
Mechanisms to Tolerate Misbehavior in Replicated
Systems

Byung-Gon Chun

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-103

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-103.html

August 17, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Mechanisms to Tolerate Misbehavior in Replicated Systems

by

Byung-Gon Chun

B.S. (Seoul National University, Seoul, Korea) 1994
M.S. (Seoul National University, Seoul, Korea) 1996

M.S. (Stanford University, Stanford) 2002

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor John Kubiatowicz, Chair

Professor Scott Shenker
Professor John Chuang

Fall 2007

The dissertation of Byung-Gon Chun is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2007

Mechanisms to Tolerate Misbehavior in Replicated Systems

Copyright 2007

by

Byung-Gon Chun

1

Abstract

Mechanisms to Tolerate Misbehavior in Replicated Systems

by

Byung-Gon Chun

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John Kubiatowicz, Chair

Distributed systems face challenges for operating correctly despite misbehavior of their

components. Redundancy through replication is a widely-used technique to combat against

misbehavior. However, this technique has a fundamental limitation in terms of the number

of arbitrary faults it can tolerate. This limitation becomes a more serious problem when

a system operates for long periods of time. Furthermore, components may deviate from

specification because of rational behavior when they operate in different administrative

domains.

In this thesis, we explore mechanisms to tolerate misbehavior of components in dis-

tributed systems, focusing on replicated systems. First, we show that equivocation – the

act of telling different lies to different nodes – is a fundamental weapon that adversaries

can use to violate the safety of systems. To prevent equivocation, we propose Attested

Append-Only Memory (A2M), a trusted system facility that issmall, easy to implement,

and easy to verify. A2M provides the programming abstraction of a trusted log, which leads

to protocol designs immune to equivocation. Using A2M, we improve upon the state of the

art in Byzantine-fault tolerant replicated state machines, producing A2M-enabled protocols

(variants of Castro and Liskov’s PBFT) that remain correct (linearizable) and keep making

progress (live) even when half the replicas are faulty, improving the previous upper bound.

We also applied A2M to achieve linearizability in a single-server shared storage in spite of

faults. Our evaluation shows that this fault tolerance improvement is achieved with minor

performance overhead.

2

Second, we address the problem of long-term fault tolerance. Typical Byzantine models

require that the number of faulty nodes do not exceed a hard upper bound. Unfortunately,

in long-running systems, uninterrupted good health is tough to guarantee due to rare, short-

term overwhelming faults such as malicious attacks, leading to loss of all correctness prop-

erties. To combat this problem, we propose a tiered Byzantine fault model that has two

fault bounds depending on the type of operations. We introduce a desirable property called

Healthy-Write-Implies-Correct-Read (HWICR) which stipulates that the system will return

correct data as long as it is written during a good period of system health. We then present

TimeMachine (TM), a preserved name service, that uses a two-phase approach to provide

HWICR under the tiered fault model. The approach alternatesbetween service phase and

proactive recovery phase, and important state changes happen only during proactive recov-

ery. Our prototype demonstrates that TM meets the goal of thelong-term naming service

with reasonable performance.

Finally, we tackle a problem of replication among rational nodes in multiple adminis-

trative domains. We take a game-theoretic approach to quantify the effects of rationality on

the social cost of replicated systems. We show that replication performed by selfish agents

can be very inefficient, but with a proper incentive mechanism such as payment the system

can be guided to socially optimal replication.

Professor John Kubiatowicz
Dissertation Committee Chair

i

FOR MY FAMILY

ii

Contents

List of Figures v

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition and Challenges 2
1.3 Contribution . 5
1.4 Organization . 8

2 A2M: System Support for Fault Tolerance 9
2.1 Overview . 9
2.2 Motivation . 12

2.2.1 Setup . 12
2.2.2 Assumptions . 12
2.2.3 Fault Models . 12
2.2.4 Notation . 13
2.2.5 Equivocation . 14

2.3 Attested Append-Only Memory .17
2.3.1 Interface . 19
2.3.2 A2M Usage . 20
2.3.3 Implementation Considerations 22

2.4 A2M State Machine Replication Protocols 26
2.4.1 Background: PBFT . 26
2.4.2 A2M-PBFT-E . 30
2.4.3 A2M-PBFT-EA . 34

2.5 Other A2M Protocols . 43
2.5.1 A2M-Storage . 44
2.5.2 A2M-Q/U . 47

2.6 Evaluation . 48
2.6.1 Microbenchmarks . 49
2.6.2 Macrobenchmarks: NFS . 50
2.6.3 Effects of A2M Placement . 51

iii

2.7 The Right Abstraction .52
2.8 Future Work . 53
2.9 Summary . 54

3 TimeMachine: Long-term Fault Tolerance 55
3.1 Overview . 55
3.2 Separating Authenticity from Durability 59
3.3 Maintaining Self-verifying Replicas for Durability 60

3.3.1 Challenges to Durability . 61
3.3.2 Creation versus Failure Rate .62
3.3.3 ChoosingrL . 65

3.4 Towards a Long-term Fault Tolerant Naming Service 68
3.4.1 New Service Property . 68
3.4.2 The Tiered Byzantine-Fault Model 70
3.4.3 Two-phase Approach . 71

3.5 TimeMachine . 72
3.5.1 Components . 73
3.5.2 TM Design . 75
3.5.3 Optimizations . 79
3.5.4 Correctness . 79

3.6 Discussion . 81
3.6.1 Tradeoff between Safety and Availability 81
3.6.2 Extensions . 82

3.7 Evaluation . 83
3.7.1 Implementation . 83
3.7.2 Experiment Results . 83

3.8 Future Work . 85
3.9 Summary . 86

4 Selfish Replication 87
4.1 Overview . 87
4.2 Basic Game . 89

4.2.1 Game Model . 90
4.2.2 Nash Equilibrium Solutions . 92
4.2.3 Social Optimum . 93
4.2.4 Analysis . 94
4.2.5 Analyzing Specific Topologies .96

4.3 Payment Game . 97
4.3.1 Game Model . 98
4.3.2 Analysis . 98

4.4 Simulation . 102
4.4.1 Nash Dynamics Protocols . 103

iv

4.4.2 Varying Placement Cost . 105
4.4.3 Different Underlying Topologies 106
4.4.4 Varying Demand Distribution . 107
4.4.5 Effects of Payment . 108

4.5 Discussion . 108
4.6 Summary . 110

5 Related Work 111

6 Conclusion and Future Work 117
6.1 Summary . 117
6.2 Future Work . 119

Bibliography 121

v

List of Figures

2.1 A forking attack example of two clients and one maliciousserver. The
server convinces clientsa andb of different system states. 15

2.2 An example that shows the violation of linearizability in PBFT when two
replicas are faulty out of four replicas. Faulty serversr1 andr2 convince
non-faulty serversr0 andr3 to commit different requests. 16

2.3 Structure of anattested append-only memory(A2M). An A2M contains a
set of distinct logs (qi) that map sequence numbers (in the range ofL i to
H i) to values. 18

2.4 A2M implementation scenarios. Thick boxes delineate the trusted comput-
ing base. (a) trusted service, (b) trusted software isolation, (c) trusted VM,
(d) trusted VMM, and (e) trusted hardware. 23

2.5 Replicated state machine. Clients send requests to servers, servers agree on
the sequence of requests to execute, execute requests in theagreed order,
and send replies back to the clients. .. . 26

2.6 Three-phase agreement protocol of PBFT. 28
2.7 Three-phase agreement protocol of A2M-PBFT-E. Thickerlines denote

messages that are attested to using A2M. 30
2.8 Three-phase agreement protocol of A2M-PBFT-EA. Thicker lines denote

messages that are attested to using A2M. 35
2.9 Microbenchmark results varying request (left) and response (right) sizes,

measured in KBytes. “sig” refers to use of signatures while “MAC” refers
to use of MACs in the protocols. 49

2.10 Mean time to complete the six macro-benchmark phases inseconds. 50
2.11 Mean time to complete the six macrobenchmark phases in seconds for dif-

ferent A2M additional latency costs. 51

3.1 Traditional storage system architecture. File system directories are used for
authenticity and disks and tapes are used for durability. 56

3.2 Architecture of our data storage, which separates authenticity management
from durability management. 57

vi

3.3 A continuous time Markov model for the process of replicafailure and re-
pair for a system that maintains three replicas (rL = 3). Numbered states
correspond to the number of replicas of each object that are durable. Transi-
tions to the left mean replicas are lost; transitions to the right mean replicas
are created. 62

3.4 A continuous time Markov model for the process of replicafailure and re-
pair for a system that maintains three replicas (rL = 3). Numbered states
correspond to the number of replicas of each object that are durable. Tran-
sitions to the left occur at the rate at which replicas are lost; right-moving
transitions happen at the replica creation rate. 63

3.5 Average number of replicas per object at the end of a two-year synthetic
trace for varying values ofθ, which varies with bandwidth per node (on the
x-axis) and total data stored (rL). Whereθ < 1, the system cannot maintain
the full replication level; increasingrL further does not have any effect. . . 65

3.6 Frequency of “simultaneous” failures in the PlanetLab trace. These counts
are derived from breaking the trace into non-overlapping 24and 72 hour
periods and noting the number of permanent failures that occur in each
period. If there arex replicas of an object, there werey chances in the trace
for the object to be lost; this would happen if the remaining replicas were
not able to respond quickly enough to create new replicas of the object. . . 66

3.7 Analytic prediction for object durability after four years on PlanetLab. The
x-axis shows the initial number of replicas for each object: as the number
of replicas is increased, object durability also increases. Each curve plots
a different per-node storage load; as load increases, it takes longer to copy
objects after a failure and it is more likely that objects will be lost due to
simultaneous failures. 67

3.8 Behavior of preservation system under faults. Thick gray portion of time-
line indicates period during which fault assumptions are violated. Three
ovals indicate additions to the state of the system (new name/value map-
pings). Horizontal boxes indicate how state additions are seen by client
reads – white for correctly/black for incorrectly. Case (a). Typical BFT
behavior: once fault bound is violated, no correctness is guaranteed for re-
trieval of bindings addedbefore, during, or afterthe violation. Case (b).
System with HWICR property: Additions that occurbeforeor after the vi-
olation can be correctly observed after the violation is repaired. During the
violation period, system guarantees not to return incorrect value for read 1,
but may lose availability, i.e., may not return a value at all(shaded box).
Addition 2 is lost in both cases, since it occurs during the unhealthy period. 68

3.9 Tiered Byzantine-fault model. 70
3.10 Operation of TM. Each replica alternates between a service phase and a

proactive recovery phase. 72

vii

3.11 A TM node contains a SAIM, a buffer to hold Add requests temporarily,
and an AST that maintains committed bindings. The arrows indicate self-
verifying pointers, which mean a hash value of a starting point is the hash
of a pointed block. SAIM stores the AST root digest and a sequence number. 75

3.12 Get and Add time. In average, Get takes 3ms, and Add takes1ms. 84
3.13 TM availability varying proactive recovery (PR) time and inter-PR time. . . 85

4.1 Replication. There are four servers labeled A, B, C, and D. The rectangles
are object replicas. In (a), A stores an object. If B incurs less cost accessing
A’s replica than it would replicating the object itself, it accesses the object
from A as in (b). If the distance cost is too high, the server replicates the
object itself, as C does in (c). This figure is an example of ourreplication
game model. 89

4.2 Potential inefficiency of Nash equilibria illustrated by two clusters ofn2
servers. The intra-cluster distances are all zero and the distance between
clusters isα−1, whereα is the placement cost. The dark nodes replicate
the object. Network (a) shows a Nash equilibrium in the basicgame, where
one server in a cluster replicates the object. Network (b) shows the social
optimum where two replicas, one for each cluster, are placed. The price of
anarchy isO(n) and even the optimistic price of anarchy isO(n). This high
price of anarchy comes from the undersupply of replicas due to the selfish
nature of servers. Network (c) shows a Nash equilibrium in the payment
game, where two replicas, one for each cluster, are placed. Each light node
in each cluster pays 2/n to the dark node, and the dark node replicates the
object. Here, the optimistic price of anarchy is one. 93

4.3 PoA in the basic game for specific topologies 96
4.4 An example where the Nash dynamics protocol does not converge in the

payment game. 103
4.5 We presentPoA, Ratio, andOPoAresults for the basic game, varyingα on

a 100-node line topology, and we show number of replicas placed by the
Nash equilibria and by the optimal solution. We see large peaks inPoAand
OPoAat α = 100, where a phase transition causes an abrupt transition in
the lines. 106

4.6 Transit-stub topology: (a) basic game, (b) payment game. We show the
PoA, Ratio, OPoA, and the number of replicas placed while varyingα be-
tween 0 and 2 with 100 servers on a 3050-physical-node transit-stub topol-
ogy. 107

4.7 Power-law topology: (a) basic game, (b) payment game. Weshow thePoA,
Ratio, OPoA, and the number of replicas placed while varyingα between
0 and 2 with 100 servers on a 3050-physical-node power-law topology. . . 108

viii

Acknowledgments

I thank the Lord for blessing me with this great opportunity to study Computer Science

at this intellectually-inspiring place, Berkeley, guiding me to work on great projects with

great mentors, and allowing me to grow up spiritually duringmy study.

I am extremely lucky to have my advisors, Professor John Kubiatowicz and Professor

Scott Shenker, during my Ph.D. study. In the beginning of my study, John Kubiatowicz

invited me to the world of large-scale distributed systems,in particular his OceanStore

project. He has advised me to formulate high-level ideas andto design detailed system

algorithms and implementations. Scott Shenker inspired meto work on many interesting

projects including fault tolerance and core networking technologies. He has guided me to

work on important problems and to think about the impact of mywork. I am also very

lucky to have Dr. Petros Maniatis at Intel Research, Berkeley as my mentor during my

Ph.D. study. Both A2M and TimeMachine are the results of our collaboration. He has

encouraged me to pursue my work, and has given me numerous valuable feedback on the

work. Professor John Chuang kindly became my dissertation committee member. My work

on systems with rational nodes was greatly influenced by his advice and work. I am grateful

for his commitment.

I thank my mother with my heart. Without her love, support andsacrifice, it would be

impossible for me to pursue my study for many years and I’d notbe who I am. I thank

my father in heaven for his love. I always remember his smile.I thank my wife Chan Jean

Lee, my life partner, for her constant encouragement and support throughout my academic

years. Our common intellectual interests helped my research. My lovely two kids, Soomin

Christin Chun and Joseph Sukmin Chun, have brought so much joy to me and my family.

They love computers like I do! I thank my brother and his wife for praying for me and

supporting me as a family. I especially thank my parent-in-law to help us raise our kids

while they visited Berkeley as visiting scholars. I thank mygrandfather and grandmother

in heaven, who helped my family when my father was sick, for their endless love, I always

miss them. Lastly, my mother’s relatives have been a big support to me since I was a child.

My office mates, Hakim Weatherspoon, Sean Rhea, Patrick Eaton, Victor Wen, and

Matthew Caesar have been great friends. Our collaboration and discussion helped me en-

ix

rich my experience in designing and building distributed systems and networks. I thank the

networking group at Berkeley led by Professors Scott Shenker and Ion Stoica. I also thank

RADLab for providing open research space. My first year at Berkeley was great because

of my office mates, Rodrigo Fonseca, Ana Ramirez Chang, and Evan Chang. Rodrigo Fon-

seca and I share many common research interests and he has given me valuable feedback

on my research throughout my academic years. I also thank Mary Barnes for helping me

focus on my study during my first year at Berkeley.

I want to thank other collaborators of this thesis. The Selfish Replication chapter is

the result of collaboration with Hoeteck Wee, Kamalika Chandhuri, Marco Barreno, and

Christos Papadimitriou. The analysis of maintaining replicas for durability is the result

of collaboration with Frank Dabek, Andreas Haeberlen, EmilSit, Hakim Weatherspoon,

Frans Kaashoek, and Robert Morris.

I thank my friend Sukwon Cha and Moon Jung Kim for giving me good advice and

helping me settle when I started my study in the states. I am indebted to Byunghoon

Kang. His family helped our family settle during our transition to Berkeley. Fellow Korean

graduate EECS students, Jaein Jung, Sukun Kim, Daekyeong Moon, and Hyuck Choo,

have been great support.

I thank Pastor Bae in Richmond Baptist Church for praying forour family. I thank my

church cell group members for our fellowship and I thank the Lord for blessing me to be

part of the current cell group.

1

Chapter 1

Introduction

1.1 Motivation

People rely on services provided by computer systems in everyday life. Many systems

are networked through the Internet, often across multiple administrative domains. Mission

critical systems such as banking, medical applications, emergency response, airline con-

trol, military applications, and space mission applications are not uncommon. For critical

computer systems, reliability is the most important goal.

However, achieving reliability by tolerating faults becomes harder due to several rea-

sons. Complexity in software and hardware has increased tremendously for decades. It

is hard to write bug-free or error-free software. As software complexity increases, bug

rates get worse [CYC+01]. Furthermore, bugs in networked systems can open door tose-

curity attacks through the Internet. In 2006 alone, the CERTCoordination Center [cer]

received more than 8,000 reports of security vulnerabilities. Often malicious attackers can

use viruses or worms to infect hosts with common vulnerabilities quickly. Human errors

and misconfigurations can also thwart the reliability of systems. These faults can be mod-

eled asByzantine faultswhere faulty nodes can behave arbitrarily.

Replication is a fundamental technique for tolerating faults. The basic idea is that

multiple servers coordinate to run the same program image orto keep the same copy of data,

thus giving clients an illusion of interacting with a singleserver. Many protocols have been

designed to tolerate benign faults (i.e., fail-stop faults) [Lam01,OL88], but these protocols

2

do not defend against Byzantine faults. However, as we pointout in the above, tolerating

Byzantine faults becomes more and more necessary for critical systems. Byzantine fault

tolerant (BFT) protocols are evaluated by fault bounds, i.e., how many faults a protocol

can tolerate before it loses correctness or liveness guarantees. In this regard, they have a

fundamental limitation. It is proven in theory that they cantolerate up to less than 1/3 faulty

replicas [LSP82, CL02]. Improving this fault bound means that the system can tolerate

more faults before something bad happens, which is important for critical systems.

Byzantine fault tolerance becomes more challenging when a system operates for long

periods of time. For example, digital preservation systemsmust preserve data for decades

or longer. BFT protocols are problematic for long-term services since there is no guaran-

tee on the system state for the past, the current, and the future when their fault bound is

violated. However, for long-running applications, it is highly likely that they do violate the

fault bound, so it is important to reduce time vulnerable to fault bound violation.

Furthermore, systems that span multiple administrative domains may suffer from ra-

tional behavior of participants, which is another kind of misbehavior. Participants in the

system may not follow protocol specification to maximize their local utilities and to free

ride the system. In this setting, there is no clear bound on how many participants behave ra-

tionally. Traditional BFT protocols are not suitable in this environment because of no limit

on the population of rational nodes, so we need to construct protocols to tolerate rational

behavior.

1.2 Problem Definition and Challenges

In the distributed systems literature, it has long been a goal to offer clients the illusion

of interacting with a single, reliable, fail-stop server, despite the occurrence of Byzan-

tine server faults. While the initial results along these lines were largely theoretical, in

recent years there has been an increasing interest in producing practical Byzantine-fault

tolerant systems, as exemplified by PBFT [CL02], Q/U [AEMGG+05], Ivy [MMGC02],

Plutus [KRS+03], SUNDR [LKMS04], HQ [CML+06], and Zyzzyva [KAD+07].

The fault-tolerance properties of such systems can be divided intosafetyguarantees,

3

properties that must be true at all times, andlivenessguarantees, properties that must be-

come true within finite time from all execution states of the system. For replicated state

machines (e.g., PBFT, Q/U, HQ, and Zyzzyva) the target safety guarantee islinearizabil-

ity [HW90]: completed client requests appear to have been processed in a single, totally

ordered, serial schedule that is consistent with the order in which clients submitted their re-

quests and received their responses. The corresponding liveness guarantee is that a correct

client’s request is eventually processed. It is well established that if servers have no trusted

components, then no replicated system can provide these safety and liveness guarantees

when more than a third of its replicas are faulty.

In deterministic systems that aim to guarantee linearizability, lying is bad enough, but

lying in different ways to different nodes is much worse. The“prototype” problem behind

Byzantine-fault tolerant agreement, the “Byzantine generals problem,” has been demon-

strated unsolvable among 3 parties when one is faulty [LSP82]. The proof involves a situ-

ation in which a faulty node equivocates, namely gives different information to each of the

other nodes. Even with a single server, equivocation can wreak havoc: a faulty server can

order sequential requests in different ways when responding to different clients, potentially

changing the presumed state of the system substantially. For the case of two conflicting

writes a andb, this could result in one client seeinga as the dominating write whereas

the other client seesb instead. Thus, equivocation is a fundamental problem that limits

Byzantine fault tolerance.

BFT models require that the number of faulty nodes do not exceed a hard upper bound,

such as a third of the entire population of nodes. It has been argued that such a bound is

maintainable in a reliable replicated service if participating nodes are well enough man-

aged, secured, and maintained that they can mostly avoid network-triggered exploits of

unpatched bugs and the physical manipulation of malicious humans. In such a setting,

it appears reasonable to provide the usual correctness property: as long as the system is

healthy– that is, no more thanf out of 3f +1 nodes are faulty at any point in time – the

system will offer its correctness guarantees [ZSR02,CL02].

Unfortunately, in long-running systems such as digital preservation, uninterrupted good

health is tough to guarantee. First, malicious attacks suchas virus and worm infections are

increasingly hard to stop, even in well managed enterprise settings; the fact that most nodes

4

in a replicated system will be running one or perhaps two distinct implementations and

operating systems, prone to the same exploits, does not helpthe situation either. Second,

after decades of continual use, human errors, organizational slip-ups, and other unlikely

events are bound to crop up [BSR+06], causing bound violations to occur. Even if one such

slip into anunhealthy periodoccurs, the correctness of typical BFT systems can no longer

be guaranteed, not just for the duration of the violation, but also forever into the future.

For example, in a system such as Castro and Liskov’s Practical BFT (PBFT) [CL02], once

the fault bound is violated, faulty nodes can cause non-faulty nodes to execute distinct,

divergent sequences of operations on their local states, from which they cannot recover

without human intervention [LM07].

To overcome failures in a single domain, systems can replicate content across multi-

ple administrative domains. Examples are PlanetLab [BBC+04], the Global Information

Grid [Age], and GRID. Most such systems assume that servers cooperate with one another

by following protocols optimized for overall system performance, regardless of the costs

incurred by each server. In reality, servers may behave rationally — seeking to maximize

their own benefit. For example, parties in different administrative domains utilize their

local resources (servers) to better support clients in their own domains. They have obvi-

ous incentives to replicate objects that maximize the benefit in their domains, possibly at

the expense of globally optimum behavior. They also have incentives to gain their service

without spending their resources, which isfree riding. Therefore, it is necessary to address

whether these replication scenarios and protocols maintain their desirable global properties

(low total social cost, for example) in the face of rational behavior.

In this thesis, we explore a set of mechanisms to improve misbehavior tolerance of

replicated systems. In particular, we investigate improving the fundamental Byzantine fault

bound in both short-term and long-term services and mitigating the effect of rational be-

havior on the costs of replicated systems.

5

1.3 Contribution

Addressing concerns of the previous sections, this thesis provides the following contri-

butions.

System Support for Improving Byzantine Fault Tolerance: We argue that atrusted log

abstraction, which we call Attested Append-Only Memory or A2M for short, can improve

the fault tolerance of systems in the face of Byzantine faults. A2M is a small-footprint

trusted primitive that has a simple interface, is broadly applicable, and can be implemented

easily and cost effectively. The power of A2M lies in its ability to eliminateequivocation,

telling different stories to different entities, from the possible failure modes of untrusted

components; that is, a faulty replica in a replicated systemcannot undetectably answer the

same question with different answers to different clients or other replicas.

Using A2M, we construct A2M protocols that achieve strongerguarantees than pre-

vious protocols provide. In particular, A2M-Storage achieves linearizability when a file

system is shared by multiple clients on a untrusted server. We present two variants of Prac-

tical Byzantine Fault Tolerance (PBFT) [CL02] that improvethe fundamental Byzantine

fault bound. Similar to PBFT, A2M-PBFT-E guarantees safetyand liveness with up to

⌊N−1
3 ⌋ faulty replicas out ofN total; however, whereas PBFT offers no guarantees whatso-

ever when this upper bound of faulty replicas is crossed, A2M-PBFT-E can still guarantee

safety without liveness when faulty replicas are more than⌊N−1
3 ⌋ but no more than 2⌊N−1

3 ⌋.
A2M-PBFT-EA is an extension of PBFT that can guarantee both safety and liveness with

up to ⌊N−1
2 ⌋ replica faults by protecting PBFT agreement and execution steps. We also

show A2M is applicable to quorum-based state machine replication.

Long-term Fault Tolerance: We study Byzantine fault tolerance for long-term services

such as digital preservation. We pinpoint challenges and problems in traditional BFT

protocols and propose a new service property for long-term services. We introduce the

Healthy-Write-Implies-Correct-Read (HWICR) property, which states that once a value is

written during a good system period it is correctly read afterwards (i.e., the system never

returns an incorrect value) despite intervening bad systemperiods that violate traditional

fault assumptions. To achieve HWICR, we propose a more realistic fault model, which

6

we call tiered Byzantine fault model, than traditional Byzantine fault models. In the tiered

fault model, we divide operations into regular operations and trusted operations. For reg-

ular operations, we assume no more thanN−1 nodes are faulty (i.e., there is at least one

non-faulty node). For trusted operations that are performed by a more trusted component

(e.g., trusted hardware), we assume no more than⌊N−1
3 ⌋ nodes are faulty. By dividing

system behavior into two regions, we focus on how the presence of a simple trusted ab-

straction (operating with a traditional Byzantine fault threshold) can be used to relax the

fault bounds of the overall system.

To have a concrete context, we apply our model to a long-term digital preservation ser-

vice. Though durability and availability have been addressed comprehensively by systems

such as OceanStore [KBC+00] and Glacier [HMD05], authenticity has received less satis-

fying solutions: the typical approach is to rely onself-verifying data, for which the name

of a data item is anauthenticatorfor that data item, which can be used to verify the item

itself (e.g., a cryptographic hash). Users who can remembersuch a name (a long string

of otherwise meaningless digits) can ascertain long-term authenticity of the corresponding

content fetched from a preservation service. This solutiondoes not, however, deal with

usage models in which a user decades down the road wishes to authenticate the contents of

a preserved document or a collection of documents (e.g., “State Budget Fiscal Year 2003”,

“UCB EECS Snapshot 2002-02-07”). When lookup of preserved content is by a human-

readable name, existing systems provide no solution to preserving the mapping between

a name and an authenticator for a data item, assuming insteadthat this is done by some

trusted third party.

We address this naming service problem by proposingTimeMachine(TM), which

achieves HWICR under the tiered Byzantine fault model. TM uses a two-phase approach

where regular service and trusted proactive recovery phases alternate. During the service

phase TM serves clients’ read requests and temporarily buffers write requests. Only during

the proactive recovery phase TM makes important state changes, incorporating buffered

write requests to its main data store.

Rational Behavior Tolerance in Replication: We address the problem of replication in

networks of selfish servers running in multiple administrative domains through theoretical

7

analysis and simulations. We take a game-theoretic approach to analyzing this problem.

We model selfish replication as a non-cooperative game. In the basic model, the servers

have two possible actions for each object. If a replica of a requested object is located at a

nearby node, the server may be better off accessing the remote replica. On the other hand,

if all replicas are located too far away, the server is betteroff replicating the object itself.

Decisions about replicating the replicas locally are arrived at locally, taking into account

only local costs. We also define a more elaboratepayment model, in which each server bids

for having an object replicated at another site. Each site now has the option of replicating

an object and collecting the related bids. Once all servers have chosen a strategy, each

game specifies aconfiguration, that is, the set of servers that replicate the object, and the

corresponding costs for all servers.

The lack of coordination inherent in selfish decision-making may incur costs well be-

yond what would be globally optimum. This loss of efficiency is quantified by theprice

of anarchy[KP99]. The price of anarchy is the ratio of the social (total) cost of the worst

possible Nash equilibrium to the cost of the social optimum.The price of anarchy bounds

the worst possible behavior of a selfish system, when left completely on its own. How-

ever, in reality there are ways whereby the system can be guided, through “seeding” or

incentives, to a pre-selected Nash equilibrium. This “optimistic” version of the price of

anarchy [ADTW03] is captured by the smallest ratio between aNash equilibrium and the

social optimum.

We show that pure strategy Nash equilibria exist in the basicgame. In addition, we

prove that Nash equilibria are not efficient by computing the(optimistic) price of anarchy

under different network topologies and placement costs. Finally, we show that by adopting

payments servers are incentivized to replicate data, thus leading to Nash equilibria that have

socially optimal configurations. Thus, payment can be a way to combat rational behavior

problems in replicated systems.

8

1.4 Organization

The rest of this thesis is organized as follows. In Chapter 2,we present system support

for Byzantine fault tolerance, which we call Attested Append-Only Memory (A2M), to

solve equivocation problems. With A2M, we construct A2M-Storage that achieves lin-

earizability in a single server and two variants of PBFT thatimprove the fundamental

Byzantine fault bound. We demonstrate that this improvement can be achieved with minor

performance overhead. Chapter 3 presents challenges in thefault tolerance of long-term

services. We propose a new service property called Healthy-Write-Implies-Correct-Read

(HWICR) and a tiered Byzantine fault model for long-term services. We design TimeMa-

chine (TM) that achieves HWICR in the tiered fault model. We extend our discussion to

systems running in multiple administrative domains in Chapter 4. Using game theory we

analyze replication efficiency when participating nodes behave rationally with or without

an incentive scheme. In Chapter 5 we discuss related work. InChapter 6 we conclude and

discuss potential future research directions.

9

Chapter 2

A2M: System Support for Fault

Tolerance

2.1 Overview

In the distributed systems literature, it has long been a goal to offer clients the illusion

of interacting with a single, reliable, fail-stop server, despite the occurrence of Byzan-

tine server faults. While the initial results along these lines were largely theoretical, in

recent years there has been an increasing interest in producing practical Byzantine-fault

tolerant systems, as exemplified by PBFT [CL02], Q/U [AEMGG+05], Ivy [MMGC02],

Plutus [KRS+03], SUNDR [LKMS04], HQ [CML+06], and Zyzzyva [KAD+07].

The fault-tolerance properties of such systems can be divided intosafetyguarantees,

properties that must be true at all times, andlivenessguarantees, properties that must be-

come true within finite time from all execution states of the system. For replicated state

machines (e.g., PBFT, Q/U, HQ, and Zyzzyva) the target safety guarantee islinearizabil-

ity [HW90]: completed client requests appear to have been processed in a single, totally

ordered, serial schedule that is consistent with the order in which clients submitted their re-

quests and received their responses. The corresponding liveness guarantee is that a correct

client’s request is eventually processed. It is well established that if servers have no trusted

components, then no replicated system can provide these safety and liveness guarantees

when more than a third of its replicas are faulty.

10

To improve on these results, some researchers have exploredrelaxed correctness prop-

erties. For instance,fork* consistency[LM07] is a weaker safety property than linearizabil-

ity, but can be achieved when less than two thirds of the replica population are faulty. Such

bounds are useless for single-server systems, because the situation is binary: the choice is

only between 0% “replica” faults (the server is non-faulty)and 100% “replica” faults (the

server is faulty). SUNDR showed how to achievefork consistency(slightly stronger than

fork*, but still weaker than linearizability) in the presence of a faulty server and non-faulty

clients.

In this thesis, our goal is to understand how the fault tolerance of such systems might

be improved through the use of realistic trusted abstractions. Of course, placing the entire

application (operating system, application software, hardware, intervening network) into

the trusted computing base trivially solves the problem, but this is totally impractical. Our

focus here is on small-footprint trusted abstractions thathave simple interfaces, are broadly

applicable, and can be implemented easily and cost effectively. We argue that atrusted log

abstraction, which we call Attested Append-Only Memory or A2M for short, is such an

abstraction. The power of A2M lies in its ability to eliminateequivocation, telling different

stories to different entities, from the possible failure modes of untrusted components; that

is, a faulty replica in a replicated system cannot undetectably answer the same question

with different answers to different clients.

Section 2.2 motivates our choice of trusted abstraction, through examples from both

replicated and single-server systems. Section 2.3 presents our first contribution, A2M, in

more detail, describing its interface, typical usage patterns, and implementation alternatives

that trade-off efficiency for the size of the trusted computing base.

Next, we delve deeper into our second contribution: specificsystem designs for repli-

cated state machines and shared storage that use A2M to improve their fault tolerance, in

the context of agreement-based replicated state machines (Section 2.4) and other central-

ized and distributed protocols (Section 2.5). These include:

• A2M-PBFT-E is an A2M variant of Castro and Liskov’s Practical Byzantine Fault

Tolerance (PBFT) protocol. Similar to PBFT, A2M-PBFT-E guarantees safety and

liveness with up to⌊N−1
3 ⌋ faulty replicas out ofN total; however, whereas PBFT

11

offers no guarantees whatsoever when this upper bound of faulty replicas is crossed,

A2M-PBFT-E can still guarantee safety without liveness when the number of faulty

replicas is more than⌊N−1
3 ⌋ but no more than 2⌊N−1

3 ⌋. This is an important advantage

for applications, such as high-volume banking, in which correctness (captured by

safety) under heavy faults is desirable, even if it is not accompanied by availability

(captured by the liveness property).

• A2M-PBFT-EA is an extension of PBFT that can guarantee both safety and liveness

with up to ⌊N−1
2 ⌋ replica faults: whereas PBFT needs a three-fold replication to

tolerate a given number of faults, A2M-PBFT-EA needs only two-fold replication.

The additional complexity of A2M-PBFT-EA may be justifiablein applications that

require both low replicationandhigh fault tolerance, as might be the case for critical

applications with very high replication costs, such as dependable software for space

missions.

• A2M-Storage is an A2M-enabled single-server storage service similar to

SUNDR [LKMS04]. A2M-Storage leverages A2M to guarantee linearizability

whereas SUNDR, without help from trusted components, can only provide fork con-

sistency.

Section 2.6 presents an experimental evaluation of the A2M approach, using mi-

crobenchmarks on our implementation of A2M and two of our A2M-enabled protocols,

A2M-PBFT-E and A2M-PBFT-EA. We also show macrobenchmarks on NFS running on

top of A2M-PBFT-E and A2M-PBFT-EA, which suggest that the cost of using A2M to

increase fault tolerance (or, conversely, reduced redundancy) is minimal: using an A2M

module through a system call-like interface, the overhead of NFS on top of A2M-PBFT-EA

is about 4% compared to that of NFS on top of traditional PBFT,or about 24% compared to

NFS on top of an untrusted NFS server, for the benefit of reducing replication factor from

3 to 2.

We discuss the appropriate level for a trusted abstraction in Section 2.7, discuss future

work in Section 2.8, and then summarize in Section 2.9.

12

2.2 Motivation

In this section, we detail the fundamental motivation behind our work, starting with

our basic assumptions and target system environments, and continuing with specific illus-

trations of an adversary’s power against existing systems,which will motivate our A2M

design in Section 2.3, and A2M-related protocols in Sections 2.4 and 2.5.

2.2.1 Setup

We consider client-server systems where a service is accessed and shared by multiple

clients connected over a public network. The service can be implemented as a single server

(e.g., a file server) or multiple servers (e.g., replicated state machines). Clients request

authenticatedoperations from the service, the service executes those operations, which

may change the service state, and returns responses to the requesting clients.

2.2.2 Assumptions

We use standard assumptions about the network model and about cryptography. In

the network, packet drops, reorderings, and duplications can occur but retransmissions of a

message eventually deliver it. However, though finite upperbounds exist for message deliv-

ery and operation execution times, those bounds are not known to protocol entities. A faulty

node cannot violate intractability assumptions about standard cryptography. Therefore, the

adversary cannot produce pre-images or collisions for cryptographic hash functions1 or

forge previously unseen signatures for private signing keys he does not possess.

2.2.3 Fault Models

In this thesis, we consider fault models that depend on the cause of the node’s mis-

behavior. In particular, we distinguish between two cases:(i) the node’s owner is well-

intentioned but unaware the node’s software has been compromised by a third-party (faulty

1A one-way – or pre-image resistant – hash functionh is one for which there is no polynomial-time
algorithm that, givenα, can find a previously unknownβ such thatα = h(β). A collision-resistant hash
functionh is one for which there is no polynomial-time algorithm that can find two valuesα andβ for which
h(α) = h(β).

13

application model), and (ii) the node’s Byzantine behavior is because of a malicious owner

instructing it to do so (faulty operator model). The nature of the trusted computing base

is quite different in the two cases. In the first model, the trusted computing base is set up

by the service owner; for instance, a bank owns all nodes and ensures, through physical

security and other means, that only its nodes can provide theservice. Our concern here is

to combat software attacks such as worms and viruses againstthose centrally administered

nodes. In the second model, we do not trust owners but trust a third party (e.g., a special

service provider or a trusted hardware manufacturer) to setup the trusted computing base;

for instance, a malicious storage server can manipulate allaspects of its node except what

lies within the trusted device, which is the purview of the device provider.

In the traditional Byzantine-fault model, the cause of Byzantine behavior is not of im-

mediate consequence – that is, tolerant protocols work wellregardless of whether the op-

erator or a virus writer are doing the misbehaving. Nevertheless, the practical decision to

apply or not a solution to a target environment depends exactly on whether the designer can

explain why the Byzantine-fault bound will not be violated;the justification is dependent

on whether that environment consists of a single administrative domain (benign operator,

potential software attacks) or multiple administrative domains (potentially malicious oper-

ators, potential software attacks).

2.2.4 Notation

For conciseness, throughout the thesis we use the authentication notation of Yin et

al. [YMV +03], according to which we denote by〈X〉S,D,k an authentication certificate that

any node in a setD can regard as proof thatk distinct nodes inS saidX. For example, a

traditional digital signature onX from p that is verifiable by the entire replica population

R would be〈X〉p,R,1, two signatures fromp andq put together would be〈X〉{p,q},R,2, and a

MAC from p to q with a shared key would be〈X〉p,q,1. As a convention, we usep to denote

the singleton set{p}, and∞ as shorthand for the universal set of all principals. When we

use this notation to describe collective certificates made up of individual signatures, as for

the second example above, we usually remove any signer identification from the collective

certificate format: for example, the certificate〈X〉{p,q},R,2 above could correspond to the

14

individually signed messages〈p,X〉p,R,1 and〈q,X〉q,R,1.

We useh() to denote a one-way collision-resistant hash function suchas SHA-256, and

‖ to denote the bit-string concatenation operator.

2.2.5 Equivocation

In deterministic systems that aim to guarantee linearizability, lying is bad enough, but

lying in different ways to different people is even worse. The “prototype” problem behind

Byzantine-fault tolerant agreement, the “Byzantine generals problem,” has been demon-

strated unsolvable in a population of three parties when oneis faulty [LSP82]. The proof

involves situation in which a faulty node equivocates; namely gives different information

to each of the other nodes. Even with a single server, equivocation can wreak havoc: a

faulty server can order sequential requests in different ways when responding to different

clients, potentially changing the presumed state of the system substantially. For the case

of two conflicting writesa andb, this could result in one client seeinga as the dominating

write whereas the other client seesb instead. Thus, equivocation is a fundamental problem

that limits Byzantine fault tolerance.

In what follows, we present two detailed examples of equivocation attacks against

single-server and replicated systems, to motivate our focus on eliminating equivocation

through trusted system abstractions.

Servers Equivocating to Clients

We consider a log-structured storage server shared by multiple clients as an illustrative

example. For example, in a straw-man design for SUNDR [LKMS04], to request an op-

eration, a client first acquires a lock at the server and downloads the entire operation log,

a time-ordered collection of signed client operations. Theclient checks whether the log

is correct by verifying the signatures and by checking that the log contains all of its own

operations in order; it then creates what must be the server’s current state by starting with

an initial state and then applying the logged operations in order, as a correct server would

have in a linearized system. It executes its operation basedon the constructed state, thus

finding out the result of this operation. It then appends its signed operation to the end of

15

client a

time

{r
e
q
1
a
,

re
q
1
b
} re

q
2
a {r

e
q
1
a
,

re
q
1
b
,

re
q
2
a
}

{re
q
1
a ,

re
q
1
b } re

q
2
b

{re
q
1
a ,

re
q
1
b
,

re
q
2
b }

server

client b

Figure 2.1: A forking attack example of two clients and one malicious server. The server
convinces clientsa andb of different system states.

the log, sends the updated log back to the server, and releases the lock.

A faulty server can mount a forking attack [LKMS04] by concealing operations, which

causes the system’s state to diverge into multiple possibilities for different clients. Sup-

pose two clients access a server as shown in Figure 2.1. Client a performsreq1a, client

b performsreq1b, and clienta performsreq2a. The latest state of the server becomes

{req1a, req1b, req2a} as far as clienta is concerned. Now, clientb retrieves the log of

the server to perform a new operationreq2b. The faulty server dropsreq2a off the tail of

the log, only returning{req1a, req1b}. Clientb executes its operation and has the log state

{req1a, req1b, req2b}. The system state is now forked with regards to these two clients. The

cause of the problem is the ability of the faulty server to misrepresent its operation log to

the two clients, equivocating on what its state is accordingto who is asking.

Systems vulnerable to this kind of equivocation attacks areshared file systems such

as Plutus [KRS+03], SUNDR [LKMS04], and Ivy [MMGC02], quorum-based replicated

state machines such as Q/U [AEMGG+05], and timestamping systems such as Time-

weave [MB02]. SUNDR and Timeweave alleviate the effects of equivocation, offering

fork consistency, a weaker property than linearizability.For example, SUNDR maintains

state about the server’s timeline at individual clients; once forked, all clients within the

16

client
r3

r2

r1

r0

r3

r2

r1

r0
faulty

non-
faulty X

X

time

a

<
1,
re
q a
>

b

<
1,
re
q b
>

Figure 2.2: An example that shows the violation of linearizability in PBFT when two repli-
cas are faulty out of four replicas. Faulty serversr1 andr2 convince non-faulty serversr0

andr3 to commit different requests.

same fork enjoy a linearized view of the system, but do not seestate changes in another

fork. Unfortunately, even then, unless two clients on different forks compare their notes,

they cannot know that the server maintains multiple versions of its state and history.

Servers Equivocating to Servers

To demonstrate equivocation problems among servers, we consider BFT replicated state

machines. In particular, we choose Practical Byzantine Fault Tolerance (PBFT) [CL02]

since it has had a profound impact on the systems literature.Though we give more detailed

background on PBFT in Section 2.4.1, for the purposes of thisillustration, a PBFT client

is satisfied with a result to its request if it receives at least ⌊N−1
3 ⌋+1 replies from distinct

replicas out of theN total replicas, all with a matching result; a PBFT replica can commit a

request to its local state as long as a quorum of 2⌊N−1
3 ⌋+1 replicas agree on the request’s

ordering in history.

Given this behavior, PBFT guarantees safety (linearizability) and liveness, as long as

no more than⌊N−1
3 ⌋ replicas are faulty; if more than⌊N−1

3 ⌋ replicas are faulty, PBFT does

not guarantee safety (and liveness is meaningless without safety): faulty replicas can fool

non-faulty replicas to commit different request histories, and different clients may accept

17

replies corresponding to different request histories, violating linearizability.

To illustrate, considerN = 4; replicasr1 andr2 are faulty, and non-faulty replicasr0

andr3 cannot temporarily communicate with each other (Figure 2.2). Clienta sendsreqa to

the system. The two faulty replicas convincer0 to commit and executereqa first, since the

three of them form a quorum of 3= 2⌊N−1
3 ⌋+1. Later clientb sendsreqb to the system.

The two faulty replicas convincer3 to commit and executereqb first, sincer3 never saw

reqa. Faulty serversr1 andr2 equivocate to non-faulty serversr0 andr3.

Furthermore, the ability of faulty servers to equivocate tonon-faulty servers also allows

the service to equivocate to clients, as in the previous section. For example, clientsa

andb experience via their accepted replies two different histories, in whichreqa andreqb

are, respectively, the single, first committed request, violating linearizability. The problem

arises because of the faulty replicas equivocating to clients. The faulty replicas are allowed

to tell clienta, with r0’s help, thatreqa is committed in their history at sequence number 1,

and also to tell clientb, with r3’s help, thatreqb is committed in their history at the same

sequence number.

Systems vulnerable to servers equivocating to servers are agreement-based Byzantine-

fault tolerant state machine replication protocols such asPBFT [CL99] and BFT2F [LM07].

BFT2F supports fork* consistency by maintaining state at clients.

2.3 Attested Append-Only Memory

In the previous section, we argued that the adversary’s ability to equivocate undetected

– e.g., to claim to have two different histories depending onwhich host it is talking to – is a

fundamental weapon against safety, both in single-server and replicated services. Here we

describe anattested append-only memory(A2M), a simple attestation-based abstraction

that, when trusted, can remove the ability of adversarial replicas to equivocate without

detection. Using an A2M implementation within the trusted computing base, a protocol

can assume that a seemingly correct host can give only a single response to every distinct

protocol request – for some protocol specific definition of “distinct” request –, even when

that same request is retransmitted multiple times by different clients or replicas, and even

18

q3

L

H

L
,x

L
,d

L

L
+
1,
x

L
+
1,
d

L
+
1

L
+
2,
x

L
+
2,
d

L
+
2

..
.

H
,x

H
,d

H

q2

L

H

L
,x

L
,d

L

L
+
1,
x L
+
1,
d

L
+
1

L
+
2,
x L
+
2,
d

L
+
2

..
.

H
,x

H
,d

H

A
2
M

Digital
signing

Secure
hashing

q1

L

H

L
,x

L
,d

L

L
+
1,
x

L
+
1,
d

L
+
1

L
+
2,
x

L
+
2,
d

L
+
2

..
.

H
,x

H
,d

H

Figure 2.3: Structure of anattested append-only memory(A2M). An A2M contains a set
of distinct logs (qi) that map sequence numbers (in the range ofL i toH i) to values.

if that response is undetectably faulty.

Informally, an A2M equips a host with a set of trusted, undeniable, ordered logs (il-

lustrated in Figure 2.3). Each such log has an identifierq (unique within the same com-

puter) and consists of a sequence of values, each annotated with (1) a log-specific sequence

number that is incremented from 0 with every new value appended to the log, and (2) an

incremental cryptographic digest of all log entries up to itself. Only a suffix of the log is

stored in A2M, starting with the slot in the “low” positionL ≥ 0 and ending with the last

slot in the “high” positionH ≥ L .

A2M essentially offers reliable services a bit-commitmentscheme [Nao91] for sequen-

tial logs, placed within the trusted computing base. Section 2.3.1 describes the A2M inter-

face, Section 2.3.2 presents simple usage scenarios illustrating how A2M can help a service

to remove equivocation from the arsenal of Byzantine-faulty parties, and Section 2.3.3 ex-

plores the implementation options for A2M, along with the trust-efficiency trade-off for

each.

19

2.3.1 Interface

An A2M log offers methods toappend values, tolookup values within the log or to

obtain theend of the log, as well as totruncate and toadvance the log suffix stored in

memory. There are no methods to replace values that have already been assigned.

• append(q,x) takes a valuex, appends it to the log with identifierq, increments the

highest assigned sequence numberH by 1, populates the slot at that position with

x, and computes the cumulative digestdH = h(H ‖x‖dH −1), whered0 = 0. This

method does not cause any values to be forgotten, i.e., it does not affectL ; if the log

is unable to allocate storage to the new entry, the method fails.

• lookup(q,n,z)→〈LOOKUP,q,n,z,x,w,n′,d〉A2Mq,∞,1 takes log identifierq, a sequence

numbern and a noncez (for freshness), and returns aLOOKUP attestation.w is the

type of the attestation: if sequence numbern has not been assigned yet (i.e.,n > H)

thenw is UNASSIGNED andn′ = H ; if n was assigned once but has now been forgot-

ten (i.e.,n< L), thenw is FORGOTTENandn′ = L ; if slot n has been skipped over via

theadvance method (see below) thenw is SKIPPED andn′ is the sequence number of

theadvance call that caused the skip; finally, ifn is a slot that was filled viaappend

or advance (see below), thenw is ASSIGNEDandn′ = n. x andd are the assigned log

value and digest whenw is ASSIGNED) and 0 otherwise.

• end(q,z) is similar tolookup, but returns the last entry of the given log (currently in

positionH). Attestations fromlookup andend have the same format except for the

request nameEND in the beginning.

• truncate(q,n), wheren ∈ (L ,H], forgets all log entries with sequence numbers

lower thann, settingL to n. All subsequentlookup requests for entries belown

will be henceforth of typew = FORGOTTEN.

• advance(q,n,d,x) allows logq to skip ahead by multiple sequence numbers. It takes

a sequence numbern > H , a digestd, and a valuex. It operates similarly toappend,

but instead of usingdH −1 in the digest computation, it uses the givend; skipped se-

quence numbers are reported asSKIPPED in lookups. Any subsequentlookup(q,n′′,z)

20

request for a sequence numbern′′ that was skipped by thisadvance will return an at-

testation of the form〈LOOKUP,q,n′′,z,x,SKIPPED,n′,d〉A2Mq,∞,1, which contains in-

formation about theadvance method that caused the skip, until the slot is finally

FORGOTTEN.

2.3.2 A2M Usage

Equipped with A2M in its trusted computing base, a reliable service can mitigate the

effects of Byzantine faults in its untrusted components, bybeing able to rely on some small

fallback information about individual operations or histories of operations that cannot be

tampered with.

During setup, the untrusted component (e.g., a server) mustmake known to all possible

verifiers (e.g., clients or other servers) the authentication keys for its A2M module and the

identifier of the A2M log used for each distinct purpose. As far as a verifier is concerned,

the A2M authentication key and log identifier are part of the untrusted component’s identity.

Therefore, a particular A2M-enabled component is allowed to use only its associated A2M.

An untrusted componentC can commit individual data items or operations byappending

them to an A2M log. For example, to prove that it has committedto a data itemD, the com-

ponent can executeappend(q,h(D)). The data item is hashed before appending to facilitate

A2M implementations in which every log slot has a fixed length.

An interested verifier can establish that the data itemD is, indeed, in the un-

trusted component’s committed state by demanding aLOOKUP attestation. To return

this attestation, the untrusted must commith(D) to A2MC . The attestation has a form

〈LOOKUP,q,n,z,x,ASSIGNED,n,d〉A2MC ,∞,1 for some sequence numbern and noncez,

wherex = h(D) 2. This conclusively establishes that the untrusted component indeed put

the data itemD somewhere into its committed log. The sequence numbern can be fur-

ther constrained (e.g., it can be associated with individual protocol steps) to ensure that the

untrusted component only commits a single data item for thatprotocol step; in this sense,

multiple verifiers who are mutually disconnected can be assured that the component cannot

2Note that we useA2Mp to denote the authentication principal corresponding to host p’s A2M module.
Trusting A2M means that hostp cannot forge authenticators byA2Mp without A2M’s cooperation, and that
even then, it can only coerce A2M to generate such authenticators as per the A2M interface.

21

equivocate on the contents of itsn-th slot.

To ensure that the untrusted component has a particular dataitem as the last element in

its log, a verifier can provide the untrusted component with arandom noncez and demand

the attestation〈END,q,n,z,x,ASSIGNED,n,d〉A2MC ,∞,1. As long as the request type isEND,

the nonce is the verifier-supplied nonce, and the valuex = h(D), the verifier can establish

that as of the time of nonce transmission to the component, the last entry in the log was

that containingD, and thus no trailing entries were spuriously chopped off bythe untrusted

component.

The untrusted component is not bound to committing to individual data items in se-

quential log slots; it can useadvance to skip some sequence numbers. For example, if it

only needs to commit to a value for everyk-th sequence number, instead ofappend(q,h(D))

as above, it can useadvance(q,n,0,h(D)) for n = ik. Invocation ofadvance does not “un-

prove” things that the A2M has attested to before. It merely gives up the ability to attest to

a real value for the skipped sequence numbers, and disassociates the newly appended re-

quest’s digest from the log’s cumulative history digest thus far, which is not required when

committing to individual data items.

When interested in entire histories of data items (e.g., request logs), verifiers can make

use of not only the committed data item itself, but also the cumulative digestd. Thanks

to the collision-resistant properties of the hash functionused, there is a single sequence of

data items appended to logq for which the cumulative digest isd. Therefore, by comparing

the digests in twoLOOKUP attestations from two different untrusted servers, a verifier can

establish conclusively that the two servers have committedto the same history up to the

looked up sequence number.advance can be used, as above, to disassociate two portions

of the log, for example, when part of the log is missing duringa node’s recovery.3

To revisit the scenario of a storage server that maintains a log for committed client

requests but maliciously drops some off the end when talkingto a victim client (Sec-

tion 2.2.5), consider forcing the server to maintain that log in A2M. Client b can demand

a freshEND attestation from the server’s A2M log, along with the history itself, and en-

3It is important to point out that agreement of two A2M logs on the same sequence number and digest
does not implynecessarily that the two logs must also agree on attestations about all preceding sequence
numbers and digests; the use ofadvance legitimately contradicts this implication. It is possibleto change
the interface so as to guarantee this implication, but this is not required for our case studies in this thesis.

22

sure that the included digest is indeed the cumulative digest of the history; this guarantees

to b that the server has not omitted any requests from the end of its committed log in its

response, eliminating this particular problem. Similarly, to revisit the replicated scenario

in which malicious replicas profess to different committedrequests to different non-faulty

replicas, convincing them to commit divergent requests (Section 2.2.5), consider requiring

replicas to place such messages into an A2M message log before transmitting them. Now a

non-faulty replica, before it allows itself to be convincedby another replica’s message, en-

sures that the message is attested in aLOOKUP attestation drawn from the message sender’s

A2M message log. In this way, the faulty replica cannot equivocate to two different non-

faulty replicas to effect the scenario.

These simple illustrations miss many finer details. We present detailed A2M-enabled

protocol designs that achieve fault tolerance that they didnot possess before, or increase

their fault tolerance, in Sections 2.4 and 2.5.

2.3.3 Implementation Considerations

The fundamental premise behind an implementation of A2M is that it is harder to

subvert than the main application. Different implementation scenarios (illustrated in Fig-

ure 2.4) lead to different threat models and degrees of trustin the resulting system, and are

appropriate for different applications. Our contributionis a novel division of functionality

between trusted and untrusted components, not a specific implementation of it – our exper-

imental evaluation in Section 2.6 is a proof of concept, but other implementation scenarios

are possible, some of which we characterize below.

The implementation scenarios we present are:

• A separate service offered by a trusted provider or a hardened component (Fig-

ure 2.4(a)) that requires a separate machine providing A2M and are slow to access.

• A software-isolated module (Figure 2.4(b)) that requires writing a software-protected

lightweight process and is very fast to access since both an A2M-enabled application

and A2M are in the same address space.

23� � � � � � � � � � � �
� � �	
 � � �
 �� � � � � � �

� � �� � �� �� � � �� � � � � �� �� � � � � �
� � ! "� �� � � �� � � # � � � $ % $� �� � �

� � �	
 � � �
 �� � � � � � �# � � � � �
� & �

� � �� � � � � � �
 � � � �
Figure 2.4: A2M implementation scenarios. Thick boxes delineate the trusted computing
base. (a) trusted service, (b) trusted software isolation,(c) trusted VM, (d) trusted VMM,
and (e) trusted hardware.

• A trusted virtual machine (Figure 2.4(c)) that requires A2Mrunning in a separate

virtual machine and is fast to access.

• A trusted virtual machine monitor (Figure 2.4(d)) that requires adding a hypervisor

interface to A2M inside the hypervisor and is fast to access.

• Trusted hardware (Figure 2.4(e)) that requires programming a trusted hardware board

to implement A2M and can be extremely fast due to hardware cryptographic accel-

eration.

These implementations are viable in the face of different threats. All five implementations

work under the faulty application model (external attacks against server software) but only

(a) and (e) work under the faulty operator model (malicious operators that own, operate,

and can manipulate entire servers).

In the simplest case, A2M can be a software abstraction implemented as a service

visible to applications via an RPC-like interface (Figure 2.4(a)). For instance, it could

be a service offered by a trusted provider, such as Amazon’s S3 [s3], or by a separate,

hardened component with significantly greater assurances in the face of software errors

than the main application software and hardware. This is similar to notarization-like ap-

proaches [HS91, MB02, YC07] that rely on a trusted write-once medium external to the

main system. Though the entire application stack can fail (application, operating system,

24

and hardware), as long as the A2M is running on a trusted system the application can be

protected. The big drawback with this implementation scenario is its network-bound nature

– in fact, many of its prior instances in practice use this external write-once medium once

a day or so – as well as the requirement that everyone needs on-line access to the trusted

A2M service provider. Applications with fairly slow request rates such as shared backup

services, long-term digital preservation, or certificate authorities may be able to absorb the

high-latency interaction with A2M in their relatively infrequent state changes.

Figure 2.4(b) presents a more decentralized approach, in which the A2M implemen-

tation relies on the software-based isolation between A2M and an A2M-enabled applica-

tion. This approach takes advantage of programming language type and memory safety

for isolation. Therefore, A2M can be implemented as a library. For instance, in the Sin-

gularity [HL07] operating system, the A2M module would be a program that runs as a

separate software-isolated process in the same address space. If the Singularity isolation

mechanism is trusted, it is possible to trust A2M even if the A2M-enabled application is

untrusted. Similarly, in the Java Virtual Machine (JVM) [jav], an application using A2M

runs in a sandbox, which constitutes a safe execution environment. The assumption is that

if the JVM interpreter, JVM core classes, and an operating system that runs the JVM can

be trusted, A2M can be trusted, even if the A2M-enabled Java application is not. Though

the isolation is no longer physical as with the scenario of Figure 2.4(a), communication

between the application and A2M is fast since they are both inthe same address space.

Figure 2.4(c) presents the A2M implementation that relies on the inherent fault isolation

properties of a virtual machine monitor (VMM). In the figure,the A2M module is a user-

space program running on a small, verifiable operating system on top of a VMM. As long

as the VMM and the mini-operating system are trusted to be exploit-free, it is possible to

trust the A2M abstraction, even if the application and its general-purpose operating system

are compromised. For instance, the virtual Trusted Platform Module (vTPM) [BCG+06]

has this architecture. Communication between the application and A2M is only subject to

VMM-optimized RPCs, which systems such as Xen [BDF+03] make very efficient.

Further reducing the trusted footprint, the A2M implementation could be placed within

the VMM, as in Figure 2.4(d). Here, the assumption is that a small VMM (or, indeed,

a microkernel) can be carefully implemented (or formally verified) as bug-free, isolating

25

the correctness of the A2M implementation from potential operating system or application

errors above the VMM. For instance, Xen’s trusted hypervisor interfaces [BDF+03] could

host such an implementation scenario. Both VMM approaches reduce the cost of contacting

A2M and can yield efficient, interactive performance for applications such as file systems

or transaction processing systems.

Finally, Figure 2.4(e) places the A2M within the hardware itself. Since it tends to

be much harder to coerce a hardware module to operate againstits specification than it

is for software modules, especially without physical access to the hardware, this scenario

provides the greatest level of trust in A2M. Hardware implementation options might be

to extend a standard Trusted Platform Module (TPM) with someadditional non-volatile

RAM or an Intel Active Management Technology (AMT) chip [amt], or to use a pro-

grammable secure coprocessor such as IBM’s commercially available PCIXCC [AD04]

board, a programmable PCI-X card with cryptographic primitives as well as physical and

electrical tamper-resistance. Tamper resistance offers increasedphysical security: even a

malicious host operator armed with electrical probes cannot coerce A2M to give responses

that are inconsistent with its specification or to reveal itsauthentication key material, except

for extremely expensive physical cryptanalytic attacks that are unrealistic for most practi-

cal situations. Moreover, whereas in the past tamper resistance implied low performance,

products such as the PCIXCC coprocessor make a hardware A2M implementation poten-

tially the best performing one – albeit most expensive – among our scenarios. Nevertheless,

pervasive hardware implementations of new programming abstractions tend to be slow to

arrive, slow to change, and slow to turn into commodities, making this a more tenuous

scenario, except for the most sensitive applications.

In this thesis, we experiment with a software A2M implementation. Values stored

within A2M logs can have a configurable fixed size, e.g., 32 bytes. The A2M sequence

number field needs to have a size large enough to hold sequencenumbers of long-running

applications (e.g., 160 bits). We implement authentication based on both digital signa-

tures and MACs (with a slightly modified interface from that in Section 2.3.1), though we

describe the digital signature version of all protocol designs for simplicity.

26

R1

R2

R3

R4

Replicated State Machine

C

Client
Replica

Figure 2.5: Replicated state machine. Clients send requests to servers, servers agree on the
sequence of requests to execute, execute requests in the agreed order, and send replies back
to the clients.

2.4 A2M State Machine Replication Protocols

In this section, we present state machine replication protocols through the use of A2M,

improve their fault tolerance by rendering equivocation extinct or evident. First, in Sec-

tion 2.4.1, we present a brief overview of the salient features of Castro and Liskov’s PBFT

protocol for replicated state machines. Second, in Section2.4.2, we present a simple ex-

tension of PBFT, in which A2M protects clients from the replicas’ misbehavior, retaining

PBFT’s safety and liveness for up to⌊N−1
3 ⌋ faulty replicas out ofN, but also guaranteeing

safety without liveness for up to 2⌊N−1
3 ⌋ faulty replicas. Second, Section 2.4.3 goes further

to protect not only clients from replica misbehavior in PBFT, but also replicas from each

other, allowing the fault tolerance of the protocol to go up to ⌊N−1
2 ⌋ with bothsafety and

liveness.

2.4.1 Background: PBFT

Castro and Liskov’s PBFT protocol [CL02] is a replicated, fault-tolerant mechanism for

implementing astate machine[Sch90]: an abstraction that represents a deterministic ser-

27

vice, in which a starting state (e.g., an empty database) andthe sequence of read-compute-

write operations at the service determine precisely the state of that service at the end of

the operation sequence (Figure 2.5). Such state machines are relatively straightforward to

implement on a single, single-threaded server at an individual computer, though any faults

at that computer always cause a service failure. For fault-tolerance reasons, it often makes

sense to implement the state machine abstraction over a population of such potentially

faulty computers interconnected via a potentially faulty network, hoping that even if some

computers fail, the service as a whole can continue functioning correctly. Unfortunately,

implementing the state machine abstraction over such a population and network is no sim-

ple task. In PBFT, each participating computer implements the entire state machine on its

local replica of the service state, and replicas communicate with each other to ensure that

they all execute the same sequence of operations, and mask individual computers’ faults.

We describe the protocol in more detail below.

In PBFT, a clientc multicasts a request message〈REQUEST,o, t,c〉c,R,1 to theN ser-

vice replicas in replica setR, whereo is the operation requested, andt is the times-

tamp. The client accepts a reply for its request (and only then can submit another)

when it receives⌊N−1
3 ⌋+1 valid matchingREPLY messages, forming thereply certificate

〈REPLY,v,n, t,c, r〉R,c,⌊N−1
3 ⌋+1, wherev is the view number,n is the assigned sequence num-

ber, andr is the result of the request. Aview is a particular assignment of roles to replicas:

the single activeprimary vs. the passivebackups; when the primary changes, so does the

view numberv.

Replicas linearize requests via a three-phase agreement protocol (Figure 2.6), start-

ing when the primary (chosen to be the replica with identifierp ≡ v modN) mul-

ticasts to R a newly received request messagereq, encapsulated within a message

〈PREPREPARE,v,n, req〉p,R,1. When backup replicai receives thisPREPREPARE, it multi-

casts toR a 〈PREPARE,v,n, req〉i,R,1 message. Once replicaj has collected 2⌊N−1
3 ⌋+ 1

PREPREPARE or PREPARE messages from distinct replicas for this request (which consti-

tute theprepared certificatefor this request of the form〈PREPARE,v,n, req〉R,R,2⌊N−1
3 ⌋+1),

the request becomesprepared. To complete the protocol, a replica with a prepared

request then multicasts toR a 〈COMMIT ,v,n, req〉 j ,R,1 message. When replicak col-

28

Client

Primary

Replica 1

Replica 2

Replica 3

request
pre-

prepare
prepare commit reply

Figure 2.6: Three-phase agreement protocol of PBFT.

lects 2⌊N−1
3 ⌋+ 1 such messages (which constitute thecommitted certificateof the form

〈COMMIT ,v,n, req〉R,R,2⌊N−1
3 ⌋+1), the replica has established the linearized sequence for this

request, committing to execute it as soon as it can; this concludes theagreementportion

of the PBFT protocol for this request, whose purpose is to ensure that the replicas agree

on a single operation sequence for the service, as more clients submit requests for further

operations.

A replica can execute the request in its local state as soon asit has finished executing

the committed requests for all sequence numbers lower thann. It packages the result in a

REPLY message, which it sends to the client directly. When the client has received a quorum

of such matching replies – the reply certificate described above – theexecutionportion of

the protocol concludes; the purpose of the execution portion is to represent to the client

accurately the service state (and reply to the client’s request accordingly), as determined by

executing the sequence of operations that the agreement protocol portion maintains.

Though the request log can itself represent the service state, replicas periodically

garbage-collect their operation log to reduce storage consumption: they create a check-

point of their local state at a particular sequence numbernand a cryptographic hashsof that

state. When replicai creates such a checkpoint, it multicasts toRa〈CHECKPOINT,n,s, i〉i,R,1

29

message. Once it has collected a checkpoint certificate〈CHECKPOINT,n,s〉R,R,2⌊N−1
3 ⌋+1, the

replica deems that checkpoint “stable,” and truncates its operation log up to sequence num-

bern.

When replicai has out-of-date service state (e.g., due to transient network partitions or

because it is slow), it can catch up with the rest by retrieving missing committed requests,

along with their committed certificates, from another, moreup-to-date replica. If other

replicas no longer have those certificates in their logs due to garbage collection, the lag-

ging replica can fetch the latest stable checkpoint and certificate, and then any subsequent

committed requests after that checkpoint.

Finally, PBFT has a view-change protocol that changes the system’s primary when the

primary is suspected faulty. When backup replicai in view v times out waiting for a request

to commit, it suspects the primary as faulty, and multicaststo R a 〈V IEWCHANGE,v+

1,n,s,C,P〉i,R,1 message, wheren is the sequence number for the latest stable checkpoint,

s is the digest of the stable checkpoint,C is a stable checkpoint certificate, andP is a set of

prepared certificates whose sequence number is higher thann.

When a new primary (p = v+1 modN) collects a new view certificateV that consists

of 2⌊N−1
3 ⌋+1 valid V IEWCHANGE messages containing correctC andP, it multicasts toR

a 〈NEWV IEW,v+ 1,V,O〉p,R,1 message, whereO is a set ofPREPREPARE messages in the

new view. To determineO, let ℓ be the sequence number of the latest stable checkpoint in

V, and letu be the highest sequence number inP. For each sequence number betweenℓ+1

andu, the primary creates aPREPREPAREmessage if a prepared certificate exists inV, or a

PREPREPAREmessage for a no-op operation otherwise (to skip that sequence number in the

new view).

When a backup replica receives aNEWV IEW message, it verifiesO is correctly com-

puted by performing the same procedure as the primary. If themessage is valid, the replica

adds the new information to its log, logs and multicasts toR PREPARE messages for each

message inO, and enters viewv+1. The backup processes messages with a view number

v′ higher than the current view only after it receives a validNEWV IEW message forv′.

30

request
pre-
prepare

prepare commit reply

Client

Primary

Replica 1

Replica 2

Replica 3

Message attested by A2M

Figure 2.7: Three-phase agreement protocol of A2M-PBFT-E.Thicker lines denote mes-
sages that are attested to using A2M.

2.4.2 A2M-PBFT-E

In this section, we describe A2M-PBFT-E, a simple extensionof PBFT that uses A2M

logs to protect the execution portion of PBFT (hence the “E” suffix of the acronym); that

is, it ensures that replicas cannot equivocate about their locally computed results for a

particular requested client operation when replying to that or any other client (Figure 2.7).

As before, we consider a populationRof N replicas.

Design

Replicas:An A2M-PBFT-E replicai maintains all state maintained by a PBFT replica,

as well as an A2M log for what it believes as the agreed requestsequence; that log has

identifierqi . Other replicas and clients identify this replica as a pair〈i,A2Mi〉 of principals,

i for the replica node itself, andA2Mi for the replica’s A2M module. As a convenience, we

useA2MR to mean the set of all A2M principals used by replicas inR.

An A2M-PBFT-E replica is functionally identical to a PBFT replica with regards to

31

agreement, but differs on protocol aspects that involve execution, namely client interaction

and checkpoint management.

Once replicai collects a committed certificate for sequence numbern, it executes the

requestreqon its local application state obtaining resultr, it appends the associated request

to its logqi with append(qi,h(req)), and useslookup(qi ,n,n) to obtain the A2M attestation

〈LOOKUP,qi,n,n,h(req),ASSIGNED,n,d〉A2Mi ,R,1. Finally, it packages the regular PBFT re-

ply message and the attestation into a single message, whichit sends back to the client.

As per PBFT, replicai performs garbage collection on its log and A2M request his-

tory by exchangingCHECKPOINT messages. When replicai creates a checkpoint, it multi-

casts toRa〈〈CHECKPOINT,n,s,d′, i〉i,R,1, 〈LOOKUP,qi,n,n,x,ASSIGNED,n,d〉A2Mi ,R,1〉mes-

sage wheren is the sequence number of the last executed request to produce the check-

point state,s is the state digest,d′ is the A2M digest for sequencen− 1 (need not be

attested), andx is the hash of then-th committed request. The checkpoint becomes sta-

ble when a replica collects a checkpoint certificate〈〈CHECKPOINT,n,s,d′〉R,R,2⌊N−1
3 ⌋+1,

〈LOOKUP,n,n,x,ASSIGNED,n,d〉A2MR,R,2⌊N−1
3 ⌋+1〉. The replica adds this information to its

log, removes all messages with sequence number up ton from the log, and performs

truncate(qi ,n).

When replicai performs a state transfer, it performs the regular-PBFT process of fetch-

ing and installing a state with a stable checkpoint certificate and subsequent agreement

messages into its message log. In addition to this, an A2M-PBFT-E replica must also

update its A2M request log, by performingadvance(qi ,n,d′,x), and thenappending all

subsequently committed requests in ascending sequence order.

Clients: In A2M-PBFT-E, a client c is identical to a PBFT client, ex-

cept it expects from replicai reply messages of the form〈〈REPLY,v,n, t,c, r〉i,c,1,

〈LOOKUP,qi,n,n,h(req),ASSIGNED,n,d〉A2Mi ,R,1〉 for its pending requestreq. This

is the PBFT REPLY along with the A2M-attested content of then-th A2M log

entry at the sender. To consider its request completed and accept the re-

sult, a client waits until it collects a reply certificate〈〈REPLY,v,n, t,c, r〉R,c,2⌊N−1
3 ⌋+1,

〈LOOKUP,n,n,h(req),ASSIGNED,n,d〉A2MR,R,2⌊N−1
3 ⌋+1〉.

Note that the size of the reply certificate is 2⌊N−1
3 ⌋+1 in A2M-PBFT-E, as opposed to

32

⌊N−1
3 ⌋+1 in PBFT. However, the popular read-only optimization in PBFT – in which read-

only requests can be answered by replicas immediately upon reception without a three-

phase commit – also requires replies of size 2⌊N−1
3 ⌋+ 1, making this difference moot in

practice.4

Correctness

At a high level, we show that if at most⌊N−1
3 ⌋ replicas are faulty, A2M-PBFT-E does

not cause clients to accept more replies than they would under PBFT (therefore does not

violate safety) and does not block operations that would have proceeded in PBFT (i.e., does

not remove liveness). When the number of faulty replicas ranges between⌊N−1
3 ⌋+1 and

2⌊N−1
3 ⌋, we show that A2M-PBFT-E can only assign to any sequence number a unique

client request, and that the reply delivered to clients for any sequence number is that which

a non-faulty replica would have produced processing the sequence requests in order.

Theorem 1. If no more than⌊N−1
3 ⌋ replicas are faulty, A2M-PBFT-E provides both safety

and liveness.

Proof. When no more than⌊N−1
3 ⌋ replicas are faulty, the safety of A2M-PBFT-E follows

from PBFT’s safety: A2M-PBFT-E attestations in replies at worst preventa client from

accepting a reply that PBFT would otherwise accept (if theREPLY portion of the message

matches but the A2M portion does not); A2M-PBFT-E attestations never cause what would

have been an unacceptable set ofREPLY messages in PBFT to be acceptable. The same

holds for liveness, since the addition of the A2M log attestation in REPLY messages cannot

hinder progress: there exist at least 2⌊N−1
3 ⌋+1 non-faulty replicas that maintain their A2M

request logs correctly, and as a result, there always existsa quorum of 2⌊N−1
3 ⌋+1 replicas

that can provide clients with aREPLY certificate. Replicas can also create a stable check-

point since there always exists a quorum of 2⌊N−1
3 ⌋+ 1 non-faulty replicas to produce a

CHECKPOINT certificate.
4A2M-PBFT-E supports this read-only optimization by replacing LOOKUP attestations withEND attes-

tations in the client reply, and using a client-supplied nonce in the attestation, when handling a read-only
request; this proves to the client that the result provided is drawn from the latest state of the service, rather
than an earlier state (in which case, faulty up-to-date replicas would have advanced their committed request
log beyond the attestation they are required to return freshly).

33

Theorem 2. If faulty replicas are more than⌊N−1
3 ⌋ and no more than2⌊N−1

3 ⌋, A2M-PBFT-

E provides safety.

Proof. When faulty replicas are more than⌊N−1
3 ⌋ and no more than 2⌊N−1

3 ⌋, we argue in-

ductively that for every sequence number, any non-faulty client can only accept a unique

request – which establishes that there exists a single linearized schedule of requests – and

can only accept the correct result value for that linearizedschedule. In the base case, con-

sider a client acceptingreq1 for sequencen = 1. Since the correspondingREPLY certificate

(of size 2⌊N−1
3 ⌋+1) includes at least one non-faulty replica, the reply and result certainly

correspond to what that non-faulty replica would do with a singleton schedule containing

only req1. Suppose another non-faulty client accepts a different requestreq2 and result for

the same sequence numbern= 1. Such a client would also possess a validREPLY certificate

of the same size; the two certificates contain at least one replica in common. However, since

that replica is bound by A2M to supply the same A2M log entry toboth clients, the A2M

attestation of that replica present in the two certificates must be identical, which means that

the two certificates must match; this meansreq1 = req2, since the request hashes using a

collision-resistant hash function also match. This is a contradiction, so there can be no such

req2.

The inductive step for sequence numbern+ 1 given a linearized schedule up ton is

similar. Any two clients accepting a reply forn+ 1 will have matching requests for that

sequence number (as witnessed by the matching request hashes in the two log attestations),

andmatching request histories up to that sequence number (as witnessed by the digestd in

the A2M log attestations). Therefore, the result computed by the non-faulty replica in each

of the two reply certificates must correspond to the same request history and, due to the

deterministic nature of the state machines we consider here, must produce the same result.

Replicas participating in a reply that have used the state transfer mechanism at some

point in their history do not affect this correctness argument. After accepting a stable

checkpoint certificate, a replica has ann-th A2M log entry that is identical to all the replicas

in the checkpoint certificate, including at least another non-faulty replica. Furthermore, the

state described in the checkpoint is that held by at least another non-faulty replica.

34

Discussion

In the A2M-PBFT-E presentation above, A2M is used to protectonly the sequence of

committed requests, as they are presented to clients inREPLY messages. However, when

faulty replicas are at least⌊N−1
3 ⌋+1, they can confuse non-faulty replicas by equivocating

during agreement. For example, in Figure 2.2, the use of A2M will not prevent the faulty

replicas from causing non-faulty replicar0 to place requestreqa in its A2M position 1 and,

at the same time, causing non-faulty replicar3 to placereqb in its A2M at the same posi-

tion. Though no client will accept inconsistent replies (since reply messages contain A2M

attestations), the replicas themselves are not protected.For the purposes of the protocol,

one of the two non-faulty replicas effectively becomes faulty when convinced to adopt a

fork in the request history.

The great benefit of A2M-PBFT-E is that such misbehavior causes the system to stop

making progress but not to violate its correctness breakinglinearizability. In the simplest

scenario, an operator who notices lack of forward progress can take the system off-line,

identify the history fork (where committed histories diverged), repair the divergent repli-

cas, change their A2M log identifiers, advance their new A2M logs to an earlier correct

sequence number from which A2M-PBFT-E can do state transfers, and restart the system

with no loss beyond transient unavailability and human effort.

However, a natural next step is to remove this denial-of-service attack from the arse-

nal of the adversary, by ensuring that the agreement portionof the protocol is itself also

protected from equivocation. In the next section, we describe A2M-PBFT-EA, a PBFT

extension that protects not only the execution portion (i.e., client-facing messages) against

equivocation, but also the agreement portion (i.e., replica-facing messages), thereby in-

creasing the fault tolerance of PBFT with both safetyand liveness.

2.4.3 A2M-PBFT-EA

To protect against equivocation during agreement, A2M-PBFT-EA (the “EA” suffix

stands forExecution+Agreement) requires replicas to append to A2M logs all protocol

messages before sending them to their peers (Figure 2.8). Unlike the history log, mes-

sage logs need not protect a sequence of entries, but only an individual message; therefore,

35

Message attested by A2M

request
pre-
prepare

prepare commit reply

Client

Primary

Replica 1

Replica 2

Figure 2.8: Three-phase agreement protocol of A2M-PBFT-EA. Thicker lines denote mes-
sages that are attested to using A2M.

A2M’s advance is used to place a message into an A2M message log, as opposed to append.

Unlike A2M-PBFT-E and PBFT, which can have multiple requests in flight at the same

time, in A2M-PBFT-EA we require that non-faulty replicas handle one request at a time, in

increasing sequence-number order.5 This ensures that messages are appended to their cor-

responding A2M logs in the order of their corresponding sequence number. By protecting

protocol steps from equivocation, A2M-PBFT-EA requires only one – potentially faulty –

replica in the intersection of two quorums. Note, in comparison, that PBFT requires at least

onenon-faultyreplica in the intersection of two quorums.

When configured with A2M-PBFT-E’s quorum sizes, A2M-PBFT-EA has the same

safety and liveness properties as A2M-PBFT-E. In what follows, we instead present A2M-

PBFT-EA with quorum sizes that allow it to tolerate up to⌊N−1
2 ⌋ faults with both safety

and liveness.
5PBFT offers a runtime setting (the high- and low-watermark values) that can be configured to guarantee

this requirement.

36

Design

Clients: An A2M-PBFT-EA client is similar to an A2M-PBFT-E client, but it expects

reply certificates of size⌊N−1
2 ⌋+1 instead of 2⌊N−1

3 ⌋+1.

Replicas: All certificates (for prepared and committed requests, for view changes, and

for checkpoints) in A2M-PBFT-EA have size⌊N−1
2 ⌋+ 1, as opposed to 2⌊N−1

3 ⌋+ 1 in

A2M-PBFT-E.

In addition to a committed request history log, an A2M-PBFT-EA replica i maintains

five message logs:PREPARE(which also containsPREPREPAREs) andCOMMIT for the three-

phase agreement,CHECKPOINT for garbage collection, andV IEWCHANGE andNEWV IEW

for view changes. Before sending any such PBFT message〈M 〉, an A2M-PBFT-EA replica

inserts that message to the corresponding message logmM ,i (via anadvance call), uses

lookup to obtain an attestation〈E 〉A2Mi ,R,1 for that message, and sends〈〈M 〉,〈E 〉A2Mi ,R,1〉
to the intended destination. Conveniently, a message that has been committed to A2M in

this way need not itself be authenticated to its destinationprincipal; the A2M attestation

of the message hash is enough to protect that message from integrity attacks and to make

it non-repudiable. Non-attested messages still need to be authenticated as before. Since

message logs are typically used for individual attestations and not for message histories, an

advance call is sufficient, as opposed to anappend.

A non-faulty replica might have to send multiple versions ofa PREPREPARE/PREPARE

or aCOMMIT message for a given sequence numbern, but for different views. The protocol

flattensthe 〈v,n〉 identifier of such messages to fit them in the A2M log entry sequence

space, by partitioning log sequence numbers into two parts:the x most significant bits

(e.g., 64 bits) represent a view number while the remainingy bits (e.g., 96 bits) represent

a PBFT request sequence number. The log entry number for aPREPREPARE/PREPARE or

COMMIT message about viewv and sequence numbern is thenn+ v2y; we use[v|n] to

denote this flattened number in what follows. Note that the A2M module is oblivious

to this “overloading” of its sequence number space; no changes are required to the A2M

interface.

To illustrate the concepts of message attestation and identifier flattening, we

present as an example the prepare phase of A2M-PBFT-EA. Where a PBFT

37

replica i would send thePREPARE messageprep = 〈PREPARE,v,n, req〉, an A2M-

PBFT-EA replica commits the message to its corresponding log mp by invok-

ing advance(mp, [v|n],0,h(prep)), extracts the correspondingLOOKUP attestationatt =

〈LOOKUP,mp, [v|n], [v|n],h(prep),ASSIGNED, [v|n],d′〉A2Mi ,R,1, and then bundles and sends

〈prep,att〉. When an A2M-PBFT-EA replica receives such an attestedPREPARE message,

it verifies the A2M authentication, and then checks that the value attested is the hash of the

includedPREPARE message. When a replica collects⌊N−1
2 ⌋+1 such messages that match

req for the same sequence numbern and viewv, the request is prepared. The commit phase

is similar to the prepare phase described. The checkpoints,state transfer, and execution

portions of A2M-PBFT-EA are the same as with A2M-PBFT-E, except for the addition of

message attestations in certificates and the different quorum sizes.

View Change: View changes are different from PBFT and A2M-PBFT-E. In PBFT,

the quorum forming aNEWV IEW certificate is guaranteed to contain at least one non-faulty

replica with the latest committed requests, thanks to the quorum size and the maximum

number of faulty replicas. In contrast, the A2M-PBFT-EA quorum size can guarantee, in

the worst case, that a single potentially-faulty replica with the latest committed requests will

participate in the view change. To address the challenge, anA2M-PBFT-EA replica must be

forced to give its latest A2M-committed information, whichrequires a fresh, shared nonce

in the associatedlookup A2M operations. To accomplish this, the protocol requires an extra

phase before the normal view-change protocol, which enables replicas to construct a fresh

nonce for the subsequent phases (viaWANTV IEWCHANGE messages). For similar reasons,

the protocol must ensure that replicas committed to a view change (as evidenced by their

issuance of an attestedV IEWCHANGE message) cannot subsequently help commit requests

in the previous view. Therefore, aV IEWCHANGE message in A2M-PBFT-EA requires the

sending replica to explicitlyabandonthe previous view: a replica does this byadvanceing

its COMMIT message log to the end of the old view and attesting to this advancement within

its V IEWCHANGE message.

Next, we present the detailed A2M-PBFT-EA view change protocol When replicai in

view vfrom suspects the primary is faulty as per the PBFT protocol, it broadcasts toR its

intent to change views via a〈WANTV IEWCHANGE,vto,z, i〉i,R,1 message, wherez is a fresh

nonce andvto is vfrom+ 1 if the replica was not already in the midst of a view change, or

38

v+1 if the replica was in the process of switching to viewv when it decided to change yet

again.

When a replica collects aWANTV IEWCHANGE certificate that consists of⌊N−1
2 ⌋+ 1

valid WANTV IEWCHANGE messages for the same viewvto, it computes the appropriate

nonceZ for its attestations by hashing together all the nonces in its WANTV IEWCHANGE

certificate in increasing replica identifier order. It abandons its current viewvfrom if vfrom <

vto (or its participation in a prior view change protocol towards viewv′ if v′ < vto), as well

as all intervening views up tovto. For all viewsv in [vfrom,vto) in order, the replica performs

advance(mc, [v+ 1|0]−1,0,0) (if it has not already);[v+ 1|0]−1 is the lastCOMMIT log

entry belonging to viewv. Now the replica constructs itsV IEWCHANGE message.

The message form is〈〈V IEWCHANGE,vfrom,vto,n,s,C,P,Q, W,A,B,H〉, 〈E 〉A2Mi ,R,1〉.
Among the contents of the main message,vto, n, s, andC are as in regular PBFT;vfrom is as

defined above,Q is the set of committed certificates with sequence number higher thann

andP is the set of prepared certificates for requests that are prepared but are not committed

aftern, W is aWANTV IEWCHANGE certificate,A is the set of A2MCOMMIT log attestations

corresponding to the certificates inP, B contains the view abandonment attestations from

the replica’sCOMMIT log (see below), and finallyH is a list of committed request log entries

that attest those requests inQ. 〈E 〉 is the attestation from the sender’s A2M message log

for V IEWCHANGE messages, computed via alookup(mvc,vto,vto) A2M command.

For each abandoned viewv betweenvfrom and vto, the setB contains the attestation

〈LOOKUP,mc, [v|n′ + 1],Z ,0,SKIPPED, [v+ 1|0]− 1,d′〉A2Mi ,R,1〉, wheremc is theCOMMIT

log identifier, andn′ is the highest sequence number inQ andP. For each abandoned view,

this attestation shows that the replica could not have committed a request for a sequence

number greater than those included in itsQ andP sets.

When a new primary (p = vto mod N) collects a new view certificateV that consists

of ⌊N−1
2 ⌋+ 1 valid V IEWCHANGE messages that have the samevfrom andvto and contain

correctC, P, Q, W, A, B, andH, it multicasts toR a NEWV IEW message of the form

〈〈NEWV IEW,vto,V,Oc,Op〉,〈E 〉A2Mp,R,1〉; the latter part is the usual A2M attestation for

the message, whereas the contents of the message are a new view certificate, with the set

Oc containingPREPREPAREmessages for requests to be committed, and the setOp contain-

ing PREPREPAREmessages for requests to be prepared in viewvto. When a replica receives

39

the validNEWV IEW message, it enters viewvto. Any requests in prepared or committed

certificates for sequence numbers later than the latest stable checkpoint are prepared (issu-

ing a new attestedCOMMIT message) and committed (appending the request in the request

log if not already there) in order, without need for further inter-replica communication.

Note that allV IEWCHANGE messages within aNEWV IEW certificate must have the same

vfrom; this is essential for the correctness properties described next. If the primary fails to

collect a quorum of such messages, it refuses to generate aNEWV IEW message. To ensure

progress, any non-faulty replica that receives aV IEWCHANGE message with avfrom later

than its own asks the issuer of that message for theNEWV IEW certificate that allowed it to

entervfrom. Using that certificate, the lagging replica can bring itself to that view. When

a timeout indicates that the previous view change attempt stalled – either due to a faulty

new primary or because ofvfrom mismatches – the replica initiates another view change

for the next target view number. Thanks to the eventual synchrony of our network, this

guarantees that eventually enough replicas will initiate aview change with the samevfrom

and the change will go through.

Correctness

At a high level, A2M-PBFT-E and A2M-PBFT-EA differ in two fundamental ways: on

one hand A2M-PBFT-EA has smaller quorum sizes, but on the other hand, it requires all

protocol messages to be attested to from an appropriate A2M log before use.

Theorem 3. If no more than⌊N−1
2 ⌋ replicas are faulty, A2M-PBFT-EA provides safety.

Proof. The argument presented in the second proof of Section 2.4.2 also applies to the

safety of A2M-PBFT-EA. Therefore, it guarantees safety with up to ⌊N−1
2 ⌋ faults since

clients acceptREPLY certificates of size⌊N−1
2 ⌋+1.

To show that A2M-PBFT-EA is live despite up to⌊N−1
2 ⌋ faults, we show a new safety

invariant that is not necessary for linearizability: all non-faulty replicas agree on a sin-

gle committed request sequence. That is, a faulty replica cannot convince two non-faulty

replicas to commit to their respective A2M request logs different requests for the same se-

quence number. The argument is split into a same-view case and a different-view case. For

40

the same-view case, it follows backwards the agreement process from appending a request

to the log, to emitting aCOMMIT message, to emitting aPREPARE message, showing that

for two different requests to be placed in two non-faulty replicas’ request logs, some A2M

must be faulty, which is incompatible with our fault model. For the different-view case,

the argument is similar, but must also traverseNEWV IEW certificates; view abandonment in

such certificates helps show that it is not possible for a single replica (faulty or not) to have

an attestedCOMMIT message for one request in one view, and at the same time support a

view change feigning ignorance for that message, leading toa contradiction.

We prove that if no more than⌊N−1
2 ⌋ replicas are faulty, A2M-PBFT-EA provides live-

ness by showing that no two non-faulty replicas can place different requests in the same

sequence number of the A2M request log. We split our argumentinto a same-view case,

and a different-view case.

Theorem 4. If no more than⌊N−1
2 ⌋ replicas are faulty, no two non-faulty replicas can place

different requests in the same sequence number of the A2M request log in the same view.

Proof. Suppose two non-faulty replicas have appended two different requests to the same

sequence number of their respective A2M request logs, during the same view. They both

did that after having constructed a valid committed certificate over two quorums. Those

two quorums must have at least one common (perhaps faulty) replica i, which managed to

attest to twoCOMMIT messages, one for each request, in each of the two quorums. This,

however, is a contradiction with our assumption that A2M is trusted to avoid equivocation

for the same log entry, and the collision-resistance of the hash function.

It is worth noting that along similar lines, it is trivial to show that no two non-faulty

replicas can be convinced to place different requests in their COMMIT A2M log for the same

sequence number and view, by the analogous argument on the prepared certificate quorums

and thePREPARE A2M log of the common replica. Finally, the exact same argument can

be used to show that no two non-faulty replicas can put different requests in theirPREPARE

A2M logs for the same sequence number and view, since the single primary for the view

can only attest to a singlePREPREPARE message for that sequence number in any given

view.

Theorem 5. If no more than⌊N−1
2 ⌋ replicas are faulty, no two non-faulty replicas can place

41

different requests in the same sequence number of the A2M request log across different

views.

Proof. Now we must show that no two non-faulty replicas can commit two requestsr and

r ′ 6= r in sequencen and in viewsv andv′ > v, respectively.

We define anactiveview as a view for which a validNEWV IEW certificate has been

constructedandseen by a non-faulty replica. A non-faulty replica cannot commit a request

in a view for which it has not seen a validNEWV IEW certificate, therefore if a non-faulty

replica commits a request in a view, then that view must be active.

We split our argument into two further subcases, first the case in which no other active

views exist betweenv andv′, and the case in which at least one active view exists between

v andv′.

Case 1 –v and v′ are consecutive active views:Since no other active views exist

betweenv and v′, then theNEWV IEW certificate forv′ – and there can be at most one

since only oneNEWV IEW message can be attested by the primary for viewvto = v′ –

must havevfrom ≤ v. This is because at least one non-faulty replica must have produced

a V IEWCHANGE message for the certificate, and that non-faulty replica guarantees that its

vfrom represents an active view, which cannot be later thanv (or it would have to bev′). As a

result, thisNEWV IEW certificate contains view abandonments for all views in its[vfrom,vto)

range, which includes[v,v′) as we argued above.

Now consider three quorums, the one that produced the committed certificate forr in

view v (denotedQ), the one that produced theNEWV IEW certificate tov′ (denotedV),

and the one that produced the committed certificate forr ′ in view v′ (denotedQ ′). Let

i ∈ Q ∩V , which always exists thanks to quorum intersection.

Replicai unavoidably contributed an attestedCOMMIT message forr at sequence num-

ber n in the committed certificate forv along with the rest of quorumQ . What can have

beeni’s V IEWCHANGE contribution to theNEWV IEW certificate in quorumV with regards

to sequence numbern? If i reported a valid stable checkpoint no earlier thann in its

V IEWCHANGE, then the resulting, uniqueNEWV IEW certificate forv′ should convince any

non-faulty replica that sees it to never commit anything else atn in view v′, sincen belongs

in the past; this contradicts our assumption that some non-faulty replica will in fact commit

42

r at n in view v′.

If insteadi reported a stable checkpoint earlier thann in its V IEWCHANGE, it can only

have reported the sameCOMMIT attestation for requestr atn, since thatV IEWCHANGE mes-

sage must contain a view abandonment forv as we showed above, and omitting an attesta-

tion for theCOMMIT log entry[v|n] is not an option; to omit it successfully, it would have

to produce an abandonment attestation〈LOOKUP,mc, [v|n′ + 1],Z ,0,SKIPPED, [v+ 1|0]−
1,d′〉A2Mi ,R,1 for somen′ < n, which is disallowed by the A2M interface given the existence

of anASSIGNEDattestation for entry[v|n] and the inequality[v|n′+1]≤ [v|n] < [v+1|0]−1.

This leaves the common replicai between quorumsQ andV only with the option

of reporting requestr as prepared in viewv. As a result, any correct replica in quorum

Q ′, which can only commit requests in viewv′ after having seen theNEWV IEW certificate

for that view, must have issued at least aPREPARE message for requestr in view v′ while

processing theNEWV IEW certificate. However, since this replica is also a member of the

committed certificate for requestr ′ in view v′, it must also have prepared and subsequently

committed that requestr ′. This clearly contradicts not only the properties of the A2M

message logs at that replica, but also the operation of a non-faulty replica. This completes

the proof for this subcase.

Case 2 –v and v′ are not consecutive active views:Suppose there arev1,v2, ...,vk−1

active views betweenv(= v0) andv′(= vk). We can prove inductively on the intervening

active views that at least a prepared certificate for requestr at sequencen will be propagated

to viewv′, preventing a commitment of a conflicting requestr ′ at the same sequence number

there.

In the base case, we can use the argument of the previous subcase 1 to show that the

NEWV IEW certificate for viewv1 will either preclude any subsequent commitment to se-

quencen or will contain at least a prepared certificate for requestr at that sequence number.

To show the inductive step, assume that theNEWV IEW certificate for viewvi contains

a prepared certificate for requestr – that is the only viable choice since, if it contains a

stable checkpoint forn or later, then no subsequent view will admit a different committed

requestr ′, leading to a contradiction. Now consider theNEWV IEW certificate, formed by

quorumV , that will lead away fromvi to vi+1. Any non-faulty replica inV (there must

be at least one), must have seen the earlierNEWV IEW certificate leading tovi , or else it

43

would be unable to assumevi as its active view. Therefore, that replica must also have pre-

pared that same requestr in view vi , including the prepared certificate in itsV IEWCHANGE

contribution to the laterNEWV IEW certificate.

The induction proves that committed requestr at n in active viewv will either pre-

clude the commitment of another request atn in view v′ (because somewhere in between a

NEWV IEW certificate contained a stable checkpoint for a sequence at or aftern), or cause

the inclusion of aCOMMIT attestation for the samer at n in all subsequent validNEWV IEW

certificates. This contradicts the assumption that a non-faulty replica at active viewv′,

which must have seen such aNEWV IEW certificate, will commit requestr ′ at n in view v′.

This last subcase concludes the proof that two commitments for the same sequence number

at different non-faulty replicas must commit the same request.

Beyond quorum availability (i.e., ensuring that no quorum can be blocked from forming

due to non-faulty replicas caused to commit incorrect requests), A2M-PBFT-EA also guar-

antees that no replica is left behind during view changes: a replica only abandons its current

view v if it has collected aWANTV IEWCHANGE certificate; even if the current view change

does not complete due to network faults or a faulty new primary, the replica can retransmit

the WANTV IEWCHANGE certificate until eventually enough other non-faulty replicas have

received it to complete the view change, or to trigger another one with a different primary.

This is guaranteed by the eventual synchrony of our network and processing model.

2.5 Other A2M Protocols

In this section, we describe A2M-Storage, an A2M-enabled storage system on a single

untrusted server shared by multiple clients. Thanks to the use of a trusted A2M module,

A2M-Storage provides linearizability in contrast to SUNDR’s weaker fork consistency and

is simpler than SUNDR. We then briefly sketch how A2M can be used with Q/U to improve

its fault tolerance.

44

2.5.1 A2M-Storage

Background: SUNDR

SUNDR targets the same problem as PBFT: linearize client requests and ensure that

the service state used to respond to each request corresponds to a correct system having

executed this linear request history. In PBFT, agreement isused among replicas to obtain

a linearized request order. The presence of at least one non-faulty replica corroborating a

reply to the client ensures that the agreed upon linearized order has been executed correctly

producing the result in the reply. Unfortunately, in a single-server environment such as

SUNDR’s, there is no non-faulty replica trusted to execute linearized requests; instead, the

clients must trust each other and cooperate to check themselves that requests are properly

linearized and execution is performed correctly at the server.

A SUNDR server maintains the current service state (a snapshot of a shared file sys-

tem), which is represented by Merkle trees [Mer87].6 The state is captured by a set of

version structures, each of which is owned by a client (principal) and contains a hash that

summarizes the whole state on which the client operates.

To perform an operation (read/write on a file), a SUNDR clientsubmits to the server

its intended request, called anupdate certificate. The server assigns an order to the request

relative to pending operations that have not committed yet,and returns the latest committed

version structures and ordered pending update certificates. The client ensures that the state

transits correctly forward from its last committed versionthe server gives via a sequence of

pending operations. The client can then perform its operation locally, potentially fetching

missing blocks by following digests of the hash tree, compute and sign a new state digest

creating a new version structure, and return it along with changed blocks to the server. The

server stores the new version structure and modified blocks.

As described in simpler terms in Section 2.2.5, a SUNDR client cannot ensure that the

server sends it the latest state resulting from the committed history of requests; though it

cannot remove requests from the middle, the server can stillchop off the tail of history

past the last request known to that client, and start a new “fork” in that history, specific

6We omit the details of how files and directories are organized. What is important is that an entire file
system can be cryptographically digested and verified against a set of digests efficiently.

45

to the client. Until two clients on different history forks compare their notes, they cannot

know the system is not linearized. This is what makes SUNDR only fork-consistent but not

linearizable.

Design

A2M-Storage can be simpler than SUNDR, and guarantees linearizability instead of

only fork consistency, thanks to the use of the trusted A2M module, which affords clients

the ability to demand the latest committed request on a history, via a freshEND attestation.

The server maintains a version block, a snapshot of a file system captured by a Merkle

tree, and two A2M logs. A version block holds a state digest (i.e., the root hash of a

snapshot) computed as for SUNDR and a sequence number that tracks the latest A2M log

sequence number with a signature signed by the latest writer. A2M has logqh for the write

request history, and logqs for digests of version blocks, one for each state version generated

by the application of writes to the state. Each write/read request is associated with a logical

timestamp, of the form〈seq,atth,seq,atts,seq〉, containing the request sequence number, the

A2M attestation from the request history logqh when that request was appended, and the

A2M attestation from the state version logqs when that request was executed. The client

remembers the latest timestamp it has seen.

An A2M-Storage client performs write operations optimistically, assuming the times-

tamp it knows is the latest. When it submits a write requestreq for sequence number

n, it also submits a nonce (for freshness), its known timestamp on whichreq is condi-

tioned, and a new version block with sequence numbern obtained after executingreq. If

the conditioned-on timestamp has not changed, the server modifies the state accordingly,

stores the new version block that the client sends, and appends the request and state ver-

sion digests to A2M logsqh andqs, respectively. In other words, execution of the request

is conditioned on the latest timestamp at the server being the same as that known by the

client. The server then forms its response, containing a success code,END attestations from

the two logs, and a proof that the operation was committed to the service state using the

state digest function. The client accepts the response if the attestations and stage digest

proofs are valid. If however the client had a stale timestamp, indicated by a failure code in

46

the response, it updates its timestamp with the one returnedby the server, and tries again

potentially after fetching fresher state blocks and potentially backing off in case of write

contention.

An A2M-Storage client performs read operations that include nonces. The server re-

turnsEND attestations from the two A2M logs whose freshness is provenby a nonce, the

version block to which the last A2Mqs entry points, and a proof that the read content is

the valid part of the current snapshot. Note that the versionblock should include the same

sequence number as the A2M attestation sequence number to bevalid.

Instead of the optimistic, one-phase version of the protocol, a pessimistic two-phase

version is straightforward as well, in which clients alwaysfetch a “grant” to perform their

operation at a particular sequence number, and then submit their operation with a guarantee

of success, as per SUNDR.

In terms of its software architecture, A2M-Storage is similar to a version of SUNDR

that entrusts the task of ordering requests and maintainingversion structures to a separate,

trusted component called a consistency server. In A2M-Storage, this task is “emulated”

with the help of A2M, a general-purpose abstraction that works not only for SUNDR but

also for other systems as we have demonstrated in other sections.

Correctness

A2M-Storage clients and server need maintain far less statethan is necessary for SUNDR:

clients only require a single global timestamp, instead of per-client version structures. Yet,

A2M-Storage provides linearizability, because a client accepts a write operation as com-

plete only when the server proves that the request is committed to its A2M logs – and A2M

logs are trusted not to violate linearization. Similarly, aclient accepts a read operation re-

sponse as complete only when the response carries the latesttimestamp, whose freshness

is attested by the A2M module.

Theorem 6. A2M-Storage provides linearizability.

Proof. We show informally that there exists a sequential history ofaccepted writes, and

that each read is partially ordered to the correct immediately preceding write. When a

write operation is accepted by a client, we know that the operation is committed to A2M

47

right after the conditioned-on timestamp. By following a chain of conditioned-on times-

tamps backwards, we can construct a single history of accepted client write operations. In

addition, when a read is accepted by a client, we know that theread response carries the

latest committed state version. The read operation can be placed right after the write that

produces a state version attested by A2M and on which the readdepends. Therefore, there

exists a linearizable history of accepted write and read operations.

Since there is only one server, there is no guarantee on liveness when the server fails.

Moreover, due to the nature of optimistic protocols, A2M-Storage does not provide any

guarantees on fairness among clients; a greedy client can overuse the system.

2.5.2 A2M-Q/U

The Query/Update protocol (Q/U) [AEMGG+05] is a quorum-based BFT replicated

state machine. It offers an optimistic protocol that completes client requests in a single

round-trip message exchange between a client and the replicas, in the absence of faults and

write contention. At a very high level, Q/U is similar to A2M-Storage (with more than a

single server): the client sends a request along with its view of all replicas’ latest times-

tamps, each of which contains a replica’s history. Each replica commits the request if its

local timestamp is compatible with the client’s view; otherwise, e.g., if another client has

already advanced that replica’s state with another conflicting update request, the replica

refuses to execute the request and sends back its latest replica history. A client is satisfied

about its request’s linearization if a quorum of replicas (4f +1 out of 5f +1 total replicas)

accept its request, making itcomplete. If fewer than 2f + 1 replicas have accepted the

client’s request, then it isincompleteand the client tries again after some back-off. When

a client receives matching replies from between 2f +1 and 4f replicas, the request isre-

pairable. A client attempts to repair a repairable request, by tryingto see if enough other

replicas exist to make it complete, or by trying to convince other replicas to accept it. If a

client’s operation is complete, the protocol guarantees that, in any other quorum in the sys-

tem, that operation would be repairable, a fundamental invariant for Q/U’s linearizability

guarantee.

Q/U’s linearizability properties stem from the sizes of thepopulationN, quorumsQ,

48

and repairable setsR, given the numberf of tolerable faults. A quorum must be always

available even if all faulty replicas remain silent – implying N ≥ Q+ f (1) – all quorums

must intersect over a repairable set, excluding all faulty replicas – implying 2Q−N≥R+ f

(2) – and all quorums must intersect over at least one non-faulty replica of all repairable

sets of other quorums – implyingQ+R−N > f (3).

A2M’s contribution to Q/U is that, by having replicas place accepted requests into A2M

logs and having clients require anEND attestation before accepting a replica’s response, the

sizes of quorum and repairable set intersections can be reduced. Essentially,f +1 replicas

form a repairable set since faulty replicas commit to one history with A2M and they cannot

form a repairable set with non-faulty replicas with an old history. Therefore, the above

condition (3) changes toQ+ R−N ≥ 1. An A2M-enabled Q/U protocol can toleratef

faults withN = 4 f +1, Q = 3 f +1, andR= f +1, reducing the replication factor required

from 5 to 4. We defer the full details.

2.6 Evaluation

In this section, we evaluate the overhead of applying A2M to BFT state machine repli-

cation. We have implemented A2M-PBFT-E and A2M-PBFT-EA (without its view change

algorithm) in C/C++ with a BFT library [CL02, RCL01] ported to Fedora Core 6 and the

SFSlite library [sfs]. The A2M protocols have versions thatuse signatures or MACs for

authentication.

We ran our experiments with four replica nodes for A2M-PBFT-E and one client node.

For A2M-PBFT-EA experiments, we use three replica nodes to tolerate one fault. The

replica nodes are 1.8GHz Pentium 4 machines and the client node is a 3.2GHz Pentium 4

machine. All machines are equipped with 1GB RAM and 3Com 3C905C Ethernet cards,

and are connected over a dual speed 10/100Mbps 3Com switch.

A2M uses SHA-1 as its digest function (also used for MACs), and NTT’s ESIGN with

2048-bit keys for signatures. On a 1.8GHz machine, signature creation and verification of

20 bytes take on average 256µsand 194µs, respectively.

All experiments used A2M as a library in the same address space as the PBFT proto-

49

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4

P
ro

ce
ss

in
g

tim
e

(m
s)

Request size (KB)

 0 1 2 3 4

Response size (KB)

A2M-PBFT-EA(sig)
A2M-PBFT-E(sig)

A2M-PBFT-EA(MAC)
A2M-PBFT-E(MAC)

PBFT

Figure 2.9: Microbenchmark results varying request (left)and response (right) sizes, mea-
sured in KBytes. “sig” refers to use of signatures while “MAC” refers to use of MACs in
the protocols.

col and the user application. However, depending on the A2M implementation scenario

(see Section 2.3.3), A2M operations will experience a different additional interface la-

tency cost. To account for the costs in accessing A2M, we impose by default 1µsof delay,

which is a conservative system call latency7 (Figure 2.4(d)) or a cross-SIP communica-

tion latency [HAF+07] (Figure 2.4(b)), to each A2M request using the Pentium RDTSC

instruction.

In our experiments, we compare PBFT to A2M-PBFT-E and A2M-PBFT-EA, using

two A2M implementations: one using signatures for authentication (denoted “sig”) and

one using MACs (denoted “MAC”). Shown PBFT measurements used MACs.

2.6.1 Microbenchmarks

We use a simple microbenchmark program, which is a part of thePBFT library. A

simple client sends 100,000 null operation requests of sizea bytes to replicas, which elicit

7On a 1.8GHz Pentium 4 machine running Fedora Core 6, we ran lmbench [MS96] to measure the time
to perform nontrivial entry into the operating system. The system call takes 0.87µsin average.

50

NFS -S -PBFT -A2M -A2M -A2M -A2M
-PBFT-E -PBFT-E -PBFT-EA -PBFT-EA

Phase (sig) (MAC) (sig) (MAC)

Copy 0.219 0.709 1.026 0.728 2.141 0.763
Uncompress 1.015 3.027 4.378 3.103 8.601 3.236
Untar 2.322 4.448 6.826 4.553 12.896 4.669
Configure 12.748 12.412 19.173 12.659 26.181 13.040
Make 7.241 7.461 9.778 7.500 11.379 7.510
Clean 0.180 0.298 0.640 0.312 0.742 0.311

Total 23.725 28.355 41.821 28.854 61.940 29.528

Figure 2.10: Mean time to complete the six macro-benchmark phases in seconds.

replies of sizeb bytes from replicas. We ran experiments witha’s andb’s varying between

0 and 4000. Figure 2.9 plots the results. In all cases, operation turn-around times grow at

the same pace with request/response sizes as in PBFT, with anadditive overhead due to the

additional A2M authentication operations (MACs or signatures) required. A2M-PBFT-E

(MAC) and A2M-PBFT-EA (MAC) add a small extra cost because ofthe relative efficiency

of MAC computation compared to the network delays. The signature-based versions of

the protocol add significant computational overheads, and only become justifiable for very

large replica populations, in which the cost of carrying MAC-based authenticators becomes

comparatively expensive.

2.6.2 Macrobenchmarks: NFS

To understand the implications of using A2M-enabled protocols in real applications, we

use PBFT’s NFS front end on a PBFT (or A2M protocol) back end. As with BFS [CL02],

we use a local NFS loop-back server and an NFS kernel client atthe client side.

The workload we use consists of compiling a software package(nano-2.0.3.tar.gz)

in six phases: 1) copy the file to the NFS file system (copy), 2) uncompress the file (un-

compress), 3) untar the uncompressed file (untar), 4) run a configure script (configure), 5)

compile the package by running make (make), and 6) clean up the built object and execu-

tion files (clean). The workload includes 8790 read-only BFT operations out of a total of

14500 operations invoked.

51

NFS- A2M-PBFT-E A2M-PBFT-E A2M-PBFT-EA A2M-PBFT-EA
Additional (MAC) (MAC) (MAC) (MAC)
latency (µs) with batching with batching

1 28.854 28.763 29.528 29.505
10 29.598 29.025 31.299 30.188
50 32.735 30.232 36.242 32.214
250 48.784 37.237 66.441 45.199
1000 117.59 65.813 192.53 101.62

Figure 2.11: Mean time to complete the six macrobenchmark phases in seconds for differ-
ent A2M additional latency costs.

We compare six NFS-X protocols, whereX is the name of the back-end protocol im-

plementing the NFS interface. In addition to PBFT and our four A2M-enabled variants,

we also run NFS-S, which uses a single server without replication. Figure 2.10 shows the

average time to complete each phase, out of 10 runs. The standard deviations of all results

are within 4% of the mean. NFS-PBFT is 19.5% slower than NFS-S. NFS-A2M-PBFT-

E (MAC) and NFS-A2M-PBFT-EA (MAC) are 1.8% and 4.1% slower than NFS-PBFT,

respectively, whereas NFS-A2M-PBFT-E (sig) and NFS-A2M-PBFT-EA (sig) are 47.5%

and 118.4% slower than NFS-PBFT, respectively. Overall, NFS-A2M-PBFT-E (MAC) and

NFS-A2M-PBFT-EA (MAC) achieve significantly better fault tolerance at a slight increase

in cost over PBFT.

2.6.3 Effects of A2M Placement

To explore the associated costs of other A2M implementationscenarios, we impose

delays to each A2M request, varying delay duration from 10µs(for the order of magnitude

of typical inter-process communication) to 1ms(for the order of magnitude of RPC on the

same LAN).

Figure 2.11 shows the average time to complete the macrobenchmark, out of 10 runs

when the additional A2M interface latencies are 10, 50, 250,and 1000µs. The mean times

of NFS-A2M-PBFT-E (MAC) are 2.6, 13.5, 68.0, and 307.5% slower than the base NFS-

A2M-PBFT-E (MAC) with 1µs delay; the slowdown corresponds to two delayed A2M

operations and three A2M MAC verifications per BFT operation. For NFS-A2M-PBFT-

52

EA (MAC), the mean times are 6.0, 22.7, 125.0, 552.0% slower than the base NFS-A2M-

PBFT-EA (MAC) with 1µsdelay; the slowdown is greater because of the greater number

of A2M operations invoked during agreement steps.

To amortize the effect of this A2M access latency, we explorea multiple-operation

batching optimization. In A2M-PBFT-E replicas bundle anappend with its subsequent

lookup when they send replies. In A2M-PBFT-EA replicas also bundlean advance with

their subsequentlookup during agreement steps. Furthermore, the client batches A2M

MAC verifications. When additional latencies are 1 and 10µs, this batching effect is neg-

ligible. However, when additional latencies are 50, 250, and 1000µs, A2M-PBFT-E with

batching improves mean times by 7.6, 23.5, and 44.0% respectively and A2M-PBFT-EA

with batching improves mean times by 11.1, 32.0, and 47.2% respectively.

2.7 The Right Abstraction

In the previous sections, we have argued and experimentallydemonstrated that sys-

tems incorporating in their design a small, trusted abstraction, A2M in our examples, can

improve their fault tolerance at certainly tolerable cost.However, an interesting open ques-

tion remains: is A2M theright trusted abstraction, for the types of applications we demon-

strated here – state machines, replicated or centralized? Furthermore, is it the right trusted

abstraction for other reliable applications that are more loosely organized than replicated

state machines?

In systems that strive for linearizability, such as those forming the focus of our work

here, the notion of a common event (i.e., request) history iscentral. Therefore, being able

to commit to and compare histories seems, at a minimum, a required trusted function,

which is exactly what A2M’s log abstraction offers. Arguably, when histories need not be

compared, as is the case when ensuring A2M-PBFT-EA replicascommit to their messages

before sending them, it is sufficient to be able to commit to individual key-value pairs that

are independent of all others, which is a narrower specification than what A2M offers.

However, given that the difference between attested key-value pairs and attested logs is

small (the computation of an incremental digest with every append), we opted to make

53

a trusted log the basic, common abstraction that covers bothreplicated and single-server

systems.

Would a larger trusted abstraction be preferable? Arguably, one could push an entire

replicated state machine protocol, such as PBFT, into the trusted computing base. The

application interface exported – an invocation method, andan execution callback [CL02] –

is certainly simple, and applies to any deterministic application state machine. For example,

one could imagine a trusted implementation of a fail-stop replicated state machine protocol,

such as Paxos [Lam98]. However, a replicated state machine abstraction, even one that is

trusted not to be Byzantine, remains fairly complex to implement; it requires transmission

and reception of network messages and several sets of local variables per request per remote

replica. In contrast, A2M requires no network interactions, and only a circular buffer that

tends to be short; although a hardware implementation of A2Mappears trivial, a hardware

implementation of Paxos might not be.

Beyond linearizable replicated state machines, an interesting question might be what

other, orthogonal, trusted abstractions might make sense under different consistency re-

quirements. For instance, when dispensing session guarantees weaker than linearizability

(such as “read your writes” [PST+97] or fork consistency [LKMS04]), simple trusted log-

ical clocks [Lam78] might be sufficient compared to an abstraction such as A2M.

2.8 Future Work

Although A2M is fruitfully applicable to all shared-state protocols we know of, we hope

to investigate other trusted abstractions, such as Lamportclocks and version vectors, and

their translation to practical system facilities to further reduce the footprint of the trusted

computing base for applications with weaker consistency requirements.

In this thesis, we implemented A2M in a library. We hope to explore other implemen-

tation scenarios such as VMM and trusted hardware. We hope toimplement a Xen A2M

driver for applications running on top of Xen. In addition, we hope to explore the cost of

adding A2M to a commercial TPM-like environment.

54

2.9 Summary

In this chapter, we present a trusted, log-based abstraction called Attested Append-Only

Memory (A2M). Servers utilizing A2M are forced to commit to asingle, monotonically in-

creasing sequence of operations. Since the sequence is externally verifiable, malicious

servers cannot present different sequences to different parties. We discuss several imple-

mentation scenarios of A2M under different threat models. We present A2M-PBFT-E, a

simple variant of Castro and Liskov’s PBFT protocol that canachieve safety with up to

2⌊N−1
3 ⌋ faulty replicas. We also present A2M-PBFT-EA, a more involved variant, that

can preserve safety and liveness with up to⌊N−1
2 ⌋ faulty replicas. Finally, we show how

to achieve linearizability in single-server storage systems such as SUNDR. Our prototype

implementations of A2M-PBFT-E and A2M-PBFT-EA show minor performance overhead;

they are 1.8% and 4.1% slower than the PBFT base case, respectively. There are many tech-

nical details in this chapter, but the bottom line is that A2Mis a practical and eminently

implementable tool for improving the fundamental Byzantine fault tolerance of replicated

and centralized systems alike.

55

Chapter 3

TimeMachine: Long-term Fault

Tolerance

3.1 Overview

In this chapter, we investigate long-term Byzantine fault tolerance in the context of

digital preservation systems. Digital preservation systems aim to maintain authentic copies

of data objects for long periods of time. Such systems face two major challenges:durability

andlong-term authenticity. Durability means that preserved data are not lost. Authenticity

means that a data item retrieved from the system in the futuregiven an item name is the

same as what the original data creator stored into the systemunder that name in the past.

Traditional systems achieve these attributes via directories inside file systems (authen-

ticity), disks for storage (availability), and tapes for backup (durability) under benign fault

assumptions (as illustrated in Figure 3.1). A centralized file server maintains directories

that maintain mappings between human-readable names and i-node numbers, disks store

data and metadata blocks, and tapes are used for scheduled backups. However, recent

trends are that disks replace tapes for maintaining durability [GCB+02, emc] since disks

are easier to manage, are readily accessible and highly available, and are easier to cope

with failures through automatic replication.

In recent years, researchers have made great progress in distributed storage systems

that operate under Byzantine fault assumptions. Self-verifying bitstore systems such as

56

C

Client

Disk

Tape

File

server

Figure 3.1: Traditional storage system architecture. Filesystem directories are used for
authenticity and disks and tapes are used for durability.

OceanStore [KBC+00], PAST [RD01], and Glacier [HMD05] have addressed durability

comprehensively, but authenticity has less satisfying solution. They maintainself-verifying

data, for which the name of a data item is anauthenticatorfor that data item, which can be

used to verify the item itself (e.g., a cryptographic hash).If there is at least one correct copy

throughout the lifetime of the systems, durability is maintained. Often the systems organize

data objects of a publisher as a Merkle tree [Mer87] structure where the root block of the

tree is signed by the publisher’s private key; the tree structure is named by the publisher’s

public key. Users who can remember such a name (a long string of otherwise meaningless

digits) can ascertain long-term authenticity of the corresponding content fetched from a

preservation service. This solution does not, however, deal with usage models in which a

user decades down the road wishes to authenticate the contents of a preserved document

or a publisher’s collection of documents by a human-readable name (e.g., “State Budget

Fiscal Year 2003”, “UCB EECS Snapshot 2002-02-07”). Unfortunately, existing systems

provide no solution to preserving the mapping between a human readable name and an

authenticator for a data item or a collection of data items. The nature of such fallback

authentication information is typically left out of the scope of proposed designs, though in

57

R1

R2

R3

R4

Naming

service

C

Client

Self-verifying bitstore

2
1

3

4

Figure 3.2: Architecture of our data storage, which separates authenticity management
from durability management.

its turn it requires long-term preservation as well withoutthe benefit of a further fallback.

In this chapter, we take an approach to separating authenticity management from dura-

bility management (Figure 3.2). Typical data objects (e.g., documents, audio/video files,

and a collection of files) are significantly larger than metadata objects. Thus, in our ar-

chitecture data objects are maintained by self-verifying bitstore to reduce replication costs.

For authenticity we present a separate trustworthy naming service that preserves mappings

between human-readable names and authenticators, which are not self-verifying; thus, we

fill the important missing piece of previous archival storage systems.

Before presenting our naming service, we discuss maintaining replicas in a self-

verifying bitstore for durability in Section 3.3. We use a standard replica maintenance

process that maintains a certain number of replicas by repairing lost replicas. A key ques-

tion is how to set this replication threshold. We model the process as a continuous time

Markov chain and analyze the process to compute an appropriate replication threshold in

an operation environment.

Next, we move to our main contribution of this chapter. We close the gap between

human readable names and authenticators, in the form of self-certified data names or

other cryptographic constructs, by constructing a Byzantine-fault tolerant (BFT) name-

to-authenticator mapping service. We argue that existing Byzantine-fault models – which

58

require a bounded number of faulty nodes atall times – and correctness properties – which

guarantee correct service as long as fault bounds areneverviolated – are inappropriate in

the long-term (Section 3.4). Instead, long-term services such as our preserved name service

should offer a stronger property calledHealthy-Write-Implies-Correct-Read(HWICR) we

propose; they should guarantee the correct preservation ofdata added while the system was

“healthy” (e.g., fault thresholds were not violated), despite subsequent periods when fault

thresholds were violated; a system that goes through a single “unhealthy” period should

not be damned to failure forever.

Motivated by the need for a preserved name service and the impracticality of existing

BFT approaches in a long-term context, we make three contributions in this domain. First,

we advocate atiered Byzantine-fault model, in which bug exploits and similar causes of

faulty behavior areunbounded, whereas higher-trust components, such as trusted hardware

that fails when an entire corporation fails, are held under atighter fault bound. We ar-

gue that the tiered Byzantine-fault model maps well to reality and accommodates well the

implications of long-term reliability for data preservation.

Second, we advocate the convergence of proactive recovery and trusted hardware for

preservation applications that operate in the tiered Byzantine-fault model. We borrow from

proactive recovery systems the distinction betweenservice phases, which might suffer bug-

related faults, andproactive recovery phases, during which the damage done by bug ex-

ploits is flushed while smaller, easier-to-verify trusted functionality audits and cleans up

system state. From trusted hardware, we borrow the notion ofshort-term, tamper-resistant

functionality for digital signing and small amounts of storage, which we use to justify the

bounded-fault tier of our fault model.

Third, in Section 3.5, we outline the use of these facilitiesin the design ofTimeMachine

(TM), a preserved name service that provides the HWICR property. TM relies on a simple,

affordable, and easy-to-build extension to commodity trusted hardware, which allows the

service to store a short but sensitive summary of its state where transient faults cannot cor-

rupt it. TM operates in alternating phases of service and proactive recovery. In contrast to

traditional proactive recovery, TM places operations thatchange its state within the recov-

ery phase, leaving for its vulnerable service phases only operations that read existing state

and whose correctness can be certified using the trusted hardware. TM provides correct

59

results regardless of service-phase faults and as long as nomore than a third of its trusted

hardware devices fail within a single recovery phase; it also guarantees durability if at least

one server is non-faulty between consecutive service phases.

Thankfully, preservation applications, where state change can be slow as long as au-

thenticity is guaranteed, fit this structure well. Other applications where state changes can

be batched and committed at a relatively low frequency, suchas those that tolerate weak

consistency for instance, would also be able to benefit from our contributions. However,

not all applications can fit this structure, especially those for which state changes need

immediate, interactive confirmation such as file systems.

We evaluate our prototype TM implementation to validate ourdesign in Section 3.7,

discuss future work in Section 3.8, and summarize in Section3.9.

3.2 Separating Authenticity from Durability

Self-verifying bitstore systems such as OceanStore [KBC+00], PAST [RD01], and

Glacier [HMD05] work well if a client knows the name (e.g., SHA-256 hash) of a data

object or the name of a collection of data objects (e.g., publisher’s public key). But how

will people find out the name, which is an authenticator, in the first place? As an analogy,

in file systems, a semantic-free inode number can be used to retrieve a file, but it is not

reasonable to expect people to remember the inode number, thus a file name is used to

retrieve the inode number and then to retrieve the file. This becomes more important in

preservation systems. It is even more challenging for people to remember authenticators

for long periods of time, but human-readable names (especially that follow well-defined

naming conventions) are easy to remember. Therefore, we argue that we must maintain in-

formation that binds human-readable names to data objects (or collections of data objects).

A naive approach is to store mappings between human-readable names and data objects

(or collections of data objects). However, since these mappings are not self-verifying, we

have to rely on voting to ensure correctness. A quorum of replicas must be maintained

correctly to return correct data objects to client requests. Compared to a self-verifying

data store, this approach is inefficient since data objects are typically large and we need

60

to replicate more data objects to mask the same number of faults. In particular, to tolerate

f faults, a self-verifying data object requiresf + 1 replicas, but a non-self-verifying data

object requires 3f +1 replicas if we use Byzantine-fault tolerant state machinereplication.

We take an approach to separating authenticity management from data object durability

management. We maintain mappings between human-readable names and authenticators

in a naming service for authenticity and store data objects in a self-verifying bitstore. The

naming service maintains mappings, each of which is small, using a more costly algorithm

to ensure correctness. However, the bitstore maintains self-verifying data objects, which

can be organized as a Merkle tree structure. In comparison, to tolerate f faults while

maintaining a data object, this approach requiresf + 1 data object replicas and 3f + 1

non-self-verifying metadata object (mapping) replicas, which is cost-effective.

Figure 3.2 shows our storage architecture that separates a naming service for data au-

thenticity from a self-verifying bitstore for data durability. In the architecture, a client

retrieves data by following procedures: 1) a client sends a query message with a human-

readable name to the naming service, 2) the naming service returns an authenticator (e.g.,

SHA-256 hash), 3) the client sends a fetch message with this authenticator to a server that

stores relevant data, and 4) the server returns the data to the client. We discuss maintaining

replicas in a self-verifying bitstore focusing on durability in Section 3.3 and discuss our

naming service from Section 3.4.

3.3 Maintaining Self-verifying Replicas for Durability

We study a standard replication algorithm that reacts to replica failures. The algorithm

monitors how many replicas are available and it creates new replica(s) if the number of

available replicas is below the replication threshold (rL). The challenge here is to deter-

mine the correct replication threshold that is suitable fora given operating environment.

Another challenge is to efficiently maintain replicas without spending bandwidth unnec-

essarily. This is hard since it is not possible to distinguish transient failures (e.g., node

reboots) with permanent failures (e.g., disk failures). Techniques to mitigate the effects of

transient failures are discussed in Carbonite [CDH+06]. Here we focus on the first chal-

61

lenge.

We consider the problem of providing durability for a storage system composed of a

large number of nodes, each contributing disk space. The system stores a large number of

independent pieces of data. Each piece of data is immutable and self-verifying. While parts

of the system will suffer temporary failures, such as network partitions or power failures,

the focus of this section is on failures that result in permanent loss of data.

3.3.1 Challenges to Durability

It is useful to view permanent disk and node failures as having an average rate and a

degree of burstiness. To provide high durability, a system must be able to cope with both.

In order to handle some average rate of failure, a high-durability system must have the

ability to create new replicas of objects faster than replicas are destroyed. Whether the

system can do so depends on the per-node network access link speed, the number of nodes

(and hence access links) that help perform each repair, and the amount of data stored on

each failed node. When a noden fails, the other nodes holding replicas of the objects

stored onn must generate replacements: objects will remain durable ifthere is sufficient

bandwidth available on average for the lost replicas to be recreated. For example, in a

symmetric system each node must have sufficient bandwidth tocopy the equivalent of all

data it stores to other nodes during its lifetime.

If nodes are unable to keep pace with the average failure rate, no replication policy can

prevent objects from being lost. These systems areinfeasible. If the system is infeasible, it

will eventually “adapt” to the failure rate by discarding objects until it becomes feasible to

store the remaining amount of data. A system designer may nothave control over access

link speeds and the amount of data to be stored; fortunately,choice of object placement can

improve the speed that a system can create new replicas.

If the creation rate is only slightly above the average failure rate, then a burst of failures

may destroy all of an object’s replicas before a new replica can be made; a subsequent lull in

failures below the average rate will not help replace replicas if no replicas remain. For our

purposes, these failures aresimultaneous: they occur closer together in time than the time

required to create new replicas of the data that was stored onthe failed disk. Simultaneous

62

0 1 2 3

13

12 23

3221

30

31

10

Figure 3.3: A continuous time Markov model for the process ofreplica failure and repair
for a system that maintains three replicas (rL = 3). Numbered states correspond to the
number of replicas of each object that are durable. Transitions to the left mean replicas are
lost; transitions to the right mean replicas are created.

failures pose a constraint tighter than just meeting the average failure rate: every object

must have more replicas than the largest expected burst of failures. We study systems that

aim to maintain a target number of replicas in order to survive bursts of failure; we call this

targetrL.

Higher values ofrL donotallow the system to survive a higher average failure rate. For

examples, if failures were to arrive at fixed intervals, theneitherrL = 2 would always be

sufficient, or no amount of replication would ensure durability. If rL = 2 is sufficient, there

will always be time to create a new replica of the objects on the most recently failed disk

before their remaining replicas fail. If creating new replicas takes longer than the average

time between failures, no fixed replication level will make the system feasible; setting a

replication level higher than two would only increase the number of bytes each node must

copy in response to failures, which is already infeasible atrL = 2.

3.3.2 Creation versus Failure Rate

We model the replica maintenance process as a continuous time Markov chain (CTMC).

Figure 3.3 shows this model for the case whererL = 3. An object is in statei wheni disks

63

0 1 2 3

f f f

Figure 3.4: A continuous time Markov model for the process ofreplica failure and repair
for a system that maintains three replicas (rL = 3). Numbered states correspond to the
number of replicas of each object that are durable. Transitions to the left occur at the rate
at which replicas are lost; right-moving transitions happen at the replica creation rate.

hold a replica of the object. There are thusrL +1 possible states, as we start withrL replicas

and only create new replicas in response to failures. From a given statei, there is a transition

to statej with rateµi j corresponding to repair, except for state 0 which corresponds to loss

of durability and staterL which does not need repair. The actual rateµi j depends on how

bandwidth is allocated to repair and may change depending onthe replication level of an

object. There is a transition to the statej with rateλi j corresponding to replica failure.

Under the assumption that independent exponential inter-failure and inter-repair times,

which is reasonable in a PlanetLab-like environment, we cansimply use a birth-death pro-

cess (Figure 3.4). From a given statei, there is a transition to statei + 1 with rateµi

corresponding to repair. There is a transition to the next lower statei − 1 with rate iλ f

because each of thei nodes holding an existing replica might fail.

This model can be analyzed numerically to shed light on the impact ofrL on the proba-

bility of data loss; we will show this in Section 3.3.3. However, to gain some intuition about

the relationship between creation and failure rates and theimpact this has on the number of

replicas that can be supported, we consider a simplificationof Figure 3.4 that uses a fixed

µ but repairs constantly, even allowing for transitions out of state 0. While these changes

make the model less realistic, they turn the model into an M/M/∞ queue [Kle75] where

the “arrival rate” is the repair rate and the “service rate” is the per-replica failure rate. The

“number of busy servers” is the number of replicas: the more replicas an object has, the

more probable it is that one of them will fail.

64

This simplification allows us to estimate the equilibrium number of replicas: it isµ/λ f .

Givenµ andλ f , a system cannot expect to support more than this number of replicas. For

example, if the system must handle coincidental bursts of five failures, it must be able to

support at least six replicas and hence the replica creationrate must be at least 6 times

higher than the average replica failure rate. We will refer to µ/λ f asθ. Choices forrL are

effectively limited byθ. It is not the case that durability increases continuously with rL;

rather, when usingrL > θ, the system provides the best durability it can, given its resource

constraints. Higher values ofθ decrease the time it takes to repair an object, and thus

the ‘window of vulnerability’ during which additional failures can cause the object to be

destroyed.

To get an idea of a real-world value ofθ, we estimateµandλ f from the historical failure

record for disks on PlanetLab [CDH+06]. The average disk failure inter-arrival time for the

entire test bed is 39.85 hours. On average, there were 490 nodes in the system, so we can

estimate the mean time between failures for a single disk as 490·39.85 hours or 2.23 years.

This translates toλ f ≈ 0.439 disk failures per year.

The replica creation rateµ depends on the achievable network throughput per node, as

well as the amount of data that each node has to store (including replication). PlanetLab

currently limits the available network bandwidth to 150 KB/s per node, and if we assume

that the system stores 500 GB of unique data per node withrL = 3 replicas each, then

each of the 490 nodes stores 1.5 TB. This means that one node’sdata can be recreated in

121 days, or approximately three times per year. This yieldsµ≈ 3 disk copies per year.

In a system with these characteristics, we can estimateθ = µ/λ f ≈ 6.85, though the

actual value is likely to be lower. Note that this ratio represents the equilibrium number

of disksworth of data that can be supported; if a disk is lost, all replicas on that disk are

lost. When viewed in terms of disk failures and copies,θ depends on the value ofrL: asrL

increases, the total amount of data stored per disk (assuming available capacity) increases

proportionally and reducesµ. If λ f = µ, the system can in fact maintainrL replicas of each

object.

To show the impact ofθ, we ran an experiment with the synthetic trace (i.e., with

632 nodes, a failure rate ofλ f = 1 per year and a storage load of 1 TB), varying the

available bandwidth per node. In this case, 100 B/s corresponds toθ = 1.81/rL. Figure 3.5

65

 0

 2

 4

 6

 8

 10

 12

 200 400 600 800 1000 1200

A
v
g
 r

e
p
lic

a
s
 p

e
r

o
b
je

c
t
a
t
e
n
d
 o

f
tr

a
c
e

Bandwith per node (bytes/s)

rL=2
rL=4
rL=6
rL=8

Figure 3.5: Average number of replicas per object at the end of a two-year synthetic trace
for varying values ofθ, which varies with bandwidth per node (on thex-axis) and total data
stored (rL). Whereθ < 1, the system cannot maintain the full replication level; increasing
rL further does not have any effect.

shows that, asθ drops below one, the system can no longer maintain full replication and

starts operating in a ‘best effort’ mode, where higher values of rL do not give any benefit.

The exception is if some of the initialrL replicas survive through the entire trace, which

explains the small differences on the left side of the graph.

3.3.3 ChoosingrL

A system designer must choose an appropriate value ofrL to meet a target level of

durability. That is, for a given deployment environment,rL must be high enough so that a

burst ofrL failures is sufficiently rare.

One approach is to setrL to one more than the maximum burst of simultaneous failures

in a trace of a real system. For example, Figure 3.6 shows the burstiness of permanent

failures in the PlanetLab trace by counting the number of times that a given number of

failures occurs in disjoint 24 hour and 72 hour periods. If the size of a failure burst exceeds

the number of replicas, some objects may be lost. From this, one might conclude that 12

66

0 1 2 3 4 5 6 7 8 9 10 11 12

Crashes in single period

0

20

40

60

N
um

be
r

of
 o

cc
ur

re
nc

es

24 Hour
72 Hour

Figure 3.6: Frequency of “simultaneous” failures in the PlanetLab trace. These counts are
derived from breaking the trace into non-overlapping 24 and72 hour periods and noting
the number of permanent failures that occur in each period. If there arex replicas of an
object, there werey chances in the trace for the object to be lost; this would happen if the
remaining replicas were not able to respond quickly enough to create new replicas of the
object.

replicas are needed to maintain the desired durability. This value would likely provide

durability but at a high cost. If a lower value ofrL would suffice, the bandwidth spent

maintaining the extra replicas would be wasted.

There are several factors to consider in choosingrL to provide a certain level of du-

rability. First, even if failures are independent, there isa non-zero (though small) probabil-

ity for every burst size up to the total number of nodes. Second, a burst may arrive while

there are fewer thanrL replicas. One could conclude from these properties that thehighest

possible value ofrL is desirable. On the other hand, the simultaneous failure ofeven a

large fraction of nodes may not destroy any objects, depending on how the system places

replicas. Also, the workload may change over time, affecting µ and thusθ.

The continuous time Markov model described in Figure 3.4 reflects the distributions of

both burst size and object replication level. The effect of these distributions is significant.

An analysis of the governing differential equations can be used to derive the probability

that an object will be at a given replication level after a given amount of time. In particular,

we can determine the probability that the chain is in state 0,corresponding to a loss of

67

2 3 4 5 6 7 8

rL

0.80

0.85

0.90

0.95

1.00

P
r[

ob
je

ct
 d

ur
ab

ili
ty

]

5 GB
50 GB
500 GB

Figure 3.7: Analytic prediction for object durability after four years on PlanetLab. The
x-axis shows the initial number of replicas for each object: as the number of replicas is
increased, object durability also increases. Each curve plots a different per-node storage
load; as load increases, it takes longer to copy objects after a failure and it is more likely
that objects will be lost due to simultaneous failures.

durability.

We show the results of such an analysis in Figure 3.7. To explore different workloads,

we consider different amounts of data per node. The graph shows the probability that an

object will survive after four years as a function ofrL and data stored per node (which

affects the repair rate and henceθ).

As rL increases, the system can tolerate more simultaneous failures and objects are

more likely to survive. The probability of object loss atrL = 1 corresponds to using no

replication. This value is the same for all curves since it depends only on the lifetime of a

disk; no new replicas can be created once the only replica of the object is lost. To store 50

GB durably, the system must use anrL of at least 3. As the total amount of data increases,

the rL required to attain a given survival probability also increases. Experiments confirm

that data is lost on the PlanetLab trace only when maintaining fewer than three replicas.

68

time

a) Read 1

Read 2

Read 3

b) Read 1

Read 2

Read 3

Write 1 Write 2 Write 3

Figure 3.8: Behavior of preservation system under faults. Thick gray portion of timeline
indicates period during which fault assumptions are violated. Three ovals indicate additions
to the state of the system (new name/value mappings). Horizontal boxes indicate how
state additions are seen by client reads – white for correctly/black for incorrectly. Case
(a). Typical BFT behavior: once fault bound is violated, no correctness is guaranteed
for retrieval of bindings addedbefore, during, or afterthe violation. Case (b). System
with HWICR property: Additions that occurbeforeor after the violation can be correctly
observed after the violation is repaired. During the violation period, system guarantees not
to return incorrect value for read 1, but may lose availability, i.e., may not return a value
at all (shaded box). Addition 2 is lost in both cases, since itoccurs during the unhealthy
period.

3.4 Towards a Long-term Fault Tolerant Naming Service

In the previous section, we discuss how to maintain replicasfor durability in a self-

verifying bitstore. Next, we delve into a naming service forlong-term data authenticity.

We first introduce a new service property and a new, more realistic, Byzantine fault model

that are suitable for long-term services.

3.4.1 New Service Property

A Byzantine-faulty node can behave arbitrarily, which includes crashing, or even fol-

lowing a concerted plan with other faulty nodes towards an unknown malicious goal. Typ-

ical Byzantine-fault models allow the network to drop, duplicate, and reorder messages,

though usually it is assumed that enough retransmissions eventually deliver a message to

69

its destination within some unknown time bound. These models require that the number of

faulty nodes does not exceed a hard upper bound, such as a third of the entire population of

nodes. This has been justified with the reasoning that in a reliable replicated service, partic-

ipating nodes are well enough managed, secured, and maintained that they can mostly avoid

network-triggered exploits of unpatched bugs and the physical manipulation of unfettered

malicious humans. In such a setting, it appears reasonable to provide the usual correctness

property: as long as the system ishealthy– that is, no more thanf out of 3f +1 nodes are

faulty at any point in time – the system will offer its correctness guarantees [ZSR02,CL02].

Unfortunately, in long-running systems, uninterrupted good health is tough to guaran-

tee. First, malicious attacks such as virus and worm infections are increasingly hard to

stop, even in well managed enterprise settings; the fact that most nodes in a replicated sys-

tem will be running one or perhaps two distinct implementations and operating systems,

prone to the same exploits, does not help the situation either. Furthermore, after decades of

continual use, human errors, organizational slip-ups, andother unlikely events are bound

to crop up [BSR+06], causing bound violations to occur. Even if one such slipinto anun-

healthy periodoccurs, the correctness of typical BFT systems can no longerbe guaranteed,

not just for the duration of the violation, but also forever into the future (Figure 3.8(a)). For

example, in a system such as Castro and Liskov’s Practical BFT (PBFT) [CL02], once the

fault bound is violated, faulty nodes can cause non-faulty nodes to execute distinct, diver-

gent sequences of operations on their local states, from which they cannot recover without

human intervention [LM07].

In this chapter, we introduce a stronger guarantee on BFT services called Healthy-

Write-Implies-Correct-Read (HWICR) (see Figure 3.8(b)).HWICR requires that the sys-

tem can be viewed as mapping names to values; a name is uniquely mapped to a value.

Definition 1. A system provides HWICR iff for every (name, value) mapping stored during

a healthy period, the system is guaranteed to return the samevalue when queried with its

name at all future times (or a notice that the value is unavailable), in spite of intervening

unhealthy periods.

A system provides a stronger HWICR property iff it provides HWICR, and for a (name,

value) mapping stored during an unhealthy period, the system is guaranteed not to return

70

fa
ul

t b
ou

nd

N−1
3

Regular
operations

Regular
operations

Regular
operations

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

time

N−1

Trusted operations

Figure 3.9: Tiered Byzantine-fault model.

an incorrect value when queried with its name at all future times. This is the case when a

client’s write request is authenticated by its signature. Since faulty replicas in the system

cannot forge the signature of the client even during an unhealthy period, forged writes will

not be accepted by the system.

HWICR implies two sub-properties, integrity and durability. Integrity means the system

never returns an incorrect value when queried with its name and cannot convince clients

that a (name, value) mapping does not exist once it is correctly stored. Durability means

the system does not lose a (name, value) mapping once it is correctly stored.

3.4.2 The Tiered Byzantine-Fault Model

To achieve HWICR in long-running services, we propose a new fault model, which we

call a tiered Byzantine fault model. We assume two types of operations,regularandtrusted

operation, with different fault bounds (Figure 3.9). During regular operation periods, there

are at mostN−1 faulty replicas out ofN total replicas, i.e., there is at least one correct

replica during regular operation periods, but no more than⌊N−1
3 ⌋(= f) replicas are faulty

during any trusted operation period. As we will see, these assumptions are necessary to

71

achieve the HWICR property. Integrity requires only the fault assumption of the trusted

operation period, but durability requires both fault assumptions. In practice, we expect

most of periods are healthy but there are occasional unhealthy periods, thus most of writes

are accepted during healthy periods.

There are additional assumptions we make: 1) there is at least one correct replica dur-

ing any two consecutive regular operation periods across the in-between trusted operation

period, and 2) the entire immutable state of a replica can be checked locally and can be

fetched from another replica if necessary during a regular operation period.

3.4.3 Two-phase Approach

The tiered Byzantine fault model can be justified by our approach that uses proactive

recovery and a small trusted primitive that allows modifications only in trusted operations

phases. We take a two-phase approach where service and proactive recovery phases alter-

nate (Figure 3.10). A service phase operates under the regular operation fault bound, but a

proactive recovery phase operates under the trusted operation fault bound.

We use a small trusted primitive that stores a tiny piece of states for the root of trust.

This primitive is simple, easy to implement, and easy to formally verify; thus, it is fault-

free. However, applications using this primitive can be faulty, and may install incorrect

states. The states are used both in service and proactive recovery phases, but the service

phase only reads the states and does not modify them, thus it cannot introduce faults into

the states stored in the primitive even though the application that uses it is faulty. Moreover,

before modifying the states, the proactive recovery phase reboots and reloads from a clean,

read-only medium in order to make sure to avoid accumulated faults. Therefore, the states

of the primitive can have the tighter trusted operation fault bound.

This approach implies an operation model different from traditional models. For fault

tolerance, we trade off availability by using proactive recovery, and trade off interactivity

of writes that involve modifications to the states of the primitive by allowing such modifi-

cations only during proactive recovery phases.

72

Service

Node 1

Node 2

Node N

Proactive Recovery

Figure 3.10: Operation of TM. Each replica alternates between a service phase and a proac-
tive recovery phase.

3.5 TimeMachine

TimeMachine (TM) is our proposed solution to long-term authenticity in the tiered

Byzantine-fault model. We present a system with a minimalAdd/Get interface to focus

on achieving HWICR under the tiered Byzantine fault model. Clients can invoke TM’s

Add(name,value) interface method to store and preserve a particular name-value pair, if no

such name is already being preserved. TheGet(name) method obtains any stored name-

value pair by that name, or indicates none exists. In the context of digital preservation, a

user mayAdd the name of a persistent Uniform Resource Locator (URL) as the name and

the hash corresponding to the content at the URL as the value.In the future, another user

can look up the content hash for the particular URL and use it to verify any result obtained

via a durable bitstore such as OceanStore or Glacier. Note that there is no way to remove a

name-value pair from the system.

TM is a replicated service running on replicasR= {1, . . . ,N}. Clients communicate

with TM through a public network. Each replica alternates between two modes of oper-

ation (Figure 3.10): during most of the time, it operates in its service phase, servingGet

requests from clients, bufferingAdd requests from clients, and continuously running a stor-

age audit and repair background process; periodically (sayevery hour or every day), the

replica reboots securely into its proactive recovery phase, during which it is only reach-

able by other replicas in the system, and serves bufferedAdd requests. TM is intended for

73

a well provisioned, low-churn node infrastructure. Since membership churn is low, the

membership of nodes can be managed manually.

3.5.1 Components

TM depends on the following building blocks:

Cryptography: We assume standard cryptographic primitives for symmetricand asym-

metric signing, and for hashing. We also assume that in the short-term (say on the order of

a calendar year), breaking such primitives through brute-force attacks is intractable for the

good and the bad guys alike. Therefore, the adversary cannotproduce collisions for hash

functions or forge previously unseen signatures for private signing keys he does not pos-

sess. For brevity, we do not discuss more efficient authentication primitives such as MACs.

〈M〉i denotes a messageM signed by principali. Replicai’s trusted hardware device is

principal i′.

PBFT: The Practical BFT protocol [CL02] allows the implementation of replicated

state machines under bounded Byzantine faults. Informally, it offers a synchronous

Invoke(request) method, that returns aresponse. A client uses this method to submit ap-

plication requests to a replicated state machine, and eventually receives replies containing

the result of its request. The protocol guarantees that, as long as no more than a third of all

replicas in the system are faulty, clients will receive replies to their requests that are equiv-

alent to interacting with a single, correct, sequential server atomically executing requests

on the application state (linearizability).

Furthermore, the protocol offers replicas anExecute(request) callback, allowing the

application code that processes client requests to be executed. The system guarantees that

the same client requests will be passed to theExecute method of every non-faulty replica

in the same order.

Trusted Hardware: TM relies on the existence of a trusted hardware device on every

replica in the system. This device is an extension of a standard TPM module, which enables

trustworthy attestations about the system state containedwithin the module. We describe

below what module-local state is required by TM.

To help conduct periodic recovery operations, the hardwaredevice contains a time

74

source (this can be a regular, monotonic, crystal-based clock source with an upper bound

on drift, or an external trusted time source received by the device). A hardware watchdog,

also contained within, uses this time source to trigger proactive recovery periodically, by

causing the host to reboot from read-only media. This hardware watchdog has amodebit

associated with it. This bit is used to indicate that the system is in proactive recovery mode,

and cannot be set in any fashion other than by triggering the watchdog. The mode bit can,

however, be reset by the operating system. This is sometimescalled asticky register.

Finally, we include in the trusted hardware device an extension for Secure Append-

Infrequently Memory(SAIM). A SAIM implements a sequenced queue: a queue of a small

number (e.g., 10−20) of fixed-length (e.g., 32-64 bytes), persistent entry slots. The write

interface to a SAIM is that of a FIFO queue: anAppend(v) adds valuev to the front of

the queue, causing the oldest value to be dropped off the backof the queue. However,

appends to a SAIM arerate-limited: if the last append occurred at timet1, no subsequent

append can succeed before timet2 > t1 + T , whereT is a fixed configuration parameter.

The read interface of SAIM is not rate-limited, and allows the attested (fresh) retrieval of

any slot (indexed by position in the queue); aLookup(l ,z), wherel is the position in the

queue requested andz is a nonce used for freshness (typically provided by clients), returns

〈l ,vl ,z, t,m〉i′, wherevl is the value currently occupying thel -th slot of the SAIM,t is the

internal time in the device,m is the current mode bit, andi′ is the hardware device principal.

Authenticated Search Tree (AST):An AST [BLL00] is an incremental mechanism for

maintaining cryptographic digests over sorted data sets (such as name-value pairs sorted by

name). An AST extends the traditional Merkle tree concept for search trees. Every node

contains a name-value pair and an authentication label. Thelabel for an AST node is

computed by hashing together its content and the labels of all child nodes. A correct binary

AST guarantees that data items from the collection appear inthe left subtree of a node if

and only if they precede its own content in the search order; similarly for the right subtree.

The label of the tree root is a cryptographic digest for the entire contents of the tree: it is

collision-resistant, which means it is intractable to find two different data setsyielding the

same AST digest and, as a result, it can serve as acommitmenton the contents of the AST.

As with Merkle trees, a succinctproof can be generated showing that a particular name-

value pair appears within an AST with a root label. Unlike Merkle trees, an AST can

75

Buffer

���
���
���
���

���
���
���
���

AST

Untrusted storageSAIM

s || r

Figure 3.11: A TM node contains a SAIM, a buffer to hold Add requests temporarily, and
an AST that maintains committed bindings. The arrows indicate self-verifying pointers,
which mean a hash value of a starting point is the hash of a pointed block. SAIM stores the
AST root digest and a sequence number.

also prove succinctly that a name-value pairdoes not appearwithin it, by showing the

contiguous appearance of the two keys immediately preceding and following that name in

the sort order. Proofs have logarithmic length in the size ofthe name-value pairs contained

within a tree.

3.5.2 TM Design

Each TM replica maintains an AST in regular (untrusted) storage containing its collec-

tion of name-value pairs sorted by name, a buffer of receivedbut as yet uncommitted client

requests for adding new name-value pairs also in untrusted storage, and a single-slot SAIM

within its trusted hardware device storing values of the form 〈s, r〉, wheres is the latest AST

digest andr is an integer sequence number (Figure 3.11). Since we only use a single-slot

SAIM, all attestations containl = 0 as the queue position. Though in this instantiation of

TM we use a single-slot SAIM for simplicity, we sketch extensions that take advantage of

multiple slots later. Finally, replicas know each other’s public keys and hardware device

public keys.

In the trusted hardware device, a watchdog timer is set toD and the SAIM inter-append

76

delay is set toT > D , to ensure that a new value cannot be appended into SAIM untilafter

the watchdog’s next expiration, bringing the replica into its next proactive recovery phase.

Service Phase

When a client c invokes Add(n,v) to insert a binding between namen and

value v, the TM client proxy code multicasts〈ADD,n,v,z,c〉c to R, where z is a

random nonce used for freshness. The client waits asynchronously for replies in

〈REPLYADD, i, pi,〈0,〈si, r i〉,z, t,m〉i′〉 messages containing a 0-th slot SAIMLookup attes-

tation, wherei is a replica identifier andpi is an AST membership proof as described

above. A reply is valid ifpi verifies the existence of the name-value pair(n,v) within an

AST with digestsi , and the attestation is correctly signed by the sender’s SAIM. As soon

as a client proxy obtainsf +1 valid matching replies from distinct replicas, all confirming

the addition of the same name-value pair, it accepts the request ascompleteand notifies the

application.

Handling ofGET requests by client proxies is similar. The proxy multicasts〈GET,n,z,c〉c

messages toR and waits for f + 1 〈REPLYGET, i,v, pi,〈0,〈si, r i〉,z, t,m〉i′〉 valid messages

confirming that(n,v) is within the AST described in each reply, or that(n,v) does not exist

in the AST described in each reply.

A replica handles aGET by looking it up by name in its local AST and producing an

existence/non-existence proof, accompanied by its latestSAIM, signed by the trusted hard-

ware device. During the service phase, a replica only buffersADDs, which it handles during

the proactive recovery phase. Note, however, that the replica replies toADDs for already as-

signed names immediately, returning the existing mapping.During the next service phase,

the replica responds to newly insertedADDs with aREPLYADD message. Replies toADDs

for previously unassigned names take time on the order of thelength of the service phase.

Background Audit and Repair: In addition to a service process, TM replicas run a

continuous audit and repair process in the background, ensuring that all reachable AST

nodes from the AST root are correctly stored. This process isrecursive, starting with the

root, and performing an in-order traversal of the tree, during which a tree node is fetched

from storage if still available and verified against the hashcontained in the label of its

77

parent node.

For all missing AST nodes (identified by the name of the storedname-value pair),

a replica multicasts a〈REQASTNODE, i,n, r〉i request toR, where i is the replica iden-

tifier and r is the latest known SAIM sequence number, waiting for at least one

〈RESPASTNODE,n,ASTNode〉 response. Note that the response need not be signed, since

the replica can ensure its validity thanks to the recursive hashes of the AST.

Proactive Recovery Phase

When the trusted watchdog timer expires, the system begins areboot from a read-

only medium of its proactive recovery software. The main responsibility of the proactive

recovery phase is to commit a new set of additions into the main service state. At the end

of the proactive recovery phase, the system ensures that at least 2f + 1 replicas store the

latest AST digest in SAIM.

Are We All Proactively Recovering?: All messages exchanged between replicas con-

tain a fresh attestation fetched from the SAIM after the current proactive recovery phase

began: the mode bit shown must be on, and the timestamp must berecent. Messages un-

accompanied by this attestation are invalid and dropped. This is to ensure that proactive

recovery operations, including invocations of PBFT, leader elections, etc., are performed

by nodes who have rebooted into their proactive recovery phase. Therefore, any faults

caused by such nodes are due to proactive recovery faults – which our tiered fault model

assumes bounded by⌊N−1
3 ⌋ – rather than service phase faults, which are bounded byN−1

in our fault model.

Commit: At a high level, each replica packages up its pendingADDs (denoted byA)

and the latest stable checkpoint (denoted byCs) it knows (2f + 1 matching〈si, r i〉 pairs)

into a 〈BATCH,Cs,A〉i message, filtering out thoseADDs for already assigned names, and

multicasts theBATCH to R. Once aleader replica (defined below) collects 2f + 1 such

messages including its own, it packages them into aPROPOSEmessage, which it submits to

PBFT’sInvoke for linearization. During theExecute callback of PBFT, a replica ensures

thePROPOSEd set contains at least 2f +1 batches from distinct replicas. If so, it picks the

latest stable checkpoint: an AST digest in 2f +1 matching SAIM attestations, and allADDs

78

contained in at least one batch (authenticated by clients).It orders theADDs according to a

consistent order (e.g., byh(c‖n‖v)), and processes each in that order: each name-value pair

is inserted into the latest stable AST, unless a mapping for the same name already exists.

The replica computes the new AST digests∗i for sequence numberr∗i (> r i), appends it into

its SAIM, and multicasts toR a 〈PRCHECKPOINT,〈0,〈s∗i , r∗i 〉,0, t,m〉i′〉 message. When a

replica receives 2f +1 matchingPRCHECKPOINT messages, it stores them as a new stable

checkpoint certificate. If a replica’s old AST is not the latest one, it will have to perform

state transfer, as described below.

When the replica obtains a new stable checkpoint certificate, it resets its watchdog timer

to D , and exits into its service phase by opening up communication with nodes other than

replicas and resetting the phase-switch variable. In the beginning of the new service phase,

the Adds remaining in the buffer are handled as described in the service phase, via the

transmission of aREPLYADD message.

Leader Election: During each proactive recovery phase, the leader describedabove

is the replicai ≡ r modN, wherer is the current sequence number. A leader may mis-

behave, either by delaying the transmission of aPROPOSEmessage, or by transmitting an

incorrect such message. The latter case can be detected during theExecute PBFT callback,

as described above. A non-faulty replica can detect the former case by setting a timer as

soon as it multicasts itsBATCH message, which it uneventfully stops when it encounters its

ownBATCH as one of the batches included in a proposal during theExecute callback; if the

timer expires, then the replica also initiates a leader change.

A leader change is similar to a batch commitment as above: every replica that wishes

to initiate it multicasts aLEADERCHANGE message, which thenextleaderi ≡ r +1 modN

listens for. When the next leader has collected 2f +1 such requests, it packages them into a

singleLEADERCHANGEREQUEST which it submits to PBFT; execution of this request after

linearization increments the sequence numberr and makes the next leader the new current

leader. We omit the straightforward details on cascaded leader changes.

State Transfer: Before the phase can end, the SAIM of a replica must contain the

latest stable checkpoint. A slow replica may be unable to obtain that by executing the

PROPOSEd additions. However, the stable checkpoint broadcast by those replicas that were

up to date allows a slow replica to append that AST digest intoits SAIM, thereby catching

79

up with others. Up-to-date replicas missing actual AST nodes can apply the repair process

(described above for the service phase) to obtain only thoseAST nodes required for them

to execute a new proposal. Those are only the AST nodes on the path from the tree root to

the to-be-added tree leaves; other missing AST nodes can be repaired by the background

audit and repair process during the service phase.

3.5.3 Optimizations

Tentative ADD response: When a replica receives anADD request, it buffers its re-

quest to process during an upcoming proactive recovery phase. If the request is dropped

in the network and does not reach enough replicas, the clientwould not receive responses

it expects in the next service phase. To help the client decide its request reaches at least

2 f +1 replicas, each replica that receives anADD request sends the client a tentativeADD

acknowledgement to indicate it received the client’s request.

Read for verification: A client that issues anADD request during a service phase can

issue aGET request for the name in the next service phase to check that its write is correctly

done. If GET does not returnf + 1 replies that match its name-value pair from distinct

replicas, the client presumes that itsADD request failed and multicasts itsADD request toR

again.

3.5.4 Correctness

Theorem 7. TM provides the HWICR property under the tiered Byzantine-fault model.

Proof. (Sketch) In the proof, we denote bys(r) the service phase of roundr and byp(r) the

proactive recovery phase afters(r). We says(r) is healthy if the number of faulty replicas

is no more thanf out of 3f + 1 total replicas ats(r). From our assumption, proactive

recovery phases are always healthy.

Without loss of generality consider a binding(n,v). We prove that ifn is not in the

AST and the binding is added at healthys(r), the binding is correctly read (or temporarily

unavailable) at alls(r ′)(r ′ > r).

At healthy s(r), we say anAdd(n,v) request is accepted if there are at least 2f + 1

80

replicas that receive the request; clients can ensure that the request is accepted by checking

authenticated tentativeADD responses. LetQt denote this set of replicas. At the start of

p(r), each replica multicasts aBATCH message to other replicas. The leader collects 2f +1

distinct BATCH messages that form aBATCH certificate. LetQb denote the set of replicas

that form this certificate.Qt
T

Qb includes at least one non-faulty replica that receives the

ADD request. Therefore, the accepted request is contained in the BATCH certificate.

In addition, we show that atp(r) the BATCH certificate contains the stable checkpoint

(2 f + 1 matching SAIM attestations) ofp(r − 1). At p(r − 1), there are at least 2f +

1 replicas that agree on theBATCH certificate ofp(r − 1) via PBFT. LetQp denote this

set of replicas.Qp
T

Qb includes at least one non-faulty replica that includes the stable

checkpoint SAIM attestation. Therefore, theBATCH certificate ofp(r) contains the correct

stable checkpoint ofp(r −1).

Then, PBFT ensures that at least 2f +1 replicas agree on thePROPOSEwith the above

BATCH certificate. Each such replica checks thatn does not exist; if necessary, the replica

can perform state transfer for this validation. If not, the replica inserts(n,v) into the AST,

computes a new AST digest, and appends it to SAIM. At this point, there are at leastf +1

correct replicas, each of which correctly adds the binding to the AST and updates its SAIM.

Now, suppose a client gets a reply certificate (f + 1 matching SAIM attestations) of

Get(n) at s(r +1). The reply certificate contains at least one up-to-date non-faulty replica

since a non-faulty replica enterss(r +1) only after collecting aPRCHECKPOINT certificate.

Therefore, a client correctly reads valuev when it queries withn at s(r +1).

Once(n,v) is inserted into TM atp(r), it is clear thatp(r +1) carries(n,v) from p(r)

correctly with the same argument we make forp(r −1) andp(r). We can inductively argue

the same holds forp(r + i) and p(r + i + 1) for all i ≥ 0. Therefore, when a client gets a

reply certificate forGet(n) at all s(r + i) (i > 0), the client receives correct(n,v).

81

3.6 Discussion

3.6.1 Tradeoff between Safety and Availability

There is a tradeoff between safety and availability, which is affected by changing the

frequency of proactive recovery. Frequent proactive recovery improves safety since it re-

duces the probability ofN replica faults in a service phase, but it reduces availability since

the TM service is not available to clients during proactive recovery.

We define the availability of the service as

Availability =
Service time

Service time + Proactive recovery time
.

The service time is an interval between two consecutive proactive recoveries. The proactive

recovery time is the sum of the reboot time and the commit time. The commit time includes

the time to sendBATCH messages, the agreement time, and the time to incorporate new

ADD requests, which requires to check a part of the AST and to repair it if necessary.

The proactive recovery time depends on the system’s workload, i.e., how many newADD

requests the system process. When the service time becomes shorter, it is likely that the

proactive recovery time decreases since the system receives less number ofADD requests,

thus the proactive recovery time decreases. However, the reboot and agreement time does

not change.

TM cannot increase the frequency of proactive recovery arbitrarily due to its back-

ground process. The interval between two consecutive proactive recoveries must be greater

than the time to audit and repair the main data structure under our fault assumption. As the

collection of bindings grows, this time increases. We discuss below how to partition name

space to bound the collection size.

When N is large, we can increase the frequency of proactive recovery by allowing

the audit and repair time to be longer than an interval between two consecutive proactive

recoveries. However, this requires a stronger fault assumption in service phases to preserve

our safety guarantee. If the background audit and repair takesmconsecutive service phases

to scan the entire data structure, we need the fault assumption that there is at least a replica

that is not faulty acrossm+1 consecutive service phases.

82

3.6.2 Extensions

Name Space Granularity: As more bindings are added to the system, it takes more

time to audit and repair the AST. An approach to increasing scalability is to partition the

name space and assign different replica groups to handle each partition. Name space par-

titioning, however, may have further uses, e.g., to supportcontextualized archival collec-

tions, or to allow different replicas in a preserved name service to handle only name spaces

to which its operators have access. Such heterogeneous namespace partitions could be

handled through an extra level of indirection, via which each TM process group deals with

distinct name spaces, though a single hardware device and SAIM on a single host is shared

by all local TM processes.

Membership Management: To automate membership changes securely, TM can au-

thenticate membership information with SAIM. SAIM stores adigest of a block that con-

tains public keys of TM members. This membership information is also agreed when PBFT

is run during a proactive recovery phase. Since membership changes are reflected in SAIM,

TM can securely authenticate the current members of the system.

Advanced Search:To focus on HWICR guarantees in a tiered Byzantine fault model,

we present a naming service with a minimal search interface.Extending the main data

structure for advanced search is our future work. For example, we can include inverted list

indices for keyword search.

Re-hashing Data:Due to the enhancement of cryptanalysis and computation, a hash

function that was secure in the past may not be secure any more. To keep the system’s

security property, it should change its hash function, regenerate hashes from data with

the new hash function, and reconstructs the AST of TM. This upgrade requires a secure

coordinated action between the self-verifying bitstore and TM, which is beyond the scope

of our work.

83

3.7 Evaluation

3.7.1 Implementation

To validate our design, we developed a prototype TM implementation. We implemented

the service and background audit process of TM in C/C++ on Fedora Core 6. The client

and server communicate with a SFS’s asynchronous implementation of SUN RPC [Sri95]

in the SFSlite library [sfs]. Client-server communicationare authenticated by signatures.

We use NTT’s ESIGN with 2048-bit keys for signatures. The client uses a proxy to perform

quorum operations forAdd/Get call invocation. The server maintains SAIM, A2M with

rate-limited appends, an AST, and a log for bufferingADDs. We use software emulation of

SAIM, which also uses NTT’s ESIGN with 2048-bit keys for signatures.

We store an AST and a log on a disk using Berkeley DB [ber]. We use a binary AST to

minimize the size of membership proofs [YC07]. An AST is stored as a Berkeley database

with a BTREE format. Each AST node is stored as a Berkeley DB record, which contains

a name, a value, a hash of its left child, and a hash of its rightchild. The primary key of

this DB is the name, and the secondary key is the hash of the entire node content. To search

a value with a name in the AST and to insert a (name, value) binding to the AST while

generating a membership proof, we traverse the AST using secondary keys.

3.7.2 Experiment Results

We ran our experiments with four TM replica nodes and one client node. The nodes are

PCs with 1.8GHz∼3.2GHz Pentium 4 processors, 1GB RAM and 3Com 3C905C Ethernet

cards. They are connected over a dual speed 10/100Mbps 3Com switch. On a 1.8GHz

machine, ESIGN signature creation and verification of 20 bytes take on average 256µsand

194µs, respectively.

We initially populate server ASTs with one million name-value bindings and use a

simple micro-benchmark client that sends 1000ADD or GET requests. The maximum size

of a name is 128 bytes and a value is a 20-byte SHA-1 hash. ForADD, servers store bindings

to their logs and return tentative acknowledgements. ForGET, servers search their ASTs

and return values, AST proofs, and SAIM attestations.

84

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(m

s)

Request

Get
Add

Figure 3.12: Get and Add time. In average, Get takes 3ms, and Add takes 1ms.

TM has reasonableGET andADD latencies for long-term preservation systems. Fig-

ure 3.12 showsGET andADD time for 1000 requests with randomly selected names. In

average,GET takes 3ms, andADD takes 1ms.GET takes more time thanADD does since it

requires to access a path in the AST, which can incur to accessmultiple blocks in Berkeley

DB.

TM availability is also high enough for long-term preservation systems. Figure 3.13

shows TM availability varying proactive recovery (PR) timeand inter-PR time. When

inter-PR time is 24 hours, availability is 0.9993 and 0.9931for one-minute PR time and

ten-minutes PR time, respectively. Availability decreases linearly as PR time increases. In

addition, as we perform proactive recovery more frequently(i.e., inter-PR time increases),

availability decreases more rapidly. For example, when PR time is ten minutes, availability

drops from 0.9931 to 0.9474 as inter-PR time changes from 24 hours to 3 hours. However,

when we perform proactive recovery frequently, the proactive recovery time may reduce,

which mitigates frequent recovery effects, since TM needs to handle fewerADDs. With

one-minute PR time, availability becomes 0.9945 despite three-hour inter-PR time.

85

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 2 4 6 8 10

A
va

ila
bi

lit
y

Proactive recovery (PR) time (minutes)

Inter-PR time = 24 hours
Inter-PR time = 18 hours
Inter-PR time = 12 hours
Inter-PR time = 6 hours
Inter-PR time = 3 hours

Figure 3.13: TM availability varying proactive recovery (PR) time and inter-PR time.

3.8 Future Work

There are a few enhancements we can make in proactive recovery of TM. First, we im-

prove the fault bounds in TimeMachine, but we still have 1/3 fault bounds during proactive

recovery phases. We hope to explore multiple points on the continuum of fault models

through ourf T-bound, in which the number of faults inT consecutive phases is bounded

by f T for some fractionf , but there can be phases in which more thanf replicas are

faulty. Such a failure model may require multi-phase recovery and at leastT SAIM slots,

rather than the single-slot algorithm we described in this thesis. Second, we assume hard-

ware clocks to invoke the proactive recovery almost at the same. Asynchronous proactive

recovery that does not rely on hardware clocks might lead to more practical preservation

systems.

The TM evaluation used short-running benchmarks. An evaluation of long-term usage

of our systems will provide valuable insights. We hope to runTM alongside an archival ser-

vice to understand better the practical applicability of this approach in a real-world archival

environment.

86

3.9 Summary

Long-term services that operate reliably are hard to construct. This work represents a

first step towards understanding better Byzantine-fault models for long-term preservation

services that can be both plausible and amenable to safe solutions.

We propose a stronger property called HWICR for our preserved name service and

introduce a new tiered Byzantine fault model that is suitable for long-term services. We

present a naming service called TM that provides HWICR underour tiered Byzantine fault

model. TM uses a unique two phase approach that alternates between regular service and

trusted proactive recovery phases. By making important state changes only during proac-

tive recovery phases, TM can tolerate more faults than previous systems do. TM puts

together various components including trusted hardware toachieve stronger fault tolerance

in the face of realistic threats.

87

Chapter 4

Selfish Replication

4.1 Overview

To tolerate faults in a single domain, systems can replicatecontent across multiple ad-

ministrative domains. Examples are wide-area peer-to-peer file systems [DKK+01, RD01,

ABC+02,KBC+00,SKKM02], peer-to-peer caches [IRD02,GDS+03], and distributed web

caches [Dan98,FCAB00]. Replication of objects1 in selected servers is widely used to en-

hance the performance, availability, and reliability of these systems. However, most such

systems assume that servers cooperate with one another by following protocols optimized

for overall system performance, regardless of the costs incurred by each server.

In reality, servers may behave selfishly — seeking to maximize their own benefit. For

example, parties in different administrative domains utilize their local resources (servers)

to better support clients in their own domains. They have obvious incentives to replicate

objects that maximize the benefit in their domains, possiblyat the expense of globally

optimum behavior. It has been an open question whether thesereplication scenarios and

protocols maintain their desirable global properties (lowtotal social cost, for example) in

the face of selfish behavior.

In this chapter, we take a game-theoretic approach to analyzing the problem of replica-

tion in networks of selfish servers through theoretical analysis and simulations. We model

selfish replication as a non-cooperative game. In thebasic model, the servers have two pos-

1We use the term “object” as an abstract entity that represents files and other data objects.

88

sible actions for each object. If a replica of a requested object is located at a nearby node,

the server may be better off accessing the remote replica. Onthe other hand, if all replicas

are located too far away, the server is better off replicating the object itself. Decisions about

replicating the replicas locally are arrived at locally, taking into account only local costs.

We also define a more elaboratepayment model, in which each server bids for having an

object replicated at another site. Each site now has the option of replicating an object and

collecting the related bids. Once all servers have chosen a strategy, each game specifies

a configuration, that is, the set of servers that replicate the object, and the corresponding

costs for all servers.

Game theory predicts that such a situation will end up in aNash equilibrium, that

is, a set of (possibly randomized) strategies with the property that no player can benefit

by changing its strategy while the other players keep their strategies unchanged [OR94].

However, the lack of coordination inherent in selfish decision-making may incur costs well

beyond what would be globally optimum. This loss of efficiency is quantified by theprice

of anarchy[KP99]. The price of anarchy is the ratio of the social (total) cost of the worst

possible Nash equilibrium to the cost of the social optimum.The price of anarchy bounds

the worst possible behavior of a selfish system, when left completely on its own. How-

ever, in reality there are ways whereby the system can be guided, through “seeding” or

incentives, to a pre-selected Nash equilibrium. This “optimistic” version of the price of

anarchy [ADTW03] is captured by the smallest ratio between aNash equilibrium and the

social optimum.

In this work we address the following questions :

• Do pure strategy Nash equilibria exist in the replication game?

• If pure strategy Nash equilibria do exist, how efficient are they (in terms of the price

of anarchy, or its optimistic counterpart) under differentplacement costs, network

topologies, and demand distributions?

• Will a mechanism like adopting payments improve the Nash equilibria?

We show that pure strategy Nash equilibria always exist in the replication game. The

price of anarchy of the basic game model can beO(n), wheren is the number of servers;

89

Server

Server

Server

Server

A

B
C

D

(a)

Server

Server

Server

Server

A

B
C

D

(b)

Server

Server

Server

Server

A

B
C

D

(c)

Figure 4.1: Replication. There are four servers labeled A, B, C, and D. The rectangles are
object replicas. In (a), A stores an object. If B incurs less cost accessing A’s replica than
it would replicating the object itself, it accesses the object from A as in (b). If the distance
cost is too high, the server replicates the object itself, asC does in (c). This figure is an
example of our replication game model.

the intuitive reason is undersupply. Under certain topologies, the price of anarchy does

have tighter bounds. For complete graphs and stars, it isO(1). For D-dimensional grids,

it is O(n
D

D+1). In the basic game, even the optimistic price of anarchy can be O(n). In the

payment model, however, the game can always implement a Nashequilibrium that is same

as the social optimum, so the optimistic price of anarchy is one.

Our simulation results show several interesting phases. Asthe placement cost increases

from zero, the price of anarchy increases. When the placement cost first exceeds the max-

imum distance between servers, the price of anarchy is at itshighest due to undersupply

problems. As the placement cost further increases, the price of anarchy decreases, and the

effect of replica misplacement dominates the price of anarchy.

The rest is organized as follows. Section 4.2 discusses details of the basic game and

analyzes the bounds of the price of anarchy. In Section 4.3 wediscuss the payment game

and analyze its price of anarchy. In Section 4.4 we describe our simulation methodology

and study the properties of Nash equilibria observed. We discuss extensions of the game

and directions for future work in Section 4.5.

4.2 Basic Game

The replication problem we study is to find a configuration that meets certain objectives

(e.g., minimum total cost). Figure 4.1 shows examples of replication among four servers.

90

In network (a), A stores an object. Suppose B wants to access the object. If it is cheaper

to access the remote replica than to replicate it, B accessesthe remote replica as shown in

network (b). In network (c), C wants to access the object. If Cis far from A, C replicates the

object instead of accessing the object from A. It is possiblethat in an optimal configuration

it would be better to place replicas in A and B. Understandingthe placement of replicas by

selfish servers is the focus of our study.

The replication problem is abstracted as follows. There is asetN of n servers and a

setM of m objects. The distance between servers can be represented asa distance matrix

D (i.e., di j is the distance from serveri to server j). D models an underlying network

topology. For our analysis we assume that the distances are symmetric and the triangle

inequality holds on the distances (for all serversi, j, k: di j + d jk ≥ dik). Each server has

demand from clients that is represented by a demand matrixW (i.e., wi j is the demand of

serveri for object j). When a server replicates objects, the server incurs some placement

cost that is represented by a matrixα (i.e.,αi j is a placement cost of serveri for object j).

In this study, we assume that servers have no capacity limit.As we discuss in the next

section, this fact means that the replication behavior withrespect to each object can be

examined separately. Consequently, we can talk aboutconfigurationsof the system with

respect to a given object:

Definition 2. A configuration X for some object O is the set of servers replicating this

object.

The goal of the basic game is to find configurations that are achieved when servers

optimize their cost functions locally.

4.2.1 Game Model

We take a game-theoretic approach to analyzing the uncapacitated replication prob-

lem among networked selfish servers. We model the selfish replication problem as a non-

cooperative game withn players (servers/nodes) whose strategies are sets of objects to

replicate. In the game, each server chooses a pure strategy that minimizes its cost. Our fo-

cus is to investigate the resulting configuration, which is the Nash equilibrium of the game.

It should be emphasized that we consider only pure strategy Nash equilibria in this work.

91

The cost model is an important part of the game. LetAi be the set of feasible strategies

for serveri, and letSi ∈ Ai be the strategy chosen by serveri. Given a strategy profile

S= (S1,S2, ...,Sn), the cost incurred by serveri is defined as:

Ci(S) = ∑
j∈Si

αi j + ∑
j /∈Si

wi j diℓ(i, j). (4.1)

whereαi j is the placement cost of objectj, wi j is the demand that serveri has for object

j, ℓ(i, j) is the closest server toi that replicates objectj, anddik is the distance betweeni

andk. When no server replicates the object, we define distance cost diℓ(i, j) to bedM—large

enough that at least one server will choose to replicate the object.

The placement cost can be further divided into first-time installation cost and mainte-

nance cost:

αi j = k1i +k2i
U pdateSizej
Ob jectSizej

1
T

Pj ∑
k

wk j, (4.2)

wherek1i is the installation cost,k2i is the relative weight between the maintenance cost

and the installation cost,Pj is the ratio of the number of writes over the number of reads

and writes,U pdateSizej is the size of an update,Ob jectSizej is the size of the object, and

T is the update period. We see tradeoffs between different parameters in this equation. For

example, placing replicas becomes more expensive asU pdateSizej increases,Pj increases,

or T decreases. However, note that by varyingαi j itself we can capture the full range of

behaviors in the game. For our analysis, we use onlyαi j .

Since there is no capacity limit on servers, we can look at each single object as a sepa-

rate game and combine the pure strategy equilibria of these games to obtain a pure strategy

equilibrium of the multi-object game. Fabrikant, Papadimitriou, and Talwar discuss this

existence argument: if two games are known to have pure equilibria, and their cost func-

tions are cross-monotonic, then their union is also guaranteed to have pure Nash equilibria,

by a continuity argument [FPT04]. A Nash equilibrium for themulti-object game is the

cross product of Nash equilibria for single-object games. Therefore, we can focus on the

single object game in the rest of this work.

For single object selfish replication, each serveri has two strategies — to replicate or

not to replicate. The object under consideration isj. We defineSi to be 1 when serveri

92

replicatesj and 0 otherwise. The cost incurred by serveri is

Ci(S) = αi j Si +wi j diℓ(i, j)(1−Si). (4.3)

We refer to this game as thebasic game. The extent to whichCi(S) represents actual cost

incurred by serveri is beyond the scope of this work; we will assume that an appropriate

cost function of the form of Equation 4.3 can be defined.

4.2.2 Nash Equilibrium Solutions

In principle, we can start with a random configuration and letthis configuration evolve

as each server alters its strategy and attempts to minimize its cost. Game theory is interested

in stable solutions calledNash equilibria. A pure strategy Nash equilibrium is reached

when no server can benefit by unilaterally changing its strategy. A Nash equilibrium2

(S∗i ,S
∗
−i) for the basic game specifies a configurationX such that∀i ∈ N, i ∈ X ⇔ S∗i = 1.

Thus, we can consider a setE of all pure strategy Nash equilibrium configurations:

X ∈ E ⇔ ∀i ∈ N,

∀Si ∈ Ai, Ci(S∗i ,S
∗
−i) ≤Ci(Si ,S∗−i)

(4.4)

By this definition, no server has incentive to deviate in the configurations since it cannot

reduce its cost.

For the basic game, we can easily see that:

X ∈ E ⇔ ∀i ∈ N, ∃ j ∈ X s.t. d ji ≤ α

and ∀ j ∈ X, ¬∃k∈ X s.t. dk j < α
(4.5)

The first condition guarantees that there is a server that places the replica within distance

α of each serveri. If the replica is not placed ati, then it is placed at another server within

distanceα of i, soi has no incentive to replicate. If the replica is placed ati, then the second

condition ensures there is no incentive to drop the replica because no two servers separated

2The notation for strategy profile (S∗i ,S
∗
−i) separates nodei′s strategy (S∗i) from the strategies of other

nodes (S∗−i).

93

A B1−α
0

0
0

0
0 0

0
0

0
0

2

n
nodes

2

n
nodes

(a)

A B1−α
0

0
0

0
0 0

0
0

0
0

2

n
nodes

2

n
nodes

(b)

A B1−α

2

n
nodes

2

n
nodes

n2
n2

n2

n2

n2 n2

n2

n2

n2n2

(c)

Figure 4.2: Potential inefficiency of Nash equilibria illustrated by two clusters ofn2 servers.
The intra-cluster distances are all zero and the distance between clusters isα−1, where
α is the placement cost. The dark nodes replicate the object. Network (a) shows a Nash
equilibrium in the basic game, where one server in a cluster replicates the object. Network
(b) shows the social optimum where two replicas, one for eachcluster, are placed. The
price of anarchy isO(n) and even the optimistic price of anarchy isO(n). This high price
of anarchy comes from the undersupply of replicas due to the selfish nature of servers.
Network (c) shows a Nash equilibrium in the payment game, where two replicas, one for
each cluster, are placed. Each light node in each cluster pays 2/n to the dark node, and the
dark node replicates the object. Here, the optimistic priceof anarchy is one.

by distance less thanα both place replicas.

4.2.3 Social Optimum

The social costof a given strategy profile is defined as the total cost incurred by all

servers, namely:

C(S) =
n−1

∑
i=0

Ci(S) (4.6)

whereCi(S) is the cost incurred by serveri given by Equation 4.1.

The social optimum cost, referred to asC(SO) for the remainder of the chapter, is the

minimum social cost. The social optimum cost will serve as animportant base case against

which to measure the cost of selfish replication. We defineC(SO) as:

C(SO) = min
S

C(S) (4.7)

whereSvaries over all possible strategy profiles. Note that in the basic game, this means

varying configurationX over all possible configurations. In some sense,C(SO) represents

94

the best possible replication behavior — if only nodes couldbe convinced to cooperate

with one another.

The social optimum configuration is a solution of a mini-sum facility location problem,

which is NP-hard [GJ79]. To find such configurations, we formulate an integer program-

ming problem:

minimize∑i ∑ j
[

αi j xi j +∑k wi j dikyi jk
]

subject to

∀i, j ∑kyi jk = I(wi j)

∀i, j,k xi j −yk ji ≥ 0

∀i, j xi j ∈ {0,1}
∀i, j,k yi jk ∈ {0,1}

(4.8)

Here,xi j is 1 if serveri replicates objectj and 0 otherwise;yi jk is 1 if serveri accesses

object j from serverk and 0 otherwise;I(w) returns 1 ifw is nonzero and 0 otherwise. The

first constraint specifies that if serveri has demand for objectj, then it must accessj from

exactly one server. The second constraint ensures that server i replicates objectj if any

other server accessesj from i.

4.2.4 Analysis

To analyze the basic game, we first give a proof of the existence of pure strategy Nash

equilibria. We discuss the price of anarchy in general and then on specific underlying

topologies. In this analysis we use simplyα in place ofαi j , since we deal with a single

object and we assume placement cost is the same for all servers. In addition, when we

compute the price of anarchy, we assume that all nodes have the same demand (i.e.,∀i ∈
N wi j = 1).

Theorem 8. Pure strategy Nash equilibria exist in the basic game.

Proof. We show a constructive proof. First, initialize the setV to N. Then, remove all

nodes with zero demand fromV. Each nodex definesβx, whereβx = α
wx j

. Furthermore, let

Z(y) = {z : dzy≤ βz,z∈V}; Z(y) represents all nodesz for which y lies withinβz from z.

Pick a nodey∈V such thatβy ≤ βx for all x∈V. Place a replica aty and then remove

95

y and allz∈ Z(y) from V. No suchz can have incentive to replicate the object because it

can accessy’s replica at lower (or equal) cost. Iterate this process of placing replicas until

V is empty. Because at each iterationy is the remaining node with minimumβ, no replica

will be placed within distanceβy of any suchy by this process. The resulting configuration

is a pure-strategy Nash equilibrium of the basic game.

The Price of Anarchy (POA)

To quantify the cost of lack of coordination, we use the priceof anarchy [KP99] and

the optimistic price of anarchy [ADTW03]. The price of anarchy is the ratio of the social

costs of the worst-case Nash equilibrium and the social optimum, and the optimistic price

of anarchy is the ratio of the social costs of the best-case Nash equilibrium and the social

optimum.

We show general bounds on the price of anarchy. Throughout our discussion, we use

C(SW) to represent the cost of worst case Nash equilibrium,C(SO) to represent the cost of

social optimum, andPoAto represent the price of anarchy, which isC(SW)
C(SO) .

The worst case Nash equilibrium maximizes the total cost under the constraint that the

configuration meets the Nash condition. Formally, we can defineC(SW) as follows.

C(SW) = max
X∈E

(α|X|+∑
i

min
j∈X

di j) (4.9)

where minj∈X di j is the distance to the closest replica (includingi itself) from nodei andX

varies through Nash equilibrium configurations.

Bounds on the Price of Anarchy

We show bounds of the price of anarchy varyingα. Let dmin = min(i, j)∈N×N,i 6= j di j and

dmax = max(i, j)∈N×N di j . We see that ifα ≤ dmin, PoA = 1 trivially, since every server

replicates the object for both Nash equilibrium and social optimum. Whenα > dmax, there

is a transition in Nash equilibria: since the placement costis greater than any distance cost,

only one server replicates the object and other servers access it remotely. However, the

social optimum may still place multiple replicas. Sinceα ≤ C(SO) ≤ α + minj∈N ∑i di j

96

Topology PoA
Complete graph 1
Star ≤ 2
Line O(

√
n)

D-dimensional grid O(n
D

D+1)

Figure 4.3: PoA in the basic game for specific topologies

when α > dmax, we obtain α+maxj∈N ∑i di j
α+min j∈N ∑i di j

≤ PoA≤ α+maxj∈N ∑i di j
α . Note that depending

on the underlying topology, even the lower bound ofPoA can beO(n). Finally, there is

a transition whenα > maxj∈N ∑i di j . In this case,PoA=
α+maxj∈N ∑i di j
α+min j∈N ∑i di j

and it is upper

bounded by 2.

Figure 4.2 shows an example of the inefficiency of a Nash equilibrium. In the network

there are two clusters of servers whose size isn
2. The distance between two clusters isα−1

whereα is the placement cost. Figure 4.2(a) shows a Nash equilibrium where one server in

a cluster replicates the object. In this case,C(SW) = α +(α−1)n
2, since all servers in the

other cluster accesses the remote replica. However, the social optimum places two replicas,

one for each cluster, as shown in Figure 4.2(b). Therefore,C(SO) = 2α. PoA=
α+(α−1) n

2
2α ,

which isO(n). This bad price of anarchy comes from an undersupply of replicas due to the

selfish nature of the servers. Note that all Nash equilibria have the same cost; thus even the

optimistic price of anarchy isO(n).

4.2.5 Analyzing Specific Topologies

We now analyze the price of anarchy (PoA) for the basic game with specific underlying

topologies and show thatPoAcan have better bounds. We look at complete graph, star, line,

andD-dimensional grid. In all these topologies, we set the distance between two directly

connected nodes to one. We describe the case whereα > 1, sincePoA= 1 trivially when

α ≤ 1. A summary of the results is shown in Table 4.3.

For a complete graph,PoA= 1, and for a star,PoA≤ 2. For a complete graph, when

α > 1, both Nash equilibria and social optima place one replica at one server, soPoA=

1. For star, when 1< α < 2, the worst case Nash equilibrium places replicas at all leaf

97

nodes. However, the social optimum places one replica at thecenter node. Therefore,

PoA=
(n−1)α+1
α+(n−1) ≤ 2(n−1)+1

1+(n−1) ≤ 2. Whenα > 2, the worst case Nash equilibrium places one

replica at a leaf node and the other nodes access the remote replica, and the social optimum

places one replica at the center.PoA=
α+1+2(n−2)

α+(n−1) = 1+ n
α+(n−1) ≤ 2.

For a line, the price of anarchy isO(
√

n). When 1< α < n, the worst case Nash

equilibrium places replicas every 2α so that there is no overlap between areas covered by

two adjacent servers that replicate the object. The social optimum places replicas at least

every
√

2α. The placement of replicas for the social optimum is as follows. Suppose there

are two replicas separated by distanced. By placing an additional replica in the middle,

we want to have the reduction of distance to be at leastα. The distance reduction isd/2+

2{((d/2−1)−1)+((d/2−2)−2)+ ...+((d/2−d/4)−d/4)} ≥ d2/8. d should be at

most 2
√

2α. Therefore, the distance between replicas in the social optimum is at most
√

2α.

C(SW) = α (n−1)
2α +

α(α+1)
2

(n−1)
2α = Θ(αn). C(SO)≥ α n−1√

2α
+2

√
2α/2(

√
2α/2+1)

2
n−1√

2α
. C(SO) =

Ω(
√

αn). Therefore,PoA= O(
√

α). Whenα > n− 1, the worst case Nash equilibrium

places one replica at a leaf node andC(SW) = α +
(n−1)n

2 . However, the social optimum

still places replicas every
√

2α. If we view PoAas a continuous function ofα and compute

a derivative ofPoA, the derivative becomes 0 whenα is Θ(n2), which means the function

decreases asα increases fromn. Therefore,PoA is maximum whenα is n, andPoA=
Θ(n2)

Ω(
√

nn) = O(
√

n). Whenα > (n−1)n
2 , the social optimum also places only one replica, and

PoA is trivially bounded by 2. This result holds for the ring and it can be generalized to

the D-dimensional grid. As the dimension in the grid increases, the distance reduction

of additional replica placement becomesΩ(dD+1) whered is the distance between two

adjacent replicas. Therefore,PoA= Θ(n2)

Ω(n
1

D+1 n)
= O(n

D
D+1).

4.3 Payment Game

In this section, we present an extension to the basic game with payments and analyze

the price of anarchy and the optimistic price of anarchy of the game.

98

4.3.1 Game Model

The new game, which we refer to as thepayment game, allows each player to offer a

payment to another player to give the latter incentive to replicate the object. The cost of

replication is shared among the nodes paying the server thatreplicates the object.

The strategy for each playeri is specified by a triplet(vi ,bi, ti) ∈ {N,R+,R+}. vi spec-

ifies the player to whomi makes a bid,bi ≥ 0 is the value of the bid, andti ≥ 0 denotes a

threshold for payments beyond whichi will replicate the object. In addition, we useRi to

denote the total amount of bids received by a nodei (Ri = ∑ j :v j=i b j).

A nodei replicates the object if and only ifRi ≥ ti , that is, the amount of bids it receives

is greater than or equal to its threshold. LetIi denote the corresponding indicator variable,

that is,Ii equals 1 ifi replicates the object, and 0 otherwise. We make the rule thatif a node

i makes a bid to another nodej and j replicates the object, theni must payj the amountbi .

If j does not replicate the object,i does not payj.

Given a strategy profile, the outcome of the game is the set of tuples{(Ii,vi,bi ,Ri)}. Ii

tells us whether playeri replicates the object or not,bi is the payment playeri makes to

playervi , andRi is the total amount of bids received by playeri. To compute the payoffs

given the outcome, we must now take into account the paymentsa node makes, in addition

to the placement costs and access costs of the basic game.

By our rules, a server nodei paysbi to nodevi if vi replicates the object, and receives a

payment ofRi if it replicates the object itself. Its net payment isbi Ivi −Ri Ii . The total cost

incurred by each node is the sum of its placement cost, accesscost, and net payment. It is

defined as

Ci(S) = αi j Ii +wi j diℓ(i, j)(1− Ii)+bi Ivi −Ri Ii. (4.10)

The cost of social optimum for the payment game is same as thatfor the basic game,

since the net payments made cancel out.

4.3.2 Analysis

In analyzing the payment model, we first show that a Nash equilibrium in the basic

game is also a Nash equilibrium in the payment game. We then present an important

99

positive result — in the payment game the socially optimal configuration can always be

implemented by a Nash equilibrium. This means that the optimistic price of anarchy in the

payment game is always one. We know from the counterexample in Figure 4.2 that this is

not guaranteed in the the basic game. In this analysis we useα to representαi j .

Theorem 9. Any configuration that is a pure strategy Nash equilibrium inthe basic game is

also a pure strategy Nash equilibrium in the payment game. Therefore, the price of anarchy

of the payment game is at least that of the basic game.

Proof. Consider any Nash equilibrium configuration in the basic game. For each nodei

replicating the object, set its thresholdti to 0; everyone else has thresholdα. Also, for all i,

bi = 0.

A node that replicates the object does not have incentive to change its strategy: changing

the threshold does not decrease its cost, and it would have topay at leastα to access a

remote replica or incentivize a nearby node to replicate. Therefore it is better off keeping

its threshold and bid at 0 and replicating the object.

A node that is not replicating the object can access the object remotely at a cost less

than or equal toα. Lowering its threshold does not decrease its cost, since all bi are zero.

The payment necessary for another server to place a replica is at leastα.

No player has incentive to deviate, so the current configuration is a Nash equilibrium.

In fact for some graphs, thePoAof the payment game can be more than that of the basic

game.

Now let us look at what happens to the example shown in Figure 4.2 in the best case.

Suppose nodeB’s neighbors each decide to pay nodeB an amount 2/n. B does not have

an incentive to deviate, since accessing the remote replicadoes not decrease its cost. The

same argument holds forA because of symmetry in the graph. Since no one has an incen-

tive to deviate, the configuration is a Nash equilibrium. Itstotal cost is 2α, the same as in

the socially optimal configuration shown in Figure 4.2(b). Next we prove that indeed the

payment game always has a strategy profile that implements the socially optimal configu-

ration as a Nash equilibrium. We first present the following observation, which is used in

the proof, about thresholds in the payment game.

100

Observation 1. If node i replicates the object, j is the nearest node to i among the other

nodes that replicate the object, and di j < α in a Nash equilibrium, then i should have a

threshold at least (α−di j). Otherwise, it cannot collect enough payment to compensate for

the cost of replicating the object and is better off accessing the replica at j.

Theorem 10. In the payment game, there is always a pure strategy Nash equilibrium that

implements the social optimum configuration. The optimistic price of anarchy in the pay-

ment game is therefore always one.

Proof. Consider the socially optimal configurationφopt. Let No be the set of nodes that

replicate the object andNc = N−No be the rest of the nodes. Also, for eachi in No, let Qi

denote the set of nodes that access the object fromi, not includingi itself. In the socially

optimal configuration,di j ≤ α for all j in Qi.

We want to find a set of payments and thresholds that makes thisconfiguration imple-

mentable. The idea is to look at each nodei in No and distribute the minimum payment

needed to makei replicate the object among the nodes that access the object from i. For

eachi in No, and for eachj in Qi , we define

δ j = min{α, min
k∈No−{i}

d jk}−d ji (4.11)

Note thatδ j is the difference betweenj ’s cost for accessing the replica ati and j ’s next best

option among replicating the object and accessing some replica other thani. It is clear that

δ j ≥ 0.

Claim 1. For each i∈ No, let ℓ be the nearest node to i in No. Then,∑ j∈Qi
δ j ≥ α−diℓ.

Proof. (of claim) Assume the contrary, that is,∑ j∈Qi
δ j < α−diℓ. Consider the new config-

urationφnew whereini does not replicate and each node inQi chooses its next best strategy

(either replicating or accessing the replica at some node inNo−{i}). In addition, we still

place replicas at each node inNo−{i}. It is easy to see that cost ofφopt minus cost ofφnew

101

is at least:

(α+ ∑
j∈Qi

di j)− (diℓ + ∑
j∈Qi

min{α, min
k∈No−{i}

dik})

= α−diℓ− ∑
j∈Qi

δ j > 0,

which contradicts the optimality ofφopt.

We set bids as follows. For eachi in No, bi = 0 and for eachj in Qi , j bids to i (i.e.,

v j = i) the amount:

b j = max{0,δ j − εi/(|Qi|+1)}, j ∈ Qi (4.12)

whereεi = ∑ j∈Qi
δ j −α +diℓ ≥ 0 and|Qi| is the cardinality ofQi . For the thresholds, we

have:

ti =

{

α if i ∈ Nc;

∑ j∈Qi
b j if i ∈ No.

(4.13)

This fully specifies the strategy profile of the nodes, and it is easy to see that the outcome

is indeed the socially optimal configuration.

Next, we verify that the strategies stipulated constitute aNash equilibrium. Having set

ti to α for i in Nc means that any node inN is at least as well off lowering its threshold

and replicating as biddingα to some node inNc to make it replicate, so we may disregard

the latter as a profitable strategy. By observation 1, to ensure that eachi in No does not

deviate, we require that ifℓ is the nearest node toi in No, then∑ j∈Qi
b j is at least(α−diℓ).

Otherwise,i will raise ti above∑ j∈Qi
b j so that it does not replicate and instead accesses

the replica atℓ. We can easily check that

∑
j∈Qi

b j ≥ ∑
j∈Qi

δ j −
|Qi |εi

|Qi |+1
= α−diℓ +

εi

|Qi|+1
≥ α−diℓ.

Therefore, each nodei ∈ No does not have incentive to changeti sincei loses its pay-

ments received or there is no change, andi does not have incentive tobi since it replicates

the object. Each nodej in Nc has no incentive to changet j since changingt j does not

102

reduce its cost. It also does not have incentive to reduceb j since the node wherej accesses

does not replicate andj has to replicate the object or to access the next closest replica,

which costs at least the same from the definition ofb j . No player has incentive to deviate,

so this strategy profile is a Nash equilibrium.

4.4 Simulation

We run simulations to compare Nash equilibria for the single-object replication game

with the social optimum computed by solving the integer linear program described in Equa-

tion 4.8 using Mosek [mos]. We examine price of anarchy (PoA), optimistic price of anar-

chy (OPoA), and the average ratio of the costs of Nash equilibria and social optima (Ratio),

and when relevant we also show the average numbers of replicas placed by the Nash equi-

librium (Replica(NE)) and the social optimum (Replica(SO)). ThePoAandOPoAare taken

from the worst and best Nash equilibria, respectively, thatwe observe over the runs. Each

data point in our figures is based on 1000 runs, randomly varying the initial strategy profile

and player order.

In our evaluation, we study the effects of variation in four categories: placement cost,

underlying topology, demand distribution, and payments. As we vary the placement cost

α, we directly influence the tradeoff between replicating andnot replicating. In order to get

a clear picture of the dependency ofPoAon α in a simple case, we first analyze the basic

game with a 100-node line topology whose edge distance is one.

We also explore transit-stub topologies generated using the GT-ITM library [ZCB96]

and power-law topologies (Router-level Barabasi-Albert model) generated using the BRITE

topology generator [MLMB01]. For these topologies, we generate an underlying physical

graph of 3050 physical nodes. Both topologies have similar minimum, average, and max-

imum physical node distances. The average distance is 0.42.We create an overlay of 100

server nodes and use the same overlay for all experiments with the given topology.

In the game, each server has a demand whose distribution is Bernoulli(p), wherep is

the probability of having demand for the object; the defaultunless otherwise specified is

p = 1.0.

103

Algorithm 1 Initialization for the Basic Game
L1 = a random subset of servers
for each nodei in N do

if i ∈ L1 then
Si = 1 ; replicate the object

else
Si = 0

Algorithm 2 Move Selection ofi for the Basic Game
Cost1 = α
Cost2 = minj∈X−{i}di j ; X is the current configuration
Costmin = min{Cost1,Cost2}
if Costnow > Costmin then

if Costmin == Cost1 then
Si = 1

else
Si = 0

4.4.1 Nash Dynamics Protocols

The simulator initializes the game according to the given parameters and a random

initial strategy profile and then iterates through rounds. Initially the order of player actions

is chosen randomly. In each round, each server performs the Nash dynamics protocol that

adjusts its strategies greedily in the chosen order. When a round passes without any server

changing its strategy, the simulation ends and a Nash equilibrium is reached.

In the basic game, we pick a random initial subset of servers to replicate the object

as shown in Algorithm 1. After the initialization, each player runs the move selection

A

B C

a

b

c

α/3+1

2α/3−1

2α/3

Figure 4.4: An example where the Nash dynamics protocol doesnot converge in the
payment game.

104

Algorithm 3 Initialization for the Payment Game
L1 = a random subset of servers
for each nodei in N do

bi = 0
if i ∈ L1 then

ti = 0 ; replicate the object
else

ti = α

L2 = {}
for each nodei in N do

if coin toss == headthen
Mi = { j : d(j, i) < mink∈L1∪L2 d(j,k)}
if Mi != /0 then

for each nodej ∈ Mi do

b j = max{α+∑k∈Mi
d(i,k)

|Mi | −d(i, j),0}
L2 = L2∪{i}

procedure described in Algorithm 2 (in algorithms 2 and 4,Costnow represents the current

cost for nodei). This procedure chooses greedily between replication andnon-replication.

It is not hard to see that this Nash dynamics protocol converges in two rounds.

In the payment game, we pick a random initial subset of servers to replicate the object

by setting their thresholds to 0. In addition, we initializea second random subset of servers

to replicate the object with payments from other servers. The details are shown in Algo-

rithm 3. After the initialization, each player runs the moveselection procedure described in

Algorithm 4. This procedure chooses greedily between replication and accessing a remote

replica, with the possibilities of receiving and making payments, respectively. In the pro-

tocol, each node increases its threshold value byincr if it does not replicate the object. By

this ramp up procedure, the cost of replicating an object is shared fairly among the nodes

that access a replica from a server that does replicate. Ifincr is small, cost is shared more

fairly, and the game tends to reach equilibria that encourages more servers to store replicas,

though the convergence takes longer. Ifincr is large, the protocol converges quickly, but it

may miss efficient equilibria. In the simulations we setincr to 0.1. Most of our simulation

runs converged, but there were a very few cases where the simulation did not converge due

to the cycles of dynamics. The protocol does not guarantee convergence within a certain

105

Algorithm 4 Move Selection ofi for the Payment Game
Cost1 = α−Ri

Cost2 = minj∈N−{i}{t j −Rj +di j}
Costmin = min{Cost1,Cost2}
if Costnow > Costmin then

if Costmin == Cost1 then
ti = Ri

else
ti = Ri + incr
vi = argminj{t j −Rj +di j}
bi = tvi −Rvi

number of rounds like the protocol for the basic game.

We provide an example graph and an initial condition such that the Nash dynamics

protocol does not converge in the payment game if started from this initial condition. The

graph is represented by a shortest path metric on the networkshown in Figure 4.4. In the

starting configuration, onlyA replicates the object, anda pays it an amountα/3 to do so.

The thresholds forA, B andC areα/3 each, and the thresholds fora, b andc are 2α/3. It

is not hard to verify that the Nash dynamics protocol will never converge if we start with

this condition.

The Nash dynamics protocol for the payment game needs further investigation. The

dynamics protocol for the payment game should avoid cycles of actions to achieve sta-

bilization of the protocol. Finding a self-stabilizing dynamics protocol is an interesting

problem. In addition, a fixed value ofincr cannot adapt to changing environments. A small

value of incr can lead to efficient equilibria, but it can take long time to converge. An

important area for future research is looking at adaptivelychangingincr.

4.4.2 Varying Placement Cost

Figure 4.5 showsPoA, OPoA, andRatio, as well as number of replicas placed, for the

line topology asα varies. We observe two phases. Asα increases thePoArises quickly to

a peak at 100. After 100, there is a gradual decline.OPoAandRatioshow behavior similar

to PoA.

These behaviors can be explained by examining the number of replicas placed by Nash

106

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 20 40 60 80 100 120 140 160 180 200

 1

 10

 100

C
(N

E
)/

C
(S

O
)

A
ve

ra
ge

 N
um

be
r

of
 R

ep
lic

as

alpha

PoA
Ratio

OPoA
Replica (SO)
Replica (NE)

Figure 4.5: We presentPoA, Ratio, andOPoAresults for the basic game, varyingα on a
100-node line topology, and we show number of replicas placed by the Nash equilibria and
by the optimal solution. We see large peaks inPoAandOPoAat α = 100, where a phase
transition causes an abrupt transition in the lines.

equilibria and by optimal solutions. We see that whenα is above one, Nash equilibrium

solutions place fewer replicas than optimal on average. Forexample, whenα is 100, the

social optimum places four replicas, but the Nash equilibrium places only one. The peak in

PoAatα = 100 occurs at the point for a 100-node line where the worst-case cost of access-

ing a remote replica is slightly less than the cost of placinga new replica, so selfish servers

will never place a second replica. The optimal solution, however, places multiple replicas

to decrease the high global cost of access. Asα continues to increase, the undersupply

problem lessens as the optimal solution places fewer replicas.

4.4.3 Different Underlying Topologies

In Figure 4.6(a) we examine an overlay graph on the more realistic transit-stub topol-

ogy. The trends for thePoA, OPoA, andRatioare similar to the results for the line topology,

with a peak inPoAat α = 0.8 due to maximal undersupply.

In Figure 4.7(a) we examine an overlay graph on the power-lawtopology. We observe

several interesting differences between the power-law andtransit-stub results. First, the

PoA peaks at a lower level in the power-law graph, around 2.3 (atα = 0.9) while the

peakPoA in the transit-stub topology is almost 3.0 (atα = 0.8). After the peak,PoAand

Ratiodecrease more slowly asα increases.OPoAis close to one for the whole range ofα

107

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 1

 10

 100
C

(N
E

)/
C

(S
O

)

A
ve

ra
ge

 N
um

be
r

of
 R

ep
lic

as

alpha

PoA
Ratio

OPoA
Replica (SO)
Replica (NE)

(a)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 1

 10

 100

C
(N

E
)/

C
(S

O
)

A
ve

ra
ge

 N
um

be
r

of
 R

ep
lic

as

alpha

PoA
Ratio

OPoA
Replica (SO)
Replica (NE)

(b)

Figure 4.6: Transit-stub topology: (a) basic game, (b) payment game. We show thePoA,
Ratio, OPoA, and the number of replicas placed while varyingα between 0 and 2 with 100
servers on a 3050-physical-node transit-stub topology.

values. This can be explained by the observation in Figure 4.7(a) that there is no significant

undersupply problem here like there was in the transit-stubgraph. Indeed the highPoA

is due mostly to misplacement problems whenα is from 0.7 to 2.0, since there is little

decrease inPoAwhen the number of replicas in social optimum changes from two to one.

TheOPoAis equal to one in the figure when the same number of replicas are placed.

4.4.4 Varying Demand Distribution

Now we examine the effects of varying the demand distribution. The set of servers

with demand is random forp < 1, so we calculate the expectedPoAby averaging over 5

trials (each data point is based on 5000 runs). We run simulations for demand levels of

p ∈ {0.2,0.6,1.0} asα is varied on the 100 servers on top of the transit-stub graph.We

observe that as demand falls, so does expectedPoA. As p decreases, the number of replicas

placed in the social optimum decreases, but the number in Nash equilibria changes little.

Furthermore, whenα exceeds the overlay diameter, the number in Nash equilibriastays

constant whenp varies. Therefore, lowerp leads to a lesser undersupply problem, agreeing

with intuition. We do not present the graph due to space limitations and redundancy; the

PoA for p = 1.0 is identical toPoA in Figure 4.6(a), and the lines forp = 0.6 andp = 0.2

are similar but lower and flatter.

108

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 1

 10

 100
C

(N
E

)/
C

(S
O

)

A
ve

ra
ge

 N
um

be
r

of
 R

ep
lic

as

alpha

PoA
Ratio

OPoA
Replica (SO)
Replica (NE)

(a)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 1

 10

 100

C
(N

E
)/

C
(S

O
)

A
ve

ra
ge

 N
um

be
r

of
 R

ep
lic

as

alpha

PoA
Ratio

OPoA
Replica (SO)
Replica (NE)

(b)

Figure 4.7: Power-law topology: (a) basic game, (b) paymentgame. We show thePoA,
Ratio, OPoA, and the number of replicas placed while varyingα between 0 and 2 with 100
servers on a 3050-physical-node power-law topology.

4.4.5 Effects of Payment

Finally, we discuss the effects of payments on the efficiencyof Nash equilibria. The

results are presented in Figure 4.6(b) and Figure 4.7(b). Asshown in the analysis, the

simulations achieveOPoA close to one (it is not exactly one because of randomness in

the simulations). TheRatio for the payment game is much lower than theRatio for the

basic game, since the protocol for the payment game tends to explore good regions in the

space of Nash equilibria. We observe in Figure 4.6 that forα ≥ 0.4, the average number of

replicas of Nash equilibria gets closer with payments to that of the social optimum than it

does without. We observe in Figure 4.7 that more replicas areplaced with payments than

without whenα is between 0.7 and 1.3, the only range of significant undersupply in the

power-law case. The results confirm that payments give servers incentive to replicate the

object and this leads to better equilibria.

4.5 Discussion

We suggest several interesting extensions and directions.One extension is to consider

multiple objects in the capacitated replication game, in which servers have capacity limits

when placing objects. Since replicating one object affectsthe ability to replicate another,

109

there is no separability of a multi-object game into multiple single object games. As studied

in [GLMT04], one way to formulate this problem is to find the best response of a server by

solving a knapsack problem and to compute Nash equilibria.

In our analyses, we assume that all nodes have the same demand. However, nodes

could have different demand depending on objects. We intendto examine the effects of

heterogeneous demands (or heterogeneous placement costs)analytically. We also want to

look at the following “aggregation effect”. Suppose there are n−1 clustered nodes with

distance ofα−1 from a node hosting a replica. All nodes have demands of one.In that

case, the price of anarchy isO(n). However, if we aggregaten−1 nodes into one node

with demandn− 1, the price of anarchy becomesO(1), sinceα should be greater than

(n−1)(α−1) to replicate only one object. Such aggregation can reduce the inefficiency

of Nash equilibria.

We intend to compute the bounds of the price of anarchy under different underlying

topologies such as random graphs or growth-restricted metrics. We want to investigate

whether there are certain distance constraints that guaranteeO(1) price of anarchy. In ad-

dition, we want to run large-scale simulations to observe the change in the price of anarchy

as the network size increases.

Another extension is to consider server congestion. Suppose the distance is the network

distance plusγ×(number o f accesses) whereγ is an extra delay when an additional server

accesses the replica. Then, whenα > γ, it can be shown thatPoA is bounded byα
γ . As

γ increases, the price of anarchy bound decreases, since the load of accesses is balanced

across servers.

While exploring the replication problem, we made several observations that seem coun-

terintuitive. First, thePoA in the payment game can be worse than thePoA in the basic

game. Another observation we made was that the number of replicas in a Nash equilibrium

can be more than the number of replicas in the social optimum even without payments. For

example, a graph with diameter slightly more thanα may have a Nash equilibrium con-

figuration with two replicas at the two ends. However, the social optimum may place one

replica at the center. We leave the investigation of more examples as an open issue.

110

4.6 Summary

In this chapter we introduce a novel non-cooperative game model to characterize the

replication problem among selfish servers without any central coordination. We show that

pure strategy Nash equilibria exist in the game and that the price of anarchy can beO(n)

in general, wheren is the number of servers, due to undersupply problems. With specific

topologies, we show that the price of anarchy can have tighter bounds. More importantly,

with payments, servers are incentivized to replicate and the optimistic price of anarchy is

always one. Non-cooperative replication is a more realistic model than cooperative replicat-

ing in the competitive Internet, hence this work is an important step toward viable federated

replication systems.

111

Chapter 5

Related Work

Shared Servers: Ivy [MMGC02] is a read/write peer-to-peer file system sharedby

multiple users. A file system consists of a set of logs, each ofwhich is owned by a partic-

ipant who has a public-private key pair. A log is a list of immutable log records. Each log

has a log-head that points to the most recent log record and the log-head is signed by the

private key. A write appends a new log record and modifies the log-head to point to it. A

read scans all log records owned by all participants of the file system to find appropriate

information. A malicious server hosting the log-head can easily mount forking attacks by

concealing log records depending on clients. With A2M, we can ensure that a malicious

server tells the same sequence of log records including the most recent one. Note, however,

that Ivy depends on a distributed hash table underneath, andany “strengthening” of the

protocol must be predicated on a DHT with provable routing guarantees.

Plutus [KRS+03] is a shared storage system that enables file sharing without placing

much trust in the file servers. All data is encrypted and stored and key distribution is

decentralized. A file system is represented by a hash tree, and the root hash of the tree is

signed. Plutus is also vulnerable to forking attacks wherein a malicious server can show

different file system states to different clients.

Replicated State Machines: Byzantine-fault tolerant state machine replication has

received much attention since PBFT [CL99] added the word “practical” in its title. Re-

searchers have proposed several improvements on PBFT such as proactive recovery (PBFT-

PR [CL02]), abstraction to tolerate non-determinism [RCL01], and an architecture that sep-

112

arates execution from agreement to improve performance andconfidentiality [YMV+03].

In all cases, however, no improvement can offer liveness andsafety beyond the uniform

⌊N−1
3 ⌋ fault bound. In [YMV+03], the architecture uses two groups of replicas –N agree-

ment andM execution replicas – by dividing functionalities. This architecture can tolerate

⌊N−1
3 ⌋ faults and⌊M−1

2 ⌋ faults. A2M-enabled protocols divide functionalities into commit-

ting a sequence of protocol steps to A2M and performing an original protocol. A2M-PBFT-

EA can tolerate⌊N−1
2 ⌋ faults out ofN total replicas since A2M is in a trusted computing

base. Compared to agreement replicas, A2M is a small, general purpose mechanism that is

applicable to various protocols to defend against equivocation.

Recently, BFT2F [LM07], a PBFT variant uses some of the ideasin SUNDR to provide

linearizability and liveness up to⌊N−1
3 ⌋ faults, and a weaker safety property called fork*

consistency without liveness for up to 2⌊N−1
3 ⌋ faults, relying on clients’ help to protect

consistency. With the help of A2M, A2M-PBFT-E can instead guarantee linearizability

up to 2⌊N−1
3 ⌋ faults, and A2M-PBFT-EA guarantee both linearizability and liveness up to

⌊N−1
2 ⌋ faults.

In loosely related work, BAR [AAC+05] fault tolerance contains a notion of protocol

action commitment (to a quorum maintained by replicas themselves) to capture rational

behavior. Also, PeerReview [HKD07], CATS [YC07], and Timeweave [MB02] use au-

thenticated histories to allow fault detection given a replica’s self-inconsistent history; this

might be a helpful mechanism to allow A2M-based protocols torecover even when the

safety fault bound is (temporarily) violated.

A2M-PBFT-EA bears a close resemblance to Paxos [Lam98] in that they both require

quorum size⌊N−1
2 ⌋+ 1. Paxos assumes benign faults, and it is live as long as fewerthan

one half replicas are faulty but is safe with up toN faults. In contrast, A2M-PBFT-EA

assumes Byzantine faults, but thanks to A2M a faulty node canstop or lie consistently to

other replicas. A2M-PBFT-EA is both safe and live when fewerthan one half replicas are

faulty, but when this assumption is violated, there is no guarantee on safety and liveness.

Symmetric-Fault Tolerance: Researchers have describedsymmetric faults[TP88] as

a specialization of Byzantine faults, and shown that for agreement protocols, a hybrid fault

model that is a mixture of non-malicious faults (of sizeb), malicious symmetric faults (of

size s), and malicious asymmetric faults (of sizea) can lead to more flexible tolerance

113

guarantees. In [TP88], a modified version of the classic synchronous Oral Messages (OM)

agreement algorithm can toleratea+s+b faults whenN > 2a+2s+b+r (for a≤ r) where

r is the number of rounds of message exchange excluding initial transmission. Follow-on

work includes analyses of fault bounds on synchronous and asynchronous approximate

agreement under the hybrid fault model [KA94,AK96]. In contrast, we focus on providing

a practical, generic, small primitive that prevents equivocation to limit Byzantine hosts to

behave symmetrically and constructing replicated state machine and shared storage pro-

tocols with better fault tolerance in a weak synchrony environment. We hope to explore

further whether A2M can be used as a systematic way to make Byzantine faults symmetric,

admitting simpler protocols with greater fault tolerance.

Abstract Shared Objects:Fleet [MR00] uses a consensus protocol by performing read

and append operations on Timed Append-Only Arrays (TAOAs),which are single-writer

multi-reader objects to which clients can append values andfrom which clients can read

values. Each appended value is tagged with a logical timestamp vector. A TAOA is emu-

lated by a distributed client-server protocol built atop ab-masking quorum system [MR97],

which requiresN > 4b to tolerateb Byzantine faults. Unless this fault bound is violated, a

TAOA provides the following properties: values are appended in a sequential order; values

appended are not modified or deleted; and timestamps partially capture the order of values

that different clients append. In contrast, A2M is a local primitive that can be used to en-

force a node to commit to a sequential order of operations. Our goal is to slightly grow the

trusted computing base to strengthen distributed trustworthy abstractions such as replicated

state machines and shared storage built atop the base. In fact, implementing Fleet’s TAOA

and consensus protocol could be simplified if servers employA2Ms.

Trusted Devices: Trusted hardware, such as today’s commodity Trusted Platform

Module (TPM) hardware developed by the Trusted Computing Group [tcg] has been previ-

ously proposed, implemented, and marketed as a way to securely boot a sensitive host with

approved, bug-free software. Operations performed by the TPM are authenticated using a

private signing key that resides on the module and cannot be retrieved or modified without

physically destroying the module. Unfortunately, software is not bug-free, and even if cor-

rectly loaded at secure boot time, it can be overcome by exploits such as buffer overflows.

As a result, while existing secure hardware can make machines strictly harder to compro-

114

mise, it does not obviate the need for Byzantine-fault tolerant systems, nor does it improve

their safety and liveness properties: it makes the likely number of faults smaller, but does

not improve resilience against a given number of faults.

The hardware istamper-resistant, which means that its cryptographic keys and its cor-

rect operation cannot be compromised remotely or physically; at worst, the host computer

can be made inoperative, but its trusted hardware cannot be coerced to attest false state-

ments. As long as the hardware manufacturer, who assigns andcertifies keys used by a

trusted device, does not leak its private keys, a device can secure and attest to others the

software booting on a computer. Unfortunately, a hardware manufacturer who is trusted

today may not be trusted 30 years from now; its private keys may have been leaked or

compromised, or even the manufacturer itself may have takento unwholesome behavior.

“Trusted hardware” is a term that must be defined carefully ina long-term context.

Proactive Recovery:Proactive recovery for BFT systems [CL02] periodically reboots

a potentially buggy machine with a fresh installation of thesoftware from a read-only

medium, flushing any runtime code damage that may have been done by bug exploits since

the last reboot. Whereas without proactive recovery, BFT systems have avulnerability

window– the time extent during which the total number of faults mustbe bounded – that

spans the entire lifetime of the system, with proactive recovery this window shrinks to a

much shorter extent, typically on the order of a few inter-recovery intervals; as long as

faults are spread so that no vulnerability window contains more than the bound, all is good.

Nevertheless, if the bound is ever violated during any vulnerability window, guarantees are

lost forever after.

Preservation: OceanStore [KBC+00] and Glacier [HMD05] are distributed storage

systems that use replication of self-certifying data to provide data durability. As far as we

know, LOCKSS [MRG+05] is the only proposal for digital preservation not requiring an

inviolable N/3 bound on faults in preserving non-self-certifying data. LOCKSS, however,

is probabilistic in nature and does not yet provide hard safety or liveness guarantees.

Certified Accountable Tamper-evident Storage (CATS) [YC07] is a service that pro-

vides strong accountability of actions done by the server and clients. Its approach is not to

mask faults through replicated servers, but to detect faults and punish actors responsible for

the faults. It uses an auditing scheme that catches server rollback attacks probabilistically

115

and its snapshot creation frequency depends on the request rate and write sharing.

Replica Placement: The placement of replicas in the caching problem is the most

important issue. There is much work on the placement of web replicas, instrumentation

servers, and replicated resources. All protocols assume obedience and ignore participants’

incentives. In [GHI+01], Gribble et al. discuss the data placement problem in peer-to-peer

systems. Ko and Rubenstein propose a self-stabilizing, distributed graph coloring algorithm

for the replicated resource placement [KR03]. Chen, Katz, and Kubiatowicz propose a dy-

namic replica placement algorithm exploiting underlying distributed hash tables [CKK02].

Douceur and Wattenhofer describe a hill-climbing algorithm to exchange replicas for re-

liability in FARSITE [DW01]. RaDar is a system that replicates and migrates objects for

an Internet hosting service [RRRA99]. Tang and Chanson propose a coordinated en-route

web caching that caches objects along the routing path [TC02]. Centralized algorithms for

the placement of objects, web proxies, mirrors, and instrumentation servers in the Internet

have been studied extensively [LGI+99,QPV01,JJJ+00,JJK+01].

The facility location problem has been widely studied as a centralized optimization

problem in theoretical computer science and operations research [MF90]. Since the prob-

lem is NP-hard, approximation algorithms based on primal-dual techniques, greedy algo-

rithms, and local search have been explored [JV99, MP00, MYZ02]. Our caching game is

different from all of these in that the optimization processis performed among distributed

selfish servers.

Game Theory: There is little research in non-cooperative facility location games, as

far as we know. Vetta [Vet02] considers a class of problems where the social utility is

submodular (submodularity means decreasing marginal utility). In the case of competitive

facility location among corporations he proves that any Nash equilibrium gives an expected

social utility within a factor of 2 of optimal plus an additive term that depends on the facility

opening cost. Their results are not directly applicable to our problem, however, because we

consider each server to be tied to a particular location, while in their model an agent is

able to open facilities in multiple locations. Note that in that paper the increase of the price

of anarchy comes from oversupply problems due to the fact that competing corporations

can open facilities at the same location. On the other hand, the significant problems in our

game are undersupply and misplacement.

116

In a recent paper, Goemans et al. analyze content distribution on ad-hoc wireless net-

works using a game-theoretic approach [GLMT04]. As in our work, they provide monetary

incentives to mobile users for caching data items, and provide tight bounds on the price of

anarchy and speed of convergence to (approximate) Nash equilibria. However, their results

are incomparable to ours because their pay-off functions neglect network latencies between

users, they consider multiple data items (markets), and each node has a limited budget to

cache items.

Cost sharing in the facility location problem has been studied usingcooperative

game theory [GS00, PT03, DMV03]. Goemans and Skutella show strong connections be-

tween fair cost allocations and linear programming relaxations for facility location prob-

lems [GS00]. Pál and Tardos develop a method for cost-sharing that is approximately

budget-balanced and group strategyproof and show that the method recovers 1/3 of the

total cost for the facility location game [PT03]. Devanur, Mihail, and Vazirani give a

strategyproof cost allocation for the facility location problem, but cannot achieve group

strategyproofness [DMV03].

117

Chapter 6

Conclusion and Future Work

To conclude this thesis, we summarize key results of this work and describe potential

future research directions.

6.1 Summary

In this thesis, we explored mechanisms to tolerate misbehavior – either Byzantine or

selfish behavior – in replicated systems.

We first investigated how minimal trusted primitives can improve Byzantine fault tol-

erance of replicated and centralized systems in practical ways. We proposed Attested

Append-Only Memory (A2M), a trusted system facility that prevents equivocation. A ser-

vice using A2M will always provide the same (verifiable) answer to a given question. A2M

provides the abstraction of a trusted log that keeps the immutable history (e.g., linearized

executed operations). Using A2M, we improved upon the stateof the art in Byzantine-fault

tolerant replicated state machines, producing A2M-enabled protocols (variants of Castro

and Liskov’s PBFT) that remain correct (linearizable) and keep making progress (live) even

when half the replicas are faulty, in contrast to the previous upper bound. We also presented

an A2M-enabled single-server protocol that guarantees linearizability despite server faults.

Our prototype demonstrates that this fault tolerance improvement is achieved with minor

performance overhead.

Second, we addressed fault tolerance issues of long-running applications such as digital

118

preservation systems. Due to the operating time scale, traditional homogeneous approaches

to this problem are thus very likely to violate any fault bound due to short-term overwhelm-

ing faults and to lose safety.

By taking a fresh look at the traditional service propertiesand Byzantine fault models,

we proposed a new service property called HWICR that fits wellto long-term services and

adapts the traditional Byzantine fault model to a tiered model that is inspired by different

levels of security assurance. We showed how to split a Byzantine-fault tolerant service into

a service of alternating service and proactive recovery phases.

In particular, we explored a long-term naming service that preserves mappings between

human readable names and authenticators, which is a missingpiece in the current archival

storage literature. We presented TimeMachine, a Byzantine-fault tolerant preserved name

service that uses simple, easy-to-build trusted hardware to preserve data that are not self-

verifying. TimeMachine splits system operation into alternating phases of service and

proactive recovery; it can survive up to N-1 faults out of N replicas during normal operation

and up to⌊N−1
3 ⌋ faulty replicas during proactive recovery phases. The service phase serves

client queries and audits self-verifying blocks. The proactive recovery phase makes im-

portant state changes by incorporating new additions received during the previous service

phase.

Third, we examined replication in multiple administrativedomains (MADs) that have

incentives to behave rationally. We take a game-theoretic approach to characterize the im-

pacts of rational behavior on the efficiency of replication.We show that selfish replication

results in high access cost; when there is no topology restriction, the inefficiency mea-

sure (i.e., the price of anarchy) is proportional to the sizeof the network. However, with

payment, the best achievable replication configuration is always socially optimal. Our find-

ings suggest that a proper incentive protocol can lead to a good social behavior in MAD

applications.

119

6.2 Future Work

We believe that A2M is a start in the research direction of using small and generic

trusted primitives to achieve better system properties. Wedemonstrated that including A2M

in a trusted computing base can benefit in building distributed trustworthy services such as

replicated state machines and shared storage via improved fault tolerance. Investigating

other trusted abstractions and their translation to practical system facilities is a promising

future work; examples include trusted logical clocks for session guarantees and trusted

version vectors for optimistic replication.

We applied A2M to systems that operate in Byzantine environments. An interesting

direction is to apply A2M to systems in rational environments where an individual behaves

selfishly to maximize its gain but is not Byzantine. It is an open question whether A2M’s

prevention of equivocation among rational agents can lead to more desirable equilibria.

We implemented A2M in a library. We hope to explore other implementation scenarios

such as VMM and trusted hardware. We hope to implement a Xen A2M driver for appli-

cations running on top of Xen. In addition, we hope to explorethe cost of adding A2M to

a commercial TPM-like environment.

We explored a design space for long-term Byzantine fault tolerance with TM. We fo-

cused on digital preservation applications, but the HWICR property, tiered fault model,

and two-phase approach may well be applicable to state machine replication of other non-

interactive applications.

There are a few enhancements we can make in proactive recovery of TM. First, we im-

prove the fault bounds in TimeMachine, but we still have 1/3 fault bounds during proactive

recovery phases. We hope to explore multiple points on the continuum of fault models

through ourf T-bound, in which the number of faults inT consecutive phases is bounded

by f T for some fractionf , but there can be phases in which more thanf replicas are

faulty. Such a failure model may require multi-phase recovery and at leastT SAIM slots,

rather than the single-slot algorithm we described in this thesis. Second, we assume hard-

ware clocks to invoke the proactive recovery almost at the same. Asynchronous proactive

recovery that does not rely on hardware clocks might lead to more practical preservation

systems.

120

The TM evaluation used short-running benchmarks. An evaluation of long-term usage

of our systems will provide valuable insights. We hope to runTM alongside an archival ser-

vice to understand better the practical applicability of this approach in a real-world archival

environment.

Finally, we addressed problems of replication among rational nodes. Our results are

mostly existence proofs; thus, developing a practical payment protocol is future work. Our

model considers only rational nodes, but in real world, we would have both selfish and

Byzantine nodes. Considering both Byzantine and rational nodes has gotten attention in

systems research community (e.g., BAR [AAC+05]). Tackling this problem withpractical

solutions would be a long-term challenge.

121

Bibliography

[AAC+05] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, MikeDahlin, Jean-

Philippe Martin, and Carl Porth. BAR fault tolerance for cooperative ser-

vices. InProc. of SOSP, 2005.

[ABC+02] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie

Chaiken, John R. Douceur, Jon Howell, Jacob R. Lorch, MarvinTheimer,

and Roger P. Wattenhofer. FARSITE: Federated, available, and reliable

storage for an incompletely trusted environment. InProc. of OSDI, 2002.

[AD04] Todd W. Arnold and Leendert P. Van Doorn. The IBM PCIXCC: A new

cryptographic coprocessor for the IBM eServer. 48(3/4):475–487, 2004.

[ADTW03] Elliot Anshelevich, Anirban Dasgupta,Éva Tardos, and Tom Wexler. Near-

optimal network design with selfish agents. InProc. of STOC, 2003.

[AEMGG+05] Michael Abd-El-Malek, Greg Ganger, Garth Goodson, Michael Reiter, and

Jay Wylie. Fault-scalable Byzantine fault-tolerant services. InProc. of

SOSP, 2005.

[Age] National Security Agency. Global information grid (gig).

http://www.nsa.gov/ia/industry/gig.cfm.

[AK96] Mohammad H. Azmanesh and Roger M. Kieckhafer. New hybrid fault

models for asynchronous approximate agreement.IEEE Trans. on Com-

puters, 45(4):439–449, 1996.

[amt] Intel Active Management Technology (AMT).

http://www.nsa.gov/ia/industry/gig.cfm

122

[BBC+04] Andy Bavier, Mic Bowman, Brent Chun, David Culler, ScottKarlin, Steve

Muir, Larry Peterson, Timothy Roscoe, Tammo Spalink, and Mike Wawr-

zoniak. Operating system support for planetary-scale network services. In

Proc. of NSDI, March 2004.

[BCG+06] Stefan Berger, Ramón Cáceres, Kenneth A. Goldman, Ronald Perez,

Reiner Sailer, and Leendert van Doorn. vTPM: Virtualizing the trusted

platform module. InProc. of USENIX Security, 2006.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex

Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of

virtualization. InProc. of SOSP, 2003.

[ber] Berkeley DB.http://www.oracle.com/database/berkeley-db/.

[BLL00] Ahto Buldas, Peeter Laud, and Helger Lipmaa. Accountable certificate

management using undeniable attestations. InProc. of CCS, 2000.

[BSR+06] Mary Baker, Mehul Shah, David S. H. Rosenthal, Mema Roussopoulos,

Petros Maniatis, TJ Giuli, and Prashanth Bungale. A fresh look at the

reliability of long-term digital storage. InProc. of EuroSys, April 2006.

[CDH+06] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen, Emil Sit, Hakim

Weatherspoon, M. Frans Kaashoek, John Kubiatowicz, and Robert Mor-

ris. Efficient replica maintenance for distributed storagesystems. InProc.

of NSDI, 2006.

[cer] CERT.http://www.cert.org/.

[CKK02] Yan Chen, Randy H. Katz, and John D. Kubiatowicz. SCAN: A dynamic,

scalable, and efficient content distribution network. InProc. of Intl. Conf.

on Pervasive Computing, 2002.

[CL99] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In

Proc. of OSDI, 1999.

http://www.oracle.com/database/berkeley-db/
http://www.cert.org/

123

[CL02] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and

proactive recovery.ACM Trans. on Computer Systems, 20(4):398–461,

2002.

[CML+06] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and

Liuba Shrira. HQ replication: A hybrid quorum protocol for Byzantine

fault tolerance. InProc. of OSDI, 2006.

[CYC+01] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson

Engler. An empirical study of operating system errors. InProc. of SOSP,

2001.

[Dan98] Peter B. Danzig. NetCache architecture and deploment. In Computer Net-

works and ISDN Systems, 1998.

[DKK +01] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion

Stoica. Wide-area cooperative storage with CFS. InProc. of SOSP, 2001.

[DMV03] Nikhil R. Devanur, Milena Mihail, and Vijay V. Vazirani. Strategyproof

cost-sharing mechanisms for set cover and facility location games. InProc.

of EC, 2003.

[DW01] John R. Douceur and Roger P. Wattenhofer. Large-scale simulation of

replica placement algorithms for a serverless distributedfile system. In

Proc. of MASCOTS, 2001.

[emc] EMC Symmetrix.

[FCAB00] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache:

A scalable wide-area web cache sharing protocol.IEEE/ACM Trans. on

Networking, 8(3):281–293, 2000.

[FPT04] Alex Fabrikant, Christos H. Papadimitriou, and Kunal Talwar. The com-

plexity of pure Nash equilibria. InProc. of STOC, 2004.

124

[GCB+02] Jim Gray, Wyman Chong, Tom Barclay, Alex Szalay, and Jan vandenBerg.

TeraScale SneakerNet: Using inexpensive disks for backup,archiving, and

data exchange.Technical Report MSR-TR-2002-54, 2002.

[GDS+03] Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D. Gribble,

Henry M. Levy, and John Zahorjan. Measurement, modeling, and analysis

of a peer-to-peer file-sharing workload. InProc. of SOSP, October 2003.

[GHI+01] Steven Gribble, Alon Halevy, Zachary Ives, Maya Rodrig,and Dan Su-

ciu. What can databases do for peer-to-peer? InWebDB Workshop on

Databases and the Web, June 2001.

[GJ79] Michael R. Garey and David S. Johnson.Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman and Co., 1979.

[GLMT04] Michel X. Goemans, Li Erran Li, Vahab S. Mirrokni, and Marina Thottan.

Market sharing games applied to content distribution in ad-hoc networks.

In Proc. of MOBIHOC, 2004.

[GS00] Michel X. Goemans and Martin Skutella. Cooperative facility location

games. InProc. of SODA, 2000.

[HAF+07] Galen Hunt, Mark Aiken, Manuel Fähndrich, Chris Hawblitzel, Orion

Hodson, James Larus, Bjarne Steensgaard, David Tarditi, and Ted Wob-

ber. Sealing OS processes to improve dependability and safety. In Proc. of

EuroSys, 2007.

[HKD07] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. PeerReview:

Practical accountability for distributed systems. InProc. of SOSP, 2007.

[HL07] Galen Hunt and James Larus. Singularity: Rethinkingthe software stack.

Operating Systems Review, 41(2):37–49, April 2007.

[HMD05] Andreas Haeberlen, Alan Mislove, and Peter Druschel. Glacier: Highly

durable, decentralized storage despite massive correlated failures. InProc.

of NSDI, 2005.

125

[HS91] Stuart Haber and W. Scott Stornetta. How to time-stamp a digital docu-

ment.Journal of Cryptology: the Journal of the International Association

for Cryptologic Research, 3(2):99–111, 1991.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness

condition for concurrent objects.ACM Trans. on Programming Languages

and Systems, 12(3):463–492, 1990.

[IRD02] Sitaram Iyer, Antony Rowstron, and Peter Druschel.Squirrel: A decen-

tralized peer-to-peer web cache. InProc. of PODC, 2002.

[jav] Java.http://java.sun.com/.

[JJJ+00] Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval Shavitt, and Lixia

Zhang. On the placement of internet instrumentation. InProc. of INFO-

COM, 2000.

[JJK+01] Sugih Jamin, Cheng Jin, Anthony R. Kurc, Danny Raz, and Yuval Shavitt.

Constrained mirror placement on the internet. InProc. of INFOCOM,

2001.

[JV99] Kamal Jain and Vijay V. Vazirani. Primal-dual approximation algorithms

for metric facility location and k-median problems. InProc. of FOCS,

1999.

[KA94] Roger M. Kieckhafer and Mohammad H. Azamanesh. Reaching approxi-

mate agreement with mixed mode faults. 3(1):53–63, January1994.

[KAD +07] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Ed-

mund Wong. Zyzzyva: Speculative Byzantine fault tolerance. In Proc. of

SOSP, 2007.

[KBC+00] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick

Eaton, Dennis Geels, Ramakrishnan Gummadi, Sean Rhea, Hakim Weath-

erspoon, Westley Weimer, Chris Wells, and Ben Zhao. OceanStore: An ar-

http://java.sun.com/

126

chitecture for global-scale persistent storage. InProc. of ASPLOS, Novem-

ber 2000.

[Kle75] Leonard Kleinrock.Queueing Systems, Volume I: Theory. John Wiley &

Sons, January 1975.

[KP99] Elias Koutsoupias and Christos H. Papadimitriou. Worst-case equilibria.

In Proc. of STACS, 1999.

[KR03] Bong-Jun Ko and Dan Rubenstein. A distributed, self-stabilizing protocol

for placement of replicated resources in emerging networks. In Proc. of

ICNP, 2003.

[KRS+03] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and

Kevin Fu. Plutus: Scalable secure file sharing on untrusted storage. In

Proc. of USENIX FAST, 2003.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system.Communications of the ACM, 21(7):558–565, 1978.

[Lam98] Leslie Lamport. The part-time parliament.ACM Trans. on Computer Sys-

tems, 16(2):133–169, 1998.

[Lam01] Leslie Lamport. Paxos made simple.ACM SIGACT News (Distributed

Computing Column), 32(4):18–25, 2001.

[LGI+99] Bo Li, Mordecai J. Golin, Giuseppe F. Italiano, Xin Deng,and Kazem

Sohraby. On the optimal placement of web proxies in the internet. InProc.

of INFOCOM, 1999.

[LKMS04] Jinyuan Li, Maxwell Krohn, David Mazières, and Dennis Shasha. Secure

untrusted data repository (SUNDR). InProc. of OSDI, 2004.

[LM07] Jinyuan Li and David Mazières. Beyond one-third faulty replicas in Byzan-

tine fault tolerant systems. InProc. of NSDI, 2007.

127

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine gen-

erals problem. ACM Trans. on Programming Languages and Systems,

4(3):382–401, 1982.

[MB02] Petros Maniatis and Mary Baker. Secure history preservation through time-

line entanglement. InProc. of USENIX Security, 2002.

[Mer87] Ralph C. Merkle. A digital signature based on a conventional encryption

function. InProc. of CRYPTO, 1987.

[MF90] Pitu B. Mirchandani and Richard L. Francis.Discrete Location The-

ory. Wiley-Interscience Series in Discrete Mathematics and Optimization,

1990.

[MLMB01] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers.

BRITE: Universal topology generation from a user’s perspective. Tech-

nical Report 2001-003, 1 2001.

[MMGC02] Athicha Muthitacharoen, Robert Morris, Thomer M.Gil, and Benjie Chen.

Ivy: A read/write peer-to-peer file system. InProc. of OSDI, 2002.

[mos] Mosek.http://www.mosek.com/.

[MP00] Ramgopal R. Mettu and C. Greg Plaxton. The online median problem. In

Proc. of FOCS, 2000.

[MR97] Dhalia Malkhi and Michael Reiter. Byzantine quorum systems. InProc.

of STOC, 1997.

[MR00] Dahlia Malkhi and Michael K. Reiter. An architecturefor survivable coor-

dination in large distributed systems. 12(2):187–202, 2000.

[MRG+05] Petros Maniatis, Mema Roussopoulos, TJ Giuli, David S. H. Rosenthal,

and Mary Baker. The LOCKSS peer-to-peer digital preservation system.

ACM Trans. on Computer Systems, 23(1):2–50, 2005.

http://www.mosek.com/

128

[MS96] Larry McVoy and Carl Staelin. lmbench: Portable tools for performance

analysis. InProc. of USENIX Annual Tech. Conf., 1996.

[MYZ02] Mohammad Mahdian, Yinyu Ye, and Jiawei Zhang. Improved approxi-

mation algorithms for metric facility location problems. In Proc. of Intl.

Workshop on Approximation Algorithms for Combinatorial Optimization

Problems, 2002.

[Nao91] Moni Naor. Bit commitment using pseudorandomness.Journal of Cryp-

tology, 4(2):151–158, 1991.

[OL88] Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new

primary copy method to support highly-available distributed systems. In

Proc. of PODC, 1988.

[OR94] Martin J. Osborne and Ariel Rubinstein.A Course in Game Theory. MIT

Press, 1994.

[PST+97] Karin Petersen, Mike Spreitzer, Douglas Terry, Marvin Theimer, and Alan

Demers. Flexible update propagation for weakly consistentreplication. In

Proc. of SOSP, 1997.

[PT03] Martin Pal and Eva Tardos. Group strategyproof mechanisms via primal-

dual algorithms. InProc. of FOCS, 2003.

[QPV01] Lili Qiu, Venkata N. Padmanabhan, and Geoffrey M. Voelker. On the

placement of web server replicas. InProc. of INFOCOM, 2001.

[RCL01] Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov. BASE: Using

abstraction to improve fault tolerance. InProc. of SOSP, 2001.

[RD01] Antony Rowstron and Peter Druschel. Storage management and caching in

past, a large-scale, persistent peer-to-peer storage utility. In Proc. of SOSP,

October 2001.

129

[RRRA99] Michael Rabinovich, Irina Rabinovich, Rajmohan Rajaraman, and Amit

Aggarwal. A dynamic object replication and migration protocol for an

internet hosting service. InProc. of ICDCS, 1999.

[s3] Amazon S3.http://aws.amazon.com/s3/.

[Sch90] Fred B. Scheider. Implementing fault-tolerant services using the state ma-

chine approach.ACM Trans. on Computing Surveys, 22(4):299–319, Dec

1990.

[sfs] SFSlite.http://www.okws.org/doku.php?id=sfslite.

[SKKM02] Yasushi Saito, Christos Karamanolis, Magnus Karlsson, and Mallik Ma-

halingam. Taming aggressive replication in the pangaea wide-area file sys-

tem. InProc. of OSDI, 2002.

[Sri95] R. Srinivasan. RPC: Remote procedure call protocolspecification version

2, 1995.

[TC02] Xueyan Tang and Samuel T. Chanson. Coordinated en-route web caching.

IEEE Trans. on Computers, 51(6):595–607, 2002.

[tcg] TCG. http://www.trustedcomputinggroup.org/.

[TP88] Philip Thambidurai and You-Keun Park. Interactive consistency with mul-

tiple failure modes. InProc. of SRDS, 1988.

[Vet02] Adrian Vetta. Nash equilibria in competitive societies, with applications to

facility location, traffic routing, and auctions. InProc. of FOCS, 2002.

[YC07] Aydan R. Yumerefendi and Jeffrey S. Chase. Strong accountability for

network storage. InProc. of USENIX FAST, 2007.

[YMV +03] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi, and

Mike Dahlin. Separating agreement from execution for byzantine fault

tolerant services. InProc. of SOSP, 2003.

http://aws.amazon.com/s3/
http://www.okws.org/doku.php?id=sfslite
http://www.trustedcomputinggroup.org/

130

[ZCB96] Ellen W. Zegura, Kenneth L. Calvert, and Samrat Bhattacharjee. How to

model an internetwork. InProc. of INFOCOM, 1996.

[ZSR02] Lidong Zhou, Fred B. Schneider, and Robbert Van Renesse. COCA: A se-

cure distributed online certification authority. InACM Trans. on Computer

Systems, 2002.

	List of Figures
	Introduction
	Motivation
	Problem Definition and Challenges
	Contribution
	Organization

	A2M: System Support for Fault Tolerance
	Overview
	Motivation
	Setup
	Assumptions
	Fault Models
	Notation
	Equivocation

	Attested Append-Only Memory
	Interface
	A2M Usage
	Implementation Considerations

	A2M State Machine Replication Protocols
	Background: PBFT
	A2M-PBFT-E
	A2M-PBFT-EA

	Other A2M Protocols
	A2M-Storage
	A2M-Q/U

	Evaluation
	Microbenchmarks
	Macrobenchmarks: NFS
	Effects of A2M Placement

	The Right Abstraction
	Future Work
	Summary

	TimeMachine: Long-term Fault Tolerance
	Overview
	Separating Authenticity from Durability
	Maintaining Self-verifying Replicas for Durability
	Challenges to Durability
	Creation versus Failure Rate
	Choosing rL

	Towards a Long-term Fault Tolerant Naming Service
	New Service Property
	The Tiered Byzantine-Fault Model
	Two-phase Approach

	TimeMachine
	Components
	TM Design
	Optimizations
	Correctness

	Discussion
	Tradeoff between Safety and Availability
	Extensions

	Evaluation
	Implementation
	Experiment Results

	Future Work
	Summary

	Selfish Replication
	Overview
	Basic Game
	Game Model
	Nash Equilibrium Solutions
	Social Optimum
	Analysis
	Analyzing Specific Topologies

	Payment Game
	Game Model
	Analysis

	Simulation
	Nash Dynamics Protocols
	Varying Placement Cost
	Different Underlying Topologies
	Varying Demand Distribution
	Effects of Payment

	Discussion
	Summary

	Related Work
	Conclusion and Future Work
	Summary
	Future Work

	Bibliography

