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Abstract
An important challenge in modern distributed querying is to
efficiently process multiple continuous aggregation queries
simultaneously. However, processing each of these queries
independently may be prohibitive due to network bandwidth
constraints. Multiquery optimizations can be used to share
computations across queries in order to reduce the overall
network communication. In this paper, we consider this
problem in the context of distributed aggregation queries
that vary in their selection predicates. We identify settings
in which a large set of n such queries can be answered by
executing k << n different queries. The k queries are re-
vealed by analyzing a boolean matrix capturing the connec-
tion between data and the queries that they satisfy, in a man-
ner akin to familiar techniques from linear algebra. Indeed,
we identify a class of linear aggregate functions (including
SUM, COUNT and AVERAGE), and show that the sharing
potential for such queries can be optimally recovered using
standard matrix decompositions from computational linear
algebra. Unfortunately, for some other typical aggregation
functions (including MIN and MAX) we find that optimal
sharing maps to the NP-hard set basis problem. However,
for those scenarios, we present a family of heuristic algo-
rithms that perform well for moderately-sized matrices. We
also present an overall distributed system architecture to ex-
ploit sharing opportunities, and experimentally evaluate the
benefits of our techniques via a novel, flexible random work-
load generator we develop for this setting.

1 Introduction
There is a large and growing body of work on the design
of distributed query systems. The focus of much of this
work has been on the efficient execution of individual, one-
shot queries, through intelligent data-processing algorithms,
data/query shipping strategies, etc. Recent years, however,
have witnessed the emergence of a new class of large-scale
distributed monitoring applications – including network-
traffic monitors, sensornets, and financial data trackers – that
pose novel data-management challenges. First, many moni-
toring tasks demand support for continuous queries instead
of ad-hoc requests, to accurately track the current state of the
environment being monitored. Second, given the inherently
distributed nature of such systems, it is crucial to minimize

the communication overhead that monitoring imposes on the
underlying infrastructure, e.g., to limit the burden on the pro-
duction network [5] or to maximize sensor battery life [16].

In most monitoring scenarios, the naive warehousing “so-
lution” of simply collecting a large, distributed data set at a
centralized site for query processing and result dissemina-
tion is prohibitively expensive in terms of both latency and
communication cost – and often, simply unnecessary. The
amount of data involved can be so large and dynamic in na-
ture that it can easily overwhelm typical users or applications
with too much detailed information. Instead, high-level,
continuous aggregation queries are routinely employed to
provide meaningful summary information on the underlying
distributed data collection and, at the same time, to allow
users to iteratively drill-down to interesting regions of the
data. Typical aggregation queries also allow for effective,
in-network processing that can drastically reduce communi-
cation overheads by “pushing” the aggregate function com-
putation down to individual nodes in the network [14].

Another crucial requirement for large-scale distributed
monitoring platforms is the ability to scale in both the vol-
ume of the underlying data streams and the number of simul-
taneous long-running queries. As an example, consider the
Network Operations Center (NOC) for the IP-backbone net-
work of a large ISP (such as Sprint or AT&T). Such NOCs
routinely need to track (in real time) hundreds of contin-
uous queries collecting aggregate statistics over thousands
of network elements (routers, switches, links, etc.) and ex-
tremely high-rate event streams at different layers of the net-
work infrastructure. This requirement emphasizes a new
class of multi-query optimization problems that focus on dy-
namically sharing execution costs across continuous stream
queries to optimize overall system performance.

Our Contributions. In this paper, we focus on dynamic
multi-query optimization techniques for continuous aggre-
gation queries over physically distributed data streams. In
a nutshell, we demonstrate opportunities to compute q ag-
gregation queries that vary only in their selection predicates
via k << q queries that may, in fact, be different from the
input queries themselves. Our method is to formalize the
shared optimization problem through the analysis of a dy-
namic fragment matrix that captures the connection between
observed data and query predicates, and the algebraic prop-
erties of the underlying aggregate function. This leads us to
algorithmic solutions for these problems grounded in linear
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algebra and novel combinatorial optimization techniques.
More concretely, our main contributions can be summarized
as follows.
• Algebraic Query/Data Decomposition. We identify
sharing opportunities across different aggregation functions
through the analysis of a dynamic, boolean fragment matrix
that accurately captures the disjoint fragments of the stream-
ing data tuples with respect to the underlying selection predi-
cates. The basic intuition here is that the set of computed ag-
gregates can be effectively compressed by decomposing the
fragment matrix into “independent components”, which are
sufficient to reconstruct every individual aggregate answer.
The exact notion of an “independent component” varies de-
pending on the algebraic characteristics of the underlying
aggregate (e.g., linear or duplicate-insensitive), resulting in
optimization problems of varying computational complexity.
• Novel Optimization Algorithms for Distributed Aggre-
gate Sharing. Based on our insights from the fragment-
matrix model, we formulate our sharing optimization prob-
lem for distributed aggregates for different classes of aggre-
gation functions. For the class of linear aggregates (e.g.,
COUNT, SUM) we show efficient, optimal sharing strategies
based on existing linear-algebra techniques (such as LU,
QR, or SVD decompositions). Unfortunately, duplicate-
insensitive aggregates (e.g., MIN, MAX) result in a dramatic
increase in problem complexity, since the problem maps to
the NP-hard Set-Basis Problem [7] (known to be inapprox-
imable to within any constant factor [13]); thus, we propose
a novel efficient heuristic technique that, as our empirical re-
sults demonstrate, performs well in practice. We also give an
analysis of the sharing benefits.
• Extensive Experimental Results Validating our Ap-
proach. We develop a flexible workload generator for our
problem that allows us to explicitly and flexibly control the
degree of benefit available in the workload. Our experimen-
tal results clearly demonstrate that our algorithms can pro-
vide dramatic communication savings. For linear aggregate
functions, two of the theoretically-optimal methods achieve
100% of the potential benefit under all settings, despite the
potential for numerical instability in floating point compu-
tations; instabilities in the third technique reduce its effec-
tiveness in some cases. For duplicate insensitive aggregates,
the best of our methods approaches 90% of optimal across a
wide range of workloads.
Prior Work. For the case of a single distributed aggre-
gation query, efficient in-network execution strategies have
been proposed by several recent papers and research pro-
totypes (including, for instance, TAG [14], SDIMS [19],
and PIER [9]). The key idea in these techniques is to per-
form the aggregate computation over a dynamic tree in an
overlay network. Aggregation occurs over a dynamic tree,
with each node combining the data found locally along with
any Partial State Records (PSRs) it receives from its chil-
dren, and forwarding the resulting PSR one hop up the tree.

Over time, the tree dynamically adjusts to changing node
membership and network conditions. More recent work on
distributed data streaming has demonstrated that, with ap-
propriate PSR definitions and combination techniques, in-
network aggregation ideas can be extended to fairly complex
aggregates, such as approximate quantiles [4, 8], and ap-
proximate histograms and join aggregates [3]. None of this
earlier work considers the case of multiple distributed ag-
gregation queries, essentially assuming that such queries are
processed individually, modulo perhaps some simple rout-
ing optimizations. For example, PIER suggests using dis-
tinct routing trees for each query in the system, in order to
balance the network load [9].

In the presence of hundreds or thousands of continu-
ous aggregation queries, system performance and scalabil-
ity depend upon effective sharing of execution costs across
queries. Recent work has suggested solutions for the cen-
tralized version of the problem, where the goal is to mini-
mize the amount of computation involved when tracking (1)
several GROUP-BY aggregates (differing in their grouping at-
tributes) [20], or (2) several windowed aggregates (differing
in their window sizes and/or selection predicates) [10, 11],
over a continuous data stream observed at a single site. In
the distributed setting, network communication is the typical
bottleneck, and hence communication overheads become an
important optimization concern.

In an independent effort, [18] proposes a distributed so-
lution for linear aggregates. Their scheme is based on
heuristics tailored to power-constrained sensornets where
the query workload is restricted to a static collection of sim-
ple spatial predicates related to the network topology. In-
stead, our dynamic fragment-based method does not have
any restrictions on the query predicates, and employs opti-
mal linear-algebra techniques to uncover sharing across lin-
ear aggregates. They also observe the analogy to the Set-
Basis problem for MIN/MAX aggregates but do not propose
any algorithmic solution for the duplicate-insensitive case.

2 Overview
The goal of the algorithms we present in this paper is to min-
imize overall network communication. During an aggrega-
tion query, each node must send a partial state record (PSR)
to its parent in an aggregation tree. If there is no sharing,
then we are communicating one partial state record (PSR)
per node per query per window. If we have q queries, our
goal is to only send k PSRs per node per window, where
k << q, such that the k PSRs are sufficient to compute the
answer to all q queries. The next section discusses the intu-
ition for how to select these k PSRs.

2.1 The Intuition
Consider a very simple distributed monitoring example sys-
tem with n nodes. Each of the nodes are examining their
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local stream of packets. Each packet is annotated with three
boolean values: (1) whether there is a reverse DNS entry for
the source, (2) if the source is on a spam blacklist, and (3)
if the packet is marked suspicious by an intrusion detection
system (IDS). One could imagine various applications mon-
itoring all n streams at once by issuing a continuous query
to count the number of global “bad” packets, where each ap-
plication determines “bad” as some predicate over the three
flags. Here are example query predicates from five COUNT
queries over the stream of packets from all the nodes:

1. WHERE noDNS = TRUE

2. WHERE suspicious = TRUE

3. WHERE noDNS = TRUE OR suspicious = TRUE

4. WHERE onSpamBlackList = TRUE

5. WHERE onSpamBlackList = TRUE

AND suspicious = TRUE

We will use an idea from Krishnamurthy, et al. [10] to get
an insight for how to execute these queries using fewer than
5 PSRs. In their work, they look at the set of queries that
each tuple in the stream satisfies, and use this classification
to partition the tuple-space to minimize the number of ag-
gregation operations (thereby reducing computation time).
Returning to our five example queries above, suppose in a
single window at node i we have tuples that can be parti-
tioned into exactly one of the following five categories:

1. Tuples that satisfy queries 1 and 3 only
2. Tuples that satisfy queries 2 and 3 only
3. Tuples that satisfy query 4 only
4. Tuples that satisfy queries 1, 3, and 4 only
5. Tuples that satisfy queries 2, 3, 4 and 5 only

We will refer to each of these categories as a fragment. As a
compact notation, we can represent this as a (f × q) boolean
fragment matrix, F , with each column representing a query
(numbered from left to right) and each row representing a
fragment:

Query 1 ↓ ... ↓ Query 5

F =













1 0 1 0 0
0 1 1 0 0
0 0 0 1 0
1 0 1 1 0
0 1 1 1 1













← Fragment 1

...

← Fragment 5

Now, suppose in a given window some node i receives
a number of tuples corresponding to each fragment; e.g., it
receives 23 tuples satisfying queries 1 and 3 only (row 1),
43 satisfying queries 2 and 3 only (row 2), etc. We can also
represent this as a matrix called Ai:

AT

i =
[

23 43 18 109 13
]

Given the two matrices, we can now compute the local
count for the first query (the first column of F ) by summing

the first and fourth entries in Ai, the second query by sum-
ming the second and fifth entries in Ai. In algebraic form
AT

i × F will produce a one-row matrix with each column
representing the count for the respective query. Encoding the
information as matrix Ai is not more compact than sending
the traditional set of five PSRs (one for each query). How-
ever, if we can find a reduced matrix A′

i – one with empty
entries that do not need to be communicated – such that
A′T

i × F = AT

i × F , we can save communication at the
expense of more computation.

This is indeed possible in our example. First, note that
fragment 4 is the OR of fragments 1 and 3 with no over-
lap (the conjunction equals zero). Now, observe the signif-
icance of that fact with respect to computing our COUNT
queries: when summing up the counts for those queries that
correspond to fragment 1 (queries 1 and 3), we can ignore
the count of fragment 3 since its entries for those queries
are zero. Similarly, when summing up the counts for queries
overlapping fragment 3 (query 4), we can ignore the count of
fragment 1. Because of this property, we can add the count
associated with fragment 4 into both of the counts for frag-
ments 1 and 3 without double-counting in the final answer,
as follows:

A′T =
[

23+109=132 43 18+109=127 109→∅ 13
]

Using this new A′

i, A′T

i × F will still produce the cor-
rect answer for each query, even though A′ has more empty
entries. And since A′

i has an empty entry, there is a corre-
sponding savings in network bandwidth, sending only four
PSRs instead of five. In essence, we only need to execute
four queries instead of the original five. The key observation
is that the size of A′

i is equal to the number of independent
rows in F , or the rank of F ; the exact definition of inde-
pendence depends on the aggregation function as we discuss
next. In all cases the rank of F will always be less than or
equal to min(f, q). Therefore we will never need more than
q PSRs, which is no worse than the no-sharing scenario.

2.2 Taxonomy Of Aggregates
The particular optimization presented in the previous section
works for all distributive and algebraic aggregate functions.
However, some aggregate functions have special properties
that allow more powerful solutions to be used that exploit
additional sharing opportunities. We categorize aggregates
into three broad categories: linear, duplicate insensitive, and
general. These three categories map to different variations of
the problem and require separate solutions. We first discuss
the taxonomy and then briefly introduce our solutions.

Formally, we use the term linear for aggregate functions
whose fragment matrix entries form a field (in the algebraic
sense) under two operations, one used for combining rows,
the other for scaling rows by constants. An important
necessary property of a field is that there be inverses for
all values under both operators. Among the familiar SQL
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aggregates, note that there is no natural inverse for MIN
and MAX under the natural combination operator: given
that z = MAX(x, y), there is no unique y−1 such that
MAX(z, y−1) = x. Hence these are not linear. Another
category we consider are duplicate insensitive aggregates,
which produce the same result regardless of the number of
occurrences of a specific datum. The table below lists a few
example aggregate functions for each category:

Non-linear Linear
Duplicate
Sensitive

k-MAX, k-MIN SUM, COUNT, AV-
ERAGE

Duplicate
Insensi-
tive

MIN, MAX, BLOOM
FILTER, logical
AND/OR

Spectral Bloom
filters [2], Set expres-
sions with updates [6]

The intuition for why k-MAX and k-MIN (the multi-set of
the top k highest/lowest datums) are non-linear is analogous
to that of MAX and MIN. k-MAX/MIN are also duplicate
sensitive since evaluating each additional copy of the same
highest datum would expel the kth highest datum due to the
multi-set semantics.

Spectral Bloom filters are an extension of Bloom fil-
ters that keep a frequency associated with each bit. The
frequency is incremented when a datum maps to that bit,
and can be decremented when a datum is removed from
the filter. This is linear because the frequencies can be
added/subtracted to each other and can be scaled by a real
number. In addition the output of the filter is based on
whether the frequency is greater than zero or not, so count-
ing the same datum twice may produce an inflated frequency
value but does not change the output.

In Section 4 we address linear aggregates where this prob-
lem can be reduced directly to rank-revealing linear algebra
factorization of matrix F , and polynomial-time techniques
from the literature directly lead us to an efficient solution.
For duplicate insensitive aggregates, we explain in Section
5 that the problem is a known NP-Hard problem and has
higher computational complexity; in these cases we develop
a family of heuristics that we evaluate experimentally. Fi-
nally for aggregates that are neither linear or duplicate insen-
sitive, the most conservative optimization algorithm must be
used. We stress that for both linear and duplicate insensi-
tive aggregates, our solutions will never require more global
aggregate computations than the no-sharing scenario.

We now discuss the architecture and the general solution
to this problem.

2.3 Architecture
The general technique for performing multi-query optimiza-
tion has four phases. First at each node, i, we need to create
the initial F and Ai matrices in the fragmentation phase.
Second, we can decompose F and Ai into a smaller A′

i.
Third, we perform the global aggregation of all local A′

i’s
across all nodes. Finally, we can reconstruct the final an-
swers to each query at some node j. This process is illus-

trated in Figure 1 and described in detail below.

In the first phase, fragmentation, we are using the same
technique presented in [10]. Each tuple is locally evalu-
ated against each query’s predicates to determine on-the-fly
which fragment the tuple belongs to. We can use techniques
such as group filters [15] to efficiently evaluate the predi-
cates. Once the fragment is determined, the tuple is added to
the fragment’s corresponding local PSR in Ai.

In the second phase, decomposition, each node will lo-
cally apply the decomposition algorithm to F and Ai to pro-
duce a smaller matrix, A′

i. The specific decomposition al-
gorithm used is dependent on the type of aggregate function
being computed. In Section 3 we present the basic algorithm
that applies to all functions. Section 4 shows an algorithm
that can be used for linear aggregate functions and in Sec-
tion 5 we show a family of heuristic algorithms that work
for duplicate insensitive functions.

We require that every node in the system use the same
F matrix for decomposition. The F matrices must be the
same so that every entry in A′

i has the same meaning, or in
other words, contains a piece of the answer to same set of
queries. Nodes that do not have any tuples for a particular
fragment will have an empty PSR in Ai. In Section 8.1, we
explain how to synchronize F on all nodes; for duplicate
insensitive aggregate functions, we are able to eliminate this
requirement altogether.

In the third phase, global aggregation, we aggregate each
of the A′

i’s over all nodes in the system to produce the global
A′. Since we want to maintain the load balanced property
of the non-sharing case, we aggregate each entry/fragment
in A′ separately in its own aggregation tree. Once the final
value has been computed for an entry of A′ at the root of
its respective aggregation tree, the PSR is sent to a single
coordinator node for reconstruction.

The fourth phase, reconstruction, begins once the coordi-
nator node has received each of the globally computed A′

entries. Using the F matrix (or its decomposition) the an-
swer to all queries can be computed. The reconstruction al-
gorithm is related to the specific decomposition algorithm
used, and is also described in the respective sections.

We take a moment to highlight the basic costs and bene-
fits of this method. Both the sharing and no-sharing methods
must disseminate every query to all nodes. This cost is same
for both methods and is amortized over the life of the con-
tinuous query. Our method introduces the cost of having all
nodes agree on the same binary F matrix, the cost to collect
all of the A′ entries on a single node, and finally the cost to
disseminate the answer to each node that issued the query.
The benefit is derived from executing fewer global aggrega-
tions (in the third phase). The degree of benefit is dependent
on the data/query workload. In Section 8.1 we analytically
show for which range of scenarios this method is beneficial.
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Figure 1: Tuples are first aggregated by fragment (1) into a local Ai PSR. F and Ai are then decomposed (2) to form A′

i. Each entry in A′

i

is then aggregated over all nodes (3) in separate aggregate trees. The final global value for each entry in A′ sent to some node j. Node j can
then reconstruct (4) the answers to every query and distribute the result.

3 General Decomposition Solution
Our first algorithm, basic decomposition, applies to all ag-
gregation functions, and directly follows the optimization
we presented the intuition for in the previous section. Our
aim is to find the smallest set of basis rows, such that each
row is exactly the disjunction of two or more basis rows that
are non-overlapping – i.e., their conjunction is empty. If the
basis rows were to overlap, then a tuple would be aggregated
multiple times for the same query.

Formally, we want to find the basis rows in F under a
limited algebra. Standard boolean logic does not allow us to
express the requirement that basis rows be non-overlapping.
Instead, we can define an algebra using

a 3-valued logic (with values of 0, 1, and I) for “invalid”)
and a single binary operator called ONCE. The output of
ONCE is 1 iff exactly one input is 1. If both inputs are 0,
the output of ONCE is 0, and if both inputs are 1 the output
is I . Using this algebra, the minimal set of rows which can
be ONCEed to form every row in F is the minimal basis set,
and our target solution. The I value is used to prevent any
tuple from being counted two or more times for the same
query.

The exhaustive search solution is prohibitively expensive,
since if each row is q bits there are 22

q possible solutions.
While this search space can be aggressively pruned, it is still
too large. Even a greedy approximation is very expensive
computationally, since there is a total of 2q choices (the num-
ber of possible rows) at each step – simply enumerating this
list to find the locally optimal choice is clearly impractical.

To approach this problem, we introduce a simple heuristic
that attempts to find basis rows using the existing rows in F .
Given two rows, i and j, if j is a subset of i then j is covering
those bits in i that they have in common. We can therefore
decompose i to remove those bits that are in common. When
we do that, we need to alter A by adding the PSR from i’s
entry to j’s entry.

We can define a DECOMPOSE operation as:

DECOMPOSE(F, Ai, i, j):
if (i 6= j) AND (¬F [i]&F [j] = 0) then

F [i] = F [i]XORF [j]
Ai[j] = A[j] + A[i]

else return invalid

The DECOMPOSE operation can be applied to pairs of
rows until no progress can be made. The following algo-
rithm, will transform F and Ai into F ′ and A′

i:

BASIC DECOMPOSITION(F, Ai):
boolean progress = true
while progress = true

progress = false
for all rows i ∈ F

for all rows j ∈ F
if Decompose(F, Ai, i, j) 6= invalid

then progress = true
for all rows k ∈ Ai

if |F [k]| = 0 then
Ai[k] = ∅ \\ rows in F with all 0’s

Reconstruction is straightforward since A′T

i ×F ′ = AT

i ×
F .

The running time of the basic decomposition algorithm is
O(f3), where f is the number of rows in F . Since the ba-
sic decomposition is searching a small portion of the search
space, it is not expected to produce the smallest basis set.
Furthermore, it is the only algorithm we present that can pro-
duce an answer worse than no-sharing. The algorithm starts
with f basis rows, where f can be greater than q, and at-
tempts to reduce the size of this initial basis. This reduction
may not always be sufficient to find a basis that is smaller
than or equal to q (although one such basis must exist). In
these cases we revert to a q × q identity matrix which is
equivalent to a no-sharing solution. However, this simple
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algorithm does provide a foundation for our other solutions.

4 Linear Aggregate Functions
If the aggregate function is linear, such as COUNT, SUM,
or AVERAGE, we are no longer constrained to using the
limited algebra from the previous section. Instead, we can
treat the matrix entries as real numbers and use linear al-
gebra techniques akin to Gaussian Elimination, adding and
subtracting rows in F from each other, and multiplying these
rows by scalars. Our goal of reducing the size of Ai can
therefore be accomplished by finding the minimal set of lin-
early independent rows F ′ in F , or the rank of F . By defi-
nition F can be reconstructed from F ′, so we can create A′

i

from Ai at the same time and still correctly answer every
query during the reconstruction phase.

For example, suppose we are calculating the COUNT for
these five queries with this F and Ai matrix:

F =













1 1 0 1 1
1 0 1 1 0
0 1 1 1 0
1 1 0 0 0
1 1 1 1 0













Ai =













13
54
24
78
32













The answer to the first query (in the leftmost column) is 13+
54 + 78 + 32 or 177. The complete solution matrix can be
computed using AT

i × F .
It turns out that we can express F and Ai using only four

rows:

F ′ =









1 1 1 1 0
0 1 1 1 0
0 0 −1 −1 0
0 0 0 1 1









A′

i =









177
−30
37
13









Using F ′ and A′

i we can still produce the correct solution
matrix, using A′T

i × F ′. In this example we used Gaussian
Elimination on F to find the smallest set of basis rows. We
will now discuss how to solve this problem using more effi-
cient algorithms.

In numerical computing, rank-revealing factorizations are
used to the find the minimal set of basis rows. We will ap-
ply three well-studied factorizations to our problem: the LU,
QR, and SVD decompositions. These algorithms will de-
compose F into two or more matrices that can be used in
local decomposition to transform Ai into A′

i and then to re-
construct A′ into the query answers at the coordinator node.
These factorization methods and their implementations are
well studied in the numerical computing literature [1]. We
now present formulations for utilizing these factoring meth-
ods.

An LU algorithm factors F into a lower triangular matrix
L and an upper triangular matrix U such that L×U = F . In
the decomposition phase we can form A′

i using AT

i ×L and
remove any entries in A′

i whose corresponding row in U is

composed of all zeros. Reconstruction at the coordinator is
simply A′×U . We can safely remove the entries in A′

i whose
corresponding row in L is all zeros because in reconstruction
those entries will always be multiplied be zero and thus do
not contribute to any results. During reconstruction we insert
null entries in A′ as placeholders to insure the size of A′ is
correct for the matrix multiplication.

Using QR factoring is very similar to using LU. In this
case, the QR algorithm factors F into a general matrix Q
and an upper triangular matrix R such that Q×R = F . We
form A′

i using AT

i ×Q and remove any entries in A′

i whose
corresponding row in R is composed of all zeros. Recon-
struction is accomplished using A′ ×R.

SVD factors F into three matrices, U , S, and V T. A′

i

is formed in decomposition using AT

i × U × S. Using this
method, we remove entries from A′

i whose corresponding
row in S is zero. Reconstruction is accomplished by com-
puting the product of A′ and V T. With all three algorithms,
the factorization of F is deterministic and therefore the same
on all nodes, allowing us to aggregate A′

is from all nodes be-
fore performing reconstruction.

These algorithms all have a running time of O(m ∗ n2)
where m is the size of the smaller dimension of F and n is
the larger dimension. In addition, all three methods would
be optimal (finding the smallest basis set and thus reducing
F and Ai to the smallest possible sizes) using infinite preci-
sion floating point math. However, in practice these are com-
puted on finite-precision computers which commonly use 64
bits to represent a floating point number. Factorization re-
quires performing many floating point multiplications and
divisions which may create rounding errors that are further
exacerbated through additional operations. While LU fac-
torization is especially prone to the finite precision problem,
QR factoring is less so, and SVD is the least likely to pro-
duce sub-optimal reductions in A′’s size. Due to this prac-
tical limitation, the factorization may not reach the optimal
size. In no case will any of these algorithms produce an
answer that requires more global aggregations than the no-
sharing scenario. In addition, these rounding error may in-
troduce errors in A′ and therefore perturb the query results.
However, these algorithms, in particular SVD, is considered
robust and used in many applications.

5 Duplicate Insensitive Aggregate
Functions

The previous algorithms preserve the invariant that each tu-
ple that satisfies a particular query will be aggregated exactly
once for that query. However, some aggregate functions,
such as MIN and MAX, will still produce the same answer
even if a tuple is aggregated more than once. We can take ad-
vantage of this property when decomposing F and achieve
a higher communication savings compared to the previous
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algorithms. Consider this simple example:

F =













1 1 0 1 1
1 0 1 1 0
0 1 1 1 0
1 1 0 0 0
1 1 1 1 0













F ′ =









1 1 0 1 1
1 0 1 1 0
0 1 1 1 0
1 1 0 0 0









We notice that the fifth row of F is equal to the OR of the
second and third (or second and fourth, or third and fourth).
Thus we can define a matrix F ′ that removes this redun-
dant row. The corresponding operation to the A matrix is
to aggregate the fifth entry with the second entry, aggregate
the fifth entry with the third entry, and then remove the fifth
entry. Intuitively, this is moving the data from the fifth frag-
ment to both the second and third fragments.

Similar to the previous sections, the goal is to find the
minimum number of independent rows. But in this case, the
independent rows are selected such that all rows in F can
be obtained by combining rows in the basis using only the
standard OR operation, rather than ONCE.

This problem is also known as the set basis or boolean
basis problem. The problem can be described succinctly as
follows. Given a collection of sets S = {S1, S2, ...Ss}, a
basis B is defined as a collection of sets such that for each
Si ∈ S there exists a subset of B whose union equals Si; the
set basis problem is to find the smallest such basis set. Our
problem is the same, where S = rows of F and B = rows of
F ′. The set of possible basis sets is 22

n where n is the num-
ber of elements in

⋃

S. This problem was proved NP-Hard
by Stockmeyer [17], and was later shown to be inapprox-
imable to within any constant factor [13]. To our knowl-
edge, ours is the first heuristic approximation algorithm for
the general problem. In [12] Lubiw shows that the problem
can be solved for some limited classes of F matrices, but
these do not apply in our domain.

As with the general decomposition problem in Section 3,
the search space of our set basis problem is severely expo-
nential in q. To avoid exhaustive enumeration, our approach
for finding the minimal basis set, F ′, is to start with the sim-
plest basis set, a q × q identity matrix (which is equivalent
to executing each query independently), and apply transfor-
mations. The most intuitive transformation is to OR two ex-
isting rows in F ′, i and j, to create a third row k. Using this
transformation (and the ability to remove rows from F ′ one
could exhaustively search for the minimal basis set. This
approach is obviously not feasible.

We apply two constraints to the exhaustive method in or-
der to make our approach feasible. First, after applying the
OR transformation, at least one of the existing rows, i or j,
is always immediately removed. This ensures that the size
of the basis set never increases. Second, we maintain the in-
variant that after each transformation the set is still a valid
basis of F .

We can now formally define two operations, BLEND and
COLLAPSE which satisfy these invariants. Given a matrix F

and a basis F ′ for F , both operations overwrite a row F ′[i]
with the OR of row F ′[i] and another row F ′[j]. COLLAPSE
then removes row j from F ′, whereas BLEND leaves row
j intact. After performing one of these operations, if the
new F ′ still forms a basis for F then the operation is valid;
otherwise the original F ′ is kept.

COLLAPSE is the operation that achieves a benefit, by re-
ducing the size of the basis set by one. COLLAPSE is exploit-
ing the co-occurrence of a bit pattern in F . However, it may
not be valid to apply COLLAPSE until one or more BLEND
operations are performed. The intuition for this is that when
the bit pattern in some original row can be used in multiple
basis rows, BLEND preserves the original row so that it can
be used as, or part of, another basis row. Consider matrix F ,
and the following invalid COLLAPSE transformation:

F =









0 1 1 1
1 0 0 1
1 1 1 1
0 1 0 1









F ′=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









→





1 0 0 1
0 1 0 0
0 0 1 0





We cannot directly COLLAPSE rows one and four in F ′ as
shown above. The resulting F ′ is no longer able to recon-
struct the first or fourth rows in F via any combination of
ORs; we call such a transformation “invalid”. However, if
we first BLEND rows two and four (leaving row four), we
can then COLLAPSE rows one and four, as shown next:

F ′=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









→









1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1









→





1 0 0 1
0 1 0 1
0 0 1 0





Using these two operations we can search a subset of the
overall search space for the minimal basis set. A simple
search algorithm, called BASIC COMPOSITION, performs
BLEND or COLLAPSE in random order until no more op-
erations can be executed. The pseudo-code is shown below:

BASIC COMPOSITION(F )
F ′ = qxq identity matrix
boolean progress = true
while progress = true

progress = false
for all rows i ∈ F ′

for all rows j ∈ F ′

if i 6= j then
if COLLAPSE (F, F ′, i, j) 6=invalid then

progress = true
break to while loop

if BLEND (F, F ′, i, j) 6=invalid then
progress = true
break to while loop

A′

i can be calculated by aggregating together each element
in Ai that corresponds to a row in F which is equal to or a
superset of the A′

i entry’s corresponding F ′ row.
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There are three key limitations of this algorithm:

• Once an operation is performed it can not be undone:
both operations are non-invertible and there is no back-
tracking. This limits the overall effectiveness of find-
ing the minimal basis set since the algorithm can get
trapped in local minima.

• The random order in which operations are performed
can determine the quality of the local minimum found.

• At any given point there are O(f 2) possible row com-
binations to choose from. Finding a valid COLLAPSE
or BLEND is time consuming.

In effect, the algorithm takes a single random walk
through the limited search space. For some workloads,
the optimal solution may not even be attainable with this
method. However, while this heuristic algorithm gives no
guarantees on how small the basis set will be, it will never be
worse than the no-sharing solution. We will show in Section
7 that this heuristic is often able to find 50% of the achiev-
able reductions in the size of the basis set, but its running
time is extremely long.
Refinements. Our first refinement takes a slightly different
approach. Instead of optimizing every query at once, we
incrementally add one query at time optimizing as we go.
The two key observations are (1) that a valid covering for
q−1 queries can cover q queries with the addition of a single
row which only satisfies the new query and (2) the optimal
solution for q queries given an optimal basis solution for q−1
queries and the single basis row for the qth query will only
have up to one valid COLLAPSE operation.

Using these observations we can define the ADD COM-
POSITION algorithm which incrementally optimizes queries
one at a time:

ADD COMPOSITION(F , F ′, start)
Require: F ′ has start columns

let q = the number of queries \\ columns in F
let f = the number of rows \\ rows in F ′

for c = start + 1 up to q
Expand F ′ to (f + 1)× c with 0’s
F ′[f + 1][c] = 1
Fc = Project(F ,c) \\ See Following Algorithm
Optimize(Fc,F ′,f + 1)

return F ′

PROJECT(S, columns)
for all rows i ∈ S

for all cols j ∈ S
if j≤columns then

S′′[i][j]=S[i][j]
else S′′[i][j]=0

S′ = unique rows in S′′

return S′

The OPTIMIZE step in ADD COMPOSITION is very sim-
ilar to the repeat loop in BASIC COMPOSITION. It has a
search loop that continues looking for combinations of rows
that can be used in a COLLAPSE or BLEND operation un-
til there are no such combinations. OPTIMIZE has two key
improvements over the BASIC COMPOSITION. First, COL-
LAPSEs and BLENDs are not considered if they combine
two old (optimized) rows. Second, since only one row was
added to F ′, once a COLLAPSE is performed the optimiza-
tion is over and the search loop is stopped, since no addi-
tional COLLAPSEs will be found. As shown in Section 7
this method is considerably faster and still equally effective
at finding a small basis set compared to the Basic Composi-
tion algorithm.

We consider the following three dimensions for search
loop strategies:
• Number of operations per iteration:

– O: Perform only one operation per search loop
and then restart the loop from beginning.

– M: Perform multiple operations per search loop
only restarting after every combination of rows
are tried.

• Operation preference:
– A: Attempt COLLAPSE first, but if not valid at-

tempt BLEND before continuing the search.
– R: Perform all COLLAPSEs while searching, but

delay any BLENDs found till the end of the search
loop.

– S: First search and perform only COLLAPSE oper-
ations, then search for and perform any BLENDs.
This requires two passes over all row pairs per
loop.

• Operation timing:
– W: Execute operations immediately and consider

the new row formed in the same loop.
– D: Execute operations immediately but delay con-

sidering the new row for additional operations till
the next loop.

– P: Enqueue operations till the end of the search
loop and then execute all operations.

The BASIC COMPOSITION algorithm shown uses the O/A
strategy. The algorithm performs one operation per itera-
tion of the outer loop. So after each operation, it will begin
the search again from the beginning. The algorithm favors
COLLAPSE by attempting that operation first. The opera-
tor timing dimension is not relevant for strategies that only
perform one operation per iteration. Note that the BASIC
COMPOSITION can be modified to use any of the possible
search strategies. In the evaluation section we only show the
strategy that performed the best in our experiments, M/A/W.

There are only twelve search strategies possible using the
three dimensions evaluated (when performing only one op-
eration per search loop, operation timing is not relevant). All
twelve are experimentally evaluated in Section 7.
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6 Potential Gains
Before we evaluate the effectiveness of our techniques ex-
perimentally, we explore the analytical question of identify-
ing query/data workloads that should lead to significant ben-
eficial sharing, and quantifying that potential benefit. This
will provide us a framework for evaluating how close our
“optimization” techniques come to a true optimum. In this
section, we show that there are cases where sharing leads to
arbitrarily high gain, given a sufficient number of queries.
We present two constructions, one designed for duplicate in-
sensitive query workloads, the other for duplicate sensitive
workloads. Our goal is to construct a workload that maxi-
mizes the sharing or benefit potential. We define the total
gain, Gt as:

Gt = 1− (# aggregates executed÷ # queries answered)

We also define the fragment gain which is the gain over com-
puting each fragment, s as:

Gf = 1− (# aggregates executed÷ # fragments)

The total gain, Gt, is the most important metric, since an
effective decomposition algorithm can translate this sharing
potential into a proportional amount of network bandwidth
savings. The fragment gain, Gf is the benefit over comput-
ing every fragment in F .

6.1 Duplicate Insensitive
To maximize the sharing potential we start with b
base queries (b1, b2, b3, ...bb) and data that satis-
fies every conjunctive combination of the b queries
({b1}, {b2}, {b3}, ...{b1, b2}, {b1, b3}, ...{b1, b2, b3, ...bb})
such that we have 2b − 1 fragments (the −1 is for data that
satisfies no queries). At this stage, no sharing is beneficial
since only b aggregates are actually needed (one for each
query).

Using the initial b queries, we can write an additional
2b − 1 − b queries by combining them via disjunction, i.e.
query x matches data that satisfies query b1 and b2, query
y matches data satisfying b2 or b3, etc. One such additional
query is outlined in Figure 2(a). In this case there are 2b such
combinations from which we subtract the original b queries
and the combination that is the disjunction of the empty set
of queries. The additional queries do not introduce any ad-
ditional fragments.

These new 2b − 1 − b queries can be answered if we
have the answers to the original b queries. Since the ag-
gregate functions we consider here are duplicate insensitive,
the disjunction of multiple queries is simply their aggrega-
tion. So if we compute the aggregates for the original b
queries, we can clearly answer the original b queries plus
the new 2b−b−1 queries for a total of 2b−1 queries. Thus,
Gt = Gf = 1 − b

2b−1
. As b → ∞ the gain approaches 1

which is maximal.

Figure 2: Example Venn diagrams for duplicate insensitive con-
struction (a) and the duplicate sensitive construction (b). In (a) the
additional query b1 ∪ b2 is outlined. In (b) the additional query
b1 ∪ c1 ∪ c2 is outlined.

The intuition behind this construction is that queries that
are the disjunction of other queries lead to sharing opportu-
nities. While the first b base queries have significant amount
of overlap, the overlap is not precise creating additional frag-
ments. It should be noted that none of the 2b − 1 fragments
created from the b base queries are actually used to answer
any queries, instead the b base queries are computed directly
and used to compute the additional 2b − 1− b queries. This
is only possible because the aggregation functions are dupli-
cate insensitive and the overlap in data between the b base
queries does not affect the answer for the additional queries.

Furthermore, it is not necessary that the b base queries are
explicitly requested by users. If only the additional queries
were issued, those queries could still be answered using just
b global fragments. This means that the gain is realized when
the query set is just the disjunction of a smaller number of
overlapping fragments.

6.2 Duplicate Sensitive
This construction is similar to the previous construction,
with b base queries and 2b − 1 fragments. Now we add c
non-overlapping queries such that data that satisfies one of
the c queries and does not match any other query (from b or
c). Thus, there are c additional fragments for a total of b + c
fragments.

We now add 2c− 1− c additional queries based solely on
the c non-overlapping queries by taking the disjunction of
every possible combination of the c queries. These queries
can be answered by aggregating the answers from the origi-
nal c queries. Note, this does not count any tuple twice since
the c queries were non-overlapping.

We also add (2c − 1) × (b) more queries by taking the
disjunction of every possible combination of the c queries
and exactly one query from the b base queries. For example,
we take c1 ∪ b1, c2 ∪ b2, c1 ∪ c2 ∪ b1 and c1 ∪ c2 ∪ b2, etc.
One such additional query is outlined in Figure 2(b). Since
each of these additional queries is only the disjunction of one
query from b, there is still no overlap, so no data is counted
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multiple times.
In summary we have b + c + 2c − 1 − c + (2c − 1) × b

queries which could be answered using b+c fragments. This
leads to a total gain of 1 − b+c

2c−1+b×2c , and fragment gain
of 1 − b+c

2b−1+c
. As b and c approach infinity, the total and

fragment gains approach 1 which is maximal.
Intuitively, the c queries are the source of sharing, since

we are able to construct many additional queries that are the
disjunction of multiple base c queries. The b queries are the
source of the fragment gain, since the overlap they create
increases the number of fragments that are not needed.

7 Experimental Evaluation
In this section we evaluate the performance of the various de-
composition methods we have presented. Rather than focus
on a specific workload from a speculative prototype system,
we pursue an experimental methodology that allows us to
map out a range of possible workloads, and we evaluate our
techniques across that range.

We present a random workload generator based on our
analysis of the gain potential in the previous section. This
generator allows us to methodically vary the key parame-
ters of interest in evaluating our techniques: the workload
size, and the degree of potential benefit that our techniques
can achieve. Within various settings of these parameters, we
then compare the relative costs and benefits of our differ-
ent techniques. After describing our workload generator, we
present our experimental setup and our results.

7.1 Workload Generators
We designed a workload generator that allows us to input the
desired size and total gain for a test F matrix. By control-
ling the total gain we are able to test the effectiveness of our
algorithms. Using the combination of the two knobs we can
explore various workloads. We have two generators, one for
duplicate sensitive aggregates and one for duplicate insensi-
tive aggregates, that create test F matrices. The construc-
tions from the previous section are used to develop these
generators.

For the duplicate insensitive generator we can calculate
the number of basis rows, b, the number of fragments, f ,
and the number of queries, q based on the desired matrix
size and gain. Each of the b basis rows maps to one of the
b base queries in the constructor. Instead of generating all
2b − 1 fragments, we uniformly at randomly select the f
fragments from the set of possible fragments. Analogously,
we uniformly at randomly select unique additional columns
(queries) from the set of up to 2b− b− 1 possible additional
queries. The generation is finalized by randomly permuting
the order of the rows and columns.

This construction gives us a guarantee on the upper bound
for the minimum number of basis rows needed, b. The opti-
mal answer may in fact be smaller if the rows selected from

the set of 2b − 1 can be further reduced. Since the rows are
chosen randomly, such a reduction is unlikely. In our experi-
ments, we attempt to check for any reduction using the most
effective algorithms we have.

The duplicate sensitive generator works much the same,
except with the addition of the c basis rows. The additional
columns (queries) are generated by ORing a random com-
bination of the c base queries and up to one of the b base
queries. Values for the number of b and c queries are ran-
domly chosen such that their sum is the desired number of
basis rows and such that b is large enough to ensure enough
bitmaps can be generated and c is large enough that enough
combination of queries can be generated.

Also note that the original b (and c) queries remain in
the test matrix for both generators; while this may intro-
duce a bias in the test, we are unable to remove these queries
and still provide a reasonable bound on the optimal answer.
Without knowing the optimal answer it is hard to judge the
effectiveness of our algorithms.

7.2 Experimental Setup
We have implemented in Java all of the decomposition algo-
rithms presented in the previous sections. Our experiments
were run on dual 3.06GHz Pentium 4 Xeon (533Mhz FSB)
machines with 2GB of RAM using the Sun Java JVM 1.5.06
on Linux. While our code makes no specific attempt to uti-
lize the dual CPUs, the JVM may run the garbage collector
and other maintenance tasks on the second CPU. All new
JVM instances are first primed with a small matrix prior to
any timing to allow the JVM to load and compile the class
files.

For the LU/QR/SVD decompositions we utilize the JLA-
PACK library, which is an automatic translation of the highly
optimized Fortran 77 LAPACK 2.0 library. We also tested
calling the Fortran library from C code. Our results showed
that the Java version was about the same speed for the SVD
routines (in fact slightly faster in some instances) while the
more optimized LU and QR routines were about twice as
slow on Java. Overall, the runtime differences are minor and
do not effect our conclusions on relative speed or effective-
ness so we only present the results from the Java version.

We have three metrics:
• the relative effectiveness (which is equivalent to the rel-

ative decrease in network bandwidth used for comput-
ing the aggregates)

• the running times of the decomposition routine
• the absolute size of the resulting matrix A′ which is

directly proportional to the network bandwidth

In particular, the relative effectiveness is based on the re-
sulting size of A′, the estimated optimal answer k and the
number of queries q. It is defined as (q − |A′|) ÷ (q − k)
or the ratio of attained improvement to that of an optimal
algorithm.
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We vary the ratio of the number of fragments to queries
(whether the test matrix is short, square, or long) from 1/2
to 2. We repeat each experiment ten times with different
test matrices of the same characteristics (size and total gain);
the results presented include the average and plus/minus one
standard deviation using error-bars.

7.3 Results
We first present the result from the linear decomposition al-
gorithms, which prove effective and fast for linear aggre-
gates. Next, we show results for the duplicate insensitive
heuristics where we highlight the best and worst performing
variants. Finally we discuss the results for the basic decom-
position algorithm.
Linear Aggregates. Our first set of experiments evaluate the
linear aggregate decompositions using the duplicate sensi-
tive workload generator. In Section 4 we noted that LU, QR,
and SVD can be used to compute to A′. They differ in their
running times, and in practice there is a concern that numer-
ical instability (via rounding during repeated floating-point
arithmetic) can cause the techniques to incorrectly solve for
the basis, and produce an inefficient F ′. Figure 3 shows the
resulting size of A′, the overall effectiveness, and the run-
ning time for the three algorithms using square matrices (500
queries with 500 fragments).

QR and SVD give always optimal results by finding the
lowest rank and therefore the smallest A′. LU lagged in ef-
fectiveness due to sensitivity to precision limitations, with
low effectiveness for matrices that had small potential gain
and near optimal effectiveness for matrices that had high po-
tential. As expected, LU and QR are substantially faster than
SVD in our measurements by about an order of magnitude.
Figure 4 shows that runtime increases polynomially (O(q3))
as the size of the test matrix is increased.

The trends remain the same when the shape of the test
matrix is changed. These results are summarized in the Ap-
pendix. QR and SVD remain optimal and LU has an overall
effectiveness ranging from 50-85%. As expected, the run-
ning times increase for matrices with additional rows and
decrease for matrices with fewer rows.

In summary, QR achieves the best tradeoff of effective-
ness and speed. While SVD has been designed to be more
robust to floating point precision limits, QR was able to per-
form just as well on this type of binary matrix. LU has no
benefit, since it is just as fast as QR, but not nearly as effec-
tive in finding the lowest rank.
Duplicate Insensitive Aggregates. Our second set of tests
evaluate the composition family of heuristics using the du-
plicate insensitive workload generator. In Figure 5 we show
the results. For clarity, we include a representative selection
of the algorithms, including the BASIC COMPOSITION and
the ADD COMPOSITION using five strategies (OR, MAP,
MAD, MAW, and MRW). The strategies for ADD COMPO-
SITION were chosen since they include: (1) the best strat-
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Figure 3: For 500x500 test matrices: (a) shows the resulting size
of A′. The solid line at y=500 represents the starting size and the
lower solid line represents optimal. QR and SVD are always opti-
mal and are drawn on top of the lower line. (b) shows the running
time for each.
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Figure 4: The running time as the size of square matrices are in-
creased.

egy when used with BASIC COMPOSITION, (2) the worse
performing, (3) the best performing and (4) two strategies
similar to the best performing. The strategies not shown
have similar shaped curves falling somewhere in the spec-
trum outlined by those shown. All strategies are defined in
Section 5. The results for all algorithms are summarized in
the Appendix.

The results show that ADD COMPOSITION with the MAP
search strategy is both the most effective and the fastest, al-
though not much more effective than with the OR strategy
(which is substantially slower). This is somewhat surprising
given how different the MAP and OR strategies seem. Also
note that in most cases the relative effectiveness and the run-
ning time are inversely correlated. This indicates that some
algorithms spend a lot of time searching and producing little
benefit.

As explained in Section 5 the gain is revealed through the
COLLAPSE operation. However, before COLLAPSE can be
performed often a number of BLEND operations are needed
before a COLLAPSE can be used. Search strategies that
search for both COLLAPSE and BLEND at the same time tend
to do better than strategies that search for more and more
BLENDs after each other.

For example the MSW search strategy will first search
for any possible COLLAPSE operations, and then search
for BLEND operations separately. As an operation is per-
formed the resulting row is considered for further operations
in the same search loop. Even though COLLAPSEs are per-
formed before BLENDs, once the strategy begins performing
BLENDs it will continue to exclusively perform them until
no more can be found. As a result, it gets stuck in this phase
of the search loop. Even worse, it performs so many BLEND
operations that they block future COLLAPSE operations and
find a poor local minimum. This strategy often finds a local
minimum and ends after it executes only two or three search
loops.

In contrast, the OR and MAP strategies are quick to search
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Figure 5: For 100x100 test matrices (a) shows the resulting size
of A′. The solid line at y=100 represents the starting size and the
lower solid line represents optimal. (b) shows the relative effective-
ness. (c) shows the running time for each.
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for more COLLAPSE operations after performing any oper-
ation. In the case of MAP, all possible operations with the
given set of rows is computed, and they are then executed
without further searching. While this tends to need many
search loops, the strategy will not get caught in a long stretch
of BLENDs. In the case of OR, after every operation the
search loop ends, and the search restarts. This strategy pre-
vents getting stuck in the BLEND phase, but also wastes time
continually searching the same portion of the search space
over and over again after each operation. This causes the
OR strategy to be considerably slower than the MAP strat-
egy.

Figure 6 shows the running times of the fastest basic
composition and additive composition strategies, for various
sized square matrices. Unfortunately, none of the algorithms
scale well as the matrix size is increased. However, the ad-
ditive composition scales considerably better than the basic
composition algorithm. Effectiveness, not shown, remains
the same or slightly increases as the size of the matrix in-
creases.

Note that the super-linear scaling is not unexpected. The
problem of finding a minimal boolean basis has been shown
to be equivalent to finding the minimal number of maximal
cliques in a bipartite graph [12]. Finding the maximal bi-
clique is not only NP-Hard, but also is known to be hard
to approximate. Our solution, while not fully exhaustive,
considers a very large number of possibilities and produces
near-optimal answers in our experiments.

In summary, the Add Composition algorithm with the
MAP search strategy is the clearly the winner. It is 70-90%
effective in finding the smallest basis set, and is often the
fastest algorithm for duplicate insensitive aggregates.

Basic Decomposition. As expected, our basic decomposi-
tion presented in Section 3 which works for all aggregate
functions, is ineffective in most situations. Due to space lim-
itations we do not show any results and only summarize our
findings. For duplicate sensitive tests, the algorithm can of-

ten produce answers that are worse than no-sharing, gener-
ating an A′ that has more entries than the number of queries,
and in rare cases showing modest sharing of 5-20% opti-
mal. The algorithm performs best in cases where there is
large sharing potential. Perhaps the only redeeming charac-
teristic of the algorithm is that it is fast, running faster than
a half second for 500 queries, and only a few seconds for
1500 queries. For duplicate insensitive tests, the algorithm
finds sharing potential extremely rarely, but runtime remains
the same. This is expected, since the algorithm makes no
attempt to exploit the duplicate insensitive property.

Given these results, it is clear that this general-purpose
technique should not be used when our special-purpose so-
lutions can be used (i.e., for duplicate insensitive and linear
aggregates.) Non-linear, duplicate-sensitive aggregates ap-
pear to be an extremely difficult family to optimize in our
context.

8 Practical Matters
In this section we discuss how we ensure that every node has
the correct F matrix, whether through explicit or implicit
communication, and its associated network overhead. We
then discuss how to extend our methods to work for a larger
class of complex queries.

8.1 Synchronizing F Across the Network
In order to ensure the PSRs in A′ that are communicated
from one node to another are correctly decoded we must
guarantee that every node has the same F matrix. Otherwise,
during the global aggregation or reconstruction phases, the
PSRs in A′ may be incorrectly aggregated causing the query
results to be wrong. This is very important for correctness
of some decomposition algorithms such as the linear alge-
bra routines LU, QR, and SVD. For the other decomposition
algorithms presented there is an optimization to the archi-
tecture that eliminates this requirement. We first describe a
simple method for ensuring all nodes have the same F and
then describe the optimization.

At the end of every aggregation window (after the node
has collected all the raw data necessary to compute the ag-
gregates for that window) each node, i, computes its local F
matrix, Fi. Since each node may have a different distribu-
tion of data, the matrix Fi at node i may differ from matrix
Fj at node j 6= i. The global F is the set union of the rows
in all local Fi’s.

This can be computed like any other aggregate using a
tree. All the leaves of the tree send their complete Fi to
their parents. Their parents compute the union over all their
children, and send the result to their parent. At the root of
this aggregation tree, the global F is computed. The global
F is then multicast to every node on the reverse path of the
aggregation tree.
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For subsequent windows only additions to F need to be
transmitted up or down the aggregation tree. Deletions can
also be propagated up the aggregation tree, however any
node along the path can stop the propagation (which prevents
a change to the global F ) if it has at least one other child (or
itself) still needing that row. The addition or deletion of a
query will also change F . Query (column) deletions require
no communication (every node simply removes the column
for F ). The addition of a query (column) affects every row
in F , but in a limited fashion. Each row is either extended
with a 1, a 0, or both (which requires duplicating the old
row). This can be compactly transmitted as a modification
bitmap with two bits per existing row. The global modifi-
cation bitmap is the OR of every node’s individual modifi-
cation bitmap which can also be efficiently computed as an
aggregate.

Once all nodes have the global F , the general computa-
tion of the query aggregates can begin. This synchronization
method has the negative effect of delaying all results for at
least the duration of one global aggregation plus one global
multicast. In practice, the actual delay must be sufficiently
long to accommodate worst case delays in the network.

The exact communication cost of this method is depen-
dent on the query/data workload. However, given a constant
set of q queries and a set of n nodes, we can show the worst
case cost of synchronizing F for each additional bitmap, and
for how many windows the system must remain unchanged
to recoup the cost.

The worst case communication cost occurs if at least ev-
ery leaf node in the aggregation tree requires the addition of
the same new row in a given aggregation window. In this sit-
uation every node will need to transmit the new row in F up
and down the aggregation tree which yields a cost of 2∗n∗q
bits per row. If only one node requires the new row the cost
is roughly n∗q+log(n)∗q as only one node is sending data
up the aggregation tree.

Assume the size of each PSR is p bits. The savings real-
ized from sharing will never be less than the eventual total
gain, Gt. During each window, (1 − Gt) ∗ q aggregates
are being computed instead of q queries in the no-sharing
scenario, for a benefit of ((q − (1 − Gt) ∗ q) ∗ p) ∗ n =
Gt ∗ q ∗ n ∗ p bits per window. We reach the break-even
point after 2∗n∗q

Gt∗q∗n∗p
= 2

Gt∗p
windows. If multiple rows

must be added at the same time, the number of windows till
the break-even point increases proportionally.

The basic decomposition and the algorithms for duplicate
insensitive aggregates do not require a global F and can
avoid the associated costs. Instead, it is sufficient to anno-
tate every entry in A′ with its corresponding binary row in
F ′. Since every aggregation tree is required to have an iden-
tifier (such as a query identifier) to distinguish one tree from
another, the basis row entry can be used as the identifier.
This is possible since the reconstruction phase does not any
require additional information about the decomposition.

While this optimization does not apply to linear aggre-

gates there are other techniques that could be considered.
For some query workloads a static analysis of the query
predicates may be sufficient to compute a superset of F .
This can be further extended to handle the actual data dis-
tribution by having nodes compactly communicate which
portions of the data space they have. We leave a complete
analysis of this optimization for future work.

8.2 Complex Queries

Our query workload to this point might seem limited: sets
of continuous queries that are identical except for their se-
lection predicates. In this section we observe that our
techniques can be applied to richer mixes of continuous
queries, as a complement to other multiquery optimization
approaches.

For example, [11, 10] discuss optimizing sharing with
queries that have different window parameters. Their meth-
ods partition the stream into smaller windows that can later
be combined to answer each of the queries. One can view
the window-share optimization as query rewriting, produc-
ing a set of queries with the same window parameters, which
are post-processed to properly answer each specific query.
In that scenario, our technique is applied to the rewritten
queries. Similarly, queries with different grouping attributes
can also be optimized for sharing. In that case, the smallest
groups being calculated would be treated as separate parti-
tions of the data that are then optimized separately by our
techniques. After processing the results can be rolled-up ac-
cording to each query’s specification.

Our approach does not depend on a uniform aggregation
expression across queries. Queries that include multiple ag-
gregate functions, or the same function over different at-
tributes, or queries that require different aggregate functions
can be optimized as one in our approach – as long as the
same decomposition can be used for all the aggregate ex-
pressions. In these cases, the PSR contained in A or A′ is
the concatenation of each PSR needed to answer all aggre-
gate functions. In those cases where different decomposi-
tions must be used (e.g., one function is a MAX and another
is a COUNT) then they can be separately optimized and ex-
ecuted using our techniques.

Our results showed that there is a clear choice of which
optimization technique to use for most classes of aggre-
gate functions. However, if a function is both linear and
duplicate-insensitive, it is unclear which technique to apply.
While few functions fall in this category (see Section 2.2),
for those functions the selection of algorithm will be de-
pendent on the specific workload. Characterizing the trade-
offs among workloads for these unusual functions remains
an open problem.
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9 Conclusion
We have introduced the problem of optimizing sharing for
distributed aggregation queries with different selection pred-
icates. We have demonstrated that such sharing can be re-
vealed through the dynamic analysis of a binary fragment
matrix capturing the connections between data and query
predicates and the algebraic properties of the underlying ag-
gregate functions. For the case of linear aggregates, we
show that the sharing potential can be optimally recovered
using standard linear-algebra techniques. Unfortunately, for
duplicate-insensitive aggregates our sharing problem is NP-
hard; thus, we propose a novel family of heuristic search al-
gorithms that is shown to perform well for moderately-sized
matrices.
Acknowledgements. The authors would like to thank David
Bindel for his help with the linear algebra decompositions,
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aspects of the problem.
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APPENDIX
Data for all algorithms averaged over all total gains for each
particular matrix size. Standard deviation shown in paren-
theses.

F Size Algorithm A′ size % Effective Runtime (ms)
250x500 LU 346.6 (164.1) 53.3% 884.8 (205.0)
250x500 QR 250.0 (151.8) 100% 1057.6 (24.1)
250x500 SVD 250.0 (151.8) 100% 9989.5 (545.5)
500x500 LU 345.6 (164.0) 48.5% 689.3 (159.6)
500x500 QR 250.0 (151.82) 100% 702.15 (81.48)
500x500 SVD 250.0 (151.82) 100% 6931.0 (431.0)
750x500 LU 235.6 (35.4) 83.4% 577.5 (306.4)
750x500 QR 175.0 (56.6) 100% 452.7 (81.0)
750x500 SVD 175.0 (56.6) 100% 3170.5 (311.9)
50x100 Basic-MAW 60.9 (17.3) 53.6% 33304 (16694)
50x100 Add-OA 57.6 (16.3) 58.4% 28416 (20980)
50x100 Add-OR 48.6 (12.2) 73.1% 19622 (4780)
50x100 Add-OS 49.4 (11.8) 72.0% 9059 (3484)
50x100 Add-MAD 55.6 (16.4) 61.5% 35145 (13880)
50x100 Add-MAP 45.2 (11.8) 78.3% 2730 (733)
50x100 Add-MAW 52.6 (14.3) 66.5% 5190 (2035)
50x100 Add-MRD 87.6 (5.2) 18.4% 33409 (16544)
50x100 Add-MSD 49.7 (12.7) 71.4% 12675 (4488)
50x100 Add-MRP 87.9 (5.1) 18.1% 33475 (16116)
50x100 Add-MSP 87.9 (5.1) 18.1% 33145 (15982)
50x100 Add-MRW 87.6 (5.2) 18.4% 33424 (16580)
50x100 Add-MSW 99.8 (0.4) 0.3% 22610 (1681)

100x100 Basic-MAW 77.8 (16.5) 47.5% 38740 (14815)
100x100 Add-OA 77.1 (20.3) 41.4% 36493 (21889)
100x100 Add-OR 67.3 (20.7) 72.2% 26433 (15700)
100x100 Add-OS 66.7 (20.3) 74.1% 9924 (6624)
100x100 Add-MAD 77.3 (20.5) 41.1% 45602 (23751)
100x100 Add-MAP 64.6 (21.2) 79.6% 4170 (1737)
100x100 Add-MAW 71.7 (20.4) 58.0% 6975 (2265)
100x100 Add-MRD 96.5 (4.7) 6.0% 56812 (28320)
100x100 Add-MSD 67.7 (20.0 72.3% 14727 (12835)
100x100 Add-MRP 96.3 (5.1) 6.2% 56416 (27898)
100x100 Add-MSP 96.3 (5.1) 6.2% 56453 (27972)
100x100 Add-MRW 96.5 (4.7) 6.0% 56754 (28308)
100x100 Add-MSW 99.6 (0.8) 1.5% 18984 (9136)
150x100 Basic-MAW 77.3 (15.5) 48.6% 44446 (18225)
150x100 Add-OA 78.0 (19.8) 40.8% 46702 (28646)
150x100 Add-OR 67.6 (20.4) 71.1% 39248 (25552)
150x100 Add-OS 65.8 (20.5) 76.1% 11672 (8922)
150x100 Add-MAD 77.9 (20.1) 40.6% 59397 (36990)
150x100 Add-MAP 64.6 (21.1) 79.9% 5788 (2554)
150x100 Add-MAW 71.9 (20.1) 57.6% 8694 (3107)
150x100 Add-MRD 96.7 (4.4) 6.0% 67981 (31839)
150x100 Add-MSD 67.7 (20.2) 73.2% 18458 (16314)
150x100 Add-MRP 96.5 (5.0) 6.3% 68117 (32045)
150x100 Add-MSP 96.5 (5.0) 6.3% 68173 (32209)
150x100 Add-MRW 96.7 (4.4) 6.0% 67929 (31739)
150x100 Add-MSW 99.6 (1.0) 1.5% 22105 (12201)
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