flow process, an actor can be defined by a firing function that fires on a valid

set of firing rules. Repeatedly firing an actor to find a least fixed point [6] based on the actor’s

firing function such that the firing rules are satisfied, precisely defines the operational semantics of

a data flow process. For FTDF, a repeated firing of all actors in the model defines the operation

of the FTDF model.

In FTDF, actors are typed. A FTDF actor belongs to one of six types. Sensor and Actuator

actors read and update respectively the sensor and actuator devices interacting with the plant.

Input actors perform sensor fusion. Output actors are used to balance the load on the actuators,

while Task actors are responsible for the computation workload. Arbiter actors mix the values

that come from actors with different criticality to reach to the same output actor. The set of

firing rules for Sensors, Actuators, Tasks, and Output actors prescribes that the actor can fire only

when all incoming signals (tokens) are present. This is represented with the following notation

U = {(∗, ∗, ..., ∗)}, where the symbol “∗” represents the presence of a value, hence the actor can

fire only if all incoming tokens are present1. This is the typical firing rule found in other data flow

languages [14] [16]. On the other hand, the input and arbiter actors can fire on the presence of a

subset of its inputs. For example, an input actor that may fire if at least two of three input tokens

are available would have the following set of firing rules:

U = {(∗, ∗, ∗), (⊥, ∗, ∗), (∗,⊥, ∗), (∗, ∗,⊥)}, (3.1)
1Sensor actors have no inputs, so they can always fire, at the beginning of each period.
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where ⊥ denotes the absence of a value. The execution semantics of FTDF dictates that, in the

absence of faults, an actor should wait for all of its input tokens before firing. When it is detected

that a token is missing for a given period, then the partial firing rules may still enable the actor

to fire. In addition to the six types of actors described above, State Memory may be present in

a FTDF graph. This component stores results produced during the current period of a FTDF

execution for use in the following period.

3.3 Communication Media

Communication occurs via unidirectional communication media. All replicas of the same source

actor write to the same medium, and all destination actors read from it. Media act both as

mergers and as repeaters sending the single “merged” result to all destinations. In general, the

medium provides the correct merged result or an invalid token if no correct result is determined.

More specifically, the behavior of a media, as with the actors, is based on the fault model chosen.

The fault model restricts the number of faults and their types. A number of fault models are

possible. Depending on the fault model, the communication media may have a different behavior.

Assuming fail-silence, merging amounts to selecting any of the valid results because fail silence

assumes components produce correct results or no results at all; assuming value errors, majority

voting is necessary to do the merge; and assuming Byzantine faults, multiple rounds of voting is

needed in order to merge the data (see the consensus problem [3]). Since fail silence is assumed for

communication media (and actors) throughout this paper, it suggests that no voting is necessary

for the communication media, and the media will produce results or none at all. Communication

media must be distributed to withstand platform faults, typically this means having a repeater

on each source ECU and a merger on each destination ECU (using broadcasting communication

channels helps reduce message traffic greatly) in an implementation of a FTDF model.

3.4 Composition Rules

The following rules specify the set of valid actor compositions to obtain a legal FTDF graph.

Some basic rules (e.g. all input and output ports of an actor should be connected, data-types

should be matched, etc.) are common to most dataflow models and are assumed implicitly here. A

FTDF graph G is a pair (V,E) where V = A∪M is the set of vertices and E ⊂ (A×M)∪ (M ×A)

13



is the set of directed edges. A set of actors is given by A

A = AS ∪AAct ∪AI ∪AO ∪AT ∪AA ∪AM , (3.2)

where A is composed of a partition of the six types of actors and the state memory actors. M is a

set of communication media. Then, a FTDF graph G is legal if the following holds:

• G contains no causality cycles,
• the source to Input actors are Sensor actors, and the outputs of Sensor actors are Input

actors,
• the source to Actuator actors are Output actors, and the outputs of Output actors are Actuator

actors, and
• Sensor actors have no inputs from other actors, and Actuator actors have no outputs to any

other actor.

Finally FTDF graphs can express redundancy, i.e. one or more actors may be replicated. All

the replicas of an actor v ∈ A are denoted by R(v) ⊂ A. Note that any two actors in R(v) are of

the same type and must compute the same function.

14



Chapter 4

Software Synthesis of FTDF Models

This chapter introduces the method for which a FTDF application is synthesized into exe-

cutable code from a FTDF model. The synthesis is performed in two steps. First, a runtime

library is constructed. The runtime library is debugged, portable code that can be used to imple-

ment a mapped FTDF application on a target platform 1. It is hand coded and compiled once,

but it can be modified as specifications change. The target platform can be a real-time embedded

system or personal computer (PC) with a supporting operating system for distributed application

development. Secondly, the runtime platform must be configured to execute a specific FTDF appli-

cation. The configuration defines the necessary data structures and appropriate actor connections

for a FTDF application. The configuration file specifies proper dependency connections between

actor components based on the FTDF model structure. It also translates actor annotations and

parameters, such as firing rules and firing functions to the runtime platform. Figure 4.1 depicts

the flow in terms of the files used in the code generation process. It proceeds from modeling FTDF

applications in a modeling environment and creating an executable application from a compilation

of the application files with a runtime library.

4.1 Background

The process of manually implementing an application on the runtime platform can become

tedious, time consuming, and error prone due to challenges with redundancy management and syn-

chronization of FTDF components. Automatic code generation enables design exploration through
1Mapped FTDF refers to a mapped FTDF schedule which is the result of a functionality to architecture mapping

process as described in Chapter 2.
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Figure 4.1. A flow diagram of the software synthesis method.

the use of executable models that allow the designer to quickly prototype a mapped FTDF appli-

cation on a target platform or execute a simulation on a single PC. A domain specific environment

is used to generate a configuration file that interfaces with the runtime platform from a visual

FTDF model. The configuration file specifies dependency connections between actor components

based on the FTDF model structure. It also translates actor annotations and parameters, such as

firing rules and firing functions to the runtime platform. The method from which a visual domain

specific modeling environment is used to model and interface with the runtime platform using the

Generic Modeling Environment (GME) is addressed in [22]. The advantage of the two step synthe-

sis process is that the runtime platform closes the semantics gap between FTDF modeling and its

implementation on an execution platform. Once the semantic gap is small enough, it is relatively

easier to generate a correct configuration for the runtime platform. Furthermore, if a new target

is chosen for the execution platform, only layers within the runtime platform that are affected are

changed. The methodology is reviewed in this section.
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4.2 Related Work

A number of tools have been used for code generation from mathematical models. These tools,

along with the approach presented in this section, translate mathematical models into programs

written in a system-level programming language such as C++ or C. In [9], C++ code is automat-

ically generated from a hybrid system modeling language called CHARON. The strategy consists

of a two step procedure where primitives of the hybrid automaton are translated into equivalent

implementations, followed by a scheduling of primitive components according to the data depen-

dency in the model. Other tools include, MathWorks Simulink [17], a commonly used commercial

tool that supports code generation from data flow block diagrams, and Esterel Technologies Esterel

Studio [28], which generates Verilog/VHDL code.

4.3 Runtime Platform

The runtime platform is an executable program that supports the execution and deployment of

a distributed FTDF application. Applications in the domain of safety-critical control systems are

expected to execute periodically on a possibly infinite stream of data on a computer-based system

within bounded memory. The system is distributed across a set of processors on a target system,

like a distributed embedded real-time system or a distribution of personal computers. The runtime

platform can be used for simulation, or it can be used to prototype an implementation if the target

system supports directly the runtime platform.

The runtime platform is a library of debugged ANSI C [8] code that creates necessary data

structures for coordinating the communication and computation of a network of FTDF compo-

nents on a target platform. The target platform chosen for this project is a network of personal

computers running the Linux operating system communicating with an Internet Protocol (IP)

stack. The runtime platform enables rapid prototyping and simulation on various systems that can

be networked using the IP protocol suite. Ideally, the designer could choose the target platform to

execute an application, for example using a real-time operating system instead of Linux.

Conceptually, the architecture of the runtime platform is composed of three major components:

the scheduler, the communication network interface, and the watchdog interface. Figure 4.2 illus-

trates the architecture of the runtime platform. The scheduler executes a periodic schedule of actors

in the FTDF application. The communication network interface manages network communications

using a client/server communication model. The watchdog interface supports a timeout mechanism

in the runtime platform. Each component is discussed further below.
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Figure 4.2. Architecture of the runtime platform.

4.3.1 Data Structures

This section gives a brief overview of some of the key data structures in the runtime environment.

The data structures implement the main components of a FTDF model: Tokens and Actors. They

are composed of a number of parameters that describe the operational semantics of a FTDF model

and support the implementation as executable code.

Tokens

As mentioned in Section 3.1, tokens are encapsulations of data exchanged between actors. A

data structure used by the runtime platform for a token is given in the code snippet below.

typedef struct token {
int epoch; //Tokens iteration number
bool valid; //Validity field of token
int dsz; //Size of data in data field
dtype *data; //Data

};

The communication network interface transports the tokens between actors. The token data struc-

ture contains four fields: epoch, an integer value representing the iteration number; valid field, a

boolean value that serves to mark the result of an error detection technique; and dsz, size of data

in the data field. Token data structures are accessible to the user through the actor firing rule and

firing function. Within those two functions, the user can read or write tokens from pre-allocated

memory locations called buffers. Buffers are memory storage locations for tokens, as defined in the
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actor data structures. Buffers are interfaces between the application code and the communication

network interface.

Actors

Actor objects are defined in the following data structure.

typedef struct actor {
char name[NAMESZ+1]; //User-defined name of actor in FTDF network
int epoch; //Actor’s current epoch
bool (*fire) (struct actor *); //User defined firing rule
void (*execute) (struct actor *); //User defined execution function
int critical; //Criticality level
int timeout; //Firing rule timeout (millisecs)
actorPort *port; //ptr to actorPort stuct

};

There are a number of parameters that describe the various types of actor instances.

• name: a user-defined identifier composed of a series of characters.

• epoch: an integer valued iteration number of an actor instance. This field is useful because

the epoch imposes an ordering on tokens in the application. The ordering is imposed by

comparing the actor’s epoch to the epoch of input tokens. Before a token is written to the

output buffer, the epoch field is updated with the most recent epoch out of all its input

tokens.

• fire: a user-defined function that is used as the firing rule for an actor. The function is

specified in a well-defined interface that allows flexibility in implementing an arbitrary firing

rule. The user must have a function header that takes a pointer to an actor and returns

a boolean value that represents the result of the firing rule during a single iteration. An

example is given in actorFire code:

bool actorFire (actor *a) {

//Firing rule for Arbiter actor. It fires
//once it receives at least one valid input
//on time with an epoch that is greater
//than the current local actor epoch.

int i = 0;
int validCt = 0; //valid tokens in buffer count
token temp;
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for (i = 0; i < 2; i++) { //buf with 2 inputs
temp = readToken(a->port->inBuf+i);
if ((temp.epoch > a->epoch) &&
(temp.valid == TRUE)) {
validCt++;

} else {
//clear token in buf and wait for
//a valid token to come
resetToken(a->port->inBuf+i);

}
}
if (validCt >= 1) return TRUE;
return FALSE;

}

The user should use readToken to read tokens from the input buffer of the actor for the

current iteration. The function readToken is defined in the runtime platform library of

functions, and its purpose is to perform a blocking read to ensure proper data synchronization.

Similarly, resetToken may be used to remove tokens from the input buffers. The fire function

will be invoked by the scheduler as many times as possible until the actor either times out or

the firing rule is satisfied. So, the firing rule should contain no infinite loops or it will hang

the runtime platform during execution.

• execute: a user-defined firing function for the actor. It serves as the key functionality of

an actor. The function is specified by the user in a well-defined interface. An example of a

user-defined firing function is given below.

void a4Exec (actor *a) {

token temp;
int i = 0;

//Read valid input tokens
do {
temp = readToken(a->port->inBuf+i);
i++;

} while (temp.valid != TRUE);

//Do some work on the tokens data. This is
//the main execution of this actor.
temp.data[0] = temp.data[0] * 2;

//write to output - expects 1 output trigger
//with updated epoch
temp.epoch = a->epoch;
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temp.valid = TRUE;
writeToken (&temp,a->port->outBuf+0);

}

The function header must be defined by accepting a pointer to an actor structure and returning

nothing, i.e. void functionExecute (actor *a). The function name is arbitrary. Also, the user

should use readToken and writeToken library calls to read and write tokens within the

firing function. The two functions implement blocking read and write calls, respectively, to

ensure data synchronization. Tokens may be manipulated in the firing function to compute

a function of the input tokens.

• critical: an integer value specifying the criticality level of an actor. This is a user-specified

parameter. In FTDF, the criticality level is used to determine the level of service an actor

provides. For example, actors that are more critical than others should provide more reliable

service than less critical actors. To ensure an actor meets this guarantee depends on how

well the designer designs the control algorithm and the amount of redundancy added to the

design.

• timeout: a user-specified parameter that provides an upper bound on the time for an actor

to wait on input tokens. A situation might occur where an actor is blocked because it is

awaiting input tokens. The timeout value is used by a timer in the runtime platform to

discontinue waiting if the timeout value is reached by stopping the blocked process. This

behavior prevents the scheduler from blocking infinitely. The granularity of the time value

is determined by the accuracy of a timing mechanism provided by the target platform since

target platforms support various timing accuracy.

• port: an actor port is a data structure that contains input and output buffers for the actor.

Actors with replica source actors have a one-place buffer for each group of replicated sources.

Since FTDF is synchronous and assumes actors are single-rate, one-place buffers are used to fix

the memory requirements. As a result, the memory is bound and deterministic. Furthermore,

an assumption is that the replicated sources execute the exact same firing function code, hence

they produce the same output tokens. The actor ports are used by the runtime environment

to send and receive tokens between the FTDF application and the communication network

interface. The memory locations are determined by the designer before execution, thus no

dynamic memory is used.
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4.3.2 Scheduler

The scheduler is implemented as a single thread in the runtime platform. Its purpose is to

execute actors in a topological order. The order of actor executions is determined by the structure

of the mapped FTDF graph that is under execution in the platform. The user must provide

the runtime platform with a global list of actors in the FTDF application. The user assign the

appropriate firing rule and firing functions, manually place the actors in topological order, specify

the firing rule and firing function of each actor, and also specify the memory locations of each

actor’s input and output buffers. The order of actors should be from Sensor actors (placed at the

head of a global list of all actors in the application) to the Actuator actors. Each actor executes

once per iteration according to FTDF semantics. An iteration is an invocation of each actor once in

a single cycle under the assumption that actors are single-rate (produce one token per execution).

The scheduler repeatedly calls actor firing rules and firing functions in an infinite loop. The code

snippet below implements the periodic, static schedule.

while (1) { //Infinite loop of schedule
printf ("\nNew iteration-------------------\n");
for (i = 0; i < nActors; i++) { //For each actor
a = actorList[i]; //Get next actor to execute

//Run actors firing rule
awaitFire(a);

//Set local actor’s current epoch
a->epoch = getMaxEpoch(a->port->ins, a->port->inBuf);

//Execute actors function
runExec(a);

//Send tokens from output buffers over Communication
//Network Interface
sendTokens(a);
}

}

When the scheduler begins, it first takes the next actor from the global list, actorList. It

then executes a function called awaitFire that calls the firing rule of actor a, as in the figure. The

awaitFire function is a blocking call that reads the input buffers of the actor, and the function will

return when either the timer expires on the timer task or the actor receives enough valid tokens

to satisfy the firing rule. After the firing rule returns, the scheduler looks at each input token

and determine the maximum epoch of that group of tokens. The maximum epoch value tells the
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scheduler the current iteration of the scheduler so the actor may be synchronized with the latest

epoch of the distributed application. The epoch in the token is used to establish a global ordering

since some processes may be distributed over the network and execute at different rates. The main

function of the actor is executed in function runExec. This function simply calls the user-defined

firing function of the actor. Finally, the output tokens of the actor are sent to the communication

network interface using the sendTokens function.

4.3.3 Communication Network Interface

The communication network interface provides the communication services between actors on

the same local memory and between actors distributed on remote processors. The communication

network interface is an event-based layer that supports distributed network communication be-

tween the FTDF application and the network layer using a client/server communication model [27].

A client requests services that are provided by a server. Client/server communication models are

common in distributed applications. The network layer uses a network stack to implement dis-

tributed communication across a network of processes. These processes may be personal comput-

ers, or it may implement a virtual network of the FTDF application on one personal computer,

or process. The communication network interface is hidden to the user. Currently, the network

interface supports the IP protocol suite and interprocess communications. But, in the future, this

interface may be extended to support communication mechanisms of specific target architectures.

As mentioned above, the scheduler calls sendTokens, a blocking function that sends tokens to

the communication network interface. The network interface takes each token in the actor’s output

buffer and pass the token to either the network interface buffer or to a shared memory location

(memory location on the same processor). The network interface buffer is a circular buffer that

temporarily stores tokens until the network is ready to send the token across the network. To avoid

overwriting tokens, the network interface utilizes blocking read and write functions.

To support different protocols, the network interfaces with the physical network stack via a

standard set of functions. The standard interface is a set of functions that define a number of

services offered by the network protocol. The services in the data structure below are defined

by the user in a separate header file. The definitions in the header file are protocol dependent

while the standard set of services in the services data structure are protocol independent. This

technique of providing modularity and abstracting unnecessary details from the designer is similar

to a technique implemented commonly in Linux device driver [24] development.

typedef struct services {

23



void (*load) (struct services_ *);
int (*servInit) (char *, int);
int (*sendInit) (char *, int);
int (*serv) (int, char *, int);
int (*send) (int, char *, int);
void (*stop) (int); //closes a socket
};

The function load is used during the initialization phase of the network interface to initialize the

services found in the services data structure. The initialization tells the network interface where

the service functions are found. The current architecture allows the designer to define the services

in a separate header file. This modular architecture supports changes to implementation details

of the services. For example, if the designer chooses to use Transmission Control Protocol (TCP)

over IP, service calls using TCP can be used. In contrast, the designer may decide to use inter-

process communication mechanisms via pipes and queues to implement network communications.

The function calls supported by both protocols are different. The functions servInit and sen-

dInit are functions that will start the server and client respectively based on protocol- dependent

initialization routines. They are executed only once during network initialization, and since typical

network protocols return file descriptors that identify a specific connection to the network stack,

the servInit and sendInit functions return a file descriptor for the server and client respectively.

File descriptors are handles, or references, to an object or connection. Typically the object is a

network socket or file. The serv and send services are used in the network interface to receive

and send data over the network. These functions may be called as many times as needed by the

application. Finally, to stop services the function call stop is used. It takes as input a descriptor

that identifies a connection to stop. An example of using the User Datagram Protocol (UDP)

network service calls over the Internet Protocol (IP) is provided in the Appendix.

4.3.4 Watchdog Interface

The watchdog interface is started in a thread, and its job is to monitor synchronization mech-

anisms that are used in the scheduler and throughout various parts of the runtime platform.

POSIX [27] compatible threads and mutual exclusion (mutex) locks are used in the runtime plat-

form. The watchdog interface serves as a container for controlling and manipulating locks and

controlling a timer task. One of the signaling service it provides to the scheduler is to monitor the

timeout value for the actor as it awaits valid input tokens using its timer task. The timeout task

is implemented as part of the watchdog interface, and it may be configured with the appropriate

accuracy needed by the application, as long as the timing accuracy is supported by the underlying
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operating system. The timer task works by starting a timer when the scheduler executes the firing

rule for an actor. The firing rule is executed in a thread, and if the time elapse (given by the

timeout parameter of an actor) before the scheduler signals to the timer task to stop the timer, the

timer task will stop the firing rule and signal to the scheduler that a timeout has occurred. The

scheduler then responds by skipping the execution of that actor and alerting the user.

Currently, the watchdog interface manages timeouts in the FTDF application by using its timer

task. However, similar to the standard services offered by the communication network interface,

the watchdog interface is constructed such that the designer can introduce additional services, like

a fault injection task that may randomly introduce faults in the runtime platform.

4.4 FTDF Application Modeling

The main flow of the FTDF modeling environment for FTDF applications is presented in Fig-

ure 4.1. The flow begins with the designer constructing a FTDF application model in the Generic

Modeling Environment (GME). GME stores the model in an internal model database. The de-

signer instantiates an interpreter from the GME user interface to initiate the model interpretation

on objects in the model database. The model interpretation translates the application model into

a configuration file for the runtime environment. Then, the configuration file is used to configure a

FTDF application in the runtime environment. This section begins by providing background infor-

mation in GME and how a designer would use it to build a domain specific modeling environment

for FTDF models. Key features of the FTDF modeling domain are discussed.

4.4.1 Generic Modeling Environment (GME)

The Generic Modeling Environment [1] developed by the Institute for Software Integrated Sys-

tems (ISIS) at Vanderbilt University is a generic, configurable tool for constructing domain-specific

modeling environments. A domain-specific modeling environment is an environment for which do-

main experts can quickly design and analyze problems in that domain. Some examples include,

SPICE [25] for electrical circuit analysis, Mathworks Matlab [17] for numerical computations, and

LaTex [13] for typesetting. The configuration of GME for a specific domain is accomplished with

metamodels that specify the modeling paradigm for which model instances are created. The mod-

eling paradigm is the syntactic, semantic, and presentation information necessary to create mod-

els within a particular domain. After construction of the modeling paradigm, model translators

called interpreters are designed and implemented. The interpreters work with all models of the
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domain-specific environment to translate a given model to a physical artifact like a source file for

an analysis program or execution environment.

Modeling Paradigm Definition

This section describes the steps to constructing a metmodel for a domain by defining the mod-

eling paradigm. One of the first steps to creating a domain-specific environment is to define the

modeling paradigm. The modeling paradigm addresses a number of decisions, such as: what is to be

modeled, how it is modeled, what information will be stored, and so forth. Typically the end-user

does not change the paradigm definition, unless of course, specifications of the paradigm defini-

tion change. Example paradigms include domains for modeling signal flow graphs and hardware

architectures, or a domain for chemical process modeling that is often found in chemical process

engineering.

Once the modeling paradigm is designed, a metamodel that formally describes the modeling

paradigm is constructed. The metamodel defines the types of objects that may be used during the

modeling process, how the objects appear visually, the attributes associated with the objects, and

how the objects relate to one another. In GME, the metamodel is defined using Unified Modeling

Language (UML) [20] class diagrams. The metamodel also contains a description of constraints

that the modeling environment must enforce on a particular model that is constructed using the

metamodel. The Object Constraint Language (OCL) [20] is used to express these constraints using

standard predicate logic.

After the metamodel is constructed in GME, it is used by the domain expert to build domain-

specific models. Before the metamodel can be used, it is checked for inconsistencies within the

UML class diagram structures such that the relationships between objects are defined according

to UML syntax. After a successful check, the metamodel automatically produces a finite set of

objects that are made available to the domain expert for building domain-specific models. In many

cases, the domain expert chooses to refine or update the metamodel. This is done easily in GME

by editing the metamodel and generating the set of objects that are used by the domain expert to

build models from that domain.

Metamodeling in GME

This section discusses the domain-independent components in GME that are used to build a

metamodel. This presents a challenge in modeling for the designer in itself, since the designer must
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decide how to best represent the domain using a number of primitive modeling components. The

components include First Class Objects (FCOs), Aspects, Attributes, and Preferences. There are

five components in GME that are designated as FCOs. They are Models, Atoms, References,

Connections, and Sets. The components that are used by the domain designer in GME to construct

metamodels are briefly discussed below.

• Models

A Model is an abstract object that represents an entity defined by the domain. A Model

contains state, behavior, and identity. It can be created and manipulated in GME. A Model

can be hierarchical, and in such case, it is referred to as a compound model. Compound

models contain other objects known as parts, and these parts can be other Models or other

FCOs. Compound models allow the designer to express various levels of abstraction in the

domain. Unlike a compound model, a primitive model is one which does not contain any

parts. A Model can also be associated with a default icon or user-defined icon for visual

representation.

• Atoms

Atoms are elementary parts that do not contain any internal structure, hence, they do not

contain parts, but they do have attributes that are defined by the metamodel. Atoms represent

indivisible entities that are contained in a parent object (an object that contain parts). Like

model FCOs, a user-defined icon may be associated with an Atom.

• References

A Reference is an object that refers to another modeling object, like an Atom or Model. In

concept, a Reference is similar to a pointer that is found in common programming languages.

It is often used to reference a part that has already been created in the domain environment,

or it could reference ”NULL” to act as a placeholder. A Reference can also be associated

with an icon.

• Connections

A Connection is an edge in a graph of parts. It is given in GME as a directed or undirected

line with a part on each end. It expresses a relationship between two parts. As specified by

the semantics of the modeling paradigm, the metamodel can be used to define the type of

Connection, parts that may be related through Connections, and a number of other attributes

that further restrict the Connection, such as multiplicity.
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• Sets

In some cases, the modeler may wish to see a subset of objects defined by the metamodel.

Sets are used to define a subset of objects that may be viewable at some point in time to the

user when creating a model in the domain specific environment. This limits the objects from

which the user can choose to build a model. This component is useful in situations where the

domain expert wishes to view only objects pertaining to a particular state of a model under

construction.

• Aspects, Attributes, and Preferences

An aspect is a group of parts that exist or are visible in a particular view. This is useful for

large or complex paradigms where too many parts are displayed at once for a given level of

hierarchy. Aspects are determined by the modeling paradigm.

All FCOs can have attributes. An attribute is a property of an object that is expressed textu-

ally as an annotation to the object. The possible text includes numbers, constants, or a finite

set of symbolic characters. Typically objects have multiple attributes which are annotated

to the object through entry fields, menus, or buttons. The modeling paradigm defines the

attributes that are associated with each object in the metamodel. An interpretation of these

attributes is left for the model interpreters and constraint checker.

Preferences are paradigm-independent properties of objects that are defined by the GME

itself. Each FCO has a different set of preferences. Some preferences include text color, line

type, etc. They are inherited from the paradigm definition through type inheritance.

Interpreters

Model translators called model interpreters are designed to work with all models created using

the domain-specific environment for which they are designed. Implementing model interpreters in

GME is typically done after the domain expert has verified that valid models can be constructed

in the domain. An interpreter is a library of interfaces and classes that are specific to the modeling

paradigm. The designer of the domain usually annotates the pre-constructed interfaces and classes

to give any model constructed in the domain a semantics. Interpreters translate models into physical

artifacts, like a text file or another object.
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Constraint Manager

GME contains a Constraint Manager, which is compliant with the OCL specification, to check

models before they are interpreted. It is up to the designer of the domain to decide what should

be checked. Without going into too much detail about the Constraint Manager, it simply limits

the user to the models that are built in the domain. The Constraint Manager can be used to check

whether or not a connection between two parts are valid, for example. The Constraint Manager is

event-driven in that it provides immediate feedback to the user if a violation of rules or semantics of

the modeling paradigm is encountered. The designer of the domain annotates the UML diagrams

in the metamodel with OCL constraints that models the semantics or rules of the domain.

4.4.2 FTDF Domain Construction

As one may recall from Section 4.4.1, one of the first and most important steps to domain

modeling in GME is to specify the paradigm. The paradigm is used to define the finite set of visual

objects used in the FTDF domain. The objects contain attributes 2 that are defined within the

FTDF paradigm and are characteristic of FTDF models. An instantiation of the FTDF paradigm

allows the designer to use elements of that set of objects to construct an application model. The

primary visual objects that may be used in the GME graphical interface are Ports, Channels,

Actors, and ECUs. Note that ECUs are not a part of FTDF semantics, however, an ECU becomes

an important object when one considers a mapped FTDF model which has a notion of architecture.

Figure 4.3 gives the UML class diagram for the FTDF paradigm.

Ports

A port is a typed, atomic object in the FTDF paradigm. It can be of type input or output.

Furthermore, input and output ports can be either internal or external. Figure 4.3 depicts a

UML class diagram of the FTDF paradigm. Input and output port types are used to constrain the

designer to creating connections between input/output ports and not input/input or output/output

connections. Internal and external types are used by the Interpreter to identify whether or not a

port is connected to actors on the same ECU or on a remote ECU. Ports contain two attributes,

one that allows the designer to specify the data type for the port and another which specifies the

number of buffers the port should contain.
2Attributes here refers to GME attributes as explained in Section 4.4.1.

29



FTDataFlowModel
Paradigm: MetaGME     Project: FTDataFlow     Model: ParadigmSheet     Aspect: Class Diagram     Time: Tue May 17 05:35:04  PM

Actuator
<<Model>>

FTDataFlowLib
<<Folder>>

Connection
<<Connection>>

InternalInput
<<Atom>>

OperatingSystem
<<Model>>

Port
<<Atom>>

NumDataValues : field
DataType : enum

ExternalInput
<<Atom>>

Protocol : enum

FTDataFlowModel
<<Model>>

Ecu
<<Model>>

EcuId : field

FTDataFlowObjects
<<FCO>>

Actor
<<Model>>

Criticality : field
ExecutionRule : field
FiringRule : field
Timeout : field
Wcet : field
ActorId : field

Sensor
<<Model>>

Task
<<Model>>

Iterator
<<Model>>

ExternalConn
<<Connection>>

Protocol : enum

InternalConn
<<Connection>>

ActorRef
<<Reference>>

InputPort
<<Atom>>

OutputPort
<<Atom>>

ExternalOutput
<<Atom>>

Protocol : enum

InternalOutput
<<Atom>>

Interface
<<Atom>>

Protocol : enum

ActorConn
<<Connection>>

InterfaceConn
<<Connection>>

HostInterface
<<Atom>>

Addr0 : field
InterfaceId : field
Addr1 : field

Channel
<<Atom>>

0..*

1..*

0..*

src 0..*
dst 0..*

src 0..*
dst 0..*

0..*

dst 0..*

src 0..*

0..* 0..*

0..*

Figure 4.3. A UML diagram of the FTDF paradigm.
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Channels

A channel is a typed object that forms a connection between two ports. As mentioned in the

above section, connections can only occur between input and output ports. This helps to distinguish

between a source actor (an actor producing a token) and target actor (actor receiving an output

token).

Actors

Actors are the central objects in this domain. They are typed and hierarchical. An actor

must contain at least one port, depending on the type of actor. GME eases the use of adding,

deleting, or modifying actor types in the domain by modifying the UML diagram structure in

the paradigm definition. Attributes of an actor type includes Criticality, ExecutionRule,

FiringRule, Timeout, Wcet, and ActorId. The attributes give the designer enough flexibility

to specify parameters that may be used to configure the runtime platform. The ExecutionRule

and FiringRule are fields that allows the designer to specify code that will be used for the firing

function and firing rule respectively. The code should be implemented as it would be implemented

in the runtime platform by hand.

ECUs

An ECU object is a hierarchical abstraction of a processing element. It contains at least one

actor object. Structural relationships between different ECUs are captured with port and channel

objects. ECUs act as containers to hold actor instances. Communication between actors on remote

ECUs occur directly between actors using reference objects. Future implementation may change

that syntax to better reflect the FTDF communication media objects.

4.4.3 Interpreter Design

GME has a C++ based architecture that is used to build interpreters (model translators) called

the Builder Object Network version 2 (BON2) component. When an interpreter is created, a set of

interfaces for objects in a paradigm are produced that allow the designer to implement customizable

C++ code. As an example, the FTDF paradigm has an actor object. The interface produced by

the BON2 component is shown below.

bool FTDataFlowVisitor::visitActor( const Actor& object )
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Figure 4.4. A template for the configuration file generated by the FTDF interpreter.

{
// Code for manipulating Actor objects in the interpreter
// will go here.
return true;

}

Within the above function definition, the designer places customized code that tells the Interpreter

what to do with every actor object encountered in the FTDF application model when the Interpreter

is invoked. The FTDF interpreter utilizes these interfaces generated by BON2 to traverse FTDF

objects. If an object has attributes, then the attributes are also accessible to the Interpreter

designer. Structural model checking in GME can be done using the interpreter, the constraint

manager, or by carefully defining structural relationships amongst paradigm objects using the

UML class structure. For the FTDF paradigm, the Interpreter design and paradigm definition

checks an application model for proper construction by checking the requirements for a legal FTDF

graph. The FTDF Interpreter also serves the purpose of creating a configuration file of the FTDF

application for which the Interpreter is invoked.

An example of the configuration file that is produced by the Interpreter is in Figure 4.4. The

configuration file contains information about each ECU and actor in the FTDF application model.

It contains the topology of the FTDF application model, including the type of actors, number of
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ports for each actor, a unique actor identification number, and code for the firing function and

firing rule. The configuration can be parsed to complete the configuration of the runtime platform.
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Chapter 5

Fault Tree Analysis

Designing cost-sensitive real-time control systems for safety-critical applications requires a care-

ful analysis of both performance versus cost aspects and fault coverage of fault-tolerant solutions.

This further complicates the difficult task of deploying the embedded software that implements

the control algorithms on a possibly distributed execution platform (as it is typical, for instance,

for automotive applications). Fault trees are commonly used models for obtaining dependability

metrics of safety-critical systems. The designer first constructs a fault tree model of the system

under analysis. Once a fault tree is constructed, a number of existing commercial analysis tools to

assess dependability metrics of the system can be used. In this chapter, a synthesis technique for

building a fault tree that models how component faults may lead to system failure is introduced.

This synthesis technique and its analysis capability are added to the existing synthesis-based design

methodology.

5.1 Background

Fault tree analysis (FTA) is a top-down approach to failure analysis: it starts with an un-

desirable event called a top-level event, then determines all the ways the event may occur in the

system. Before proceeding, the terminology of faults and failures is briefly discussed. A fault is

an undesirable event. In this context, an event is the state of a system or a system component

that may be induced by the presence or absence of a proper command, or it may be caused by a

failure. A failure is a loss of functionality by a system or system component. All failures cause
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faults, but not all faults are caused by failures. To reliability and safety engineers, this distinction

is very important.

FTA can be used to address questions such as, “does the chosen design meet reliability and

safety requirements?” and “what are the most critical components in the chosen system?” This

allows a number of design options to be judged reasonably. FTA was initially developed in 1962

by Bell Telephone Laboratories for use with the Minuteman system for the United States Air

Force [18]. The technique was later adopted and applied by the Boeing Company as one its logic

analytical techniques. FTA is only one of many analytical tools and techniques to assess system

safety. Some other techniques include Failure Mode and Effects Analysis (FMEA) and Event Tree

Analysis (ETA), amongst many others. FMEA determines and evaluates effects of sub-component

failures on a system, and ETA organizes, characterizes, and quantifies potential accidents. These

techniques are accepted and applied to numerous safety-critical systems in the domain of reliability

and safety engineering.

FTA uses a fault tree, such as the one in Figure 5.1 as the data structure to represent the

relationship between potential hazards and their influence on system reliability. The top-level

event of a fault tree is an abstraction of a system failure or malfunction. In FTA, the top-level

event represented by the root of the tree. Static fault trees uses combinatorial relationships that

can be expressed by Boolean functions. Dynamic fault trees, on the other hand, model failures

that may not be expressed by combinatorial logic, like the use of Markov Chains to retain history of

component failures. Fault trees have been used extensively to perform various kinds of dependability

analyses [29]. For example, fault trees can be used to derive the system failure rate, or the sets

of faults necessary to achieve a system failure (i.e. cut sets). Fault trees also indicate the system

sensitivity to faults and to their failure rates and failure modes. Once a fault tree is generated,

existing commercial tools can be used to perform these types of analyses automatically.

Although fault trees enable powerful analysis, they are manually constructed by experienced

reliability and safety engineers. For complex hardware software systems, this process is very tedious

and error-prone. The construction, in the general case, requires a very detailed knowledge of the

system being modeled, including an understanding of the fault model used and how faults and

failures are identified. However, since our approach is based on FTDF, this task can be made

formal. In fact, FTDF specifies how faults propagate and how they affect the execution of the

controller. This formal infrastructure allows the use of a synthesis-based technique for generating

the fault tree automatically.
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Figure 5.1. A sample fault tree generated by the Item Toolkit.
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5.2 Related Work

There has been prior work in the area of fault tree synthesis and design flows for safety critical

systems such as [31] [10] [26] [12]. The work most closely related to the work presented in this paper

is [31], where a methodology is presented that enables fault tree synthesis based on a composition

of both a hazard analysis1 on the architectural components and a functional fault tree annotated

with the functional components2. Having the composition of the two enables the system level fault

tree to be synthesized. The basic fault events of the architectural components are assumed to be

either output omission, timing failures or value domain failures.

This work differs in the sense that there is a formal model of computation of the functionality

(the FTDF MoC) that describes how a function can fail, how the architectural fault modes3 are

manifested in the functionality and also how the faults of the mapped components are composed

together. The fault tree also comprehends how architectural failures are propagated through the

functional data dependencies. Since there is a formal definition of how the functionality behaves

when mapped onto a shared architecture, common mode failures are easily reflected in the fault

tree as multiple events of the same type in different fault tree branches. A common mode failure

describes the failure of two or more components in a system or sub-system due to a single specific

event.

5.3 Fault Tree Synthesis

In this section, an algorithm for automatic fault tree generation from a mapped FTDF graph is

formulated and described. The static fault tree generated is represented in a Boolean format. The

fault tree will describe how faults in the execution platform may lead to faults in the functionality

and ultimately to violations of the specifications, i.e. to system failures. A recursive algorithm

operates on the deployed FTDF graph model to produce a system fault tree. The problem is

defined more precisely below.
1Hazard analysis is a systematic method of finding out the manner in which an architectural component fails.
2Component here is defined as a functional component that has a specific input and output interface.
3In the current implementation, it is assumed that the architecture can only fail silently.
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5.3.1 Problem Formulation

A redundant mapped FTDF graph LFT , is generated by the synthesis algorithm described

in [21], and it is given as

LFT = (LVFT
, LEFT

), (5.1)

where LVFT
= (P ∪C)×V is the set of vertices and LEFT

is the set of edges. In LVFT
, P is the set

of ECUs, C is the set of channels, and V is the set of actors and media, as defined in Section 3.4. A

vertex l ∈ LVFT
with l = (r, v) means that an actor or medium v is mapped to resource r. An edge

e ∈ LEFT
with e = (l1, l2), l1 = (r1, v1), and l2 = (r2, v2) connects l1 to l2. To illustrate, consider

two possible cases of mapping.

• Two actors are mapped on the same ECU, the first actor delivers data to the second and no

channel is involved, i.e. p1 ∈ P and a1, a2 ∈ A, then l1 = (p1, a1) and l2 = (p1, a2).

• One actor is mapped on an ECU, it transmits data on a channel, i.e. p1 ∈ P, c1 ∈ C, a1 ∈
A,m1 ∈ M , then l1 = (p1, a1) and l2 = (c1,m1).

Graph LFT preserves the structural dependencies between its components as specified in the un-

mapped FTDF graph, G.

A fault tree is a representation of Boolean relationships among fault events. Fault events e are

Boolean variables which take values in B = {0, 1}, when an event takes the value 1, i.e. e = 1, the

corresponding fault has occurred, conversely, when e = 0 the corresponding event has not occurred.

The set of basic events IB designates the input events to a fault tree. In our case, basic events

corresponds to faults in system components, such as electronic circuits or communication channels.

A fault tree contains a single output event, or root event, called a top-level event denoted by eT .

The top-level event indicates the failure of the system.

The fault tree describes how the faults of basic components (basic faults) may lead to the

system failure. A fault tree is composed of a set of gates FG. A gate vg ∈ FG has an associated

Boolean symbol g, and has one output event eg. With a slight abuse of notation, we will say that

an event eg ∈ FG, if it is the output event of a (unique) gate vg ∈ FG. The set Ivg ⊆ FG ∪ IB

denotes the input events to gate vg. An input event e1 ∈ Ivg is either the output event of some

gates, i.e. e1 ∈ FG, or one of the basic events, i.e. e1 ∈ IB. Each gate vg is assigned a Boolean

function fvg that computes the value of the output event eg given the values of the input events.

A function fvg is defined as

fvg : BN → B (5.2)
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where N = |Ivg | is the number of inputs to gate vg. The function fvg of gates in a fault tree has a

one-to-one correspondence between the Boolean logic representation and the fault tree representa-

tion [29].

A fault tree F can be formulated as a directed, acyclic graph

F = (FG, IB, FN ), (5.3)

where FG is the set of vertices, IB is the set of basic events, and FN ⊆ (FG ∪ IB)×FG is the set of

directed edges connecting the vertices. An edge n ∈ FN is a pair of vertices n = (vs, vd) such that

vs ∈ FG ∪ IB is the source vertex and vd ∈ FG is the sink vertex.

Problem Statement: Given a fault tolerant graph LFT , the top-level event eT (and the gate which
outputs it), generate a fault tree F = (FG, IB, FN ) and a correspondence map fF : LVFT

→ FG,
such that:

• the set of basic events IB is in bijection with P ∪ C ∪ AS ∪ AAct and indicates the failure of
resources in the architecture

• fF (l), where l = (p, a), returns the gate vl ∈ FG that indicates the faulty/missed execution of
actor a on ECU p

• fF (l), where l = (c,m), returns the gate vl ∈ FG that indicates the faulty/missed transmission
of the data-dependency m on channel c

It should be noted that the top-level event eT can be derived by the semantics of the FTDF

model of computation. For example, each output actor is annotated by the designer with the

minimum number of actuators that it must be able to update in order to achieve a correct actuation

of the control algorithm. In the pendulum example this number is 1, i.e. at least one of the two

actuators should be updated. Correspondingly, eT could be described as the output of an AND

gate where the inputs are the failure to update the two actuators ACT0 and ACT1.

In general, designers may want to specify different top-level events to assess other aspects of the

system response to faults. For this reason, we take the top-level event as an input to the fault-tree

synthesis problem.

5.3.2 Fault Tree Generation Algorithm

The fault tolerant deployment graph, LFT , exhibits strong structural dependencies amongst

actors in this graph. This dependency provides the necessary information to build the fault tree of

a system modeled using FTDF. Thus, a recursive procedure is implemented in algorithm Gener-

ateFaultTree to traverse the fault tolerant graph and generate a fault tree of the system.
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The algorithm begins by creating and adding a user-defined top-level event, eT to the fault tree

F . The designer provides the top-level event as a function of the actuator fault events. Algorithm

GenerateFaultTree proceeds with generating subtrees for each actuator aact ∈ AAct in LFT using

the recursive operation, DevelopSubTree. A fault in an ECU, channel, actuator or sensor HW is a

basic event. The recursion ends when a sensor actor as ∈ AS is encountered in the fault tolerant

deployment graph. The subtrees of each actuator are combined in a gate, as specified by the

designer, to form event eT .

Algorithm [GenerateFaultTree]:

Input: LFT , eT

Output: F

GenerateFaultTree (LFT , eT ) {
For ai ∈ AACT ,

Let pi ∈ P be s.t. lai = (pi, ai) ∈ LVFT
,

ei = DevelopSubTree(lai);
End For
eT = AddGate(eT , feT ,∀ei

(ei));
End GenerateFaultTree

Algorithm DevelopSubTree is the core of the fault tree synthesis tool which performs the recur-

sion. When a vertex l ∈ LVFT
of graph LFT is visited, the algorithm creates and stores a subtree

FSubl
at l. This subtree is then appended to F , and the operation is called recursively on each

input of vertex l until a sensor, aS ∈ AS , is reached. When a sensor is reached, the recursion ends.

The algorithm DevelopSubTree first generates initial parameters. The operation pre(a) returns

the set of sources (communication media) of actor a, and minFire(a) returns the number of inputs

that are needed to fire actor a, and it depends on the firing rule of a. The number of inputs to fire

an actor is given by the designer as a parameter when the FTDF graph is constructed. Next, a root

event of subtree FSubl
is created and a number of events based on the type of actor encountered

are also created. For example, event e3 is created as a sensor basic event if a ∈ AS or an actuator

basic event if a ∈ AAct. A sensor or actuator basic event corresponds to a fault in the electro-

mechanical HW of the sensor or actuator. The algorithm adds an OR gate with events e1, e2, and

e3 (if applicable). Here, e1 corresponds to a fault of the ECU, e2 is a fault that describes when

the actor cannot fire because of missing tokens. If a ∈ AS , the algorithm terminates the recursion

immediately.

For each medium that connects actors a and aj , an input fault event is created for that medium.

The input fault event specifies that a medium was unable to deliver a token at the input of actor a.
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The algorithm then checks for the location of the medium, whether it is a connection on the same

ECU via memory or between actors or if its a channel that connects two actors across different

ECUs. If the medium is on the same ECU, no immediate event is created and the algorithm is

called recursively to further develop that event. The algorithm then creates events for each edge lk,

and it adds each event to an OR gate, to model the fact that remote data from actor instance lk,

is not delivered to actor instance l = (p, a) if either the channel used is faulty or the remote actor

fails to execute. The input edges to lk are further developed by a recursive call to DevelopSubTree.

At the end of the algorithm, notice that the second level of the tree (second from the root event) is

created with a VOTE gate. The VOTE gate is useful to create a Boolean relationship between a

subset of inputs to itself. This is a one-to-one correspondence to the input and arbiter actors, which

have partial firing rules. More specifically, the VOTE gate requires that ”x-out-of-y” input events

must occur before an output event to occur at that gate. It is intuitive to see that when x = y,

this simplifies to an AND gate and when x = 1, this simplifies to an OR gate. As an example, let

y = pre(a ∈ AIn) and m = |minFire(a)|. Then for the VOTE gate of actor a, x = (y −m + 1).

This means that if x tokens are not present at the input of actor a, then the VOTE gate for actor

a produces a fault event e = 1 at its output. Essentially, the algorithm composes subtrees to create

the system fault tree.

Algorithm [DevelopSubTree]:

Input: l = (p, a) ∈ (P ×A) ⊂ LVFT

Output: FSubl

DevelopSubTree (l) {
Let N = |pre(a)|;
Let M = minFire(a);
FSubl

= CreateActorEvent(l);
e1= CreateEcuBasicEvent(p);
e2= CreateInputFaultEvent(a,N);
If a ∈ AS Then e3= CreateSensorBasicEvent(a);
If a ∈ AAct Then e3= CreateActuatorBasicEvent(a);
FSubl

= AddGate(FSubl
, OR(e1, e2, e3));

If a ∈ AS Then return FSubl
; //terminal case, end recursion

For mj ∈ pre(a),
aj = pre(mj);
ej= CreateInputFaultEvent(mj , l);
If (llocal = (p, aj) ∈ pre(l)) Then

elocal = DevelopSubTree(llocal);
For lk = (c,mj) ∈ pre(l) ∩ (C × {mj}),

ek= CreateRemoteInputEvent(lk);
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ec = CreateChannelBasicEvent(c);
era = CreateRemoteActorsEvent(lk);
ek = AddGate(ek, OR(ec, era));
For lr ∈ pre(lk),

er = DevelopSubTree(lr);
End For;
era = AddGate(era, AND∀er(er));

End For
ej = AddGate(ej , AND∀ek

(ek, elocal));
End For
e2 =AddGate(e2, V OTE∀ej

(N,M, (ej)));
return FSubl

; } End DevelopSubTree
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Chapter 6

Results

6.1 Software Synthesis: Simple Example

A simple example is given to illustrate the code generation capability of the FTDF design envi-

ronment. The example application is illustrated in Figure 6.1. Figure 6.2 illustrates the application

modeled in the GME graphical user interface using FTDF objects.

The example given is simple, and it contains only five actors. The purpose was to have the

ability to compare to a manual implementation. The actors are a Source and Sink actor denoted

as “Sensor” and “Actuator” respectively, two Regular actors denoted as “Controller” and “Fine

Controller” in Figure 6.1, and an Input actor denoted as “Arbiter”. The firing function and firing

rules of each actor in the example is simple; each actor contains less than 20 lines of code for both

the firing rule and firing function each. Figure 6.3 gives a summary of the estimated time and

effort to create the FTDF design environment. The runtime platform is implemented in 1084 lines

of C code. Construction of the FTDF paradigm in GME, the interpreter design, and the runtime

platform are created once and can be reused for subsequent applications. To implement the FTDF

Figure 6.1. A simple example.
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Figure 6.2. FTDF modeling of the simple example in GME.
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Figure 6.4. Time for entering example application and configuring the runtime platform.
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interpreter in GME, over 800 lines of code were added to the BON2 interfaces. Figure 6.4 contrasts

the amount of time it takes to configure the runtime platform manually versus the automatic

method prescribed by the FTDF interpreter. The results presented in Figure 6.4 suggests the

gain of using the FTDF paradigm in GME to specify and configure an application for the runtime

platform can scale with the application size. An application based on the configuration file for the

simple example is given in the code snippet below.

/* Main program for testing.
* ecu.c
* Last updated: 11/13/03
* Version: 5.1
*
* Notes
*
* - this file symbolizes user code on a single processor.
*
*/

/**********************************************************
Headers
***********************************************************/

#include "ukernel.h"

/**********************************************************
Declare User Global Variables and Data Structures
***********************************************************/

//sample data, simulating a sensor’s readings
dtype sensData = 0;

//declaring actors and ports
actor a0, a1, a2, a3, a4, a5;
actorPort a0pt, a1pt, a2pt, a3pt, a4pt, a5pt;
actor *actList[5] = {&a0,&a1,&a2,&a3,&a4};

//declaring this ecu node by:
//its globally unique id and address info
int ecuid = 0;
nodeAddr host = {0, "127.0.0.1", 4040};

int interfid[1] = {-1}; //interface id, it is only declared and initialized here
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//Destination lists (specifies output buf connections)
//for each actor’s output, where each ouput could have multiple
//dest lists.
//Order: src buf index, outgoing channel from host ecu (which can be obtained
// by calling "setInterface" and using its return value. Also, use "-1"
// when not connecting any channel interfaces),
// dest ecu id (unique identifier for each ecu),
// dest actor index, dest actor buffer
//

//Below are UNIQUE destination lists (2-d arrays).
int dlist_a00[1][5] = {0,-1,0,1,0};
int dlist_a10[1][5] = {0,-1,0,2,0};
int dlist_a11[1][5] = {1,-1,0,3,0};
int dlist_a20[1][5] = {0,-1,0,4,0};
int dlist_a30[1][5] = {0,-1,0,4,1};
int dlist_a40[1][5] = {0,-1,0,0,0};

//if an actor has multiple outputs, uKernel expects
//multiple dest lists, one dest list per output.
int *dlists_array_a0[1] = {&dlist_a00[0][0]};
int *dlists_array_a1[2] = {&dlist_a10[0][0], &dlist_a11[0][0]};
int *dlists_array_a2[1] = {&dlist_a20[0][0]};
int *dlists_array_a3[1] = {&dlist_a30[0][0]};
int *dlists_array_a4[1] = {&dlist_a40[0][0]};

//declare input and output token buffers
dtype dRoom[8]; //user allocated space for tokens for
//each of the 4 actors input and output
//buffers
token a0iBuf[1] = {-1,FALSE,0,NULL};
token a0oBuf[1] = {-1,FALSE,0,NULL};

token a1iBuf[1] = {-1,FALSE,0,NULL};
token a1oBuf[2] = { {-1,FALSE,sizeof(dtype),dRoom + 0},
{-1,FALSE,sizeof(dtype),dRoom + 1} };

token a2iBuf[1] = {-1,FALSE,sizeof(dtype),dRoom + 2};
token a2oBuf[1] = {-1,FALSE,sizeof(dtype),dRoom + 3};

token a3iBuf[1] = {-1,FALSE,sizeof(dtype),dRoom + 4};
token a3oBuf[1] = {-1,FALSE,sizeof(dtype),dRoom + 5};

token a4iBuf[2] = { {-1,FALSE,sizeof(dtype),dRoom + 6},
{-1,FALSE,sizeof(dtype),dRoom + 7}};
token a4oBuf[1] = {-1,FALSE,0,NULL};
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/***********************************************************
Create User Actor Execution/Firing Rules
************************************************************/

void a1Exec (actor *a) {

//Sensor execution function (sensor driver).
//Data originates from this actor in this application,
//on every iteration
//and is sent to FTDF network. It expects
//only one input token in its input buffer which is
//a trigger from the iterator. This actor uses
//the "and" firing rule as defined in the API to await
//on a trigger from the iterator. When writing outputs,
//it sets the outgoing tokens with new data, tags

//output tokens with latest epoch and validity.
//User should NOT alter dsz or data (ptr) fields in
//actor struct, because those fields are used

//to record the amount of memory that has been
//allocated to store tokens.
//NOTE: User can access actor port information.
//All actors should do the following:
// 1. read tokens and/or triggers from input buf
// 2. perform some execution
// 3. write tokens to output buf
//Arguments:
//aPort, ptr to actorPort struct

//NOTE: For this actor, since its input is a trigger
//token from the iterator, it does not need to read
//any data from input token buf, nor does it need to
//read the valid field because the valid is assumed
//to be TRUE coming from the iterator since the
//"and" firing rule will only fire if all of its
//input tokens are valid and current.

token temp;
dtype sdata[1];

//compute something
sdata[0] = sensData++;

//produce a temp token (read epoch from input token)
temp = readToken(a->port->inBuf+0);
temp.valid = TRUE;
temp.data = sdata;
temp.dsz = 1 * sizeof(dtype);
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//write to output buf - expects 2 output tokens
writeToken (&temp, a->port->outBuf+0);
writeToken (&temp, a->port->outBuf+1);

}

void a2Exec (actor *a) {

//Actor 2 uses the "and" firing rule.
//It multiplies the input data by 2 then adds
//2 to the product.

token temp;

//read input - expects 1 input token
temp = readToken(a->port->inBuf+0);

//compute
temp.data[0] = (temp.data[0] * 2) + 2;
temp.valid = TRUE;

//write to output - expects 1 output token
writeToken(&temp,a->port->outBuf+0);

}

void a3Exec (actor *a) {

//Actor 3 uses the "and" firing rule. It takes
//input and multiply by 2, then adds 2 to the
//product.

token temp;

//read input - expects 1 input token
temp = readToken (a->port->inBuf+0);

//compute
temp.valid = TRUE;
temp.dsz = 1 * sizeof(dtype);
temp.data[0] = (temp.data[0] * 2) + 2;

//write to output - expects 1 output token
writeToken (&temp,a->port->outBuf+0);

}

bool a4Fire (actor *a) {

//Firing rule for Arbiter actor. It fires
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//once it receives at least one valid input
//on time with an epoch that is greater
//than the current local actor epoch.
//NOTE: actorCode() in the API updates the local
//actor epoch to the max epoch received in input
//buffers. It does the update AFTER the actor fires,
//but BEFORE the actor’s execution function.

int i = 0;
int validCt = 0; //valid tokens in buffer count
token temp;

for (i = 0; i < 2; i++) { //buf with 2 inputs
temp = readToken(a->port->inBuf+i);
if ((temp.epoch > a->epoch) &&
(temp.valid == TRUE)) {
validCt++;

} else {
//clear token in buf and wait for
//a valid token to come
resetToken(a->port->inBuf+i);

}
}
if (validCt >= 1) return TRUE;
return FALSE;

}

void a4Exec (actor *a) {

token temp;
int i = 0;

//read input - expects at least 1 valid input token
do {
temp = readToken(a->port->inBuf+i);
i++;

} while (temp.valid != TRUE);

//show me the data
if (temp.epoch > 0) {
printf ("\n\tEpoch: %d\n", temp.epoch);
printf ("\tValid: %d\n", temp.valid);
printf ("\tData: %d\n\n", temp.data[0]);
sleep(1);

}

//write to output - expects 1 output trigger
//with updated epoch
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temp.epoch = a->epoch;
temp.valid = TRUE;
temp.dsz = 0;
temp.data = NULL;
writeToken (&temp,a->port->outBuf+0);

}

/****************************************************
Set Actors and Actor Ports - Initialize
*****************************************************/

void userInit () {

//sets channel (physical network) interfaces. Can be called multiple times and it
//automatically updates "interfNum" (transparent to user) as it is called. Returns
//a channel id to reference the channel. Note: This is because the idea is such that
//a designer can specify multiple channels for each node (logical ECU).

//Args: pointer to a loading function for the channel, nodeAddr struct
//filled with host ecu’s address info and global unique id, a list
//of nodeAddr structs that represent the nodes of the channel on the network
//excluding the host address info, and the number of nodes on that channel.
//NOTE: Must give a valid pointer to a loading function for the channel
//you wish to use, or NULL if this ecu is not connected to a channel (external communication link).
//Use NULL for arg 3 if no channel is connected in order to route tokens
//on local ecu only.

interfid[0] = setInterface (NULL, &host, NULL, 0);

dlist_a00[0][1] = interfid;
dlist_a10[0][1] = interfid;
dlist_a11[0][1] = interfid;
dlist_a20[0][1] = interfid;
dlist_a30[0][1] = interfid;
dlist_a40[0][1] = interfid;

//set actor ports
setActorPort (&a0pt, 1, a0iBuf, 1, a0oBuf, dlists_array_a0);
setActorPort (&a1pt, 1, a1iBuf, 2, a1oBuf, dlists_array_a1);
setActorPort (&a2pt, 1, a2iBuf, 1, a2oBuf, dlists_array_a2);
setActorPort (&a3pt, 1, a3iBuf, 1, a3oBuf, dlists_array_a3);
setActorPort (&a4pt, 2, a4iBuf, 1, a4oBuf, dlists_array_a4);

//set actors
//Note: A0 is my iterator
setActor (actList[0], "ITERATOR", NULL, NULL, 0, &a0pt, 50, 50);
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setActor (actList[1], "SENSOR", NULL, a1Exec, 0, &a1pt, 50, 50);
setActor (actList[2], "FUNCT0", NULL, a2Exec, 0, &a2pt, 50, 50);
setActor (actList[3], "FUNCT1", NULL, a3Exec, 0, &a3pt, 50, 50);
setActor (actList[4], "ABSTRACTOUT", a4Fire, a4Exec, 0, &a4pt, 50, 50);

//This function constrains the user to only creating one ECU per file/node.
setLocalEcu (ecuid,5,actList);
}

/******************************************************
Main Process
*******************************************************/

int main(int argc, char **argv) {

userInit (); //initialize actors and set to ukernel
run(); //runs FTDF application
return 0;

}

The code creates an application that will be executed by the runtime platform. In particular, the

runtime platform will implement the application on a single PC using UDP over IP for network

communications. Since the runtime platform is Linux/Unix compatible and it implements POSIX

compatible threads, an application can map more than one process (i.e. ECU) to the same PC as

a separate process. This is useful for simulation and prototyping convenience, when more hosts are

needed than at hand given that the IP stack can handle both local and remote communication.

6.2 Fault Tree Analysis: Pendulum Example

In this section, the inverted pendulum example is used to illustrate some of the dependability

metrics of fault trees generated by the fault tree synthesis tool. The controller is described by

the FTDF graph in Figure 2.1. It consists of three position Sensors (SEN0, SEN1, SEN2) one

Input actor (IN) that performs sensor integration and assesses the current pendulum position, two

different controllers (FUNc, FUNf) that require different computing power, one Arbiter (AR) that

selects the output of one of the controllers, and an Output (OUT) actor that directs the control

action to two different Actuators (ACT0, ACT1). The execution platform is given in Figure 2.2

and consists of three ECUs (ECU0, ECU1, ECU2) and two communication channels (CH0, CH1).
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Actor ECU0 ECU1 ECU2
SEN0 X
SEN1 X
SEN2 X
IN X X
FUNc X X
FUNf X
ARB X X
OUT X X
ACT0 X
ACT1 X

Table 6.1. Redundant mapping of the pendulum example.

Each ECU samples one of the three Sensors, while “ECU0” and “ECU2” drive Actuator “ACT0”

and “ACT1” respectively.

The fault tolerance requirements used to drive the synthesis of the system deployment consist

of:

• executing the entire algorithm in the absence of faults (default behavior) and

• in the presence of a single ECU fault, guarantee the execution of a subset of the FTDF graph,

so that at least one of the Actuators is updated.

The critical set mandates the execution of at least one replica of

• the Input actor “IN”,

• the coarse controller “FUNc”,

• the Arbiter actor “ARB”,

• and the Output actor “OUT”.

In particular, in order to fire, actor “IN” requires that at least two of the Sensors deliver their

data. The Arbiter actor can fire with one of its two inputs present. It is worth noting that the fine

controller “FUNf” is not replicated, because it was not specified as part of the critical set.

The mapping given in Table 6.1 is guaranteed by construction to tolerate single ECU failures.

However, there is no fine quantification of the degree of fault tolerance achieved by this particular

implementation. For this, the fault tree synthesis tool is used, extracting a fault tree representation

of the mapped system in Table 6.1. The analysis from the fault tree tells the designer how and why

the system may fail.
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The fault tree is then analyzed by the Item Toolkit [7], a commercial tool distributed by Item

Software Incorporated. Among many analyses that can be performed, results from a cutset analysis,

the dependability analysis, and the sensitivity analysis are presented to show the analysis metrics

that may be used to judge a specific system mapping.

6.2.1 Cutset Analysis

The cutset analysis permits to identify the combinations of events that generate a system

failure. The list of minimal cutsets for the mapped pendulum example is presented in Table 6.2.

The cutsets are rows in the table. As an example, if an event occurs with SEN0 and SEN1 located

in row 1 of the table, then a system failure occurs. Table 6.3 shows the channel mappings for the

system. The first column of Table 6.3 features an actor in column 1 that is mapped to the ECU in

column 2. The actor accepts inputs from the given channel in column 3 and produces outputs for

the channel in column 4. The name of the basic events correspond to hardware faults in Sensors,

Actuators, ECUs, or communication channels. As mentioned in Section 5.1, the basic events are

determined by the designer since basic events may be as detailed as a power outage or as abstract

as an actor failure. As expected, no single ECU failure leads to a system failure. Moreover, no

single channel failure leads to a system failure, which is not guaranteed by the synthesis algorithm.

6.2.2 Reliability Analysis

The reliability analysis combines the reliability information about components into the relia-

bility of the system. Starting from the mean time to failure (MTTF) and the mean time to repair

(MTTR) of the basic events. Among other metrics, the system MTTF is computed.

In this simple example, a system lifetime is assumed to be 5000 hours. All basic events are

assumed to have the same reliability:

MTTF (basic event) = 2000 hours

MTTR(basic event) = 8 hours.

The Item Toolkit returns,

MTTF (system) = 11015.81 hours.

Based on the simple specification, one could expect a reliability higher than that of a single

component failing (MTTF (system) > 2000 hours). Having a fault tree now allows experimenting
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Cutsets
1 SEN0 SEN1
2 SEN0 SEN2
3 SEN1 SEN2
4 ECU0 ECU1
5 ECU0 ECU2
6 ECU1 ECU2
7 CH1 CH0
8 ACT0 ACT1
9 CH0 ECU1
10 CH0 ECU2
11 CH1 ECU0
12 CH1 ECU2
13 SEN0 CH1
14 SEN1 CH0
15 SEN2 CH0
16 SEN0 ECU1
17 SEN0 ECU2
18 SEN1 ECU2
19 SEN1 ECU0
20 SEN2 ECU0
21 SEN2 ECU1
22 ACT0 ECU2
23 ACT1 ECU0

Table 6.2. Cutsets for the pendulum example.

Actor ECU Input Output
SEN0 ECU0 CH0
FUNc ECU0 CH0 CH0
ACT0 ECU0 CH0,CH1
SEN1 ECU1 CH1,MEM

IN ECU1 CH0,CH1,MEM CH0,MEM
FUNc ECU1 MEM CH0,MEM
ARB ECU1 CH0,MEM MEM
OUT ECU1 MEM CH1,MEM
SEN2 ECU2 CH1,MEM

IN ECU2 CH0,CH1,MEM CH0,MEM
FUNf ECU2 MEM CH0,MEM
ARB ECU2 CH0,MEM MEM
OUT ECU2 MEM CH0,MEM
ACT1 ECU2 MEM

Table 6.3. Channel mapping of the pendulum example.
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Event Fussell-Vesely Birnbaum Barlow-Proschan
ACT0 0.08695652 0.007968127 0.04347826
ACT1 0.08695652 0.007968127 0.04347826
SEN0 0.2173913 0.01992032 0.1086957
SEN1 0.2173913 0.01992032 0.1086957
SEN2 0.2173913 0.01992032 0.1086957
ECU0 0.2608696 0.02390438 0.1304348
ECU1 0.2173913 0.01992032 0.1086957
ECU2 0.3043478 0.02788845 0.1521739
CH0 0.2173913 0.01992032 0.1086957
CH1 0.173913 0.01593625 0.08695652

Table 6.4. Various Importance measures of basic events.

with different functional to architecture mappings. Some components may be added that are more

or less reliable than the components that are replaced, or the functionality may change to support

a higher degree of redundancy.

6.2.3 Sensitivity Analysis

The Item Toolkit provides results to indicate which basic events contribute the most to the

system dependability, as shown in Tables 6.4 and 6.5. This is known as a sensitivity analysis.

Sensitivity analysis typically use Importance metrics to calculate the sensitivity of basic events of a

fault tree. The results presented in Table 6.4 uses three types of Importance metrics: the Barlow-

Proschan Importance, the Birnbaum Importance, and the Fussell-Vesely Importance. The Barlow-

Proschan Importance [19] is the probability that the system fails because a critical cut set containing

the event fails, with the event failing last. On the other hand, the Birnbaum Importance [30]

represents the sensitivity of the system’s unavailability with respect to changes in the event’s

unavailability. The Fussell-Vesely Importance [7] measure indicates an event’s contribution to the

system unavailability. Changes in unavailability of events with high importance values will have

the most significant effect on system unavailability.

In the synthesis-based design flow described in Chapter 2, the results of the analysis enables

quick design exploration of the redundancy and reliability tradeoff, as discussed in [23]. The

designer can interpret the analysis results and respond by either changing the mapping, replacing

architecture components, or re-designing the control algorithm. Fault tree synthesis enables this

capability since fault trees can be generated in minutes using the fault tree synthesis tool on a

FTDF model.
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Basic Event Map1 Map2 Map3 Map4
ACT0 0.043478 0.050154 0.05 9.83E-06
ACT1 0.043478 0.050055 0.025 9.83E-06
SEN0 0.108696 0.124988 0.125 0.247771
SEN1 0.108696 0.10001 0.125 0.00198
SEN2 0.108696 0.124888 0.125 0.247771
ECU0 0.130435 0.149866 0.125 0.248758
ECU1 0.108696 0.10001 0.125 0.00198
ECU2 0.152174 0.149866 0.15 0.248758
CH0 0.108696 0.075231 0.1 0.001481
CH1 0.086957 0.074933 0.05 0.001481

Table 6.5. Barlow-Proschan Importance for basic events on different mappings.
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Chapter 7

Summary

7.1 Conclusions

This thesis presented two aspects to a synthesis-based design flow for real-time embedded

feedback control systems: a method for facilitating code generation and dependability analysis

using fault trees. The overall design flow, along with the fault tree analysis and code generation,

are centered around a formal model of computation, FTDF. FTDF allows the integration of various

tools and techniques to unambiguously describe a real-time feedback control system, as shown in

this thesis. As such, the same FTDF model can be used to analyze the dependability metrics of the

system and generate code from the same model. The MoC is key to the synthesis-based design flow

since the flow contains a number of steps from specification to deployment, and at each step the

designer may wish to capture specific characteristics of the same system under development from

different views by analyzing results at each step. The results are then used to provide the designer

with hints on how the system may be improved, hence exploring the design space. In particular,

the fault tree analysis allows the designer to assess the structural dependencies more formally using

a fault tree model, and the code generation can provide feedback of the system behavior on a real

target system. Together, along with other verification tools such as a timing analysis tool, the tools

enable the designer to explore the cost versus redundancy (for fault coverage) trade-off for a system

described in FTDF. FTDF MoC enables these tools since it gives a precise interpretation of how

components behave, and as a result, it provides the foundation for fault tree synthesis and software

synthesis of FTDF models.

The examples introduced illustrate the benefits of the approaches taken in the fault tree syn-

thesis and software synthesis of FTDF models. The software synthesis process includes an intuitive
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graphical interface for specifying and generating code from a FTDF model. The interface con-

structed allows a visual representation of the same model that may be used with other analysis

tools with a goal to produce a run-time implementation to verify the behavior of the system in a

real environment. Results from a simple example show that the semi-automatic code generation

method made it quicker for designer to prototype a FTDF application as compared to a completely

manual implementation for each application the designer chooses to implement. The software

synthesis method also frees the designer from coding details or from a difficult interaction with

coding experts that results in reduced coding errors and shorter design time. Similarly, the fault

tree synthesis allowed the analysis of different system mappings through multiple iterations quicker

than if the fault tree generation and analysis were done manually. Together the software synthesis

and fault tree analysis tools allow the designer to quickly specify, analyze, and deploy a real-time

feedback controller, as depicted in Figure 1.1. With this design flow and the tools described, it is

believed that the synthesis and analysis of a design through multiple iterations can be performed

faster than if the design synthesis, fault tree generation, analysis, and deployment were performed

manually. This flow is an interesting approach especially within the automotive domain to enable

quick design exploration within the fault tolerant dimension early in the design cycle where design

errors can be detected early and the cost of implementation can be reduced if changes in the system

or its specifications occur late in the design cycle.

7.2 Future Work

The work presented in this paper can be extended to incorporate various tools under a common

framework. Currently, the analysis and code generation tools function as separate entities that are

interfaced through predefined text files. One of the primary goals is to integrate all the analysis

tools presented in the overall design flow under a single, possibly graphical interface. The plan

then is to completely automate the flow under that single interface, hence, the interface will serve

as the core of the synthesis-based methodology. Experience with the GME suggests that it could

make a good framework for which these tools can be integrated in a visual form. It is flexible so it

may incorporate various tools and support model translation. Then, interpreters can be invoked to

execute the analysis tools. This allow the use of visual objects in the construction and manipulation

of FTDF models. Furthermore, it reduces the errors found when a team of designers work on a

model independently. In this case, a team of designers can work on a single design and ensure its

consistency between various tools. The Metropolis [2] design environment is currently the target

environment for which the tools will eventually be integrated since the models may be refined and
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the architecture models may be specified more accurately. It does not currently support a graphical

interface, however, its command line interface could be used, as well. One key assumption that is

made throughout this paper is assuming a fail silent fault model. It was chosen for simplicity and

as a demonstration of the design flow capabilities, however, from the experiences described in this

paper it is more interesting to work on this set of tools using a non-fail silent fault model. Finally,

FTDF addresses the control algorithms that are used to control a physical plant. A direction that

is currently being explored is a formal modeling of the plant and integration of such a model with

FTDF.
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Chapter 8

Appendix

8.1 Communication Network Interface: User Datagram Protocol

Implementation

This section presents the code for implementing network communications using the User Data-

gram Protocol (UDP) over the Internet Protocol (IP) in the current implementation of the runtime

platform. The reader is referred to Section 4.3.3 for more information. As mentioned in that section,

the communication network interface is modular, and it is constructed to be protocol independent.

As a result, the implementation of those services used by the communication network interface

should be implemented in a separate C file (and possible header file(s)). This allows the user a

choice of network protocols or means of communicating between processes. For example, if the

user chooses to use serial port to communicate between computers, then the protocol specific code

used to implement the standard communications services that are used by the network interface in

the runtime platform should be implemented in a separate file, like the one shown below. It might

be a choice of the designer to use Unix pipes and First-In-First-Out (FIFO) queues to implement

communications. If so, then the function calls specific to pipes and FIFOs should be implemented

in a file like the one below.

First, the header file for this particular implementation is given.

/* Version: 5.1
* File: ipnet.h
* Last Updated: 11/12/03
*
* This is the network API header file. It consists of
* a library of functions to create a communication
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* channel between multiple computers using UDP/IP
* socket networking.
**************************************************************/

//General Headers
#include <stdio.h>
#include <string.h>

//Network Headers
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#ifndef IPNET_H
#define IPNET_H

//Required common data struct and load function
//These are the standard services that should be
//provided to the runtime platform.

#ifndef SERVICES_
#define SERVICES_
typedef struct services_ {
void (*load) (struct services_ *);
int (*servInit) (char *, int);
int (*sendInit) (char *, int);
int (*serv) (int, char *, int); //an integer handle, ptr to recv buf, size of buf
int (*send) (int, char *, int); //an integer handle, ptr to send buf, size of buf
void (*stop) (int); //closes a socket
} services;
#endif

//Entry function (Required: "[prefix]Load")
extern void ipnetLoad (services *functs);

#endif

The source file that compiles with the above header file is given below.

/* Version: 5.1
* File: ipnet.c
* Last Updated: 11/12/03
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*
* This is the network API source file. It consists of
* the definition of the API found in ipnet.h.
* Note: Currently, these functions only
* supports UDP over IPv4, in particular.
* Ideally, the user or designer of the runtime platform
* may implement other protocols that provide the standard services
* used by the Communication Network Interface.
**************************************************************/

//
//Headers
//

#include "ipnet.h"

//
//Globals
//

int serversCreated = 0;
int clientsCreated = 0;

//
//Source
//

int udpSock () {
//create UDP socket
//returns -1 on error or file descriptor
return socket (AF_INET, SOCK_DGRAM, 0);
}

int bindSock (int sockfd, char *ipAddr, int ipPort) {

//Binds to ip address/port for receiving data.
//Returns socket bound to address/port for receiving data,
//or -1 on error.

int err;
struct sockaddr_in my_addr; //my address information
struct hostent *me;

//resolve host
if ((me = gethostbyname(ipAddr)) == NULL) {

printf ("ERROR: IPNET: Get host by name failed.\n");
return -1;
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}
memset (&my_addr, 0, sizeof(my_addr)); //zero out the struct

my_addr.sin_family = AF_INET; // host byte order
my_addr.sin_port = htons(ipPort); // short, network byte order

my_addr.sin_addr = *((struct in_addr *)me->h_addr);
printf ("DEBUG: IPNET: Server on %s:%d\n", ipAddr,ipPort);

err = bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr));
if (err == -1) return -1;
else return sockfd;
}

int setAddrSock(char *ipAddr, int ipPort) {

//??
//Inputs:
// ipAddr, 32-bit address
// ipPort, port
//Returns:
// a connected socket or -1 on error

int sockfd, err;
struct sockaddr_in my_addr; // my address information

//create UDP socket
if ((sockfd = udpSock()) == -1) {
printf ("ERROR: IPNET: Creating socket.\n");
return -1;
}
//bind socket to address
if (bindSock (sockfd, ipAddr, ipPort) == -1) {

printf("ERROR: IPNET: Binding soccket.\n");
return -1;

}
return sockfd;
}

//Required functions for interfacing to ukernel

int ipnetServInit (char *ipAddr, int ipPort) {

//Initialization of Server function.
//Input:
//Return:
// a handle that is used in the other functions to
// receive data, send data, close the connection.
//NOTE: this function should return a handle used by
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//the recv functions for this channel interface.
//In the case that the handle is not used in other functions, return -1.
//The handle is a socket or positive number to identify a server.

int servSock;

servSock = setAddrSock (ipAddr, ipPort);
serversCreated++;
return servSock;
}

int ipnetSendInit (char *ipAddr, int ipPort) {

//Initialize client function.
//Inputs:
// 32-bit ip address and port
//Returns:
// socket connected to client
//NOTE: this function should return a handle used by
//the send functions for this channel interface.
//In the case that the handle is not used in other functions, return -1.
//The handle is a socket or positive number to identify a client.

int clientSock;

clientSock = setAddrSock (ipAddr, ipPort);
clientsCreated++;
return clientSock;
}

int ipnetServ (int sockfd, char rBuf[], int rBufSz) {

//Ip receive function.

int rsize; //size of received data
int addr_len;
struct sockaddr_in their_addr; //sender’s address info

addr_len = sizeof (struct sockaddr);
rsize = recvfrom (sockfd, rBuf, rBufSz, 0,
(struct sockaddr *)&their_addr, &addr_len);
return rsize;
}

int ipnetSend (int sockfd, char sBuf[], int sBufSz) {

//Ip send function.
int ssize;
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struct sockaddr_in their_addr; //sender’s address info
ssize = sendto(sockfd, sBuf, sBufSz, 0,
(struct sockaddr *)&their_addr, sizeof(struct sockaddr));
return ssize;
}

void ipnetStop (int sockfd) {

//Closes a socket.
close (sockfd);
printf ("\nIPNET: Terminated socket %d.\n", sockfd);
}

void ipnetLoad (services *funct) {

//Initializes the services struct for an interface.
//Here, user sets the pointers to the standard
//functions used by the ukernel.

funct->load = ipnetLoad;
funct->servInit = ipnetServInit;
funct->sendInit = ipnetSendInit;
funct->serv = ipnetServ;
funct->send = ipnetSend;
funct->stop = ipnetStop;
}
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