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The opportunity 
A number of problems in signal processing can be formulated within a common 
geometric framework. This offers several related opportunities: to observe commonalities 
among seemingly distinct contexts, to contribute to intuition through geometric 
reasoning, and to quickly identify solutions to common problems. 

Vector spaces 
Let ℑ  be a field. For our purposes, there are two fields of interest, ℜ , the field of real 
numbers, and ‚, the field of complex numbers. In the following we will consistently 
assume that ℑ=‚; that is, complex-valued scalar fields. 

 
Example. Let ‚n be the space of n-dimensional complex-valued vectors under the 
normal rules of linear algebra. That is, each column vector of dimension n is 
associated with a vector,  

A vector space Õ is a set upon which two binary operations are defined, addition of 
two vectors (“+”) and multiplication of a vector by a scalar (“∏”). Specifically, 
+:ÕäÕ→Õ and ∏:‚äÕ→Õ must satisfy, for all ∈WVU ,, Õ and for all ∈βα , ‚: 

)()( WVUWVU ++=++  

UVVU +=+  
There exists a ∈0 Õ such that UU =+ 0  

There exists a ∈− )( U Õ such that 0)( =−+ UU  

UU ⋅=⋅⋅ )()( αββα  

UU =⋅1  
VUVU ⋅+⋅=+⋅ ααα )(  

UUU ⋅+⋅=⋅+ βαβα )(  
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and multiplication by a scalar can be defined as 
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A finite-time discrete-time complex-valued signal can thus be modeled as a vector 
in space ‚n, which is a linear space. 

It is important to note the notation, in which Z is a vector, and the operator ‘↔ ’ 
associates that vector with a mathematical object, such as a column vector or discrete-
time signal. 

Subspaces 

 
Example: The easiest way to define a subspace is to choose a set of linearly-
independent basis vectors, and then define the subspace as all linear combinations 
of those vectors. Consider ‚3 and define two vectors 
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2Z . 

Then Ì = { }21: ZZZZ ⋅+⋅= βα  for any scalars βα ,  is a two-dimensional 
subspace of ‚3. 

Metric, sequences, and convergence 

A subspace Ì of a vector space Õ is a subset Ì⊆Õ which is itself a vector space, and 
hence is closed with respect to all vector space operations. 
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A metric ),( ⋅⋅d  imposes a set of topological properties, such as open and closed sets and 
the convergence of sequences of vectors. 

 
Example: Consider a space ]1,0(∈x  under the Euclidean metric (this is a metric 

space, but not a vector space) and the sequence 
⎭
⎬
⎫

⎩
⎨
⎧ =

n
xn

1 . This is a Cauchy 

sequence which does not converge to an element within the space, because the 
vector{ }0 is missing. 

 

Normed spaces 
 

A metric ),( VUd has the interpretation of a distance between vectors U and V ; thus, 
it adds a geometric interpretation to a vector space. Specifically, for vector space Õ, a 
metric ),( ⋅⋅d : ÕµÕ→ ℜ  (note that a metric is real-valued) must satisfy, for all 
U ,V ∈Õ, 
 
 0),( =VUd  iff VU =  
 ),(),( UVdVUd =  
 Triangle inequality: ),(),(),( WUdWVdVUd ≥+  

A sequence { } ∞= ,...,2,1,kU k  is a Cauchy sequence when for every 0>ε  there exists 
an N such that ε<),( nm UUd  for all Nnm >, . A sequence { } ∞= ,...,2,1,kU k  is 
convergent to vector U when for every 0>ε  there exists an N such that ε<),( UUd m

for all Nm > . Every convergent sequence is a Cauchy sequence, but not the reverse. 

A metric space is said to be complete when every Cauchy sequence of vectors in that 
space is convergent. 
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Example. Consider ‚n as defined earlier. If ZZ ↔ for a column vector Z , then a 
valid norm is 

*ZZZ T=  

where TZ is the matrix transpose of Z . 

 

Inner-product spaces 
 

Let Í be a vector space. A norm has the interpretation as the length of a vector. 
Specifically, ⋅ : Í→ℜ  (note that a norm is real-valued) has the properties, for all 

∈VU , Í and all ∈α ‚: 

0≥V  with equality iff 0=V  

VV ⋅=⋅ αα  

Triangle inequality: VUVU +≤+  

 
A normed space is the pair (Í, ⋅ ), a linear space plus a norm defined on that space. 

A norm induces a metric through the relation VUVUd −≡),( . (This is easily 

verified from the definitions.) Thus, any normed space possesses all the topological 
properties of a metric space (including Cauchy and convergent sequences). A normed 
space that is complete (with respect to its induced metric) is called a Banach space. 
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From these properties, it is easily inferred that VWVUVWU +=+  and 

VUVU ⋅=⋅ *αα . UU  is real valued (this follows from the fourth property, since 

( )*UUUU = ). 

 
Example. Let È=‚n, the space of complex-valued column vectors of dimension n, 
and let H  be an nn×  positive definite Hermitian matrix ( *HH T = ). Then for 
any ∈VU , Õ, define an inner product 

*HvuVU T

H
=  

It is easy to verify that this satisfies all the conditions to be an inner product, so 
(È, ⋅⋅ ) is an inner product space. (The subscript H can be used to eliminate any 
confusion over which inner product is in play.) 

 
The following result has wide applicability to optimization over inner product spaces. 

 
Proof: 

( ) 0
*

*
2

*
22

≥⋅−⋅−⋅⋅+=⋅− YXYXYXYX ααααα  

Theorem (Schwarz inequality): For an inner product space (È, ⋅⋅ ) and 

arbitrary vectors ∈YX , È, 
YXYX ⋅≤  

with equality iff YX ⋅= α for some scalar α . 
 

Let È be a vector space. An inner product is a type of multiplication operator on two 
vectors. Specifically, ⋅⋅ : È µ È → ‚ (note that an inner product is complex-valued) 

has the properties, for all ∈VU , È  and all ∈α ‚, 

WUVUWVU +=+  

VUVU ⋅=⋅ αα  

( )*UVVU =  

0≥UU  with equality iff 0=U  

An inner product space is a pair (È, ⋅⋅ ), a vector space together with an inner product 
defined on that space. 
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with equality iff YX ⋅= α . This inequality is true for any scalarα , but it conveys 
the most information if we choose α  to minimize the left side. Differentiating 
this expression w.r.t. *α  and setting to zero, a stationary point is at 

2
Y

YX
=α . 

Substituting this α into the inequality, we get 

02

2

2
≥−

Y

YX
X . 

 
Proof: That the triangle inequality is satisfied is the only non-trivial step in 
establishing that U  defined in this way is a norm. Note that for every ∈YX , È, 

{ } YXYXYXYXYX ⋅++≤⋅++=+ 2Re2
22222

 

The inequality follows from an inequality for complex variables, 
2222 xyxyix ≥+=⋅+  or xxyix ≥≥⋅+ . 

Invoking the Schwarz inequality, to further upper bound the third term, 

( )2222
2 YXYXYXYX +=⋅⋅++≤+ . 

 
Thus, every inner product space is also a normed space and a metric space. An inner 
product space that is complete under the induced metric is called a Hilbert space. Every 
Hilbert space is implicitly a Banach space. 
 
In signal processing, we call a Hilbert space of possible signals a signal space. The 
following theorem has numerous applications to signal processing. 
 

Theorem. An inner product induces a norm through the relation 
 

UUU ≡ . 
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In words, ):( MXP  is called the projection of X on M, and that projection is the vector 

within M that is closest to X . Also, the vector PX −  is orthogonal to M (meaning that it 
is orthogonal to every vector in M, including P ). 
 
In signal processing, P  is often interpreted as an best estimate or approximation to X in 
subspace M with respect to metric ⋅ , and thus PX −  is an error vector and the 

magnitude of the error is PX − . The orthogonality principle restated: for the optimum 

estimate of X based upon a vector in M, the error vector is orthogonal to the subspace M 
(orthogonal to every vector in M). 
 
A convenient relation for the norm of this error vector follows from the Pythagorean 
theorem, 

2222
PPXPPXX +−=+−=  (because 0=− PPX ) 

or 
222

PXPX −=− . 

 
Partial proof of projection theorem: 
Existence: This can be done by constructing a Cauchy sequence that converges to 
the projection and invoking completeness (details omitted). 
Uniqueness: Assume that two vectors MY ∈1  and MY ∈2  both have orthogonal 
errors, 

021 =−=− YYXYYX  for all MY ∈ . 

By linearity of the inner product, it follows that 
01221 =−=+−− YYYYYXYX . 

Since ( ) MYY ∈− 12 , this must be true for ( )12 YYY −= , or 

( ) 00 21

2

12 =−⇒=− YYYY . 

Closeness property⇒orthogonality principle: Assume that 
YXPX −≤−  for every MY ∈ . 

Projection theorem: Let Hilbert space Ç have a closed subspace M and let 

∈X Ç but MX ∉ . Then there exists a unique MMXPP ∈= ):(  with the 
following two equivalent properties: 

Closeness:    YXPX −≤−  for every MY ∈  

Orthogonality principle:  0=− YPX  for every MY ∈  
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Lettingα be a scalar, it follows, since MP∈  that for every α and MY ∈  
YPXPX ⋅−−≤− α  

or 

{ }YPXYPXPX −⋅⋅−⋅+−≤− *
2222

Re2 αα . 

Letting YPX −⋅= βα  for any real-valued β , this becomes 
22

2 20 YPXY −⋅⎟
⎠
⎞

⎜
⎝
⎛ ⋅−⋅≤ ββ  

Since for 2
1

Y
=β  the first term is negative, it must be that 0=− YPX . 

Orthogonality principle ⇒  closeness property: Suppose 0=− YPX  for every 

MY ∈ . Then 

YPPXYPPXYPPXYX −+−−+−=−+−=−
22

. 

Expanding this term by term, 

{ }YPPXYPPXYX −−⋅+−+−=− Re2
222

 

Since by assumption MP∈  and MY ∈  and hence MYP ∈− )( , the third term 
must be zero. Thus 

PXYPPXYX −≥−+−=−
222

. 

End of proof. 
 
Given N linearly independent vectors NXXX ,...,, 21 , an N -dimensional subspace M is 

defined by all linear combinations of these vectors. Use the notation { }NiXM i ≤≤= 1,  
to denote this subspace. It is more convenient to have a set of N  orthogonal vectors 

NYYY ,...,, 21 that also spans this subspace; that is, { }NiYM i ≤≤= 1,  and 0=ji YY for 

ji ≠ . (A set of orthogonal vectors is necessarily linearly independent.) The NYYY ,...,, 21  
is called an orthogonal basis for M, and it is easily generated by a Gram-Schmidt 
orthogonalization procedure. Actually, this is a straightforward application of the 
projection theorem as follows. Define 11 XY = and let 

{ } 12
1

12

21222 ):( Y
Y

YX
XYXPXY ⋅−=−= . 
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which we know (1) has a component in the direction of 2X  and (2) by the orthogonality 
principle we know that this 2Y  is orthogonal to 1Y . Now we can proceed by induction, 

defining nY  in terms of 121 ,...,, −nYYY , 

{ } k

n

k k

kn

nnnnn Y
Y

YX
XYYYXPXY ⋅−=−= ∑

−

=

−

1

1
2121 ),...,,:(  . 

The coefficients in this expansion have been determined by the orthogonality principle, 

0
1

1
=⋅−∑

−

=

j

n

k
kkn YYX α , 11 −≤≤ nj  

 and exploiting the orthogonality of 121 ,...,, −nYYY . 
 
The following are important Hilbert spaces in signal processing applications. Details such 
as the exact meaning of integrals and proofs of completeness are left to the references. 
 

Example. Ç = ‚n is a Hilbert space with the appropriate definition of inner 
product. Let H be an nn×  positive-definite Hermitian matrix ( *T HH = ), and for 
a vector u↔U let Hu denote the conjugate transpose of u . Then two (equivalent 
possibilities) for an inner product are to let vectors correspond to n×1  (row) 
matrices with HuHv=VU  and to let vectors correspond to 1×n  (column) 

matrices with *THvu=VU . When IH =  (identity matrix), this is ordinary 

complex-valued Euclidean space. 
 
Example. Let å2 be the space of all double-infinite complex-valued time 
sequences of the form 

{ }),...1(),0(),1(..., zzzZ −=  
where the sequence has finite energy, 

∞<∑
∞

−∞=n
nz 2)(  

and with the inner product defined as 

)()( * nvnuVU ⋅= ∑
∞

∞−

. 

Then å2 is a Hilbert space. When the limits of summation are restricted to a finite 
interval, this is reverts to the earlier example. 
 
Example. Let Ë2 be the space of all complex-valued continuous-time signals of 
the form 

{ }∞<<−∞↔ ttzZ ),(  
where each signal has finite energy, 
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∞<⋅∫
∞

∞−
dttz

2
)(  

and with the inner product defined as 

dttvtuVU ⋅⋅= ∫
∞

∞−
)()( * . 

Then Ë2 is a Hilbert space. When the integrals are restricted to a finite or semi-
infinite interval, this remains a Hilbert space. 
 
Example. Let ( )P,,ℑΩ  be a probability space (Ω  is the sample space,ℑ is the set 
of all events defined on that sample space, and 10 ≤≤ P  is a probability measure 
defined over all events), and let Ë2 ( )Ω be the space of all complex-valued random 
variables Z with zero mean and finite second moments, 

[ ] 0=ZE  and ∞<][ 2ZE  
with a vector associated with each such random variable, 

ZZ ↔  
and the inner product defined as 

][ *VUEVU ⋅= . 

Then Ë2 ( )Ω  is a Hilbert space. 
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