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Abstract

Mechanisms to Tolerate Misbehavior in Replicated Systems

by

Byung-Gon Chun
Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John Kubiatowicz, Chair

Distributed systems face challenges for operating cdyrdespite misbehavior of their
components. Redundancy through replication is a widegdtischnigue to combat against
misbehavior. However, this technique has a fundamentatidiian in terms of the number
of arbitrary faults it can tolerate. This limitation becosng more serious problem when
a system operates for long periods of time. Furthermore pom@nts may deviate from
specification because of rational behavior when they operatlifferent administrative
domains.

In this thesis, we explore mechanisms to tolerate misbehaficomponents in dis-
tributed systems, focusing on replicated systems. Firgtskow that equivocation — the
act of telling different lies to different nodes — is a fundartal weapon that adversaries
can use to violate the safety of systems. To prevent equivocave propose Attested
Append-Only Memory (A2M), a trusted system facility thatsimall, easy to implement,
and easy to verify. A2M provides the programming abstraatica trusted log, which leads
to protocol designs immune to equivocation. Using A2M, weriave upon the state of the
art in Byzantine-fault tolerant replicated state machjipesducing A2M-enabled protocols
(variants of Castro and Liskov’s PBFT) that remain corrénegrizable) and keep making
progress (live) even when half the replicas are faulty, maprg the previous upper bound.
We also applied A2M to achieve linearizability in a singknger shared storage in spite of
faults. Our evaluation shows that this fault tolerance imvpment is achieved with minor
performance overhead.



Second, we address the problem of long-term fault tolerahgacal Byzantine models
require that the number of faulty nodes do not exceed a hasdrdpund. Unfortunately,
in long-running systems, uninterrupted good health isdoguarantee due to rare, short-
term overwhelming faults such as malicious attacks, leattinoss of all correctness prop-
erties. To combat this problem, we propose a tiered Byzarfinlt model that has two
fault bounds depending on the type of operations. We inttedudesirable property called
Healthy-Write-Implies-Correct-Read (HWICR) which stiptes that the system will return
correct data as long as it is written during a good period sfesy health. We then present
TimeMachine (TM), a preserved name service, that uses gphase approach to provide
HWICR under the tiered fault model. The approach alternb&dween service phase and
proactive recovery phase, and important state changeghamty during proactive recov-
ery. Our prototype demonstrates that TM meets the goal dbtigeterm naming service
with reasonable performance.

Finally, we tackle a problem of replication among rationatias in multiple adminis-
trative domains. We take a game-theoretic approach to dyém effects of rationality on
the social cost of replicated systems. We show that remicgierformed by selfish agents
can be very inefficient, but with a proper incentive mecharssich as payment the system
can be guided to socially optimal replication.

Professor John Kubiatowicz .
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Motivation

People rely on services provided by computer systems irydagiife. Many systems
are networked through the Internet, often across multigieinaistrative domains. Mission
critical systems such as banking, medical applicationgrgency response, airline con-
trol, military applications, and space mission applicasi@re not uncommon. For critical
computer systems, reliability is the most important goal.

However, achieving reliability by tolerating faults becesnharder due to several rea-
sons. Complexity in software and hardware has increaseuketrdously for decades. It
is hard to write bug-free or error-free software. As sofmvaomplexity increases, bug
rates get worse [CY®Q01]. Furthermore, bugs in networked systems can open da®-to
curity attacks through the Internet. In 2006 alone, the CERDBrdination Center [cer]
received more than 8,000 reports of security vulneraegditOften malicious attackers can
use viruses or worms to infect hosts with common vulneradsliquickly. Human errors
and misconfigurations can also thwart the reliability oftegss. These faults can be mod-
eled asByzantine faultsvhere faulty nodes can behave arbitrarily.

Replication is a fundamental technique for tolerating taulThe basic idea is that
multiple servers coordinate to run the same program imatgekarep the same copy of data,
thus giving clients an illusion of interacting with a singkerver. Many protocols have been
designed to tolerate benign faults (i.e., fail-stop fgyltamO01, OL88], but these protocols



do not defend against Byzantine faults. However, as we mihin the above, tolerating
Byzantine faults becomes more and more necessary foratrffystems. Byzantine fault
tolerant (BFT) protocols are evaluated by fault bounds, hew many faults a protocol
can tolerate before it loses correctness or liveness giessnin this regard, they have a
fundamental limitation. Itis proven in theory that they ¢alerate up to less than 1/3 faulty
replicas [LSP82, CL02]. Improving this fault bound meanattthe system can tolerate
more faults before something bad happens, which is impoidacritical systems.

Byzantine fault tolerance becomes more challenging wherstes operates for long
periods of time. For example, digital preservation systemst preserve data for decades
or longer. BFT protocols are problematic for long-term gz since there is no guaran-
tee on the system state for the past, the current, and thesfutoen their fault bound is
violated. However, for long-running applications, it ighly likely that they do violate the
fault bound, so it is important to reduce time vulnerableataltf bound violation.

Furthermore, systems that span multiple administrativealns may suffer from ra-
tional behavior of participants, which is another kind osbehavior. Participants in the
system may not follow protocol specification to maximizeitthecal utilities and to free
ride the system. In this setting, there is no clear bound enrhany participants behave ra-
tionally. Traditional BFT protocols are not suitable ingl@nvironment because of no limit
on the population of rational nodes, so we need to constmatbgols to tolerate rational
behavior.

1.2 Problem Definition and Challenges

In the distributed systems literature, it has long been &tgaaffer clients the illusion
of interacting with a single, reliable, fail-stop servegsgite the occurrence of Byzan-
tine server faults. While the initial results along thesee$ were largely theoretical, in
recent years there has been an increasing interest in pngdpiactical Byzantine-fault
tolerant systems, as exemplified by PBFT [CL02], Q/U [AEMGI5], lvy [MMGCO02],
Plutus [KRS 03], SUNDR [LKMS04], HQ [CML*06], and Zyzzyva [KAD 07].

The fault-tolerance properties of such systems can be afividto safetyguarantees,



properties that must be true at all times, dindnessgyuarantees, properties that must be-
come true within finite time from all execution states of tlystem. For replicated state
machines (e.g., PBFT, Q/U, HQ, and Zyzzyva) the target gafearantee idinearizabil-

ity [HW9O0]: completed client requests appear to have been pseckin a single, totally
ordered, serial schedule that is consistent with the ordehich clients submitted their re-
guests and received their responses. The correspondarghg guarantee is that a correct
client’s request is eventually processed. It is well esshled that if servers have no trusted
components, then no replicated system can provide thestysaid liveness guarantees
when more than a third of its replicas are faulty.

In deterministic systems that aim to guarantee linearigghdying is bad enough, but
lying in different ways to different nodes is much worse. Thetotype” problem behind
Byzantine-fault tolerant agreement, the “Byzantine gaiseproblem,” has been demon-
strated unsolvable among 3 parties when one is faulty [LEPB%® proof involves a situ-
ation in which a faulty node equivocates, namely gives hffié information to each of the
other nodes. Even with a single server, equivocation caakwvnavoc: a faulty server can
order sequential requests in different ways when respagrtdidifferent clients, potentially
changing the presumed state of the system substantiallythEacase of two conflicting
writes a and b, this could result in one client seeirggas the dominating write whereas
the other client seels instead. Thus, equivocation is a fundamental problem thatsl
Byzantine fault tolerance.

BFT models require that the number of faulty nodes do noteckeehard upper bound,
such as a third of the entire population of nodes. It has begured that such a bound is
maintainable in a reliable replicated service if partitipg nodes are well enough man-
aged, secured, and maintained that they can mostly avoidorietriggered exploits of
unpatched bugs and the physical manipulation of maliciausdns. In such a setting,
it appears reasonable to provide the usual correctnesenyom@s long as the system is
healthy— that is, no more tham out of 3f + 1 nodes are faulty at any point in time — the
system will offer its correctness guarantees [ZSR02, CL02]

Unfortunately, in long-running systems such as digitaspreation, uninterrupted good
health is tough to guarantee. First, malicious attacks agchrus and worm infections are
increasingly hard to stop, even in well managed enterpegangs; the fact that most nodes



in a replicated system will be running one or perhaps twardisimplementations and
operating systems, prone to the same exploits, does notlnekgtuation either. Second,
after decades of continual use, human errors, organiztgip-ups, and other unlikely
events are bound to crop up [BSBS6], causing bound violations to occur. Even if one such
slip into anunhealthy periodccurs, the correctness of typical BFT systems can no longer
be guaranteed, not just for the duration of the violatior, dso forever into the future.
For example, in a system such as Castro and Liskov’s PraBt€a (PBFT) [CLO2], once

the fault bound is violated, faulty nodes can cause nomyfanddes to execute distinct,
divergent sequences of operations on their local states) fwhich they cannot recover
without human intervention [LMOQ7].

To overcome failures in a single domain, systems can rdplicantent across multi-
ple administrative domains. Examples are PlanetLab [B&4}, the Global Information
Grid [Age], and GRID. Most such systems assume that sereengarate with one another
by following protocols optimized for overall system perftance, regardless of the costs
incurred by each server. In reality, servers may behavenally — seeking to maximize
their own benefit. For example, parties in different adniatsve domains utilize their
local resources (servers) to better support clients irr thven domains. They have obvi-
ous incentives to replicate objects that maximize the bemefheir domains, possibly at
the expense of globally optimum behavior. They also haveritices to gain their service
without spending their resources, whichinse riding Therefore, it is necessary to address
whether these replication scenarios and protocols maitttair desirable global properties
(low total social cost, for example) in the face of rationahbvior.

In this thesis, we explore a set of mechanisms to improve ehistior tolerance of
replicated systems. In particular, we investigate imprgthe fundamental Byzantine fault
bound in both short-term and long-term services and mitigahe effect of rational be-
havior on the costs of replicated systems.



1.3 Contribution

Addressing concerns of the previous sections, this thesisges the following contri-
butions.

System Support for Improving Byzantine Fault Tolerance: We argue that &rusted log
abstraction, which we call Attested Append-Only Memory @Mfor short, can improve
the fault tolerance of systems in the face of Byzantine $auA2M is a small-footprint
trusted primitive that has a simple interface, is broadlyli@pble, and can be implemented
easily and cost effectively. The power of A2M lies in its &lyito eliminateequivocation
telling different stories to different entities, from thegsible failure modes of untrusted
components; that is, a faulty replica in a replicated systannot undetectably answer the
same question with different answers to different cliemtstber replicas.

Using A2M, we construct A2M protocols that achieve strongearantees than pre-
vious protocols provide. In particular, A2M-Storage aekt linearizability when a file
system is shared by multiple clients on a untrusted servempi&sent two variants of Prac-
tical Byzantine Fault Tolerance (PBFT) [CLO2] that impraie fundamental Byzantine
fault bound. Similar to PBFT, A2M-PBFT-E guarantees safaty liveness with up to
L%J faulty replicas out oN total; however, whereas PBFT offers no guarantees whatso-
ever when this upper bound of faulty replicas is crossed, AZBFT-E can still guarantee
safety without liveness when faulty replicas are more t{HﬁbgﬁH but no more than \_Z’%J .
A2M-PBFT-EA is an extension of PBFT that can guarantee batétg and liveness with
up to L%J replica faults by protecting PBFT agreement and executiepss We also
show A2M is applicable to quorum-based state machine rajbic.

Long-term Fault Tolerance: We study Byzantine fault tolerance for long-term services
such as digital preservation. We pinpoint challenges amdblpms in traditional BFT
protocols and propose a new service property for long-teamicges. We introduce the
Healthy-Write-Implies-Correct-Read (HWICR) propertyhieh states that once a value is
written during a good system period it is correctly readrafeeds (i.e., the system never
returns an incorrect value) despite intervening bad systenods that violate traditional
fault assumptions. To achieve HWICR, we propose a morestaafault model, which



we call tiered Byzantine fault model, than traditional Bytiae fault models. In the tiered
fault model, we divide operations into regular operationgd atusted operations. For reg-
ular operations, we assume no more than 1 nodes are faulty (i.e., there is at least one
non-faulty node). For trusted operations that are perfdrinea more trusted component
(e.g., trusted hardware), we assume no more IU%}H nodes are faulty. By dividing
system behavior into two regions, we focus on how the preseha simple trusted ab-
straction (operating with a traditional Byzantine faulteashold) can be used to relax the
fault bounds of the overall system.

To have a concrete context, we apply our model to a long-tegitatipreservation ser-
vice. Though durability and availability have been addedssomprehensively by systems
such as OceanStore [KBOO0] and Glacier [HMDO5], authenticity has received lessssat
fying solutions: the typical approach is to rely self-verifying datafor which the name
of a data item is amuthenticatorfor that data item, which can be used to verify the item
itself (e.g., a cryptographic hash). Users who can remersbeln a name (a long string
of otherwise meaningless digits) can ascertain long-tertineanticity of the corresponding
content fetched from a preservation service. This solutioes not, however, deal with
usage models in which a user decades down the road wishethem#oate the contents of
a preserved document or a collection of documents (e.catéBudget Fiscal Year 2003,
“UCB EECS Snapshot 2002-02-07"). When lookup of presenattent is by a human-
readable name, existing systems provide no solution teeprieg) the mapping between
a name and an authenticator for a data item, assuming ingtaathis is done by some
trusted third party.

We address this naming service problem by propodimgeMachine(TM), which
achieves HWICR under the tiered Byzantine fault model. TMsus two-phase approach
where regular service and trusted proactive recovery ghalsernate. During the service
phase TM serves clients’ read requests and temporarilgtsufirite requests. Only during
the proactive recovery phase TM makes important state @sangcorporating buffered
write requests to its main data store.

Rational Behavior Tolerance in Replication: We address the problem of replication in
networks of selfish servers running in multiple adminiséeatiomains through theoretical



analysis and simulations. We take a game-theoretic apprimaanalyzing this problem.
We model selfish replication as a non-cooperative game. dibdlsic modelthe servers
have two possible actions for each object. If a replica oftuested object is located at a
nearby node, the server may be better off accessing the eaeygica. On the other hand,
if all replicas are located too far away, the server is battereplicating the object itself.
Decisions about replicating the replicas locally are adiat locally, taking into account
only local costs. We also define a more elabopagment modeln which each server bids
for having an object replicated at another site. Each site mas the option of replicating
an object and collecting the related bids. Once all servavg lthosen a strategy, each
game specifies eonfiguration that is, the set of servers that replicate the object, aed th
corresponding costs for all servers.

The lack of coordination inherent in selfish decision-mgkimay incur costs well be-
yond what would be globally optimum. This loss of efficiensyguantified by therice
of anarchy[KP99]. The price of anarchy is the ratio of the social (tptaist of the worst
possible Nash equilibrium to the cost of the social optimiime price of anarchy bounds
the worst possible behavior of a selfish system, when leftpterely on its own. How-
ever, in reality there are ways whereby the system can besduitirough “seeding” or
incentives, to a pre-selected Nash equilibrium. This ‘lopgtic” version of the price of
anarchy [ADTWO3] is captured by the smallest ratio betwe@&maah equilibrium and the
social optimum.

We show that pure strategy Nash equilibria exist in the bgame. In addition, we
prove that Nash equilibria are not efficient by computing(ihy&imistic) price of anarchy
under different network topologies and placement costglfy, we show that by adopting
payments servers are incentivized to replicate data, daasrig to Nash equilibria that have
socially optimal configurations. Thus, payment can be a wagotmbat rational behavior
problems in replicated systems.



1.4 Organization

The rest of this thesis is organized as follows. In Chddtare2present system support
for Byzantine fault tolerance, which we call Attested Apdednly Memory (A2M), to
solve equivocation problems. With A2M, we construct A2Mx1@&ige that achieves lin-
earizability in a single server and two variants of PBFT timaprove the fundamental
Byzantine fault bound. We demonstrate that this improveroan be achieved with minor
performance overhead. Chapfér 3 presents challenges fauhéolerance of long-term
services. We propose a new service property called Hedlthie-Implies-Correct-Read
(HWICR) and a tiered Byzantine fault model for long-termvéegs. We design TimeMa-
chine (TM) that achieves HWICR in the tiered fault model. Weéead our discussion to
systems running in multiple administrative domains in Geed. Using game theory we
analyze replication efficiency when participating nodelsadve rationally with or without
an incentive scheme. In Chaplér 5 we discuss related woiRhaptef we conclude and
discuss potential future research directions.



Chapter 2

A2M: System Support for Fault
Tolerance

2.1 Overview

In the distributed systems literature, it has long been &tgaaffer clients the illusion
of interacting with a single, reliable, fail-stop servegsgite the occurrence of Byzan-
tine server faults. While the initial results along thesee$ were largely theoretical, in
recent years there has been an increasing interest in pngdpractical Byzantine-fault
tolerant systems, as exemplified by PBFT [CL02], Q/U [AEMGI5], lvy [MMGCO02],
Plutus [KRS 03], SUNDR [LKMS04], HQ [CML"06], and Zyzzyva [KAD 07].

The fault-tolerance properties of such systems can be elividto safetyguarantees,
properties that must be true at all times, dindnessguarantees, properties that must be-
come true within finite time from all execution states of tlygtem. For replicated state
machines (e.g., PBFT, Q/U, HQ, and Zyzzyva) the target g@fearantee idinearizabil-
ity [HW90]: completed client requests appear to have been psecein a single, totally
ordered, serial schedule that is consistent with the ordehich clients submitted their re-
guests and received their responses. The correspondarghg guarantee is that a correct
client’s request is eventually processed. It is well esshled that if servers have no trusted
components, then no replicated system can provide thestysaid liveness guarantees
when more than a third of its replicas are faulty.
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To improve on these results, some researchers have expi&esed correctness prop-
erties. For instancéork* consistencyLMO07] is a weaker safety property than linearizabil-
ity, but can be achieved when less than two thirds of thecagbpulation are faulty. Such
bounds are useless for single-server systems, becauséutiteos is binary: the choice is
only between 0% “replica” faults (the server is non-fauliyd 100% “replica” faults (the
server is faulty). SUNDR showed how to achideek consistencyslightly stronger than
fork*, but still weaker than linearizability) in the presamof a faulty server and non-faulty
clients.

In this thesis, our goal is to understand how the fault teleeaof such systems might
be improved through the use of realistic trusted abstrasti®f course, placing the entire
application (operating system, application softwaredhare, intervening network) into
the trusted computing base trivially solves the problent tiis is totally impractical. Our
focus here is on small-footprint trusted abstractionshiaae simple interfaces, are broadly
applicable, and can be implemented easily and cost efédgtiwe argue that trusted log
abstraction, which we call Attested Append-Only Memory @M for short, is such an
abstraction. The power of A2M lies in its ability to elimiragquivocationtelling different
stories to different entities, from the possible failuredeas of untrusted components; that
is, a faulty replica in a replicated system cannot undebdgtanswer the same question
with different answers to different clients.

SectionZP motivates our choice of trusted abstractiomutih examples from both
replicated and single-server systems. Sedfioh 2.3 pesentfirst contribution, A2M, in
more detail, describing its interface, typical usage patteand implementation alternatives
that trade-off efficiency for the size of the trusted compgtbase.

Next, we delve deeper into our second contribution: spesyfstem designs for repli-
cated state machines and shared storage that use A2M tovienghrair fault tolerance, in
the context of agreement-based replicated state macHieesigr2Z.¥) and other central-
ized and distributed protocols (Sectionl2.5). These irelud

e A2M-PBFT-E is an A2M variant of Castro and Liskov’s Practi@yzantine Fault
Tolerance (PBFT) protocol. Similar to PBFT, A2M-PBFT-E gartees safety and
liveness with up tq%J faulty replicas out oiN total; however, whereas PBFT



11

offers no guarantees whatsoever when this upper bound Ity faplicas is crossed,
A2M-PBFT-E can still guarantee safety without liveness witee number of faulty
replicas is more thah%J but no more than ?%J . Thisis animportant advantage
for applications, such as high-volume banking, in whichrecness (captured by
safety) under heavy faults is desirable, even if it is nobagganied by availability
(captured by the liveness property).

e A2M-PBFT-EA is an extension of PBFT that can guarantee batktg and liveness
with up to L%J replica faults: whereas PBFT needs a three-fold replinatioo
tolerate a given number of faults, A2M-PBFT-EA needs onlpald replication.
The additional complexity of A2M-PBFT-EA may be justifiabieapplications that
require both low replicatioandhigh fault tolerance, as might be the case for critical
applications with very high replication costs, such as dépéle software for space

missions.

e A2M-Storage is an A2M-enabled single-server storage eservsimilar to
SUNDR [LKMS04]. A2M-Storage leverages A2M to guaranteeedrizability
whereas SUNDR, without help from trusted components, cinmovide fork con-

sistency.

SectionZb presents an experimental evaluation of the Appraach, using mi-
crobenchmarks on our implementation of A2M and two of our A8Nabled protocols,
A2M-PBFT-E and A2M-PBFT-EA. We also show macrobenchmamkdN&S running on
top of A2M-PBFT-E and A2M-PBFT-EA, which suggest that thestcof using A2M to
increase fault tolerance (or, conversely, reduced redwyjdas minimal: using an A2M
module through a system call-like interface, the overhé&t-& on top of A2M-PBFT-EA
is about 4% compared to that of NFS on top of traditional PRFB&bout 24% compared to
NFS on top of an untrusted NFS server, for the benefit of redu@plication factor from
3to 2.

We discuss the appropriate level for a trusted abstraati@ectior 217, discuss future
work in SectiorfZB, and then summarize in Secfioh 2.9.
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2.2 Motivation

In this section, we detail the fundamental motivation bdhar work, starting with
our basic assumptions and target system environments,aatisheing with specific illus-
trations of an adversary’s power against existing systevhg;h will motivate our A2M
design in Sectioh 213, and A2M-related protocols in Ses{@d andZ15.

2.2.1 Setup

We consider client-server systems where a service is ateswl shared by multiple
clients connected over a public network. The service camipéemented as a single server
(e.g., a file server) or multiple servers (e.g., replicatiedesmachines). Clients request
authenticatedoperations from the service, the service executes thosatiges, which
may change the service state, and returns responses tajtlestiag clients.

2.2.2 Assumptions

We use standard assumptions about the network model and edyptography. In
the network, packet drops, reorderings, and duplicatiansoccur but retransmissions of a
message eventually deliver it. However, though finite ujpe@inds exist for message deliv-
ery and operation execution times, those bounds are notrktwmprotocol entities. A faulty
node cannot violate intractability assumptions aboutdaeshcryptography. Therefore, the
adversary cannot produce pre-images or collisions fortographic hash functiofsor
forge previously unseen signatures for private signinghkeydoes not possess.

2.2.3 Fault Models

In this thesis, we consider fault models that depend on theecaf the node’s mis-
behavior. In particular, we distinguish between two caggsthe node’s owner is well-
intentioned but unaware the node’s software has been comged by a third-partyfaulty

1A one-way — or pre-image resistant — hash functiois one for which there is no polynomial-time
algorithm that, giveror, can find a previously unknowfd such thata = h(B). A collision-resistant hash
functionh is one for which there is no polynomial-time algorithm thahdind two valuest andf3 for which

h(a) = h(p).
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application modél and (ii) the node’s Byzantine behavior is because of agiwals owner
instructing it to do sofaulty operator mod¢l The nature of the trusted computing base
is quite different in the two cases. In the first model, theted computing base is set up
by the service owner; for instance, a bank owns all nodes asdres, through physical
security and other means, that only its nodes can providsdh&ce. Our concern here is
to combat software attacks such as worms and viruses agfairsst centrally administered
nodes. In the second model, we do not trust owners but trdstcagarty (e.g., a special
service provider or a trusted hardware manufacturer) tagéhe trusted computing base;
for instance, a malicious storage server can manipulatespkcts of its node except what
lies within the trusted device, which is the purview of theide provider.

In the traditional Byzantine-fault model, the cause of Byr@e behavior is not of im-
mediate consequence — that is, tolerant protocols work egirdless of whether the op-
erator or a virus writer are doing the misbehaving. Nevéeg the practical decision to
apply or not a solution to a target environment depends Bxactwhether the designer can
explain why the Byzantine-fault bound will not be violateéle justification is dependent
on whether that environment consists of a single adminig&raomain (benign operator,
potential software attacks) or multiple administrativerdons (potentially malicious oper-
ators, potential software attacks).

2.2.4 Notation

For conciseness, throughout the thesis we use the autagotianotation of Yin et
al. [YMV 03], according to which we denote l§¥)sp x an authentication certificate that
any node in a seD can regard as proof thatdistinct nodes irs said X. For example, a
traditional digital signature oX from p that is verifiable by the entire replica population
Rwould be(X)pr1, two signatures fronp andq put together would béX), ¢ r2, and a
MAC from p to q with a shared key would bg) 1. As a convention, we useto denote
the singleton sefp}, andw as shorthand for the universal set of all principals. When we
use this notation to describe collective certificates madefundividual signatures, as for
the second example above, we usually remove any signeifidation from the collective
certificate format: for example, the certifica€), 41 r 2 @above could correspond to the
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individually signed messagesp, X)pr1 and (g, X)qr 1-
We useh() to denote a one-way collision-resistant hash function siscBHA-256, and
|| to denote the bit-string concatenation operator.

2.2.5 Equivocation

In deterministic systems that aim to guarantee lineariggdying is bad enough, but
lying in different ways to different people is even worse eTprototype” problem behind
Byzantine-fault tolerant agreement, the “Byzantine gaiseproblem,” has been demon-
strated unsolvable in a population of three parties wheni®faulty [LSP82]. The proof
involves situation in which a faulty node equivocates; ngngéves different information
to each of the other nodes. Even with a single server, eqaiiotcan wreak havoc: a
faulty server can order sequential requests in differeryiswehen responding to different
clients, potentially changing the presumed state of théeaysubstantially. For the case
of two conflicting writesa andb, this could result in one client seeiagas the dominating
write whereas the other client sdesstead. Thus, equivocation is a fundamental problem
that limits Byzantine fault tolerance.

In what follows, we present two detailed examples of equation attacks against
single-server and replicated systems, to motivate oursfagu eliminating equivocation
through trusted system abstractions.

Servers Equivocating to Clients

We consider a log-structured storage server shared bypteutfients as an illustrative
example. For example, in a straw-man design for SUNDR [LKMIS6@ request an op-
eration, a client first acquires a lock at the server and doads the entire operation log,
a time-ordered collection of signed client operations. €hent checks whether the log
is correct by verifying the signatures and by checking thatlbg contains all of its own
operations in order; it then creates what must be the sergarient state by starting with
an initial state and then applying the logged operationsd@ep as a correct server would
have in a linearized system. It executes its operation basdte constructed state, thus
finding out the result of this operation. It then appendsigsed operation to the end of
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Figure 2.1: A forking attack example of two clients and ondionaus server. The server
convinces clienta andb of different system states.
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the log, sends the updated log back to the server, and reldasock.

A faulty server can mount a forking attack [LKMS04] by conlieg operations, which
causes the system’s state to diverge into multiple pog#sssilfor different clients. Sup-
pose two clients access a server as shown in Figute 2.1. t@liparformsreqs,, client
b performsreqi,, and clienta performsrecps. The latest state of the server becomes
{reqia, retun, retpa} as far as clientn is concerned. Now, clier retrieves the log of
the server to perform a new operatigatp,. The faulty server dropeegp, off the tail of
the log, only returningreqia, rethp}. Clientb executes its operation and has the log state
{requa, rethp, retpp }. The system state is now forked with regards to these twatsli@ he
cause of the problem is the ability of the faulty server torapsesent its operation log to
the two clients, equivocating on what its state is accorttingho is asking.

Systems vulnerable to this kind of equivocation attacksstwared file systems such
as Plutus [KRS 03], SUNDR [LKMS04], and Ivy [MMGCO02], quorum-based replied
state machines such as Q/U [AEMG@5], and timestamping systems such as Time-
weave [MB02]. SUNDR and Timeweave alleviate the effects apfieocation, offering
fork consistency, a weaker property than linearizabilfgr example, SUNDR maintains
state about the server’s timeline at individual clientsceiforked, all clients within the
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Figure 2.2: An example that shows the violation of linedsiity in PBFT when two repli-
cas are faulty out of four replicas. Faulty serverandr, convince non-faulty serverg
andr3 to commit different requests.

same fork enjoy a linearized view of the system, but do notssae changes in another
fork. Unfortunately, even then, unless two clients on défe forks compare their notes,
they cannot know that the server maintains multiple versmfrits state and history.

Servers Equivocating to Servers

To demonstrate equivocation problems among servers, veederBF T replicated state
machines. In particular, we choose Practical ByzantindtHalerance (PBFT) [CLO2]
since it has had a profound impact on the systems literafimeugh we give more detailed
background on PBFT in Sectién ZMK.1, for the purposes ofiltbistration, a PBFT client
is satisfied with a result to its request if it receives attéds? | + 1 replies from distinct
replicas out of thé\ total replicas, all with a matching result; a PBFT replica cammit a
request to its local state as long as a quorumL&‘géj + 1 replicas agree on the request’s
ordering in history.

Given this behavior, PBFT guarantees safety (lineariggpénd liveness, as long as
no more thaq%J replicas are faulty; if more thaﬁ%j replicas are faulty, PBFT does
not guarantee safety (and liveness is meaningless witladeiy3: faulty replicas can fool
non-faulty replicas to commit different request historiasd different clients may accept
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replies corresponding to different request historiedatiog linearizability.

To illustrate, consideN = 4; replicasr; andr, are faulty, and non-faulty replicag
andrz cannot temporarily communicate with each other (Figur ZHBenta sendgseq, to
the system. The two faulty replicas convinggo commit and executeeq, first, since the
three of them form a quorum of3 ZL%J +1. Later clientb sendseq, to the system.
The two faulty replicas convinces to commit and executeeq, first, sincerz never saw
req,. Faulty servers; andry equivocate to non-faulty servergandrs.

Furthermore, the ability of faulty servers to equivocatada-faulty servers also allows
the service to equivocate to clients, as in the previousasectFor example, clienta
andb experience via their accepted replies two different hisgrn whichreq, andreq,
are, respectively, the single, first committed requestatilag linearizability. The problem
arises because of the faulty replicas equivocating totdierhe faulty replicas are allowed
to tell clienta, with rg’s help, thatreq, is committed in their history at sequence number 1,
and also to tell clienb, with r3’s help, thatreq, is committed in their history at the same
sequence number.

Systems vulnerable to servers equivocating to serversgaeement-based Byzantine-
fault tolerant state machine replication protocols sudPBIST [CL99] and BFT2F [LMO7].
BFT2F supports fork* consistency by maintaining state &intt.

2.3 Attested Append-Only Memory

In the previous section, we argued that the adversary'#yatnlequivocate undetected
—e.g., to claim to have two different histories dependingvbith host it is talking to —is a
fundamental weapon against safety, both in single-senereplicated services. Here we
describe arattested append-only memof#2M), a simple attestation-based abstraction
that, when trusted, can remove the ability of adversariplicas to equivocate without
detection. Using an A2M implementation within the trustesnputing base, a protocol
can assume that a seemingly correct host can give only aesiegpponse to every distinct
protocol request — for some protocol specific definition agtidct” request —, even when
that same request is retransmitted multiple times by diffeclients or replicas, and even
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Figure 2.3: Structure of aattested append-only memg@i2M). An A2M contains a set
of distinct logs ;) that map sequence numbers (in the range;ab #4) to values.

if that response is undetectably faulty.

Informally, an A2M equips a host with a set of trusted, undbéfte, ordered logs (il-
lustrated in Figur€213). Each such log has an identéfi@unique within the same com-
puter) and consists of a sequence of values, each annotiited )\a log-specific sequence
number that is incremented from 0 with every new value apeértd the log, and (2) an
incremental cryptographic digest of all log entries up selit Only a suffix of the log is
stored in A2M, starting with the slot in the “low” positian > 0 and ending with the last
slot in the “high” position?r > ..

A2M essentially offers reliable services a bit-commitmsetieme [Nao91] for sequen-
tial logs, placed within the trusted computing base. Se@i&.1 describes the A2M inter-
face, SectiofnZ.31 2 presents simple usage scenariosaligt how A2M can help a service
to remove equivocation from the arsenal of Byzantine-fapérties, and Sectidn 2.38.3 ex-
plores the implementation options for A2M, along with thestrefficiency trade-off for
each.
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2.3.1 Interface

An A2M log offers methods t@ppend values, tol ookup values within the log or to
obtain theend of the log, as well as toruncate and toadvance the log suffix stored in
memory. There are no methods to replace values that haslglbeen assigned.

e append(q,X) takes a value, appends it to the log with identifiey, increments the
highest assigned sequence numieby 1, populates the slot at that position with
X, and computes the cumulative digest = h(# ||x||d,, _;), wheredp = 0. This
method does not cause any values to be forgotten, i.e., stiaeaffectc ; if the log
is unable to allocate storage to the new entry, the methtxd fai

e | ookup(q,n,z) — (LOOKUP, @, N,z X,W, 1, d) a2m, 0,1 takes log identifieq, a sequence
numbern and a nonce (for freshness), and returnsLaokup attestation.w is the
type of the attestation: if sequence numbdras not been assigned yet (i3 #)
thenw is UnassiGNED andn’ = # ; if nwas assigned once but has now been forgot-
ten (i.e.,n< ), thenwis ForcoTTENandn’ = £; if slot n has been skipped over via
theadvance method (see below) themis SkipPeD andn’ is the sequence number of
theadvance call that caused the skip; finally, iifis a slot that was filled viappend
oradvance (see below), thew is AssicNepandn’ = n. x andd are the assigned log
value and digest whem is AssigNED) and O otherwise.

e end(q,z) is similar tol ookup, but returns the last entry of the given log (currently in
position# ). Attestations from ookup andend have the same format except for the
request nameno in the beginning.

e truncate(qg,n), wheren € (L, ], forgets all log entries with sequence numbers
lower thann, setting. to n. All subsequent ookup requests for entries below
will be henceforth of typev = FORGOTTEN

e advance(q,n,d,x) allows logq to skip ahead by multiple sequence numbers. It takes
a sequence numbar> #, a digesd, and a value. It operates similarly tappend,
but instead of usind,, _ in the digest computation, it uses the giv&rskipped se-
quence numbers are reportedsasePED N | ookups. Any subsequemnbokup(qg,n”, z)
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request for a sequence numiérthat was skipped by thislvance will return an at-
testation of the form{Lookup,q,n",z x, SkipPED, I, d) A2Mm,,,1, Which contains in-
formation about thedvance method that caused the skip, until the slot is finally

FORGOTTEN

2.3.2 A2Z2M Usage

Equipped with A2M in its trusted computing base, a relial@de/ge can mitigate the
effects of Byzantine faults in its untrusted componentdyding able to rely on some small
fallback information about individual operations or his¢és of operations that cannot be
tampered with.

During setup, the untrusted component (e.g., a server) mais¢ known to all possible
verifiers (e.g., clients or other servers) the authentcateys for its A2M module and the
identifier of the A2M log used for each distinct purpose. Asda a verifier is concerned,
the A2M authentication key and log identifier are part of thwsted component’s identity.
Therefore, a particular A2M-enabled component is alloveagse only its associated A2M.

An untrusted componetcan commit individual data items or operationsabgending
them to an A2M log. For example, to prove that it has commitbeidata itenD, the com-
ponent can executmpend(g,h(D)). The data item is hashed before appending to facilitate
A2M implementations in which every log slot has a fixed length

An interested verifier can establish that the data itBms, indeed, in the un-
trusted component’s committed state by demandinigoakup attestation. To return
this attestation, the untrusted must comim(iD) to A2M.. The attestation has a form
(LOOKUP,Q,Nn,ZX,ASSIGNED, N, d)a2m.,,1 fOr some sequence numbarand noncez,
wherex = h(D) 2. This conclusively establishes that the untrusted compoindeed put
the data itemD somewhere into its committed log. The sequence numlzam be fur-
ther constrained (e.g., it can be associated with individuatocol steps) to ensure that the
untrusted component only commits a single data item forghatbcol step; in this sense,
multiple verifiers who are mutually disconnected can berasstinat the component cannot

2Note that we usé2M, to denote the authentication principal corresponding &t ps A2M module.
Trusting A2M means that hogtcannot forge authenticators B2 My without A2M’s cooperation, and that
even then, it can only coerce A2M to generate such autheotgcas per the A2M interface.



21

equivocate on the contents of itgh slot.

To ensure that the untrusted component has a particulaitedatas the last elementin
its log, a verifier can provide the untrusted component withrelom nonce and demand
the attestatiodEND, g, N, Z, X, ASSIGNED, N, d) A2m. ,1. AS loNng as the request typetsip,
the nonce is the verifier-supplied nonce, and the valgen(D), the verifier can establish
that as of the time of nonce transmission to the componeatlagt entry in the log was
that containind®, and thus no trailing entries were spuriously chopped othiyuntrusted
component.

The untrusted component is not bound to committing to imhlied data items in se-
guential log slots; it can usalvance to skip some sequence numbers. For example, if it
only needs to commit to a value for evéeyh sequence number, insteachpfend(qg, h(D))
as above, it can usalvance(q,n,0,h(D)) for n = ik. Invocation ofadvance does not “un-
prove” things that the A2M has attested to before. It merarggup the ability to attest to
a real value for the skipped sequence numbers, and disatsotlie newly appended re-
guest's digest from the log’s cumulative history digessthar, which is not required when
committing to individual data items.

When interested in entire histories of data items (e.gyestjlogs), verifiers can make
use of not only the committed data item itself, but also thealative digestd. Thanks
to the collision-resistant properties of the hash functised, there is a single sequence of
data items appended to lgdor which the cumulative digest & Therefore, by comparing
the digests in twa.ookup attestations from two different untrusted servers, a \erdan
establish conclusively that the two servers have commttigtie same history up to the
looked up sequence numbedvance can be used, as above, to disassociate two portions
of the log, for example, when part of the log is missing du@dmpde’s recover.

To revisit the scenario of a storage server that maintairegadr committed client
requests but maliciously drops some off the end when talking victim client (Sec-
tion[Z2.5), consider forcing the server to maintain thatito A2M. Clientb can demand
a freshEnp attestation from the server’s A2M log, along with the higtdself, and en-

3|t is important to point out that agreement of two A2M logs e same sequence number and digest
does not implynecessarily that the two logs must also agree on attessatibaut all preceding sequence
numbers and digests; the useanfvance legitimately contradicts this implication. It is possititechange
the interface so as to guarantee this implication, but thii required for our case studies in this thesis.
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sure that the included digest is indeed the cumulative tigfabe history; this guarantees
to b that the server has not omitted any requests from the end obihmitted log in its
response, eliminating this particular problem. Similattyrevisit the replicated scenario
in which malicious replicas profess to different committeduests to different non-faulty
replicas, convincing them to commit divergent requestst{§elZZ5), consider requiring
replicas to place such messages into an A2M message loglisdasmitting them. Now a
non-faulty replica, before it allows itself to be convindaganother replica’s message, en-
sures that the message is attestedlivakup attestation drawn from the message sender’s
A2M message log. In this way, the faulty replica cannot egcate to two different non-
faulty replicas to effect the scenario.

These simple illustrations miss many finer details. We predetailed A2M-enabled
protocol designs that achieve fault tolerance that theyndidpossess before, or increase
their fault tolerance, in Sectiohs 2.4 dnd|2.5.

2.3.3 Implementation Considerations

The fundamental premise behind an implementation of A2IVh& it is harder to
subvert than the main application. Different implememtascenarios (illustrated in Fig-
ure[Z.4) lead to different threat models and degrees of inuke resulting system, and are
appropriate for different applications. Our contributisra novel division of functionality
between trusted and untrusted components, not a specifienmeptation of it — our exper-
imental evaluation in Sectidn 2.6 is a proof of concept, theobimplementation scenarios
are possible, some of which we characterize below.

The implementation scenarios we present are:

e A separate service offered by a trusted provider or a hadlenenponent (Fig-
ure[Z4(a)) that requires a separate machine providing A2d/eae slow to access.

e A software-isolated module (Figurte2.4(b)) that requiresimg a software-protected
lightweight process and is very fast to access since botteA-@nabled application
and A2M are in the same address space.
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Figure 2.4: A2M implementation scenarios. Thick boxesrdsdie the trusted computing
base. (a) trusted service, (b) trusted software isola{@rtyusted VM, (d) trusted VMM,
and (e) trusted hardware.

e A trusted virtual machine (Figufe2.4(c)) that requires ARBMIning in a separate
virtual machine and is fast to access.

e A trusted virtual machine monitor (FiguteP.4(d)) that riegs adding a hypervisor
interface to A2M inside the hypervisor and is fast to access.

e Trusted hardware (Figuke2.4(e)) that requires progrargminusted hardware board
to implement A2M and can be extremely fast due to hardwarptoegraphic accel-

eration.

These implementations are viable in the face of differergats. All five implementations
work under the faulty application model (external attaaisiast server software) but only
(a) and (e) work under the faulty operator model (maliciopsrators that own, operate,
and can manipulate entire servers).

In the simplest case, A2M can be a software abstraction imgheed as a service
visible to applications via an RPC-like interface (Figlzd(2)). For instance, it could
be a service offered by a trusted provider, such as Amazd@'s3, or by a separate,
hardened component with significantly greater assurancései face of software errors
than the main application software and hardware. This islairto notarization-like ap-
proaches [HS91, MB02, YCO07] that rely on a trusted writeeonzedium external to the
main system. Though the entire application stack can fapl{(eation, operating system,
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and hardware), as long as the A2M is running on a trusted syte application can be
protected. The big drawback with this implementation sdens.its network-bound nature
—in fact, many of its prior instances in practice use thimdl write-once medium once
a day or so — as well as the requirement that everyone neelilseoaecess to the trusted
A2M service provider. Applications with fairly slow requesites such as shared backup
services, long-term digital preservation, or certificatéharities may be able to absorb the
high-latency interaction with A2M in their relatively irdguent state changes.
Figure[Z4(b) presents a more decentralized approach, ichvthe A2M implemen-
tation relies on the software-based isolation between Al an A2M-enabled applica-
tion. This approach takes advantage of programming laregtigge and memory safety
for isolation. Therefore, A2M can be implemented as a Ijpr&or instance, in the Sin-
gularity [HLO7] operating system, the A2M module would beragram that runs as a
separate software-isolated process in the same address dp#he Singularity isolation
mechanism is trusted, it is possible to trust A2M even if tt&\VAenabled application is
untrusted. Similarly, in the Java Virtual Machine (JVM)\{jaan application using A2M
runs in a sandbox, which constitutes a safe execution envient. The assumption is that
if the JVM interpreter, JVM core classes, and an operatirsgesy that runs the JVM can
be trusted, A2M can be trusted, even if the A2M-enabled Jppéication is not. Though
the isolation is no longer physical as with the scenario guFe[Z%(a), communication
between the application and A2M is fast since they are bothdérsame address space.
FigurdZ3(c) presents the A2M implementation that reliethe inherent fault isolation
properties of a virtual machine monitor (VMM). In the figutke A2M module is a user-
space program running on a small, verifiable operating systetop of a VMM. As long
as the VMM and the mini-operating system are trusted to béo#@xpee, it is possible to
trust the A2M abstraction, even if the application and itsegal-purpose operating system
are compromised. For instance, the virtual Trusted Platfislodule (vTPM) [BCG 06]
has this architecture. Communication between the apfitaind A2M is only subject to
VMM-optimized RPCs, which systems such as Xen [BDB] make very efficient.
Further reducing the trusted footprint, the A2M impleméiotacould be placed within
the VMM, as in Figurd2l4(d). Here, the assumption is that alsMMM (or, indeed,
a microkernel) can be carefully implemented (or formallyified) as bug-free, isolating
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the correctness of the A2M implementation from potentiaraging system or application
errors above the VMM. For instance, Xen’s trusted hypeniisterfaces [BDF 03] could
host such an implementation scenario. Both VMM approacdteisae the cost of contacting
A2M and can yield efficient, interactive performance for lagggions such as file systems
or transaction processing systems.

Finally, Figure[Z}(e) places the A2M within the hardwarselt. Since it tends to
be much harder to coerce a hardware module to operate agaisgecification than it
is for software modules, especially without physical asdesthe hardware, this scenario
provides the greatest level of trust in A2M. Hardware impdeation options might be
to extend a standard Trusted Platform Module (TPM) with saaéitional non-volatile
RAM or an Intel Active Management Technology (AMT) chip [dmor to use a pro-
grammable secure coprocessor such as IBM’s commerciadijadve PCIXCC [AD04]
board, a programmable PCI-X card with cryptographic piirag as well as physical and
electrical tamper-resistance. Tamper resistance offereaseghysical security even a
malicious host operator armed with electrical probes chonerce A2M to give responses
that are inconsistent with its specification or to reveahitthentication key material, except
for extremely expensive physical cryptanalytic attacks #ire unrealistic for most practi-
cal situations. Moreover, whereas in the past tamper eggistimplied low performance,
products such as the PCIXCC coprocessor make a hardware ipMmentation poten-
tially the best performing one — albeit most expensive — agrour scenarios. Nevertheless,
pervasive hardware implementations of new programmingadifons tend to be slow to
arrive, slow to change, and slow to turn into commoditieskimg this a more tenuous
scenario, except for the most sensitive applications.

In this thesis, we experiment with a software A2M impleménta Values stored
within A2M logs can have a configurable fixed size, e.g., 32bytThe A2M sequence
number field needs to have a size large enough to hold seqonandgers of long-running
applications (e.g., 160 bits). We implement authenticathased on both digital signa-
tures and MACs (with a slightly modified interface from thatSectiof2.3]1), though we
describe the digital signature version of all protocol dasifor simplicity.
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Replicated State Machine

Figure 2.5: Replicated state machine. Clients send resjteeservers, servers agree on the
sequence of requests to execute, execute requests in gezlagder, and send replies back
to the clients.

2.4 A2M State Machine Replication Protocols

In this section, we present state machine replication podsathrough the use of A2M,
improve their fault tolerance by rendering equivocatiotirext or evident. First, in Sec-
tion[Z 41, we present a brief overview of the salient fezgwof Castro and Liskov's PBFT
protocol for replicated state machines. Second, in SeBlidi®, we present a simple ex-
tension of PBFT, in which A2M protects clients from the reps’ misbehavior, retaining
PBFT’s safety and liveness for up [é‘g—lj faulty replicas out o, but also guaranteeing
safety without liveness for up toLQ'S;lJ faulty replicas. Second, Sectibn2]4.3 goes further
to protect not only clients from replica misbehavior in PBBUt also replicas from each
other, allowing the fault tolerance of the protocol to go u;ﬂ'i;lj with both safety and
liveness.

2.4.1 Background: PBFT

Castro and Liskov’s PBFT protocol [CLO2] is a replicatedilfaolerant mechanism for
implementing astate maching¢Sch90]: an abstraction that represents a deterministic se
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vice, in which a starting state (e.g., an empty databasejransequence of read-compute-
write operations at the service determine precisely thee sththat service at the end of
the operation sequence (Figlirel2.5). Such state machieeslatively straightforward to
implement on a single, single-threaded server at an indalidomputer, though any faults
at that computer always cause a service failure. For faldtdnce reasons, it often makes
sense to implement the state machine abstraction over dagtigouof such potentially
faulty computers interconnected via a potentially faukywork, hoping that even if some
computers fail, the service as a whole can continue funictgpoorrectly. Unfortunately,
implementing the state machine abstraction over such aai@uand network is no sim-
ple task. In PBFT, each participating computer implememsentire state machine on its
local replica of the service state, and replicas commuaigétih each other to ensure that
they all execute the same sequence of operations, and ndigkliral computers’ faults.
We describe the protocol in more detail below.

In PBFT, a clientc multicasts a request messa@REQUEST,0,t,C)cr1 to the N ser-
vice replicas in replica sd®, whereo is the operation requested, ahds the times-
tamp. The client accepts a reply for its request (and only tben submit another)
when it receives’t%J + 1 valid matchingRepLY messages, forming theply certificate

(REPLY,V,N,t,C,I)§ L=y wherev is the view numbem is the assigned sequence num-

+10
ber, andr is the result of the request. viewis a particular assignment of roles to replicas:
the single activeprimary vs. the passiveackups when the primary changes, so does the
view numbelrv.

Replicas linearize requests via a three-phase agreemetaicpt (Figure[21), start-
ing when the primary (chosen to be the replica with identifiez v modN) mul-
ticasts toR a newly received request messags, encapsulated within a message
(PREPREPARE V, N, req) pr1. When backup replicareceives thisPREPREPARE, it multi-
casts toR a (PREPARE V,N,req)j r1 message. Once repligahas collected ?%J +1
PREPREPARE OF PREPARE messages from distinct replicas for this request (whichston
tute theprepared certificatdor this request of the formiPREPARE V, N, req)RRZLNTfl | 1)
the request becomgzepared To complete the protocol, a replica with a prepared
request then multicasts B a (CommiT,v,n,req)jr1 message. When replida col-
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Figure 2.6: Three-phase agreement protocol of PBFT.

lects a%j + 1 such messages (which constitute doenmitted certificat®f the form
(CommIT,V,n,req) RR2|N:1+1), the replica has established the linearized sequenchitor t
request, committing to execute it as soon as it can; thisludes theagreemenportion
of the PBFT protocol for this request, whose purpose is taenthat the replicas agree
on a single operation sequence for the service, as mordbebmit requests for further
operations.

A replica can execute the request in its local state as sodrhas finished executing
the committed requests for all sequence numbers lowerrthétrpackages the result in a
REPLY message, which it sends to the client directly. When thethas received a quorum
of such matching replies — the reply certificate describexvab- theexecutiorportion of
the protocol concludes; the purpose of the execution poisdo represent to the client
accurately the service state (and reply to the client'sestjaccordingly), as determined by
executing the sequence of operations that the agreemeotprportion maintains.

Though the request log can itself represent the service,staplicas periodically
garbage-collect their operation log to reduce storagewuopsion: they create a check-
point of their local state at a particular sequence numiagd a cryptographic hasof that
state. When replicecreates such a checkpoint, it multicast®t@(CHECKPOINT, N, S,i)i R 1
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message. Once it has collected a checkpoint certifi@teckpoinT, n,s) RR2|M2 110 the
replica deems that checkpoint “stable,” and truncategu¢sation log up to sequence num-
bern.

When replica has out-of-date service state (e.g., due to transient mepastitions or
because it is slow), it can catch up with the rest by retrigvimssing committed requests,
along with their committed certificates, from another, mopeto-date replica. If other
replicas no longer have those certificates in their logs dugatbage collection, the lag-
ging replica can fetch the latest stable checkpoint andficate, and then any subsequent
committed requests after that checkpoint.

Finally, PBFT has a view-change protocol that changes thBsys primary when the
primary is suspected faulty. When backup replicaview v times out waiting for a request
to commit, it suspects the primary as faulty, and multicastR a (VIEWCHANGE,V +
1,n,s,C,P); r1 message, wheneis the sequence number for the latest stable checkpoint,
sis the digest of the stable checkpoi@tis a stable checkpoint certificate, aRds a set of
prepared certificates whose sequence number is highenthan

When a new primaryd = v+ 1 modN) collects a new view certificaté that consists
of ZL%J + 1 valid VIEWCHANGE messages containing corrécandP, it multicasts toR
a(NewView,v+1,V,0)pr1 message, wher® is a set ofPREPREPARE Mmessages in the
new view. To determin®, let ¢ be the sequence number of the latest stable checkpoint in
V, and letu be the highest sequence numbelirFor each sequence number betwéerl
andu, the primary creates RREPREPARE Message if a prepared certificate exist¥ jror a
PREPREPAREMessage for a no-op operation otherwise (to skip that seguammber in the
new view).

When a backup replica receivedNawVIew message, it verifie® is correctly com-
puted by performing the same procedure as the primary. lindbgsage is valid, the replica
adds the new information to its log, logs and multicastR terRerARE messages for each
message i, and enters view+ 1. The backup processes messages with a view number
V' higher than the current view only after it receives a valiwView message fov'.



30

pre-
prepare :

Client \

Primary

request prepare  commit = reply

Replica 1

Replica 2
Replica 3

Messagé attested ay A2M

Figure 2.7: Three-phase agreement protocol of A2M-PBFTHtcker lines denote mes-
sages that are attested to using A2M.

2.4.2 A2M-PBFT-E

In this section, we describe A2M-PBFT-E, a simple extensibRBFT that uses A2M
logs to protect the execution portion of PBFT (hence the “H&fis of the acronym); that
is, it ensures that replicas cannot equivocate about theally computed results for a
particular requested client operation when replying ta tlany other client (Figurie2.7).
As before, we consider a populati®of N replicas.

Design

Replicas: An A2M-PBFT-E replica maintains all state maintained by a PBFT replica,
as well as an A2M log for what it believes as the agreed regeexgiience; that log has
identifierg;. Other replicas and clients identify this replica as a fiaik2M;) of principals,

i for the replica node itself, an&i2M; for the replica’s A2M module. As a convenience, we
useA2Mg to mean the set of all A2M principals used by replicafin

An A2M-PBFT-E replica is functionally identical to a PBFTpleca with regards to
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agreement, but differs on protocol aspects that involvewi@n, namely client interaction
and checkpoint management.

Once replicd collects a committed certificate for sequence numbet executes the
requesteqon its local application state obtaining resylit appends the associated request
to its logq; with append (g, h(req)), and usesookup(g;, n,n) to obtain the A2M attestation
(Lookup, ¢, n, n,h(reg), AssiGNED, N, d)aom R 1- Finally, it packages the regular PBFT re-
ply message and the attestation into a single message, wkids back to the client.

As per PBFT, replica performs garbage collection on its log and A2M request his-
tory by exchangingCHeckpoINT messages. When replicareates a checkpoint, it multi-
casts tdRa ((CHECkPOINT, N, s, d’,i)i R 1, (LOOKUP, G, N, N, X, ASSIGNED, N, d) aA2m R 1) MES-
sage whera is the sequence number of the last executed request to @rddeacheck-
point state,s is the state digest)’ is the A2M digest for sequenag— 1 (need not be
attested), and is the hash of th@-th committed request. The checkpoint becomes sta-
ble when a replica collects a checkpoint certificat€HeCKPOINT, n,s,d’>R7R72LNT71H1,
(LookuP,n,N, X, ASSIGNED, n,d>A2MR7R72|—¥_J+1>. The replica adds this information to its
log, removes all messages with sequence number upftom the log, and performs
truncate(q,n).

When replicd performs a state transfer, it performs the regular-PBFTgss of fetch-
ing and installing a state with a stable checkpoint certiéicand subsequent agreement
messages into its message log. In addition to this, an A2MIPB replica must also
update its A2M request log, by performirgvance(q;i,n,d’,x), and thenappending all
subsequently committed requests in ascending sequenee ord

Clients: In A2M-PBFT-E, a client c is identical to a PBFT client, ex-
cept it expects from replica reply messages of the form(RepLy,v,n,t,C,r)ic1,
(Lookup,@;,n,n,h(req), AssiGNED N, d)aom r1) fOr its pending requesteq  This
is the PBFT RepLy along with the A2M-attested content of theth A2M log
entry at the sender. To consider its request completed ameptacthe re-
sult, a client waits until it collects a reply certificatg¢RerLy,V, n,t,c,r)R7C72LNT4J+1,
(Lookup,n,n, h(req), ASSIGNED, N, d) o\ R 2 Mot 417

Note that the size of the reply certificate i%] +1in A2M-PBFT-E, as opposed to
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L%J +1in PBFT. However, the popular read-only optimization irfHB- in which read-
only requests can be answered by replicas immediately upmeption without a three-
phase commit — also requires replies of siigé‘%J + 1, making this difference moot in
practice?

Correctness

At a high level, we show that if at mo$f%] replicas are faulty, AZM-PBFT-E does
not cause clients to accept more replies than they wouldrdPBET (therefore does not
violate safety) and does not block operations that woul@lpagceeded in PBFT (i.e., does
not remove liveness). When the number of faulty replicagearbetweem%J +1and
2L¥J, we show that A2M-PBFT-E can only assign to any sequence eumlunique
client request, and that the reply delivered to clients for sequence number is that which
a non-faulty replica would have produced processing thaesee requests in order.

Theorem 1. If no more thanL%J replicas are faulty, A2M-PBFT-E provides both safety
and liveness.

Proof. When no more tham%J replicas are faulty, the safety of A2M-PBFT-E follows
from PBFT’s safety: A2M-PBFT-E attestations in replies atrst preventa client from
accepting a reply that PBFT would otherwise accept (ifReeLy portion of the message
matches but the A2M portion does not); A2M-PBFT-E attestatinever cause what would
have been an unacceptable seRabLY messages in PBFT to be acceptable. The same
holds for liveness, since the addition of the A2M log attestain REpLY messages cannot
hinder progress: there exist at Ieagﬁglj + 1 non-faulty replicas that maintain their A2M
request logs correctly, and as a result, there always expi®rum of z%j + 1 replicas
that can provide clients with RepLy certificate. Replicas can also create a stable check-
point since there always exists a quorum dgf"—%lj + 1 non-faulty replicas to produce a
CHECKPOINT certificate. O

4A2M-PBFT-E supports this read-only optimization by rejtacl OOKUP attestations witEEND attes-
tations in the client reply, and using a client-supplied c®in the attestation, when handling a read-only
request; this proves to the client that the result providedtawn from the latest state of the service, rather
than an earlier state (in which case, faulty up-to-datecapiwould have advanced their committed request
log beyond the attestation they are required to return fygsh
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Theorem 2. If faulty replicas are more thah“52 | and no more tha@| N3t |, A2M-PBFT-
E provides safety.

Proof. When faulty replicas are more th@h’g—lj and no more than L%J, we argue in-
ductively that for every sequence number, any non-fauigntican only accept a unique
request — which establishes that there exists a singlerir@ghschedule of requests — and
can only accept the correct result value for that linearsdtedule. In the base case, con-
sider a client acceptingq, for sequence = 1. Since the correspondirREpPLY certificate
(of size 2L¥J + 1) includes at least one non-faulty replica, the reply asdltecertainly
correspond to what that non-faulty replica would do withregton schedule containing
only reqp. Suppose another non-faulty client accepts a differentestieq, and result for
the same sequence numbet 1. Such a client would also possess a vRlithLy certificate

of the same size; the two certificates contain at least ofieagp common. However, since
that replica is bound by A2M to supply the same A2M log entrpoth clients, the A2M
attestation of that replica present in the two certificatestrbe identical, which means that
the two certificates must match; this meaeg; = recp, since the request hashes using a
collision-resistant hash function also match. This is @@ahction, so there can be no such
recp.

The inductive step for sequence number 1 given a linearized schedule up nas
similar. Any two clients accepting a reply for+ 1 will have matching requests for that
sequence number (as witnessed by the matching requesshashe two log attestations),
andmatching request histories up to that sequence number (asssed by the digedtin
the A2M log attestations). Therefore, the result compuiethb non-faulty replica in each
of the two reply certificates must correspond to the sameestdustory and, due to the
deterministic nature of the state machines we consider harst produce the same result.

Replicas participating in a reply that have used the statester mechanism at some
point in their history do not affect this correctness argnmeAfter accepting a stable
checkpoint certificate, a replica hasrath A2M log entry that is identical to all the replicas
in the checkpoint certificate, including at least another-fawlty replica. Furthermore, the
state described in the checkpoint is that held by at leaghanaon-faulty replica. O



34

Discussion

In the A2M-PBFT-E presentation above, A2M is used to probtedy the sequence of
committed requests, as they are presented to clierRemny messages. However, when
faulty replicas are at Ieaﬂgf%j + 1, they can confuse non-faulty replicas by equivocating
during agreement. For example, in Figlrd 2.2, the use of A2lVhet prevent the faulty
replicas from causing non-faulty replicato place requeseq, in its A2M position 1 and,
at the same time, causing non-faulty repligao placereg, in its A2M at the same posi-
tion. Though no client will accept inconsistent replien¢s reply messages contain A2M
attestations), the replicas themselves are not prote¢tedthe purposes of the protocol,
one of the two non-faulty replicas effectively becomes tiawthen convinced to adopt a
fork in the request history.

The great benefit of A2M-PBFT-E is that such misbehavior eauke system to stop
making progress but not to violate its correctness brealknagrizability. In the simplest
scenario, an operator who notices lack of forward progresstake the system off-line,
identify the history fork (where committed histories diged), repair the divergent repli-
cas, change their A2M log identifiers, advance their new ABlsIto an earlier correct
sequence number from which A2M-PBFT-E can do state trasséerd restart the system
with no loss beyond transient unavailability and humanréeffo

However, a natural next step is to remove this denial-ofiserattack from the arse-
nal of the adversary, by ensuring that the agreement poafidhe protocol is itself also
protected from equivocation. In the next section, we descA2M-PBFT-EA, a PBFT
extension that protects not only the execution portion, (Ckent-facing messages) against
equivocation, but also the agreement portion (i.e., ragigcing messages), thereby in-
creasing the fault tolerance of PBFT with both safatyl liveness.

2.4.3 A2M-PBFT-EA

To protect against equivocation during agreement, A2M-RBR (the “EA” suffix
stands forExecutiorrAgreemernjt requires replicas to append to A2M logs all protocol
messages before sending them to their peers (FIgulre 2.8)kelthe history log, mes-
sage logs need not protect a sequence of entries, but onyglsudiual message; therefore,
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Figure 2.8: Three-phase agreement protocol of A2M-PBFT-HAcker lines denote mes-
sages that are attested to using A2M.

A2M'’s advance is used to place a message into an A2M message log, as oppageetid.
Unlike A2M-PBFT-E and PBFT, which can have multiple reqsastflight at the same
time, in A2M-PBFT-EA we require that non-faulty replicasiolée one request at a time, in
increasing sequence-number oréld@ihis ensures that messages are appended to their cor-
responding A2M logs in the order of their corresponding sege number. By protecting
protocol steps from equivocation, A2M-PBFT-EA require$yame — potentially faulty —
replica in the intersection of two quorums. Note, in comgami that PBFT requires at least
onenon-faultyreplica in the intersection of two quorums.

When configured with A2M-PBFT-E’s quorum sizes, A2M-PBFA-Bas the same
safety and liveness properties as A2M-PBFT-E. In what ¥adlove instead present A2M-
PBFT-EA with quorum sizes that allow it to tolerate up|t;® | faults with both safety

and liveness.

SPBFT offers a runtime setting (the high- and low-watermaakies) that can be configured to guarantee
this requirement.
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Design

Clients: An A2M-PBFT-EA client is similar to an A2M-PBFT-E client, bit expects
reply certificates of sizeN>1 | + 1 instead of 2N;1 ] + 1.

Replicas: All certificates (for prepared and committed requests, femwchanges, and
for checkpoints) in A2M-PBFT-EA have sizd'>1 | + 1, as opposed to[2Z2| + 1 in
A2M-PBFT-E.

In addition to a committed request history log, an A2M-PBEA~replicai maintains
five message log®REPARE(Which also containBREPREPARES) andCommiT for the three-
phase agreemenCHeEckPOINT for garbage collection, andieEwCHANGE and NEWV IEW
for view changes. Before sending any such PBFT messagean A2M-PBFT-EA replica
inserts that message to the corresponding message,jog(via anadvance call), uses
| ookup to obtain an attestatiof ) aom r 1 for that message, and sendss? ), (£ )a2m R 1)
to the intended destination. Conveniently, a message #smbben committed to A2M in
this way need not itself be authenticated to its destingtiomcipal; the A2M attestation
of the message hash is enough to protect that message fregniiptattacks and to make
it non-repudiable. Non-attested messages still need tatheeaticated as before. Since
message logs are typically used for individual attestataord not for message histories, an
advance call is sufficient, as opposed to append.

A non-faulty replica might have to send multiple versionsatfREPREPAREPREPARE
or aCommiT message for a given sequence numbéut for different views. The protocol
flattensthe (v,n) identifier of such messages to fit them in the A2M log entry sege
space, by partitioning log sequence numbers into two pansx most significant bits
(e.g., 64 bits) represent a view number while the remaigibds (e.g., 96 bits) represent
a PBFT request sequence number. The log entry number PaERREPARE PREPARE OF
CommIT message about viewand sequence numbaris thenn+ v2Y; we use[v|n] to
denote this flattened number in what follows. Note that théMARodule is oblivious
to this “overloading” of its sequence number space; no ceamrge required to the A2M
interface.

To illustrate the concepts of message attestation and if@entlattening, we
present as an example the prepare phase of A2M-PBFT-EA. éVleerPBFT
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replica i would send thePREPARE messageprep = (PREPAREV,N,req), an A2M-
PBFT-EA replica commits the message to its corresponding ra, by invok-
ing advance(mp, [v|n],0,h(prep)), extracts the correspondirigookup attestationatt =
(Lookup, M, [v|n], [v|n], h(prep), AssiGNED, [v|n],d’) aom r 1, @nd then bundles and sends
(prep att). When an A2M-PBFT-EA replica receives such an atte®rsbPARE message,

it verifies the A2M authentication, and then checks that #laevattested is the hash of the
includedPrRePARE message. When a replica collquﬁé‘flj + 1 such messages that match
reqfor the same sequence numineand viewv, the request is prepared. The commit phase
is similar to the prepare phase described. The checkpaitate transfer, and execution
portions of A2M-PBFT-EA are the same as with A2M-PBFT-E, epicfor the addition of
message attestations in certificates and the differenugusizes.

View Change: View changes are different from PBFT and A2M-PBFT-E. In PBFT
the quorum forming & ewV IEw certificate is guaranteed to contain at least one non-faulty
replica with the latest committed requests, thanks to theuqu size and the maximum
number of faulty replicas. In contrast, the A2M-PBFT-EA quo size can guarantee, in
the worst case, that a single potentially-faulty replicthuine latest committed requests will
participate in the view change. To address the challeng&28iPBFT-EA replica must be
forced to give its latest A2ZM-committed information, whidquires a fresh, shared nonce
in the associatelcbokup A2M operations. To accomplish this, the protocol requiresxra
phase before the normal view-change protocol, which esablgicas to construct a fresh
nonce for the subsequent phases WienTVIEWCHANGE messages). For similar reasons,
the protocol must ensure that replicas committed to a vieangh (as evidenced by their
issuance of an attest&deEwCHANGE message) cannot subsequently help commit requests
in the previous view. Therefore,\aewCHANGE message in A2M-PBFT-EA requires the
sending replica to explicithpbandorthe previous view: a replica does this édvanceing
its CommIT message log to the end of the old view and attesting to thigrambment within
its VIEWCHANGE message.

Next, we present the detailed A2M-PBFT-EA view change protdVhen replica in
View Virom Suspects the primary is faulty as per the PBFT protocol,aaficasts td its
intent to change views via @VANTVIEWCHANGE, Vio, Z,i)j R 1 Message, whereis a fresh
nonce andso IS Virom + 1 if the replica was not already in the midst of a view change, o
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v+ 1 if the replica was in the process of switching to viewhen it decided to change yet
again.

When a replica collects #/anTVIEWCHANGE certificate that consists (ﬁ%J +1
valid WANTVIEWCHANGE messages for the same viagy, it computes the appropriate
noncez for its attestations by hashing together all the noncessiWANTV IEWCHANGE
certificate in increasing replica identifier order. It abanslits current vieWsom If Virom <
Vio (Or its participation in a prior view change protocol towskdewV if V' < vio), as well
as all intervening views up tg,. For all viewsvin [Viom, Vio) in order, the replica performs
advance(mg, [v+1|0] —1,0,0) (if it has not already){v+ 1/0] — 1 is the lastCommiT log
entry belonging to view. Now the replica constructs it8IEWCHANGE message.

The message form i§VIEWCHANGE, Vfrom, Vto, N,S,C, P,Q, W,A,B,H), (Z)a2m R1)-
Among the contents of the main messagg,n, s, andC are as in regular PBF o is as
defined aboveQ is the set of committed certificates with sequence numbérenithann
andP is the set of prepared certificates for requests that areprdfut are not committed
aftern, W is aWaNTVIEWCHANGE certificate A is the set of A2ZMCommiIT log attestations
corresponding to the certificates B contains the view abandonment attestations from
the replica’<CommiT log (see below), and finally is a list of committed request log entries
that attest those requests@ (%) is the attestation from the sender’s A2M message log
for VIEWCHANGE messages, computed vid@kup (Myc, Vio, Vio) A2M command.

For each abandoned viewbetweenvy,m and v, the setB contains the attestation
(LookuP,m, V|’ + 1], 2,0, SkiPPED, [V+ 1|0] — 1,d") ao2m R 1), Whereny is the CommiT
log identifier, andY is the highest sequence numbefiandP. For each abandoned view,
this attestation shows that the replica could not have cdatadha request for a sequence
number greater than those included in(tendP sets.

When a new primaryf = vip, mod N) collects a new view certificaté that consists
of L%J + 1 valid VIEWCHANGE messages that have the samg., andvi, and contain
correctC, P, Q, W, A B, andH, it multicasts toR a NEwVIEw message of the form
((NEWVIEW, Vio,V, Oc, Op), (£ ) a2m, R 1); the latter part is the usual A2M attestation for
the message, whereas the contents of the message are a negextiicate, with the set
O containingPREPREPARE MeESSages for requests to be committed, and th@seontain-
ing PREPREPAREMessages for requests to be prepared in vigwWwWhen a replica receives
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the validNEWVIEW message, it enters view,. Any requests in prepared or committed
certificates for sequence numbers later than the latedestabckpoint are prepared (issu-
ing a new attesteGommiT message) and committed (appending the request in the teques
log if not already there) in order, without need for furtheteir-replica communication.

Note that alViEwCHANGE messages withinllewVew certificate must have the same
Virom; this is essential for the correctness properties destrleat. If the primary fails to
collect a quorum of such messages, it refuses to genenNt&sIEw message. To ensure
progress, any non-faulty replica that receivegiawCHANGE message with &y later
than its own asks the issuer of that message foNtheV ew certificate that allowed it to
enterviom. Using that certificate, the lagging replica can bring ftselthat view. When
a timeout indicates that the previous view change attenafiedt— either due to a faulty
new primary or because ®f,n mismatches — the replica initiates another view change
for the next target view number. Thanks to the eventual symghof our network, this
guarantees that eventually enough replicas will initiatgesv change with the samgom
and the change will go through.

Correctness

At a high level, A2M-PBFT-E and A2M-PBFT-EA differ in two fulamental ways: on
one hand A2M-PBFT-EA has smaller quorum sizes, but on therdtand, it requires all
protocol messages to be attested to from an appropriate AgNdfore use.

Theorem 3. If no more thanL%J replicas are faulty, A2M-PBFT-EA provides safety.

Proof. The argument presented in the second proof of Seéfionl 2ldo2applies to the
safety of A2M-PBFT-EA. Therefore, it guarantees safetyhwip to L%j faults since
clients accepRepLy certificates of sizé N>1 | + 1. O

To show that A2M-PBFT-EA is live despite up té\'g—lj faults, we show a new safety
invariant that is not necessary for linearizability: allmfaulty replicas agree on a sin-
gle committed request sequence. That is, a faulty replinaaaconvince two non-faulty
replicas to commit to their respective A2M request logsadéht requests for the same se-
guence number. The argument is splitinto a same-view caka different-view case. For
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the same-view case, it follows backwards the agreemenepsdcom appending a request
to the log, to emitting a&ommIT message, to emitting BREPARE message, showing that
for two different requests to be placed in two non-faultyliegs’ request logs, some A2M
must be faulty, which is incompatible with our fault modelorRhe different-view case,
the argument is similar, but must also travexssvView certificates; view abandonment in
such certificates helps show that it is not possible for alsireplica (faulty or not) to have
an atteste€CommiT message for one request in one view, and at the same timersappo
view change feigning ignorance for that message, leadiagctmtradiction.

We prove that if no more tha{ri\%J replicas are faulty, A2M-PBFT-EA provides live-
ness by showing that no two non-faulty replicas can pladeraifiit requests in the same
sequence number of the A2M request log. We split our arguinémia same-view case,
and a different-view case.

Theorem 4. If no more thart%J replicas are faulty, no two non-faulty replicas can place
different requests in the same sequence number of the A2Mstlpg in the same view.

Proof. Suppose two non-faulty replicas have appended two diffeszjuests to the same
sequence number of their respective A2M request logs, gduhi@ same view. They both
did that after having constructed a valid committed cegticover two quorums. Those
two quorums must have at least one common (perhaps faufijgae, which managed to
attest to twoCommIT messages, one for each request, in each of the two quorunss. Th
however, is a contradiction with our assumption that A2Mssted to avoid equivocation
for the same log entry, and the collision-resistance of tghtunction.

It is worth noting that along similar lines, it is trivial tdiew that no two non-faulty
replicas can be convinced to place different requests in@wvimiT A2M log for the same
sequence number and view, by the analogous argument oreth@rpd certificate quorums
and thePrerPArRE A2M log of the common replica. Finally, the exact same argoinean
be used to show that no two non-faulty replicas can put differequests in theRPREPARE
A2M logs for the same sequence number and view, since thégpnignary for the view
can only attest to a singleREPREPARE message for that sequence number in any given
view. O

Theorem 5. If no more thart%J replicas are faulty, no two non-faulty replicas can place
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different requests in the same sequence number of the A2Msetpg across different

views.

Proof. Now we must show that no two non-faulty replicas can commit tequests and
r' #r in sequence and in viewsv andV' > v, respectively.

We define aractiveview as a view for which a valitNewView certificate has been
constructeéindseen by a non-faulty replica. A non-faulty replica canneohoat a request
in a view for which it has not seen a valiEwV IEw certificate, therefore if a non-faulty
replica commits a request in a view, then that view must bgect

We split our argument into two further subcases, first the aasvhich no other active
views exist betweer andV/, and the case in which at least one active view exists between
vandv.

Case 1 —v and V are consecutive active views:Since no other active views exist
betweenv andV, then theNEwVIEw certificate forV' — and there can be at most one
since only oneNEwVIEW message can be attested by the primary for weyn= V' —
must haveviom < v. This is because at least one non-faulty replica must haveuged
a VIEWCHANGE message for the certificate, and that non-faulty replicaantaes that its
Virom Fepresents an active view, which cannot be later th@m it would have to b&'). As a
result, thisNewVIew certificate contains view abandonments for all views ifvigsm, Vio)
range, which includefy,V') as we argued above.

Now consider three quorums, the one that produced the cdethdertificate for in
view v (denotedq), the one that produced théewView certificate tov (denotedv’),
and the one that produced the committed certificater’fam view v (denotedqQ’). Let
I € Q N, which always exists thanks to quorum intersection.

Replicai unavoidably contributed an attestedvmmiT message for at sequence num-
bern in the committed certificate for along with the rest of quoruma. What can have
beeni’s VIEWCHANGE contribution to theNewV IEw certificate in quorum’ with regards
to sequence number? If i reported a valid stable checkpoint no earlier thraim its
VIEWCHANGE, then the resulting, uniqueewView certificate forv’ should convince any
non-faulty replica that sees it to never commit anything el in view Vv, sincen belongs
in the past; this contradicts our assumption that some aaohyfreplica will in fact commit
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ratninviewv.

If insteadi reported a stable checkpoint earlier thaim its VIEWCHANGE, it can only
have reported the san@®mmIT attestation for requestatn, since tha/ IEWCHANGE mes-
sage must contain a view abandonmentfas we showed above, and omitting an attesta-
tion for theCommIT log entry|v|n] is not an option; to omit it successfully, it would have
to produce an abandonment attestatjawokur, mg, [v|n' + 1], z,0, SKIPPED, [V + 1|0] —
1,d") a2m; R 1 for somen’ < n, which is disallowed by the A2M interface given the existenc
of anAssigNEDattestation for entrjy|n] and the inequalitv|n’ + 1] < [v|n] < [v+1|0] —1.

This leaves the common replicabetween quorum® and ¥ only with the option
of reporting request as prepared in view. As a result, any correct replica in quorum
Q’, which can only commit requests in vielafter having seen theewView certificate
for that view, must have issued at leasPrePARE message for requestin view V' while
processing th&lewView certificate. However, since this replica is also a membehef t
committed certificate for requestin view V, it must also have prepared and subsequently
committed that request. This clearly contradicts not only the properties of the A2M
message logs at that replica, but also the operation of dandty-replica. This completes
the proof for this subcase.

Case 2 -v and V are not consecutive active viewsSuppose there ang, Vo, ..., Vk_1
active views between(= vp) andV (= vi). We can prove inductively on the intervening
active views that at least a prepared certificate for requatstequence will be propagated
to viewV/, preventing a commitment of a conflicting requestt the same sequence number
there.

In the base case, we can use the argument of the previousssubd¢a show that the
NewVIEw certificate for viewvy will either preclude any subsequent commitment to se-
guencen or will contain at least a prepared certificate for requedtthat sequence number.

To show the inductive step, assume that khevView certificate for viewv; contains
a prepared certificate for requast that is the only viable choice since, if it contains a
stable checkpoint fon or later, then no subsequent view will admit a different catted
request’, leading to a contradiction. Now consider tRewView certificate, formed by
quorum+/, that will lead away fromy; to vi;1. Any non-faulty replica i’ (there must
be at least one), must have seen the eaNiewView certificate leading tw;, or else it



43

would be unable to assumgas its active view. Therefore, that replica must also haee pr
pared that same requesin view v;, including the prepared certificate in ¥SEwCHANGE
contribution to the lateNEwV IEw certificate.

The induction proves that committed requesdt n in active viewv will either pre-
clude the commitment of another requeshat view V' (because somewhere in between a
NEwVIEwW certificate contained a stable checkpoint for a sequenceater n), or cause
the inclusion of a&CommIT attestation for the samreatn in all subsequent valilewView
certificates. This contradicts the assumption that a nalyfaeplica at active view/,
which must have seen suciNawV iew certificate, will commit request atnin view V.
This last subcase concludes the proof that two commitmenthé same sequence number
at different non-faulty replicas must commit the same rstue 0J

Beyond quorum availability (i.e., ensuring that no quorwan be blocked from forming
due to non-faulty replicas caused to commit incorrect retg)eA2M-PBFT-EA also guar-
antees that no replica is left behind during view changespboa only abandons its current
view v if it has collected avaNTVIEWCHANGE certificate; even if the current view change
does not complete due to network faults or a faulty new prypthe replica can retransmit
the WANTVIEWCHANGE certificate until eventually enough other non-faulty reg have
received it to complete the view change, or to trigger anadhe with a different primary.
This is guaranteed by the eventual synchrony of our netwodkpeocessing model.

2.5 Other A2M Protocols

In this section, we describe A2M-Storage, an A2M-enabledaste system on a single
untrusted server shared by multiple clients. Thanks to Heeaif a trusted A2M module,
A2M-Storage provides linearizability in contrast to SUNBReaker fork consistency and
is simpler than SUNDR. We then briefly sketch how A2M can belwgigh Q/U to improve
its fault tolerance.
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2.5.1 A2M-Storage
Background: SUNDR

SUNDR targets the same problem as PBFT: linearize clieniegtg and ensure that
the service state used to respond to each request corresfmpadcorrect system having
executed this linear request history. In PBFT, agreemeuaesl among replicas to obtain
a linearized request order. The presence of at least onéantig-replica corroborating a
reply to the client ensures that the agreed upon linearimbel thas been executed correctly
producing the result in the reply. Unfortunately, in a seagerver environment such as
SUNDR’s, there is no non-faulty replica trusted to execintedrized requests; instead, the
clients must trust each other and cooperate to check theessilat requests are properly
linearized and execution is performed correctly at theeserv

A SUNDR server maintains the current service state (a sma@mgha shared file sys-
tem), which is represented by Merkle trees [Mer87The state is captured by a set of
version structures, each of which is owned by a client (jply and contains a hash that
summarizes the whole state on which the client operates.

To perform an operation (read/write on a file), a SUNDR cliguibmits to the server
its intended request, called apdate certificateThe server assigns an order to the request
relative to pending operations that have not committedaret,returns the latest committed
version structures and ordered pending update certificbesclient ensures that the state
transits correctly forward from its last committed versiba server gives via a sequence of
pending operations. The client can then perform its opamdtcally, potentially fetching
missing blocks by following digests of the hash tree, corautd sign a new state digest
creating a new version structure, and return it along witimgfed blocks to the server. The
server stores the new version structure and modified blocks.

As described in simpler terms in Section 212.5, a SUNDR thkannot ensure that the
server sends it the latest state resulting from the comahitigtory of requests; though it
cannot remove requests from the middle, the server carchtipb off the tail of history
past the last request known to that client, and start a nevk™fo that history, specific

SWe omit the details of how files and directories are organiA&fhat is important is that an entire file
system can be cryptographically digested and verified ataiset of digests efficiently.
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to the client. Until two clients on different history forkempare their notes, they cannot
know the system is not linearized. This is what makes SUNDIR foink-consistent but not
linearizable.

Design

A2M-Storage can be simpler than SUNDR, and guaranteesripadslity instead of
only fork consistency, thanks to the use of the trusted A2Miante, which affords clients
the ability to demand the latest committed request on atyist@ a freshEnp attestation.

The server maintains a version block, a snapshot of a filesysaptured by a Merkle
tree, and two A2M logs. A version block holds a state digest,(the root hash of a
shapshot) computed as for SUNDR and a sequence numberatiat the latest A2M log
sequence number with a signature signed by the latest wiid has logg, for the write
request history, and logy for digests of version blocks, one for each state versioeggad
by the application of writes to the state. Each write/reapiest is associated with a logical
timestamp, of the fornjseqatth seq atts seq, CONtaining the request sequence number, the
A2M attestation from the request history lgg when that request was appended, and the
A2M attestation from the state version lggwhen that request was executed. The client
remembers the latest timestamp it has seen.

An A2M-Storage client performs write operations optintgatly, assuming the times-
tamp it knows is the latest. When it submits a write requegtfor sequence number
n, it also submits a nonce (for freshness), its known timeptam whichreq is condi-
tioned, and a new version block with sequence nunnbabtained after executingg. If
the conditioned-on timestamp has not changed, the servéifissothe state accordingly,
stores the new version block that the client sends, and agp&e request and state ver-
sion digests to A2M logsh, andgs, respectively. In other words, execution of the request
is conditioned on the latest timestamp at the server beiagdéme as that known by the
client. The server then forms its response, containing eessccodegnD attestations from
the two logs, and a proof that the operation was committetieécservice state using the
state digest function. The client accepts the responseeifttestations and stage digest
proofs are valid. If however the client had a stale timestangicated by a failure code in
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the response, it updates its timestamp with the one retuypele server, and tries again
potentially after fetching fresher state blocks and patdigitbacking off in case of write
contention.

An A2M-Storage client performs read operations that ineladnces. The server re-
turnsEnD attestations from the two A2M logs whose freshness is préyea nonce, the
version block to which the last A2Ms entry points, and a proof that the read content is
the valid part of the current snapshot. Note that the versiook should include the same
sequence number as the A2M attestation sequence numbevatiche

Instead of the optimistic, one-phase version of the prdta@essimistic two-phase
version is straightforward as well, in which clients alwdggh a “grant” to perform their
operation at a particular sequence number, and then suiemnitiperation with a guarantee
of success, as per SUNDR.

In terms of its software architecture, A2M-Storage is samtb a version of SUNDR
that entrusts the task of ordering requests and maintau@rgjon structures to a separate,
trusted component called a consistency server. In A2Mag®rthis task is “emulated”
with the help of A2M, a general-purpose abstraction thatkearot only for SUNDR but
also for other systems as we have demonstrated in otheosgcti

Correctness

A2M-Storage clients and server need maintain far lessstatels necessary for SUNDR:
clients only require a single global timestamp, insteadesfgient version structures. Yet,
A2M-Storage provides linearizability, because a clierdegts a write operation as com-
plete only when the server proves that the request is comirtittits A2M logs —and A2M
logs are trusted not to violate linearization. Similarlgli@nt accepts a read operation re-
sponse as complete only when the response carries thetlatestamp, whose freshness
is attested by the A2M module.

Theorem 6. A2M-Storage provides linearizability.

Proof. We show informally that there exists a sequential historaafepted writes, and
that each read is partially ordered to the correct immelyigteeceding write. When a
write operation is accepted by a client, we know that the afp@m is committed to A2M
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right after the conditioned-on timestamp. By following aachof conditioned-on times-
tamps backwards, we can construct a single history of aedegient write operations. In
addition, when a read is accepted by a client, we know thatdhe response carries the
latest committed state version. The read operation candmeglright after the write that
produces a state version attested by A2M and on which thedejaehds. Therefore, there
exists a linearizable history of accepted write and readaimss. O

Since there is only one server, there is no guarantee orelbgewhen the server fails.
Moreover, due to the nature of optimistic protocols, A2M#&ge does not provide any
guarantees on fairness among clients; a greedy client camiss/ the system.

2.5.2 A2M-Q/U

The Query/Update protocol (Q/U) [AEMG@®5] is a quorum-based BFT replicated
state machine. It offers an optimistic protocol that cortgseclient requests in a single
round-trip message exchange between a client and theaspiicthe absence of faults and
write contention. At a very high level, Q/U is similar to A2Btorage (with more than a
single server): the client sends a request along with ite akall replicas’ latest times-
tamps, each of which contains a replica’s history. Eacheamommits the request if its
local timestamp is compatible with the client’s view; otlvese, e.g., if another client has
already advanced that replica’s state with another comitjaipdate request, the replica
refuses to execute the request and sends back its latesarbgtory. A client is satisfied
about its request’s linearization if a quorum of replica{4L out of 5f + 1 total replicas)
accept its request, makingadomplete If fewer than & + 1 replicas have accepted the
client’'s request, then it imcompleteand the client tries again after some back-off. When
a client receives matching replies from betwednt2l and 4 replicas, the request re-
pairable A client attempts to repair a repairable request, by trymgee if enough other
replicas exist to make it complete, or by trying to convintieeo replicas to accept it. If a
client’s operation is complete, the protocol guaranteag th any other quorum in the sys-
tem, that operation would be repairable, a fundamentariamtfor Q/U’s linearizability
guarantee.

Q/U’s linearizability properties stem from the sizes of ffegulationN, quorumsQ,
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and repairable sefR, given the numbef of tolerable faults. A quorum must be always
available even if all faulty replicas remain silent — implgiN > Q+ f (1) — all quorums
must intersect over a repairable set, excluding all fa@pficas — implying  — N > R+ f

(2) — and all quorums must intersect over at least one ndtyfeeplica of all repairable
sets of other quorums — implyir@+ R—N > f (3).

A2M'’s contribution to Q/U is that, by having replicas placeapted requests into A2M
logs and having clients require &wp attestation before accepting a replica’s response, the
sizes of quorum and repairable set intersections can beedd&ssentiallyf + 1 replicas
form a repairable set since faulty replicas commit to onthysvith A2M and they cannot
form a repairable set with non-faulty replicas with an oldtbry. Therefore, the above
condition (3) changes tQ + R—N > 1. An A2M-enabled Q/U protocol can tolerate
faults withN =4f +1,Q = 3f +1, andR = f +1, reducing the replication factor required
from 5 to 4. We defer the full details.

2.6 Evaluation

In this section, we evaluate the overhead of applying A2M G Btate machine repli-
cation. We have implemented A2M-PBFT-E and A2M-PBFT-EAtfwiit its view change
algorithm) in C/C++ with a BFT library [CLO2, RCLO1] ported fedora Core 6 and the
SFSlite library [sfs]. The A2M protocols have versions thae signatures or MACs for
authentication.

We ran our experiments with four replica nodes for A2ZM-PBE&nd one client node.
For A2M-PBFT-EA experiments, we use three replica node®olerdate one fault. The
replica nodes are 1.8GHz Pentium 4 machines and the cliel isca 3.2GHz Pentium 4
machine. All machines are equipped with 1GB RAM and 3Com FCOBthernet cards,
and are connected over a dual speed 10/2100Mbps 3Com switch.

A2M uses SHA-1 as its digest function (also used for MACsyl BT T's ESIGN with
2048-bit keys for signatures. On a 1.8GHz machine, sigeattgation and verification of
20 bytes take on average 28&nd 194us respectively.

All experiments used A2M as a library in the same addressespathe PBFT proto-
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Figure 2.9: Microbenchmark results varying request (leftfl response (right) sizes, mea-
sured in KBytes. “sig” refers to use of signatures while “MA€fers to use of MACs in
the protocols.

col and the user application. However, depending on the A2idlementation scenario
(see SectiolZ.3.3), A2M operations will experience a dhiffié additional interface la-
tency cost. To account for the costs in accessing A2M, we safy default fisof delay,
which is a conservative system call latehdFigure[Z2(d)) or a cross-SIP communica-
tion latency [HAF 07] (Figure[Z}(b)), to each A2M request using the PentiunTBO
instruction.

In our experiments, we compare PBFT to A2M-PBFT-E and A2M-PHEA, using
two A2M implementations: one using signatures for autlvation (denoted “sig”) and
one using MACs (denoted “MAC”). Shown PBFT measurements 4ACs.

2.6.1 Microbenchmarks

We use a simple microbenchmark program, which is a part oPBET library. A
simple client sends 100,000 null operation requests ofsstrges to replicas, which elicit

’On a 1.8GHz Pentium 4 machine running Fedora Core 6, we raerotb[MS96] to measure the time
to perform nontrivial entry into the operating system. Thstem call takes 0.8jdsin average.
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NFS -S| -PBFT -A2M -A2M -A2M -A2M
-PBFT-E | -PBFT-E | -PBFT-EA | -PBFT-EA

Phase (sig)| (MAC) (sig) (MAC)
Copy 0.219| 0.709 1.026 0.728 2.141 0.763
Uncompress 1.015| 3.027 4.378 3.103 8.601 3.236
Untar 2.322| 4.448 6.826 4.553 12.896 4.669
Configure | 12.748| 12.412| 19.173| 12.659 26.181 13.040
Make 7.241| 7.461 9.778 7.500 11.379 7.510
Clean 0.180| 0.298 0.640 0.312 0.742 0.311
\ Total \ 23.725\ 28.355\ 41.821\ 28.854\ 61.940\ 29.528\

Figure 2.10: Mean time to complete the six macro-benchmhasegs in seconds.

replies of sizéb bytes from replicas. We ran experiments wath andb’s varying between

0 and 4000. Figure2.9 plots the results. In all cases, dparatrn-around times grow at
the same pace with request/response sizes as in PBFT, watid#ive overhead due to the
additional A2M authentication operations (MACs or sigmaf) required. A2M-PBFT-E
(MAC) and A2M-PBFT-EA (MAC) add a small extra cost becausthefrelative efficiency
of MAC computation compared to the network delays. The digeabased versions of
the protocol add significant computational overheads, atyllmecome justifiable for very
large replica populations, in which the cost of carrying MB&sed authenticators becomes
comparatively expensive.

2.6.2 Macrobenchmarks: NFS

To understand the implications of using A2M-enabled prot®m real applications, we
use PBFT’'s NFS front end on a PBFT (or A2M protocol) back ensiwith BFS [CLO2],
we use a local NFS loop-back server and an NFS kernel clighteatlient side.

The workload we use consists of compiling a software packag®- 2. 0. 3. tar. gz)
in six phases: 1) copy the file to the NFS file systampf), 2) uncompress the filaif-
compresk 3) untar the uncompressed filentar), 4) run a configure scriptbnfigurg, 5)
compile the package by running makedke, and 6) clean up the built object and execu-
tion files (clean). The workload includes 8790 read-only BFT operations du twtal of
14500 operations invoked.
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NFS- | A2M-PBFT-E | A2M-PBFT-E | A2M-PBFT-EA | A2M-PBFT-EA
Additional (MAC) (MAC) (MAC) (MAC)
latency (19 with batching with batching
1 28.854 28.763 29.528 29.505
10 29.598 29.025 31.299 30.188
50 32.735 30.232 36.242 32.214
250 48.784 37.237 66.441 45,199
1000 117.59 65.813 192.53 101.62

Figure 2.11: Mean time to complete the six macrobenchmaakehin seconds for differ-
ent A2M additional latency costs.

We compare six NF& protocols, whereX is the name of the back-end protocol im-
plementing the NFS interface. In addition to PBFT and our #&@M-enabled variants,
we also run NFS-S, which uses a single server without reicaFigurd 21D shows the
average time to complete each phase, out of 10 runs. Theasthddviations of all results
are within 4% of the mean. NFS-PBFT is 19.5% slower than NFSFSS-A2M-PBFT-

E (MAC) and NFS-A2M-PBFT-EA (MAC) are 1.8% and 4.1% sloweathNFS-PBFT,
respectively, whereas NFS-A2M-PBFT-E (sig) and NFS-A2BFP-EA (sig) are 47.5%
and 118.4% slower than NFS-PBFT, respectively. OveralsM2M-PBFT-E (MAC) and
NFS-A2M-PBFT-EA (MAC) achieve significantly better fauttiérance at a slight increase
in cost over PBFT.

2.6.3 Effects of A2M Placement

To explore the associated costs of other A2M implementae@anarios, we impose
delays to each A2M request, varying delay duration fromskfr the order of magnitude
of typical inter-process communication) tm&(for the order of magnitude of RPC on the
same LAN).

Figure[Z1l shows the average time to complete the macrbbear&, out of 10 runs
when the additional A2M interface latencies are 10, 50, 260d,100Qts The mean times
of NFS-A2M-PBFT-E (MAC) are 2.6, 13.5, 68.0, and 307.5% sdothan the base NFS-
A2M-PBFT-E (MAC) with 1us delay; the slowdown corresponds to two delayed A2M
operations and three A2M MAC verifications per BFT operatiéior NFS-A2M-PBFT-
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EA (MAC), the mean times are 6.0, 22.7, 125.0, 552.0% slohan the base NFS-A2M-
PBFT-EA (MAC) with lusdelay; the slowdown is greater because of the greater number
of A2M operations invoked during agreement steps.

To amortize the effect of this A2M access latency, we explbmaultiple-operation
batching optimization. In A2M-PBFT-E replicas bundle a@pend with its subsequent
| ookup when they send replies. In A2M-PBFT-EA replicas also burai@dvance with
their subsequentookup during agreement steps. Furthermore, the client batchéd A2
MAC verifications. When additional latencies are 1 anduQhis batching effect is neg-
ligible. However, when additional latencies are 50, 25@ 260Qus A2M-PBFT-E with
batching improves mean times by 7.6, 23.5, and 44.0% rdspbcand A2M-PBFT-EA
with batching improves mean times by 11.1, 32.0, and 47. Zjeeively.

2.7 The Right Abstraction

In the previous sections, we have argued and experimerdaltyonstrated that sys-
tems incorporating in their design a small, trusted abstlacA2M in our examples, can
improve their fault tolerance at certainly tolerable céfdwever, an interesting open ques-
tion remains: is A2M theight trusted abstraction, for the types of applications we demon
strated here — state machines, replicated or centralizeddfmore, is it the right trusted
abstraction for other reliable applications that are mougesély organized than replicated
state machines?

In systems that strive for linearizability, such as thoseniog the focus of our work
here, the notion of a common event (i.e., request) histocgmdgral. Therefore, being able
to commit to and compare histories seems, at a minimum, aregfjtrusted function,
which is exactly what A2M’s log abstraction offers. Argughbihen histories need not be
compared, as is the case when ensuring A2M-PBFT-EA repticasnit to their messages
before sending them, it is sufficient to be able to commit thvilWual key-value pairs that
are independent of all others, which is a narrower spedificahan what A2M offers.
However, given that the difference between attested k&yevpairs and attested logs is
small (the computation of an incremental digest with eveygead), we opted to make
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a trusted log the basic, common abstraction that coversreplitated and single-server
systems.

Would a larger trusted abstraction be preferable? Arguyainlg could push an entire
replicated state machine protocol, such as PBFT, into tegdd computing base. The
application interface exported — an invocation method,amdxecution callback [CL02] —
is certainly simple, and applies to any deterministic aggtlon state machine. For example,
one could imagine a trusted implementation of a fail-stq@icated state machine protocol,
such as Paxos [Lam98]. However, a replicated state machsteaation, even one that is
trusted not to be Byzantine, remains fairly complex to impdat; it requires transmission
and reception of network messages and several sets of lxtabies per request per remote
replica. In contrast, A2M requires no network interacticasd only a circular buffer that
tends to be short; although a hardware implementation of Appkars trivial, a hardware
implementation of Paxos might not be.

Beyond linearizable replicated state machines, an irtiageguestion might be what
other, orthogonal, trusted abstractions might make senderudifferent consistency re-
guirements. For instance, when dispensing session geasanteaker than linearizability
(such as “read your writes” [PSB7] or fork consistency [LKMS04]), simple trusted log-
ical clocks [Lam78] might be sufficient compared to an alz$toa such as A2M.

2.8 Future Work

Although A2M is fruitfully applicable to all shared-stategpocols we know of, we hope
to investigate other trusted abstractions, such as Lancpmoks and version vectors, and
their translation to practical system facilities to funtmeduce the footprint of the trusted
computing base for applications with weaker consistengyirements.

In this thesis, we implemented A2M in a library. We hope tolerp other implemen-
tation scenarios such as VMM and trusted hardware. We hopegiement a Xen A2M
driver for applications running on top of Xen. In additione Wope to explore the cost of
adding A2M to a commercial TPM-like environment.
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2.9 Summary

In this chapter, we present a trusted, log-based abstrezaited Attested Append-Only
Memory (A2M). Servers utilizing A2M are forced to commit t@iagle, monotonically in-
creasing sequence of operations. Since the sequence iaateserifiable, malicious
servers cannot present different sequences to differetiepaWe discuss several imple-
mentation scenarios of A2M under different threat modele phésent A2M-PBFT-E, a
simple variant of Castro and Liskov’'s PBFT protocol that emhieve safety with up to
ZL%J faulty replicas. We also present A2M-PBFT-EA, a more inedwariant, that
can preserve safety and liveness with uq!ﬁ;—lj faulty replicas. Finally, we show how
to achieve linearizability in single-server storage systsuch as SUNDR. Our prototype
implementations of A2M-PBFT-E and A2M-PBFT-EA show min@rfprmance overhead;
they are 1.8% and 4.1% slower than the PBFT base case, reshedthere are many tech-
nical details in this chapter, but the bottom line is that ARVa practical and eminently
implementable tool for improving the fundamental Byzaetfault tolerance of replicated
and centralized systems alike.
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Chapter 3

TimeMachine: Long-term Fault
Tolerance

3.1 Overview

In this chapter, we investigate long-term Byzantine faaletance in the context of
digital preservation systems. Digital preservation systaim to maintain authentic copies
of data objects for long periods of time. Such systems faocatajor challengedurability
andlong-term authenticityDurability means that preserved data are not lost. Auttignt
means that a data item retrieved from the system in the figiwven an item name is the
same as what the original data creator stored into the systeler that name in the past.

Traditional systems achieve these attributes via direxgonside file systems (authen-
ticity), disks for storage (availability), and tapes forckap (durability) under benign fault
assumptions (as illustrated in Figurel3.1). A centralizedlderver maintains directories
that maintain mappings between human-readable namesrattkinumbers, disks store
data and metadata blocks, and tapes are used for schedulegpba However, recent
trends are that disks replace tapes for maintaining ditgp@CB*02, emc] since disks
are easier to manage, are readily accessible and highlialbleaiand are easier to cope
with failures through automatic replication.

In recent years, researchers have made great progresdribudes] storage systems
that operate under Byzantine fault assumptions. Selfyteg bitstore systems such as
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Figure 3.1: Traditional storage system architecture. $yigtem directories are used for
authenticity and disks and tapes are used for durability.

OceanStore [KBCO00], PAST [RD01], and Glacier [HMDO05] have addressed duitstbi
comprehensively, but authenticity has less satisfyingtemi. They maintairself-verifying
data for which the name of a data item is anthenticatorfor that data item, which can be
used to verify the item itself (e.g., a cryptographic ha$itthere is at least one correct copy
throughout the lifetime of the systems, durability is mained. Often the systems organize
data objects of a publisher as a Merkle tree [Mer87] strectulmere the root block of the
tree is signed by the publisher’s private key; the tree stinreds named by the publisher’s
public key. Users who can remember such a name (a long strioifperwise meaningless
digits) can ascertain long-term authenticity of the cquoesling content fetched from a
preservation service. This solution does not, howevel, with usage models in which a
user decades down the road wishes to authenticate the t®ofem preserved document
or a publisher’s collection of documents by a human-reaabme (e.g., “State Budget
Fiscal Year 2003”, “UCB EECS Snapshot 2002-02-07"). Unfostely, existing systems
provide no solution to preserving the mapping between a hureadable name and an
authenticator for a data item or a collection of data item&e hature of such fallback
authentication information is typically left out of the g@of proposed designs, though in
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Figure 3.2: Architecture of our data storage, which separauthenticity management
from durability management.

its turn it requires long-term preservation as well withting benefit of a further fallback.

In this chapter, we take an approach to separating autitgntianagement from dura-
bility management (Figue_3.2). Typical data objects (edgcuments, audio/video files,
and a collection of files) are significantly larger than matadobjects. Thus, in our ar-
chitecture data objects are maintained by self-verifyingttre to reduce replication costs.
For authenticity we present a separate trustworthy nangngce that preserves mappings
between human-readable names and authenticators, wiictoaself-verifying; thus, we
fill the important missing piece of previous archival st@aystems.

Before presenting our naming service, we discuss maimigineplicas in a self-
verifying bitstore for durability in Sectioh”3.3. We use arsfard replica maintenance
process that maintains a certain number of replicas bynegdost replicas. A key ques-
tion is how to set this replication threshold. We model thecpss as a continuous time
Markov chain and analyze the process to compute an apptepeplication threshold in
an operation environment.

Next, we move to our main contribution of this chapter. Weselthe gap between
human readable names and authenticators, in the form otesified data names or
other cryptographic constructs, by constructing a Byzremntault tolerant (BFT) name-
to-authenticator mapping service. We argue that existiygpBtine-fault models — which
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require a bounded number of faulty nodesalatimes — and correctness properties — which
guarantee correct service as long as fault boundse@verviolated — are inappropriate in
the long-term (Sectidn3.4). Instead, long-term services as our preserved hame service
should offer a stronger property callealthy-Write-Implies-Correct-Reg¢tHWICR) we
propose; they should guarantee the correct preservatidatatadded while the system was
“healthy” (e.g., fault thresholds were not violated), desgubsequent periods when fault
thresholds were violated; a system that goes through aesinghealthy” period should
not be damned to failure forever.

Motivated by the need for a preserved name service and theaatigality of existing
BFT approaches in a long-term context, we make three caiits in this domain. First,
we advocate d@iered Byzantine-fault modein which bug exploits and similar causes of
faulty behavior areinboundegdwhereas higher-trust components, such as trusted hazdwar
that fails when an entire corporation fails, are held undéglter fault bound. We ar-
gue that the tiered Byzantine-fault model maps well to tgaihd accommodates well the
implications of long-term reliability for data presenaii

Second, we advocate the convergence of proactive reconeryrasted hardware for
preservation applications that operate in the tiered Byzasault model. We borrow from
proactive recovery systems the distinction betwsanwice phasesvhich might suffer bug-
related faults, angbroactive recovery phaseduring which the damage done by bug ex-
ploits is flushed while smaller, easier-to-verify trusteddtionality audits and cleans up
system state. From trusted hardware, we borrow the notishatt-term, tamper-resistant
functionality for digital signing and small amounts of sige, which we use to justify the
bounded-fault tier of our fault model.

Third, in Sectioi 2315, we outline the use of these facilitiethe design offimeMachine
(TM), a preserved name service that provides the HWICR pt@pEM relies on a simple,
affordable, and easy-to-build extension to commodityted$ardware, which allows the
service to store a short but sensitive summary of its stagrevtnansient faults cannot cor-
rupt it. TM operates in alternating phases of service andginge recovery. In contrast to
traditional proactive recovery, TM places operations tietnge its state within the recov-
ery phase, leaving for its vulnerable service phases ordyatipns that read existing state
and whose correctness can be certified using the trustedvaiged TM provides correct



59

results regardless of service-phase faults and as long a®rethan a third of its trusted
hardware devices fail within a single recovery phase; t gisarantees durability if at least
one server is non-faulty between consecutive service ghase

Thankfully, preservation applications, where state clearan be slow as long as au-
thenticity is guaranteed, fit this structure well. Otherlaggtions where state changes can
be batched and committed at a relatively low frequency, siscthose that tolerate weak
consistency for instance, would also be able to benefit framcontributions. However,
not all applications can fit this structure, especially thésr which state changes need
immediate, interactive confirmation such as file systems.

We evaluate our prototype TM implementation to validate design in Sectiof 37,
discuss future work in Sectign 8.8, and summarize in Sefi@n

3.2 Separating Authenticity from Durability

Self-verifying bitstore systems such as OceanStore [K&@, PAST [RDO01], and
Glacier [HMDO5] work well if a client knows the name (e.g., 88256 hash) of a data
object or the name of a collection of data objects (e.g.,ipbbt’s public key). But how
will people find out the name, which is an authenticator, mfibst place? As an analogy,
in file systems, a semantic-free inode number can be usedrteveea file, but it is not
reasonable to expect people to remember the inode numleratiile name is used to
retrieve the inode number and then to retrieve the file. Thiomes more important in
preservation systems. It is even more challenging for petipfemember authenticators
for long periods of time, but human-readable names (esibpethiat follow well-defined
naming conventions) are easy to remember. Therefore, we déingt we must maintain in-
formation that binds human-readable names to data ob@otellections of data objects).

A naive approach is to store mappings between human-readabies and data objects
(or collections of data objects). However, since these nmgspare not self-verifying, we
have to rely on voting to ensure correctness. A quorum ofgaplmust be maintained
correctly to return correct data objects to client reques&iempared to a self-verifying
data store, this approach is inefficient since data objeetsypically large and we need
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to replicate more data objects to mask the same number @ fdnlparticular, to tolerate
f faults, a self-verifying data object requirést 1 replicas, but a non-self-verifying data
object requires 8+ 1 replicas if we use Byzantine-fault tolerant state machepdication.

We take an approach to separating authenticity managenoemtfata object durability
management. We maintain mappings between human-readamlesrand authenticators
in a naming service for authenticity and store data objectsself-verifying bitstore. The
naming service maintains mappings, each of which is smsithgua more costly algorithm
to ensure correctness. However, the bitstore maintaifivaetying data objects, which
can be organized as a Merkle tree structure. In comparisotplératef faults while
maintaining a data object, this approach requifes1 data object replicas andf 31
non-self-verifying metadata object (mapping) replicakich is cost-effective.

Figure[32 shows our storage architecture that separatasang service for data au-
thenticity from a self-verifying bitstore for data durabjl In the architecture, a client
retrieves data by following procedures: 1) a client sendsexrygmessage with a human-
readable name to the naming service, 2) the naming sentisesean authenticator (e.g.,
SHA-256 hash), 3) the client sends a fetch message with titiieaticator to a server that
stores relevant data, and 4) the server returns the data tbi¢imt. We discuss maintaining
replicas in a self-verifying bitstore focusing on duralilin Section[31B and discuss our
naming service from Sectidn_3.4.

3.3 Maintaining Self-verifying Replicas for Durability

We study a standard replication algorithm that reacts tbo@failures. The algorithm
monitors how many replicas are available and it creates e@hca(s) if the number of
available replicas is below the replication threshald.( The challenge here is to deter-
mine the correct replication threshold that is suitabledajiven operating environment.
Another challenge is to efficiently maintain replicas withgpending bandwidth unnec-
essarily. This is hard since it is not possible to distinguransient failures (e.g., node
reboots) with permanent failures (e.g., disk failures)chfeques to mitigate the effects of
transient failures are discussed in Carbonite [CDH]. Here we focus on the first chal-
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lenge.

We consider the problem of providing durability for a staxaystem composed of a
large number of nodes, each contributing disk space. Thersystores a large number of
independent pieces of data. Each piece of data is immutablsedf-verifying. While parts
of the system will suffer temporary failures, such as neknmartitions or power failures,
the focus of this section is on failures that result in peremdoss of data.

3.3.1 Challenges to Durability

It is useful to view permanent disk and node failures as ltpaim average rate and a
degree of burstiness. To provide high durability, a systamstrbe able to cope with both.

In order to handle some average rate of failure, a high-dlitsabystem must have the
ability to create new replicas of objects faster than reysliare destroyed. Whether the
system can do so depends on the per-node network accespdiet, she number of nodes
(and hence access links) that help perform each repair,Fendnhount of data stored on
each failed node. When a nodefails, the other nodes holding replicas of the objects
stored om must generate replacements: objects will remain duralileere is sufficient
bandwidth available on average for the lost replicas to lseesged. For example, in a
symmetric system each node must have sufficient bandwidtbpy the equivalent of all
data it stores to other nodes during its lifetime.

If nodes are unable to keep pace with the average failuremateeplication policy can
prevent objects from being lost. These systemsrdeasible If the system is infeasible, it
will eventually “adapt” to the failure rate by discardingjetts until it becomes feasible to
store the remaining amount of data. A system designer makiava control over access
link speeds and the amount of data to be stored; fortunataebyce of object placement can
improve the speed that a system can create new replicas.

If the creation rate is only slightly above the average faikate, then a burst of failures
may destroy all of an object’s replicas before a new replaralie made; a subsequent lull in
failures below the average rate will not help replace ragli€ no replicas remain. For our
purposes, these failures aienultaneousthey occur closer together in time than the time
required to create new replicas of the data that was stordideofiailed disk. Simultaneous
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Figure 3.3: A continuous time Markov model for the processeplica failure and repair
for a system that maintains three replicas £ 3). Numbered states correspond to the
number of replicas of each object that are durable. Tramstio the left mean replicas are
lost; transitions to the right mean replicas are created.

failures pose a constraint tighter than just meeting theameefailure rate: every object
must have more replicas than the largest expected bursiwffs We study systems that
aim to maintain a target number of replicas in order to s@rbrsts of failure; we call this

targetr,.

Higher values of . donotallow the system to survive a higher average failure rate. Fo
examples, if failures were to arrive at fixed intervals, tle@herr, = 2 would always be
sufficient, or no amount of replication would ensure duighilf r|. = 2 is sufficient, there
will always be time to create a new replica of the objects @rtfost recently failed disk
before their remaining replicas fail. If creating new repB takes longer than the average
time between failures, no fixed replication level will make tsystem feasible; setting a
replication level higher than two would only increase thenber of bytes each node must
copy in response to failures, which is already infeasiblg at 2.

3.3.2 Creation versus Failure Rate

We model the replica maintenance process as a continuog$tarkov chain (CTMC).
Figure[3.B shows this model for the case where- 3. An object is in statéwheni disks
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Figure 3.4: A continuous time Markov model for the processepiica failure and repair
for a system that maintains three replicas € 3). Numbered states correspond to the
number of replicas of each object that are durable. Tramstio the left occur at the rate
at which replicas are lost; right-moving transitions happethe replica creation rate.

hold areplica of the object. There are thius- 1 possible states, as we start withreplicas

and only create new replicas in response to failures. Froivea gtata, there is a transition
to statej with ratey; corresponding to repair, except for state O which corredpam loss

of durability and state_ which does not need repair. The actual najedepends on how
bandwidth is allocated to repair and may change dependingereplication level of an
object. There is a transition to the stateith rateAjj corresponding to replica failure.

Under the assumption that independent exponential iatkrr& and inter-repair times,
which is reasonable in a PlanetLab-like environment, westaply use a birth-death pro-
cess (Figuré_3l4). From a given statehere is a transition to staie+ 1 with rate
corresponding to repair. There is a transition to the nexelostatei — 1 with rateiAs
because each of thenodes holding an existing replica might fail.

This model can be analyzed numerically to shed light on thgarhofr, on the proba-
bility of data loss; we will show this in Sectign3.B.3. Hoveemo gain some intuition about
the relationship between creation and failure rates anahrtpact this has on the number of
replicas that can be supported, we consider a simplificatidfigure[3.4 that uses a fixed
M but repairs constantly, even allowing for transitions dustate 0. While these changes
make the model less realistic, they turn the model into an MYMueue [Kle75] where
the “arrival rate” is the repair rate and the “service ratethe per-replica failure rate. The
“number of busy servers” is the number of replicas: the mepdicas an object has, the
more probable it is that one of them will fail.
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This simplification allows us to estimate the equilibriunmrier of replicas: it igt/As.
Givenp andAs, a system cannot expect to support more than this numbeplidas. For
example, if the system must handle coincidental bursts efffilures, it must be able to
support at least six replicas and hence the replica creatitenmust be at least 6 times
higher than the average replica failure rate. We will rebeuth s as@. Choices for| are
effectively limited by®. It is not the case that durability increases continuousti w ;
rather, when using_ > 0, the system provides the best durability it can, given is®uece
constraints. Higher values & decrease the time it takes to repair an object, and thus
the ‘window of vulnerability’ during which additional faires can cause the object to be
destroyed.

To get an idea of a real-world value @fwe estimatetandA s from the historical failure
record for disks on PlanetLab [CDH6]. The average disk failure inter-arrival time for the
entire test bed is 39.85 hours. On average, there were 4% nodhe system, so we can
estimate the mean time between failures for a single dis@s39.85 hours or 2.23 years.
This translates ta s ~ 0.439 disk failures per year.

The replica creation rate depends on the achievable network throughput per node, as
well as the amount of data that each node has to store (imgjudplication). PlanetLab
currently limits the available network bandwidth to 150 IsBfer node, and if we assume
that the system stores 500 GB of unique data per node nyith 3 replicas each, then
each of the 490 nodes stores 1.5 TB. This means that one rdmte’san be recreated in
121 days, or approximately three times per year. This yiglds3 disk copies per year.

In a system with these characteristics, we can estifdatqi/A; ~ 6.85, though the
actual value is likely to be lower. Note that this ratio regmets the equilibrium number
of disksworth of data that can be supported; if a disk is lost, alliogsl on that disk are
lost. When viewed in terms of disk failures and copidgepends on the value of: asr|.
increases, the total amount of data stored per disk (asguanailable capacity) increases
proportionally and reducgs If A+ = |, the system can in fact maintaip replicas of each
object.

To show the impact 0B, we ran an experiment with the synthetic trace (i.e., with
632 nodes, a failure rate off = 1 per year and a storage load of 1 TB), varying the
available bandwidth per node. In this case, 100 B/s corredptnd = 1.81/r| . Figure[3b
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Figure 3.5: Average number of replicas per object at the érdtwo-year synthetic trace
for varying values 08, which varies with bandwidth per node (on thiaxis) and total data
stored (). Wheref < 1, the system cannot maintain the full replication levetr@asing
r_ further does not have any effect.

shows that, a® drops below one, the system can no longer maintain full captn and
starts operating in a ‘best effort’ mode, where higher valol . do not give any benefit.
The exception is if some of the initia] replicas survive through the entire trace, which
explains the small differences on the left side of the graph.

3.3.3 Choosing

A system designer must choose an appropriate valug td meet a target level of
durability. That is, for a given deployment environmentmust be high enough so that a
burst ofr|_ failures is sufficiently rare.

One approach is to sgt to one more than the maximum burst of simultaneous failures
in a trace of a real system. For example, Figuré 3.6 showsuhstihess of permanent
failures in the PlanetLab trace by counting the number ogsirthat a given number of
failures occurs in disjoint 24 hour and 72 hour periods. éf ¢size of a failure burst exceeds
the number of replicas, some objects may be lost. From this,neight conclude that 12
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Figure 3.6: Frequency of “simultaneous” failures in theriekhab trace. These counts are
derived from breaking the trace into non-overlapping 24 @dour periods and noting
the number of permanent failures that occur in each peribthere arex replicas of an
object, there werg chances in the trace for the object to be lost; this would Bappthe
remaining replicas were not able to respond quickly enoogtréate new replicas of the
object.

replicas are needed to maintain the desired durability.s Thlue would likely provide
durability but at a high cost. If a lower value of would suffice, the bandwidth spent
maintaining the extra replicas would be wasted.

There are several factors to consider in choosingp provide a certain level of du-
rability. First, even if failures are independent, thera ison-zero (though small) probabil-
ity for every burst size up to the total number of nodes. Sdcarburst may arrive while
there are fewer than replicas. One could conclude from these properties thatitfteest
possible value of| is desirable. On the other hand, the simultaneous failureveh a
large fraction of nodes may not destroy any objects, depgnain how the system places
replicas. Also, the workload may change over time, affeguiand thus.

The continuous time Markov model described in Fiduré 3.4cot$lthe distributions of
both burst size and object replication level. The effecthelse distributions is significant.
An analysis of the governing differential equations can beduto derive the probability
that an object will be at a given replication level after asgiamount of time. In particular,
we can determine the probability that the chain is in stateo@esponding to a loss of
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Figure 3.7: Analytic prediction for object durability aftéour years on PlanetLab. The
x-axis shows the initial number of replicas for each object:ittee number of replicas is
increased, object durability also increases. Each cumes jal different per-node storage
load; as load increases, it takes longer to copy objects aftalure and it is more likely
that objects will be lost due to simultaneous failures.

durability.

We show the results of such an analysis in Figuré 3.7. To egplifferent workloads,
we consider different amounts of data per node. The graplshtze probability that an
object will survive after four years as a function pf and data stored per node (which
affects the repair rate and herfie

As r_ increases, the system can tolerate more simultaneousefiind objects are
more likely to survive. The probability of object lossrat= 1 corresponds to using no
replication. This value is the same for all curves since [tedwls only on the lifetime of a
disk; no new replicas can be created once the only replicaeobbject is lost. To store 50
GB durably, the system must userrof at least 3. As the total amount of data increases,
ther, required to attain a given survival probability also inges Experiments confirm
that data is lost on the PlanetLab trace only when maintgiféwer than three replicas.
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Figure 3.8: Behavior of preservation system under faultsck gray portion of timeline
indicates period during which fault assumptions are vemafl hree ovals indicate additions
to the state of the system (new name/value mappings). Hasakboxes indicate how
state additions are seen by client reads — white for coybtdick for incorrectly. Case
(a). Typical BFT behavior: once fault bound is violated, rorectness is guaranteed
for retrieval of bindings addetlefore, during, or aftethe violation. Case (b). System
with HWICR property: Additions that occureforeor after the violation can be correctly
observed after the violation is repaired. During the violaperiod, system guarantees not
to return incorrect value for read 1, but may lose availghilie., may not return a value
at all (shaded box). Addition 2 is lost in both cases, sin@edurs during the unhealthy
period.

3.4 Towards a Long-term Fault Tolerant Naming Service

In the previous section, we discuss how to maintain replioasiurability in a self-
verifying bitstore. Next, we delve into a naming service liamg-term data authenticity.
We first introduce a new service property and a new, morestéglByzantine fault model
that are suitable for long-term services.

3.4.1 New Service Property

A Byzantine-faulty node can behave arbitrarily, which ua#s crashing, or even fol-
lowing a concerted plan with other faulty nodes towards dmown malicious goal. Typ-
ical Byzantine-fault models allow the network to drop, doale, and reorder messages,
though usually it is assumed that enough retransmissicgrstgally deliver a message to
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its destination within some unknown time bound. These nwduire that the number of
faulty nodes does not exceed a hard upper bound, such ad afthiie entire population of
nodes. This has been justified with the reasoning that iriabtelreplicated service, partic-
ipating nodes are well enough managed, secured, and nmedtéiat they can mostly avoid
network-triggered exploits of unpatched bugs and the glysnanipulation of unfettered
malicious humans. In such a setting, it appears reasomapl®vide the usual correctness
property: as long as the systemhisalthy— that is, no more thai out of 3f + 1 nodes are
faulty at any pointin time — the system will offer its correess guarantees [ZSR02,CL02].

Unfortunately, in long-running systems, uninterruptedddealth is tough to guaran-
tee. First, malicious attacks such as virus and worm irdestiare increasingly hard to
stop, even in well managed enterprise settings; the fattibat nodes in a replicated sys-
tem will be running one or perhaps two distinct implemewtadi and operating systems,
prone to the same exploits, does not help the situationrefoethermore, after decades of
continual use, human errors, organizational slip-ups,ahdr unlikely events are bound
to crop up [BSR 06], causing bound violations to occur. Even if one suchislip anun-
healthy periodbccurs, the correctness of typical BFT systems can no Idmgguaranteed,
not just for the duration of the violation, but also forevatioi the future (Figure=318(a)). For
example, in a system such as Castro and Liskov’s Practical(BBFT) [CL0OZ2], once the
fault bound is violated, faulty nodes can cause non-faulyes to execute distinct, diver-
gent sequences of operations on their local states, frormhathey cannot recover without
human intervention [LMOQ7].

In this chapter, we introduce a stronger guarantee on BFRicesr called Healthy-
Write-Implies-Correct-Read (HWICR) (see Figlirel 3.8(l\WICR requires that the sys-
tem can be viewed as mapping names to values; a name is unigapped to a value.

Definition 1. A system provides HWICR iff for every (name, value) mapporgd during
a healthy period, the system is guaranteed to return the safue when queried with its
name at all future times (or a notice that the value is unala#), in spite of intervening
unhealthy periods.

A system provides a stronger HWICR property iff it provided/lCR, and for a (hame,
value) mapping stored during an unhealthy period, the systeguaranteed not to return
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Figure 3.9: Tiered Byzantine-fault model.

an incorrect value when queried with its name at all futumees. This is the case when a
client’s write request is authenticated by its signaturecé&faulty replicas in the system
cannot forge the signature of the client even during an uttheperiod, forged writes will
not be accepted by the system.

HWICR implies two sub-properties, integrity and duralilitntegrity means the system
never returns an incorrect value when queried with its nangecannot convince clients
that a (hame, value) mapping does not exist once it is cdyretdred. Durability means
the system does not lose a (name, value) mapping once itrisctigrstored.

3.4.2 The Tiered Byzantine-Fault Model

To achieve HWICR in long-running services, we propose a raakt model, which we
call a tiered Byzantine fault model. We assume two types efajonsregular andtrusted
operation, with different fault bounds (Figurel13.9). Dgriregular operation periods, there
are at mostN — 1 faulty replicas out oN total replicas, i.e., there is at least one correct
replica during regular operation periods, but no more t['l%?lj(: f) replicas are faulty
during any trusted operation period. As we will see, theseimptions are necessary to
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achieve the HWICR property. Integrity requires only thelttassumption of the trusted
operation period, but durability requires both fault asptions. In practice, we expect
most of periods are healthy but there are occasional uritygadtriods, thus most of writes
are accepted during healthy periods.

There are additional assumptions we make: 1) there is @tdeascorrect replica dur-
ing any two consecutive regular operation periods acrasatietween trusted operation
period, and 2) the entire immutable state of a replica canhieeked locally and can be
fetched from another replica if necessary during a regylaration period.

3.4.3 Two-phase Approach

The tiered Byzantine fault model can be justified by our apphothat uses proactive
recovery and a small trusted primitive that allows modifaag only in trusted operations
phases. We take a two-phase approach where service andiy@waacovery phases alter-
nate (FiguréZ3.10). A service phase operates under thearegpération fault bound, but a
proactive recovery phase operates under the trusted apefatilt bound.

We use a small trusted primitive that stores a tiny piece atkestfor the root of trust.
This primitive is simple, easy to implement, and easy to fatynverify; thus, it is fault-
free. However, applications using this primitive can beltigtand may install incorrect
states. The states are used both in service and proactiveergcgphases, but the service
phase only reads the states and does not modify them, thasribtintroduce faults into
the states stored in the primitive even though the apptindtiat uses it is faulty. Moreover,
before modifying the states, the proactive recovery phalseats and reloads from a clean,
read-only medium in order to make sure to avoid accumulatelist Therefore, the states
of the primitive can have the tighter trusted operationtfhound.

This approach implies an operation model different fronditranal models. For fault
tolerance, we trade off availability by using proactiveaeery, and trade off interactivity
of writes that involve modifications to the states of the ptive by allowing such modifi-
cations only during proactive recovery phases.
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Figure 3.10: Operation of TM. Each replica alternates betwaeservice phase and a proac-
tive recovery phase.

3.5 TimeMachine

TimeMachine (TM) is our proposed solution to long-term auticity in the tiered
Byzantine-fault model. We present a system with a miniadalGet interface to focus
on achieving HWICR under the tiered Byzantine fault modeliel@s can invoke TM’s
Add(namevalue) interface method to store and preserve a particular nartue-pair, if no
such name is already being preserved. Ttgnameg method obtains any stored name-
value pair by that name, or indicates none exists. In theesbmif digital preservation, a
user mayAdd the name of a persistent Uniform Resource Locator (URL) asitme and
the hash corresponding to the content at the URL as the vhiube future, another user
can look up the content hash for the particular URL and usevetify any result obtained
via a durable bitstore such as OceanStore or Glacier. Nateltare is no way to remove a
name-value pair from the system.

TM is a replicated service running on replidas= {1,...,N}. Clients communicate
with TM through a public network. Each replica alternatessMgen two modes of oper-
ation (Figurd23.110): during most of the time, it operatesténsiervice phase, servirggt
requests from clients, bufferingld requests from clients, and continuously running a stor-
age audit and repair background process; periodically €sayy hour or every day), the
replica reboots securely into its proactive recovery phdseng which it is only reach-
able by other replicas in the system, and serves buffetédequests. TM is intended for
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a well provisioned, low-churn node infrastructure. Sincemmbership churn is low, the
membership of nodes can be managed manually.

3.5.1 Components

TM depends on the following building blocks:

Cryptography: We assume standard cryptographic primitives for symmatritasym-
metric signing, and for hashing. We also assume that in thg-$&rm (say on the order of
a calendar year), breaking such primitives through brateef attacks is intractable for the
good and the bad guys alike. Therefore, the adversary cagmadtice collisions for hash
functions or forge previously unseen signatures for pensagning keys he does not pos-
sess. For brevity, we do not discuss more efficient authetic primitives such as MACs.
(M); denotes a messadé signed by principal. Replicai’s trusted hardware device is
principali’.

PBFT: The Practical BFT protocol [CLO2] allows the implementatiof replicated
state machines under bounded Byzantine faults. Informéllpffers a synchronous
| nvoke (requesj method, that returns @sponse A client uses this method to submit ap-
plication requests to a replicated state machine, and ealyteceives replies containing
the result of its request. The protocol guarantees thagragds no more than a third of all
replicas in the system are faulty, clients will receive replo their requests that are equiv-
alent to interacting with a single, correct, sequentiatseatomically executing requests
on the application statdifearizability).

Furthermore, the protocol offers replicas Execut e(reques} callback, allowing the
application code that processes client requests to be &xkclhe system guarantees that
the same client requests will be passed toBteeut e method of every non-faulty replica
in the same order.

Trusted Hardware: TM relies on the existence of a trusted hardware device oryeve
replica in the system. This device is an extension of a stanitaM module, which enables
trustworthy attestations about the system state contauidéh the module. We describe
below what module-local state is required by TM.

To help conduct periodic recovery operations, the hardwdasece contains a time
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source (this can be a regular, monotonic, crystal-basexk dource with an upper bound
on drift, or an external trusted time source received by theag). A hardware watchdog,
also contained within, uses this time source to trigger gtrea recovery periodically, by
causing the host to reboot from read-only media. This harelwetchdog has modebit
associated with it. This bit is used to indicate that theesyss in proactive recovery mode,
and cannot be set in any fashion other than by triggering titelvdog. The mode bit can,
however, be reset by the operating system. This is sometiallesl asticky register

Finally, we include in the trusted hardware device an exten®r Secure Append-
Infrequently MemorySAIM). A SAIM implements a sequenced queue: a queue of alsmal
number (e.g., 16- 20) of fixed-length (e.g., 32-64 bytes), persistent entoyssIThe write
interface to a SAIM is that of a FIFO queue: append(v) adds valuer to the front of
the queue, causing the oldest value to be dropped off the dlattle queue. However,
appends to a SAIM arete-limited if the last append occurred at tihe no subsequent
append can succeed before titpe- t1 + 7, where7 is a fixed configuration parameter.
The read interface of SAIM is not rate-limited, and allows #ttested (fresh) retrieval of
any slot (indexed by position in the queue)takup(l,z), wherel is the position in the
gueue requested amds a nonce used for freshness (typically provided by clignéturns
(I,vi,z,t,m)i:, wherey, is the value currently occupying theh slot of the SAIM t is the
internal time in the devicamis the current mode bit, antlis the hardware device principal.

Authenticated Search Tree (AST):An AST [BLLOO] is an incremental mechanism for
maintaining cryptographic digests over sorted data satd(as name-value pairs sorted by
name). An AST extends the traditional Merkle tree concepséarch trees. Every node
contains a name-value pair and an authentication label. |alted for an AST node is
computed by hashing together its content and the label$ ciigd nodes. A correct binary
AST guarantees that data items from the collection appetireieft subtree of a node if
and only if they precede its own content in the search ordilegly for the right subtree.
The label of the tree root is a cryptographic digest for thiremrontents of the tree: it is
collision-resistantwhich means it is intractable to find two different data set¢ding the
same AST digest and, as a result, it can serveasyanitmenbn the contents of the AST.

As with Merkle trees, a succinptoof can be generated showing that a particular name-
value pair appears within an AST with a root label. Unlike Mertrees, an AST can
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Figure 3.11: A TM node contains a SAIM, a buffer to hold Adduests temporarily, and
an AST that maintains committed bindings. The arrows indiczlf-verifying pointers,
which mean a hash value of a starting point is the hash of dgmblriock. SAIM stores the
AST root digest and a sequence number.

also prove succinctly that a name-value pdoes not appeawithin it, by showing the
contiguous appearance of the two keys immediately pregezhd following that name in
the sort order. Proofs have logarithmic length in the sizinefname-value pairs contained

within a tree.

3.5.2 TM Design

Each TM replica maintains an AST in regular (untrusted)agercontaining its collec-
tion of name-value pairs sorted by name, a buffer of recamgés yet uncommitted client
requests for adding new name-value pairs also in untrusbeaige, and a single-slot SAIM
within its trusted hardware device storing values of thetfgs, r ), wheresis the latest AST
digest and is an integer sequence number (Figure13.11). Since we oela single-slot
SAIM, all attestations contaih= 0 as the queue position. Though in this instantiation of
TM we use a single-slot SAIM for simplicity, we sketch extems that take advantage of
multiple slots later. Finally, replicas know each othensfic keys and hardware device
public keys.

In the trusted hardware device, a watchdog timer is set &amd the SAIM inter-append
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delay is sett@ > D, to ensure that a new value cannot be appended into SAIMafteil
the watchdog’s next expiration, bringing the replica irtonext proactive recovery phase.

Service Phase

When a clientc invokes Add(n,v) to insert a binding between name and
value v, the TM client proxy code multicast$Apbp,n,v,z,c)c to R, where z is a
random nonce used for freshness. The client waits asynchsbn for replies in
(REPLYADD, i, pi, (0, (S, i),z t,m)j;) messages containing a 0-th slot SAlldbkup attes-
tation, wherei is a replica identifier angy; is an AST membership proof as described
above. A reply is valid ifp; verifies the existence of the name-value gairv) within an
AST with digests;, and the attestation is correctly signed by the sender'sVSAls soon
as a client proxy obtains+ 1 valid matching replies from distinct replicas, all confing
the addition of the same name-value pair, it accepts theest@acompleteand notifies the
application.

Handling of GET requests by client proxies is similar. The proxy multica&tst, n,z,C)
messages t&® and waits forf + 1 (RePLYGET,i,V, pi, (O, (S, i),z t,m);) valid messages
confirming that(n,v) is within the AST described in each reply, or tfiatv) does not exist
in the AST described in each reply.

A replica handles &eT by looking it up by name in its local AST and producing an
existence/non-existence proof, accompanied by its |S#&B¥, signed by the trusted hard-
ware device. During the service phase, a replica only &ifeps, which it handles during
the proactive recovery phase. Note, however, that thecaemplies tApos for already as-
signed names immediately, returning the existing mapdhging the next service phase,
the replica responds to newly insertedps with aRepPLYADD message. Replies #pps
for previously unassigned names take time on the order détiggh of the service phase.

Background Audit and Repair: In addition to a service process, TM replicas run a
continuous audit and repair process in the background rieigsthat all reachable AST
nodes from the AST root are correctly stored. This processadsrsive, starting with the
root, and performing an in-order traversal of the tree, myiwhich a tree node is fetched
from storage if still available and verified against the hashtained in the label of its
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parent node.

For all missing AST nodes (identified by the name of the starache-value pair),
a replica multicasts &REQASTNODE,i,n,r); request toR, wherei is the replica iden-
tifier and r is the latest known SAIM sequence number, waiting for at tlemse
(RESPASTNoDE, n,ASTNoderesponse. Note that the response need not be signed, since
the replica can ensure its validity thanks to the recursaghks of the AST.

Proactive Recovery Phase

When the trusted watchdog timer expires, the system begmeb@ot from a read-
only medium of its proactive recovery software. The mairpogsibility of the proactive
recovery phase is to commit a new set of additions into thenrsaivice state. At the end
of the proactive recovery phase, the system ensures theastt¥ + 1 replicas store the
latest AST digest in SAIM.

Are We All Proactively Recovering?: All messages exchanged between replicas con-
tain a fresh attestation fetched from the SAIM after the enirproactive recovery phase
began: the mode bit shown must be on, and the timestamp mustéet. Messages un-
accompanied by this attestation are invalid and droppeds i§ho ensure that proactive
recovery operations, including invocations of PBFT, leaglections, etc., are performed
by nodes who have rebooted into their proactive recoveng@hd herefore, any faults
caused by such nodes are due to proactive recovery faultschwhbr tiered fault model
assumes bounded Wg—lj — rather than service phase faults, which are bounded-byt
in our fault model.

Commit: At a high level, each replica packages up its pendings (denoted byA)
and the latest stable checkpoint (denotedChyit knows (2f + 1 matching(s,r;) pairs)
into a (BatcH,Cs, A)j message, filtering out thogeops for already assigned names, and
multicasts theBatcH to R. Once aleaderreplica (defined below) collectsf2+ 1 such
messages including its own, it packages them irfa@ osemessage, which it submits to
PBFT’s I nvoke for linearization. During th&xecut e callback of PBFT, a replica ensures
the PRoPoOsH set contains at leastf2- 1 batches from distinct replicas. If so, it picks the
latest stable checkpoint: an AST digest 21 matching SAIM attestations, and aAlbps
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contained in at least one batch (authenticated by clielttsjders theApps according to a
consistent order (e.g., hfc||n||v)), and processes each in that order: each name-value pair
is inserted into the latest stable AST, unless a mappingi®isame name already exists.
The replica computes the new AST diggstor sequence numbef (> ri), appends it into

its SAIM, and multicasts t&R a (PRGHECKPOINT, (0, (S, r{"),0,t,m);) message. When a
replica receives 2+ 1 matchingPRCHECKPOINT messages, it stores them as a new stable
checkpoint certificate. If a replica’s old AST is not the Ktene, it will have to perform
state transfer, as described below.

When the replica obtains a new stable checkpoint certifidatesets its watchdog timer
to », and exits into its service phase by opening up communicatith nodes other than
replicas and resetting the phase-switch variable. In tgenbeng of the new service phase,
the Adds remaining in the buffer are handled as described in thacgephase, via the
transmission of {REPLYADD message.

Leader Election: During each proactive recovery phase, the leader descabede
is the replica =r modN, wherer is the current sequence number. A leader may mis-
behave, either by delaying the transmission ®RarPosemessage, or by transmitting an
incorrect such message. The latter case can be detected thekxecut e PBFT callback,
as described above. A non-faulty replica can detect thedoase by setting a timer as
soon as it multicasts itBATCH message, which it uneventfully stops when it encounters its
own BATcH as one of the batches included in a proposal duringtbeut e callback; if the
timer expires, then the replica also initiates a leader ghan

A leader change is similar to a batch commitment as abovey eeplica that wishes
to initiate it multicasts & EADERCHANGE message, which theextleader =r+1 modN
listens for. When the next leader has collectéd-ZL such requests, it packages them into a
singleLEADERCHANGEREQUEST Which it submits to PBFT; execution of this request after
linearization increments the sequence nuntkend makes the next leader the new current
leader. We omit the straightforward details on cascadedkleehanges.

State Transfer: Before the phase can end, the SAIM of a replica must contan th
latest stable checkpoint. A slow replica may be unable taiohthat by executing the
ProposH additions. However, the stable checkpoint broadcast dsetineplicas that were
up to date allows a slow replica to append that AST digestitatSAIM, thereby catching
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up with others. Up-to-date replicas missing actual AST saz apply the repair process
(described above for the service phase) to obtain only tA&enodes required for them
to execute a new proposal. Those are only the AST nodes orathdrpm the tree root to
the to-be-added tree leaves; other missing AST nodes cagpla@red by the background
audit and repair process during the service phase.

3.5.3 Optimizations

Tentative App response: When a replica receives akpp request, it buffers its re-
guest to process during an upcoming proactive recoveryephiéshe request is dropped
in the network and does not reach enough replicas, the elieald not receive responses
it expects in the next service phase. To help the client @eitsdrequest reaches at least
2f 4+ 1 replicas, each replica that receivesfarp request sends the client a tentativiep
acknowledgement to indicate it received the client’s retjue

Read for verification: A client that issues aADD request during a service phase can
issue &GEeT request for the name in the next service phase to check shatite is correctly
done. IfGET does not returrf + 1 replies that match its name-value pair from distinct
replicas, the client presumes thatAtsp request failed and multicasts #k®p request tR
again.

3.5.4 Correctness

Theorem 7. TM provides the HWICR property under the tiered Byzantmétimodel.

Proof. (Sketch) In the proof, we denote Bir) the service phase of rouménd byp(r) the
proactive recovery phase aftgr). We says(r) is healthy if the number of faulty replicas
is no more thanf out of 3f + 1 total replicas as(r). From our assumption, proactive
recovery phases are always healthy.

Without loss of generality consider a bindirig,v). We prove that ifn is not in the
AST and the binding is added at healts{y), the binding is correctly read (or temporarily
unavailable) at als(r’)(r’ >r).

At healthy s(r), we say anAdd(n,v) request is accepted if there are at leabti2l
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replicas that receive the request; clients can ensureltbaetjuest is accepted by checking
authenticated tentativepp responses. L& denote this set of replicas. At the start of
p(r), each replica multicastsentcH message to other replicas. The leader collets 2
distinct BATcH messages that formBatcH certificate. LetQ, denote the set of replicas
that form this certificateQ; (N Qp includes at least one non-faulty replica that receives the
ADD request. Therefore, the accepted request is contained BrticH certificate.

In addition, we show that gi(r) the BaTcH certificate contains the stable checkpoint
(2f + 1 matching SAIM attestations) gf(r — 1). At p(r — 1), there are at leastf2+
1 replicas that agree on thexTtcH certificate ofp(r — 1) via PBFT. LetQp denote this
set of replicas.QpMQp includes at least one non-faulty replica that includes thbls
checkpoint SAIM attestation. Therefore, tAercH certificate ofp(r) contains the correct
stable checkpoint gb(r — 1).

Then, PBFT ensures that at least-21 replicas agree on tierorPosewith the above
BaTcH certificate. Each such replica checks thatoes not exist; if necessary, the replica
can perform state transfer for this validation. If not, teplica insertgn,v) into the AST,
computes a new AST digest, and appends it to SAIM. At thistptiere are at leadt+ 1
correct replicas, each of which correctly adds the bindrthe AST and updates its SAIM.

Now, suppose a client gets a reply certificate{1 matching SAIM attestations) of
Get (n) ats(r +1). The reply certificate contains at least one up-to-datefaahty replica
since a non-faulty replica entes§ + 1) only after collecting @ RCHECckPOINT certificate.
Therefore, a client correctly reads valerhen it queries witn ats(r +1).

Once(n,v) is inserted into TM ap(r), it is clear thatp(r + 1) carries(n,v) from p(r)
correctly with the same argument we makeior — 1) andp(r). We can inductively argue
the same holds fop(r +i) andp(r +i-+1) for all i > 0. Therefore, when a client gets a
reply certificate foiGet (n) at alls(r +i) (i > 0), the client receives corre(m, V).

]
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3.6 Discussion

3.6.1 Tradeoff between Safety and Availability

There is a tradeoff between safety and availability, whghffected by changing the
frequency of proactive recovery. Frequent proactive reppumproves safety since it re-
duces the probability dfl replica faults in a service phase, but it reduces avaitgtsince
the TM service is not available to clients during proactieeavery.

We define the availability of the service as

Service time
Service time + Proactive recovery time

Availability =

The service time is an interval between two consecutiveqiraarecoveries. The proactive
recovery time is the sum of the reboot time and the commit.tiile commit time includes
the time to sendBATcH messages, the agreement time, and the time to incorporate ne
ADD requests, which requires to check a part of the AST and toirrépi& necessary.
The proactive recovery time depends on the system’s waiklic&, how many newApbp
requests the system process. When the service time bectiorsrsit is likely that the
proactive recovery time decreases since the system redes®number oAbD requests,
thus the proactive recovery time decreases. However, bmtend agreement time does
not change.

TM cannot increase the frequency of proactive recoverytrary due to its back-
ground process. The interval between two consecutive pveaecoveries must be greater
than the time to audit and repair the main data structurenumadault assumption. As the
collection of bindings grows, this time increases. We disdoelow how to partition name
space to bound the collection size.

When N is large, we can increase the frequency of proactive regavgrallowing
the audit and repair time to be longer than an interval betvte® consecutive proactive
recoveries. However, this requires a stronger fault assomm service phases to preserve
our safety guarantee. If the background audit and repasstalconsecutive service phases
to scan the entire data structure, we need the fault assomtpiit there is at least a replica
that is not faulty across+ 1 consecutive service phases.
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3.6.2 Extensions

Name Space Granularity: As more bindings are added to the system, it takes more
time to audit and repair the AST. An approach to increasiradaddlity is to partition the
name space and assign different replica groups to handfepeaitition. Name space par-
titioning, however, may have further uses, e.g., to suppantextualized archival collec-
tions, or to allow different replicas in a preserved nameiserto handle only name spaces
to which its operators have access. Such heterogeneousspaue partitions could be
handled through an extra level of indirection, via whichre@® process group deals with
distinct name spaces, though a single hardware device ai &4 a single host is shared
by all local TM processes.

Membership Management: To automate membership changes securely, TM can au-
thenticate membership information with SAIM. SAIM storedigest of a block that con-
tains public keys of TM members. This membership infornraiscalso agreed when PBFT
is run during a proactive recovery phase. Since memberslaipges are reflected in SAIM,
TM can securely authenticate the current members of thersyst

Advanced Search:To focus on HWICR guarantees in a tiered Byzantine fault mode
we present a naming service with a minimal search interf&&dending the main data
structure for advanced search is our future work. For exanmp can include inverted list
indices for keyword search.

Re-hashing Data: Due to the enhancement of cryptanalysis and computatioash h
function that was secure in the past may not be secure any. nfor&eep the system’s
security property, it should change its hash function, megate hashes from data with
the new hash function, and reconstructs the AST of TM. Thigrage requires a secure
coordinated action between the self-verifying bitstord &M, which is beyond the scope
of our work.
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3.7 Evaluation

3.7.1 Implementation

To validate our design, we developed a prototype TM implesaten. We implemented
the service and background audit process of TM in C/C++ orofee@ore 6. The client
and server communicate with a SFS’s asynchronous impletiemiof SUN RPC [Sri95]
in the SFSlite library [sfs]. Client-server communicatiame authenticated by signatures.
We use NTT’s ESIGN with 2048-bit keys for signatures. Thermiuses a proxy to perform
guorum operations fokdd/Get call invocation. The server maintains SAIM, A2M with
rate-limited appends, an AST, and a log for bufferkmps. We use software emulation of
SAIM, which also uses NTT’s ESIGN with 2048-bit keys for saguares.

We store an AST and a log on a disk using Berkeley DB [ber]. Véeaulsinary AST to
minimize the size of membership proofs [YCO7]. An AST is sthas a Berkeley database
with a BTREE format. Each AST node is stored as a Berkeley [@Brk which contains
a name, a value, a hash of its left child, and a hash of its dgidl. The primary key of
this DB is the name, and the secondary key is the hash of tire eotle content. To search
a value with a name in the AST and to insert a (hame, value)itgnid the AST while
generating a membership proof, we traverse the AST usiransiecy keys.

3.7.2 Experiment Results

We ran our experiments with four TM replica nodes and onethede. The nodes are
PCs with 1.8GH#z3.2GHz Pentium 4 processors, 1GB RAM and 3Com 3C905C Etherne
cards. They are connected over a dual speed 10/100Mbps 3@®@iahn.s On a 1.8GHz
machine, ESIGN signature creation and verification of 2@b&y@ke on average 2a$and
194us respectively.

We initially populate server ASTs with one million namewalbindings and use a
simple micro-benchmark client that sends 1@0fb or GeT requests. The maximum size
of anameis 128 bytes and a value is a 20-byte SHA-1 hastA dmrservers store bindings
to their logs and return tentative acknowledgements. G, servers search their ASTs
and return values, AST proofs, and SAIM attestations.
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Figure 3.12: Get and Add time. In average, Get takes 3ms, aldd#kes 1ms.

TM has reasonabl&et and Apbp latencies for long-term preservation systems. Fig-
ure[3IP? showsseT and App time for 1000 requests with randomly selected names. In
averageGEeT takes 3ms, andpp takes 1msGeT takes more time thaApp does since it
requires to access a path in the AST, which can incur to acoeiiple blocks in Berkeley
DB.

TM availability is also high enough for long-term preseiwatsystems. Figure_3.113
shows TM availability varying proactive recovery (PR) tiraed inter-PR time. When
inter-PR time is 24 hours, availability is 0.9993 and 0.99®1one-minute PR time and
ten-minutes PR time, respectively. Availability decreslsgearly as PR time increases. In
addition, as we perform proactive recovery more frequenity, inter-PR time increases),
availability decreases more rapidly. For example, whenifR is ten minutes, availability
drops from 0.9931 to 0.9474 as inter-PR time changes fronoR4dstto 3 hours. However,
when we perform proactive recovery frequently, the preactecovery time may reduce,
which mitigates frequent recovery effects, since TM needsandle fewerlApps. With
one-minute PR time, availability becomes 0.9945 despitetiour inter-PR time.
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Figure 3.13: TM availability varying proactive recoveryRJPtime and inter-PR time.

3.8 Future Work

There are a few enhancements we can make in proactive rganveM. First, we im-
prove the fault bounds in TimeMachine, but we still have B8tfbounds during proactive
recovery phases. We hope to explore multiple points on tiéiracum of fault models
through ourfT-bound, in which the number of faults 1h consecutive phases is bounded
by fT for some fractionf, but there can be phases in which more thareplicas are
faulty. Such a failure model may require multi-phase recpemd at leasT SAIM slots,
rather than the single-slot algorithm we described in thésis. Second, we assume hard-
ware clocks to invoke the proactive recovery almost at timeesaAsynchronous proactive
recovery that does not rely on hardware clocks might leaddoerpractical preservation
systems.

The TM evaluation used short-running benchmarks. An eviao®f long-term usage
of our systems will provide valuable insights. We hope toTivshalongside an archival ser-
vice to understand better the practical applicability of tpproach in a real-world archival
environment.
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3.9 Summary

Long-term services that operate reliably are hard to coostiThis work represents a
first step towards understanding better Byzantine-fauldetofor long-term preservation
services that can be both plausible and amenable to safi@osclu

We propose a stronger property called HWICR for our preseneme service and
introduce a new tiered Byzantine fault model that is suédbl long-term services. We
present a naming service called TM that provides HWICR undetiered Byzantine fault
model. TM uses a unique two phase approach that alternat@sdaeregular service and
trusted proactive recovery phases. By making importame sfaanges only during proac-
tive recovery phases, TM can tolerate more faults than posvsystems do. TM puts
together various components including trusted hardwaaeh@eve stronger fault tolerance
in the face of realistic threats.
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Chapter 4

Selfish Replication

4.1 Overview

To tolerate faults in a single domain, systems can replicatéent across multiple ad-
ministrative domains. Examples are wide-area peer-tofilessystems [DKK 01, RDO1,
ABC'02,KBC"00,SKKMO02], peer-to-peer caches [IRD02,GD33], and distributed web
caches [Dan98, FCABOO]. Replication of objédis selected servers is widely used to en-
hance the performance, availability, and reliability o#$k systems. However, most such
systems assume that servers cooperate with one anothdidwyifg protocols optimized
for overall system performance, regardless of the costsiied by each server.

In reality, servers may behave selfishly — seeking to maverttieir own benefit. For
example, parties in different administrative domainsizditheir local resources (servers)
to better support clients in their own domains. They havdamis/incentives to replicate
objects that maximize the benefit in their domains, possiblyhe expense of globally
optimum behavior. It has been an open question whether tiegdieation scenarios and
protocols maintain their desirable global properties (total social cost, for example) in
the face of selfish behavior.

In this chapter, we take a game-theoretic approach to anglytze problem of replica-
tion in networks of selfish servers through theoretical ysialand simulations. We model
selfish replication as a non-cooperative game. Irbc modelthe servers have two pos-

lwe use the term “object” as an abstract entity that represiées and other data objects.
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sible actions for each object. If a replica of a requesteéaihs located at a nearby node,
the server may be better off accessing the remote replicah®ather hand, if all replicas
are located too far away, the server is better off replicgiie object itself. Decisions about
replicating the replicas locally are arrived at locallykitey into account only local costs.
We also define a more elaborgtayment modein which each server bids for having an
object replicated at another site. Each site now has thempfireplicating an object and
collecting the related bids. Once all servers have choseérategy, each game specifies
a configuration that is, the set of servers that replicate the object, aadthresponding
costs for all servers.

Game theory predicts that such a situation will end up iNash equilibrium that
is, a set of (possibly randomized) strategies with the pitgp@at no player can benefit
by changing its strategy while the other players keep theiteggies unchanged [OR94].
However, the lack of coordination inherent in selfish derismaking may incur costs well
beyond what would be globally optimum. This loss of efficigiecquantified by therice
of anarchy[KP99]. The price of anarchy is the ratio of the social (tptaist of the worst
possible Nash equilibrium to the cost of the social optimiime price of anarchy bounds
the worst possible behavior of a selfish system, when leftptetaly on its own. How-
ever, in reality there are ways whereby the system can besduitirough “seeding” or
incentives, to a pre-selected Nash equilibrium. This ‘lopgtic” version of the price of
anarchy [ADTWO3] is captured by the smallest ratio betwe®&taah equilibrium and the
social optimum.

In this work we address the following questions :

e Do pure strategy Nash equilibria exist in the replicatiomg&

e If pure strategy Nash equilibria do exist, how efficient dreyt(in terms of the price
of anarchy, or its optimistic counterpart) under differptdcement costs, network
topologies, and demand distributions?

¢ Will a mechanism like adopting payments improve the Nashlibga?

We show that pure strategy Nash equilibria always exist énréplication game. The
price of anarchy of the basic game model cara), wheren is the number of servers;



89

Figure 4.1: Replication. There are four servers labeled ACBand D. The rectangles are
object replicas. In (a), A stores an object. If B incurs legst@ccessing A's replica than
it would replicating the object itself, it accesses the obfeom A as in (b). If the distance

cost is too high, the server replicates the object itsel{C akes in (c). This figure is an

example of our replication game model.

the intuitive reason is undersupply. Under certain top@sgthe price of anarchy does
have tighter bounds. For complete graphs and stars@t13. For D-dimensional grids,
itis O(nD%l). In the basic game, even the optimistic price of anarchy e@(n). In the
payment model, however, the game can always implement a@tpslibrium that is same
as the social optimum, so the optimistic price of anarchys.o

Our simulation results show several interesting phaseshéplacement cost increases
from zero, the price of anarchy increases. When the placeoeshfirst exceeds the max-
imum distance between servers, the price of anarchy is aigtest due to undersupply
problems. As the placement cost further increases, the pfianarchy decreases, and the
effect of replica misplacement dominates the price of dnarc

The rest is organized as follows. Sectlonl 4.2 discussedislefahe basic game and
analyzes the bounds of the price of anarchy. In Seéfidn 4.8iseiss the payment game
and analyze its price of anarchy. In Section 4.4 we describbesionulation methodology
and study the properties of Nash equilibria observed. Weuds extensions of the game
and directions for future work in Sectign#.5.

4.2 Basic Game

The replication problem we study is to find a configuratiort thaets certain objectives
(e.g., minimum total cost). Figufe4.1 shows examples dfagafpon among four servers.
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In network (a), A stores an object. Suppose B wants to acbesshject. If it is cheaper
to access the remote replica than to replicate it, B accélsagmote replica as shown in
network (b). In network (c), C wants to access the object.iffar from A, C replicates the
object instead of accessing the object from A. It is posghd¢ in an optimal configuration
it would be better to place replicas in A and B. Understandnegplacement of replicas by
selfish servers is the focus of our study.

The replication problem is abstracted as follows. Theresstd of n servers and a
setM of m objects. The distance between servers can be represerdgedisiance matrix
D (i.e., djj is the distance from serverto serverj). D models an underlying network
topology. For our analysis we assume that the distancesyarmestric and the triangle
inequality holds on the distances (for all servers, k: dij + djx > di). Each server has
demand from clients that is represented by a demand mattifixe., wij is the demand of
serveri for objectj). When a server replicates objects, the server incurs sdacerpent
cost that is represented by a matmiXi.e., ajj is a placement cost of serviefor objectj).

In this study, we assume that servers have no capacity lksitve discuss in the next
section, this fact means that the replication behavior wepect to each object can be
examined separately. Consequently, we can talk abanfigurationsof the system with
respect to a given object:

Definition 2. A configuration X for some object O is the set of servers raphg this

object.

The goal of the basic game is to find configurations that aréeaetl when servers
optimize their cost functions locally.

4.2.1 Game Model

We take a game-theoretic approach to analyzing the undapetireplication prob-
lem among networked selfish servers. We model the selfiskcagiph problem as a non-
cooperative game with players (servers/nodes) whose strategies are sets oft®lgec
replicate. In the game, each server chooses a pure straiggyinimizes its cost. Our fo-
cus is to investigate the resulting configuration, whiclinesMash equilibrium of the game.
It should be emphasized that we consider only pure strategy quilibria in this work.
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The cost model is an important part of the game. Aidie the set of feasible strategies
for serveri, and let§ € A be the strategy chosen by serverGiven a strategy profile
=(9,S,...,Sh), the cost incurred by servers defined as:

Ci(9 = 25 Qi+ > Wi j)- (4.1)
je ¢S
whereaij is the placement cost of objegtwij is the demand that servehas for object
J, £(i, ) is the closest server iahat replicates objedt, anddik is the distance betweeén
andk. When no server replicates the object, we define distanceiggs, to bedy—large
enough that at least one server will choose to replicate bbfecb
The placement cost can be further divided into first-timealfation cost and mainte-

nance cost:
u pdateS|zp1

Aij =Ky + Ko ———— ObjectSize T Z kij> (4.2)

wherekj; is the installation costky; is the relative weight between the maintenance cost
and the installation cosE; is the ratio of the number of writes over the number of reads
and writeslJ pdateSizgis the size of an updat@b jectSizgis the size of the object, and
T is the update period. We see tradeoffs between differeanpeters in this equation. For
example, placing replicas becomes more expensitkpakateSizgincreasesP; increases,
or T decreases. However, note that by varymgitself we can capture the full range of
behaviors in the game. For our analysis, we use afly

Since there is no capacity limit on servers, we can look &t sagyle object as a sepa-
rate game and combine the pure strategy equilibria of thexseg to obtain a pure strategy
equilibrium of the multi-object game. Fabrikant, Papadiimou, and Talwar discuss this
existence argument: if two games are known to have pureibdgajland their cost func-
tions are cross-monotonic, then their union is also guaeghto have pure Nash equilibria,
by a continuity argument [FPTO4]. A Nash equilibrium for thneilti-object game is the
cross product of Nash equilibria for single-object gameser€fore, we can focus on the
single object game in the rest of this work.

For single object selfish replication, each sefvieas two strategies — to replicate or
not to replicate. The object under consideration.isVe defineS to be 1 when servar
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replicatesj and O otherwise. The cost incurred by servisr
Ci(S) = aij S +wijdigi j)(1—S). (4.3)

We refer to this game as thmasic game The extent to whiclC; (S) represents actual cost
incurred by server is beyond the scope of this work; we will assume that an apjatep
cost function of the form of Equatidn4.3 can be defined.

4.2.2 Nash Equilibrium Solutions

In principle, we can start with a random configuration andhes configuration evolve
as each server alters its strategy and attempts to minitsizest. Game theory is interested
in stable solutions calletllash equilibria A pure strategy Nash equilibrium is reached
when no server can benefit by unilaterally changing its erat A Nash equilibriurh
(§',S",) for the basic game specifies a configuratosuch thatvi € N,i e X & § = 1.
Thus, we can consider a setof all pure strategy Nash equilibrium configurations:

XeE & VieN,

(4.4)
vS €A, G(§,S) <G(S.SYy)

By this definition, no server has incentive to deviate in thafigurations since it cannot
reduce its cost.
For the basic game, we can easily see that:

Xer <« VieN, 3JjeX stdj<a

_ (4.5)
and VjeX, -dkeX st.dgj<a

The first condition guarantees that there is a server thaeplthe replica within distance
a of each server. If the replica is not placed atthen it is placed at another server within
distancex of i, soi has no incentive to replicate. If the replica is placed titen the second
condition ensures there is no incentive to drop the repkzabse no two servers separated

2The notation for strategy profileS(,S*;) separates nodés strategy §) from the strategies of other
nodes §°;).
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Figure 4.2: Potential inefficiency of Nash equilibria iitated by two clusters df servers.
The intra-cluster distances are all zero and the distanteeka clusters ist — 1, where
a is the placement cost. The dark nodes replicate the objestwdtk (a) shows a Nash
equilibrium in the basic game, where one server in a clus@iaates the object. Network
(b) shows the social optimum where two replicas, one for edagster, are placed. The
price of anarchy i©(n) and even the optimistic price of anarchyQ@sén). This high price
of anarchy comes from the undersupply of replicas due to ¢ffesls nature of servers.
Network (c) shows a Nash equilibrium in the payment game revh&o replicas, one for
each cluster, are placed. Each light node in each clustarZ/ayto the dark node, and the
dark node replicates the object. Here, the optimistic pricanarchy is one.

by distance less tham both place replicas.

4.2.3 Social Optimum

The social costof a given strategy profile is defined as the total cost incub all

Servers, namely:

n—-1
SCELE (4.6)

whereC;(S) is the cost incurred by servegiven by Equatioi4]1.

The social optimum cost, referred to @6S) for the remainder of the chapter, is the
minimum social cost. The social optimum cost will serve agwgortant base case against
which to measure the cost of selfish replication. We dediff&,) as:

C(So) = minC(s) 4.7)

whereS varies over all possible strategy profiles. Note that in theidbgame, this means
varying configuratiorX over all possible configurations. In some sel®&p) represents
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the best possible replication behavior — if only nodes cdaddconvinced to cooperate
with one another.

The social optimum configuration is a solution of a mini-swatility location problem,
which is NP-hard [GJ79]. To find such configurations, we folateian integer program-
ming problem:

minimizey; ¥ [0 Xij -+ 3k Wij dikijk |
subject to
Vi,i o SkYijk = H(wij)
Vi, j K %) —Ykji > 0
Vi,j X €{0,1}
Vi, .k yijk € {0,1}

(4.8)

Here,x;j is 1 if serveri replicates objec§ and O otherwisey;jx is 1 if serveri accesses
objectj from serveik and O otherwise;(w) returns 1 ifw is nonzero and 0 otherwise. The
first constraint specifies that if servenas demand for objegt then it must accesgfrom
exactly one server. The second constraint ensures tharseeplicates objecj if any
other server accessg$romii.

4.2.4 Analysis

To analyze the basic game, we first give a proof of the existehpure strategy Nash
equilibria. We discuss the price of anarchy in general amah thn specific underlying
topologies. In this analysis we use simplyin place ofaij, since we deal with a single
object and we assume placement cost is the same for all serireaddition, when we
compute the price of anarchy, we assume that all nodes hav&athe demand (i.evj €

N wj =1).
Theorem 8. Pure strategy Nash equilibria exist in the basic game.

Proof. We show a constructive proof. First, initialize the $eto N. Then, remove all

nodes with zero demand frovh Each node defineg3y, wherefx = w%] Furthermore, let

Z(y) ={z:dy < B;,z€ V}; Z(y) represents all nodesfor whichy lies within 3, from z.
Pick a nodey € V such thafy < B for all x € V. Place a replica gtand then remove
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yand allze Z(y) from V. No suchz can have incentive to replicate the object because it
can accesy's replica at lower (or equal) cost. Iterate this processlagipg replicas until

V is empty. Because at each iteratipis the remaining node with minimuf no replica

will be placed within distancgy of any sucty by this process. The resulting configuration
is a pure-strategy Nash equilibrium of the basic game. O

The Price of Anarchy (POA)

To quantify the cost of lack of coordination, we use the po€anarchy [KP99] and
the optimistic price of anarchy [ADTWO3]. The price of anayds the ratio of the social
costs of the worst-case Nash equilibrium and the sociahapti, and the optimistic price
of anarchy is the ratio of the social costs of the best-casd Mguilibrium and the social
optimum.

We show general bounds on the price of anarchy. Throughauisaussion, we use
C(Sw) to represent the cost of worst case Nash equilibri@®o) to represent the cost of
social optimum, anéPoAto represent the price of anarchy, whicr%@g—)).

The worst case Nash equilibrium maximizes the total coseutite constraint that the
configuration meets the Nash condition. Formally, we came€f{Sy) as follows.

C(Sw) = Xmeaz)(O(\X| + Z ro;i)E]dij) (4.9)

where minex dij is the distance to the closest replica (includirigelf) from node andX
varies through Nash equilibrium configurations.

Bounds on the Price of Anarchy

We show bounds of the price of anarchy varymngLet dmin = min j)enxn,izj dij and
Omax = MaxX; j)eNxN dij. We see that itx < dmin, POA = 1 trivially, since every server
replicates the object for both Nash equilibrium and soguimoum. Whem > dmax there
is a transition in Nash equilibria: since the placement mogteater than any distance cost,
only one server replicates the object and other serversagteemotely. However, the

social optimum may still place multiple replicas. Sinwe< C(So) < o + minjen 3 dij
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Line O(y/n)
D-dimensional grid O(n%)

Figure 4.3: PoA in the basic game for specific topologies

a-+maxjen 5 dij a-+maxjen 5 dij .
Wng.dul < PoA< ——==—. Note that depending

on the underlying topology, even the lower boundPofA can beO(n). Finally, there is
a-+maxjen 5 dij
a+minjen 3 di

whena > dmax We obtain

a transition whero > maxjcn 5 dij. In this case PoOA=
bounded by 2.

Figure[Z2 shows an example of the inefficiency of a Nash #mjiwim. In the network

and it is upper

there are two clusters of servers whose siZk iShe distance between two clustersiis 1
wherea is the placement cost. Figure.2(a) shows a Nash equitibwhere one server in
a cluster replicates the object. In this caS&Sy) = a + (o —1)3, since all servers in the
other cluster accesses the remote replica. However, tie sptimum places two replicas,
one for each cluster, as shown in Figlird 4.2(b). Therefd(§y) = 2a. PoA= %
which isO(n). This bad price of anarchy comes from an undersupply ofecapliue to the
selfish nature of the servers. Note that all Nash equilitaigetthe same cost; thus even the

optimistic price of anarchy i®(n).

4.2.5 Analyzing Specific Topologies

We now analyze the price of anarctBo@) for the basic game with specific underlying
topologies and show th®bAcan have better bounds. We look at complete graph, star, line
andD-dimensional grid. In all these topologies, we set the distabetween two directly
connected nodes to one. We describe the case wheré, sincePoA= 1 trivially when
a < 1. A summary of the results is shown in Tablgl4.3.

For a complete graptiBoA= 1, and for a stalPoA< 2. For a complete graph, when
a > 1, both Nash equilibria and social optima place one replicana server, s0A=
1. For star, when X a < 2, the worst case Nash equilibrium places replicas at dil lea
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nodes. However, the social optimum places one replica atéhéer node. Therefore,

PoA= (gl%r)]ﬁ)l < Zl(iznli)l < 2. Whena > 2, the worst case Nash equilibrium places one

replica at a leaf node and the other nodes access the rempbtayand the social optimum

a+1+2(n—-2)
a+(n-1) 1+ a+(?1—1) <2

For a line, the price of anarchy ©(,/n). When 1< a < n, the worst case Nash

places one replica at the centBoA=

equilibrium places replicas everyiZo that there is no overlap between areas covered by
two adjacent servers that replicate the object. The sopi@inoim places replicas at least
everyy/2a. The placement of replicas for the social optimum is as fedloSuppose there
are two replicas separated by distamceBy placing an additional replica in the middle,
we want to have the reduction of distance to be at lea3the distance reduction &/2+
2{((d/2—1)—1)+((d/2—2) —2)+...+((d/2—d/4) —d/4)} > d?/8. d should be at
most 2/2a. Therefore, the distance between replicas in the sociahoipt is at most/2a.
C(Sw) = a ) + 4 O — o(an). C(So) > alzl v 222 L ¢(s,) =

Q(y/an). Therefore,FoA= O(y/a). Whena > n— 1, the worst case Nash equilibrium

places one replica at a leaf node a&d(&y) = a + @ However, the social optimum

still places replicas every2a. If we view PoAas a continuous function of and compute

a derivative ofPoA the derivative becomes 0 wheris ©(n?), which means the function
decreases as increases fromn. Therefore,POAis maximum wher is n, and PoA=
% = O(y/n). Whena > @ the social optimum also places only one replica, and
PoAis trivially bounded by 2. This result holds for the ring anatan be generalized to
the D-dimensional grid. As the dimension in the grid increashs, distance reduction
of additional replica placement becom@¢d®*1) whered is the distance between two

adjacent replicas. ThereforlepA= Lﬂf) = O(nD%l).
Q(nD+In)

4.3 Payment Game

In this section, we present an extension to the basic gantepaigments and analyze
the price of anarchy and the optimistic price of anarchy efghme.
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4.3.1 Game Model

The new game, which we refer to as {@yment gameallows each player to offer a
payment to another player to give the latter incentive tdicaefe the object. The cost of
replication is shared among the nodes paying the serverdpltates the object.

The strategy for each playeis specified by a tripletv;, bj,tj) € {N,R, R, }. v; spec-
ifies the player to whom makes a bidb; > 0 is the value of the bid, angl> 0 denotes a
threshold for payments beyond whichvill replicate the object. In addition, we ug to
denote the total amount of bids received by a niod = > jivj=i bj).

A nodei replicates the object if and onlyR > t;, that is, the amount of bids it receives
is greater than or equal to its threshold. Ledenote the corresponding indicator variable,
that is,lj equals 1 ifi replicates the object, and 0 otherwise. We make the rulefthaiode
i makes a bid to another nogl@nd j replicates the object, themtmust payj the amounb;.

If j does not replicate the objectloes not pay.

Given a strategy profile, the outcome of the game is the setpdés{(l;,v,bi,R)}. |;
tells us whether playarreplicates the object or na; is the payment playermakes to
playery;, andR,; is the total amount of bids received by playefTo compute the payoffs
given the outcome, we must now take into account the paynaemdsie makes, in addition
to the placement costs and access costs of the basic game.

By our rules, a server nodgaysb; to nodeyv; if v; replicates the object, and receives a
payment ofR; if it replicates the object itself. Its net paymenti$, — Ril;. The total cost
incurred by each node is the sum of its placement cost, acosgsand net payment. It is
defined as

Gi(S) = aijli -I-Wijdig(u)(l— li) + bily, — Ril;. (4.10)

The cost of social optimum for the payment game is same agdh#ie basic game,
since the net payments made cancel out.

4.3.2 Analysis

In analyzing the payment model, we first show that a Nash iequiin in the basic
game is also a Nash equilibrium in the payment game. We thesept an important
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positive result — in the payment game the socially optimatfiguration can always be
implemented by a Nash equilibrium. This means that the apticprice of anarchy in the
payment game is always one. We know from the counterexamptegure[4.P that this is
not guaranteed in the the basic game. In this analysis we tseepresenty;; .

Theorem 9. Any configuration that is a pure strategy Nash equilibriurthie basic game is
also a pure strategy Nash equilibrium in the payment gameréfbre, the price of anarchy
of the payment game is at least that of the basic game.

Proof. Consider any Nash equilibrium configuration in the basic garor each node
replicating the object, set its threshaido O; everyone else has thresholdAlso, for alli,
bj =0.

A node that replicates the object does not have incentiviedoge its strategy: changing
the threshold does not decrease its cost, and it would hapaytat leastr to access a
remote replica or incentivize a nearby node to replicateer@tore it is better off keeping
its threshold and bid at 0 and replicating the object.

A node that is not replicating the object can access the bbgecotely at a cost less
than or equal tam. Lowering its threshold does not decrease its cost, sind® ate zero.
The payment necessary for another server to place a replatdaastr.

No player has incentive to deviate, so the current configamas a Nash equilibrium.

]

In fact for some graphs, tHeoAof the payment game can be more than that of the basic
game.

Now let us look at what happens to the example shown in Figiténdthe best case.
Suppose nod8's neighbors each decide to pay nd8l@n amount 2n. B does not have
an incentive to deviate, since accessing the remote reghtiea not decrease its cost. The
same argument holds férbecause of symmetry in the graph. Since no one has an incen-
tive to deviate, the configuration is a Nash equilibrium.tdétsl cost is 2, the same as in
the socially optimal configuration shown in Figlrel4.2(b)exwe prove that indeed the
payment game always has a strategy profile that implemeatsaitially optimal configu-
ration as a Nash equilibrium. We first present the followihgervation, which is used in
the proof, about thresholds in the payment game.
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Observation 1. If node i replicates the object, j is the nearest node to | agthre other
nodes that replicate the object, ang & o in a Nash equilibrium, then i should have a
threshold at leastd — d;j). Otherwise, it cannot collect enough payment to comperfsat
the cost of replicating the object and is better off accesgdie replica at j.

Theorem 10. In the payment game, there is always a pure strategy Naslil@guin that
implements the social optimum configuration. The optimgtice of anarchy in the pay-
ment game is therefore always one.

Proof. Consider the socially optimal configuratig@p:. Let No be the set of nodes that
replicate the object anld. = N — N, be the rest of the nodes. Also, for eadh Ny, let Q;
denote the set of nodes that access the object fromt includingi itself. In the socially
optimal configurationd;; < a for all j in Q.

We want to find a set of payments and thresholds that makesdhfguration imple-
mentable. The idea is to look at each nade N, and distribute the minimum payment
needed to makereplicate the object among the nodes that access the objpeci.f For
eachi in Np, and for each in Q;, we define

oj =mi in dik}—dj 4.11
j m'n{o‘,kefNTl[‘{i} ik} —dii (4.11)
Note thatd; is the difference betweeys cost for accessing the replicaiand j’s next best

option among replicating the object and accessing someeaepther than. It is clear that
5]' > 0.

Claim 1. For each i€ No, let/ be the nearest node to i infNThen,y ;.o 8j > o — dy.

Proof. (of claim) Assume the contrary, that §;., 0; < a —di,. Consider the new config-
uration@new Whereini does not replicate and each nod€lnchooses its next best strategy
(either replicating or accessing the replica at some nodg in {i}). In addition, we still
place replicas at each nodeNg — {i}. It is easy to see that cost @yt minus cost ofphew
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is at least:
(a+ %dij)—(dig-ﬁ- %min{a min_ dik})
1€Q; JEQ ENo—{i}
= oa—dg— ) 9, >0,
J€EQi
which contradicts the optimality a@fypt. O

We set bids as follows. For eaclin Ny, bj = 0 and for each in Q;, j bids toi (i.e.,
vj = i) the amount:

bj = max{0.5 —&i/(|Q| + 1)}, j€Q (4.12)

wheregj = 3 jcq 0j —a +diy > 0 and|Q| is the cardinality olQ;. For the thresholds, we
have:
- { o if ieNg; 4.13)
Yieqbj If i€No.
This fully specifies the strategy profile of the nodes, and @asy to see that the outcome
is indeed the socially optimal configuration.

Next, we verify that the strategies stipulated constituiaah equilibrium. Having set
ti to a for i in N; means that any node N is at least as well off lowering its threshold
and replicating as bidding to some node itN. to make it replicate, so we may disregard
the latter as a profitable strategy. By observation 1, to renthat each in N, does not
deviate, we require that ifis the nearest node tan No, theny ;. bj is at least{a —di/).
Otherwise,i will raise tj abovey ;.o bj so that it does not replicate and instead accesses
the replica at. We can easily check that

Qe

S>> L
bi= 2 T Q1

j€Qi i€Qi

=0a— d|£+ a—dif.

|QI| + 1

Therefore, each nodec N, does not have incentive to changasincei loses its pay-
ments received or there is no change, addes not have incentive tg since it replicates
the object. Each nodgin N has no incentive to chande since changing; does not
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reduce its cost. It also does not have incentive to rethysence the node whergaccesses
does not replicate anfl has to replicate the object or to access the next closestaepl
which costs at least the same from the definitioofNo player has incentive to deviate,
so this strategy profile is a Nash equilibrium. O O

4.4 Simulation

We run simulations to compare Nash equilibria for the siraigect replication game
with the social optimum computed by solving the integerdingrogram described in Equa-
tion[4.8 using Mosek [mos]. We examine price of anardPyA), optimistic price of anar-
chy (OPoA), and the average ratio of the costs of Nash equilibria anhkoptima Ratio),
and when relevant we also show the average numbers of rejplizgeed by the Nash equi-
librium (Replica(NE) and the social optimunReplica(SO). ThePoAandOPoAare taken
from the worst and best Nash equilibria, respectively, tiabbserve over the runs. Each
data point in our figures is based on 1000 runs, randomly ngryie initial strategy profile
and player order.

In our evaluation, we study the effects of variation in foategories: placement cost,
underlying topology, demand distribution, and payments.w& vary the placement cost
a, we directly influence the tradeoff between replicating aatreplicating. In order to get
a clear picture of the dependencyRdAon a in a simple case, we first analyze the basic
game with a 100-node line topology whose edge distance is one

We also explore transit-stub topologies generated usiead@shITM library [ZCB96]
and power-law topologies (Router-level Barabasi-Albevtiel) generated using the BRITE
topology generator [MLMBOL1]. For these topologies, we gateean underlying physical
graph of 3050 physical nodes. Both topologies have similaimum, average, and max-
imum physical node distances. The average distance is WéZreate an overlay of 100
server nodes and use the same overlay for all experimertighatgiven topology.

In the game, each server has a demand whose distributiorrme@#(p), wherep is
the probability of having demand for the object; the defamliess otherwise specified is
p=1.0.
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Algorithm 1 Initialization for the Basic Game
L, = a random subset of servers
for each nodein N do
if i € L then
S = 1; replicate the object
else

S=0

Algorithm 2 Move Selection of for the Basic Game
Cost = a
Cost = minjcx_¢y dij ; X is the current configuration
Costnin = min{Cost,Cosb}
if Costow > Costnin then
if Costnin == Cost then

S=1
else
S=0

4.4.1 Nash Dynamics Protocols

The simulator initializes the game according to the giverapeeters and a random
initial strategy profile and then iterates through roundgidlly the order of player actions
is chosen randomly. In each round, each server performsakh Nynamics protocol that
adjusts its strategies greedily in the chosen order. Whenrdrpasses without any server
changing its strategy, the simulation ends and a Nash bquiin is reached.

In the basic game, we pick a random initial subset of serne@rrgplicate the object
as shown in Algorithnidl. After the initialization, each péayruns the move selection

Figure 4.4: An example where the Nash dynamics protocol de¢sconverge in the
payment game.
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Algorithm 3 Initialization for the Payment Game
L, = arandom subset of servers
for each nodein N do
bi=0
if i € Ly then
ti = 0 ; replicate the object
else
i=a

Lo = {}
for each nodéin N do
if coin toss == heathen
Mi = {j:d(j,i) < miner,u,d(j,K)}
if Mj = 0then
for each nodg € M; do

procedure described in Algorithioh 2 (in algorithfds 2 &h€dst,q represents the current
cost for noda). This procedure chooses greedily between replicatiomanereplication.
It is not hard to see that this Nash dynamics protocol corasengtwo rounds.

In the payment game, we pick a random initial subset of serneereplicate the object
by setting their thresholds to 0. In addition, we initialzeecond random subset of servers
to replicate the object with payments from other serverse détails are shown in Algo-
rithm[3. After the initialization, each player runs the m@etection procedure described in
Algorithm[4. This procedure chooses greedily betweencapbtin and accessing a remote
replica, with the possibilities of receiving and making pents, respectively. In the pro-
tocol, each node increases its threshold valuabyif it does not replicate the object. By
this ramp up procedure, the cost of replicating an objedhased fairly among the nodes
that access a replica from a server that does replicatecrfis small, cost is shared more
fairly, and the game tends to reach equilibria that encagagore servers to store replicas,
though the convergence takes longeintr is large, the protocol converges quickly, but it
may miss efficient equilibria. In the simulations we setr to 0.1. Most of our simulation
runs converged, but there were a very few cases where théasiomudid not converge due
to the cycles of dynamics. The protocol does not guaranteeecgence within a certain
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Algorithm 4 Move Selection of for the Payment Game
Cost=a—R
Cosh = minjen_ iy {tj — Rj +dij }
Costnin= min{Cost,Cosb}
if CoStow > Costnin then
if Costnin == Cosf then

ti=R
else
ti =R +incr
v = argminj{tj — R; +dij }
bi =ty — Ry,

number of rounds like the protocol for the basic game.

We provide an example graph and an initial condition such tifia Nash dynamics
protocol does not converge in the payment game if started fhos initial condition. The
graph is represented by a shortest path metric on the nestarkn in Figuré—4]4. In the
starting configuration, only replicates the object, aralpays it an amount /3 to do so.
The thresholds foA, B andC area /3 each, and the thresholds farb andc are 2x/3. It
is not hard to verify that the Nash dynamics protocol will @egonverge if we start with
this condition.

The Nash dynamics protocol for the payment game needs furthestigation. The
dynamics protocol for the payment game should avoid cycfesctions to achieve sta-
bilization of the protocol. Finding a self-stabilizing dgmics protocol is an interesting
problem. In addition, a fixed value ofcr cannot adapt to changing environments. A small
value ofincr can lead to efficient equilibria, but it can take long time terge. An
important area for future research is looking at adaptiecegngingncr.

4.4.2 Varying Placement Cost

Figure[4b show®oA OPoA andRatio, as well as number of replicas placed, for the
line topology asx varies. We observe two phases. @d#creases th€oArises quickly to
a peak at 100. After 100, there is a gradual decl®dBoAandRatioshow behavior similar
to POA

These behaviors can be explained by examining the numbepbéas placed by Nash
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Figure 4.5: We presemoA Ratio, andOPoAresults for the basic game, varyingon a
100-node line topology, and we show number of replicas plagethe Nash equilibria and
by the optimal solution. We see large peak$0A andOPoAat a = 100, where a phase
transition causes an abrupt transition in the lines.

equilibria and by optimal solutions. We see that wioeis above one, Nash equilibrium
solutions place fewer replicas than optimal on average.ekample, whem is 100, the
social optimum places four replicas, but the Nash equiirplaces only one. The peak in
PoAata = 100 occurs at the point for a 100-node line where the worsg-cast of access-
ing a remote replica is slightly less than the cost of plaeimgw replica, so selfish servers
will never place a second replica. The optimal solution, &osv, places multiple replicas
to decrease the high global cost of access.aAsontinues to increase, the undersupply
problem lessens as the optimal solution places fewer @plic

4.4.3 Different Underlying Topologies

In Figure[4.6(a) we examine an overlay graph on the morestéatransit-stub topol-
ogy. The trends for thBoA OPoA andRatioare similar to the results for the line topology,
with a peak inPoAata = 0.8 due to maximal undersupply.

In Figure[4.¥ (a) we examine an overlay graph on the powetdpology. We observe
several interesting differences between the power-lawteantit-stub results. First, the
PoA peaks at a lower level in the power-law graph, around 2.3x(at 0.9) while the
peakPoAin the transit-stub topology is almost 3.0 ¢at= 0.8). After the peakPoAand
Ratiodecrease more slowly asincreasesOPOAIs close to one for the whole range of
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Figure 4.6: Transit-stub topology: (a) basic game, (b) payhgame. We show theoA
Ratio, OPoA and the number of replicas placed while varyingetween 0 and 2 with 100
servers on a 3050-physical-node transit-stub topology.

values. This can be explained by the observation in Figui@)that there is no significant
undersupply problem here like there was in the transit-gtaiph. Indeed the higRoA
is due mostly to misplacement problems wreemms from 0.7 to 2.0, since there is little
decrease iPoAwhen the number of replicas in social optimum changes fromtbnone.
The OPoAis equal to one in the figure when the same number of replieaglaced.

4.4.4 Varying Demand Distribution

Now we examine the effects of varying the demand distrilbutidhe set of servers
with demand is random fop < 1, so we calculate the expectPdA by averaging over 5
trials (each data point is based on 5000 runs). We run sitonkafor demand levels of
p € {0.2,0.6,1.0} asa is varied on the 100 servers on top of the transit-stub grajé.
observe that as demand falls, so does expdedéd As p decreases, the number of replicas
placed in the social optimum decreases, but the number ih Bigsilibria changes little.
Furthermore, whem exceeds the overlay diameter, the number in Nash equildbaigs
constant wheip varies. Therefore, lowgyleads to a lesser undersupply problem, agreeing
with intuition. We do not present the graph due to space #itiahs and redundancy; the
PoAfor p = 1.0 is identical tdPoAin Figure[46(a), and the lines far= 0.6 andp = 0.2
are similar but lower and flatter.
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Figure 4.7: Power-law topology: (a) basic game, (b) payngame. We show th€oA
Ratio, OPoA and the number of replicas placed while varyingetween 0 and 2 with 100
servers on a 3050-physical-node power-law topology.

4.4.5 Effects of Payment

Finally, we discuss the effects of payments on the efficiasfdjash equilibria. The
results are presented in Figurel4.6(b) and Figurke 4.7(b).sh@svn in the analysis, the
simulations achiev®©PoA close to one (it is not exactly one because of randomness in
the simulations). Th&atio for the payment game is much lower than fRatio for the
basic game, since the protocol for the payment game tendgptore good regions in the
space of Nash equilibria. We observe in Figuré 4.6 thatifor0.4, the average number of
replicas of Nash equilibria gets closer with payments to ¢fighe social optimum than it
does without. We observe in Figure .7 that more replicapkaeed with payments than
without whena is between 0.7 and 1.3, the only range of significant undgigup the
power-law case. The results confirm that payments give semeentive to replicate the
object and this leads to better equilibria.

4.5 Discussion

We suggest several interesting extensions and direct@ns.extension is to consider
multiple objects in the capacitated replication game, ifcliservers have capacity limits
when placing objects. Since replicating one object affdtsability to replicate another,
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there is no separability of a multi-object game into mudipingle object games. As studied
in [GLMTO04], one way to formulate this problem is to find thesbeesponse of a server by
solving a knapsack problem and to compute Nash equilibria.

In our analyses, we assume that all nodes have the same derAamdever, nodes
could have different demand depending on objects. We interekamine the effects of
heterogeneous demands (or heterogeneous placementartdig)cally. We also want to
look at the following “aggregation effect”. Suppose there m— 1 clustered nodes with
distance ofa — 1 from a node hosting a replica. All nodes have demands of bnthat
case, the price of anarchy @&(n). However, if we aggregate— 1 nodes into one node
with demandn — 1, the price of anarchy becom€X1), sincea should be greater than
(n—1)(a — 1) to replicate only one object. Such aggregation can reduE@tfficiency
of Nash equilibria.

We intend to compute the bounds of the price of anarchy undiereht underlying
topologies such as random graphs or growth-restrictediecaetiWe want to investigate
whether there are certain distance constraints that gie@ql) price of anarchy. In ad-
dition, we want to run large-scale simulations to obsereectimnge in the price of anarchy
as the network size increases.

Another extension is to consider server congestion. Sugihesdistance is the network
distance pluy x (number of accessgwhereyis an extra delay when an additional server
accesses the replica. Then, wher» vy, it can be shown thaPoAis bounded b}%. As
y increases, the price of anarchy bound decreases, sincedtiet accesses is balanced
across servers.

While exploring the replication problem, we made severakobations that seem coun-
terintuitive. First, thePoAin the payment game can be worse thanRbd in the basic
game. Another observation we made was that the number aéasph a Nash equilibrium
can be more than the number of replicas in the social optinuen @ithout payments. For
example, a graph with diameter slightly more tlamay have a Nash equilibrium con-
figuration with two replicas at the two ends. However, thaaagptimum may place one
replica at the center. We leave the investigation of morengtes as an open issue.
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4.6 Summary

In this chapter we introduce a novel non-cooperative gameeinio characterize the
replication problem among selfish servers without any e¢tvordination. We show that
pure strategy Nash equilibria exist in the game and that tice pf anarchy can b&(n)
in general, whera is the number of servers, due to undersupply problems. Vjgigaitic
topologies, we show that the price of anarchy can have tigiltends. More importantly,
with payments, servers are incentivized to replicate aedfftimistic price of anarchy is
always one. Non-cooperative replication is a more realmtdel than cooperative replicat-
ing in the competitive Internet, hence this work is an imaotistep toward viable federated
replication systems.
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Chapter 5

Related Work

Shared Servers: lvy [MMGCO02] is a read/write peer-to-peer file system shabgd
multiple users. A file system consists of a set of logs, eachhich is owned by a partic-
ipant who has a public-private key pair. A log is a list of imiaibie log records. Each log
has a log-head that points to the most recent log record antb¢hhead is signed by the
private key. A write appends a new log record and modifiesdbenkead to point to it. A
read scans all log records owned by all participants of tleesfjistem to find appropriate
information. A malicious server hosting the log-head casilganount forking attacks by
concealing log records depending on clients. With A2M, we easure that a malicious
server tells the same sequence of log records including tfs¢ macent one. Note, however,
that lvy depends on a distributed hash table underneathaayndstrengthening” of the
protocol must be predicated on a DHT with provable routingrguatees.

Plutus [KRS 03] is a shared storage system that enables file sharing wrifhacing
much trust in the file servers. All data is encrypted and st@ed key distribution is
decentralized. A file system is represented by a hash treetharoot hash of the tree is
signed. Plutus is also vulnerable to forking attacks wimegemalicious server can show
different file system states to different clients.

Replicated State Machines: Byzantine-fault tolerant state machine replication has
received much attention since PBFT [CL99] added the wordcfical” in its title. Re-
searchers have proposed several improvements on PBFT spobeative recovery (PBFT-
PR [CLO2]), abstraction to tolerate non-determinism [RC].@nd an architecture that sep-
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arates execution from agreement to improve performanceanfidentiality [YMV+03].

In all cases, however, no improvement can offer livenesssarety beyond the uniform
L%j fault bound. In [YMV*03], the architecture uses two groups of replica$ agree-
ment andM execution replicas — by dividing functionalities. Thislaitecture can tolerate
| N1 faults and M52 | faults. A2M-enabled protocols divide functionalitiesdrtommit-
ting a sequence of protocol steps to A2M and performing agiraal protocol. A2M-PBFT-
EA can toleratdL%J faults out ofN total replicas since A2M is in a trusted computing
base. Compared to agreement replicas, A2M is a small, ggmeyase mechanism that is
applicable to various protocols to defend against equivoca

Recently, BFT2F [LMO07], a PBFT variant uses some of the idie@&JNDR to provide
linearizability and liveness up tp“%J faults, and a weaker safety property called fork*
consistency without liveness for up tqt%j faults, relying on clients’ help to protect
consistency. With the help of A2M, A2M-PBFT-E can insteaduguntee linearizability
up to Zt%j faults, and A2M-PBFT-EA guarantee both linearizabilityddiveness up to
| N2 | faults.

In loosely related work, BAR [AAC05] fault tolerance contains a notion of protocol
action commitment (to a quorum maintained by replicas tledwves) to capture rational
behavior. Also, PeerReview [HKDQ7], CATS [YCO07], and Timeave [MBO02] use au-
thenticated histories to allow fault detection given aiegi$ self-inconsistent history; this
might be a helpful mechanism to allow A2M-based protocolsetmver even when the
safety fault bound is (temporarily) violated.

A2M-PBFT-EA bears a close resemblance to Paxos [Lam98]anttiey both require
guorum size{%J + 1. Paxos assumes benign faults, and it is live as long as tiaar
one half replicas are faulty but is safe with upNofaults. In contrast, A2ZM-PBFT-EA
assumes Byzantine faults, but thanks to A2M a faulty nodestam or lie consistently to
other replicas. A2M-PBFT-EA is both safe and live when fetin one half replicas are
faulty, but when this assumption is violated, there is nargniee on safety and liveness.

Symmetric-Fault Tolerance: Researchers have describmnmetric fault$TP88] as
a specialization of Byzantine faults, and shown that foeagrent protocols, a hybrid fault
model that is a mixture of non-malicious faults (of skde malicious symmetric faults (of
sizes), and malicious asymmetric faults (of siz¢ can lead to more flexible tolerance
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guarantees. In [TP88], a modified version of the classiclyrmous Oral Messages (OM)
agreement algorithm can tolerate- s+ b faults wherN > 2a+2s+b+r (fora <r) where

r is the number of rounds of message exchange excludingl imédi@smission. Follow-on
work includes analyses of fault bounds on synchronous aydcasonous approximate
agreement under the hybrid fault model [KA94, AK96]. In aast, we focus on providing
a practical, generic, small primitive that prevents eqoatmn to limit Byzantine hosts to
behave symmetrically and constructing replicated statehma and shared storage pro-
tocols with better fault tolerance in a weak synchrony emvwinent. WWe hope to explore
further whether A2M can be used as a systematic way to makarye faults symmetric,
admitting simpler protocols with greater fault tolerance.

Abstract Shared Objects: Fleet [MR0OOQ] uses a consensus protocol by performing read
and append operations on Timed Append-Only Arrays (TAOAch are single-writer
multi-reader objects to which clients can append valuesfomd which clients can read
values. Each appended value is tagged with a logical tinmgsteector. A TAOA is emu-
lated by a distributed client-server protocol built atdp@masking quorum system [MR97],
which requiresN > 4b to tolerateb Byzantine faults. Unless this fault bound is violated, a
TAOA provides the following properties: values are appehitiea sequential order; values
appended are not modified or deleted; and timestamps badsdture the order of values
that different clients append. In contrast, A2M is a locajtive that can be used to en-
force a node to commit to a sequential order of operations.g0Oal is to slightly grow the
trusted computing base to strengthen distributed trushyabstractions such as replicated
state machines and shared storage built atop the baset,lmiptementing Fleet's TAOA
and consensus protocol could be simplified if servers emfsiiyis.

Trusted Devices: Trusted hardware, such as today’s commodity Trusted PHatfo
Module (TPM) hardware developed by the Trusted Computirqu@ftcg] has been previ-
ously proposed, implemented, and marketed as a way to $gbo a sensitive host with
approved, bug-free software. Operations performed by B @re authenticated using a
private signing key that resides on the module and cannattbeved or modified without
physically destroying the module. Unfortunately, softever not bug-free, and even if cor-
rectly loaded at secure boot time, it can be overcome by é@gdach as buffer overflows.
As a result, while existing secure hardware can make maslsinietly harder to compro-
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mise, it does not obviate the need for Byzantine-fault tolesystems, nor does it improve
their safety and liveness properties: it makes the likelyber of faults smaller, but does
not improve resilience against a given number of faults.

The hardware isamper-resistantwhich means that its cryptographic keys and its cor-
rect operation cannot be compromised remotely or physgicaiworst, the host computer
can be made inoperative, but its trusted hardware cannobéreed to attest false state-
ments. As long as the hardware manufacturer, who assignsatities keys used by a
trusted device, does not leak its private keys, a device eanrs and attest to others the
software booting on a computer. Unfortunately, a hardwaaaufacturer who is trusted
today may not be trusted 30 years from now; its private keyg have been leaked or
compromised, or even the manufacturer itself may have takemwholesome behavior.
“Trusted hardware” is a term that must be defined carefully iong-term context.

Proactive Recovery:Proactive recovery for BFT systems [CL02] periodicallygets
a potentially buggy machine with a fresh installation of gwtware from a read-only
medium, flushing any runtime code damage that may have beenlgobug exploits since
the last reboot. Whereas without proactive recovery, BFStesyis have aulnerability
window- the time extent during which the total number of faults mhesbounded — that
spans the entire lifetime of the system, with proactive vecp this window shrinks to a
much shorter extent, typically on the order of a few interereery intervals; as long as
faults are spread so that no vulnerability window contaioserthan the bound, all is good.
Nevertheless, if the bound is ever violated during any walbigity window, guarantees are
lost forever after.

Preservation: OceanStore [KBC00] and Glacier [HMDO5] are distributed storage
systems that use replication of self-certifying data tovte data durability. As far as we
know, LOCKSS [MRG 05] is the only proposal for digital preservation not reqmgran
inviolable N/3 bound on faults in preserving non-self-fgng data. LOCKSS, however,
is probabilistic in nature and does not yet provide hardtgafeliveness guarantees.

Certified Accountable Tamper-evident Storage (CATS) [Y[d87a service that pro-
vides strong accountability of actions done by the servdrcients. Its approach is not to
mask faults through replicated servers, but to detectdault punish actors responsible for
the faults. It uses an auditing scheme that catches semesick attacks probabilistically
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and its snapshot creation frequency depends on the re@iestd write sharing.

Replica Placement: The placement of replicas in the caching problem is the most
important issue. There is much work on the placement of wplicees, instrumentation
servers, and replicated resources. All protocols assumaéieice and ignore participants’
incentives. In [GHI01], Gribble et al. discuss the data placement problem infwepeer
systems. Ko and Rubenstein propose a self-stabilizingilelised graph coloring algorithm
for the replicated resource placement [KR0O3]. Chen, Katd,kubiatowicz propose a dy-
namic replica placement algorithm exploiting underlyingfidbuted hash tables [CKK02].
Douceur and Wattenhofer describe a hill-climbing algantto exchange replicas for re-
liability in FARSITE [DWO01]. RaDar is a system that replieatand migrates objects for
an Internet hosting service [RRRA99]. Tang and Chansonga®p coordinated en-route
web caching that caches objects along the routing path [J.@3htralized algorithms for
the placement of objects, web proxies, mirrors, and inséntation servers in the Internet
have been studied extensively [L&9, QPVO01, JJ300, JIK 01].

The facility location problem has been widely studied as ratredized optimization
problem in theoretical computer science and operatiorearel [MF90]. Since the prob-
lem is NP-hard, approximation algorithms based on primetdechniques, greedy algo-
rithms, and local search have been explored [JV99, MPOO, 82YZOur caching game is
different from all of these in that the optimization procesperformed among distributed
selfish servers.

Game Theory: There is little research in non-cooperative facility locatgames, as
far as we know. Vetta [Vet02] considers a class of problemsrestthe social utility is
submodular (submodularity means decreasing marginéltiln the case of competitive
facility location among corporations he proves that anytiNsguilibrium gives an expected
social utility within a factor of 2 of optimal plus an addié¥erm that depends on the facility
opening cost. Their results are not directly applicableuiopzoblem, however, because we
consider each server to be tied to a particular location]eahitheir model an agent is
able to open facilities in multiple locations. Note thathat paper the increase of the price
of anarchy comes from oversupply problems due to the fattdbpeting corporations
can open facilities at the same location. On the other h&edsignificant problems in our
game are undersupply and misplacement.
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In a recent paper, Goemans et al. analyze content distiiboti ad-hoc wireless net-
works using a game-theoretic approach [GLMTO04]. As in ourkythey provide monetary
incentives to mobile users for caching data items, and geotight bounds on the price of
anarchy and speed of convergence to (approximate) NaslbeguiHowever, their results
are incomparable to ours because their pay-off functiogkecsenetwork latencies between
users, they consider multiple data items (markets), andd rade has a limited budget to
cache items.

Cost sharing in the facility location problem has been sddisingcooperative
game theory [GS00, PT03, DMVO03]. Goemans and Skutella shamg connections be-
tween fair cost allocations and linear programming reliaxet for facility location prob-
lems [GS00]. Pal and Tardos develop a method for costisfpdhat is approximately
budget-balanced and group strategyproof and show that #tkoth recovers 1/3 of the
total cost for the facility location game [PT03]. Devanurjhiélil, and Vazirani give a
strategyproof cost allocation for the facility locationoptem, but cannot achieve group
strategyproofness [DMVO03].
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Chapter 6
Conclusion and Future Work

To conclude this thesis, we summarize key results of thikwod describe potential
future research directions.

6.1 Summary

In this thesis, we explored mechanisms to tolerate misbehaweither Byzantine or
selfish behavior — in replicated systems.

We first investigated how minimal trusted primitives can e Byzantine fault tol-
erance of replicated and centralized systems in practiegisw We proposed Attested
Append-Only Memory (A2M), a trusted system facility thaepents equivocation. A ser-
vice using A2M will always provide the same (verifiable) aeswo a given question. A2M
provides the abstraction of a trusted log that keeps the iraiohel history (e.g., linearized
executed operations). Using A2M, we improved upon the stidtee art in Byzantine-fault
tolerant replicated state machines, producing A2M-ermhpletocols (variants of Castro
and Liskov’s PBFT) that remain correct (linearizable) ardixmaking progress (live) even
when half the replicas are faulty, in contrast to the presigpper bound. We also presented
an A2M-enabled single-server protocol that guaranteestinability despite server faults.
Our prototype demonstrates that this fault tolerance imgmreent is achieved with minor
performance overhead.

Second, we addressed fault tolerance issues of long-rgapiplications such as digital
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preservation systems. Due to the operating time scalatitnaal homogeneous approaches
to this problem are thus very likely to violate any fault bdwtue to short-term overwhelm-
ing faults and to lose safety.

By taking a fresh look at the traditional service propertiad Byzantine fault models,
we proposed a new service property called HWICR that fits tedthng-term services and
adapts the traditional Byzantine fault model to a tiered ehdldat is inspired by different
levels of security assurance. We showed how to split a Byzeufidult tolerant service into
a service of alternating service and proactive recoverggha

In particular, we explored a long-term naming service thasprves mappings between
human readable names and authenticators, which is a migigiog in the current archival
storage literature. We presented TimeMachine, a Byzaiféink tolerant preserved name
service that uses simple, easy-to-build trusted hardveapedserve data that are not self-
verifying. TimeMachine splits system operation into aleing phases of service and
proactive recovery; it can survive up to N-1 faults out of dlreas during normal operation
and up toL%J faulty replicas during proactive recovery phases. Theisephase serves
client queries and audits self-verifying blocks. The pto@crecovery phase makes im-
portant state changes by incorporating new additionsvededuring the previous service
phase.

Third, we examined replication in multiple administratdemains (MADs) that have
incentives to behave rationally. We take a game-theorpficaach to characterize the im-
pacts of rational behavior on the efficiency of replicatitve show that selfish replication
results in high access cost; when there is no topology céistni the inefficiency mea-
sure (i.e., the price of anarchy) is proportional to the sizthe network. However, with
payment, the best achievable replication configuratiofwiays socially optimal. Our find-
ings suggest that a proper incentive protocol can lead tood gocial behavior in MAD
applications.
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6.2 Future Work

We believe that A2M is a start in the research direction ohgsmall and generic
trusted primitives to achieve better system propertiesdgveonstrated that including A2M
in a trusted computing base can benefit in building distetdtustworthy services such as
replicated state machines and shared storage via imprewddtélerance. Investigating
other trusted abstractions and their translation to prakslystem facilities is a promising
future work; examples include trusted logical clocks fosssen guarantees and trusted
version vectors for optimistic replication.

We applied A2M to systems that operate in Byzantine enviemisi An interesting
direction is to apply A2M to systems in rational environnmeamwhere an individual behaves
selfishly to maximize its gain but is not Byzantine. It is arenmuestion whether A2M’s
prevention of equivocation among rational agents can leaddre desirable equilibria.

We implemented A2M in a library. We hope to explore other iempéntation scenarios
such as VMM and trusted hardware. We hope to implement a Xévi é&@ver for appli-
cations running on top of Xen. In addition, we hope to exptbeecost of adding A2M to
a commercial TPM-like environment.

We explored a design space for long-term Byzantine faudrémice with TM. We fo-
cused on digital preservation applications, but the HWIGRpprty, tiered fault model,
and two-phase approach may well be applicable to state macéplication of other non-
interactive applications.

There are a few enhancements we can make in proactive rganVveM. First, we im-
prove the fault bounds in TimeMachine, but we still have B8tfbounds during proactive
recovery phases. We hope to explore multiple points on tiéiracum of fault models
through ourf T-bound, in which the number of faults Th consecutive phases is bounded
by fT for some fractionf, but there can be phases in which more thareplicas are
faulty. Such a failure model may require multi-phase recpemd at leasT SAIM slots,
rather than the single-slot algorithm we described in thésis. Second, we assume hard-
ware clocks to invoke the proactive recovery almost at timeesaAsynchronous proactive
recovery that does not rely on hardware clocks might leaddeerpractical preservation

systems.
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The TM evaluation used short-running benchmarks. An eviainaf long-term usage
of our systems will provide valuable insights. We hope toTishalongside an archival ser-
vice to understand better the practical applicability df tpproach in a real-world archival
environment.

Finally, we addressed problems of replication among ratimodes. Our results are
mostly existence proofs; thus, developing a practical gaytrprotocol is future work. Our
model considers only rational nodes, but in real world, weildave both selfish and
Byzantine nodes. Considering both Byzantine and rationdes has gotten attention in
systems research community (e.g., BAR [AA@5]). Tackling this problem witlpractical
solutions would be a long-term challenge.
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