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The distribution of the eigenvalues of an autocorrelation matrix approach the power 
spectrum asymptotically as the order of the matrix increases (this is known as Szegö's 
theorem1 [1,2]). Some students are puzzled as to why the eigenvalues of a matrix would 
have any particular relationship to a power spectrum, which seems a disconnected 
concept. We explore and motivate why such a relationship is to be expected. The 
eigenvalues of a matrix and the transfer function of a linear-time-invariant (LTI) system 
are different expressions of the same fundamental idea. An explicit connection arises 
through the mathematical equivalence of periodic discrete-time signals and circulant 
matrices: multiplication by a circulant matrix is one expression of the circular 
convolution familiar in FFT theory. 

LTI systems 
LTI systems, both continuous-time and discrete-time varieties, have special properties. 
Although our primary concern later is with the periodic discrete-time signal, we carry 
along three types of signals to emphasize the parallels. 

Signals 
These signals models find wide use in signal processing: 

Continuous-time: ∞<<∞− ttx   ),(  

Discrete-time: ∞<<∞− kkx   ),(  

Periodic discrete-time (with period ): N ∞<<∞−=+ kkxNkx   ),()(  

Complex exponentials 
Although slightly different notations are used for the three signal types, a complex-
exponential signal plays an important role. In the continuous-time case, 

                                                 
1 We do not explicitly prove Szegö's theorem here. There are many good references that have a proof, such 
as [2]. 
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∞<<∞−=⋅= teeetx sttjt   ,)( ωσ  

where σ  is the rate of decay, ω  is the radian frequency of oscillation, and ωσ js +=  is 
a complex variable. (Note that we use 1−=j , as is common in signal processing). 

In the discrete-time case, 

∞<<∞−=⋅= kzeekx kkjk   ,)( ωσ  

where  is a complex variable (equivalent to  through the transformation 
). An additional wrinkle in the discrete-time case is that when we add 

ωσ jez += s
sez = π2  to the 

frequency, because the independent time variable  is an integer, k
kjkjkjkj eeee ωωππω ==+ 2)2( . 

Thus, complex exponentials with frequencies ω  and πω 2+  are equivalent, a reflection 
of aliasing in the sampling process. Without loss of generality, therefore, we can limit 
frequencies to the finite interval πωπ ≤<− . 

The periodic discrete-time case adds another interesting wrinkle. The complex 
exponential for this case, like all other signals, must be periodic (with period ), so that 

 or . Thus, to maintain periodicity the value of  is constrained to be one 
of the  roots of unity (points equally spaced on the unit circle). Define the principle 

-th root of unity as , and then the  roots become 

N
kNk zz =+ 1=Nz z

N
N Nj

N eW /2π= N

10  , −≤≤= NnWz n
N  

Thus, we conclude in this case that 0=σ  (since otherwise would destroy periodicity) 
and the available frequencies are spaced at uniformly spaced multiples of N/2π  , 

10  ,/2 −≤≤= NnNnπω . Thus, complex exponentials in the periodic discrete-time case 
are limited to  possible frequencies: N

∞<<∞−−≤≤= kNnWkx nk
N   ,10  ,)( . 

In summary, for the three cases the available frequencies of a complex exponential fall on 
the real line, in a finite interval, or are drawn from a finite set. 

Eigenfunctions of an LTI system 
Suppose we apply  or  as the input to an LTI system, and call the output  or 

. Then we can easily establish that complex exponentials are eigenfunctions of the 
LTI system; that is, the complexity of an LTI system withers in the face of a complex-
exponential input, as the output is a complex exponential of the same frequency. An LTI 
system does not introduce new frequency components not present in the input. Use an 
arrow " " to denote the transformation of such a system. For continuous-time, 

)(tx )(kx )(ty
)(ky

→

Complex-exponential input:  )()( tyetx st →=

Time invariance:  )()( )( ττ τ −→=− − tyetx ts

Linearity:  )()( tyeeetxe sstss ⋅→⋅=⋅ −−− τττ



Since the inputs are actually identical in the second and third cases, this establishes that 

)()( tyety s ⋅=− − ττ  or  stesHty ⋅= )()( ,

where we have defined  to emphasize that the "gain" of the system, a 
complex number , is dependent on the frequency of the input. 

)0()( ysH =
)(sH

The same technique applies to discrete-time complex exponential inputs: 

Complex-exponential input:  )()( kyzkx k →=

Time invariance:  )()( TkyzTkx Tk −→=− −

Linearity:  )()( kyzzztxz TkTT ⋅→⋅=⋅ −−−

and thus 

)()( kyzTky T ⋅=− −  or kzzHky ⋅= )()(  

For the periodic discrete-time case, we do not consider anything about the system to be 
special (the system itself may be identical to the general discrete-time case), but only that 
the input signals are periodic with period . This implies that the output signal must also 
be periodic with the same period, as follows from time invariance: 

N

Periodic input:  )()( kykx →

Time invariance: )()( NkyNkx +→+  

Since these two inputs are identical by assumption, we get that )()( kyNky =+ . An 
input complex exponential for the periodic discrete-time case is the same as the general 
discrete-time case, except that the input frequencies are limited to . 
Thus, we can apply the previous result to conclude that 

10  , −≤≤= NnWz n
N

nk
N

n
N

nk
N WWHW ⋅→ )( . 

The functions  are called the transfer function of an LTI system. In each 
case, the effect of the system is to multiply the eigenfunction input by the transfer 
function  (a complex number) yielding the output. The transfer function as a function of 

)( and )( zHsH

ω  with 0=σ  has the interpretation as a frequency response of the system, characterizing 
the change in amplitude H  and phase –H  for a complex exponential passing through 
the system. 

Impulse response 
Another important input to an LTI system is the impulse (or unit-sample) response: 

Continuous-time: ∞<<∞−→= tthttx   ),()()( δ  

Discrete-time: ∞<<∞−→= kkhkkx   ),()()( δ  

For the periodic discrete-time case, although it is not necessary to define the unit-sample 
response any differently, it is convenient to take advantage of the assumption that the 



system input is always periodic. Thus, we can define a periodic unit-sample response 
 as the response to a periodic train of impulses: )(khN

Periodic discrete-time: . )()()( khNlkkx N
l

→⋅−= ∑
∞

−∞=

δ

We know that this periodic unit-sample response must be periodic , 
and thus it is fully characterized by one period, 

)()( khNkh NN =+
10  ),( −≤≤ NkkhN . The LTI properties 

give us a connection to the standard discrete-time unit-sample response, 

Time invariance: )()( NlkhNlk ⋅−→⋅−δ  

Linearity:  ∑∑
∞

−∞=

∞

−∞=

⋅−→⋅−
ll

NlkhNlk )()(δ

and thus 

10  ,)()( −≤≤⋅−= ∑
∞

−∞=

NkNlkhkh
l

N . 

Note that in the last case that the system response, in the face of periodic inputs, is 
characterized by just  samples N 10  ),( −≤≤ NkkhN  in the time domain, just as it is 
characterized by the transfer function at  frequencies  N ,n

NW 10 −≤≤ Nn  in the 
frequency domain. 

Given an impulse or unit-sample response, the input-output relationship for a general 
signal can be characterized by a convolution: 

Continuous-time: ∫ ⊗≡⋅−⋅= )()()()()( txthdtxhty τττ  

Discrete-time:  )()()()()( kxkhmkxmhky
m

⊗≡−⋅=∑

Since the periodic discrete-time case is of primary interest later, the convolution sum for 
this case will be derived. A general input  can be expressed in terms of impulses 
over one period as 

)(kx

∑
−

=

−≤≤−⋅=
1

0
10  ),()()(

N

m
Nkmkmxkx δ  

and thus the entire periodic signal can be represented as 

∑ ∑
−

=

∞<<∞−⋅−−⋅=
1

0
  ,)()()(

N

m l
kNlmkmxkx δ . 

This leads to a convolution relationship between input and output: 

Time invariance:  )()( mkhNlmk N
l

−→⋅−−∑δ



Linearity:  m)(khx(m)N)lmδ(kx(m)
N

m

N-

m
N

l
−⋅→⋅−−⋅∑ ∑∑

−

= =

1

0

1

0

Thus 

)()()()()()()(
1

0

1

0
kxkhmkxmhmkhmxky N

N

m
N

N

m
N ⊗≡−⋅=−⋅= ∑∑

−

=

−

=

, 

which (because each of the signals in the convolution is periodic) is a circular 
convolution: as the index of )( mkx −  or )( mkhN − wanders outside the interval ]1,0[ −N  
it is assumed that the signal is periodic. If it was originally specified only on , it 
must be periodically extended. 

]1,0[ −N

A connection is easily formed between the impulse response and the transfer function, as 
the latter can be determined by inputting a complex exponential, verifying that the result 
of the convolution is a similar complex exponential, and observing the transfer function 
by inspection as: 

Continuous-time: ∫ ⋅⋅= − dtethsH st)()(  

Discrete-time: ∑ −⋅=
k

kzkhzH )()(  

Periodic discrete-time:  ∑
−

=

−⋅=
1

0
)()(

N

k

nk
NN

n
N WkhWH

This last formula is of particular significance in what follows. It says that for any LTI 
discrete-time system, the transfer function at uniformly spaced frequencies on the unit 
circle must equal the DFT of one period of the periodic version of the unit-sample 
response. 



Matrix eigenvectors and eigenvalues 
Given an  matrix A , and if NN ×

vAv ⋅= λ  

then λ  is an eigenvalue and  is an eigenvalue of . The eigenvalue and transfer 
functions are different expressions of the same concept. The linear transformation 
represented by  transforms  into a vector in the same direction, except that the length 
of the vector is multiplied by the complex number 

v A

A v
λ . 

Hermitian matrices 
For a Hermitian matrix H , there exists an orthonormal set of eigenvectors 

 with non-negative real-valued eigenvalues 10  , −≤≤ Niiv 10  , −≤≤ Niiλ  and, 
according to the spectral theorem 

H
ii vvH ⋅= ∑

−

=

1

0

N

i
iλ . 

(Our numbering from  to  is unconventional, but chosen to be consistent with the 
signal processing results earlier.) Thus, the linear transformation represented by  can 
be expressed differently as 

0 N
H

i
H
i

H
ii vxvxvvHx ⋅=⋅= ∑∑

−

=

−

=

)(
1

0

1

0

N

i
i

N

i
i λλ . 

This expresses  in a new coordinate system, where the coordinates 
 are determined by finding the inner product of x  with each of the 

basis vectors, and then multiplying by the corresponding eigenvalue to stretch or shrink 
the coordinate in that dimension. 

Hx
10  ),( −≤≤ Nii xvH

iλ

Circulant matrices 
The circular convolution that characterizes a discrete-time LTI system with a periodic 
input signal can be expressed in matrix form as 

yHx =  

where 

⎥
⎥
⎥
⎥
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⎦
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This is a general  circulant matrix, defined as a square matrix whose rows consist 
of all circular shifts of the first row. Just like a Toeplitz matrix, a circulant matrix has 
only  independently chosen elements (the first row), with all the remaining elements 
are determined by the circular shift property. In fact,  is always Toeplitz as well, since 
the  element of this matrix is 

NN ×

N
H

),( ji )( jihN −  (taking into account the periodicity of 
). )(⋅Nh

For the special case where , the circulant matrix is also Hermitian. This 
implies that  must be real-valued, as must  when  is even. 

)()( * khkh NN −=
)0(Nh )2/(NhN N

The eigenvectors of a matrix are normally not the samples of a complex exponential. The 
circulant matrix is an exception, however. From previous results we know that when 

xyx ⋅=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
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−
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Vectors of complex exponentials are eigenvectors of circulant matrices; a surprising 
property is that all circulant matrices have the same eigenvectors regardless of their 
actual elements. The eigenvalues, however, do depend on the elements, where  

nk
N

N

k
N

n
Nn WkhWH −

−

=

⋅== ∑ )()(
1

0

λ , 10 −≤≤ Nn . 

The eigenvalues of a circulant matrix coincide with the discrete Fourier transform of one 
period of . It is also true that the rows of a circulant matrix can be permuted in any 
fashion without destroying the circulant property, and that the complete set of 
eigenvalues can be obtained by taking the DFT of any row (the order, but not 
distribution, of values of a DFT is not affected by a time shift of the underlying periodic 
signal). 

)(khN

Autocorrelation matrix 
Any function  that is Hermitian and positive semi-definite is an allowable 
autocorrelation function of a discrete-time wide-sense stationary random process. The 
power spectral density 

)(kr



∑ −⋅=
k

kzkrzP )()(  

is real-valued and non-negative on the unit circle. The NN ×  autocorrelation matrix 

⎥
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⎣

⎡

−−
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=

)0()1(...)2()1(
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)1()2(...)1()0(
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R  

arises in many finite-dimensional optimization problems in signal processing. 

Since  is not usually a periodic function, )(kr R  is not circulant. (Even if  were 
periodic, 

)(kr
R  would be circulant only when the size of the matrix matches the period or 

some integer multiple of the period.) However, we can create a new matrix  that is (a) 
circulant and (b) a good approximation to 

NR
R , especially as  gets large. For this 

purpose, define a new periodic version of the autocorrelation function, 
N

∑
∞

−∞=

⋅+=
l

N Nlkrkr )()( , 

and populate  with this modified autocorrelation function. (This is the same as the 
transformation from a system unit-sample response to the new equivalent response in the 
face of periodic inputs.) From earlier results, we know that the eigenvalues of  are 

; that is, the eigenvalues of  equal the power spectrum (z-
transform of the autocorrelation function ) sampled at uniformly spaced points about 
the unit circle. 

NR

NR
10  ),( −≤≤ NnWP n

N NR
)(kr

The important remaining issue is whether the eigenvalues of , which we have 
determined, are related to the eigenvalues of 

NR
R . It is plausible that they would have 

asymptotically the same distribution. However,  and NR R  do differ significantly in the 
region of the upper right and lower left corners, since 

)1()1()1( −≈−=− rrNr NN  and )1()1()1( rrNr NN ≈=+− . 

On the other hand,  and NR R  are nearly the same near the diagonal, where the largest 
values reside in R , especially for large . The hope is that the values where the two 
matrices differ (far away from the diagonal) are relatively few in number and thus affect 
the eigenvalues relatively little. This is in fact the case, although the proof is omitted [2]. 

N

Example: Let the impulse response of an FIR filter be )(zFf k ↔ . Then if unit variance 
white noise is filtered by , the autocorrelation values are  and the 

power spectrum is 

)(zF *)( mmx ffmr −⊗=
2

)()( ωω jj
x eFeP = . Take for example  for 10  , −≤≤= Mkf k

k α
8.0=α . Then the magnitudes of the autocorrelation matrix elements and the circulant 



approximation are shown below for an 20=N  order model. Note the significant 
differences in the upper right and lower left. 
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Here is the same example with 100=N . Note that the similar values along the diagonal 
dominate the shrinking (in relative terms) variation in the two corners: 
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For the later case, the eigenvalues of the autocorrelation matrix (on the left, sorted from 
smallest to largest) can be compared to the eigenvalues of the circulant approximation 
(on the right). Note that the distributions are very similar: 
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Finally, we can examine the power spectrum (on the left) and its sorted values (on the 
right). Note that the latter are identical to the eigenvalues of the circulant approximation 
as expected: 
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