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In this tutorial we give some examples of applications of the geometric framework 
developed in "Geometric interpretation of signals: background" [pdf]. By signal, we 
usually mean a finite or infinite sequence of complex-valued samples. Both deterministic 
and random signals can be modeled w.r.t. their geometric properties. 

Stationary signals 
 
A particularly important model that arises in signal processing is the stationary signal. 
Given a Hilbert space Ç, suppose we are given an infinite sequence of vectors 

∈)(),( kYkX Ç,  where the inner products have the special property ∞<<∞− k
 

)()()( mXlXmlrx =−  or )()()( mkXkXmrx −=  

)()()( mYlXmlrxy =−  or )()()( mkYkXmrxy −=  

 
In this model, k is usually interpreted as ‘time’, and the inner product of two vectors is a 
function of the difference in time indices, not the absolute time. Putting it another way, 
the geometric properties of these signals do not depend on the absolute time index. In the 
special case of a wide-sense stationary random process (below), this is equivalent to two 
such signals being jointly wide-sense stationary. In analogy to the random process case, 
we call  the autocorrelation function. )(mrx

 
Example. (Deterministic continuous-time signals) In Hilbert space Ë2 let 

∈↔ Hth )(  Ë2

and define an infinite sequence of vectors which are (in the time domain) time-
translates of  by times , )(th kT

)(),( kHtkTth ↔∞<<−∞− , where HH =)0( . 
In this case, 

dtmTththmrh ⋅+⋅= ∫
∞

∞−
)()()( * . 
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This situation arises in sampling (see later) and in digital communications (see the 
homework). 

 
Example. (Deterministic discrete-time signals) In Hilbert space å2 let 

∈↔∞<<−∞ Hkkh ),(  å2
and define an infinite sequence of vectors which are (in the time domain) time-
translates of  by time , )(kh m

)()( mHmkh ↔− , where HH =)0( . 
In this case, 

)()()( * mkhkhmr
m

h +⋅= ∑
∞

−∞=

. 

This is the discrete-time parallel to the last example. 
 

Example. (Random discrete-time signals) In Hilbert space  Ë2 ( )Ω  let ,  
, be a wide-sense stationary (WSS) random process, and define 

)(kx
∞<<∞− k

∈↔ )()( kXkx Ë2 ( )Ω , ∞<<∞− k  
In this case, 

)]()([)( * mkxkxEmrx −⋅== . 
This situation arises in the modeling of a WSS discrete-time random process (see 
later). 

 
Note the essential difference among these examples: In the two deterministic signal cases 
(continuous- and discrete-time), a vector is associated with an entire time signal, and in 
the random process case a vector is associated with just one sample of a time signal. This 
is the distinction between time and ensemble averaging—two complementary but distinct 
modeling approaches (which are connected through the ergodic theory). In a Hilbert 
space framework all these cases can be treated uniformly w.r.t. geometric properties. 
 
The properties of an inner product impute upon the autocorrelation function some special 
properties. These properties are very familiar for a WSS random process, but carry over 
without change to the larger class of stationary signals. The autocorrelation is a Hermitian 
function, possessing complex-conjugate symmetry, 

)()( * mrmr yxxy −=  

)()( * mrmr xx −=  
This in turn implies that is real-valued, and further, )0(xr

)0()(0 xx rmr ≤≤ . 
The left inequality follows from 

0)()0(
2
≥= kXrx  

and the right inequality follows from the Schwarz inequality 

)0()()()()()( xx rkXmkXkXmkXmr =⋅+≤+=  
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Further, for any set of scalars  nddd ,...,, 21

0)()( *

1 11
≥−⋅⋅=+⋅ ∑∑∑

= ==

mlrddlkXd xm

n

l

n

m
l

n

l
l . 

Defining 
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This establishes that the autocorrelation matrix  is non-negative definite (where is 
the conjugate transpose of , 

nR Hd
d

 
0≥H

nddR . 
 

To summarize, any autocorrelation matrix is: 
• Toeplitz ( ) jiij rr −=

• Hermitian ( ) H
nn RR =

• Non-negative definite 
 
Since the autocorrelation matrix is Hermitian, its eigenvalues are real-valued, and since it 
is non-negative definite these real-valued eigenvalues are non-negative [1, page 42]. 
Further, there exists an orthonormal set of eigenvectors , iv ni ≤≤1 , and  can be 
expressed in terms of these eigenvectors and its eigenvalues 

nR

iλ , ni ≤≤1  as [1, p44] 

H
iin vvR ⋅= ∑

=

n

i
i

1
λ . 

The power spectrum is defined as the Z-transform of the autocorrelation function, 
 

k

k
xx zkrzP −

∞

−∞=

⋅= ∑ )()( . 

 
(Again, “power spectrum” is a terminology that arises in the wide-sense stationary 
random process case, but we are adopting this terminology for a larger class of signals.) 
From the Hermitian property of the autocorrelation, it follows that 
 

⎟
⎠
⎞

⎜
⎝
⎛= *

* 1)(
z

PzP xx  and hence  is real-valued. )( ωj
x eP

The positive-definite property of the autocorrelation matrix implies further that 
 [1, page 95]. 0)( ≥ωj

x eP
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If the power spectrum is continuous on the unit circle, then it admits a spectral 
factorization 

⎟
⎠
⎞

⎜
⎝
⎛⋅⋅= *

*2 1)()(
z

SzSzP xxx σ  or  )()()( *2 msmsmr xxx −⊗⋅=σ

where “ ” denotes convolution, ⊗
 

∑ −⋅=⊗
m

mkymxkykx )()()()(  or ∑ −⋅=
n

xxx mnsnsmr )()()( *  

and is monic ( 1), causal ()(msx )0( =xs 0)( =msx for 0<m ), and minimum-phase (the 
region of convergence of both and include )(zSx )(log zSx 1≥z ). 
 
The two factorizations lead to two useful ways to express a Hermitian form in the 
autocorrelation matrix. Given two n×1  (row) matrices andx y , 
 

( ) ( )*
11
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Linear predictors 
Assume we are given a stationary signal in vector space (sequence of vectors )(kX  
(elements of  Ë2 or å2 or Ë2 ( )Ω ) with autocorrelation function ). An optimum (in 

the sense of minimum error norm) infinite-order linear predictor of 

)(mrx

)(kX based upon its 
entire past has error at time k equal to 

{ }( )kiiXkXPkXkE <<−∞−= ),(:)()()( . 

(Recall the notation: { }nYYY ,...,, 21  is the subspace spanned by the vectors enclosed in 
brackets.) This signal is also called the innovations, since it embodies what is new about 

)(kX ; that is, what cannot be easily inferred (based on a linear estimate) from its past. 
According to the rojection theorem, this error is orthogonal to the subspace p
{ }kikX <<−∞),( . But also note that all past innovations are vectors of this subspace, 

{ }kiiXiE <<−∞∈ ),()(  for kl <<∞− . 
Thus, we immediately conclude that the innovations process is white; that is, 

0)()( =kElE  for  (and hence for kl < kl ≠ , due to the Hermitian symmetry in the 

error’s autocorrelation function). Equivalently, mee rmr δ⋅= )0()( and the power spectrum 
of the error is 'white', . Intuitively, if the innovations were not white, there )0()( ee rzP =
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would be some residual information in it about the past that could be inferred, thus 
allowing the error to be further reduced. 
 
Define the transfer function from )(kX  to )(kE  as  (the subscript  denotes an 
infinite-order predictor, in anticipation of finite-order predictors later), 

)(zA∞ ∞

i

i
i zazA −

∞

=
∞ ⋅= ∑

0

)( , 10 =a . 

This is a monic causal transfer function. In particular, 

∑
∞

=

−⋅=
0

)()(
i

i ikXakE . 

Then the white innovations implies that 

)0(1)()( *
*

ex r
z

AzAzP =⎟
⎠
⎞

⎜
⎝
⎛⋅⋅ ∞∞  

Writing this in the form 

)(
)0(1)( *

*

zP
r

z
AzA

x

e=⎟
⎠
⎞

⎜
⎝
⎛⋅ ∞∞  

we see that the linear predictor transfer function is the spectral factorization of the inverse 
of the power spectrum of the signal (where the prediction error norm normalizes the 
spectral factorization to be monic). The inverse of the power spectrum possesses such a 
spectral factorization since its region of convergence includes the unit circle and is 
presumed to be non-zero on the unit circle. (Actually rational zeros on the unit circle are 
acceptable, although that case has to be treated with care.) 

Sampling 
 
The idea behind sampling is to approximate a continuous-time complex valued signal 

 by a discrete-time signal (called the 'sample values') through the relationship )(tx )(kx
 

∑
∞

−∞=

−⋅≅
k

kTthkxtx )()()(  

 
for some given ‘pulse shape’ . We expect that this approximation can become 
equality if is bandlimited to less than half the sampling rate and is chosen 
appropriately, but we are interested in more general cases where is perhaps any 
continuous-time signal and perhaps is not appropriately bandlimited in relation to the 
sampling rate. This approximation can be moved to signal space and interpreted 
geometrically if we associate 

)(th
)(tx )(th

)(th
)(tx

 
∈↔∞<<−∞ Xttx ),( Ë2

∈↔∞<<−∞− kHtkTth ),( Ë2 
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Then it is natural to seek the samples that minimize the Ë2 norm of the error (this 
minimizes the energy of the error between the sampled approximation and the signal), 
 

∑
∞

−∞=

⋅−
∞<<−∞ k

kHkxX
kkx

)(
),(

min
. 

 
(Note the mixture of models inherent here: while is a discrete-time signal, we 
choose to consider it instead as a sequence of scalar coefficients!). This has a superficial 
similarly to the prediction problem, except that the approximation is in terms of future as 
well as past signals. From the projection theorem, since the sampled representation is an 
element of subspace

)(kx

{ }∞<<−∞ kH k ,  
 

0)( =⋅− ∑
∞

−∞=

i
k

k HHkxX , ∞<<∞− i . 

 
The first thing we notice is that the signal space approach tells us we should first 
calculate the quantity 
 

τττ diThxHXiy i ⋅−⋅== ∫
∞

∞−
)()()( * . 

 
This is known as a sampled matched filter, because it can be obtained by passing the 
signal through a filter with impulse response  (a matched filter) and sampling the 
output at times iT , as shown in the future below. 

)(* th −

 

iTt
dthxiy

=

∞

∞−
⋅−−⋅= ∫ τττ ))(()()( * . 

)(* th −)(tx )(ky
kT

Matched filter

 
Why is this called a matched filter? Signal space methods give us a strong hint: Suppose 
a finite-energy signal  is input to a matched filter  and the output is sampled at 

time . If the signal is constrained to have unit energy (

)(tx )(* th −

0=t 1
2
=X ), what signal 

maximizes the modulus of the output? We can write the output as 
 

HXdhxdthx
t

=⋅⋅=⋅−−⋅ ∫∫ =
ττττττ )()())(()( *

0

* . 

 
The modulus is thus bounded by (Schwarz inequality) 
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HHXHX =⋅≤  

with equality iff HX ⋅=α  (or if the constraint is met, 
H

1=α ). The maximum 

response (in modulus) occurs when the input signal is the conjugate time-reversal of the 
impulse response.  
 
Once the signal  has been filtered (by a matched filter) and sampled, the 
orthogonality principle yields a set of linear equations to solve for the samples : 

)(tx
)(kx

 

0)()()( =⋅−− ∑
∞

−∞=k
h kxikriy , ∞≤≤∞− i . 

 
Taking the Z-transform allows us to solve for the distance-minimizing set of 
samples , )(kx
 

)()()( 11 zYzPzX h ⋅= −− . 
 
These are the sample values that minimize the distance between the sampled 
approximation and the original continuous-time signal, as shown in the following figure. 
The equalizer has a two-sided unit-sample response; thus, it is not causal. This is 
generally true of the matched filter. This is, of course, because we did not include any 
causality constraint in the original formulation of the problem, so the solution is taking 
maximum advantage of the information available. 
 

)(* th −)(tx )(kx
kT

Matched filter

)( 11 −− zPh

Equalizer

 

Lattice filters 
If the goal is computation of a predictor (as opposed to analytical results), then we must 
be satisfied with a finite-order predictor. This motivates us to define a optimum n-th 
order forward prediction error at time k as 
 

{ }( )niikXkXPkXkE n ≤≤−−= 1),(:)()()( , )()(0 kXkE ≡ . 
 

The projection theorem gives us a set of linear equations that can be solved for the 
coefficients of the predictor. If the prediction filter of order n (from kX to )(kEn ) is 
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00

ijriajkXikXia x
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==

, nj ≤≤1 . 

 
Unfortunately, this finite-order quasi-innovations process is not white in general because 
of the finite order. 
 
It is useful to define a backward prediction error at time k of order n as 
 

{ }( )niikXkXPkXkE
R
n ≤≤+−= 1),(:)()()( , )()(0 kXkE

R
≡ . 

This is the error of a predictor of )(kX in terms of n samples in the future. The 
superscript ‘R’ can be read as ‘reverse’ (to maintain consistency of notation with [1]), 
although ‘backward’ is a more common term in the literature. The transfer function of the 

backward predictor (from )(kX to )(kE
R
n ) is 

 

⎟
⎠
⎞

⎜
⎝
⎛=⋅∑

=
*

*

0

* 1)(
z

Azia n
i

n

i
n . 

 
(This is easily verified from the projection theorem and also follows from the Hermitian 
property of the autocorrelation function.)  Although it is non-causal, and hence non-
realizable, in the sequel we will always formulate this backward prediction error with 
sufficient delay so as to render the cascade to be causal. 
 
One reason the forward and backward predictors are of both interest is that they give us 
two ways to apply a Gram-Schmidt orthogonalization to a subspace spanned by a finite 
continuous sequence of samples. Consider the following figure, which shows two 
subspaces of interest and two Gram-Schmidt orthogonalizations. 

k
nk −

{ })(),...,2(),1( 110 kEnkEnkE n−+−+−

⎭⎬
⎫

⎩⎨
⎧ −−− − )(),...,2(),1( 110 nkEkEkE

R
n

RR

{ }=+−+− )(),...,2(),1( kXnkXnkX

{ }=−+−− )1(),...,1(),( kXnkXnkX
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In the bottom case, the subspace shown is the one from which )(kE n , a forward 
predictor of order n at time k, is drawn, and we have chosen an orthogonal basis 
consisting of backward prediction errors of different orders. This is precisely the Gram-
Schmidt orthogonalization procedure applied to the samples starting at k-1, k-2, through 
k-n, in that order (moving backward in time). In the top case, the subspace shown is the 

one from which )( nkE
R
n − , a backward predictor of order n at time k-n, is drawn, and we 

have chosen an orthogonal basis of consisting of forward prediction errors of different 
orders. This is precisely the Gram-Schmidt orthogonalization procedure applied to the 
samples starting at k-n+1, k-n+2, through k, in that order (moving forward in time). 
 
It is convenient to express the forward and backward predictors in terms of the 
orthogonal basis, because (1) the coefficients are particularly easy to determine and (2) 
this conveniently expresses prediction errors of order n to lower-order prediction errors. 
Applying the orthogonality principle to the forward and backward predictors, 
 

)(kE n :  0)()()( 11
1

=−−⋅Γ− −−

=
∑ jkEikEkX

R
j

R
i

n

i
i , nj ≤≤1  

)( nkE
R
n − :  0)()()( 11

1
=+−+−⋅Λ−− −−

=
∑ jnkEinkEnkX ji

n

i
i ,  nj ≤≤1

 
The scalars  are called reflection coefficients, and are not a function of k due to the 
WSS assumption. Similarly for the coefficients 

iΓ

iΛ , although we will see shortly that they 
are actually redundant (this is not surprising, since a linear predictor of order n is 
expected to have n free parameters); that is,  as well be shown later.  *

ii Γ=Λ
 
Due to WSS, the prediction error can be expressed order-recursively as 
 

)()()()()( 111
1

nkEkEikEkXkE
R
nnn

R
i

n

i
in −⋅Γ−=−⋅Γ−= −−−

=
∑  

)()()()()( 111
1

kEnkEinkEnkXnkE nn

R
ni

n

i
i

R
n −−−

=

⋅Λ−−=+−⋅Λ−−=− ∑  

 
As shown in the following figure (in the time domain rather than signal space), these 
recursions together define both the forward and backward prediction errors of an arbitrary 
(but finite) number of orders, starting with the first, then second, etc. This structure is 
called a lattice filter. 
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It is useful to review the technique we used. First we observed that the predictor can be 
expressed in terms of an orthogonal basis obtained using the Gram-Schmidt 
orthogonalization procedure. This procedure turns out to define lower-order predictors. 
There are two natural options for orthogonalization—moving forward in time, and 
moving backward. We exploited both by defining both a forward predictor (our primary 
interest) and a backward predictor (an intermediate step). The natural orthogonalization is 
to move backward in time for the forward predictor and forward in time for the backward 
predictor. In both cases, this choice results in an order-recursive representation of the 
predictors—the n-th order predictor can be obtained incrementally from an (n-1)-th order 
predictor. 
 
It remains to determine the reflection coefficients, and derive some of their interesting 
properties. The orthogonality relationship easily allows us to solve for the coefficients 
(exploiting the orthogonality of the Gram-Schmidt basis) as (considering, without loss of 
generality, only nj = ), 
 

2

1

1

)(

)()(

nkE

nkEkX

R
n

R
n

n

−

−
=Γ

−

−
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2
1

1

)(

)()(
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kEnkX

n

n

n
−

−−
=Λ . 

 
These relations can be more conveniently expressed in terms of prediction errors (rather 
than signal values). The structure of the subspaces reflected in these errors is illustrated in 
the figure below. From the orthogonality principle, both the errors )(1 kEn−  and 
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)(1 nkE
R
n −−  are orthogonal to the subspace spanned by 

{ })1(,...,2(),1( −+−+− kXnkXnkX , and both forward and backward predictors are 
vectors in that subspace. 

k
nk −

{ })1(),...,2(),1( −+−+− kXnkXnkX

 
Hence, 

)()()()( 111 nkEkEnkEkX
R
nn

R
n −=− −−−  

)()()()( 111 kEnkEkEnkX n
R
nn −−− −=−  

Further, the forward and backward prediction errors of the same order will have the same 
norm, even if displaced in time, 
 

)()( 11 kEnkE n
R
n −− =− . 

 
Combining these two observations, the reflection coefficients can be expressed as a 
normalized inner product of forward and backward errors, 
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11
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nkEkE
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ii
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The Schwartz inequality tells us therefore that the modulus of the reflection coefficients 
are less than or equal to unity, 
 

1≤Γn  
 
Finally, we can determine the impact on the prediction error norm as the order of the 
predictor is increased by one, 
 

)()()( 11 nkEkEkE
R
nnnn −⋅Γ−= −−  

)()()()()()()( 1111
*

2

1
22

1
2

kEnkEnkEkEnkEkEkE n
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nn

R
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R
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2
1

22
)()1()( kEkE nnn −⋅Γ−=⇒  
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Thus, the closer the reflection coefficient modulus nΓ  is to unity, the more the norm of 
the prediction error is reduced in increasing the predictor order from n-1 to n. 
Alternatively, this reflects a large inner product (alignment) of the forward and backward 
errors of order n-1. 
 

The backward predictor cascaded with a delay (from kX to )( nkE
R
n − ) has transfer 

function 
 

⎟
⎠
⎞

⎜
⎝
⎛⋅= −

*
* 1)(

z
AzzA n
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n . 

 
The lattice filter is then represented by the order-iterative relation 
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This expression is easily inverted, assuming that 1<Γn , as 
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Armed with these relations, in the following we develop conversions among the three 
equivalent sets of parameters: autocorrelation coefficients , predictor filter 
coefficients , and reflection coefficients

)(mrx

)(kaN nΓ . 

Minimum-phase property 
As seen before, for a valid autocorrelation function we will have 1<Γn . It is also true 
that the finite predictor filter is strictly minimum phase (zeros all interior to the unit 
circle) if the reflection coefficients

)(zAn

nΓΓΓ ,...,, 21  are all less than unity in magnitude. 
 
To show this, assume that nΓΓΓ ,...,, 21  all have magnitude less than unity. We will show 
that is minimum phase. Proceeding by induction, has one pole 
(at ) and one zero (at ) inside the unit circle; it is minimum phase. Assume 
that is minimum phase, and thus has

)(zAn
1

11 1)( −⋅Γ+= zzA
0=z 1Γ=z

)(1 zAn− 1−n poles (at 0=z ) and 1−n zeros inside the 
unit circle. Starting with the order-recursive relation 
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is an allpass filter, so as z traverses around the unit circle its 

mapping to the Z-plane also traverses the unit circle. Thus, as traverses around the unit 
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the same number of poles and zeros inside the unit circle, and we already know that this 
is true of the denominator . Knowing that has poles (at ) inside the 
unit circle, it must also have zeros inside the unit circle; it is minimum phase. 
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Levinson-Durbin recursion 
The preceding gives us a way of turning an autocorrelation function into reflection 
coefficients and a modeling error: 
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Step-up recursion 
Given a set of reflection coefficients, the step-up recursion determines the  
predictor coefficients for predictors of all orders, beginning with the first order: 
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Step-down recursion 
Given the predictor coefficients of all orders, the step-down recursion determines the 
reflection coefficients, beginning with the last: 
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