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Abstract. Hybrid type checking[5] is an approach to enforcing the well-
typedness of programs that, where possible, uses static analysis to deter-
mine the types of expressions, and run-time checking when the precision
of static analysis is insufficeint. This approach is useful for dependent
type systems in which types are parameterized by run-time values of
expressions. Deputy is a dependent type system for C that allows the
user to describe bounded pointers, tagged unions, and null-terminated
strings. Deputy runs in two phases. In the first phase, simple typing
rules are applied. The typing rules prescribe the insertion of run-time
checks for certain operations. In the second phase, static analysis is used
to identify checks that must either always succeed or always fail. The
former may safely be removed, and the latter signify typing errors. This
report describes the second phase of Deputy.

1 Introduction

Hybrid type checking[5] is an approach to enforcing the well-typedness of pro-
grams. In a dependent type system, the type of an expression can be parametrized
by state elements of the program. Static analysis can reveal approximations of
the values of the state elements, and these approximations may give enough in-
formation to type check the program. However, where the static analysis lacks
precision, it may not be known statically whether an expression is well-typed or
not. In these cases, a hybrid type-checker will add run-time checks to the pro-
gram. The run-time checks encode constraints on the values of state elements
that must be satisfied in order for expressions to be well-typed. The run-time
checks will inspect the values of the state elements and succeed if the constraints
are satisfied, or fail otherwise.

1.1 Deputy

Types can be used to specify program invariants. Dependent types augment tra-
ditional types with the ability to describe invariants relating state elements of
a program. Deputy[14,4] is a dependent type system for C that allows the de-
scription of invariants for bounded pointers, tagged unions, and null-terminated
strings.

The goal of the Deputy type system is to enforce memory safety for most
extensions to large software systems such as Linux device drivers. This is achieved



through the use of dependent type annotations on traditional C types at the
interfaces between the extensions and the core system. For example, Deputy
is applied to device drivers by annotating function prototypes and structure
definitions in the kernel header files.

For the purposes of this report, the Deputy type checker can be considered to
run in two phases. In the first phase, simple typing rules are applied. The typing
rules prescribe the insertion of run-time checks for certain operations. In the
second phase, static analysis is used to identify checks that must either always
succeed or always fail. The former may be safely removed, and the latter signify
typing errors. Run-time checks that fall into neither of these two categories re-
main in the program, and may either succeed or fail when the program runs. This
two phased approach is used so that the typing rules and their implementation
can be kept simple and easy to reason about.

Below, the Deputy annotations are described in detail. It is also explained
how the first phase of Deputy uses the annotations to insert run-time checks.
Further, the different kinds of run-time checks needed by Deputy are described.

1.2 Deputy Annotations

In lieu of a full description of the Deputy type system, which can be found in
[4], an overview of the dependent type annotations, and their meanings will be
given.

First, Deputy allows users to specify the bounds of a buffer. This can be done
with the following annotations on any pointer type: safe, sentinel, count(n),
and bound(lo, hi). Here, n, low, and hi are expressions that can refer to vari-
ables and structure field names in the immediately enclosing scope. For example,
annotations on local variables may refer to other locals, annotations on function
parameters can refer to other parameters, and annotations on structure fields
can refer to other fields of the same structure.

A safe annotation means that the pointer is null or points to a single element
of the base type. A sentinel annotation means that a pointer may only be used
for comparisons. A count(n) annotation means that the pointer may either be
null or point to an array of at least n elements of the base type. A bounds(lo,
hi) annotation means that the pointer may either be null or point into a region
of memory with low address 1o and where hi is the address of the first element
beyond the end of the region.

The invariant is that pointers having these annotations must always either be
null or within the stated bounds. Accordingly, the first phase of Deputy adds run-
time checks to ensure that pointers are non-null at dereference, that the results
of pointer arithmetic are in the range [1o,hi) and refer only to whole elements.
Furthermore, the first phase of Deputy will add run-time checks to enforce the
typing rules for coercions among annotated pointer types. For example, run-time
checks will be added to ensure that a pointer for a smaller buffer is not coerced
into a pointer for a larger buffer, and that pointers coerced to safe are null or
point to at least one element.



int * safe find(int * count(len) buf,
int len) {
assert (buf # NULL);
assert (buf <= buf + len <= buf + len);
int * sentinel end = buf + len;
int * bound(cur,end) cur = buf;
while (cur < end) {
assert (cur # NULL);
assert(cur < end);

if (*cur == 0) return cur;
assert(cur <= cur + 1 <= end);
cur++;

return NULL;

}

Fig. 1. A function for finding zero in an array of integers. The first phase of Deputy
adds checks based on the annotated pointer types.

Figure 1 gives examples of the use of the buffer annotations. The count (1en)
annotation on buf indicates that the function only accepts buffers at least as
long as len. The safe annotation indicates that the function only returns a
null pointer or a pointer to at least one element. The sentinel annotation
means that end may only be used for comparison, and the bound(cur,end)
annotation means that cur may not point to elements at address end or larger.
The first check is added because Deputy disallows arithmetic on null pointers.
The second is added to ensure that the result of buf + len remains in bounds.
Then, whenever cur is dereferenced, incremented, or returned, it is verified that
there is at least one element remaining in the array. We explain later how many
of these checks can be safely removed.

In addition to annotations for bounds on buffers, Deputy also provides an
annotation for stipulating that somewhere beyond the upper bound given by one
of the above annotations is a null element. This annotation is nullterm, and it
is used in conjunction with the annotations above. For example, the type char
* count (0) nullterm means that the pointer is a standard null-terminated
string. More flexibility exists, though, since the bounds annotations can be used
to indicated that the buffer has some minimum size.

The following checks are inserted for nullterm pointers. On a dereference,
it is checked that the pointer is non-null. On an increment, if the result is not
within the declared bounds, then it is checked that the result does not go beyond
the null element. The nullterm annotation can safely be dropped without a run-
time check.

Figure 2 shows an example of annotating the strlcpy function with Deputy
annotations. From its specification, dst is required to have size - 1 elements
before its null-terminator, whereas all that is required of src is that it be null-



size_t strlcpy(char * count(size-1) nullterm dst,
const char * count(0) nullterm src,
size_t size);

Fig. 2. Examples of annotations for null-terminated strings.

terminated. In the implementation, when dst and src are incremented, checks
are added to ensure that the pointers are non-null and that either the resulting
pointer is in bounds, or that the result does not go beyond the null-terminator.

For tagged unions, Deputy includes an annotation that can be placed on a
union field specifying what the value of the tag must be if that field is to be
active. The tag must be a field of a structure enclosing the union in question.
Taking the address of a tagged union field is forbidden.

When reading a union field, the first phase of Deputy adds a run-time check
ensuring that the correct tag is selected. A tag can be changed only if the newly
selected union field is null, and run-time checks are added to ensure this.

struct e1000_option {
enum {RANGE, LIST} type;
union {
struct {
int min, max;
} range when(type == RANGE);
struct {
int nr;
struct e1000_opt_list {...} *p;
} list when(type == LIST);
} arg;
b

Fig. 3. An example of the Deputy annotations for tagged unions. The tag is type, and
either the range or list field of the union is “active” depending on its value.

Figure 3 demonstrates the use of Deputy’s annotations for tagged unions. For
program variables of type struct e1000_option, when the type field is RANGE,
then the range field of the union may be accessed, and the 1list field may not
be accessed. When type is LIST, the opposite is true. Additionally, type may
only be modified when arg contains only zeroes.

Additionally Deputy also has features to enforce type safety around calls to
memory allocators like malloc, and around functions like memset and memcpy.
Also, if a user knows that a pointer argument to a function or a return value
may never be null, then the pointer type can be annotated as nonnull. It will
be shown later how nonnull annotations can be discovered automatically.



1.3 Deputy Run-time Checks

The first phase of Deputy inserts the following run-time checks to ensure that
its invariants always hold:

CNonNull(p) — Succeeds only when the pointer p is non-null. This check is
used to ensure pointers are non-null when dereferenced.

CPtrArith(lo, hi, p, x, sz) —Succeedsonly whenlo <= p + (x * sz)
<= hiandp + (x * sz) does not overflow. This check is used to ensure that
the result of pointer arithmetic is in bounds.

CPtrArithNT(lo, hi, p, x ,sz) — Succeeds only when lo <= p + (x *
sz) <= hi + strlen(hi) and p + (x * sz) does not overflow. This check
is used to ensure that the result of pointer arithmetic on nullterm pointers is
in bounds. The notation strlen(hi) indicates the number of bytes between
hi and the null terminator.

CLeqInt (el,e2) — Succeeds only when el <= e2. This check is used to check
coercions to safe, and to ensure that open arrays at the end of structures
are allocated with enough space to satisfy the bound annotation on them.
Here el and e2 are unsigned int.

CLeq(el,e2) — Succeeds only when el <= e2. This check is used to ensure
that pointer reads and writes access in bounds memory.

CLegNT(el,e2) — Succeeds only when el <= e2 + sizeof (e2). This check
is similar to CLeq except that it is for nullterm pointers.
CNullOrLeq(el,e2,e3) — Succeeds only when el is null, or when e2 <=
e3. This check is used to ensure that coercions between types with different
bounds are safe.

CNullOrLegNT(el,e2) — Succeeds only when el is null, or when el <= e2
+ sizeof (e2). This is the nullterm version of CNullOrLegq.

CWriteNT(p, hi, x) — Succeeds only when (p == hi) => (x == 0), that
is: if p is hi, then x must be zero. This check is used to ensure that the null-
terminator of a nullterm buffer is not overwritten with a non-null value.
CNullUnionOrSelected(u, e) — Succeeds only when u is a union field the
memory for which has been zeroed out, or when e evaluates to true. Here e
is an expression indicating that the correct tag for the union field is selected.

1.4 Overview

In the following sections we describe the second phase of Deputy, which reasons
about these run-time checks. The design of the second phase, which from here
on we will refer to as the “optimizer,” is novel because of issues specific to the
Deputy type system. The optimizer is arranged in a pipeline of phases. Earlier
phases must be inexpensive due to the large number of run-time checks and
temporary variables created by the first phase. When checks and dead code are
eliminated, more precise analyses may then be run with more reasonable cost.

In addition to a novel overall design, some of the static analyses in support

of optimization phases are novel. These include a lightweight octagon analysis,



two analyses for nullterm pointers, and an analysis for deducing when functions
expect arguments to be non-null.

In section 2, we describe the optimization phases and the analyses that sup-
port them. Further, we present a discussion of the cost and benefit of each of
the stages. In section 3, we present two different approaches to the overall design
of the optimizer. One we built around our lightweight special purpose octagon
analysis, and the other we built around Miné’s general purpose library[8].

In section 4, we evaluate the optimizer in terms of the following metrics: the
number of run-time checks remaining in the code, the performance of various
benchmarks, and the run-time of the optimizer itself. Then, section 5 will discuss
some related work, and section 6 will conclude and discuss possible avenues for
future work.

Deputy is written in Ocaml using the CIL[12] library for parsing and ana-
lyzing C. The optimizer accounts for about 5000 of Deputy’s 20,000 lines. This
report will argue that in spite of its simplicity, the optimizer is very effective.

2 Optimizer Phases

The presentation of the optimization phases will be broken into three sections.
First, we present flow-insensitive optimizations. These rely on reasoning about
the syntactic form of checks. Second, we present flow sensitive optimizations.
These include the octagon analyses, loop optimizations, and others. Finally, we
present an inter-procedural analysis for deducing when functions assume that
arguments and return values are non-null.

2.1 Flow-insensitive Optimizations

We use two kinds of flow-insensitive analysis. Both rely only on the syntactic form
of the run-time checks. For this reason, we employ an expression canonicalizer
that converts expressions to a form linear in the expressions that it cannot
further decompose. Expressions that the canonicalizer does not decompose are
multiplication unless by a constant, division, bit shifting unless by a constant,
casts that affect value, and bit-wise operators. For example, 5*x(x + y + 7)
would be canonicalized as 5*x + 5%y + 35, but 5*%(x/3 + y) would only be
reduced to 5% (x/3) + bx*y.

For comparing the magnitude of expressions, it is important to know when
a canonicalized expression will be positive, negative, or zero. In particular, we
compare expressions by canonicalizing their difference. For example, to deter-
mine whether el <= e2. The expression e2 - el is canonicalized. If each term
of the difference is non-negative, it can be concluded that e2 is at least as big
as el. A term is non-negative only if its factor is positive and the type of its
expression is not signed. We assume that a two’s complement system is used for
machine arithmetic, and that the native compiler will generate instructions for
unsigned comparisons when the C types of the operators are not signed.



The first flow-insensitive phase attempts to identify checks that can be safely
eliminated, and checks that will always fail. It does so by reasoning about the
checks as follows:

— CNullOrLeq(el,e2,e3), CNullOrLeqNT(el,e2,e3) — If el is the constant
zero, or if the canonicalized expression e3 - e2 is non-negative, then these
checks can be removed. If e3 - e2 is negative, then a compiler error is
issued. The check might still succeed, but given where the Deputy type
system prescribes the insertion of these checks, it is highly likely that there
is a bug.

— CLeq(el,e2), CLeqNT(el,e2), CLeqInt(el,e2) — If the canonicalized ex-
pression e2 - el is non-negative, then these checks can be removed. If e2
- el is negative, then a compiler error is issued.

— CWriteNT(p, hi, e) — If e is zero, or if the canonicalized expression hi -
(p + 1) is non-negative, then this check can be eliminated.

— CPtrArith(lo,hi,p,x,sz), CPtrArithNT (lo,hi,p,x,sz) — If the canoni-
calized expressions p + x - lo and hi - (p + x) are both non-negative,
then this check can be removed. Both the upper and lower bounds are
checked, so overflow is not a problem. Also, when handling pointer expres-
sions, the expression canonicalizer ensures that all terms are in units of bytes,
so the multiplication by sz is taken care of during canonicalization.

— CNullUnionOrSelected(u,e) —If e is the constant zero, then this check will
always fail, and a compile time error is issued.

The second flow-insensitive phase is a peephole optimization. Certain com-
binations of checks can be folded into a smaller number of logically equivalent
checks. The sequence CPtrArith(lo,hi,p,x,sz); CLeq(p+x+1,hi), does three
comparisons. It appears at certain kinds of array accesses. To avoid filling the
type system with special cases, this case is dealt with in the optimizer. The two
checks can be replaced by a new check called CPtrArithAccess(lo,hi,p,x,s2z),
which ensures that 1o <= p + x * szandthatp + (x + 1) * sz <= hi. This
is an improvement because CPtrArithAccess does only two comparisons.

Also, the sequence CNullOrLeq(el,e2,e3); CNonNull(e2,e3) is generated
by the type system after calls to memory allocators, and does three comparisons.
It can be replaced simply by CLeq(e2,e3); CNonNull(el), which does only two
comparisons.

A Note about Overflow The checks CPtrArith(lo,hi,p,x,sz) and
CPtrArithNT(lo,hi,p,x,sz) require that the address calculation p + x does
not overflow. An important invariant here is that [lo,hi) is a valid range of
memory. This means, among other things, that the expressions lo and hi are
not the results of arithmetic overflow. If it is the case that they are not, and if
we conclude using the method above that the canonicalized expressions hi - (p
+ x) and (p + x) - lo are both non-negative, then it is not possible that (p
+ x) could overflow since hi would have to include factors of both p and x, and
lo would have to include at least a factor of p.



The invariant that [lo,hi) is a valid range is maintained by the checks at
coercions. Such ranges “begin” valid because they are stack allocated, globals,
or given by memory allocators, which Deputy instruments soundly. If [1o,hi)
is a valid range, then [lo’,hi’) is a valid range when lo <= lo’ < hi’ <=
hi. A similar argument can be made here about the sign of the canonicalized
differences for these inequalities. Since overflow is handled soundly at coercions,
it is also handled soundly at pointer arithmetic.

2.2 Flow-sensitive Optimizations

The flow-insensitive analyses are able to reason about many checks that can triv-
ially be removed, and are able to identify some obvious bugs. Over the bench-
marks used in section 4, the initial flow-insensitive phase removes 46% of the
checks inserted by the first phase. The fist phase inserts many unnecessary checks
because its implementation has been kept simple. Less transparent checks, and
trickier bugs require reasoning aided by flow-sensitive analyses.

Analysis for nullterm Pointers The goal of this kind of analysis is to be
able to better reason about the checks CLegNT and CPtrArithNT. Recall that a
pointer with type annotation bound(lo,hi) nullterm may safely be anywhere
in [1o, hi + strlen(hi)]. Therefore, it is safe to increment such a pointer as
long as the value referenced by the pointer is non-null. Knowing that a nullterm
pointer is safe to increment allows us to remove many CPtrArithNT checks.

A forward dataflow analysis for determining when nullterm pointers may be
incremented proceeds as follows. The abstract state of the program is a mapping
from lvalues of nullterm type to the symbolic amount by which it is safe to
increment them. The analysis is initialized by setting the state for the entry
point to the empty mapping. Mappings are added to the state when the analysis
encounters a branch such as if( *p != 0 ) where p is a nullterm pointer. For
this test when the branch is taken, the mapping [p — 1] is added to the state.
Also, if the program calls a strlen-like function on a nullterm pointer, then
it is safe to increment that pointer by the resulting amount, so the argument
pointer can be mapped to the lvalue in which the result is stored after the call.

At control flow join points, the meet of the incoming mappings is taken. In the
current implementation the meet is defined as follows. Given two mappings, the
meet of them has a mapping only if they both have exactly the same mapping.

A more precise formulation that is unimplemented is the following. Given two
mappings, if one has a mapping for a particular lvalue, and the other does not,
then the meet has no mapping. If both have a mapping for a particular lvalue,
say el for one and e2 for the other, then the meet should contain a mapping
tomin(el,e2). This assumes that a separate analysis is able to tell which of el
and e2 is smaller. In the absence of such an analysis, the meet would contain
no mapping in this case. This more precise formulation of the meet remains
unimplemented because inspection of our benchmarks indicates that the benefit
would not be significant.



The results of this analysis can be used as follows. If the state at a check
CPtrArithNT(lo,hi,p,x,sz) contains a mapping [p — el, and it is known
statically that p + x <= e, then the check can be removed.

A separate analysis tracks variables storing the length of null-terminated
buffers. It is similar to the above analysis in that the abstract state is a mapping
from nullterm lvalues to the variables storing the buffer length. Dataflow facts
are added on calls to strlen-like functions, and the meet operation is similar.

The results of this analysis can be used as follows. If the state at a check
CLegNT(el,e2) contains a mapping [p — len], and it can be known statically
that el <= e2 + len, then the check can be removed. If the relative magnitudes
of the expressions are not known statically, then the check can be rewritten as
the simpler check CLeq(el,e2 + len).

Intraprocedural Non-null analysis The goal of this analysis is to exploit
checks for null-ness that the programmer has already written into the program.
This information can be used to eliminate unnecessary calls to CNonNull, and
to convert calls to CNullOrLeq into the simpler CLeq.

A forward dataflow analysis for determining what lvalues are non-null pro-
ceeds as follows. The abstract state of the program is the set of lvalues that are
known to be non-null. We initialize the analysis by setting the state at the entry
point to be the set containing the arguments to the function whose types have
been annotated as nonnull. We add an lvalue to the set in three different cases.
First, if a branch like if ( p ) is taken, or a branch like if( !p ) is not taken,
then on the appropriate branch, p can be added to the set. Second, after a call to
CNonNull(p), p can be added to the set. Finally, if the return type of a call has
been annotated as nonnull, then the lvalue assigned to the call can be added to
the set. At control flow join points, the meet operation is simply set intersection.

Octagon Analysis An octagon analysis tracks linear constraints among pairs
of program variables. The representation of the abstract state varies according to
implementation, however the Deputy optimizer relies on the following interface.
It must be able to add facts and make queries of the form x + y <= ¢ where x
and y are program variables.

The goal of this analysis is to reason about checks that compare the mag-
nitude of expressions. These are CPtrArith, CLeqInt, CLeq, CNullOrLeq, and
their nullterm variants. We have experimented with two different octagon anal-
yses: a lightweight special-purpose analysis, and an analysis using an off-the-shelf
library due to Miné [8]. We discuss the design of the optimizer around these two
analyses in section 3, and we compare their performance in section 4.

Lightweight Analysis The special-purpose analysis is a forwards dataflow
analysis that proceeds as follows. The abstract state of the program is a set of
inequalities of the form x + ¢ <= y where x and y are lvalues. The analysis
is initialized by setting the state at the entry point to the empty set. There
are three ways that facts can be added to the state: assignments, tests in the
program, and Deputy checks. It should also be noted that for the purposes of



the analysis, we use a dummy lvalue for representing zero where necessary. It
will be referred to as zero below.

The special purpose analysis reasons about three forms of assignment. First
are assignments of the form x = ¢ where c is an integer constant. Here we add
the facts that x - ¢ <= zero, and that zero + ¢ <= x. Next, for assignments
of the form x = y where y is an lvalue, all facts about y are added for x. Finally,
for assignments of the form x = y + ¢ where y is an lvalue and c is an integer
constant, it is possible to add new facts when it is known statically that y + c
does not overflow.

Since we make the conservative assumption that x and y may alias, it is not
possible to add the facts that x - ¢ <= y and y + ¢ <= x. However, for each
fact 11 + n <= 12 in the state before the assignment, if 11 is zero, and 12 is
y, then zero + (n + ¢) <= x can be added to the state. Also, when x and y
are the same lvalue, and 12 is x, then 11 + (n + ¢) <= x can be added to the
state. Likewise, when x and y are the same, and 11 is x, then x + (n - ¢) <=
12 can be added to the state. The correctness of these additions can be seen by
applying the Hoare rule for assignment. As suggested above, this analysis could
be made more precise through the use of an alias analysis.

Facts from tests such as if ( el <= e2 ) are added along both branches. The
negation of the test is added on the branch for which the test failed. Facts are
extracted from the test by canonicalizing the difference of €2 - el, and adding
to the state that the difference is at least zero when the canonicalized difference
is in terms of no more than two lvalues. A similar approach is taken with facts
gathered from Deputy checks. At control flow join points the inequalities known
to hold in both states are kept.

In order to determine what checks can be removed, we make queries that
determine if, for example, el <= e2. As above, if the canonicalized difference
is in terms of no more than two lvalues, say x and y, then we see if there are
any inequalities in the current state relating x and y that are strong enough to
prove the inequality. This lightweight analysis does not do any kind of transitive
closure over the dataflow facts, but it will be seen that in combination with other
transformations, this is not a problem.

Off-the-shelf Analysis The Analysis using Miné’s library is also a forwards
dataflow analysis. The difference from the lightweight analysis is that an external
library is used to calculate state transitions, unions at control flow join points,
widenings, and to make queries about what facts hold in each state.

We treat each unique lvalue in the function in question as a separate oc-
tagon variable, and make conservative assumptions about aliasing. Also, since
each octagon operation is quadratic in the number of variables, we make use of
the following optimization. Function lvalues are divided into families such that
any two lvalues that appear in the same CIL instruction belong to the same
family. The abstract state for the analysis is actually an octagon for each non-
singleton family of lvalues. For several benchmarks this optimization produces
an improvement of three to four orders of magnitude in the running time of the
analysis. Also, because the library does a transitive closure over the inequalities
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it is given, the transformations needed for the lightweight analysis are not as
important.

Another Note about Overflow The argument about overflow used above
can be extended to the cases in which we use the results of these more sophis-
ticated anlyses to determine that canonicalized expressions are non-negative.
The octagon analyses give information about the relative magnitudes of pairs
of program lvalues. This information is gathered from tests that are already in
the program. For example, the result of a canonicalized difference may be (x
- y) where x and y are lvalues. If the program does not already contain tests
at least as strong as y <= x, then it cannot be concluded that the difference
is always non-negative. Further, if the canonicalized difference has more terms,
then nothing is concluded.

Because our analyses are conservative, it is not necessary to reason about
overflow in a more sophisticated way. This has both positive and negative con-
sequences. The positive side is that the implementation remains simple. The
negative side is that program bugs related to arithmetic overflow will not be
caught statically.

Syntactic Check Propagation Not all checks can be reasoned about by our
expression canonicalization and octagon analysis. However, checks like these may
still be generated redundantly by the first stage of Deputy. We attempt to reason
about checks like these syntactically using the following analysis.

This forward dataflow analysis is very similar to an available expressions
analysis, except that instead of expressions, we are interested in Deputy checks.
The abstract state of the program is a set of checks that are “available.” A check
is available at a program point if the check must be computed before reaching
that point, and if there are no intervening modifications of the Ivalues in the
check. When a check is processed it is added to the set. At control flow join
points, set intersection is used. At a check in the program, if a syntactically
identical check is available, then the check can be eliminated.

Loop Analysis If a check inside of a loop is only in terms of Ivalues that are loop
invariant, then the check can be moved ahead of the loop. A standard reaching
definitions analysis is used to identify checks containing only loop invariants.
These are placed in a block guarded by the loop condition immediately preceding
the loop. This is so that the checks are made only when the loop body is executed
at least once.

Standard Utility Passes We also make use of some standard analyses to
improve the performance of the optimizer itself and the resulting code. The first
phase of Deputy creates many fresh variables that it uses for constructing its
checks. When the checks are eliminated the created variables are no longer used.
We do a number of dead code elimination passes. The dead code elimination is
based on a reaching definitions analysis. Dead code elimination allows subsequent
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analyses to be computed more efficiently since there is less code to analyze. We
quantify these effects in the evaluation section.

We also use a symbolic evaluation transformation for a couple of reasons.
First, it improves the effectiveness of the dead code elimination passes, but more
importantly, it greatly improves the performance of our lightweight octagon anal-
ysis. As was mentioned earlier, the lightweight octagon analysis does not perform
any kind of transitive closure on its state. We compensate for this by making
a best effort to ensure that checks are always in terms of irreducible expres-
sions. As will be seen in the evaluation section, this approach gives reasonable
performance when compared with the off-the-shelf octagon library.

Soundness In order to be sound, we make conservative assumptions about
aliasing. These conservative assumptions entail that all pointers may alias, and
demand that the maintenance of dataflow facts across memory operations be
done carefully. In all of the analyses described below, the situations in which
dataflow facts must be killed are similar. On any write to memory, dataflow
facts referring to global variables, variables whose addresses have been taken,
and facts referring to the contents of memory must be killed. Further, in regards
to function calls, the optimizer’s reasoning is limited. Calls inserted by the first
phase of Deputy are assumed to have no side effects on memory. Further, C
library functions, like strlen, having the attribute pure are assumed to have
no such side effects. It is assumed that any other call may modify memory
arbitrarily, so again facts referring to globals, variables whose addresses have
been taken, and facts referring to the contents of memory must be killed. Similar
assumptions are made about inline assembly.

2.3 Inter-procedural Optimization

It is common for programmers to write functions that assume that parameters
are non-null. It is also common for programmers to write functions for which it
is impossible for the return value to be null. Making annotations for all of these
cases can be tedious, so the Deputy optimizer includes a pass that deduces where
these annotations can go. When a parameter is annotated with nonnull, the first
phase of Deputy places the non-null check at the call site rather than inside of
the callee. This exposes the checks to more opportunities for optimization.

Deducing which parameters can be annotated as nonnull is achieved through
a backwards dataflow analysis similar to a standard “very busy” expressions
analysis. A check is “very busy” at a program point if it must be calculated on
every path following the point. If a check at least as strong as CNonNull(p) is
very busy at the entry point of a function, and p is a parameter to the function,
then the programmer has made the assumption that the function is only called
with non-null p, and an annotation can be added to this effect.

Further, it can be deduced that the return type of a function can be annotated
as nonnull. This analysis makes use of the available checks analysis described
earlier. If at every statement return p in a function there is either:

12



A check available of the form CNonNull (p),

p is of a nonnull type,

p is the result of pointer arithmetic, or

It has been deduced by the intra-procedural nullness analysis that p cannot
be null.

= W o=

then it is impossible for the function to return a null value. In this case the
return type can be annotated nonnull.

It should also be noted that it is possible to discover richer pre- and post-
conditions using this method. Mechanisms for exploiting these are currently
under development.

3 Optimizer Design

Now that the optimization phases have been presented separately, their com-
position can be discussed. Two different designs will be presented. One will be
built around the lightweight octagon analysis, and the other will be built around
the off-the-shelf library. These will be referred to as LW and OTS, respectively.

3.1 The LW Optimizer

Flow ; Flow
String and
Insensitive Octagon Sensitive Peephole Symbolic
Syntactic Andysis Syntactic Optimization Evaluation
Analysis Analysis
; Flow Flow
String and
Octagon Insensitive Peephole Sensitive Loop
Andysis Syntactic Optimization Syntactic Optimization
Analysis Analysis

Fig. 4. The path that code takes through the LW optimizer

A flow diagram of the LW optimizer is shown in figure 4. The stage called
“String and Octagon Analysis” performs the flow-sensitive string optimizations
and the lightweight octagon analysis all at once. The other stages are named
according to the phases described in the previous section.

The first flow-insensitive stage removes many checks that are easy to reason
about. As discussed earlier, there are many checks here because one of the chief
design goals for the first stage of Deputy was to keep the typing rules and
implementation simple.
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The second stage is made up of the flow sensitive string and octagon analy-
ses. These analyses are relatively unsophisticated, and accumulate only a small
number of facts. Therefore, the operations on the abstract state are efficient and
fixed-points are reached quickly. For this reason, it is appropriate to run early in
the optimizer when there are still many checks remaining in the code that can
easily be seen to be redundant.

The third stage eliminates syntactically redundant checks that the second
stage was unable to reason about. Before running the symbolic evaluator, a pass
is made by the peephole optimizer. Results are similar as long as it is run once
before symbolic evaluation, primarily to improve performance of later analyses,
as the later peephole pass would optimize a superset of the checks improved by
the first pass.

Now that much of the low hanging fruit has been picked off, reasoning about
more subtle cases can be attempted. The symbolic evaluation operates on ex-
pressions inside of checks. Several of the passes examine checks syntactically with
limited dataflow information. In many cases the information is so limited that
expressions in checks contain terms not mentioned by the dataflow facts. When
the check expressions are evaluated symbolically, more of them are in terms of
the expressions and lvalues appearing in the facts gathered from dataflow analy-
sis. This allows them to be reasoned about effectively with only a small number
of dataflow facts.

After symbolic evaluation, the same passes are run again. They are followed
by the pass for raising loop invariant checks out of loops. This phase is relatively
expensive, so it is run last so that it operates on as little code as possible.

This approach has a couple advantages. First, all stages are either standard
analyses and transformations used in compilers, or analyses that simply gather
information from Deputy checks or checks that are already in the program.
Second, since the analyses were kept simple, they only needed to be tuned to
gather the information actually needed to reason about checks. This was an easy
guide which allowed us to restrict their implementation to what was necessary.

3.2 The OTS Optimizer

A flow diagram of the OTS optimizer is shown in figure 5. Here, “Flow Insensitive
Analysis” refers to both the syntactic analysis and the peephole optimizations,
“String Analysis” refers to both of the string analyses, and “Octagon Analysis”
refers to the analysis described in the previous section that uses the off-the-shelf
octagon library. The other phases are named according to the phases described
earlier.

The first few stages are as before except for the omission of the lightweight
octagon analysis. Further, since the octagon analysis itself is expensive, it is
important to minimize the amount of code on which it operates. Therefore, after
the first few stages remove the easy-to-reason-about checks, a pass is made that
eliminates dead code and unused variables.

Following this, the symbolic evaluation transformation allows the string anal-
yses to reason about more checks, as before, and are followed by the flow insen-
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Fig. 5. The path that code takes through the OTS optimizer

sitive analyses and loop optimization. Now that the code is smaller, it is possible
to run the octagon analysis somewhat efficiently. After that, a pass is made by
the flow sensitive syntactic analysis to remove any redundant checks that the
octagon analysis missed.

3.3 Interprocedural nonnull Optimization

The goal of the interprocedural optimizations is to reduce the number of times
that an lvalue is checked for nullness. This is achieved through deducing what
function parameters and return types can be annotated as nonnull. These anno-
tations are discovered by doing the “very busy” check analysis described earlier.
When instructed to do so, the LW optimizer includes this analysis after loop
optimization. Then, annotated function prototypes can be emitted and merged
with the original source so that the annotations can be used on each run with
the extra analysis omitted.

The annotated function prototypes can be thought of as summaries of the
functions. Iteration is achieved by doing subsequent “very busy” check analyses
after re-running the intra-procedural non-null analysis. This method is capable
of handling recursive and mutually recursive functions as well since it is no
longer necessary to analyze a function once annotations have been discovered.
Since the set of facts collected increases in size monotonically, and annotations
can be placed in only a finite number of places, the analysis will terminate.
In the current implementation, we rely on the first phast of Deputy to point
out when a function with nonnull annotations is being assigned to a function
pointer without the annotations. In this situation the annotations are erased
and ignored both at call sites and in the function definition, i.e. the function
is treated everywhere as unannotated. This situation could be handled more
precisely by using a suitable subtyping relation for nonnull types, however this
has not yet been implemented.
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4 Evaluation

There are three metrics that can be used to judge the performance of the opti-
mizer, and learn about the cost and benefits of its phases. These are:

1. The number of checks remaining after the optimizer runs.
2. The time it takes the optimizer to run.
3. The improvement in performance of benchmarks.

The number of checks remaining is a good indication of the effectiveness of
the analyses and transformations. The runtime of the optimizer itself is a good
indication of the cost of the analyses used to support optimization, and the per-
formance of the benchmarks can indicate whether or not the expensive runtime
checks are being effectively reasoned about.

The goal of the following experiments is to learn, first, how well each of the
optimization phases performs under the above metrics, and also to compare the
two different designs for the optimizer described in the previous section. The
benchmarks used in the experiments are taken from SPEC[13], Mediabench[7],
Ptrdist[1], and Olden[3]. The benchmarks used from these sources were selected
because they were easy to convert to the Deputy type system, and because they
exercise many of its features.

4.1 Overall Performance

Figure 6 shows the performance of the LW and OTS optimizers under the above
metrics. All experiments were performed on a 2.67GHz Intel Core 2 Duo with
2GB of memory running on Linux 2.6.18 and compiled with gcc 4.1.1 and Deputy.
The table shows the lines of benchmark code, the number of checks remaining,
the time spent in optimization, and the percent slowdown of the benchmark
when compared with compilation by gcc alone.

In summary, both leave a runtime check for every seven or eight lines of
code, produce a slowdown that is generally under 25%, and process between
500 and 1500 lines of code in a second. On average, the OTS optimizer improves
benchmark performance by a few percent, reduces the number of checks by about
5%, but runs about twice as slow as the LW optimizer.

A few of the benchmarks require explanation. Most notably, the perimeter
and array-incr benchmarks that fall below the double line are interesting.
The perimeter benchmark suffers a large slowdown because the runtime checks
that the optimizer fails to remove prevent gcc from performing a tail-recursion
optimization. These runtime checks are inserted to check the well-formedness of
a deeply-nested tree data structure, and could possibly be removed with shape
analysis. It should also be noted that the perimeter benchmark fails to check the
return of malloc in a few cases. Appropriate checks are added here by Deputy,
and should certainly not be optimized away.

The array-incr benchmark demonstrates a failure in both the lightweight
and off-the-shelf octagon analyses. The deputized code appears in figure 7. The
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Benchmark | Lines| Initial] LW Optim| LW Optim|LW Optim||OTS Optim| OTS Optim|OTS Optim
Checks|Checks Left|Optim Time| Slowdown||Checks Left|Optim Time| Slowdown
SPEC
go 29722| 43385 4142 28.5s 17% 4072 45.1s 9%
gzip 8673| 4890 558 2.3s 12% 533 9.3s 10%
li 9639| 10961 2334 4.2s 50% 2152 9.7s 48%
Olden
bh 1907| 4613 347 2.1s 12% 264 4.8s 6%
bisort 684 331 17 0.1s 0% 15 0.6s 0%
em3d 585 306 48 0.3s 58% 45 1.3s 58%
health 717 505 35 0.3s 25% 35 1.1s 25%
mst 606 338 47 0.3s 7% 42 1.1s 7%
power 768 608 14 0.3s 0% 14 0.8s 0%
treeadd 377 79 7 0.2s 0% 7 0.8s 0%
tsp 565 446 25 0.2s 2% 25 0.7s 2%
Ptrdist
anagram 635 20952 78 0.4s 4% 7 0.8s 4%
bc 7395 7433 1013 3.1s 23% 933 15.6s 16%
ft 1904| 41194 69 0.5s 15% 68 1.25 15%
ks 792| 9476 46 0.3s 27% 44 0.8s 26%
yacr2 3976| 3452 588 1.2s 98% 555 2.1s 74%
Mediabench
adpcm 387 180 23 0.3s 12% 23 0.9s 12%
epic 3469 4923 688 2.6s 0% 657 6.4s 0%
total 72801|154080 10079 9561
avg 8560 20% 17%
rate 0.5 7.2| 1.5KLOC/s 7.6 .TKLOC/s
perimeter 395 9 0.1s 340% 9 0.2s 340%
array-incr 1 0.03s 800% 1 0.03s 800%

Fig. 6. Deputy benchmarks. For each test we show the size of the benchmark, the
number of checks inserted by the first phase of Deputy(including checks on global ini-
tializers), the number of checks remaining after optimization, the cost of optimization,
and the slowdown of the benchmark for both the LW and OTS optimizers with respect
to uninstrumented C code compiled by gcc.
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1 int array[SIZE];
2 int main() {
3 int acc = 0, i = 0;

4 int *p = array;

5 while(i < SIZE) {

6 acc += *p;

7 CLeq(p + 1, array + SIZE);
8 pt+t; i++;

9}

10  return acc;

11 }

Fig. 7. The array-incr benchmark. The remaining check is unnecessary, but evades
analysis by an octagon analysis.

CLeq check is clearly unnecessary. As a sanity check to ensure that a misuse of the
library was not the cause of imprecision, we ran Mine’s reference implementation
over this code after a translating it faithfully into the toy language on which it
operates. It also failed to generate the information needed to reason about this
check. On the other hand, it should be possible for a standard induction variable
analysis to eliminate this check. It is not clear, however, that this will provide
a significant advantage in the general case; the octagon analyses are able to
eliminate many checks.

4.2 Cost and Benefit of Phases

Phase Deputy Time|Checks Reduced|Speedup
Peephole <1% 32% 2%
FI-Syntactic 4% 60% 55%
LW Octagon 8% 75% 56%
OTS Octagon 41% 7% 59%
FS-Syntactic 4% 16% 5%
Loop Analysis 7% 0% 8%
Dead Code Elim 5% 0% <1%
Symbolic Eval 9% 35% 6%
Inter-nonnull 3% <1% <1%

Fig. 8. Cost and benefit of Deputy optimizer phases.

The table in figure 8 summarizes the cost and benefit of each of the opti-
mization phases. The phase “FI-Syntactic” refers to the flow insensitive syntactic
analysis. The phase “FS-Syntactic” refers to the flow sensitive syntactic anal-
ysis. The phase “Inter-nonnull” refers to the interprocedural nonnull analysis.
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Further, the measurements for the intraprocedural nonnull analysis, string anal-
ysis, and lightweight octagon analysis are folded into a single row since they are
implemented together, and difficult to extract from each other.

These figures were obtained by running the Deputy optimizer over the bench-
marks above the double bar line in figure 6. The percent differences are obtained
by comparing the baseline optimizer with one in which the phase in question has
been disabled. The column labeled “% Deputy Time” shows what percent of the
total Deputy runtime is spent in that optimization phase. The column labeled
“Checks Reduced” refers to the percent by which the number of static checks in
the program was reduced. The column labeled “Speedup” refers to the percent
by which the performance of benchmarks was improved on average. These per-
centages are all with respect to the LW optimizer except for the OTS Octagon
phase. Its effectiveness was measured by removing it from the OTS optimizer.

Each of the phases requires under 10% of the Deputy runtime. Even, the
flow insensitive phases, which run over an inflated amount of code, do so very
quickly. We have therefore confirmed the assertions about the performance of
the phases made earlier. The table shows that earlier phases eliminate a large
number of obviously needless checks. Symbolic evaluation allows reasoning about
more difficult checks in the LW optimizer. The flow sensitive syntactic analysis
removes duplicates that defy analysis by other stages.

Loop analysis is not as effective as other stages. A survey of the resulting
code reveals that only a small number of CNonNull checks are being lifted out of
loops, and as these checks are inexpensive to begin with—consisting only of a test
and a jump-loop optimization only improves performance in a small number of
cases. The interprocedural nonnull analysis was able to discover many types
that could be annotated. It found over 50 annotations in the 1i benchmark.
However, as mentioned, CNonNull is an inexpensive check, especially for a CPU
with good branch prediction, so the performance improvement is not impressive.

4.3 Discussion

The table in figure 9 shows the breakdown of the remaining checks in the bench-
marks above. The CPtrArithAccess checks nearly hold a majority. This is due
to the go benchmark. It uses entries in global arrays to index into other global
arrays. Without any interprocedural analysis, or detailed knowledge of the im-
plementation of the benchmark, these checks are beyond the simple analyses
presented here. When the go benchmark is left out, CPtrArithAccess checks
only account for 17% of the remaining checks, and the plurality of remaining
checks belongs to the CNonNull checks, which as mentioned before, are inexpen-
sive.

4.4 Real Applications

After obsessing over micro-benchmarks, it is important to remember that when
applied to real applications like Linux drivers, and TinyOS, the overhead of code
optimized by these phases is generally reasonable. Several Linux device drivers,
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Type % of Those Remaining
CSelected 5.5%
CPtrArithAccess 47.0%
CNullOrLegNT <1%
Cleq 9.6%
CLegNT <1%
CNotSelected 7.9%
CPtrArith 4.4%
CWriteNT <1%
CPtrArithNT 1.8%
CNonNull 19.1%
CNullOrLeq 4.0%

Fig. 9. Breakdown of the remaining checks.

and TinyOS modules, have been “deputized.” Experiments in [14] and [4] show
that the checks remaining after optimization have reasonable overhead. Results
from Linux driver experiments are reproduced here.

Benchmark Driver ||Native Throughput|Deputy Throughput|Native CPU %|Deputy CPU %
TCP Receive| €1000 936Mb/s 936Mb/s 47.2 49.1 (+4%)
UDP Receive| e1000 20.9Mb/s 17.4Mb/s (-17%) 50.0 50.0

TCP Send 1000 936Mb/s 936Mb/s 20.1 22.5 (+12%)

UDP Send | e1000 33.7Mb/s 30.0Mb/s (-11%) 455 50.0 (+9%)
TCP Receive tg3 917Mb/s 905Mb/s (-1.3%) 25.4 27.4 (+8%)

TCP Send | tg3 913Mb/s 903Mb/s (-1.1%) 18.0 20.4 (+13%)

Untar usb-storage 1.64MB/s 1.64MB/s 5.5 6.8 (+23%)
Aplay emul0k1 n/a n/a 9.10 9.64 (+6%)
Aplay intel8x0 n/a n/a 3.79 4.33 (+14%)
Xinit nvidia n/a n/a 12.13 12.59 (+4%)

Fig. 10. Benchmarks measuring Deputy overhead. Utilization numbers are kernel CPU

utilization.

Table 10 shows a comparison between native and deputized drivers. For net-
work drivers, throughput and kernel CPU overhead were measured on a dual
Xeon 2.4GHz machine. For the TCP experiments, 32KB packets were sent and
received. For the UDP experiments, 16KB packets were sent and received. The
usb-storage driver was tested by untarring the Linux source from a Flash drive
back onto the drive itself. Sound drivers were tested by playing a sound, and the
video driver was tested by setting up and tearing down an X Window session.
More detailed explanations of these experiments can be found in the papers men-
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tioned above. The important point for the optimizer is that overhead in terms
of decreased throughput and increased CPU utilization is not burdensome.

5 Related Work

The Deputy type system and optimizer were key tools in the development of
SafeDrive[14], a system for improved memory safety and recovery for Linux de-
vice drivers. The Deputy type system is described briefly there, but more thor-
oughly in an accompanying technical report[4]. Neither of these papers describe
the optimizer in detail, which is the goal of this report.

There are other systems that perform static analysis guided by programmer
annotations. Microsoft’s SAL annotation language [6] is very similar to Deputy’s.
The ESPX checker attempts to find bugs statically based on these annotations.
The Deputy optimizer is similar in that the static analysis can be used to find
bugs. The difference is that, for Deputy, soundness must be maintained. For this
reason, the primary focus of the Deputy optimizer is figuring out what run-time
checks may be soundly removed rather than figuring out what operations will
always cause(or lead to) an access violation.

CCured[9] is a whole program analysis that instruments pointers with bounds
information. As in Deputy the bounds information may need to be checked at
runtime. The CCured system includes an optimization phase that also attempts
to reason about bounds checks, null checks, and others. The Deputy type system
presents its optimizer with some different challenges than those seen by the
CCured optimizer. The primary challenge is the sheer volume of runtime checks
added by the type system. On the benchmarks presented here, deputized code
achieves better performance than cured code, however CCured also enforces
allocation safety, which Deputy does not.

ABCDI2] attempts to eliminate array bounds checks for Java at runtime. It
uses a domain similar to the one used by the Deputy optimizer in the lightweight
octagon analysis. Both ABCD and the Deputy optimizer must be fast, but for
different reasons. ABCD must be fast because it is optimizing while the program
is running, whereas the Deputy optimizer must be fast because the volume of
checks is large.

There are also mechanisms for removing array bounds checks based on the-
orem proving and predicate abstraction[10,11], but this approach is probably
too heavyweight in the context of Deputy. By the time that our simpler anal-
yses have run, the expense of more sophisticated techniques may outweigh the
benefit.

6 Conclusions

This report presented a detailed description of the Deputy optimizer. There were
three constraints on its design. First, it needed to be lightweight so that the large
number of checks generated by static type checking could be handled. Second,
in spite of its low complexity it had to eliminate enough spurious checks so that
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the increased memory safety provided by the type system would come at a low
cost. Finally, the analyses used needed to be strong enough to identify runtime
checks that would always fail, i.e. to find bugs.

These constraints were satisfied through a series of lightweight syntactic anal-
yses sometimes with the help of sparse dataflow information, and standard com-
piler transformations. Earlier analyses were fast and targeted at obvious checks
so that the burden on later more sophisticated techniques would be less.

As evidence that the goals of the optimizer were accomplished, we reported
the results of several benchmarks. They showed that although there is room for
improvement in a few selected cases, overall performance is on par or better
than optimization passes in similar tools. Further, a comparison was made with
an analysis built around an off-the-shelf octagon library. In terms of benchmark
performance, the LW optimizer is probably a better approach. Finally, perfor-
mance of deputized code for real applications, namely Linux device drivers, were
shown to have reasonable performance.

6.1 Future Work

The most direct route to the biggest improvement in the Deputy optimizer is
probably through an alias analysis, and the calculation of procedure summaries.
These could be used to maintain dataflow facts across procedure calls that are
now lost needlessly.

Further, the “very busy check” analysis used to deduce nullterm annotations
can be used to extract richer pre- and post-conditions for functions. These pre-
and post-conditions could then be fed back into the first phase of Deputy to
help it generate fewer checks. It is also easy to envision further uses for this
information. It could be merged into annotation libraries, or used as a way to
reduce the cost of modeling function calls in concolic execution tools.
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