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Abstract—Recent research indicates that multihop wireless
networks can suffer from extreme imbalances in the throughput
achieved by simultaneous competing flows. However, even with
global knowledge of the topology and traffic patterns, computing
the fair allocation is know to be an NP complete problem for
most definitions of fairness. Previous work has either (a) focused
on the MAC layer which only provides fairness guarantees
within a single contention neighborhood or (b) used a centralized
coordinator to compute the global allocation of throughput to
flows. While the former approach does not address the problem
in its entirety, the latter is very hard to implement under dynamic
channel and traffic conditions. In this paper, we bridge this gap
by augmenting approach (a) with a simple distributed transport-
layer algorithm called EFLoW. EFLoW assumes that the MAC
layer supports weighted fair allocation among nodes that directly
compete with each other. We refer to the weights at this layer as
the local weights since they have significance only within a single
contention neighborhood. EFLoW computes the local weights
using an iterative increase-decrease algorithm which guarantees
convergence to an end-to-end max-min fair allocation under
certain assumptions. In each iteration, EFLoW only uses state
obtained from within a given node’s contention region. We have
implemented EFLoW in both a simulator and a real system on top
of the Overlay MAC Layer (OML). Our results show that EFLoW
can avoid starvation of flows and improve fairness by about 90%
with only a 15% reduction in total network throughput when
compared to standard 802.11.

I. INTRODUCTION

Multi-hop wireless networks has been a subject of research
for many years now. Initially, the primary motivating applica-
tions for such networks revolved around emergency response
systems and military scenarios. However, the proliferation
of the 802.11 standard and the availability of inexpensive
hardware has spurred interest in a new application called
“mesh networks.” Many companies [1], [2] are considering
using multi-hop wireless networks as an alternative to DSL for
providing last mile connectivity to the Internet for customers.
Such networks can also be very useful in the context of
emerging markets and developing countries, where little to
no infrastructure is available [3].

However, both simulations and deployments based on the
current generation of hardware (mostly based on the 802.11
standard) show very poor fairness between competing flows.
In fact, the fairness problem can be so severe that some flows
are completely shut out from sending any data at all [4], [5].
This translates to outages in connectivity in the case of mesh
networks. As a result, the connectivity of a particular node to

the Internet might be affected in presence of flows from other
nodes.

Both the Medium Access Control (MAC) layer and the
transport layer play an important role in determining the
fairness achieved by a multi-hop wireless network. The MAC
layer controls how the nodes within a contention region
share access to the transmission medium. Previous work on
fairness at the MAC layer has focused on allowing higher
layers control over how transmission opportunities are shared
between these nodes, typically by assigning weights to each
node. For example, [6] and [7] propose contention based
schemes where the back-off algorithm is modified based on
the weight assigned to a node. Recent research [4], [8] propose
time-division multiplexed (TDMA) schemes where the number
of slots assigned to a node is proportional to its weight.
However, the MAC layer is oblivious of end-to-end flows; it is
the job of the higher layers to compute these local weights in
such a way that the desired allocation is achieved. While this is
straight forward in the case of single-hop networks, it is known
to be an NP-complete problem in multi-hop networks [9] due
the interaction between flow constraints (the allocation at each
hop of a flow must be the same) and interference constraints
(no two competing nodes can transmit at the same time).

Previous work focusing on end-to-end fairness at the trans-
port layer [9], [10] has typically relied on a centralized co-
ordinator to compute the global allocation for all flows. This
allocation depends on both the capacity of links in the network
and the configuration and bandwidth demands of flows. In
a mesh network, changes in either of the above can trigger
frequent updates (which require communication with the co-
ordinator) for a number of reasons. Firstly, measurement
studies [11] have shown that the capacity of links, which
depends on the current Signal-to-Noise Ratio (SNR), varies
on short time scales and is hard to predict. Secondly, the
workload primarily consists of HTTP flows which arrive and
depart frequently. Finally, in the case of multi-hop flows, we
must ensure that the allocation of bandwidth at each hop
is consistent. Thus, changes in capacity or demands at any
intermediate hop of a flow will trigger changes at every hop
in the flow. This leads to a cascading effect and can quickly
lead to reconfiguring the entire network.

In this work, we develop a distributed transport layer
algorithm called End-to-end Fairness using Local Weights
(EFLoW), which can be used in conjunction with any MAC
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scheme with support for weighted-fair allocation within a
contention neighborhood. We show that by using a simple
additive-increase multiplicative-decrease algorithm to compute
these weights, we can obviate the need for an expensive
control protocol or global reconfiguration. Our control pro-
tocol is lightweight and involves only exchanging information
between nodes in the same contention region. Under certain
assumptions, we show that EFLoW converges to a Max-Min
fair allocation of bandwidth to flows. We also implement and
evaluate EFLoW in both simulator and a real test-bed using
802.11 radios and the Overlay MAC Layer (OML) [4] which
enables us to perform time slot scheduling on top the 802.11
MAC.

The rest of this paper in organized as follows. In Section II,
we present an overview of related work on the MAC layer and
on achieving fairness in wireless networks. In Section III we
define Max-Min fairness and outline some of the challenges in
achieving this in wireless networks. In Section IV, we describe
EFLoW, a simple way of achieving the above mentioned
definition of fairness assuming support for local weights from
the underlying layer. Section V presents details regarding the
Weighted Slot Allocation (WSA) algorithm and the Overlay
MAC Layer (OML), which we use to implement EFLoW
in a real test-bed. Results from our evaluation, using both
simulations and the test-bed are presented in Section VI.
Finally, we conclude our paper and mention possible directions
for future research in Section VII.

II. RELATED WORK

Both the MAC and the transport layer play an important role
in determining the fairness achieved by a wireless network.
Most MAC layer proposals address fairness amongst directly
competing nodes. There are several ways to achieve this
depending on whether the MAC is contention-based or time-
slot based.
Contention-based algorithms: Contention-based algorithms
are based on carrier-sensing and random access. The basic idea
behind CSMA/CA is that nodes independently pick a back-off
window at random and the node that picks the lowest back-off
wins access to the medium. Collisions can occur due to nodes
picking the same back-off window, or due to hidden terminal
problems in multi-hop networks. Several proposals aim to
achieve fairness by controlling how the back-off window is
chosen by different nodes. Examples of this approach include
[6], [7], [12].
Time-division multi-plexing(TDMA): In TDMA approaches,
time is divided into slots and and only nodes that don’t inter-
fere with each other are allowed to transmit during a given slot.
The schedule is pre-computed in a centralized or distributed
manner depending on the approach. Examples in literature
include [8], [13]. These approaches require knowledge of the
interference patterns, and can easily solve the hidden terminal
problem. However, the schedule has to be recomputed every
time the quality of a link changes or when flows arrive or
depart.

However, the MAC layer is oblivious of end-to-end flows.
EFLoW augments the mechanisms provided in these MAC
layer proposals to achieve per-flow fairness at the higher
layers.
End-to-end fairness: In [14], the authors propose an adap-
tation of the fair queuing algorithm where each node adds
its virtual time to the header of each packet it sends. This
approach works well for the wireless-LAN environment where
all nodes can hear each other. However, for multihop networks,
since a given node can be part of a large number of contention
contexts, it is not clear which virtual time to use at that node.

Inter-TAP Fairness Algorithm (IFA) is a scheme proposed
by Gambiroza et al. in [9]. Their definition of fairness suf-
fers from two drawbacks. Firstly, they do not show how to
compute the correct allocation in the general case even with
complete knowledge of link qualities and interference patterns.
Secondly, due to the ingress aggregation constraints, their
scheme prevents nodes from using the available bandwidth
efficiently. When there are two flows originating at a node,
one experiencing very little contention and the other a lot of
contention, the definition compares the total throughput of both
flows with that of other nodes. This introduces an artificial
dependence between the two flows and prevents the node from
sending data on the flow experiencing little contention so that
its other flow is not starved by the network.

So far, the IFA algorithm has not been implemented com-
pletely in a simulator or in a test-bed. The architecture pro-
posed in [9] requires (a) measurement of every link capacity
and interference by each node and (b) a centralized coordinator
that will gather complete information about the entire network
and compute the fair allocation (which is itself possible only
for special cases). Such an architecture is hard to realize
especially when link qualities and traffic patterns are changing
rapidly.

In [10], Yi et al. propose to implicitly limit the TCP flow
rates by delaying the ACKs at intermediate nodes to achieve
fair bandwidth allocation. However, much like IFA, computing
the correct rate requires centralized co-ordination in their
approach also. This can be tricky under dynamic conditions.

Lu et al. propose a distributed mechanism to coordinate
the back-off window between the nodes in a contention-
based MAC to achieve end-to-end fairness [15]. However
their analysis assumes that the interference range and the
carrier-sense range are the same and that the effect of packet
losses due to collisions is negligible. Measurement of 802.11
based hardware [16] shows that the interference range is typ-
ically much greater than the carrier-sense range. Also, recent
work [5] shows that all contention-based MACs are susceptible
to a generic co-ordination problem in multi-hop networks. In
practice, the resulting inefficiency due to collisions may be
severe enough to cause flow throughputs to span several orders
of magnitude. EFLoW is not tied to any particular mechanism
at the MAC layer and can avoid this problem by using a
TDMA-based solution.

Ee and Bajcsy propose new transport layer algorithms for
congestion control and fairness in [17]. Their approach is
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fully distributed and ensures that all nodes get to transmit
approximately the same number of packets to the destination.
However, it is targeted at sensornets and supports only one
specific traffic pattern; a tree where the root is the only sink. It
cannot easily be generalized to less restrictive traffic patterns.

III. MAX-MIN FAIRNESS

There are many different definitions of fairness used in wire-
less network literature [18]. Though EFLoW could possibly
be adapted to other definitions of fairness, for simplicity and
to focus on a single goal, we chose to implement Max-Min
fairness. The key idea behind Max-Min fairness is that we
should not provide more throughput to any flow if it prevents
us from giving at-least as much throughput to other flows
[18]. Weighted Max-Min fairness is a generalization of this
approach with support for weights, and is formally defined
below. A similar definition was used in [15].

A. Max-Min Fairness

Consider a network with n flows. Let fi be the throughput
received by the i-th flow. The allocation is said to be Max-Min
fair if for each flow i, an allocation of fi + ε1 is possible only
by reducing the allocation of another flow j to fj − ε2 where
fj < fi. On the other hand, if we can find a subset H of flows
{m1, m2, . . . , mk}, which all have throughput higher than fi,
and if we can increase the throughput of fi by only decreasing
the throughput of flows from H , then the allocation is not fair.

Informally, Max-Min fairness states that inequality in
throughput of flows is allowed under the condition that pe-
nalizing the richer flows wouldn’t provide any benefits to the
poorer flows. On the other hand, if we can provide better
service to any flow by only penalizing flows that receive a
higher throughput, then the allocation is not max-min fair.

The above definition does not provide any means to dif-
ferentiate service between different flows. A simple method
to address this limitation is to associate a weight with each
flow. When comparing two flows, we always check if their
throughputs are in proportion to their weights. More formally,
if flow fi is assigned a weight of wi, we make a simple
change to the above definition by modifying the condition
that fj < fi to fj/wj < fi/wi. Similarly, for all t : ft ∈ H ,
ft/wt > fi/wi.

To illustrate this definition, consider the example in Fig-
ure 1, which shows a network with three flows (f1, f2, f3).
Assume a one-hop interference model i.e., two links interfere
iff they share an end-point. Then, (a), (b) and (c) are three
possible allocations in terms of the fraction of time for which
the source is active. It is easy to see that (a) is unfair
because we can increase f1 without decreasing any other
flow’s allocation. Similarly, (b) is not fair because we can
increase f3 by decreasing f2 and f2 > f3. Finally, (c) is fair
even though f1 receives twice the throughput of the other
flows. This is because node C is already saturated and we
cannot increase f2 or f3 even if we decrease f1.

Weighted Fair Queueing (WFQ) [19] is a popular method
for providing Max-Min fairness when all flows compete for the
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0.25f3
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0.5f1
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Fig. 1. Example for Max-Min Fair allocation

same resource. WFQ states that throughput must be assigned
to flows in proportion to their weight. If the allocation to any
flow is more than its demand, the surplus is again divided
among the rest of the flows in proportion of their weights.
This process continues until there is either no surplus capacity
or when all demands are satisfied. In wired networks, per-hop
WFQ guarantees end-to-end Max-Min fairness. But because of
the shared nature of the medium, this is not true in wireless
networks.

IV. ACHIEVING END-TO-END FAIRNESS

In this section, we describe EFLoW , a distributed transport
layer algorithm that works on top a MAC layer that provides
the higher layers control over resource allocation within a
single contention neighborhood. More specifically, we assume
that the MAC layer allows the transport layer to dynamically
associate a weight with each node, and allocates transmission
opportunities to each node in a contention region proportional
to its weight by implementing a Weighted Fair Queueing
(WFQ) discipline [19]. We believe that this function is ideally
implemented as part of the MAC layer since it is responsible
for arbitrating channel access between directly competing
nodes.

We use the term local weight to refer to the weights at the
MAC layer. They are only used to resolve conflicts between
directly competing nodes. In contrast, the weights defined in
Section III are assigned to flows (not nodes or links) and
have global significance. In Section IV-A, we explain why
achieving end-to-end fairness is hard even when the MAC
provides support for local fairness. We then present the design
of EFLoW in Section IV-B.

A. End-to-End Fairness in Multi-hop Networks

In this section, we explain how we can leverage the support
for local weights at the MAC layer to achieve end-to-end
fairness. We show that

• We can assign local weights in such a way that the end-
to-end allocation is Max-Min fair.

• To the compute the correct local weights, we need global
knowledge of the topology and traffic demands.
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WFQ
w11

w12 w13
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Fig. 2. Scheduling within a single contention neighborhood

For ease of explanation, we first consider a network in which
all nodes are in the same contention region. We generalize this
to a true multi-hop network in the next step.

1) Stage 1: Single Contention Region: Consider a simple
network consisting of three nodes (A, B and C), where there
are up to three flows originating at each node (Figure 2).
Scheduling happens at two levels in our system. First, within
a node, we have to decide which packet will be sent to
the wireless interface. Second, at the MAC layer, we have
to decide which node gets access to the medium. Unless
otherwise specified, we assume that a node uses WFQ to
schedule its flows.

Since all nodes compete with each other, ideally we would
like to achieve the functionality of a single WFQ system with
six queues. To achieve max-min fairness, we have to assign
to each node a local weight that is the sum of the weights
of all its backlogged flows. Note that a flow f is said to be
backlogged at a node N if the arrival rate of f at N is greater
than its service rate. For instance, the weight of node A, WA,
should be computed as WA = w11 +w12 +w13, assuming that
all flows of node A are backlogged. In this case, the allocation
to the first flow is given by,

f11 =
w11

w11 + w12 + w13

× (Alloc. to A at MAC)

=
w11

w11 + w12 + w13

×
WA

WA + WB + WC

× C

=
w11

WA + WB + WC

× C

Thus, computing a schedule at the MAC layer requires the
knowledge of the demands of the all the six flows as well as
the capacity C at the MAC layer.

2) Stage 2: Mutli-hop Network: To illustrate the additional
challenges that arise in a multi-hop network, we revisit the
example topology in Figure 1. Assuming a one-hop interfer-
ence model, Figure 3 shows a network in which (a) there are
multiple contention regions and (b) the same node (node C)
is a part of multiple contention regions. The final allocation

to node C is the minimum of its allocation from regions 1 and
2. So if we assume that region 1 is more congested, it will
determine the final allocation at C. This in turn means that
the queues in C will appear as backlogged in region 1, but as
not backlogged in region 2. Because of this dependence, we
also need the information from region 1 to compute the local
weights for nodes in region 2.

To further complicate matters, the arrival rate of a multi-
hop flow at a node depends on its service rate at the previous
hop. This introduces a dependence between contention regions
that may be far away from each other in the network topology.
Because of the cascading effect of these dependencies we can-
not determine the local weights without complete knowledge
of the state of the network. This includes the topology, the
interference patterns, routes and the flow demands all of which
can change fairly frequently. In fact, since computing the Max-
Min fair allocation itself is NP complete [9], computing the
weights is also an NP complete problem1.

Next, we present a decentralized algorithm that approxi-
mates the ideal allocation without requiring global state. At
any given node, our algorithm uses only information gathered
from its contention region, i.e., from nodes it directly competes
with.

B. EFLoW

The key idea behind our algorithm is that instead of trying
to compute the correct local weights directly, we use an
iterative process that brings us closer to correct assignment
in each step and oscillates around it in steady state. The next
theorem provides the theoretical building block of our design
by providing an alternate characterization f max-min fairness.

Definition 1. If flow f1 is backlogged at node N1, we define
this backlog to be a permissible backlog iff for every flow f2

passing through node N2 that contends with N1, the service
rate of f2 at N2 is no greater than the service rate of f1 at
N1 (in proportion to the weights of f1 and f2).

Theorem 1. The allocation is Max-Min fair if and only if every
node where any flow is backlogged is a permissible backlog.

Proof:
For ease of explanation, in this proof we assume that every

flow has unit weight (the proof can easily be generalized to
non-unit weights). The proof is by contradiction.

=⇒: Assume the contrary, i.e., there is a flow f1 backlogged
at N1 and a flow f2 through N2 within the contention
neighborhood of N1 being serviced faster at N2. Since N1

and N2 directly compete with each other, we can increase N1’s
transmit rate by decreasing N2’s transmit rate. Thus we can
increase f1’s allocation at N1 by decreasing the f2’s allocation
at N2. But since f2 is being serviced at a higher rate, this
violates the definition in Section III.
⇐=: We first make the observation that in order to increase

the allocation f1 of a flow, we have increase its allocation at

1Given the local weights, we can directly compute the resulting allocation
in linear time
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Fig. 3. Multiple contention regions in a multi-hop network

at least one node N1 where it is backlogged. In order to do
this we have decrease the transmit rate at at least node N2

which competes directly with N1. But since f1 at N1 is a
permissible backlog, no flow at N2 is being serviced faster
than f1 at N1. Therefore, we cannot decrease the allocation
of any flow at N2 without violating the definition of Max-Min
fairness in Section III.

Note that the condition in Theorem 1 can be verified at
each node using only information gathered from its own
contention neighborhood. In contrast, our earlier definition
required a global view of the network. In a nutshell, our
approach is to identify impermissible backlogs and use an
additive-increase multiplicative-decrease algorithm (similar to
the TCP’s congestion control algorithm) to adapt the weights
to fix it. Initially, we set the local weights of all nodes to 1
and perform the following operations periodically:

1) Service nodes using their current local weights for a
time window, W . W is a system-wide constant, which
is expressed as a multiple of time-slots. Within each
window, each node receives a number of time slots that
is proportional to its weight.

2) Estimate the service rate of a unit-weight backlogged
flow at each node over the previous window.

3) Compare each backlogged node N ’s service rate with
the service rate of every node it competes with. If any
of these nodes has a higher service rate than N , add N
to the set I .

4) At the beginning of each time window, add a positive
constant α to the local weight of all nodes in the set I
(additive increase). Reduce the local weight of all other
nodes by multiplying it by a constant β where 0 < β < 1
(multiplicative decrease).

Note that step 3 identifies all nodes with impermissible
backlogs and adds them to the set I . In step 4, we increase
the weights of all these nodes while decreasing the weight of
nodes which are either (a) not backlogged or (b) have only
permissible backlogs. This moves to system closer to its ideal
state in the next time window.

To implement of step 2, each node has to keep track of
the service rates of its queues. Since we use a virtual time
(VT) based implementation of WFQ for scheduling flows
within a node, the required book-keeping is already taken care

of. Recall that VT measures the service (i.e., the number of
bits) received by a continuously backlogged flow with unit-
weight. Let tW be the start of a window period, and let
N.VT(t) denote the virtual time of node N at time t. Then,
N.VT(tW +W )−N.VT(tW ) represents the service received by
a continuously backlogged flow during the window starting at
tW . Note that this service is exactly the value we need at
step 2 within a multiplicative constant, i.e., 1/W . Thus, at
step 3 we can directly use the progress of the virtual time in
the previous window to compare the service rate of queues at
different nodes.

Step 4 requires broadcasting the the service rates of queues
in a two-hop neighborhood. For 1-hop neighbors, this is
easily accomplished by including the current virtual-time as
part of the EFLoW header of every packet. By listening in
promiscuous mode, nodes can easily determine the service
rates of their immediate neighbors. In order to disseminate this
information to 2-hop neighbors, every node also includes a list
of its 1-hop neighbors and their service rates in the EFLoW
header.2 Due to this lazy approach, nodes may not always have
the most up-to-date information about their two-hop neighbors.
But in practice, we found that the AIMD algorithm is robust
enough to converge despite this limitation.

Figure 4 shows the pseudocode for updating the local
weights. We experimented with values of W = 20 and
W = 40 timeslots and found that either choice works
well in practice. The function queue.ExpWtAvg() returns the
exponentially weighted average queue size which we use to
determine if the node is backlogged.

V. OVERLAY MAC LAYER

As mentioned in Section IV, EFLoW assumes that the
underlying MAC layer supports weighted fair allocation within
a contention neighborhood. Though some MAC algorithms
proposed in earlier work [6], [7] do support this feature,
hardware implementing these algorithms is not commercially
available yet. The 802.11 Distributed Co-ordination Function
(DCF), the prevalent MAC standard used in almost all wireless
hardware sold today does not have any support for prioritizing
service to nodes. However, the Overlay MAC Layer (OML)

2The EFLoW header is variable in length, and was 48 bytes on average in
our experiments. Further optimizations (compression, differential coding etc.)
are possible, but are outside the scope of this work.
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function Node::ProcessEndWindow()

//first check if we are backlogged
if queue.ExpWtAvg() < congestionThreshold

//not congested hence multiplicative decrease
weight ← weight × β
return

myServiceRate ← VT(currTime) −
VT(currTime − W)

maxServiceRate ← myServiceRate
for all N ∈ ContentionList

nServiceRate =

N.VT(currTime) − N.VT(currTime − W)
if nServiceRate > maxServiceRate

maxServiceRate = nServiceRate

if maxServiceRate >= myServiceRate
//additive increase
weight ← weight + α

else
//congested, but must go into MD
weight ← weight × β

Fig. 4. Pseudocode for the function executed by every node at the end of
W time slots

proposed in [4] provides a workaround for this issue by
adding support for weights without any changes to 802.11
hardware. OML implements TDMA scheduling within a k-
hop neighborhood (we set k = 2 in our experiments) at a
layer between the MAC and transport layers.

In order to achieve this, OML limits buffering at the MAC
layer and below to exactly one packet (which the hardware
is attempting to transmit) through a simple change to the
device driver. This allows us to maintain all queues within
OML and tightly control the timing of transmission attempts
by the hardware. But since we don’t have direct control
over the hardware, it is very hard to achieve perfect clock
synchronization and enforcement at the boundaries of the time
slots. To get around this issue, OML uses coarse-grained time
slots (20 ms).3

OML can schedule time slots with very low overhead;
almost all control messages are piggybacked on existing data
traffic. A full description of the protocol and its implemen-
tation is available in [4]. However, one of the drawbacks of
using coarse-grained time-slots is that when the queue at a
node is full, all packet arrivals will be dropped until the node
is allowed to transmit again. This translates to a huge burst
of losses which can force TCP flows back into slow-start. To
avoid this, we try to prevent queues from ever getting full by
implementing a variation of Random Early Dropping (RED)
at every node. The key difference between RED as described
in [20] and our implementation is that instead of drop-tail,
we have per-flow fair-queuing at every node. Hence, when an
packet arrival triggers an early drop, we drop a packet from
the longest sub-queue (as opposed to dropping the incoming
packet). With this simple change, we found OML to be a good
vehicle to implement and test EFLoW.

3With 802.11a radios at 6Mbps, we can transmit about 10 MTU sized
packets in each time slot.

VI. RESULTS

We have implemented EFLoW on top of OML in both
a simulator and a testbed. In this section we will describe
both and present our results. More results are available in our
technical report [21].

A. Simulation

We have implemented our algorithm in ns2 [22], an event-
driven packet-level network simulator. We use the simulator
primarily for two reasons. Firstly, we can easily change the
topology or the size of the network in a simulator. Secondly,
the simulator allows us to implement an Oracle which uses
global knowledge to approximate the ideal allocation. We use
this Oracle (see Section VI-A1) for comparison with EFLoW.

We simulate 802.11a radios at 6Mbps in each of our
experiments. The radio range was around 250m using the two-
ray propagation model [23]. Since our goal is to study the
end-to-end behavior of flows along a given path, we use static
pre-configured routing to avoid additional complications due
to the execution of a routing protocol. RTS/CTS was disabled
in all the experiments because there is no need for RTS/CTS
when using OML. Surprisingly we saw better fairness and
throughput with RTS/CTS disabled even when not using OML.
As reported in some earlier work [11], [24], our observations
confirm that the overhead of RTS/CTS is not justified in
relation to the number of collisions it prevents.

To quantify the fairness of the outcome, we use the metric
defined by Chiu and Jain in [25]. Consider a system with
M flows, with weights w1, w2, . . . , wM , each receiving a
throughput x1, x2, . . . , xM . The fairness index F is defined
as

F =
(
∑

i xi/wi)
2

M
∑

i x2

i /w2

i

Note that F = 1 when each flow’s throughput is exactly in
proportion to its weight, and F = 1/M when only one flow
receives the entire throughput. Note that Max-Min fairness
does not always yield F = 1. The throughput allocated to
a flow depends on the level of congestion and interference
it experiences in addition to its weight (see the example in
Figure 1). However in our experience, we found F to a useful
metric in comparing the relative performance of different
schemes, and is easy to compute unlike the true Max-Min
fair allocation.

1) Ideal Allocation: As mentioned earlier, computing the
ideal allocation is a hard problem even in the case of a
simulation. Instead of trying to compute it exactly, we use
the following slot allocation algorithm (called the Oracle) to
approximate the ideal schedule. The algorithm uses global
knowledge to sort all nodes based on how much service their
queues are receiving. We can then prioritize assignment of
the slot to nodes which have received the least service. The
pseudocode for this is shown in Figure 5.

Note that this is only an approximation because (a) we break
ties arbitrarily in GetLeastService and (b) we still use OML
as apposed to a more fine-grained scheduling discipline.
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function ::AssignSlot(NodeList NL)

for all N ∈ NL
N.active = false

while NL 6= φ
N = NL.GetLeastServiced()
N.active = true
for all M ∈ NL

if M.Interferes(N)
NL.Remove(M)

Fig. 5. Pseudocode for the Oracle to approximate the ideal allocation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  3  4  5  6  7  8  9  10

F
ai

rn
es

s 
In

d
ex

Number of Simultaneous Flows

802.11
Optimal with OML

EFLoW

Fig. 6. Effect of the number of simultaneous flows on fairness with and
without EFLoW

To quantify the benefits of EFLoW, our first step is to com-
pare the fairness and efficiency with that of 802.11 for UDP
traffic (Section VI-A2). We then study the scaling behavior of
OML by increasing the network size in Section VI-A3. Next,
we study the performance of TCP flows in Section VI-A4.
Finally, we look at the performance of short flows in Sec-
tion VI-A5.

2) Fairness and Efficiency: In our first experiment, we
construct the network by placing 30 nodes at random in a
550mx550m square. We simulate a number of simultaneous
UDP flows in this network, all terminating at the same sink-
node.4 Figure 6 shows the fairness index F as we increase the
number of flows from 2 to 10, averaged over 10 simulation
runs. The 802.11 MAC shows poor fairness (index below 0.6)
when there are 4 or more flows. On the other hand, EFLoW
shows very little degradation in fairness even with a large
number of flows; the fairness index is always greater than 0.95.
The Oracle yields a fairness index which is almost exactly 1
in all cases.

Next, we compare the utilization of the transmission
medium under 802.11 and EFLoW. OML can lead to some
inefficiency in using the medium due to control overheads.
Since EFLoW is implemented on top of OML, we expect the
utilization be lower when using it. To quantify this overhead,
we plot the number of useful transmissions per second versus
the number of flows in Figure 7. A packet transmission is

4We consider this star traffic pattern to be indicative of the scenario where
all nodes are trying to reach the same wired gateway.
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considered useful if the packet is eventually delivered to its
destination. The efficiency is within 85% of 802.11 even with
10 flows, which we think is reasonable considering the 90%
improvement in fairness.

3) Scaling Network Size: In this experiment, we simulate
5 simultaneous flows while scaling the network size from 20
to 50 nodes. We keep the node density constant by increasing
the dimensions of the square accordingly. The average fairness
index for each case is shown in Figure 8. We can see
that the performance of 802.11 progressively worsens as we
increase the network size, whereas EFLoW shows only a slight
degradation.

4) Long-lived TCP flows: In this Section we investigate
the performance of TCP flows with and without EFLoW. To
get a closer look at the throughput of the different flows, we
use a Cumulative Distribution Function (CDF) plot instead of
the fairness index. For each type of flow (TCP, UDP with and
without EFLoW), we repeat experiments with 10 simultaneous
flows in a 30 node network 10 times and thus obtain 100 flow
throughputs. The resulting CDF plots are shown in Figure 9.
The first line shows that the starvation problem under 802.11
is much worse for TCP than UDP; 40 flows have throughput
close to zero. In other words, when competing with 9 other
simultaneous flows, there is a 40% chance that almost no data
will reach the destination! From the second line in Figure 9,
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we can see that the performance of EFLoW is also not as
good as with UDP traffic; 30% of the flows receive less than
2 kbps. However, this problem is significantly reduced when
we implement random dropping at every node as described
in Section V. With this modification to queue management,
90% of the flows receive at least 2 kbps (see the third line in
Figure 9).

5) Short TCP flows: The convergence time of EFLoW can
have an impact on the performance of short TCP flows. To
study this impact, we simulate the following pattern of flows.
There are two long flows active during the entire duration
of the simulation. In addition we instantiate short flows at
exponentially distributed intervals with a 1.25s mean. The
duration of each short flow follows a Pareto distribution (the
exponent is set to 3) with a 5s mean.5 Thus, in expectation,
4 short flows and 2 long flows are active at any give time.
We repeat this experiment 10 times and plot the CDF of the
throughput of the short flows in Figure 10. With 802.11, nearly
30% of the flows experience starvation (< 20 kbps). Despite
the overhead of coarse-grained time-slots, EFLoW outperforms
802.11 by providing at least 20 kbps to 90% of the flows.
Comparing EFLoW to the performance of the Oracle shows
that there is 30% to 40% reduction in throughput because of
the convergence process. However, since the flows are short,
the overhead in terms of completion time is typically less than
3s.

6) Random flows vs. Star traffic pattern: We now evaluate
the performance of EFLoW under a random traffic pattern
(the source and sink for each flow is chosen at random) and
compare it to the performance under the star pattern. Once
again, like in Section VI-A4, we look at the CDF plots of
throughputs of 100 flows from 10 runs. From Figure 11,
we can see that some flows suffer starvation under 802.11
especially for the star traffic pattern; 30% of the flows receive
less than 1 kbps. EFLoW ensures that 96% of the flows get at
least 2.5 kbps.

Note that 802.11 performs better under the random traffic
pattern when compared to the star traffic pattern. Since the

5The short flows model web browsing and the long flows model file sharing
applications/downloads.
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flows are spread over a larger area, they experience less
contention; there is no hot spot like the gateway node in the
star pattern. This is reflected in the performance of EFLoW as
shown in the second CDF plot of Figure 11. But even in this
case, the fairness is better under EFLoW.

B. Evaluation in a real system

In this section, we describe the testbed that we used to
implement our algorithm. Our testbed consists of 26 wire-
less nodes based on commodity hardware and software. The
hardware consists of small form-factor computers equipped
with a 266 MHz Geode processor and 128MB of RAM.
Each computer is also equipped with a Netgear [26] tri-
mode mini-PCI wireless Ethernet adapter. This card is capable
of operating in 802.11a,b and g modes, but we conduct all
our experiments in 802.11a mode to avoid interference with
another production 2.4GHz wireless network operating in
same environment.

The software consists of Linux (kernel 2.4.26) and the
the Click software router [27] from MIT, as well as our
implementation of OML and the AIMD algorithm in Click.
The nodes are placed a single floor of a typical office building.

1) Two simultaneous flows: In this experiment, we start
simultaneous flows TCP flows in our test-bed. We pick two
random sources and sinks and measure the throughput of both
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Fig. 12. Fairness Index with two simultaneous flows in our testbed (TCP)

flows over 2 minutes. We use the two-hop neighborhood for
determining the interference range of a node, and we only
consider cases where at least one node from the first flow
interferes with one node from the second flow. Since we set
the weight of each flow to be one, we expect both flows to
achieve the same throughput in this case.

We repeat the experiment 50 times, and in each case
measure F both with default 802.11 as well as with EFLoW.
We plot the CDF of F over the 50 runs in either case in
Figure 12. Recall that since there are two flows, F takes
values from 0.5 (least fair) to 1 (most fair). We see that
without EFLoW, F ≈ 0.5 in 36% of the cases. With EFLoW
, such an inequitable distribution happened only once and
F > 0.8 in 90% of the cases. The average throughput of
each flow was 1478 kbps with 802.11 and about 1011 kbps
with EFLoW. However, when the consider the total number
of useful transmissions (throughput of the flow multiplied by
the number of hops in the flow), EFLoW was only 7% less
efficient than 802.11. Thus EFLoW can significantly improve
the fairness of the system without sacrificing much efficiency.

VII. CONCLUSIONS AND FUTURE WORK

We hope to show through our work that it is indeed possible
to achieve good fairness in multi-hop wireless networks using
time-slot based MACs even under very dynamic traffic and
channel conditions. There are two components that help us
achieve this. Firstly, we use an underlying slot allocation
algorithm (WSA) that provides support to the higher layers
to assign weights to nodes. Secondly, we use an end-to-end
feedback based algorithm to converge to the correct set of
weights to use in WSA so that we obey the flow constraints at
each hop, and also achieve end-to-end Max-Min fairness. We
are able to evaluate these algorithms using both simulations
and on a real testbed using OML which provides a framework
to build time-slot based MACs on top of the underlying MAC
layer.

In future work, we plan to address the following two
limitations of EFLoW. Firstly, the current implementation of
EFLoW assumes a 2-hop interference region. This assumption
may not always hold. While it may be possible to measure

the exact interference pattern in advance, a more general
solution would be start with an optimistic model and learn
the interference pattern based on any observed degradation
in performance of the model. Secondly, EFLoW does not
provide any delay guarantees; we only look at the long term
performance of flows. We plan to look at ways to augment
EFLoW to address the requirements of real-time traffic. One
possible method is to reserve certain time slots for specific
flows in advance. Lastly, we also plan to run more benchmarks
on EFLoW including more realistic workloads, for example by
replaying actual traffic logs.
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