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Abstract

We consider the problem of network anomaly detection given the data collected and pro-
cessed over large distributed systems. Our algorithmic framework can be seen as an ap-
proximate, distributed version of the well-known Principal Component Analysis (PCA)
method, which is concerned with continuously tracking the behavior of the data projected
onto the residual subspace of the principal components within error bound guarantees. Our
approach consists of a protocol for local processing at individual monitoring devices, and
global decision-making and monitoring feedback at a coordinator. A key ingredient of our
framework is an analytical method based on stochastic matrix perturbation theory for bal-
ancing the tradeoff between the accuracy of our approximate network anomaly detection,
and the amount of data communication over the network.

1 Introduction

The area of distributed computing systems provides a promising domain for applications of machine
learning methods. One of the most interesting aspects of such applications is that learning algorithms
that are embedded in a distributed computing infrastructure are themselves part of that infrastructure
and must respect its inherent local computing constraints (e.g., constraints on bandwidth, latency,
reliability, etc.), while attempting to aggregate information across the infrastructure so as to improve
system performance (or, availability) in a global sense.

Consider, for example, the problem detecting anomalies in a wide-area network. While it is straight-
forward to embed learning algorithms at local nodes to attempt to detect node-level anomalies, these
anomalies may not be indicative of network-level problems. Indeed, in recent work, [10] demon-
strated a useful role for Principal Component Analysis (PCA) to detect network anomalies. They
showed that the minor components of PCA (the subspace obtained after removing the components
with largest eigenvalues) revealed anomalies that were not detectable in any single node-level trace.
While their work did not face the distributed data analysis problem (it involved centralized, off-line
analysis of blocks of data), it does provide clear motivation for attempting to design a distributed
PCA-based system for analyzing network anomalies in real time.

The development of such a design involves facing several challenging problems that have not been
addressed in previous work. Naive solutions that continuously push all data to a central analysis
site simply cannot scale to large networks or massive data streams. Instead, viable solutions need
to process data “in-network” to intelligently control the frequency and size of data communications.
The key underlying problem is that of developing a mathematical understanding of how to trade off
quantization arising from local bandwidth restrictions against fidelity of the data analysis. We also
need to understand how this tradeoff impacts overall detection accuracy. Finally, the implementation
needs to be simple if it is to have impact on developers.

In this paper, we present a simple algorithmic framework for approximate distributed PCA tracking,
together with supporting theoretical analysis. In brief, the architecture involves a set of local mon-
itors that maintain parameterized sliding filters. These sliding filters yield quantized data streams



that are sent to a coordinator. The coordinator makes global decisions based on these quantized data
streams, and also provides feedback to the monitors, allowing them to update the parameters of their
filters. Our basic theoretical tool is stochastic matrix perturbation theory. This tool turns out to be
quite well suited to our problem, yielding analytical expressions or explicit bounds for many of the
quantities that are needed in either our approximate PCA-tracking algorithm or in the analysis of
its performance guarantees. The combination of our theoretical tools and local filtering strategies
results in a distributed tracking algorithm that can achieve high detection accuracy with low com-
munication overhead; for instance, our experiments show that, by choosing a relative eigen-error of
1.5% (yielding, approximately, a 4% missed detection rate and a 6% false alarm rate), we can filter
out more than 90% of the traffic for the original signal.

Prior Work. The original work on PCA-based methods by Lakhina et al. [10] has been extended
by [20], who show how to infer network anomalies in both spatial and temporal domains. As with
[10], this work is completely centralized. Other initiatives in distributed monitoring, profiling and
anomaly detection aims to share information and foster collaboration between widely distributed
monitoring boxes to offer improvements over isolated systems [13, 18, 19]. In the setting of simpler
statistics such as sums and counts, distributed detection methods related to ours have been explored
by [8]. Finally, work in the machine learning literature that combines learning methods with dis-
tributed constraints includes work by [12], who introduce a distributed kernel-based classification
algorithm and [9], who consider a distributed message passing algorithm in graphical models.

Organization. We start by discussing our system model and background on PCA-based network
traffic anomaly detection in Section 2. Section 3 presents our distributed PCA-tracking algorithm
and highlights our main analytical results. (Due to space constraints, detailed proof arguments can
be found in the appendix.) We present the experimental evaluation of our system in Section 4, and
give our conclusions in Section 5.

2 Problem description and background

We consider a monitoring system comprising a set of local monitor nodes M1, . . . , Mn each of
which collects a locally-observed time-series data stream (Fig. 1(a)). For instance, the monitors
may collect information on the number of TCP connection requests per second, the number of
DNS transactions per minute, or the volume of traffic at port 80 per second. A central coordinator
node aims to continuously monitor the global collection of time series, and make global decisions
such as those concerning matters of network-wide health. Although our methodology is generally
applicable, in this paper, we focus on the particular application of detecting volume anomalies. A
volume anomaly refers to unusual traffic load levels in a network that are caused by anomalies such
as worms, DDoS attacks, device failures, misconfigurations, and so on.

Each monitor collects a new data point at every time step and, assuming a naive, “continuous push”
protocol, sends the new point to the coordinator. Based on these updates, the coordinator keeps track
of a sliding time window of size m (i.e., the m most recent data points) for each monitor time series,
organized into a matrix Y of size m × n (where the ith column Yi captures the data from monitor
i, see Fig. 1(a)). The coordinator then makes its decisions based solely on this (global) Y matrix.

The network-wide volume anomaly detection algorithm of [10] works by local monitors measuring
the total volume of traffic (in bytes) on each network link, and periodically (e.g., every 5 minutes)
centralizing the data by pushing all recent measurements to the coordinator. The coordinator then
performs PCA on the assembled Y matrix to detect volume anomalies. (Details are given later in
this section.) This method has been shown to work remarkably well, in part due to the inherently
low-dimensional nature of the underlying data. However, such a “periodic push” approach suffers
from inherent limitations: To ensure fast detection, the update periods should be relatively small;
unfortunately, small periods also imply increased monitoring communication overheads, which may
very well be unnecessary (e.g., if there are no significant local changes across periods). Instead,
in our work, we study how the monitors can effectively filter their time-series updates, sending as
little as possible, yet enough so as to allow the coordinator to make global decisions accurately.
We provide analytical bounds on the errors that occur because decisions are made with incomplete
data, and explore the tradeoff between reducing data transmissions (communication overhead) and
decision accuracy.
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Ŷ =

Y =

(a) The system setup

Mon Tue Wed Thu Fri Sat Sun
0

1

2

3
x 1018

S
ta

te
 V

ec
to

r

Mon Tue Wed Thu Fri Sat Sun
0

0.5

1

1.5

2
x 10

17

R
es

id
ua

l V
ec

to
r

(b) Abilene network traffic data

Figure 1: (a) The distributed monitoring system; (b) Data sample (‖y‖2) collected over one week (top); its
projection in residual subspace (bottom). Dashed line represens a threshold for anomaly detection.

Using PCA for centralized volume anomaly detection. As observed by Lakhina et al. [10], due
to the high level of traffic aggregation on ISP backbone links, volume anomalies can often go unno-
ticed by being “buried” within normal traffic patterns (e.g., the circle dots shown in the top plot in
Fig 1(b)). On the other hand, they observe that, although, the measured data is of seemingly high
dimensionality (n = number of links), normal traffic patterns actually lie in a very low-dimensional
subspace; furthermore, separating out this normal traffic subspace using PCA (to find the principal
traffic components) makes it much easier to identify volume anomalies in the remaining subspace
(bottom plot of Fig. 1(b)).

As before, let Y be the global m × n time-series data matrix, centered to have zero mean, and
let y = y(t) denote a n-dimensional vector of measurements (for all links) from a single time
step t. Formally, PCA is a coordinate-transformation method that maps a given set of data points
onto principal components ordered by the amount of data variance that they capture. The set of n
principal components, {vi}n

i=1, are defined as:

vi = arg max
‖x‖=1

‖(Y −
i−1
∑

j=1

Yvjv
T
j )x‖

and are the n eigenvectors of the estimated covariance matrix A := YT Y. As shown in [10],
PCA reveals that the Origin-Destination (OD) flow matrices of ISP backbones have low intrinsic
dimensionality: For the Abilene network with 41 links, most data variance can be captured by the
first k = 4 principal components. Thus, the underlying normal OD flows effectively reside in a
(low) k-dimensional subspace of R

n. This subspace is referred to as the normal traffic subspace
Sno. The remaining (n − k) principal components constitute the abnormal traffic subspace Sab.

Detecting volume anomalies relies on the decomposition of link traffic y = y(t) at any time step into
normal and abnormal components, y = yno +yab, such that (a) yno corresponds to modeled normal
traffic (the projection of y onto Sno), and (b) yab corresponds to residual traffic (the projection of y
onto Sab). Mathematically, yno(t) and yab(t) can be computed as

yno(t) = PPT y = Cnoy and yab(t) = (I −PPT )y = Caby

where P = [v1,v2, . . . ,vk], is formed by the first k principal components which capture the dom-
inant variance in the data. The matrix Cno = PPT represents the linear operator that performs
projection onto the normal subspace Sno, and, Cab projects onto the abnormal subspace Sab.

As observed in [10], a volume anomaly typically results in a large change to yab; thus, a useful
metric for detecting abnormal traffic patterns is the squared prediction error (SPE):

SPE ≡ ‖yab‖2 = ‖Caby‖2
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Figure 2: Our distributed tracking and detection framework.

(essentially, a quadratic residual function). More formally, their proposed algorithm signals a vol-
ume anomaly, if SPE > Qα, where Qα denotes the threshold statistic for the SPE residual function
at the 1− α confidence level. Such a statistical test for the SPE residual function, known as the Q-
statistic [7], can be computed as a function Qα = Qα(λk+1, . . . , λn), of the (n − k) non-principal
eigenvalues of the covariance matrix A.

3 Distributed PCA for anomaly detection

We now describe our communication-efficient distributed solution for real-time approximate PCA
tracking and detection. In a nutshell, the key idea is to limit monitor-coordinator interactions by in-
stalling local filters at the monitors, and forcing communication only when such local constraints are
violated. Using stochastic matrix perturbation theory to analyze the effect of this local quantization
on the global matrix PCA, we propose a simple, adaptive distributed protocol with useful, provable
performance guarantees on the communication/detection accuracy tradeoff.

3.1 Overview of our approach

Our approach for distributed, PCA-based anomaly detection comprises two parts: (1) the monitors
process their collected data by applying local filtering rules to suppress unnecessary message updates
to the coordinator; and, (2) the coordinator makes global detection decisions and provides feedback
to the monitors (e.g., local filter parameter settings) based on the observed updates. Fig. 2 illustrates
the overall architecture of our distributed anomaly-detection system.

Local Processing at Monitors. The goal of a monitor is to track its local raw data stream, and
update the coordinator of any considerable drift that might affect the global decision made by the
coordinator. Of course, our goal is to avoid flooding the coordinator with all the raw data. To
this end, each monitor i maintains a filtering window Fi(t) of size 2δi centered at a value Ri (i.e.,
Fi(t) = [Ri(t) − δi, Ri(t) + δi]). The monitor updates the coordinator with the most recent data
Yi(t) only if Yi(t) /∈ Fi (and sends nothing otherwise).

The window parameter δi is called the slack. Clearly, increased slack implies reduced commu-
nication between a monitor and the coordinator at the expense of potential information loss (i.e.,
poor approximation) at the the coordinator. The center parameter Ri(t) denotes the approximate
representation of Yi(t) that the coordinator uses; in general, Ri(t) can be based on any type of
filtering/prediction model for node Mi’s behavior over time. (For instance, in our implementation,
Ri(t) is simply the average of last five signal values observed locally at monitor i.) Obviously, this
implies that the coordinator maintains only an approximate “filtered” version Ŷ of the Y matrix.

Global Decision-Making at the Coordinator. The role of the coordinator is twofold. First, it
makes global anomaly-detection decisions based upon the received updates from monitors. Sec-
ondly, it provides feedback to the monitors in order to adjust their filtering windows’ slack and



center parameters. The global detection task is the same as the centralized detection scheme de-
scribed in Section 2 using the SPE statistic based on the projection of a filtered signal ŷ on the
residual subspace represented by matrix Sab. In contrast to the centralized setting, however, the
coordinator does not have an exact version of the raw data matrix Y; instead, PCA is performed and
Sab is computed on the perturbed/filtered version of the covariance matrix Â := A−∆, where the
magnitude of the perturbation matrix ∆ is decided by the slack variables δi (i = 1, . . . , M ).

3.2 Distributed tracking of eigenvalues and the residual subspace

A key ingredient of our framework is a practical method for choosing slack parameters δi that
effectively balance the tradeoff between the desirable loss of detection accuracy (i.e., due to the use
of Ŷ instead of Y) and the savings in data communication. The mathematical tool that we employ
to resolve this issue is stochastic matrix perturbation theory. This theory quantifies the effects of
the perturbation of a matrix on key quantities such as eigenvalues and the eigen-subspaces, which in
turn affects the detection accuracy. In the remainder of this section, we highlight several key results
of our analysis; due to space constraints, the complete details can be found in the appendix.

In our framework, the coordinator’s view of the data matrix is the perturbed matrix Ŷ = Y + W,
where all elements of the column vector Wi are bounded within interval [−δi, δi]. Let λi and
λ̂i (i = 1, . . . , n) denote the eigenvalues of the covariance matrix A = YT Y and its perturbed
version Â := ŶT Ŷ. Applying classical theorems of Mirsky and Weyl [17], we obtain bounds
on the eigenvalue perturbation in terms of the Frobenius norm ‖.‖F and the spectral norm ‖.‖2 of
∆ := A − Â, respectively:

εeig :=

√

√

√

√

n
∑

i=1

1

n
(λ̂i − λi)2 ≤ ‖∆‖F /

√
n and max

i
|λ̂i − λi| ≤ ‖∆‖2 (1)

Applying the sin theorem and results on bounding the angle of projections to subspaces [3, 17] (see
the appendix for more details), we also obtain bounds on the perturbation of the residual subspace
Cab in terms the Frobenius norm of ∆:

‖Cab − Ĉab‖F ≤
√

2‖∆‖F

ν
(2)

where ν denotes the eigengap between the kth and (k+1)th eigenvalues of the estimated covariance
matrix Â.

The issue is to obtain practically useful bound on the norms of ∆. To this end, we obtain expectation
bounds instead of worst case bounds. We make the following assumptions on the error matrix W:

1. The column vectors W1, . . . ,Wn are independent and radially symmetric m-dim vectors.
2. For each i = 1, . . . , n, all elements of column vector Wi are i.i.d. random variables with

mean 0, variance σ2
i := σ2

i (δi) and fourth moment µ4
i := µ4

i (δi).

Note that the independence assumption is on the error only – this by no means implies that the signals
received by different monitors are statistically independent. We define the aggregated variance
across monitors as σ :=

∑

n

i=1
σ2

i
. Under the above assumption, we can show that ‖∆‖F/

√
n is

upper bounded by the following quantity with high probability when m and n are large:

TolF = 2

√

√

√

√

σ

n

n
∑

i=1

λ̂i +

√

√

√

√

m2

n

n
∑

i=1

σ4
i +

m

n

n
∑

i=1

(µ4
i − σ4

i ) +
m

n
σ2 (3)

Similar results can be obtained for the spectral norm as well. In practice, these upper bounds are
very tight because σ tends to be small compared to the top eigenvalues.

In summary, given the tolerable perturbation TolF on the norm of the covariance matrix, we can
decide the amount of slack for each monitor via Equation. (3) (e.g., by dividing the overall tolerance
across monitors either uniformly or in proportion to their observed local variance). At the same time,
the bounds (1) and (2) allow us to measure the amount of perturbation εeig in terms of eigenvalues,
which affects the detection accuracy, which we discuss next.



3.3 Effects on detection procedure at the coordinator

The coordinator performs online detection based upon the (filtered) data stream Ŷ. We now address
the impact of approximation in PCA on the detection procedure. Specifically, we examine how the
filtering on Y impacts the residual projection statistic SPE = ‖Caby‖2 and the threshold Qα. As
discussed, using filtering slacks computed by Equation 3, the coordinator can bound the deviation
of its computed ‖Ĉab‖ and Q̂α from their true values, which gives us tools to analyze and bound
the false alarm rate on the detection at the coordinator when using condition ‖Ĉabŷ‖2 > Q̂α. First,
note that

|‖Ĉabŷ‖ − ‖Caby‖| ≤ ‖(Ĉab − Cab)ŷ‖ + ‖Cab(y − ŷ)‖ ≤
√

2‖∆‖F‖ŷ‖
ν

+ ‖Cab‖2

n
∑

i=1

δ2
i

≤
√

2‖∆‖F‖ŷ‖
ν

+

(

‖Ĉab‖ +

√
2‖∆‖F

ν

)

n
∑

i=1

δ2
i =: η1(ŷ)

It is simple to obtain an upper bound on the perturbation of SPE as:

η2(ŷ) = η1(ŷ)(2‖Ĉabŷ‖ + η1(ŷ)).

Turning to the threshold Qα, which is given as a function of λk+1, . . . , λn, the eigenvalues of A [7]:

Qα = φ1

[

cα

√

2φ2h2
0

φ1

+ 1 +
φ2h0(h0 − 1)

φ2
1

]
1

h0

where cα is the (1 − α)-percentile of the standard normal distribution, h0 = 1 − 2φ1φ3

3φ2

2

, φi =
∑n

j=k+1
λi

j for i = 1, 2, 3. The perturbation in λk+1, . . . , λn directly impacts the change of Qα.
In our application, it is observed that the change of φ1 usually dominates the change. Furthermore,
increasing φ1 results in decreasing Qα. Since the addition of random perturbation to a matrix tends
to increase the non-principal eigenvalues λk+1, . . . , λn, thus increasing φ1. This implies that Qα

decreases as the amount of perturbation increases.

To assess the perturbation in terms of false alarm rate, we only need to bound the difference ĉ − c,
where ĉ is a perturbed version of:

c =
φ1[(SPE/φ1)

h0 − 1 − φ2h0(h0 − 1)/φ2
1]

√

2φ2h2
0

.

Let ηc denote the bound on |ĉ−c|. The change to the false alarm rate is approximated as P (cα−ηc <
U < cα + ηc), where U is a standard normal random variable.

4 Evaluation

We implemented our algorithm and developed a trace-driven simulator to validate our methods. We
used a one-week trace collected from the the Abilene network1. The traces containes per-link traffic
loads measured every 10 minutes, for all 41 links of the Abilene network. With a time unit of 10
minutes, data was collected for 1008 time units. This data was used to feed in the simulator. There
are 7 anomalies in the data that were detected by the centralized algorithm (and verified by hand to
be true anomalies). In our experiments, we injected 70 synthetic anomalies into this dataset using
the method described in [10], so that we would have sufficient data to compute error rates. We used
a threshold Qα corresponding to an 1 − α = 99.5% confidence level. Due to space limitations, we
only present results for the case of uniform monitor slack δi = δ.

The input parameter for algorithm is the tolerable relative error of eigenvalues (relative eigen error
in short), which acts as a tuning knob.2 Given this parameter and the input data we can compute

1Abilene is an Internet2 high-performance backbone network that interconnects a large number of universi-
ties as well as a few other research institutes.

2Precisely, it is TolF /
q

1

n

P

λ2
i
, where TolF is defined in Eqn (3).



the filtering slack δ for the monitors using Eqn (3). We then feed in the data to run our protocol in
the simulator with the computed δ. The simulator outputs a set of results including: 1) the actual
relative eigen errors and the relative errors on the detection threshold Qα; 2) the missed detection
rate, false alarm rate and communication cost when using our protocol for distributed tracking and
anomaly detection. The missed-detection rate is defined as the fraction of missed detections over
the total number of real anomalies, and the false-alarm rate as the fraction of false alarms over the
total number of detected anomalies by our protocol. The communication cost is computed as the
fraction of number of messages that actually get through the filtering window to the coordinator.

The results are shown in Fig. 3. In all plots, x-axis is the tolerable relative eigen error. In Fig. 3(a) we
plot the relationship between the tolerable eigen error and filtering slack δ when assuming filtering
errors are uniformly distributed on interval [−δ, δ]. With this model, the relationship between the
tolerable eigen error and the slack is determined by a simplified version of Eqn (3). The results make
intuitive sense. As we increase our error tolerance, we can filter more at the monitor and send less to
the coordinator. The slack increases almost linearly with the tolerable eigen error because the first
term in the right hand side of Eqn (3) dominates all other terms.

In Fig. 3(b) we compare the tolerable relative eigen error (which is the tuning parameter) to the

actual accrued relative eigen error (precisely defined as εeig/
√

1

n

∑

λ2
i , where εeig is defined in

Eqn (1)). These were computed using the slack parameters δ as computed by our coordinator. We
can see that the real accrued eigen errors are always less than the tolerable eigen errors. The plot
shows a tight upper bound, indicating that it is safe to use our model’s derived filtering slack δ. In
other words, the achieved eigen error always remains below the requested tolerable error specified
as input, and the slack chosen given the tolerable error is close to being optimal. In Fig. 3(c) we
show the relationship between the tolerable eigen error and the relative error of detection threshold
Qα

3. It confirmed our analysis that the threshold for detecting anomalies decreases as we tolerate
more and more eigen errors. In these experiments, an error of 2% in the eigenvalues, leads to an
error of approximately 6% in our estimate of the appropriate cutoff threshold.

We are now ready to examine the false alarm rates achieved. In Fig. 3(d) the curve with triangles
represents the upper bound on the false alarm rate as estimated by the coordinator (as discussed in
section 3.3). The curve with circles is the actual accrued false alarm rate achieved by our scheme. It
is worth noting that the upper bound on the false alarm rate is fairly close to true values, especially
when the slack is small. The false alarm rate increases with increasing eigen error because as the
eigen error increases, the corresponding detection threshold Qα will decrease, which in turn causes
the protocol to raise an alarm more often. (If we had plotted Q̂ rather than the relative threshold
difference, we would obviously see a decreasing Q̂ with increasing eigen error.) To the best of
our knowledge, this is among the first work to provide a bound on false alarm rates for a network
anomaly detector in a distributed setting. In Fig. 3(e) we present the missed detection rates. For
varying choice of communication overhead the missed detection rate remains below 4%.

Finally we examine the communication overhead in Fig. 3(f). As we can tolerate larger errors,
we can consequently reduce the overhead. Using these last three plots (d,e,f) together, we can
observe the tradeoffs that occur. For example, when the relative eigen error is 1.5%, our algorithm
reduces the data sent through the network by more than 90%. This gain is achieved at the cost of
approximately a 4% missed detection rate and a 6% false alarm rate. This is a large reduction in
communication for a small increase in detection errors. This illustrates that our distributed protocol
can achieve high detection accuracy with low communication overhead.

5 Conclusion

We have presented a distributed algorithmic framework for network anomaly detection using the
PCA method. Our framework consists of a simple protocol for local data processing at the monitor-
ing devices and global decision making and feedback at the coordinator. Using tools for stochastic
matrix perturbation theory, we provided an analysis for the tradeoff between the detection accuracy

3Precisely, it is 1 − Q̂α/Qα, where Q̂α is computed from λ̂k+1, . . . , λ̂n.



0 0.005 0.01 0.015 0.02 0.025 0.03
0

2

4

6
x 107

S
la

c
k

(a)

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.005

0.01

0.015

R
e

l.
 E

ig
e

n
 E

r
r
o

r

(b)

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.05

0.1

R
e

l.
 T

h
r
e

s
h

o
ld

 E
r
r
o

r

(c)

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.1

0.2

0.3

0.4

F
a
l.
 A

la
r
m

 R
a
te

(d)

Upper Bound
Actual Accrued

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.05

0.1

M
is

s
e
d
 D

e
te

c
. 
R

a
te

(e)

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.5

1

C
o
m

m
. 
O

v
e
r
h
e
a
d

(f)

Figure 3: Parameters design, communication overhead and accrued error.

and the data communication overhead. In particular, using relative eigen error as a tuning knob, we
were able to control the amount of data overhead, and as well as provide upper bounds on the false
alarm rate. Our algorithm is simple to implement, and is empirically shown to yield high accuracy
of anomaly detection in Abilene network despite using very little data.
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6 Appendix

In this Appendix we develop a more detailed analysis of the impact of the slackness parameter
(δ1, . . . , δn) on the eigenvalues and eigen subspaces on the principal components using matrix per-
turbation theory. Some of the main results presented herein are summarized in Section 3. We begin
with a brief background description of known results from matrix perturbation theory, and then
proceeds to its application on our problem.

6.1 Background

Matrix perturbation theory is concerned with measuring the impact of small perturbation on matrices
on relevant quantities such as the eigenvalues and eigenvectors.

Eigenvalue perturbation bounds The basic perturbation bounds for eigenvalues of a matrix are
due to Weyl and Mirsky with following two theorems [16]. Let matrix A has eigenvalues λi, and its
perturbated matrix, Â = A + ∆, has eigenvalues λ̂i, for i = 1, . . . , n. We have:

Theorem 1 (Weyl) maxi|λ̂i − λi| ≤ ‖∆‖2.

Theorem 2 (Mirsky)
√

1

n

∑n
i=1

(λ̂i − λi)2 ≤ ‖∆‖F√
n

.

Here ‖.‖2 and ‖.‖F denote the spectral 2-norm and the Frobenius norm (cf. [17]).

Invariant subspace perturbation. While eigenvalues are quite stable under matrix perturbation,
the individual eigenvectors are not. Instead one needs to look at the perturbation of subspaces
spanned by the eigenvectors. Subspaces spanned by eigenvectors are an example of invariant sub-
spaces, which are known to be stable 4

Let L(·) denote the set of eigenvalues of a matrix, S(·) denote the subspace spanned by a matrix, and
Θ denote the matrix of canonical angle between two subspaces (cf. [17]). Then the perturbation of
an invariant subspace spanned by eigenvectors can be quantify by the sin of the canonical angle by
the following sin Θ theorem [17]:

Theorem 3 Let A have the spectral resolution
[

XT
1

XT
2

]

A [ X1 X2 ] =

[

L1 0
0 L2

]

where [ X1 X2 ] is unitary with X1 ∈ Cn×k. Let Z ∈ Cn×k have orthonormal columns, and
for any symmetric M of order k, let

R = AZ − ZM

suppose that L(M) ⊂ [a,b] and for some eigengap ν > 0,

L(L2) ⊂ R\[a − ν,b + ν]

4A subspace X is invariant of transformation A if AX ⊂ X .



Then for any unitarily invariant norm

‖ sinΘ [S(X1),S(Z)] ‖ ≤ ‖R‖
ν

Note that this theorem applies to any unitarily invariant norm such as the spectral norm ‖.‖2 and
Frobenius norm ‖.‖F . Applying this result to the eigen subspaces for (symmetric) covariance matrix
A and its purturbed version Â, assume that Â has the following the spectral resolution

[

ZT
1

ZT
2

]

Â [ Z1 Z2 ] =

[

M1 0
0 M2

]

where [ Z1 Z2 ] is unitary with Z1 ∈ Cn×k. Then we have Z1
TÂZ1 = M1 and ÂZ1 =

Z1M1. Let R = AZ1 − Z1M1 = AZ1 − ÂZ1 = ∆Z1. For any unitarily invariant norm, there
holds ‖R‖ = ‖∆Z1‖ = ‖∆‖. As a result, we have:

‖ sinΘ [S(X1),S(Z1)] ‖ ≤ ‖R‖
ν

=
‖∆‖

ν

Finally, there is a close relationship between the perturbation of the projection operator onto invariant
subspaces and the canonical angle of the subspace perturbation. Let PX and PZ be the orthogonal
projections onto S(X) and S(Z). There holds [17]:

‖PX −PZ‖F =
√

2‖ sinΘ [S(X),S(Z)] ‖F ≤ ‖∆‖
F

ν
.

In summary, in order to assess the perturbation in eigenvalues and eigensubspace, we need to esti-
mate the upper bounds given in terms of the Frobenius norm and the spectral norm of ∆.

6.2 Error matrix analysis

For the remainder of this appendix we shall present bounds and estimation of the Frobenius norm
and spectral norm of the perturbation. Recall that A = YT Y and Â = ŶT Ŷ, where Ŷ = Y+W.
Wi is a column vector of filtering error at each monitor i and W is the filtering (perturbation)
error on the distributed matrix Y. Each element eji of vector Wi is assumed to be bounded within
[−δi, δi]. The norm of the perturbation error matrix ∆ = A − Â can be bounded as follows:

‖∆‖ = ‖YT W + WT Y + WT W‖ ≤ ‖YT W‖ + ‖WT Y‖ + ‖WT W‖.
Our strategy is to obtain bounds for each terms in the RHS of this inequality. It is possible to derive
absolute bounds in terms of the absolute error δi(i = 1, . . . , n). However, such bounds would be
too loose for practical purposes. Instead, we appeal to stochastic perturbation theory. The basic idea
is to assume that the error matrix W is random according to a certain distribution with estimated
mean and higher-order moments. Instead of estimating the absolute upper bound for ‖∆‖, we focus
on estimating or bounding E‖∆‖. This is done by bounding the expectation of the terms on the RHS
of the above inequality.

Our assumption on the random distribution of W is given as follows:

1. The column vectors W1, . . . ,Wn are independent and radially symmetric m-dim vectors.
2. For each i = 1, . . . , n, all elements of column vector Wi are i.i.d. random variables with

mean 0, variance σ2
i := σ2

i (δi) and fourth moment µ4
i := µ4

i (δi).

6.2.1 Analysis of Frobenius norm

Computation of E‖YT W‖2

F
. We exploit results from [2]: For any m-dimensional random vector

v uniformly distributed on the unit sphere S
m−1, and given a m × n matrix Y, there hold:

E(‖YT v‖2) =
‖YT ‖2

F

m
, Var(‖YT v‖2) ≤ 2

m + 2



As observed in [14], since Wi is assumed to be radially symmetric m-dimensional random vector,
its projection on the unit sphere as Wi = vi · ‖Wi‖, where vi is uniformly distributed on S

m−1,
and is independent with ‖Wi‖. Then we have

E(‖YT Wi‖2) = E(‖YT vi‖2 · ‖Wi‖2) = E(‖YT vi‖2) · E(‖Wi‖2)

= ‖Y‖2
F · E(‖Wi‖2)

m
= ‖Y‖2

F · σ2
i

E(‖YT W‖2
F ) = E(‖YT W‖2

F ) = E(
n
∑

i=1

‖YT Wi‖2
F ) =

n
∑

i=1

E(‖YT Wi‖2
F )

=

n
∑

i=1

‖Y‖2
F · σ2

i = ‖Y‖2
F ·

n
∑

i=1

σ2
i

= tr(YTY) ·
n
∑

i=1

σ2
i =

n
∑

i=1

λi ·
n
∑

i=1

σ2
i =

n
∑

i=1

λi · σ,

where λ′
is are eigenvalues of covariance matrix A = YT Y.5

Computation of E(‖WT W‖2
F ) This is a high order term, and its value is generally dominated

by E‖YT W‖2

F
. Our computation relies on the assumption that the error vectors W1, . . . ,Wn

are independent. In addition, we use the following fact from [5]: if u, v are independently and
uniformly distributed column vectors on S

m−1, then there hold:

E(uT · v) = 0, E[(uT · v)2] =
1

m
, Var[(uT · v)2] =

2(m − 1)

m2(m + 2)

For i 6= j, we have

E[(WT
i Wj)

2] = E

[

(

WT
i

‖Wi‖
· Wj

‖Wj‖

)2

· ‖Wi‖2 · ‖Wj‖2

]

=
1

m
· E(‖Wi‖2 · ‖Wj‖2)

=
1

m
· E(‖Wi‖2) · E(‖Wj‖2) =

m2σ2
i σ2

j

m
= mσ2

i σ2
j

Define zi := WT
i Wi =

∑m
j=1

e2
ji. We have

E(e2
ji) = σ2

i , Var(e2
ji) = E(e4

ji) − (E(e2
ji))

2 = µ4
i − σ4

i

Then we have

E(zi) = E(
m
∑

j=1

e2
ji) =

m
∑

j=1

E(e2
ji) = mσ2

i

Var(zi) = Var(
m
∑

j=1

e2
ji) =

m
∑

j=1

Var(e2
ji) = m(µ4

i − σ4
i )

E(z2
i ) = (E(zi))

2 + Var(z) = m2σ4
i + m(µ4

i − σ4
i )

In sum, we have

E(‖WT W‖2
F ) =

n
∑

i=1

E[(WT
i Wi)

2] + 2

n
∑

i=1

n
∑

j=i+1

E[(WT
i Wj)

2]

= m2

n
∑

i=1

σ4
i + m

n
∑

i=1

(µ4
i − σ4

i ) + 2

n
∑

i=1

n
∑

j=i+1

mσ2
i σ2

j

5For simplicity, we typically suppress the dependence on δ in our notations, such as using σ instead of σ(δ).



Expectation bounds An application of Jensen’s inequality yields E(x) ≤
√

E(x2). Then we can
upper bound E(‖∆‖F ) as follows

E(‖∆‖F ) ≤ 2E(‖YTW‖F ) + E(‖WTW‖F ) ≤ 2
√

E(‖YTW‖2
F ) +

√

E(‖WTW‖2
F )

= 2

√

√

√

√

n
∑

i=1

λi ·
n
∑

i=1

σ2
i +

√

√

√

√m2

n
∑

i=1

σ4
i + m

n
∑

i=1

(µ4
i − σ4

i ) + 2

n
∑

i=1

n
∑

j=i+1

mσ2
i σ2

j

≈ 2

√

√

√

√

n
∑

i=1

λi ·
n
∑

i=1

σ2
i +

√

√

√

√m2

n
∑

i=1

σ4
i + mn

n
∑

i=1

σ4
i :=

√
n · TolF

Combining with Mirsky’s theorem, we have that

E

√

√

√

√

1

n

n
∑

i=1

(λ̂i − λi)2 ≤ E

(‖∆‖F

n

)

≤ TolF ,

where TolF is given by our foregoing analysis.

Computation of variances The variances of the terms analyzed above can also be computed an-
alytically. Using the following identity for independent variables X and Y that

Var(XY ) = Var(X)Var(Y ) + (EY )2Var(X) + (EX)2Var(Y ),

we obtain
Var(‖YTWi‖2) = Var(‖YTvi‖2‖Wi‖2)

= Var(‖YTvi‖2)Var(‖Wi‖2) + (E‖Wi‖2)2Var‖YTvi‖2 + (E‖YTvi‖2)2Var‖Wi‖2

≤ 2

m + 2
Var(‖Wi‖2) +

2

m + 2
(E‖Wi‖2)2 +

‖YT‖4

F

m2
Var(‖Wi‖2)

=
2m

m + 2
Var(e2

1i) +
2m2

m + 2
(Ee2

1i)
2 +

1

m
‖Y‖4

F Var(e2
1i).

Noting that W1, ...,Wn are independent, each element eji has the forth moment µ4
i , then we have

Var(e2
ji) = E(e4

ji) − (E(e2
ji))

2 = µ4
i − σ4

i . Thus,

Var(‖YTW‖2
F ) = Var

(

n
∑

i=1

‖YTWi‖2
F

)

=

n
∑

i=1

Var(‖YTWi‖2)

≤ 2m

m + 2
·

n
∑

i=1

Var(e2
1i) +

2m2

m + 2

n
∑

i=1

σ4
i +

1

m
‖Y‖4

F

n
∑

i=1

Var(e2
1i)

=
2m

m + 2
·

n
∑

i=1

(µ4
i − σ4

i ) +
2m2

m + 2

n
∑

i=1

σ4
i +

1

m
‖Y‖4

F

n
∑

i=1

(µ4
i − σ4

i )

The variance of ‖WT W‖2
F can also be computed analytically using result from [5]. The computa-

tion is tedious, so we omit the procedure here.

Note that our computation of means and variances can be simplied signficantly by using further
assumption on the distribution of the error elements eji of matrix W, so that the result depend
directly on the slack parameters δi(i = 1, . . . , n). For example, if e1i is uniformly distributed on
[−δi, δi], we have Var(e2

1i) = µ4
i (δi) − σ4

i (δi) =
δ4

i

5
− δ4

i

9
=

4δ4

i

45
, and so on. On the ther hand, if

e1i ∼ N(0, σ2
i (δi)), we have Var(e2

1i) = µ4
i (δi)−σ4

i (δi) = 3σ4
i (δi)−σ4

i (δi) = 2σ4
i (δi) and so on.

To compare the variance with the expectation, we use Gaussian distribution and assum all σ2
i = σ2

for analysis. Ingoring the high order term in the expectation, we get

2

√

√

√

√

n
∑

i=1

λi · nσ2 ≈
√

n · TolF −→ σ2 ≈ Tol2F
4
∑

λi



The variance is dominated by its last term, which is

Var

(‖YTW‖2
F

n

)

≈ 1

mn2
‖Y‖4

F

n
∑

i=1

2σ4
i =

1

mn2

(

∑

λi

)2

· 2nσ4

=
1

mn2

(

∑

λi

)2

· 2n · Tol4F

16 (
∑

λi)
2

=
Tol4F
8mn

which should go to zero as n goes to infinite. We can obtain similar results when using other
distributions. So we can conclude that expectaion bounds are actually the worst case bounds with
high probability.

6.2.2 Analysis of spectral norm

In this subsection, we turn to the estimation of the spectral norm of the perturbation error matrix ∆.
This quantity provides a tighter upper bound for the eigenvalue perturbation (via Weyl’s theorem).
Unfortunately, it is also difficult to bound. For many applications, it suffices to replace a bound
on ‖.‖2

2 by its expectation E‖.‖2
2. In the following derivations, we rely on the concentration of

eigenvalues of random symmetric matrices [1]. This result is applicable to matrices whose elements
are independent or weakly correlated.

Let Lmax(·) denote the maximum eigenvalue of a matrix. Then we have

E(‖WTY‖2
2) = E(Lmax(YTWWTY)) ≈ Lmax(E(YTWWTY))

= Lmax(YT
E(WW)T Y) = Lmax(YT [

n
∑

i=1

σ2
i I] ·Y) = Lmax(YT Y) ·

n
∑

i=1

σ2
i

= λmax ·
n
∑

i=1

σ2
i .

Likewise, we have

E(‖YTW‖2
2) = E(Lmax(WTYYTW)) ≈ Lmax(E(WTYYTW))

= Lmax

(

E

[

WT
i YYT Wj

]

1≤i,j≤n

)

= Lmax



E





m
∑

k,l

eik(YYT )klejl









Because the elements eji of matrix W are independent with mean 0, the matrix inside Lmax is a
diagonal matrix. As a result,

E(‖YTW‖2) = Lmax



E

[

m
∑

k=1

σ2
i (YYT )kk

]

1≤i≤n





= max
i

{

σ2
i

m
∑

k=1

(YYT )kk

}

= σ2
max

m
∑

k=1

(YYT )kk

= σ2
maxtr(YYT).

A remaining term is E‖WTW‖2, which is generally dominated by E(‖YTW‖2) + E(‖WTY‖)
and is omitted in our analysis. Thus we have the following approximate upper bound on expected
spectral norm of the perturbation error matrix:

E‖∆‖2 . Tol2,

where

Tol2 =

√

√

√

√λmax ·
n
∑

i=1

σ2
i +

√

σ2
maxtr(YYT).

By Weyl’s theorem, there holds
E max

i
|λi − λ̂i| . Tol2.


