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Abstract

Improving Access to Remote Storage for Weakly Connected Users

by

Patrick Randolph Eaton

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John Kubiatowicz, Chair

Storage researchers and service providers have been developing a new type of large-scale,

distributed storage system. These systems aggregate storage from a large number of components,

exploiting the content-addressable interface to address and manage data stored in the system. Poten-

tially, such systems may be able to offer managed storage services to many new user groups, but they

must yet overcome many challenges. In this thesis, we consider several important challenges that

these new content-addressable storage systems confront when serving weakly connected clients.

First, we justify why weakly connected users are an attractive target user population for

these new storage systems. We then analyze the usage patterns of these users to understand the

most important issues that they face. This background leads us to focus on techniques to improve

the effective bandwidth and latency of the “last-mile” network link while protecting the privacy and

integrity of data from untrusted agents in the infrastructure.

We present three mechanisms to address these challenges. We describe privacy-preserving

delta-encoding that can improve the effective bandwidth of the network link without sacrificing data

privacy. We introduce intention updates, which allow clients to implement flexible link scheduling

policies to reduce the effective latency of the link without sacrificing data consistency or visibility.

Finally, we propose a new interface that raises the granularity of content-addressable storage from

individual blocks to collections of blocks, reducing the cost managing data for both clients and

storage systems.

Finally, we describe and evaluate Moxie, a prototype that demonstrates how to integrate

these mechanisms into a single storage system. Moxie provides a user-level file system client that

allows end users to interact with a content-address storage system through the traditional file system
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interface. The file system client executes requests, transparently applying delta-encoding and inten-

tion updates when appropriate. Moxie improves client-perceived performance for weakly connected

users by reducing the amount of data that must be transferred across the weak link and moving the

transfers that must occur off of the critical path for most operations.

Professor John Kubiatowicz
Dissertation Committee Chair
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Chapter 1

Introduction

Researchers and service providers are planning, designing, building, and deploying a va-

riety of new distributed storage systems. A feature common to many of these systems is that they

aggregate storage from large collections of commodity servers. In some cases, the component

machines are collocated in a single site; in others, the machines are distributed across the geo-

graphic wide-area. This approach was pioneered by a wave of academic projects that included

CFS [DKK+01], OceanStore [KBC+00], and PAST [RD01]. These projects spurred many sub-

sequent projects including the OpenDHT [RGK+05] public DHT service and the Venti [QD02]

archival service. More recently, several corporate service providers have unveiled storage ser-

vices, including Amazon’s Simple Storage Service (S3) [Ama06] and Apple’s .mac Backup Ser-

vice [App06] that appear to be built on a similar set of principles.

The scalability of this new class of distributed storage systems offers a particularly attrac-

tive opportunity to provide remote storage resources to large numbers of users who previously have

not had access to such services.

Remote storage systems have been widely used in corporate and academic environments

for decades. Their ubiquity is a testament to the power and convenience that they provide to their

users. Remote storage systems for corporate and academic settings are designed assuming that users

communicate with the storage systems over high-bandwidth, low-latency links. Furthermore, it is

assumed that trusted administrators maintain a tightly controlled environment free from malicious

hosts, and communication is private to those outside the organization.

Users outside corporate and academic environments, however, have not typically had ac-

cess to the same remote storage services. One reason for the lack of service has been a lack of

demand—users outside of those environments have not had large collections of valuable data. Other
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reasons were more technical in nature, such poor network connectivity and lack of features to ensure

data privacy and integrity across public networks and multiple administrative domains.

We believe that the circumstances that have historically impeded the development of re-

mote storage services for users outside of corporate and academic settings are waning. The number

of potential users for remote storage services is increasing. In many parts of the world, most house-

holds own computers—the United States Census reports that 61.8% of all American households

owned computers in 2003 [DJD05]. Also, improvements in mobile networking technologies are

allowing both non-traditional users and traditional corporate and academic users to access network-

hosted services from a wide range of locations. Finally, the demand for storage is increasing among

non-traditional users as assets including personal photos, home videos, music, software, bank state-

ments, and tax documents are increasingly transmitted exclusively in digital formats. In fact, Jim

Gray of Microsoft Corporation claims that individuals now own 80% of the world’s data [Gra05].

Motivated by the growing demand for storage services and the increasing size of the

potential user community, this thesis examines some of the important technical challenges in making

remote storage services available to a broader user community. We focus on techniques to facilitate

access to remote storage systems for weakly connected and mobile users.

1.1 Remote Storage Systems, Features, and Limitations

A remote storage system supports access to persistent storage across a network. For users

of remote storage systems, data is stored not on end host machines, but rather on a remote machine

or system that is accessed across the network. When the user wishes to read data, the client machine

sends a message to the remote system requesting the data. The remote storage system locates the

data and returns it to the client machine via the network. When the user writes data, the client

transfers the data to the storage system which stores it for later access. This approach is illustrated

in Figure1.1.

In early remote storage systems, all stored objects were accessed through the file sys-

tem interface and the remote system was implemented on a single machine. These remote storage

systems are often called network file systems, and the remote storage host is called a file server.

The primary features of a remote storage systems are improved data availability and dura-

bility and simpler administration. Remote storage systems enhance data availability by allowing

users to access data from any machine anywhere in the network. Users need not be tied to a single

physical device that stores the data, and they need not remember to copy data to portable devices
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Figure 1.1: Remote Storage System: Remote storage systems store data on behalf of users. Client
machines access data stored in remote storage systems by sending requests to the storage system
via the network.

or media before traveling. Instead, they can retrieve the data they need from any machine with

connectivity to the storage system. Remote storage systems also provide a convenient mechanism

from sharing data with other users. Each member of a collaborative effort can retrieve the file from

the storage system at any time without interaction with other members. Similarly, each member can

share changes by storing a new copy of a document to the remote storage system.

Remote storage systems improve data durability in several ways. First, by storing data

on machines in the infrastructure instead of end host machines, remote storage systems protect

data from end host failure, loss, and theft. After replacing a failed client machine, users of remote

storage systems can retrieve data from the infrastructure. Secondly, remote storage systems can

improve data durability by exploiting advanced data protection mechanisms, like RAID [PGK88]

or erasure coding [Rab89]. Such techniques may be prohibitively costly to implement on individual

end host machines; but, because remote storage system are typically shared resources, a remote

storage system can amortize the cost of additional hardware or software over large numbers to users

to make such features affordable. By taking advantage of advanced replication and coding strategies,

a remote storage system can ensure better data durability than individual end host machines.

Finally, remote storage systems ease the burden of administering storage resources. With-

out remote storage systems, an organization must manage the storage resources on individual end

host machines. This typically means that users must manage their own machines or administrators

must locate and administer each machine individually. Unfortunately, it is not reasonable to expect

typical users to administer their own storage resources, and it is not efficient for administrators to

manage large collections of machines in this manner. Remote storage systems, alternatively, serve
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as a central point where where a trained administrator can manage storage resources for a large

number of users simultaneously. All users enjoy the benefits provided by patches or upgrades to

storage servers. Furthermore, an administrator can back-up data for an entire organization simply

by archiving the data stored on the server.

Although remote storage systems provide a number of benefits, the technology also faces

several challenges. As with any shared resource, remote storage systems are an attractive target for

abuse and attack. Systems must properly authenticate all users and ensure that a user’s data cannot

be accessed by unauthorized users.

Remote storage systems must also overcome problems with network connectivity. Fun-

damentally, remote storage systems must transfer large amounts data across the network; and, con-

sequently, when clients do not have a path of strong connectivity to the system, performance can

suffer dramatically. Such problems can be exacerbated if the system implements a “chatty” proto-

col that requires multiple round trips between client and server to respond to requests. Problems

also arise when client rely on links that are of high-latency, low-bandwidth, or both. Congestion at

peering points in the network or at public wireless access points can also introduce problems. We

will examine these issue in detail throughout this thesis.

1.2 Underserved User Populations

Historically, remote storage systems have been most widely accepted in corporate and

academic environments. The reasons for this trend are both organizational and technical. Organi-

zationally, these groups possess the financial resources to support remote storage systems. They

can purchase the additional hardware required to host the remote storage systems, and they can hire

competent, trained administrators to manage the systems. Technically, users in these environments

typically enjoy strong network connectivity that can support good service with traditional remote

storage systems. Networks in corporate and academic campuses typically support high-bandwidth

communication with latency in the millisecond range. This allows client machines to communicate

with storage servers quickly and transfer large amounts of data with little delay.

While remote storage systems are commonly available tools for users in corporate and

academic environments, many other user communities have been noticeably under-served by the

technology. In this thesis, we are particularly interested in two user groups traditionally under-

served by remote storage systems: mobile users and residential users. Mobile users are those that

access data from the road, exemplified by vacationers and business travellers. Residential users are
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those that access data from the home, including those telecommuting to a job and end consumers.

These under-served users populations share several distinguishing characteristics. Most

importantly, these users typically rely on weak connections to the larger network. The “last-mile”

links at the edge of the network have high latency or low bandwidth or both. Technologies that

commonly provide these “last-mile” connections include telephone modems, residential broadband

(cable and DSL modems), 802.11B wireless connections, or CDMA connections. Other traits com-

mon to mobile and residential users is that they often access data from multiple devices and access

points in relatively short time periods.

Providing these traditionally under-served populations with fast, reliable access to remote

storage systems would grant to users many benefits presently only afforded to resource-rich users in

corporate and academic settings. Mobile and residential users could access data at any time from any

device. They could access data related to their job when away from the office and refer to personal

data when at the office. It would provide users with durable storage for their increasingly large

collections of valuable digital data including financial statements, personal photos, home videos,

and purchased digital content. Finally, it would allow them to outsource the management of storage

resources to professional administrators employed by their storage service provider.

The fact that, traditionally, mobile and residential users have not been well-served by

remote storage systems may suggest to some that such users are not attractive targets for the tech-

nology. On the contrary, we believe that these communities are a key potential customers for the

new distributed storage infrastructures currently under development. The early adopters of these

technologies will likely not be the corporate and academic organizations that already have access

to similar tools. Rather, the early drivers of this new storage infrastructures will be those that have

the most to gain from the systems—users that currently do not have access to durable, available

storage. Certainly, storage products—including external hard drives, optical disk writers, and USB

drives—targeting mobile and residential users do exist. Despite the availability of these products,

surveys reveal that 25% to 60% of residential users have experienced data loss [Har02, Bru01].

Users lose data because, though products exist to improve durability, they do not fit well into users’

workflow patterns; consequently, they are not regularly used and cannot provide the intended ben-

efit. The surveys also report that up to 85% of users are very concerned about losing data. Thus,

if we can improve access to remote storage systems for weakly connected users, we can extend the

availability of the valuable service to users that have significant need for the technology.
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1.3 Important Technology and Social Trends

Throughout this research, we are guided by several important technological and social

trends and their consequences. We discuss these trends below.

Improving Network Connectivity: Network connectivity continues to improve. Decades ago,

connectivity was provided by wired networks and was a privilege enjoyed by users in corporate

and academic environments. Users were forced to work in fixed locations serviced by the wired

network. Today, technology has extended connectivity to more users and locations. In the cor-

porate and academic environment, wireless networks have extended the bounds of the network to

include courtyards, conference rooms, and cafeterias. Telephone modems and now broadband have

extended the network to residential users. As of 2003, 55% of all American households had some

form of Internet access, more than double the percentage from 5 years prior [DJD05]. As wireless

technologies continue to improve, users are increasingly able to access the network from neigh-

borhood cafes and restaurants, parks and public squares, hotel rooms, and even while travelling on

public transportation.

Though network connectivity is improving and available bandwidth is increasing, we do

not believe that simply waiting for technology to advance will solve all problems associated with

weak connectivity. On the contrary, it seems that user demand for bandwidth continues to outpace

its availability. As residential users have moved from low-bandwidth telephone modems to higher-

bandwidth broadband connections, the data that users own has grown also. Digital cameras now

record photos in higher resolution; music and video is encoded at higher fidelity; and application

file formats seem to grow with every software release.

Indeed, connectivity is improving, and available bandwidth is increasing. However, we

believe that users will continue to push the limits of available networking technologies for the fore-

seeable future. Certainly, there will always exist pockets of users that rely on connections that are

slower or financially cheaper than the average, and the techniques we consider in this thesis can

benefits these populations.

Increased User Mobility: Taking advantage of improving network connectivity, users are in-

creasingly likely to access data from a variety of locations. No longer confined by the wired infras-

tructure, users are free to work at the locations and times most convenient to them.

A 31-day trace of requests to an IMAP server at the University of California at Berkeley
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reflect increased user mobility. The trace showed that users access their mail from more than 1

location per day roughly 20% of the time. Approximately 40% of users accessed the mail from at

least 5 locations (as defined by IP subnet) during the trace, with some users connecting from more

than 15 locations [SCJ04].

Increased Number of Devices: As users exhibit increased mobility, the tools to support mobile

data access are becoming more powerful, affordable, and common. No longer do workers rely

solely on a single desktop machine located at the office. Users are likely to have multiple desktop

and laptop machines to support personal and business use. Internet-enabled cell phones, portable

email devices, and personal digital assistants (PDAs) are becoming more prevalent, allowing users

to reference and modify documents as they move around the city or country. Digital cameras and

embedded audio recorders provide still more content creation options. Mobile devices also continue

to decrease in price dramatically; in fact, some groups are working to bring the cost of a laptop down

to $100 [Chi06].

Increased Use of Network-Hosted Services: As the network and access to it become ubiquitous,

service providers are increasingly deploying services to be accessed via the network, and users

are more likely to rely on applications and services that are hosted in the network. John Gage, co-

founder of Sun Microsystems, coined the phrase “the network is the computer” in observation of the

emergence of distributed computing and hosted services [Ris04]. By deploying services in the net-

work, service providers can reduce installation and maintenance costs. They can respond quickly to

user needs, pushing fixes and updates to users transparently. By relying on network-hosted services

managed by trained administrators, users are relieved of the responsibility of managing complex

software on an array of personal devices.

1.4 System Model

The system architecture that we consider for our investigation is motivated by the types of

storage systems that have recently appeared in the research literature and press releases. The storage

systems that guide our work include research systems like CFS [DKK+01], FARSITE [ABC+02],

OceanStore [REG+03], Pangaea [SKKM02], and PAST [RD01] and storage services like Apple’s

.mac [App06] and Amazon’s S3 [Ama06].
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Figure 1.2: System Model: We assume a client-server architecture. The server resides in the well-
connected core of the network. Clients connect via weak connections at the edge of the network.
Client-perceived performance is primarily dependent on speed of the weak link.

1.4.1 System Architecture

Figure 1.2 illustrates the system architecture of our target environment. A distributed

storage infrastructure in the well-connected network core provides durable, persistent storage for

multiple users. We do not specify the implementation of the storage infrastructure. It could be

implemented as a single, large file server, but, more likely, the storage infrastructure would be a

distributed, peer-to-peer system, possibly run as a federated system by multiple independent service

providers. We envision services and systems like Amazon’s S3 [Ama06], OpenDHT [RGK+05], or

Antiquity [WECK07] will provide the base storage service.

Experience in the research community has shown that supporting only a simple appli-

cation interface can dramatically simplify the implementation of storage infrastructures. For ex-

ample, DHT-based storage infrastructures have settled on a hashtable-like put()/get() inter-

face [DZD+03]. We, thus, assume that the distributed storage infrastructure will provide only

limited interfaces for accessing data. To support the rich APIs that file systems and applications

expect, we assume the availability of middleware servers in the network. These middleware agents

translate the powerful, descriptive APIs used by end hosts to the limited interfaces provided by the

storage infrastructure. The middleware servers are also located in the well-connected core of the

network.

The client machines that communicate with middleware servers are not in the well-connected
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portion of the network. Instead client machines interact with middleware servers in a client-server

fashion via weak network links at the edges of the network. We do not consider the potential benefits

of additional edge-side proxies or caches in the system.

We assume that the file servers and storage infrastructure are computationally powerful

enough and, by virtue of residing in the well-connected network core, sufficiently well-connected

so as to have little impact on the user-perceived performance of the system. Thus, performance is

primarily dependent on the time needed to transmit messages across the weak link.

1.4.2 Constraints

We consider two main constraints with this model. First, the end hosts by which users

access data stored in the system are weakly connected. That is, the links at the edge of the network

that transmit communication from clients to the middleware are of high latency or low bandwidth

or both. Due to improving network connectivity, clients are mostly connected; that is, when clients

are in use, they can usually communicate with the network. Unfortunately, many times that com-

munication must traverse weak edge links.

Secondly, we assume that middleware file servers and the storage infrastructure are oper-

ating in a fundamentally untrusted environment. This constraint differentiates our work from much

of the previous research in similar areas. Our system model and target deployment environment

include many threats to data privacy and integrity. All messages must traverse public networks and

thus could be dropped, delayed, or re-ordered. An eavesdropper can snoop on any messages in the

network. Because the data ultimately resides on storage hosted by a third-party service provider, the

system must guard against data exposure and leaks by administrators of the storage service. This

is no mere academic concern—news reports indicate that insiders are a bigger threat to confidential

data than hackers. For example, the Ponemon Institute reports that 81% of surveyed companies

have had a laptop storing confidential information lost or stolen in the last year [Pon06].

1.4.3 Problems

This model presents a number of problems for users of remote storage systems. The high

latency of the network links connecting users to the system imposes delay on every request sent to

the system. This delay can make a system appear sluggish and unresponsive to users. This problem

is amplified if the client implements a “chatty” protocol that requires sending several rounds of

requests across the link for a single user-level request.
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The low bandwidth provided by the client’s network connection also presents a problem.

By its fundamental nature, a storage system must transfer large collections of data between the client

and server. The time to transfer data is limited by the bandwidth of the link. Consequently, a lack

of bandwidth can, again, make the system appear sluggish and unresponsive to users.

Sluggish performance due to the high latency and limited bandwidth of network can frus-

trate users that are forced to wait for service. To reduce the wait, some remote storage systems

move network operations off of the critical path of many operations. Although this approach does

improve responsiveness, it can lead to conflicts and lost data because the server does not store the

most current state of the data.

Because the infrastructure that is storing the data is untrusted, the client must take extra

steps to protect data. Before shipping any data to the network, the client must encrypt it to ensure

data privacy. The client must also provide tokens, like digital signatures, to allow the infrastructure

to authenticate its requests. Encrypting data and creating digital signatures adds further latency

to each request. Mistrust of the infrastructure also limits the services that the infrastructure can

perform. For example, because data is encrypted, the middleware file servers are limited in how

they can manipulate the data. This restricts the interfaces that can be implemented between the

client and server.

In Section 1.6, we will describe how these basic problems limit the applicability of current

techniques for supporting access to remote storage systems for weakly connected users.

1.5 Goals

In this thesis, we investigate techniques to improve access for weakly connected clients

to remote storage systems like those described in Section 1.4. By improving access for weakly

connected users, we hope to allow new user groups to enjoy the many benefits of remote storage

systems that have made the tools so popular in corporate and academic environments.

Consider a typical user’s expectations of a remote storage system first from an abstract

perspective. Perhaps most obviously, a user expects the system to exhibit good performance. Users

relate performance to how quickly the system responds to requests. When reading data stored in the

system, the user expects the system to return the requested data promptly. When writing data to the

remote storage system, the user expects the system to respond quickly. Users are frustrated when

forced to endure long delays for the storage system to service requests.

While we seek to improve performance for weakly connected users, we cannot surrender
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other important features of a remote storage system. For example, the storage systems must provide

support for sharing data between multiple devices and users. To protect users from accessing stale

data and generating conflicting updates, a remote storage system should support a strong consis-

tency model. While the system can be optimized for the common case that data is not shared with

other users or devices, it must protect users from inconsistent accesses when sharing is present. In

Chapter 2 we explain why sharing is an important issue for our target user populations.

Performance optimizations, however, must not preclude other popular storage system fea-

tures. For example, versioning [MRWHZ04] is a technique which promises to facilitate tasks such

as back-up, disaster recovery, and intrusion detection by maintaining a history of data stored in the

system. Log optimizations were designed to improve performance by eliminating the transfer of

some data across the network [KS91]. A system implementing log optimizations cannot provide

versioning because versioning requires that all modifications to be shipped across the network to

the server.

Finally, any technique to improve performance must be compatible with techniques to

ensure data privacy and integrity. To protect privacy while data is in transit or stored in the storage

infrastructure, clients must encrypt all data before transmitting it from the end host machine. To

promote data integrity, all communication between principals in the system must be authenticated.

To evaluate techniques for improving performance, we must define performance in more

quantitative terms. We will measure the effectiveness of our work using two notions of performance

based on two types of common workloads. First, consider single isolated requests, typical of inter-

active workloads. A high-performance storage system will serve users accessing the remote storage

system interactively by providing quick, responsive service. To measure our success, we will draw

on results from the Human-Computer Interaction (HCI) research community that relate response

time and human perception, as summarized by Tolia et al. [TAS06]. Researchers have learned that

users perceive a system to have crisp performance when response times are less than 150 ms. As

response times increase to 1 second, users become increasingly aware of the lag. When interactive

response time slows to more than a second, user frustration and anxiety increase while productiv-

ity decreases. We also consider workloads consisting of long sequences of events typical of batch

executions of jobs. For these workloads, we measure the performance of the storage system by

how long it takes to complete the sequence of commands. That is, for batch workloads, we seek to

improve overall execution time.

To improve performance as defined above, remote storage systems must carefully manage

communication across the weak link that connects clients to the middleware servers. In the remain-
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der of this thesis, we investigate techniques that increase the effective bandwidth and decrease the

effective latency of the link. These techniques reduce the amount of time that clients must wait

when communicating with the storage system. Obviously, a remote storage system cannot alter the

physical characteristics of a network link, but it can improve the perceived performance of the link

by altering how it uses the link. For example, the system cannot impact the true one-way latency

of the link, but it can reduce the latency of a message sent across that link by reducing the amount

of time a message spends in queued at the client or the size of the message. In Part II, we will

present several techniques that improve effective bandwidth and latency of the network link while

interacting symbiotically with requirements for consistency, privacy, and integrity.

1.6 Current Approaches

A large body of prior research shows how to make more efficient use of network resources

while accessing remote storage systems. Although we learn and draw much from this prior work,

the techniques that they describe do not provide a complete solution to meet the goals we have set

forth in the environment we target.

The earliest research seeking to improve the network efficiency of remote storage systems

was in caching. The Andrew File System (AFS) introduced a concept called whole-file caching

with write-back on close [HKM+88]. In AFS, when an application issues an open() request, the

client fetches the whole file from the server and stores it on the local disk. Subsequent read() and

write() operations, then, can be serviced without any communication over the network. Any

changes made to the file are flushed (written-back) to the server when the application issues a

close() request. Whole-file caching reduces the number of messages and roundtrips between

the client and server. Caching can also reduce the amount of data that must be transferred from the

server to the client. If an object cached at one client is not changed between consecutive accesses

by applications at the client, the client need not re-fetch data from the server. Instead, it can simply

read the data from its local cache. Although caching can dramatically reduce the amount of down-

stream bandwidth used by a client, it does little to curb the upstream bandwidth required to push

modifications up to the server. Note, with many asymmetric networking technologies, the upstream

bandwidth is even more restricted than the downstream bandwidth.

To reduce the impact of the write-back operation, researchers explored asynchronous

write-back [MES95] and delayed write-back [KS91]. To support weakly connected operation, the

Coda file system responds to update requests after recording the change only in the client cache.
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The change is propagated to the server asynchronously when bandwidth is available. To support

disconnected operation, the Coda file system writes changes to a local log instead of propagating

the modifications to the server immediately and synchronously. When connectivity is re-established,

the changes in the log are flushed to the server. To reduce the amount of data that must be flushed,

the Coda client attempts to optimize the log by eliminating from the log changes that were later

overwritten or reversed. Although asynchronous write-back and delayed write-back do optimize

the use of the uplink, the state recorded at the server is stale, lagging the state at the clients. Stale

server state leads to consistency problems that complicate data sharing. Furthermore, in systems that

implement log optimizations, the server does not view a complete history of operations, precluding

support for features like versioning.

Other remote storage systems use surrogates to overcome weak client connectivity. For

example, Lee et al. [LLS99] describe a system in which clients ship operation-based updates to

surrogates in the network with a strong network connection to the server. The surrogate performs

the operation (with communication with the server) and sends the response to the weakly connected

client. The originating client verifies that the results of the surrogate’s execution matched the re-

sult of the local execution, falling back to other means if it does not. With this approach, most

communication occurs between strongly connected principals. Techniques that employ proxies and

surrogates provide benefits at the cost of additional infrastructure. Also, proxies are surrogates

are often trusted components; if they were to be part of the untrusted infrastructure, the types of

operations that they could support would be limited by the need to encrypt data and provide authen-

tication tokens on behalf of the client. While our work compliments proxy-based approaches, we

seek techniques that work in the strict client-server model embodied by our system model.

Finally, other systems have explored the potential benefits of using delta-compression on

file system traffic. The Low-Bandwidth File System [MCM01] conserves bandwidth between a

client and server by exploiting commonality between multiple files and versions in a file system.

Before transferring an object, the sending principal first sends a description of the blocks that com-

prise the object. The receiving principal compares the list of component blocks against those that

it already stores and requests that only the new blocks be transferred. When a file to be trans-

ferred shares many blocks with other file or versions, the amount of bandwidth required can be

much lower. Delta-compression can improve the utilization of both the uplink and the downlink.

However, current implementations of delta-compression require trusted servers that can arbitrarily

manipulate data in plaintext form. Our target environment does not support such schemes. Also,

delta-compression only benefits workloads that transfer lots of similar data. Workloads composed
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of mostly unique data, like content-creation workloads, do not benefit; and thus, delta compression

is not a complete solution.

1.7 Contributions

This thesis makes the following contributions to the study of how to improve access to

remote storage systems for weakly connected clients.

Identifying the Challenges of Weak-Connectivity: In the next chapter, we discuss the problem

of access to remote storage for weakly connected clients in detail. We also present the results of

several studies that help us identify some of the individual issues is this large problem.

Techniques for Improving Access for Weakly Connected Clients: In Part II (Chapters 4–6),

we describe and evaluate three techniques that improve access to remote storage systems for weakly

connected clients by improving the effective latency and bandwidth of the weak network link.

• Privacy-Preserving Delta-Encoding: In Chapter 4, we describe a technique that we call

privacy-preserving delta-encoding that allows weakly connected clients to enjoy that benefits

of delta compression even when the server is not trusted with data in plaintext form. Prin-

cipals in the system share a data structure that indexes a set of blocks containing ciphertext.

To modify data, clients send the server an update which contains a set of manipulations to

perform on the data structure and blocks of new data in ciphertext form. The server can

apply the changes to produce a new version of the stored object. With privacy-preserving

delta-encoding, a system can match the current state-of-the-art in delta-encoding for storage

systems even in environments where servers are not trusted with plaintext data.

• Intention Updates: In Chapter 5, we describe intention updates, a write-back strategy that

enables the client to control the use of the network connection by prioritizing and scheduling

messages. Intention updates allow us to consider a variety of link scheduling optimizations.

Intention updates empower the client to control the use of its network connection by splitting

the write-back operation into two phases. In the first phase, the client sends a small message

that describes the changes that are to be made. In the second phase, the data performs the bulk

data upload to the server. By splitting write-back into two-phases, modifications are made

visible quickly and the server reflects the current state of the data accurately while the client
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can schedule the majority of the network use based on the local availability of resources. The

approach allows the service to respond quickly to individual user requests while protecting

users from inconsistent accesses when sharing data.

• Two-Level API for Content-Addressable Storage: In Chapter 6, we define a two-level API

that allows content-addressable storage systems, like those that provide the backing store for

scalable, wide-area remote storage systems, to support file system workloads more efficiently.

By aggregating many small blocks of data typical of those created by a file system workload

into larger collections, the API enables the design of storage systems that better amortize the

cost of communication, repair, update, and access.

Putting it All Together: Finally, in Part III, we show how these techniques can be blended to-

gether in a single system. We describe a prototype implementation and evaluate how the system is

able to meet the goals outlined in Section 1.5.

We note that other interesting challenges relevant to this problem domain are specifically

not addressed in this thesis. In these area, we believe that existing work in literature can be applied.

For example, we do not consider techniques to reduce cache validation latency for weakly con-

nected clients. Instead, we refer the reader to the variable latency cache coherence mechanisms of

Coda [MS94]. Similarly, we do not consider the speculative use of link bandwidth for prefetching

data. A rich body of literature on the subject already exists which is compatible with the techniques

we discuss in this thesis [SSS99].



17

Chapter 2

Understanding the Problem

In this chapter, we discuss several topics important for gaining a better understanding of

the problem domain. In Section 2.1, we consider network characteristics that impact remote storage

systems and provide an overview of several relevant networking technologies. Section 2.2 defines

metrics important in our study of remote storage systems. In Section 2.3, we study the potential

effectiveness of various forms of data compression in reducing the bandwidth consumed by remote

storage systems. Finally, in Section 2.4, we investigate how the mobility of users affects interaction

with remote storage systems.

2.1 Weak Networks

The general level of service that can be expected of a network link can be characterized

by its latency and bandwidth. The one-way latency of a link is defined as the time between the start

of a message transmission and the start of a message reception. That is, latency measures the time

to send the first bit of a message across the link. We typically measure latency in milliseconds. The

bandwidth of a link describes how much data it can transmit in a given time interval. The bandwidth

of a link determines a message’s transmission delay, the time between the receipt of the first and

last bit of a message. We typically measure bandwidth in bits per second.

The bandwidth and latency of a link contribute to the response time of a request as defined

in Equation 2.1. The subscripts c→s and s→c represent the direction of message transmission

between client and server. Some networking technologies, called asymmetric technologies, have

different performance characteristics on the uplink and downlink.
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Network Type Latency Bandwidth
(ms) (kbit/s)

Ideal 0 ∞
Ethernet 100 MB 1 100,000

1 MB 10 1,000
Cable Modem current 30 6144 down/384 up

legacy 30 384 down/128 up
Wi-Fi 802.11G 10 54,000

802.11B 10 11,000
Cell Modem EV-DO 100 2048 down/384 up

GSM 100 9.6
Telephone Modem 100 56

Table 2.1: Network parameters: Networking technologies exhibit a wide range of latency and
bandwidth characteristics. The numbers presented in this table are meant as representative esti-
mates, not exact performance measurements.

ResponseTime = Latencyc→s +TransmissionDelayc→s(req)+ (2.1)

ProcessingTimes +

Latencys→c +TransmissionDelays→c(resp)

An ideal network link transmits messages instantaneously, with no delay. Such a link can

be said to have zero latency and infinite bandwidth. With ideal links, the response time for a request

is solely dependent on the processing time at the server. It can be useful to simulate systems with

ideal network links to determine the best possible performance of the system.

Unfortunately, true ideal links do not exist. At the very least, the speed of light determines

the minimum possible latency for a network link. Real networking technologies have varying la-

tency and bandwidth characteristics. Table 2.1 enumerates several popular networking technologies

and their approximate performance characteristics. Ethernet is commonly used to connect hosts in

local area networks (LANs). Its low latency and high bandwidth make it popular in well-connected

environments like corporate offices and universities. Newer varieties of Ethernet boast bandwidths

of 1 and even 10 GB/s.

The other technologies listed in Table 2.1 are more indicative of the type used by our target

user populations. The cable modem is a popular “broadband” connectivity option for residential

users. Note, it is an asymmetric technology offering more bandwidth in the downstream direction.
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Unfortunately, broadband connectivity is not an option for all users. Many users in rural areas,

or those looking for cheaper connectivity options, rely on dial-up access using telephone modems.

The latest cable modem infrastructure promises residential users 6 Mbit/s downlink and 384 kbit/s

uplink bandwidth. While such infrastructure provides relatively ample bandwidth for downloads,

the uplink is even more restricted relative to the downlink (16x).

Several wireless technologies are popular among mobile users. The 802.11B Wi-Fi stan-

dard provides connectivity for users within approximately 100 feet of an access point. Although the

standard claims to support bandwidth of up to 11 MB/s, congestion can dramatically decrease actual

service levels [HRBSD03, XBLG02]. Newer versions of the Wi-Fi standard promise higher band-

width. When an access point is not near, users can access the network through cellular modems.

Common standards for cell phone access include GSM and EV-DO. While some standards provide

less bandwidth than even telephone modems, others promise bandwidth comparable to broadband

technologies.

2.2 Metrics

In this thesis, we will use a variety of metrics in evaluating the nature of the problem and

the efficacy of the proposed techniques.

Response time is one of the most commonly used metrics in the study remote storage

systems. The response time measures the time between when a client issues a request and receives

a response. Local processing, network latency, transmission delay, queueing in the network and at

the server, and processing at the server all contribute to response time. The response time metric is

relevant to all types of requests. A lower response time is always better.

For requests that modify state recorded in the remote storage system, we consider two

additional metrics. The visibility latency measures the time until an update is visible; a modification

is said to be visible when other clients can observe that the change has occurred. For an update

to be visible, the existence of that update must be recorded in some place where other clients are

guaranteed to notice it. Because we limit our investigation to client/server architectures, information

about a change must reach the remote storage service to be visible. The durability latency measures

the time until an update is durable; a modification is said to be durable when other clients can

retrieve the results of the modification. Again, because we consider client/server architectures, a

change must propagate to the storage system to be durable. The visibility latency and durability

latency metrics are inspired by the observations of Kim et al. [KCN02] differentiating between the
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Figure 2.1: Issue Time Penalty: The issue time penalty is the difference between the time an event
is issued in two systems. Here we compare an “ideal” system that services requests with zero latency
to a realistic system. This measurement rewards systems that are responsive enough that they do
not block user requests.

safety (durability) and visibility of updates. Lower visibility and durability latencies are better.

Most systems do not exploit the distinction between visibility and durability; on those systems, an

update’s visibility latency and durability latency would be the same.

Response time, visibility latency, and durability latency measure the absolute performance

of a single system. Throughout our investigation, we will use simulations that allow us to observe

the behavior of multiple storage systems to identical workloads. To compare the performance of

two systems, we use the relative versions of the metrics described above. The response time penalty

is the difference between when the client receives a response to a request in the two systems. The

visibility latency penalty measures the difference between when an update becomes visible in the

systems, and the durability latency penalty measures the difference between when an update be-

comes durable in the two systems. Lower penalties are better.

Relative metrics are cumulative. In simulations, an event is not issued until the prior

events (on which the event is assumed to depend) are handled. Events are never issued faster than

the trace defines. Delay caused by slow service of earlier requests accumulates and may impact the

penalty attributed to later events.

Another metric for comparing two systems is the issue time penalty, defined to be the

difference between when an event is issued on the two systems. By studying the distribution of

the issue time penalty for events, we can compare how much time a client spends waiting using

different protocols. Figure 2.1 illustrates the issue time penalty for a workload with four requests.

To score well, a system needs to be able to serve user requests at the rate the user issues them. This

metric penalizes systems that block users attempting to make a request.
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Figure 2.2: Conflicts: Conflicts occur when requests in a real system reach the server in an order
that differs from the execution order of an ideal system. In this example, in the “ideal” system, write
WFn replaces Fn−1; later, another user issues read RFn to read that file and write WFn+1 to update the
file. In a system constrained by weak networks, a user issues WFn but transferring the data to the
server is slow. When another user reads the file RFn−1 , the server returns the last known version Fn−1
resulting in a conflict. The subsequent write WFn+1 results in another conflict because it overwrites a
version, Fn−1, different from the ideal case. When the initial write, WFn , finally completes, it creates
another conflict because again the wrong version, Fn+1, is overwritten.

Finally, we measure the number of conflicting accesses, or conflicts, allowed by a storage

system. We say that an event results in a conflict if it observes different outcomes on the system

under test than it would on an “ideal” system that services requests infinitely fast. Differences in

outcome are typically caused when, in workloads that exhibit sharing, requests to the same object

by different clients are delayed in the queue at their respective clients for different amounts of time.

This causes the events to be executed in the test system in an order different than in the ideal system.

Figure 2.2 illustrates a scenario in which several conflicts occur.

2.3 Potential for Data Compression

Many applications that must transfer large amounts of data across the network rely on

various data compression techniques to increase the effective bandwidth of the network links. In

this section, we present the results of a small study we conducted to investigate the potential for data

compression for remote storage systems. With this study, we seek to understand the general trade-

offs of various types of compression. This understanding will guide us in developing techniques to

exploit data compression to improve access for weakly connected clients.

To drive this investigation, we collected a two-week trace of actual file system traffic from

developer workstations. The workload was captured by a custom-built tracing library that logs, in
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Trace Files Unique Total Write
Written Files Written Size (MB)

Developer 1 1246 454 79.1
Developer 2 528 121 8.5

Table 2.2: Size of Traced Workloads: To consider the potential benefits of various types of data
compression, we captured file systems traces of two weeks of activity for two developers. This table
shows the amount of number of files and amount of data written by each developer in the trace.

addition to traditional information like system calls and their parameters, the actual data that is

written to disk. Although many file system traces exist in the literature (e.g. [Har93, RLA00]), we

are not aware of any publicly available traces that record the actual data that was written to disk.

The tracing library relies on the operation of the dynamic linker/loader. Modern operating

systems use a linker/loader to locate and link the implementation of shared library functions to

executables dynamically at run time. The Linux dynamic linker/loader allows users to customize

the path that is searched for library implementations. We use this feature to interpose our library

between the application and the standard library implementation.

The tracing library provides an implementation of all system calls that affect the file

system such as open(), close(), read(), write(), rename(), and unlink() as well as the

printf() family of functions. By registering the tracing library with the linker/loader, the library

can observe all system call activity related to the file system. After logging the system call, the trace

library forwards the request to the standard shared library for servicing. In this manner, applications

run unmodified.

We implement several optimizations reduce the size of the trace log and protect sensitive

data. For example, we only log system calls that operate on ’regular’ files, as identified by the

stat() system call. This eliminates from the log interprocess communication and all activity to

virtual file systems and device nodes. Additionally, the user can specify a set of files or directories

to blacklist. This allows the user to protect sensitive files, such as cryptographic keys used by SSH

and PGP, and files not relevant to the trace, such as files in a web browser cache.

We collected traces of file activity on two Linux workstations used by researchers for two

weeks from August 1-15, 2004. Table 2.2 summarizes several key metrics of the traces. Developer

1 was primarily engaged code development using Java and Perl and document preparation using the

Latex Document Preparation System. Developer 2 was primarily engaged development using Java

and Ruby. While the length and size of the traces is not particularly large, the traces do enable us to

compare the effectiveness of different types compression using real workloads. We consider this to
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Trace Compression Delta-Encoding
Speed Size Whole Block Rabin Rsync

Developer 1 93.4% 95.1% 4.5% 78.5% 78.8% 81.1%
Developer 2 94.8% 94.3% 0.1% 14.3% 15.3% 21.4%

Table 2.3: Effectiveness of Compression and Delta-Encoding: This table reports the percentage
of bytes transferred in a system with no compression facilities that could be eliminated if compres-
sion were used. Compression could reduce update size in the traced workloads by nearly 95%.
Delta-encoding was less effective, but could save as much as 80% of the update bandwidth.

be a valuable evaluation tool compared to the micro-benchmarks used to evaluate other research in

similar areas.

For this study, we traced all activity directed at the user’s home directory. We pruned all

requests to temporary files and all accesses related to web browser activity. We assert that such files

should be stored on a local file system, even if a remote storage system is available. We identified

temporary files as files that were created and later removed by the same process.

With these traces, we then measure the potential bandwidth savings of traditional data

compression and several form of delta-encoding. To begin, we measure the amount of data that must

be transferred from the client to the server to record the changes made at the client in a system with

no compression. We compare that result to the amount of data that would be transferred if various

forms of compression were used. Table 2.3 reports the results of these measurements, showing the

percentage of total bytes transferred in the base system that could be eliminated if compression were

used.

Data compression is the process of transforming data so that it can be represented in

fewer bits than the original data. To measure the bandwidth savings characteristic of traditional data

compression algorithms, we use the zlib compression library [lGA06]. We consider two variations

of the zlib algorithms: one optimized for computation speed and one optimized for message size.

Measurements reveal that simple compression can reduce the amount of data written back to the

server by approximately 93–95%.

Another technique that is sometimes used to compress file system traffic is delta encod-

ing. Using delta encoding, a storage system transfers only changes (or differences or deltas) to a

file instead of the complete file. Different delta encoding algorithms can detect varying amounts of

commonality between files. We will discuss delta encoding in detail in Chapter 4. Briefly, whole-

file encoding recognizes commonality only when the entire file is unchanged. Block-based delta

encoding divides a file into fix-sized blocks and searches for blocks that are unchanged. Rabin-
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based encoding uses Rabin fingerprints in a novel manner to divide a file into variable-sized blocks

and identifies blocks that are unchanged. Finally, rsync (a program for synchronizing data across

devices) uses a form of delta encoding that can identify unchanged data even when it does not fall

on a block boundary. The results show the potential bandwidth savings due to delta encoding varies

widely. It seems, however, that the block-based, Rabin-based, and rsync schemes perform compet-

itively. We discovered that the workload from “Developer 2” shows significantly less commonality

because of several cvs checkout operations that wrote a large number of files. When these files

were written, the file system did not contain a prior version which could contain unchanged data.

These measurements show that, for developer workloads, traditional data compression can

reduce file size by roughly 95%. Data compression was effective for both workloads that we traced.

The effectiveness of delta compression varied more depending on the workload. For the “Developer

1” workload, delta compression reduced file size by almost 80%; however, for the “Developer 2”

workload, the technique was much less effective, reducing file size by only about 15%.

We also measured the bandwidth savings that could be achieved by combining traditional

compression with delta-encoding. To combine the two approaches, we assume that the client first

computes a delta-encoded update, and then compresses the data block in each delta before trans-

mitting it across the network. Not surprisingly, compressing deltas reduces bandwidth requirements

further. For example, using Rabin-based delta-encoding on the “Developer 1” workload, the po-

tential bandwidth savings increased from 78.8% to 91.7%. Note, that the combination of delta-

encoding and compression conserves less bandwidth than compression alone. We suspect this is

the case because compression is performed at the block level instead of the file level. When we

attempted to perform this analysis for the “Developer 2” workload, we discovered that the trace file

had been corrupted and could not be recovered.

The workload type can have a significant impact on the effectiveness of different com-

pression techniques. For example, we would expect that developer workloads, like the ones used

here, would benefit from compression techniques because they handle mostly human-readable text.

Other workloads that access binary files (like office productivity applications) or compressed file

formats (like images) would likely benefit less from traditional compress techniques.

2.4 Impact of Mobility

To understand the problem domain better, we also studied the demands that our target

user populations place on remote storage systems. We are especially interested in understanding
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Figure 2.3: Modelling Mobile User Workloads: To synthesize workloads of mobile users, we
augment traditional file system traces to reflect accesses from multiple locations and devices. We
begin by identifying sessions, sequences of operations with no idle period longer than the timeout
period. We then apply a mobility model to assign the sessions to different devices.

how those workloads differ from those of traditional users. Toward this end, we performed a study

investigating the demands that mobile users make of remote storage systems.

Lacking traces of real mobile users accessing remote storage systems, we synthesize

mobile user workloads by augmenting traditional traces of file system activity. We then explore,

through simulation, the interaction between mobile users and remote storage systems, considering

how mobility affects workload characteristics, cache management traffic, performance, durability,

and consistency.

2.4.1 Synthesizing Mobile Workloads

Ideally, in our study, we would use traces of activity from a deployed remote storage sys-

tem with real mobile users. Unfortunately, we know of no such available traces; in fact, we are

unaware of even any such system on which we could collect traces. Instead, we synthesize work-

loads of mobile users from existing file system traces in the literature (e.g. [RLA00, Har93]). The

process converts traces from fixed-location desktop machines into traces that reflect users accessing

data from multiple devices.

The procedure for synthesizing workloads is based on the concept of user sessions. A

session is a sequence of operations from a single user in which no two consecutive events are

separated in time by more than a specified timeout period. Similar notions of a session have been

used in other studies [KE02, SCJ04]. We assume that all operations in a session are performed on
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the same device.

After dividing a trace into sessions, we apply a mobility model. We assume that each user

owns a collection of one or more devices and that the user accesses data from a single device at a

time. A mobility model defines how to assign the sequence of sessions to the user’s collection of

devices. Figure 2.3 illustrates our this approach.

By varying session identification criteria and the mobility model, this procedure creates

workloads with varying characteristics. For example, by varying the session timeout period, the

procedure divides the original trace into different sessions. A short timeout period (15 minutes) can

be used to model a very dynamic user population that is prone switch to a different device after

even short idle periods. A long timeout period (4-6 hours) models users who tend to work from a

single location and device for long periods of time. A long timeout period might be used to model

an employee that uses a different machine depending on whether she is working from home or the

office on a given day. Section 2.4.3 shows in more detail how the timeout affects the synthesized

workload.

The mobility model also helps define the resulting workloads. It can reflect users that

rely on a single device even as they move among different locations, or it can model users that

switch among devices freely as they move about. Section 2.4.3 shows the the mobility model plays

a significant role in determining the effectiveness of caching.

One limitation of this model is that it assumes that users access data through only a single

device at any one time. We know this assumption to be false, though we believe it to be true in

most cases. We have spoken with some users who use multiple devices in a single session. For

example, one user described using one machine with a preferred user interface for editing code and

documents and another machine with more memory and a faster processor to compile or render the

job. In another scenario, a user may access scheduling information on a personal organizer and a

desktop machine simultaneously. Our approach to modelling mobile users does not reflect these

user patterns; however, we can see the effects of rapidly switching between devices by defining a

very short (60 second) timeout period.

2.4.2 Simulation Approach

Given this procedure for synthesizing traces, we now seek to identify the needs of mobile

users accessing a remote storage system. Toward this end, we have built a simulator to model

interaction between a user and a network file system. The simulator models an AFS-like protocol for
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communication between clients and servers [HKM+88]. A key feature of the AFS protocol is that

clients communicate with the server only on open() and close() operations. On open(), a client

fetches the entire file and caches it locally. Subsequent accesses to the file are satisfied from the local

cache, and write operations modify the file in the client cache, but not on the server. Changes are

propagated to the server at the matching close() operation. It is said that the client performs whole-

file caching with write-back on close. The write-back operation can be performed synchronously

(as in AFS [HKM+88]) or asynchronously (as in Coda’s weakly connected mode [MES95]). When

a file is modified, the server performs a callback to invalidate all copies cached at clients currently

connected to the server. If a client loses its connection to the server, it invalidates its entire cache

and must re-validate each file on its next access.

We assume an AFS-like protocol because such protocols have been shown to be well-

suited for network file systems that serve regions larger than just the local area [HKM+88]. By

requiring communication only on open() and close() operations, the AFS protocol reduces the

number of interactions between the client and server. Also, although the AFS protocol does not

match UNIX-semantics, it has been reported that most applications work atop AFS without modifi-

cation [HKM+88].

Though connectivity is improving, many mobile users still rely on connections that are

weak compared to the LAN links traditionally used to access the file server. Thus, it is important to

model the impact of the weak link. We define communication latency between a client and server

by the familiar α + β · n model where α corresponds to the latency of the link separating the two

machines, β corresponds to the link’s bandwidth, and n is the size of the message in bytes.

The workloads used to drive the simulator are synthesized from the Roselli traces [RLA00].

We use a 31-day segment of the “research” trace recorded in March 1997. This portion of the trace

contains activity for 103 unique users. The session identification criteria and mobility models used

are described along with the simulation results.

2.4.3 Workload Demands of Mobile Users

To understand the workload imposed by mobile users, we investigate the characteristics of

sessions produced by our procedure, the amount of network traffic required to maintain the caches

on multiple devices, and the performance, consistency, and durability observed by mobile users.
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Timeout Total Sessions/User/Month
Sessions 50% 75% 95%

1 min 85,003 18 170 5310
5 min 38,114 13 87 3453

15 min 4,206 6 39 226
60 min 2,373 3 26 95

240 min 1,221 3 18 44

Table 2.4: Impact of Timeout on Sessions: As the defined timeout period decreases, the number of
sessions identified in the trace increases. Moderate timeouts of 15–60 minutes result in reasonable
mobility characteristics.

Session Characteristics

First, we examine the traces synthesized by the procedure of Section 2.4.1. Table 2.4

shows how the timeout period affects the number of sessions in the trace and the number of sessions

for any single user. We measure the total number of sessions identified in the trace and the number

of sessions per user. The table reports three points from the session-per-user distribution. The

sessions-per-user distribution is skewed by a number of users that appear in the trace for only a

short amount of time. In the segment of the trace we use, 21 users (almost 20% of all users) are

active for 15 minutes or less during the entire trace.

Very short timeout periods of 1 or 5 minutes produces a very large number of sessions—

5% of users have more than 100 sessions per day using a 5-minute timeout. Although very short

timeouts may be occasionally appropriate to model users working on multiple devices at one time,

such aggressive timeouts should not be used for generating long workloads because they overstate

potential client mobility. More moderate timeout values of 15 to 60 minutes reflect potential mobil-

ity better. With a 15-minute timeout, 5% of users have roughly 7 or more sessions per day. Applying

a longer timeout of 240 minutes to the trace, most users have only a few sessions per month.

Figure 2.4(a) shows the cumulative distribution function (CDF) of session duration as the

timeout period varies. Focussing on the curves corresponding to moderate timeout values, we see

that most sessions are less than a few tens of minutes in length. A few sessions last thousands of

minutes. Assuming that real users do not continuously initiate traffic for hours on end, these long

sessions indicate that the original traces contain some traffic from applications that run periodically

or unattended. Unfortunately, given the information in the traces, we are unable to identify these

operations that are initiated without user interaction.

Figure 2.4(b) shows the CDF of the number of operations per session. An operation is
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Figure 2.4: Session Characteristics: (a) The cumulative distribution function of session duration
as the session timeout varies. (b) The cumulative distribution function of session operation count as
the session timeout varies.

a system call such as open(), close(), read(), or write(). The operation count is a rough

indication of the load during a session. Most sessions contain only a few operations. Even with a 4-

hour session timeout, roughly 80% of sessions contain less than 1000 operations. With a 15-minute

session timeout, 90% of sessions contain less than 1000 operations. Because most sessions contain

few operations, systems that attempt to predict future access based on user requests will likely have

difficulty adapting before the user moves to a different location or device. Interestingly, we found

little correlation between the duration of the session and the operation count of the session.

Cache Management Traffic

Next, we consider how moving between multiple devices impacts cache management

traffic. Seminal studies (e.g. [OCH+85, NWO88a, BHK+91]) have shown that caching can greatly

reduce the amount of data that must be transferred from the server to a client in traditional work-

loads. In a caching system, the client stores a copy of a file locally after retrieving it from the server.

When an application accesses that file in the future, the client can satisfy the request locally, without

contacting the server. Effective caching can benefit mobile users by reducing the amount of traffic

sent across the network connection which may have little bandwidth or expensive per-byte usage

fees.

To prevent users from accessing stale data, however, the system must ensure that data in

the cache is up-to-date. If the data was changed by another user, the client must re-fetch the data

from the server before access. Because many traditional workloads exhibit little sharing [KS91],
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Figure 2.5: Impact of Mobility on Cache Management Traffic: The amount a cache management
traffic needed to ensure that all devices access up-to-data varies with the defined timeout period. The
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clients must re-fetch data from the server only occasionally, and the reduction in traffic is substantial.

The contents of a device’s cache can be invalidated not only by another user modifying

shared data, but also by a single user modifying data on a different device. When a user makes

changes on one device, data cached at other devices must be invalidated and re-fetched upon next

access.

We measure the impact of mobility on cache management traffic for two different mobility

models. In the first, each user depends on a large number of devices, using new, unique device for

each session. This model represents a worst-case scenario requiring data to be transferred to each

new device as it is used. In the second model, each user cycles through a set of three devices,

changing devices for each session. We measure the number of bytes transferred from the server to

the client in each scenario. We report the amount of cache management traffic normalized by the

amount of traffic that would be generated if each user performed all accesses from a single device.

Figure 2.5 shows the results of these simulations. In the worst-case, when users switch to

a new device for each session, the overhead of cache management traffic varies between 31% and

86%, depending on the assumed session timeout. Using a more realistic mobility model, the cache

management overhead decreases, but can still be significant. With a 60-minute timeout, the cache

management traffic is 26% more than in the base case; with a 15-minute timeout, the overhead is

40%.



31

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  1  10  100  1000

C
um

ul
at

iv
e 

Pe
rc

en
ta

ge
of

 O
pe

ra
tio

ns

Issue Time Penalty (minutes)

CDF of Issue Time Penalty

Asynchronous, Cable
Synchronous, Cable

Asynchronous, 56 kb/s
Synchronous, 56 kb/s

Figure 2.6: Impact of Weak Connectivity on Performance: The issue time penalty, reflecting
user-perceived slowdown, of clients accessing remote storage using synchronous and asynchronous
write-back.

Performance, Durability, and Consistency

Next, we consider the performance, durability, and consistency seen by mobile users

across a range of network technologies. We simulate four types of network connectivity: a cel-

lular modem with 10 kb/s bandwidth, a telephone modem with 56 kb/s bandwidth, a cable modem

with 128 kb/s upstream and 384 kb/s downstream bandwidth, and a 1 Mb/s connection. Workloads

were generated using a 15-minute timeout period and assume that each user rotates between three

devices.

We measure performance using the issue time penalty. The first event in each session is

issued at the same time on the ideal and test system; thus the first operation in a session always has

a issue time penalty of zero. A slow operation can only delay other operations within a session.

In addition to measuring the performance of an AFS-like system, we also measure the per-

formance of a system that implements Coda’s mechanisms to support weakly connected clients [MES95].

The designers of Coda recognized that write-back can be very expensive, especially for weakly con-

nected clients, because it requires that clients transfer modified files across the network to the server.

To reduce the issue time penalty due to write-back, when using Coda in weakly connected mode,

data is uploaded to the server asynchronously. After issuing a write request, the user can continue

working without delay.

Figure 2.6 plots the CDF of issue time penalty for clients implementing synchronous
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Figure 2.7: Impact of Weak Connectivity on Durability: The durability latency measures the
time until data is stored durably at the server using asynchronous write-back.

(AFS-like) and asynchronous (Coda-like) write-back. For clarity of presentation, we present results

for only two types of networks; the trends, however, also applied to faster and slower networks. For

clients implementing synchronous write-back, the issue time penalty is several minutes when using

a cable modem and several tens of minutes for telephone modem users. Asynchronous write-back

can improve responsiveness, cutting issue time penalty by as much as a factor of 10 in many cases.

The cumulative impact of slow networks is especially striking given that we have already seen that

most sessions contain relatively few operations (Figure 2.4(b)).

Although asynchronous write-back can reduce the issue time penalty seen by users, it

introduces other problem: data which the user thinks has been saved to the server may actually be

queued in the client cache waiting for upload. Asynchronous write-back reduces data durability and

raises the possibility that different users view different versions of the data.

Figure 2.7 plots a CDF of latency to durability. The graph shows that many writes require

more than the session timeout period to write data back to the server, especially at lower-bandwidths.

If a user attempts to access data before it has been written back to the server, the server will return

stale data. If the user notices that the version returned is old, it may look as though the changes

just made were lost. Worse, if the user does not notice, new changes may conflict with old changes,

requiring manual intervention to repair.

The effects of slow write-back can be exacerbated if a user shuts down a device shortly

after completing a session to conserve limited battery power or to reduce charges from pay-per-
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Conflicts
Timeout Network Files Open Close

15 min

10 kb/s 746 1.74% 1.71%
56 kb/s 110 0.84% 0.91%
cable 40 0.32% 0.39%

1 Mb/s 9 0.016% 0.017%

60 min

10 kb/s 915 1.44% 1.36%
56 kb/s 107 0.61% 0.65%
cable 39 0.13% 0.16%

1 Mb/s 11 0.016% 0.017%
(a) Synchronous Write-back

Conflicts
Timeout Network Files Open Close

15 min

10 kb/s 350 1.20% 0.59%
56 kb/s 60 0.39% 0.26%
cable 32 0.12% 0.083%

1 Mb/s 13 0.011% 0.0067%

60 min

10 kb/s 514 0.81% 0.47%
56 kb/s 56 0.17% 0.12%
cable 30 0.091% 0.053%

1 Mb/s 14 0.011% 0.0066%
(b) Asynchronous Write-back

Table 2.5: Effect of Network Bandwidth on Conflict Rate: Mobile users that rely on low-
bandwidth network connections must cope with the long delays when accessing and storing data
in network file systems. The latency can lead to inconsistent accesses. These tables show the num-
ber of files affected by this problem and the fraction of open() and close() operations that produce
results different than those indicated by the original trace.

minute network plans. Modifications waiting to be written back to the server may be trapped on the

device indefinitely when it is powered down and stowed away.

To understand the severity of this problem, we compare simulation results on finite-

capacity links against “ideal” networks and record the number of conflicts. We consider an open()

operation to be in conflict if the version of the data accessed differs between tests using ideal and

real networks; we consider a close() to be in conflict if the version that is replaced differs. For this

experiment, we assume that devices remain on-line to propagate changes to the server, even after

the user has completed a session.

Table 2.5 reports the results of these measurements as the network bandwidth and write-

back strategy varies. The tables report the number of files that are accessed in an inconsistent

manner as well as the percentage of open() and close() operations that are in conflict. The results
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show that if clients have broadband connectivity or better, the conflict rate is less than 0.4%. This

mirrors results reported in the literature [BHK+91]. However, as the bandwidth of the networks

decrease, the percentage of conflicts increase markedly. For users that must rely on technologies

like cellular modems for connectivity, the conflict rate approaches 2% of accesses. Further, recall

that the severity of this problem could be even higher if users shut down devices before they have

propagated changes to the storage infrastructure.

2.4.4 Discussion

The results of the previous section highlight several challenges for mobile users accessing

network file systems. These challenges point to opportunities for innovation in remote file systems

research.

The most significant results of this study concern the cost to mobile users of sharing data.

For mobile users, data is shared not, as normally considered, between multiple users, but between

multiple devices from a single user. In the traditional network file systems literature, conclusions

on the importance of supporting sharing have been mixed. Measurements of the Coda distributed

file system showed write-sharing of non-system files to be rare [KS91]. On the other hand, Baker et

al. concluded from studying the Sprite file system that “shared access to modified data occurs often

enough that a system should provide cache consistency” [BHK+91]. Our simulation results suggest

that support for data sharing is important for controlling several different costs for mobile users.

One cost of increased sharing is increased traffic between server and client to maintain

client caches. Section 2.4.3 showed that even users with only a few devices could face a 40% in-

crease in cache maintenance traffic. Depending on how a user connects to the network, additional

traffic leads to proportionally higher wait times or network usage fees. To reduce cache manage-

ment traffic, file systems targeting mobile users may wish to employ compression techniques that

exploit commonality between between file versions stored in caches and on the server [MCM01].

Alternatively, a file system might attempt to maintain caches during periods when the network is

otherwise idle (assuming that financial considerations do not restrict communication for speculative

purposes). Finally, in some usage scenarios, systems might be able to use additional local bandwidth

for peer-to-peer file transfers to reduce wide-area network usage.

Another problem with increased sharing is ensuring that users see a consistent view of

data. In Section 2.4.3, we saw that low-bandwidth connectivity can render synchronous data write-

back infeasible; but, with asynchronous write-back, modifications may not be propagated back to
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the server until several session timeout periods have elapsed. Slow write-back increases the delay

until changes are visible at other devices and can lead to inconsistent accesses. In fact, combining

the results of Table 2.5(b) and Figure 2.4(b), we could expect weakly connected users to make at

least one inconsistent access in half of all sessions. One way to address these challenges is to extend

the observations that motivated Fluid Replication [KCN02]. Kim et al. recognized that safety

(durability) and visibility of data, though often managed in a unified manner, can be decoupled.

The designers of Fluid Replication used WayStations to ensure that data was made safe promptly.

Our simulations, however, indicate that mobile users may be better served by systems that make

changes visible quickly, even if at a slight cost to durability. This suggests that systems supporting

weakly connected, mobile users may seek ways to improve visibility, for example, by prioritizing

notification of modifications over the actual transfer of data. Of course, techniques for improving

visibility need not preclude the use of WayStations, or similar mechanisms, to promote durability.
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Chapter 3

Related Work

The work explored in this thesis was inspired and shaped by a number of previous designs

presented in the research literature.

Centralized, Remote File Systems: The earliest systems to provide remote storage for users were

centralized file servers. A centralized file server allows remote access to data stored on the server.

A user storing data on the file server can access data from any machine that can access the server.

One of the earliest and most successful centralized file systems was the Network File

System (NFS) [SGK+85]. NFS provides transparent access to remote file systems using a stateless

protocol. Any machine can act as a server by exporting a subtree of its file system. Because the

protocol is stateless, clients must contact the server on each read and write operation. To reduce

the performance impact of repeated communication with the server, NFS adopted a set of heuristics

to guide client caching. For example, clients were permitted to cache directory inodes for up to

30 seconds. Unfortunately, these heuristics often led to confusing, inconsistent results for users

sharing data through NFS. Subsequent versions of the NFS protocol have addressed caching and

consistency issues more methodically [SCR+03].

The Andrew File System (AFS) [HKM+88] used a stateful protocol to reduce the load on

servers, improving scalability and performance. During normal operation, an AFS client interacts

with the server only during open and close operations. During the open operation, a client retrieves

and caches locally the whole file. By performing whole file caching, the client can perform subse-

quent read and write operations locally without contacting the server. When the application closes a

file, the client pushes all changes back to the server. To ensure that client caches do not contain stale

data, the file server records the location of all file replicas. When a file is modified, a server issues
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a callback that invalidates other cached copies to prevent conflicted updates. Whole file caching

results in consistency semantics that differ from traditional UNIX semantics; the authors assert that

most applications function properly with these modified semantics.

Distributed File Systems Although centralized file servers provide convenient remote access to

storage, the scalability and availability of any centralized design is necessarily limited. Even consid-

ering the improvements introduced by AFS to reduce the load on servers, as more users are added to

the system, the centralized file server eventually becomes a performance bottleneck. Also, though a

file server may be specialized hardware acting in a dedicated role and administered by trained staff,

eventually the server will fail, preventing users from accessing their data. To mitigate the scalability

and availability problems of centralized solutions, researchers have explored a number of designs

for distributed storage systems.

Coda [SKK+90] is an extension of AFS that strives to improve data availability using two

techniques: server replication and disconnected operation. Server replication stores data at multiple

servers so that clients can continue access data even if some of the servers fail or are partitioned.

Coda uses of variant of version vectors to maintain consistent replicas across replicated servers.

Clients use a read-one, write-all approach to communicating with replicated servers. Disconnected

operation allows clients to operate autonomously while disconnected from all servers by relying

on data cached on the local disk. The system takes an optimistic approach to replication, allowing

simultaneous changes at multiple clients. Upon reconnection, client perform reintegration whereby

modifications are pushed to servers and data is checked for conflicts.

The xFS [SDH+96] project attempts to remove the performance-limiting central server

with a serverless network file system design. Tasks typically performed by the file server, including

maintaining cache coherence and servicing requests, are distributed across machines in the net-

work. Participating machines manage the metadata for a subset of files stored in the system and

each machine maintains a global map that is used to locate data. The actual transfer of data can

occur directly between clients; it need not route through the metadata server for that file. xFS was

designed for environments where machines were connected with fast (LAN) network that trusted

other machines to enforce security.

Bayou [PST+97] is a weakly consistent storage system that operates without centralized

resources. Each file, or database in Bayou’s parlance, is replicated on several servers through-

out the network. Clients may read or update any replica. The read-any, write-any property of the

system improves data availability. Replicas are periodically reconciled using an anti-entropy proto-
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col. The system scales well because reconciliation occurs directly between replicas. Anti-entropy

provides eventual consistency and naturally operates across weak and intermittent network connec-

tions. Bayou, however, relies on a primary commit scheme to determine when updates become

stable [TTP+95]. Relying on a single master replica to determine update commit order allows

clients to access data that may later be deemed in conflict and rolled back. Although Bayou’s ap-

proach improves the availability of databases, it can make it hard for clients to determine that they

are accessing valid and current copies of the data.

The Sprite [NWO88b] network filesystem allows different portions of the namespace to

reside on different servers. Clients consult prefix tables to resolve filenames to the host machine.

Sprite implemented an advanced caching scheme to provide high performance and strong consis-

tency. Clients used a delayed-write policy that allows data to remain in client caches uncommitted

for up to 60 seconds. The server, however, tracks files that may have been written recently and en-

sures that other clients receive consistent data, even if the server must recall that data from a client

cache.

The Network-Attached Secure Disks (NASD) [GNA+97] system is designed to improve

scalability by eliminating the file server from the critical path of most requests. The central file

server, or metadata manager, tracks the location and state of files stored in the system, but it does

not actually store the data. Disk drives attached directly to the network store the data. All metadata

requests are serviced by the metadata manager, but requests to read or write data are submitted

directly to the disk responsible for that file, after obtaining an appropriate capability from the server.

One can view the NASD approach as a hybrid design that distributes data transfer among a set of

disks that are managed by a centralized metadata manager.

Petal [LT96] distributed virtual disks represents one of the earliest truly decentralized

designs for storage systems. Each participating machine uses the Paxos algorithm to maintain global

state that maps virtual addresses to physical machines. Clients use the map to locate data and contact

the specific machines directly. Although storage can be added to Petal incrementally, the scalability

of Petal is ultimately limited to moderate sized systems by its use of the Paxos algorithm. Petal uses

chained-declustering to distribute requests across machines for availability.

Wide-area, Distributed Storage Systems: As file systems continue to evolve towards increas-

ingly distributed architectures, systems based on structured peer-to-peer overlay networks have re-

ceived increased attention. These systems can be widely geographically distributed and scale grace-

fully. Communication occurs directly between peers without consulting a centralized resource.
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First-generation peer-to-peer storage systems have demonstrated widely heterogeneous

functionality. For example, CFS [DKK+01] and Venti [QD02] provide archival storage and thus

do not support mutable data. PAST [RD01] allows clients to replace objects stored in the system;

incremental updates are not supported.

Several systems do provide more traditional file system-like interfaces. Ivy [MMGC02]

records all changes to the file system in logs that are distributed throughout the network. Far-

Site [ABC+02] and OceanStore [KBC+00] rely on small sets of peers executing Byzantine agree-

ment protocols to manage updates to objects stored in the system. Pangaea [SKKM02] aggressively

replicates data whenever it is accessed. It implements optimistic concurrency with eventual consis-

tency among replicas.

Other peer-to-peer storage systems focus on maintaining the availability and durabil-

ity of data. Archival systems such as Carbonite [CDH+06], Glacier [HMD05], and Total Re-

call [BTC+04] track redundancy levels and initiate repair when replicas are lost. Many systems

use a combination of replication and erasure codes.

Finally, several companies have recently made storage services available to the general

public. These systems, including Amazon’s Simple Storage Service [Ama06] and Apple’s .mac

service [App06], appear to be based on the same peer-to-peer paradigms as recent research systems.

Log-Based Storage Systems: Several previous storage systems have demonstrated the utility and

benefits of log-based designs. The Log-Structured File System [RO92] is a local file system that

writes updates to disk as if it were an append-only log, improving write bandwidth. It relies on large

client caches to ensure good read performance.

The Zebra File System [HO93] extended the use of logs to network file systems. Zebra

stripes data across a set of servers. Rather than striping data on a per-file basis, however, Zebra

combines all writes into a single log and stripes the logs across multiple servers.

The Secure Untrusted Data Repository (SUNDR) [LKMS04] project showed how to ex-

ploit a log to store data securely on untrusted servers. In SUNDR, each update refers to the previous

state of the log in a cryptographically secure manner and clients check the chain of references before

reading data from the log. The scheme supports forks consistency, which the authors prove is the

highest level of security that can be attained in the assumed environment.

Update Encoding: Researchers have previously explored how operation representation can re-

duce data transfer costs. The rsync [TM96] tool is a general-purpose file transfer utility that sup-



40

presses the transfer of blocks of a file if it can determine that those blocks already exist at the

destination. The Xdelta [Mac00] project provides a delta encoding algorithm that extends upon the

rsync algorithm and a suite of utilities to manage delta encoded storage.

More recently, the Low-Bandwidth File System (LBFS) [MCM01] used Rabin finger-

prints to divide file into blocks for the purpose of eliminating the transfer of blocks already stored

at the server. LBFS assumed that the server was trusted to manipulate data stored in plaintext form.

Operation-based update propagation [LLS99], or operation shipping, captures changes

above the file system layer to reduce bandwidth requirements even more than delta encoding. After

logging the user-level commands that produce file modifications, the commands are shipped to an

identical surrogate client that is strongly connected to the server where they are re-executed. If the

re-execution produces identical files, the changes are committed to the server; otherwise, the system

reverts to shipping whole files.

Link Scheduling: Although many different filesystems projects have proposed various compro-

mises among performance, consistency, and durability, we know of no work that has considered

systematically the range of options. Kim et al. [KCN02] recognized that consistency, which they

call visibility, and durability, which they call safety, can be managed separately. With this obser-

vation, they developed fluid replication to provide safety and visibility for data accessed by mobile

clients. Caches in the local-area, called WayStations, replicate changes made by clients to provide

safety without traversing wide-area links. Decoupling update notification and propagation allows

other clients to view changes within predictable time bounds.

To support weakly connected clients, Coda introduce trickle integration [MES95]. Trickle

integration is similar to write-back caching. Updates are logged and performed locally ensuring low

response latency. Changes are written back to servers as network connectivity allows. Coda also

uses an aging policy which delays write-back, allowing more opportunities for log optimization

and further reducing the bandwidth required to write back changes. The LITTLE WORK projected

implemented a technique similar to trickle integration directly on top of AFS [HH95].

PRACTI replication [DGN+06] aims to develop algorithms to support simultaneously

partial replication, arbitrary consistency, and topology independence. A key feature of their ap-

proach is separating invalidations from message bodies. This allows invalidations to propagate

across the network faster.
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Other Techniques: The CAP conjecture, first offered by Eric Brewer [Bre00], states that it is

not possible for a web service to provide simultaneously consistency, availability, and partition-

tolerance. In designing systems, engineers must sacrifice at least one of these properties, and the

features of the resulting system depend heavily on the choice of which property the designers choose

to relax. We defer to the CAP conjecture in analyzing existing systems and developing new mech-

anisms. Our target application requires strong consistency and availability; consequently, the ap-

proaches we consider in this thesis necessarily assume a partition-free network.

Finally, we exploit several algorithms developed by others. The ideas behind self-verifying

data were made popular by the Secure Read-Only File System (SFS-RO) [FKM00]. The hash-

chaining technique for creating self-verifying data structures is due to Merkle [Mer88]. The fast

fingerprinting algorithm that we use for delta-encoding updates was developed by Rabin [Rab81].

The data structure that we use to support delta-encoded updates is inspired by a similar data structure

developed in the Exodus Database project [CDRS86].
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Chapter 4

Bandwidth-Efficient, Privacy-Preserving

Updates for Legacy Applications

In this chapter, we present a data structure that allows clients to update objects stored in

a remote storage system in a bandwidth-efficient manner without sacrificing privacy. To benefit

from the properties of the data structure, a client expresses an update as a sequence of operations

that insert and delete data blocks in the data structure. Before shipping the update the server, the

client encrypts all data blocks rendering them opaque to the server. To apply an update, the server

executes the sequence of operations on the data structure in the storage system.

Unfortunately, the existing body of applications cannot benefit from this approach directly

because legacy applications generally use the POSIX file system API to access data. So that all

applications can enjoy bandwidth-efficient, privacy-preserving updates, we describe a technique to

translate updates from legacy applications into the format used by our data structure.

This translation process is essentially a form of delta-encoding. Current approaches to

delta-encoding assume that the server can be trusted to manipulate data in plaintext form arbitrarily.

Such schemes are not suitable in our target environment where servers are not trusted to maintain

data privacy. To broaden the applicability of delta-encoding to systems like those we target, we

employ a client-side solution that exploits commonality between consecutive versions of a file to

compute efficient operation-based updates.

With simulations, we have demonstrated that the technique can reduce update bandwidth,

and correspondingly client-perceived latency of write and read operations, by up to 80%, depending

on the workload, compared to techniques used in current systems. We have implemented the tech-
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nique in the OceanStore prototype [REG+03] as well as the Moxie prototype described in Chapter 7.

The literature includes several projects that use delta-encoding to decrease the bandwidth

consumed between a client and a file server [Mac00, MCM01]. Recently, the Low-Bandwidth

File System (LBFS) brought much attention to the approach [MCM01]. The constraints of our

target environment, however, render those previous techniques inappropriate. For example, previous

techniques assumed a trusted file server that could perform arbitrary transformations on data stored

in plaintext. In our system model, however, sensitive data must be encrypted to ensure privacy

because communications channels and other machines are untrusted. Because the data is encrypted,

the servers cannot transform the data in an arbitrary manner. Furthermore, previous schemes require

require multiple rounds of communication between the client and server [MCM01]. To improve

interactive response time, we seek techniques that limit the number of network round trips.

4.1 A Data Structure for Bandwidth-Efficient,

Privacy-Preserving Updates

In this section, we present a data structure that supports bandwidth-efficient, privacy-

preserving updates. We first describe a simple data structure that provides sufficient support for

legacy applications using the technique describe later in Section 4.2. We then describe a simple

extension that provides additional flexibility for non-legacy applications.

4.1.1 Requirements

The requirements for the data structure depend on the general approach to the problem.

We assume that clients modifying an object in the storage system will describe the changes as a

sequence of block operations. For operations that write new data to the object, the client includes

with the operation a data block. To ensure data privacy, the client may optionally encrypt the data

in the block. When a server receives an update, it applies the sequence of operations, producing a

new version of the data structure. When the client reads data from the server, the server returns a

portion of the data structure, allowing the client to extract the requested data.

To support this general approach, the data structure used by the storage system to manage

objects must meet several requirements.

• Data Blocks are Opaque: Data blocks must be considered opaque and indivisible by the

storage system. They may not be repartitioned at the server, as in previous systems [CDRS86].
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Operations to Support Bandwidth-Efficient Updates
append(block)
truncate(length)
insert(offset, block)
delete(offset, length)
read(offset, length)

Table 4.1: Required Operations: To support all of the techniques presented in this chapter, a data
structure must support the operations listed above.

The only information that the block must reveal to the server is the number of bytes of user

data that the block contains. If a client requests any portion of a block, the server should

return the whole block to allow the client to invert any cipher or compression mechanism that

was applied when the block was stored.

• Data Blocks are Variable-Sized: The data structure must index blocks of unequal size effi-

ciently. Clients may store blocks of any size. This requirement renders inode-like schemes

inappropriate.

• Flexible Operations: To allow clients to represent updates in the most bandwidth-efficient

manner, the data structure must support a variety of operations. Table 4.1 lists the operations

required for the techniques described in this chapter. Different system constraints or goals

could lead to a different set of required operations.

• Incremental Updates: The required operations should be incremental. That is, if only a small

portion of the object’s data is modified, a correspondingly small part of the data structure

should change. Incremental operations help to limit the amount of new data that must be

stored with each update.

• Data Structure is Self-Verifying: Because we intend to use this data structure in a untrusted,

content-addressable storage system, we require the data structure to be self-verifying. This

requirement primarily affects how the data structure represents pointers to other elements of

the data structure. Systems that do not require self-verifiability can represent pointers in other

manners.
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Figure 4.1: A Data Structure to Support Bandwidth-Efficient, Privacy-Preserving Updates:
A B-tree that indexes data by relative offsets enables bandwidth-efficient updates. (a) The tree
maintains an index over six blocks of data, shown at the leaves. The amount of user data stored in
each data node is indicated in the figure. The root shows that the first 175 bytes of data can be found
via the left subtree; data between offset 175 and 350 can be accessed via the right subtree. Note,
both base internal nodes contain the same counts because the data structure uses relative indexing.
(b) Maintaining relative offsets enables efficient incremental insert operations. Shown is the result
of inserting 75 bytes at offset 100 in the data structure shown in (a). Blocks modified during the
operation are shaded.

4.1.2 A Basic Solution

The data structure presented in this section supports modifications only at block bound-

aries. This is sufficient to execute the updates created using the technique of Section 4.2. An

extension that allows modifications at arbitrary offsets is given in the next section.

Our solution was inspired by the large-object data structure in the EXODUS database

system [CDRS86]. The data structure, a variation of the B+-tree, is a balanced tree with all data

stored at the leaves. We use the term balanced to mean that the number of children is balanced, not

the amount of data in each child.

The tree is composed of two types of nodes. At the base of the tree are data nodes. A data

node contains an opaque, indivisible, and uninterpreted block of user data.

Other nodes, called internal nodes, combine to form an index over the data nodes. The
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top-most internal node is called the root; internal nodes that point directly to data nodes are called

base internal nodes. Internal nodes store up to 2n+1 (count, pointer) tuples, where n is the degree

of the tree. Each pointer is a self-verifying reference to another node in the tree. All internal nodes

except the root store between n and 2n+1 non-null tuples at all times; the root may contain fewer

tuples. The count field is an integer that records the number of bytes accessible from the current

node via children referenced from the given tuple and all other tuples to the left of the current tuple.

By convention, count[−1] = 0. The key feature of this structure is that the count field records the

relative, rather than absolute, offset of data within the structure. The pointer field is a secure hash

that identifies and verifies the child node. The pointer fields form a Merkle [Mer88] tree over the

structure, making it self-verifiable. Figure 4.1(a) shows an example of this data structure over a file

divided into 6 blocks.

We describe in detail the algorithm used to insert a block in the data structure. Other

operations are implemented in a similar fashion.

The insert operation allows a client to insert a block in an object. It does not overwrite

any data; rather, the offset of all data after the insertion point is shifted by the size of the inserted

block. Let Data be the block of opaque user data to be inserted, and let InsertPoint be the offset

at which to insert the block. Recall that, for the current discussion, the insertion point must lie on

an existing block boundary. Throughout the discussion, refer to Figure 4.1(b) which illustrates the

result of an insert operation on the data object of Figure 4.1(a).

1. The algorithm must not descend into a node that cannot accommodate a new child. If the root

is full, create a new internal node to be the root, assign the old root to be its only child, and

split that child. The split procedure works in a fashion similar to the traditional B-tree split

operation. Let Node← root. Proceed to Step 2.

2. Node contains an array of tuples describing the range of data that may be reached from each

child node. Using this state, find the child that is the parent of the insertion point; that is find

i such that count(i−1) < InsertPoint <= count(i). If Node is a base internal node, then, by

our assumption that all modifications occur at a block boundary, InsertPoint = count(i). Let

count(j)← count(j)+Data.size for all j >= i. Also, mark the child at pointer(i) as modified.

If Node is a base internal node, skip to Step 4; else proceed to Step 3.

3. Prepare to descend to the child. If the child referenced by pointer(i) is full, split that child

and adjust i accordingly to point to the new child that is the parent of the insertion point. Let
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Node← pointer(i). To track the relative offsets, let InsertPoint← InsertPoint− count(i−1).

Recurse to Step 2.

4. Insert a new tuple at offset i with count(i) = count(i−1)+Data.size and pointer(i) = HASH(Data).

The operation is now complete.

Although the new data block has been inserted, the ability to verify the data structure has

been lost. To restore the verifiability, after all actions of the update have been applied, perform

a depth-first traversal of the data structure, recomputing the secure hash of all modified blocks

and storing the result in the parent. The traversal need not descend into any children that were not

modified. Thus the amount of data that must be hashed after any update is proportional to the amount

of modified. The algorithm could be extended to maintain verifiability after each modification.

However, most updates contain multiple operations, and we can save computation by restoring

verifiability only after all modifications have been completed.

Note, the algorithm, as described here, never descends into a full internal node. That

is, before descending into a child that is full, the parent node splits the child node. This may

result in unnecessary split operations. We rationalize, however, that if a node is nearly full, it will

be split soon, and thus splitting slightly before it is strictly required is not particularly onerous.

Opportunistic splitting also simplifies the algorithms. If needed, algorithms that split internal nodes

only when strictly necessary can be implemented.

4.1.3 Supporting Arbitrary Insertions

The solution presented in the previous section supports points of modification only at

existing block boundaries. While this functionality is sufficient to support the technique presented

later in Section 4.2, a simple extension enables even more bandwidth-efficient updates for non-

legacy applications.

The extension allows the data structure to support insertion and deletion at arbitrary off-

sets. In all base internal nodes, we add to the tuples an additional offset field. The new field is

defined to point into the middle of a block of encrypted data stored in the data node. The extension

is illustrated in Figure 4.2. In the example, before the update, the data structure holds two chunks

of data, one of 500 bytes and one of 50 bytes. The first count[0] = 150 bytes can be found starting

at offset offset[0] = 350 of the encrypted data stored in the first data node. The first 350 bytes in that

block could referenced by a tuple that is not shown or could be unreferenced in the current version.
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Figure 4.2: Data Structure Extension to Support Arbitrary Insertions: By maintaining an “off-
set” which points into the middle of a block of ciphertext, the data structure can support the insertion
and deletion of data at arbitrary offsets. This extension might enable more efficient updates.

The figure also shows the result of updating the data object. After inserting 100 bytes at offset 75,

the first 75 bytes of data can be found starting at offset 350 of the first data node. The bytes in the

range 175 to 250 can also be found in the same data node, starting at offset 425. The algorithms

to modify this data structure are similar to those used to modify the data structure in Section 4.1.2.

The primary difference is the condition that a node checks in deciding whether it must split a child

node. When inserting data in the tree, a base internal node may need to add two tuples to point to

new child nodes. Thus, assuming the implementation splits nodes opportunistically, as described in

Section 4.1.2, when descending into a child, the parent must split the child if it is almost full. That

is, a parent must split the child if it already stores 2n or 2n+1 tuples.

Although this extension does allow clients more flexibility in how they represent updates,

it comes with additional complications, especially related to security and performance. For example,

the data nodes may store data that has been deleted from the current version of the data object.

By manipulating the blocks directly, a malicious attacker could reconstruct information about the

change history of the file. Of course, the attacker would still need a key to decrypt any encrypted

data. This dead data is also a performance liability. Retrieving the data object from the infrastructure

may require retrieving extra data that is no longer relevant to the current version of the document.

Despite the complications, the extension opens several possibilities. For example, with a

carefully defined data format, a non-legacy application with a stale copy of the data object could

submit an update without retrieving the current version and merging the changes. Alternatively,

an application could dynamically trade-off computation and bandwidth depending on the current

level of connectivity. In low-bandwidth conditions, it could submit the smallest update possible.

When connectivity is restored, the application could retrieve the data object, defragment the data,

and rewrite it to the infrastructure in the more efficient manner. Finally, an application could be

written to exploit the asymmetric nature of many networking technologies. For example, a typical

cable modem provides 3–16 times the amount of downstream bandwidth as upstream bandwidth.
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An application could submit small updates that can be uploaded to the infrastructure quickly even

if they result in less efficient storage in the data structure knowing that extra downstream bandwidth

will enable quick retrieval of the document.

4.2 Extracting Bandwidth-Efficient Updates for Legacy Applications

In Section 2.3, we showed that there often exists significant similarity between different

versions of the same file. In this section, we describe how clients can exploit that commonality to

create bandwidth-efficient updates for storage systems that use the data structure of the previous

section for storing objects. This technique is a client-side approach designed to benefit legacy

applications accessing unstructured data.

Briefly, to exploit similarity between versions of a file, we compare the new version of an

object to its previous version, extract the changes made, and encode those changes in an update. An

update is similar an edit script [Mye86], describing how to transform the old version of the file to

the new version. The update is then sent to the middleware servers to modify the state stored in the

system. Refer to Figure 4.3 as the details of this approach are described below.

Commonly, edit scripts are computed using a utility such as diff. Such tools are not

appropriate, however, for delta encoding in file systems. Many of the problems stem from diff and

similar tools being byte-oriented utilities that identify changes at a very fine granularity. The com-

putational cost of computing fine-granularity edit scripts on frequent write operations is infeasibly

expensive. Secondly, to execute edit scripts created by tools like diff, the executor must be able

to manipulate text arbitrarily. Because middleware file servers in our target environment are trusted

with user data only in ciphertext form, the condition cannot be satisfied. Finally, even if the servers

could edit the ciphertext arbitrarily, encrypting edit scripts that describe changes at a fine granu-

larity would reduce the potential bandwidth savings because the padding and initialization vectors

necessary for encryption could dwarf the actual data changes.

Rather than computing fine-granularity edit scripts, we divide a file into blocks and con-

sider changes at that coarser granularity. At the center of our approach is the file summary. A

file summary is a condensed representation of the contents of a file. File summaries are similar in

concept, if not in use, to file recipes used in the CASPER file system [TKS+03]. To create a file

summary, a file is first divided into smaller pieces, or chunks. Each chunk is named by a crypto-

graphically secure hash of the plaintext of the chunk’s data. The file summary records the list of

chunks that comprise the file. The file summary also records the length of each chunk and its offset
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chunk boundaries for the object and constructs a file summary. In this example, the fingerprinting
algorithm divides the file into five chunks; the file summary has one entry for each chunk. On
write() operations, the client simply modifies the file in the local cache. The figure indicates that
the application has written to two regions of the file. On close(), the client computes the chunk
boundaries for the new version of the file and constructs a new file summary. Here, the new version
contains four chunks. The first and last chunk remain unchanged from the previous version. The
client then compares the new file summary against the previous file summary and computes an
update to submit to the server. File offsets ’x’ and ’y’ referenced in the update are indicated on the
chunked copy.
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in the file.

To divide a file into chunks, we use the Rabin fingerprinting algorithm as in LBFS [MCM01].

A fingerprinting algorithm, in general, computes a hash over a piece of data; Rabin’s fingerprinting

algorithm, in particular, can compute hashes efficiently over a sliding window of data. We use Rabin

fingerprints to compute the fingerprint over data at each offset of the file. If the fingerprint at a given

offset falls in a defined range, we mark that offset to be a breakpoint, defining a chunk boundary.

This approach tends to identify the same boundaries even as modifications may shift data offsets

or change the size of the file, and it divides a file into chunks such that the number of chunks that

differ between consecutive versions of a file is roughly proportional to the amount of data modified

between the versions. To avoid pathological cases that produce chunks that are unreasonably large

or small, we define a minimum and maximum chunk size, as in LBFS. Boundaries are ignored if

the resulting chunk would be too small; a boundary is inserted if the chunk reaches the maximum

size.

When data is written to a file, the object’s file summary changes. It is probably not

reasonable to, however, update the file summary after every write operation. Though the Rabin

fingerprinting algorithm can compute chunk boundaries (and thus file summaries) quickly compared

to other fingerprinting techniques, computing a new file summary after every write would require the

client to scan portions of the file around the changes (if not the whole file) to update file summary.

Further, the client needs an updated file summary only when it computes an update to send to

the storage system. Experience with the Andrew File System [HKM+88] has taught us that most

applications work correctly when changes are propagated to the file server only when the application

closes the file. Thus, to amortize the cost of computing file summaries we buffer multiple write

operations, computing a new file summary only when the file is closed. More precisely, a client

creates a new file summary on every file close(), if the file was originally opened for writing.

Clients use the file summaries to construct updates to send to the middleware servers. To

exploit the commonality that is typical between consecutive versions of the same file, the client

compares the newly created file summary to the file summary of the previous version. The result

of the comparison is an edit script that describes how to insert and delete chunks from the previous

version of the file to reconstruct the new version. An update consists of this edit script along with

all chunks containing new or modified data. The client then forwards the update to the middleware

server.

This procedure tends to create efficient updates; that is, the size of the update is roughly

proportional to the amount of data that actually changed. It does this by translating the set of
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int
data_length init_vector

byte[ ]
ciphertext

byte[ ]

Figure 4.4: Contents of a Data Block that Supports Encryption: Before shipping a chunk to the
server, the client packages it in a block that contains the length in bytes of actual user data (not
including padding or initialization vectors), the byte array containing the initialization vector, and
the ciphertext.

traditional file system operations into a more flexible set of operations. Unmodified applications

still use the standard file system interface with truncate, append, and overwrite operations. With

only these operations, however, applications are often forced to overwrite the tail of a file, even if

only a small amount of data is changed. A naive translation of file system operations to updates

would also result in overwriting the tail of a file. The proposed process for extracting operations

recasts the modification as a series of insert and delete operations that more succinctly describe the

changes made to the file.

The client translates each chunk in the update to the opaque data block that is stored in

the data structure by the server. The contents of a data block that supports encryption are shown

in Figure 4.4. The data length field records that amount of actual application data stored in the

block, neglecting any encryption overhead and is used by the server when operating on the data

structure. The other contents are interpreted by only the client. Any additional state that the client

requires to interpret the data blocks, like encryption algorithms or key names, should be stored in the

object’s metadata, not in each data block. Because data blocks are opaque to the server, clients may

perform additional data formatting as they see fit. For example, to conserve additional bandwidth,

an implementation of the client might compress data in a chunk before encrypting it.

Note that fingerprinting and creation of file summaries must be performed over the plain-

text of the data. If the data were to be encrypted (using the standard cipher block chaining mode)

before it was divided into chunks, later chunks would depend upon earlier chunks. This would

eliminate the possibility of detecting file commonality after the first modification point in the file

and consequently increase the size of updates created by the client.

A server applying a delta-encoded update will produce a new version of a file that matches

the version written at the client only if it applies the update to the same version of the file used in

the file summary comparison at the client. Applying the update against a different version could

corrupt data. To ensure consistency, each update is predicated on the condition that the current

version of the data object managed at the server is the same version used to construct the update. If
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the condition does not hold when the server processes the update, the client will receive an update

failure response. The client can then elect to fetch the new version of the data object and construct

a new update or overwrite the entire file. Of course, not all applications or updates require this level

of consistency. For example, an application may wish to append data to a file regardless of the its

current state. In that case, the update could be predicated on the null predicate or the true predicate.

This technique for extracting update operations from legacy applications is compatible

with a range of consistency models. Using an optimistic approach, a client would compute the file

summary and update based on the file version cached at the local machine, without contacting the

server. If the predicate is not satisfied by the version stored at the server, the client would receive an

update failure response indicating that it should re-compute the update based on the current version

of the file. Such a scheme would force all updates to fall in a sequential order. To allow concurrent

modifications to different segments of the same file by different clients, a storage system could

support more flexible predicates, such as range predicates that require only a portion of the file to

be unchanged.

After committing an update to the infrastructure, a file summary can be considered soft

state. In the common case, the client should cache the file summary for use during the next write

operation. However, a client may discard a file summary at any time to pare the amount of state

that it must record. It can simply recreate the file summary the next time an application opens a file

for writing. Certainly, this approach incurs a significant computational cost, but for many clients,

computational capacity is abundant compared to scarce network bandwidth. Alternatively, the client

may choose to neglect altogether the file summary of the previous version, instead sending the entire

file in the next update. This approach may be appropriate for small files. We do not consider these

optimization further.

The approach described above increases the effective bandwidth of the network link by

reducing the size of the update that must be transferred across the network. This affects a corre-

sponding improvement in client-perceived update latency. Combined with caching, this technique

can also improve the client-perceived read latency.

Caching can reduce the latency to read data, even if the cache contains stale data. If a

client has a previous version of a file cached, to reconstruct the current version of the file, the client

needs only to retrieve the blocks that were added to the data structure after the the cached version.

Because the process that creates the updates tends to preserve unmodified chunks, a client with a

recent version of a data object cached needs to retrieve a number of new chunks proportional to the

amount of data that has actually changed.
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Client Server

Network Link
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Figure 4.5: A Simulator for Evaluating Bandwidth-Efficient Updates: Our evaluation is based
on a simple simulator in which the client and server directly via an emulated low-bandwidth network
link.

4.3 Evaluation

We have implemented the data structure presented in this chapter (supporting arbitrary

insertions) in the OceanStore prototype [REG+03] and the Moxie prototype (described later in

Chapter 7). We have implemented the client-side technique for extracting operation-based updates

from legacy applications in the Moxie prototype. However, for experimental isolation and control,

we evaluate these schemes using simulation based on the client-server model. A discussion and

evaluation of these techniques in the larger Moxie system is included in Chapter 7. Note, some

systems that use modified client-server architectures may benefit more from these mechanisms than

the measurements here indicate. For example, the OceanStore design implements the server as a set

of replicas called the “inner ring” that use Byzantine agreement algorithms to modify state. In this

design, a client sends an update to a single members of the inner ring. That replica then broadcasts

the update to the other replicas. In OceanStore, any savings in bandwidth between the client and

inner ring would be magnified in the communication among the replicas.

4.3.1 Simulation Overview

We developed a simple simulator to drive our evaluation. In the simulations, the client

executes traces of file system activity, computes file summaries and updates, and submits requests

to the server. The server applies updates from clients and serves blocks to the client in response

to read requests. The two components communicate using TCP through an emulated restricted

network connection. This configuration is shown in Figure 4.5.

The simulator is written in Java using the event-driven architecture toolkit developed as

part of the Bamboo project [RGRK04]. The client and server components run simultaneously on

a single Dell Dimension 8300 desktop with one 3 GHz Pentium 4 processor and 1 GB of RAM

running Gentoo Linux 1.4.
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Technology Latency (ms) Bandwidth (kb/s)
Cellular modem 100 10
Telephone Modem 100 56
Cable Modem 30 384 down / 128 up
LAN Connection 10 1000

Table 4.2: Network Characteristics: The simulated network connection is controlled to perform
like several popular networking technologies.

To emulate low-bandwidth network connections, we impose a delivery delay on all mes-

sages at the receiver. We assume a simple model in which the bandwidth and latency are well-

defined and constant between the client and server. We compute the delay using the familiar α+β ·n

formula, where α corresponds to latency, β corresponds to bandwidth, and n is the size of the current

message in bytes. Since the actual network connection between the two components is the loopback

network device, we ignore any latency the connection imposes.

Table 4.2 shows the bandwidth and latency parameters used in the evaluation. They cor-

respond roughly to a cellular modem, a telephone modem, a cable modem, and a LAN connection.

We compare the bandwidth savings achieved with using our approach for computing up-

dates against two alternative techniques. The Whole approach treats the entire file as a single chunk.

If any single byte of the file is changed, all data must be shipped to the server for update. This

is analogous to the approach employed in PAST [RD01]. The Block approach divides a file in to

fix-sized blocks, much as a traditional file system divides a file into blocks for storage on disk. In

this scheme, the server represents the data as a standard B+-tree. When a file is modified, only

those blocks that have changed need to be submitted to the server. In simulations, each block is

4096 bytes. This is similar to the approach used in CFS [DKK+01].

When simulating the FileSummary approach, chunks are identified using Rabin finger-

prints with a minimum chunk size of 4 kB and a maximum chunk size of 16 kB. We use the SHA-1

algorithm for secure hashing and the algorithm best known for its implementation in the UNIX diff

utility [Mye86] for comparing file summaries. All user data is encrypted using the Rijndael/AES

cipher with 128-bit keys.

4.3.2 Workloads

We drive the simulator with synthetic micro-benchmarks and macro-benchmarks created

from traces of actual file system activity.
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Name Files Total Write Commonality
Size (kB) Whole Block Rabin Rsync

Word 1 700 0% 0.6% 82.4% 93.6%
Bamboo 26 435 0% 10.9% 20.4% 75.7%
Mbox 1 100 0% 81.8% 78.4% 82.1%

Table 4.3: Micro-benchmark Characteristics: The micro-benchmarks vary in size and in com-
monality between consecutive versions using the different chunking strategies.

Micro-benchmark Workloads: Table 4.3 summarizes the three micro-benchmark workloads used

in our evaluation. We describe each workload in turn.

The Word workload is composed of consecutive versions of a document created using

Microsoft Word 2000. The 11-page document includes several figures and graphs. To create the

second version, we performed a global search and replace operation, changing 15 instances covering

most pages of the document. This workload is representative of an office productivity workload that

works with large binary files.

The Bamboo workload is consecutive source code releases from February 9 and 13, 2004

of the Bamboo DHT and event-driven programming toolkit 1. The February 13th release modified

26 files ranging in size between 1.5 kB and 70 kB. This workload is representative of a developer

workload in which most files and changes are small and hand-edited.

The Mbox workload is composed of consecutive versions of a user’s email folder stored

in mbox format. The user removes deleted messages from the folder and saves new messages to the

folder. After the modifications, the size of the folder increases by approximately 25%. In the mbox

format, new messages are always appended to the end of a mail folder.

Macro-benchmark Workload: The macro-benchmark workload is created by replaying the traces

of developer activity described in Section 2.3. We extracted from the traces all activity directed at

the user’s home directory. We pruned all requests to temporary files and all accesses related to web

browser activity. We posit that such accesses would be handled by local file systems, even if remote

storage systems were available. We identified temporary files as files that were created and later

removed by the same process. We replay the trace as fast as possible, with no user think time.

1Current and previous Bamboo releases are available at http://www.bamboo-dht.org/.
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4.3.3 Workload Commonality

The effectiveness of this approach depends on how much similarity can be identified be-

tween consecutive versions of files. Table 4.3 reports the percentage of commonality found in the

micro-benchmark workloads using different chunking techniques. We define commonality to be the

ratio of bytes found in chunks from the previous version to the total bytes in the new version. The

commonality of the macro-benchmark workload is reported in Table 2.3.

Of course, the Whole approach is unable to identify any commonality in any micro-

benchmark workload in which all files change. It does, however, identify a small fraction of com-

monality in the macro-benchmark workloads when the file that is written to disk matches identically

the file already stored on disk.

The effectiveness of the Block approach is sensitive to the offset in the file of the first

modification. If the point of first modification is early in the file, as in the Word workload, the

approach is able to detect only very little commonality. If the offset of first modification is later in

the file, the approach can perform very well. The commonality results from the micro-benchmark

shows that there exists many workloads on which the Block approach does not perform well. The

macro-benchmark results, however, shows that on typical developer workloads the Block approach

works reasonably well compared to other approaches.

The Rabin approach used to create file summaries performs well across the range of work-

loads. It can identify commonality throughout a file, even if modifications shift the offset of shared

chunks. Because of the relatively large minimum chunk size, the scheme fails to identify all avail-

able commonality when files contain many small changes, as in the Bamboo micro-benchmark.

We also compute the amount of commonality that could be found by a scheme unen-

cumbered by the restrictions of our target environment. The Rsync results report the amount of

commonality identified using the rsync [TM96] binary diff algorithm with a very small minimum

block size of 64 bytes. This approach is able to identify more commonality than other schemes by

searching for shared data at a much finer granularity.

4.3.4 Simulation Results

The primary benefit of the technique presented in this chapter is the reduction in band-

width required to ship updates to the server by exploiting commonality between versions of a file.

To detect this similarity, however, a client must incur other costs. We begin by studying these

additional costs.
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Figure 4.6: Micro-benchmark Update Latency: The client-perceived write latency depends on
the amount of commonality detected in the workload and the characteristics of the network.

The client must pay the computational cost of computing chunk boundaries and translat-

ing file summaries into updates. Using unoptimized Java code, the client can detect chunks using

Rabin fingerprints at a rate of 5 MB of data per second. To avoid redundant computation, the client

can cache previously computed file summaries. The overhead of storing file summaries for the three

micro-benchmarks ranges from 4.3 to 6.0 megabytes per gigabyte of stored data. The total cost of

creating the update is dependent on the length of the file and the number of new chunks. On the

Word workload, for example, it takes 120 ms to create the update; of this time, however, about 50

ms is spent encrypting the data.

We measured the performance improvement attained by our proposed scheme on the var-

ious benchmark workloads. In addition to comparing the performance to the Whole and Block ap-

proaches used in current systems, we also compare the experimental results against an ideal, lower-

bound latency approximated by use of the rsync utility. The Rsync latency is a computed quantity

assuming that operation latency depends only on the speed of network transmission. The size of

the update is computed using a binary diff algorithm based on the rsync [TM96] as in Table 4.3 and

assumes that the server can perform arbitrary transformations on encrypted data. Furthermore, it

is assumed that computation is infinitely fast and data can be stored as ciphertext with no storage

overhead. We consider this quantity a near-optimal latency.

Micro-benchmark Results: First, we measure the impact of our technique on write latency on

the different micro-benchmark workloads and under various network parameters. Figure 4.6 shows

the client-perceived latency of writing the various workloads to the server. We measure the time

to update the file(s) stored on the server to the second version in the workload. The results are the

mean of three trials. The variance was negligible in all cases.
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Figure 4.7: Micro-benchmark Read Latency: The client-perceived read latency also depends on
the commonality in the workload and the network characteristics. The results differ from the update
latency because clients must retrieve the internal nodes of the data structure.

The performance does, indeed, reflect the amount of commonality that can be identified

by the different schemes (as reported in Table 4.3). By recognizing more commonality, the File-

Summary scheme performs better than the Whole and Block approaches.

In general, none of the schemes approaches the approximated ideal (Rsync) latency. One

could interpret the overhead as the cost of ensuring privacy. In estimating the minimum update

latency, we compute updates at the byte granularity and ship them to the server in plaintext form.

With the other approaches, we consider changes at a more coarse granularity, limiting the amount of

commonality that can be identified between consecutive versions of files. Although it does increase

bandwidth requirements, managing changes at the chunk granularity improves the efficiency of

the data structure for indexing the chunks and reduces the overhead of padding and initialization

vectors for encryption. It is possible that unique data characteristics in some workloads may allow

for the identification of an “ideal” block size that minimizes these overheads. For general purpose

workloads, however, we have seen no particularly acute sensitivity to block size. The minimum and

maximum block sizes used in our simulations mirror those used in the LBFS [MCM01] work that

inspired our approach.

Next, we measure the impact of the technique on read latency. We assume that the client

has a copy of the first version of the workload in the local cache. Upon requesting the file, the client

discovers that a newer version has been created and that it must retrieve chunks to reconstruct the

new version locally. This situation would arise for a user that accesses data from multiple machines

or devices.

Figure 4.7 presents the results of this test. As expected, identifying unmodified data allows

clients to update local copies of the file by retrieving less data from the infrastructure. Note that
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Figure 4.8: Client-Side Computational Overhead: The graphs show the relative cost of additional
client-side computation for various network speeds. For fast connections, the computation overhead
can be as much as 5%. For slower networks, the overhead is negligible.

when reading data from the infrastructure, the Block and FileSummary schemes pay a penalty for

retrieving the internal nodes of the data structure. The Block approach actually performs worse

than the Whole method on some workloads because of this overhead coupled with the lack of

detected commonality. The FileSummary scheme, however, is able to detect sufficient commonality

to overcome this penalty and perform better than the Whole approach.

Macro-benchmark Results: With the macro-benchmark workload, we have enough data to begin

to evaluate the computational overhead required by our scheme. As before, we measured total client

latency for each update. However we also profiled the time required for the client to identify data

changes, create an update, and encrypt the update. These actions represent the computation required

on the client side. On the server side, we measured how long it takes to apply an update. The

remaining client latency is due to network delays. We aggregated this data over both developer

traces to consider total computation time required by both client and server as a percentage of total

client latency. These results are presented in Figure 4.8. We use Rabin fingerprints to compute

chunk boundaries.

The computational overhead decreases as the network becomes more constrained; for less

powerful connections, network delays dominate the client latency. The results for both developers

are remarkably similar, with the worst performance at around 5% for both when using the 1 Mb link.

As the link becomes weaker, the network time quickly begins to dominate. Keep in mind that all of

these computations are done in unoptimized Java and could be reduced further by optimization in

Java, C, or even cryptographic hardware.

We also compared the cost of the different phases of additional computation. Figure 4.9
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Figure 4.9: Client-Side Computational Profile: The charts show the relative cost of different
phases of computation. For both traces, data encryption is the most expensive phase.
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Figure 4.10: Storage Overhead: The storage overhead of the data structure is significant for small
files. For larger files, the overhead is much smaller.

shows the profile for both developer traces. These figures are again aggregated over the entirety of

both two week traces. The update creation on the client side and update application on the server

side tend to be the least computationally intensive tasks. Indeed they are both manipulations of

efficient data structures. The chunking of data (identify chunk boundaries) is a significant compu-

tational cost, but as we saw before, it saves us time in network transmission. Encryption tends to

require the most amount of time, but is unavoidable if we wish to maintain privacy.

Finally, we analyzed the storage overhead of our data structure. After each update, we had

the server report the total size of the data structure and the size of the actual, stored data. The storage

overhead is due to the data structure and encryption: the system must storage the index maintained
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in the data structure and the initialization vectors and padding to support encryption. Using these

figures, we computed the percentage storage overhead as:

1−
actual data size

total data structure size

In Figure 4.10, we scatter plot this overhead against the size of the data. These data points

come from both developers traces. The overhead of the data structure is significant for small file.

As file size increases, the overhead decreases. For files greater than 1 kB in size, the overhead of

the data structure is less than 10%. For files bigger than 10 kB, the overhead is below 5%.
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Chapter 5

Intention Updates

Operation-based updates can reduce the amount of bandwidth used to communicate changes

between client and server when commonality can be detected between consecutive versions of a file.

Still, communication may require significant bandwidth in many cases. For example, many appli-

cations, like media applications, produce large files that contain data unlike any other files stored

in the system. Also, the initial version of a file must always be transferred in its entirety. Finally,

measurements have shown that not all modifications produce files similar to their predecessor (Ta-

bles 2.3 and 4.3). In cases such as these, the system must transfer large amounts of data that cannot

be optimized with delta-encoding.

In this chapter, we describe a technique that decreases the effective latency of large trans-

fers when a client writes data to the server. The mechanism, which we call intention updates, sepa-

rates the management of metadata and data resulting in a two-phase update operation that promotes

fast update visibility and enables flexible scheduling of upstream bandwidth. In the first phase, a

client sends a small intent to inform the server about the modification. Later, the client consum-

mates the update by transferring the modified data to the server. With two-phase updates, changes

can be propagated to the server quickly enabling the server to track the state of data accurately and

ensuring that modifications are visible to other clients in a timely manner.

5.1 Background: Write-back

The intention update technique optimizes the process that clients use to propagate modifi-

cations to the server. Before considering the details of intention updates, it is important that we first

understand the traditional approaches to data write-back. Refer to Figure 5.1 during the following
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(c) Coda-like protocol.

Figure 5.1: Popular Write-back Strategies: (a) Early remote file systems like NFS transmit data to
the server on each write() operation. (b) AFS implements write-on-close. Clients buffer changes
locally until the application closes the file; on close(), the client blocks until data can be transferred
to the server. (c) Coda uses a write-on-close approach similar to AFS. To support weakly connected
clients, Coda transfers data to the server asynchronously without blocking the application.

discussion.

Early remote file systems like NFS [SGK+85] implemented protocols that closely mir-

rored traditional file system APIs. Consequently, the approach to data write-back is closely related

to file system’s write() procedure. When an application accessing a file stored in NFS (version 2)

invokes the file system’s write() procedure, the client machine issues an NFS write() request to

the file server. The NFS protocol stipulates that data must be stored durably, typically on disk, be-

fore the server can send a response. In this design, a client must issue many synchronous (blocking)

requests when writing data to a file. Exacerbating the cost of write-back, NFS defines the maximum

amount of data that can be transferred in a single request to be 8 KB. Although the NFS design is

slow, if users disable data caching, it does preserve UNIX file system semantics which require that

all clients read the most recent value written. (Recent versions of NFS do support techniques to

reduce the cost of write-back; however, these versions are not as widely supported as the version 2
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protocol.)

Attempting to support operation across the wide area, the designers of the Andrew File

System (AFS) [HKM+88] developed an approach called write-back-on-close. In AFS, when an

application opens a file, the client fetches the whole file from the server and caches it on the local

disk. All write() operations update only the locally cached copy; the client does not propagate the

changes to the server. Only when the application closes the file are all changes propagated to the

server. With write-back-on-close, all changes are pushed to the server via a single message when

the file is closed. The client blocks until the server receives the changes and responds to the request.

Although the client must block to send only a single message across the network, the transmission

time can be long if the message is large. AFS does not implement UNIX file system semantics, but

the designers discovered that most applications work properly over AFS without modification.

The Coda project extended AFS to support disconnected [KS91] and weakly connected [MES95]

clients. Owing to its heritage in AFS, Coda also implements write-back-on-close. To support

weakly connected clients, Coda performs write-back asynchronously. That is, when an applica-

tion closes a file, the client initiates a message to push the changes to the server but responds to

the application immediately. As in AFS, the client sends only a single message to the server, but

Coda gives the applications no guarantee as to when the data will be stored durably at the server.

Coda calls its form of asynchronous write-back trickle reintegration. Clearly, Coda does not provide

UNIX file system semantics.

Different write-back strategies can have a profound effect on how users, especially weakly

connected users, interact with a remote storage system. Consider the following scenario to under-

stand how the use of remote storage system can be affected by write-back strategy. Assume a user

saves a large file and then, after some small amount of think time, saves a smaller file. After the

user receives a response to both requests, she informs a colleague of changes to the smaller file. The

colleague then fetches the small file to view the changes.

Figure 5.2 illustrates how AFS’s synchronous write-back and Coda’s asynchronous write-

back strategy respond to this scenario. We do not consider the response of NFS because its syn-

chronous message on each write() operation make it unsuitable for operation across the wide

area.

Figure 5.2(a) illustrates the behavior of a system that uses an AFS-like protocol with

synchronous write-back. Though the user decides to write the small file at time t = 1, the operation

is blocked until the changes to the large file are transmitted across the network and the first operation

completes. The user is then delayed again as the changes to the small file are propagated to the
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Figure 5.2: An Example Demonstrating Different Write-back Strategies: A user writes a big
file, B, and a small file, S, and then shares the small file with another user. (a) In traditional file
systems, like AFS, write operations block while changes are propagated to the server. (b) With
Coda’s trickle reintegration, write operations complete immediately and data is transferred to the
server asynchronously in the background.

server. The blocking operations become more disruptive as a client’s connectivity deteriorates.

Poor responsiveness leads to user frustration and is a common reason that weakly connected users

do not use remote file systems.

Figure 5.2(b) illustrates the behavior of a system using a Coda-like protocol with asyn-

chronous write-back. Although trickle reintegration does improve user-perceived responsiveness, a

key problem is that the state recorded at the server lags the user’s view of the data. Stale server state

impacts users sharing data with themselves or other users. For example, a user, believing that data

is stored at the server after a write request completes, may notify a colleague of changes that have

not yet propagated to the server. The co-worker may then retrieve a stale copy of the file, believing

that it contains the most recent changes. In a similar scenario, if a user switches to a different de-

vice before changes are propagated to the server, they might be puzzled by changes that apparently

disappeared.
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Finally, note that powering down a device or terminating a network connection can fur-

ther increase the likelihood that stale state at the server leads to conflicts. Such action may delay

propagation of changes indefinitely. Thus, changes that would normally be propagated to the server

in several seconds or minutes may be buffered at the client’s device for several hours or more.

5.2 Using Intent to Decrease Latency

Intention updates optimize the write-back process to provide users with fast response

times while maintaining accurate state at the server and enabling flexible scheduling of bandwidth

usage.

The approach is motivated by the observation that, for each file, a file system maintains

two distinct types of state: user data and metadata. User data is that data written by users via

applications. Metadata records information about the state of user data, such as its size, the identity

of the last user to modify the data, or the identity of a lock holder. As a fraction of bytes stored, a file

system’s contents are dominated by user data. User data is generally opaque to and uninterpreted

by the file server. Metadata, on the other hand, consumes a small fraction of storage resources. File

servers interpret and update metadata to record the state of user data and respond to client requests.

Typically, remote file systems update user data and metadata in a unified manner. That is,

to propagate a change to the server, a client sends a single message. Upon receipt of the message, the

server updates both metadata and user data to reflect the change. Most popular remote file systems

like NFS [SGK+85], AFS [HKM+88], and Coda [SKK+90] implement unified updates.

It is not necessary, however, to unify the management of metadata and user data together

in this manner. Intention updates decouple the management of metadata and user data by defining a

two-phase process for propagating changes from client to server. This allows clients to communicate

the existence of an update separately from the update itself. In the first phase, a client sends to the

server an intent which notifies the server of a change requested by a user. An intent provides the

server with enough information to update file system metadata to reflect a modification. The intent

also includes a description of the user data associated with the update; this description may, for

example, take the form of a cryptographically secure hash of the file after the modification. Upon

receipt of an intent, a server evaluates whether the change summarized by the intent is permitted (by

validating the request, checking file permissions, etc.), updates metadata to reflect the modification

including recording the description of the user data provided by the client, and responds to the client

indicating whether the intent was accepted or rejected. When the client receives a response to an
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Figure 5.3: A Comparison of Coda’s Trickle Reintegration and Intention Updates: With trickle
reintegration, a response to the update request signals neither visibility or durability which are both
tied to the transfer of the update message. Using intention updates, a response guarantees update
visibility; durability is not assured until the completion of the data transfer phase.

intent, it responds to the corresponding application request. We will describe below the guarantees

this decision provides clients.

After receiving the response to an intent, the client enters the second phase of the protocol.

In the data transfer phase, the client transfers modified user data to the server for storage. When the

server receives a data transfer message, it matches the message to a previous intent, checks that the

user data in the message matches the description of the data in the intent, and stores the user data to

disk.

A user may submit further update requests before the client has completed the data transfer

phase of previous updates. To ensure fast response, the client prioritizes intent messages over data

transfer messages. In this way, the client uses excess bandwidth to propagate user data to the server

asynchronously.

Figure 5.3 compares intention updates with Coda’s trickle reintegration, highlighting the

differences in update visibility and durability. The distinction between update visibility and durabil-

ity is detailed by Kim et al. [CN01]. In our model, an update is said to be visible if other clients in
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the system can see the change. An update is said to be durable (or safe) when it is stored to disk at

the server. With trickle reintegration, visibility and durability are entangled and depend on when the

unified update reaches the server. With intention updates, visibility and durability are decoupled.

An update is made visible to other clients when the server receives an intent; it is made durable

when the server receives the corresponding bulk transfer message. With trickle integration, the

application receives an immediate response to each request because it is deemed too expensive to

block until the update is visible and durable. With intention updates, the client does not respond to

the application until it receives a response to the intent. With this approach, a user knows that, when

an operation completes, the changes are visible to all other clients. We will consider the trade-offs

between response time, visibility, and durability quantitatively in Sections 5.5 and 5.6.

Improved update visibility, and indeed many other benefits of intentional updates, are

possible because changes to metadata can typically be described much more concisely than changes

to user data. Consequently, intents are small messages, especially relative to the subsequent bulk

transfer messages. (For ease of illustration, figures in this paper show intents to be nearly as large as

data transfer messages; in actuality, intents are much smaller.) Intention updates exploit the small

size of intents to respond quickly to user requests while maintaining timely, accurate state at the

server. It should be noted that the total amount of data transferred to update a file using intention

updates is actually greater than the amount of data transferred using traditional unified updates

because the messages must contain some state to enable the server to match data transfer messages

to their associated intents. Intention updates are able to realize benefits over traditional updates

despite this bandwidth penalty by prioritizing metadata traffic over bulk data transfer.

Let us return to the example of the previous section to understand how intention updates

can improve file system access for weakly connected users. Figure 5.4 illustrates how the system

would respond to the example scenario. After the user saves the small file, it is visible to all other

clients in the system. Thus, when the colleague attempts to retrieve the changes in the small file, the

system has enough information to recognize that the most recent version of the file is not available

at the server. Such recognition may trigger one of several responses. In this example, the storage

system blocks the colleague’s request until it can ensure that the user is served the current state of

the file.

This example reveals an additional opportunity for improving access. When a user at-

tempts to read the file with changes that are visible but not yet durable, she must wait while the

originating client completes the data transfer phase for the large file. However, since the server

maintains a consistent record of modifications, the data transfer phases of multiple operations can
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Figure 5.4: Behavior of Intention Updates to Example Scenario: Notice of writes by Client 1
are propagated to the server quickly, and the client does not receive a response until the update is
visible. When Client 2 attempts to retrieve the changes to file S, the system blocks the request until
data corresponding to the visible changes are available at the server, ensuring the Client 2 fetches
the latest copy of the data.

be reordered. This can allow clients to reduce the time to durability for data that is considered more

important (either because it is more valuable or because another user is requesting the data). We

describe this and other variations in Section 5.3. The example also suggests that intention updates

may introduce new failure modes for clients. In this example, the colleague must block for data to

become available, which could take an arbitrarily long time if the originating client goes off-line.

We discuss the issue of failure modes further in Section 5.4.

Finally, to help place intention updates in better context, it is useful to compare them to

other popular techniques that clients use to manage communication with remote storage systems.

In some systems, clients use locks or leases to gain exclusive access to an object stored in a remote

storage system. A client holding a lock for an object is assured that no other user will be able to

access the object. This promise allows lock holders to buffer changes locally or write changes back

to the server lazily. Data need not be propagated to the server until the object is unlocked. Leases

are similar to locks, but they grant exclusive access to a resource for only a time-bounded period

of time. Although a client can use a lock to ensure that changes are made atomically, to prevent

deadlock and starvation, all system components must follow locking (and unlocking) protocols.

Furthermore, servers must be able to identify when lock holders die so that they can recover the

lock.

Casting intention updates in terms of locks, one could consider an intent to be the combi-

nation of a lock request, a set of operations, and an unlock request. All operations in an intent are

applied atomically to the object. With intention updates, however, the server does not require all
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of an object’s data before unlocking the object; rather, the server requires a description of all of an

object’s data. The client can continue to trickle data to the server even after the intent has unlocked

the object for access by other clients. Because the unlock operation is intrinsic to the intent, an in-

tent can never deadlock. Although the server is relieved of the responsibility of detecting failed lock

holders and revoking locks, client failures can also cause complications in systems using intention

updates. If the client that submitted the last intent fails before transferring the corresponding data to

the server, other clients will receive error responses on subsequent accesses. To restore the system to

regular operation, a client should initiate recovery by writing a new version to the file. Note that the

server simply stores state provided by the clients and need not be aware when failure and recovery

occur.

5.3 Intention Update Variations

The basic intention update mechanism can be varied to meet the requirements of other

environments.

Protocol variations: As described in the previous section, a client initiates the data transfer phase

only after receiving a response to the intent. This approach saves bandwidth when updates are re-

jected due to conflict. The intent response acts as an “early reject” message, reporting operation

outcome before the client has committed to the relatively expensive data transfer phase. This varia-

tion benefits clients for whom bandwidth is limited or financially expensive. The cost of conserving

bandwidth is in the latency to data durability. If, however, bandwidth is plentiful or cheap, a client

may wish to initiate data transfer immediately after submitting the intent, before receiving the in-

tent response. Such an approach should reduce the latency to data durability slightly at the cost of

additional bandwidth when updates are rejected.

Finally, in very low-bandwidth or disconnected scenarios, or for applications that are very

sensitive to delay, asynchronous intent updates may be appropriate. Asynchronous intention updates

combine the approaches of standard intention updates and trickle reintegration. Clients propagate

changes to the infrastructure in two phases, but both intents and data transfers are transmitted asyn-

chronously. This variation enables applications to proceed after the update is recorded locally, but

makes updates visible at the server more promptly with the small, high-priority intents. Of course,

asynchronous intention updates do expose users sharing data to the possibility of accessing stale

state from the server, however, the window of vulnerability should be shorter than with trickle rein-
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Compare this example to Figure 5.4 to see how reordering and fragmenting transfers can facilitate
sharing.

tegration. We will consider the trade-offs between response time, visibility, and durability in our

evaluation.

Re-ordering data transfers: A client makes modifications visible by submitting an intent to the

server and, thus, must submit intents in an order compatible with the system’s consistency model.

The client can, however, freely reorder the consummating data transfer messages. By reordering

data transfers, a client can reduce the time to durability for data that is considered more “valuable”,

by some metric. For example, a user may consider some files to be more financially valuable

and wish to ensure that they are propagated to the server as quickly as possible. Alternatively, a

versioning application may place greater value on the latest version of a file and, so, when multiple

modifications are buffered at the client, elect to transfer the most recent version first. To support this

type of re-ordering, a client must manage data transfer messages of multiple priorities.

As alluded to earlier, re-ordering data transfers can also facilitate data sharing. The server

can reduce the amount of time that one client blocks waiting for changes from another client by

requesting the data transfer message that includes the visible changes to be sent immediately. Re-

ordering data transfer to support sharing requires extensions to both the client and the server. The

server must recognize when a read request is blocked waiting on data that is visible but not durable.

It must, then, determine the client responsible for the latest visible update and send a message to that

client requesting the intent be consummated immediately. The client must be extended to handle
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and respond to such requests by the server. Figure 5.5 illustrates how reordering data transfers

can benefit clients. We will show how re-ordering data transfers can reduce time to durability for

valuable data in Section 5.6.

Varying intent detail: An implementation can vary the level of detail in an intent, allowing a

system to trade message size against descriptiveness. Varying the amount of information in an in-

tent allows the system to optimize for a client’s available bandwidth and workload characteristics.

Minimally, an intent must identify the object that is being updated and a description of the modifica-

tion. Probably the most concise method for describing the effect of the update is a cryptographically

secure one-way hash of the resulting object. An intent of this minimal form serves to make visible

the existence of an update to a server but provides little additional information. Given such a terse

intent, a server could provide little information about the object until it receives the consummating

data transfer.

A more descriptive intent can contain other details such as the device on which the update

was initiated and the complete updated file system metadata for the object. An even more verbose

intent might include the byte ranges that are invalidated or even a complete file recipe [TKS+03]

of the resulting file. Detailed intents allow the server to provide more complete responses to future

requests, like metadata requests and consistency checks, even before receiving the associated data

transfer. If the server can provide to a client a complete file recipe, the client could fetch the data

directly from the originating client. Such functionality could be especially beneficial for clients

co-located in a region of good connectivity that are separated from the server by weak network

links.

Fragmenting data transfers: Just as data transfers can be re-ordered, they can also be subdi-

vided into multiple smaller transfers. Data does not need to be delivered to the server atomically.

Fragmenting data transfers can help support operation over connections with very low-bandwidth

or frequent interruptions. A client could use fragmentation to propagate changes selectively; for

example, it could send some changes from several versions to allow the server to construct the most

recent version.

Capping uncommitted data: With a burst of activity, a client using intention updates can end

up with a large number of modifications buffered locally. By monitoring the propagation of data

transfers, a client can track the amount of data on a device that is not durable and throttle system
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performance to limit risk due to loss of the device.

5.4 Implementation Issues

Several issues arise when implementing intention updates in real systems.

5.4.1 Architectural Requirements

To support intention updates, a system must modify both client and server code. To use

intention updates, the client, for example, requires a networking API that supports messages of

multiple priorities. Minimally, the network must differentiate between “high” priority intents and

“low” priority data transfer messages. Clients can take advantage of additional priority levels to

control the order of data transfer messages (as described below). The client also requires a persistent

cache to record modifications until they are successfully transferred to the server. Such functionality

could be provided by a component similar to Coda’s client modify log [MES95].

On the server side, intention updates require significant new functionality. Intents repre-

sent a new class of events that servers must handle. The server must maintain additional state to

determine if the data that is actually described by the metadata is available in the file system or is

still in transit to the server from the client. The server must also record state from each intent to

enable it to match later data transfer messages.

Intention updates also require careful consideration of security issues. To secure any

remote file system, the server must authorize the requests that it processes, especially those requests

that modify state. Assume a system that uses public key cryptography for authentication. An intent

changes state at the server and, thus, must be signed by the client to allow authorization. Assuming

the intent is accepted, the subsequent data transfer message also updates state at the server. The data

transfer message, however, need not be signed. If the intent includes a secure, one-way, collision-

resistant hash of the data to be included in the transfer message, the server can confirm the integrity

of the data transfer message without a signature. If, however, an intention update implementation

represents the data summary differently, it may require the data transfer message to be signed.

Because intention updates are designed to benefit weakly connected clients, implementations should

consider the use of elliptic curve cryptography for its smaller signature size [Mil85].
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5.4.2 Failure Modes

While intents do enable clients to propagate information about updates to the server

quickly, they also, unfortunately, introduce several new failure modes.

In a system that uses traditional unified updates, if the server knows of the existence of a

new version of an object, then it also has the data corresponding to the new version. This is not the

case with intention updates. After a server has processed an intent and before the accompanying

data transfer is completed, the servers knows that a new version exists, but it cannot satisfy requests

to read that new version. Taking this situation to the extreme, a server may record an intent that is

never consummated by a data transfer. Clients may fail to send data transfer message for malicious

or benign reasons.

Several different responses to such failures are possible. If the failure is transient (that

is, clients are functioning correctly and the data transfer will be completed eventually), a client can

take appropriate action depending on the requirements of the application. It could abort the read

request, returning an error to the application. If the server supports versioning, the client could read

an older version. If the latest intent includes sufficient information to determine which portions of

the object are unchanged from prior versions, the system could return parts of the object that are

known to be valid. Or, if the server can describe the data unambiguously (for example, by providing

a secure hash of the data that has yet to be transferred), the reading client could fetch the data from

the writer directly.

The system must also provide some means to recover from non-transient failures. To allow

progress after a permanent failure, the system must allow a client to overwrite the unconsummated

version. The version used in recovery could be a previous version of the object or a new version

created by the recovering client.

5.5 Analytical Evaluation

We begin our evaluation of intention updates analytically by applying methods from

queueing theory. Queueing theory studies the stochastic flow of commodities or events through

a channel or service of finite-capacity. The correspondence to our system is as follows: events are

intents or data transfer messages and the finite-capacity channel is the network. We assume that the

cost of processing a message is equal to its network transmission latency; we assume that processing

at the server is negligible.
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We will argue that intention updates can be modeled effectively as a fixed priority queue-

ing system that implements preemptive resume. We will analyze the behavior of the system in

equilibrium and use approximation methods to understand transient response to bursty workloads.

5.5.1 Preliminaries

We begin by describing the parameters that control a queueing system. Additional details

can be found in a traditional queueing theory book (e.g. [Kle75]).

Central to the study of queueing theory is the rate at which events enter and leave the

system. The average arrival rate of events to the system is denoted by λ. The average rate at which

events are serviced is denoted by µ. It is often easier to consider the average amount of time required

to service a single event, x = 1/µ.

The fraction of time that a server spends processing events is the utilization factor, ρ =

λ/µ. To ensure that a server can process events in finite time, a system must enforce that ρ < 1.

The key quantities of interest in the study of queueing systems are the number of events

in the queue, the average amount of time an event spends in the queue waiting for service, and the

average amount of time an event spends in the whole system. These measurements are known as

the queue length (N), the queue waiting time (W ), and the system time (T ). From these definitions,

it is clear that T = W + x.

Key to our proposed method of intention updates is that intents are processed preferen-

tially over data transfers. We can model this preferential service as a priority queueing system. To

analyze a priority queueing system, we must extend the system model.

We employ a basic priority queueing system in which events are assigned to one of P

different priority classes designated with subscript p (p = 1,2, . . . ,P). Events of class p = 1 are the

lowest priority events and events of class p = P are the highest priority events. Events of higher

priority are serviced before events of lower priority. Events of equal priority are serviced in a first-

come, first-served (FCFS) manner.

The average arrival rate for events of priority p is denoted λp and ∑P
i=1 λi = λ. Analo-

gously, the average service time for events of priority p is denoted x p. The average service time for

all events is the weighted average of the service times of different event classes x = ∑P
i=1 λpxp/λ.

Finally, the fraction of time a server spends processing events of priority p is ρ p = λpxp, and the

total utilization factor is computed as ρ = ∑P
i=1 ρp.
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5.5.2 Preemptive Priority Queueing

Much of queueing theory studies the steady-state or equilibrium behavior the systems, and

this too is where will begin our analysis. Frequently, we must simplify the system model to make

analysis of queueing systems tractable. One common simplification, which we adopt, is to assume

that the intervals between consecutive events (the interarrival times) are exponentially distributed.

With this assumption, we can use the results of the M/G/1 queueing model. This short-

hand indicates that the system has an exponential (Memoryless) arrival distribution, General service

distribution, and a single (1) server.

First, consider an M/G/1 queue that process requests FCFS. In our application context,

this corresponds to a system that implements traditional, unified updates. In such a system, the

average amount of time an event spends in the system is given by

T = x+
λx2

2(1−ρ)

where x2 is the second moment of the service time distribution [Kle75].

Next, let us consider how to extend the M/G/1 model to reflect the use of intention updates.

To model intention updates we adopt a fixed priority queueing system that implements preemptive

resume. In a preemptive priority queueing system, when an event enters the system and finds an

event of lower priority in service, the newly arriving, higher-priority event evicts the low-priority

event from the server and begins service immediately. In the preemptive resume model, a preempted

event does not lose credit for the portion of its service that has already been performed; when it

resumes service, it picks up where it left off.

This model reflects our application well. In our application, low-priority messages are

generated during the data transfer phase. Data transfer messages transfer blocks between the client

and the server. A client can preempt the data transfer phase at any block boundary to send a high-

priority intent message. After processing the intent, the client does not need to re-start the data

transfer phase. It only needs to continue the transfer from where it was interrupted.

Figure 5.6 illustrates a simple model of our proposed system, showing how it relates to

the priority queueing with preemptive resume model. Each user-level request is converted into

two network-level requests of different sizes. The different types of requests are, at least logically,

queued separately. The requests in the intent queue require less service and are given priority over

the larger events in the data queue that require longer to service.
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Figure 5.6: Modeling Intention Updates: Updates are divided into two events of different priority
and different size. The service time is assumed to be the transmission delay due to the the weak
network connection between the client and the server.

For an M/G/1 priority queue that services events of P classes using a preemptive resume

strategy, the average system time of an event of priority p is given by

Tp =

xp(1−σp)+
P
∑

i=p

λix2
i

2

(1−σp)(1−σp+1)

where x2
p is the second moment of the service time distribution for events of priority p and σ p =

P
∑

i=p
ρi [Kle76]. Recall that p = 1 is the lowest priority, and p = P is the highest priority.

Our application uses only two event classes. We use the subscript D to refer to quantities

related to data transfer events. Data transfer messages are low-priority events with p = 1. We use the

subscript I to identify quantities related to intents events. Intent messages are high-priority events

with p = 2. Note, because each application-level update is divided into an intent and data transfer

message, λI = λD. Using this notation, the average system time for a high-priority intent is given by

TI =
xI(1−ρI)+

λIx2
I

2
(1−ρI)

and the average system time for low-priority data transfer events is given by

TD =
xD(1−ρI−ρD)+

λIx2
I

2 +
λDx2

D
2

(1−ρI−ρD)(1−ρI)

Figure 5.7 illustrates how these results apply to our system. We assume a client with 128

kbit/s of upload bandwidth processing updates with average size of 10 KB. When using intention

updates, the average intent size is 1 KB while the average transfer size remains 10 KB—intents are

purely overhead. The service time curves follow a normal distribution and are computed from the



80

 0

 1

 2

 3

 0  0.1  0.2  0.3  0.4  0.5

System Time vs. Utilization

Sy
st

em
 T

im
e 

(T
)

Utilization (rho)

Average system time for updates
Average system time for data transfers
Average system time for intents

 0

 5

 10

 15

 0.5  0.6  0.7  0.8  0.9  1

System Time vs. Utilization

Sy
st

em
 T

im
e 

(T
)

Utilization (rho)

Figure 5.7: Analysis of Average System Time: The client has 128 kbit/s of upload bandwidth
and submits updates with average size of 10 KB. When using intention updates, the intent is 1 KB.
Message sizes are normally distributed with σ2 = 1. The plot has been split to reveal detail at both
upper and lower limits of utilization.

upload bandwidth and message size with variance σ2 = 1. The graph shows the average of the total

system time as the load (utilization of the link) increases. The x-axis reflects the utilization of the

base system, using traditional unified updates; because intents represent an additional load to the

system, the behavior of the intent-based system becomes unstable before ρ reaches 1.

Most generally, Figure 5.7 shows that as the system becomes more loaded, the system

time increases. The increase is especially dramatic as the system approaches full utilization. With

intention updates, intents are serviced quickly, even as the load increases. This ensures that the

server is notified of changes to objects quickly. The cost of prompt notification is delay in uploading

changes to the server, reflected in the difference between the service time curves for unified updates

and data transfers.

5.5.3 Fluid Approximation

The assumption of exponentially distributed interarrival times is reasonable for many real-

world phenomena (like phone calls arriving at a switch board or alpha particles emitted from a

radioactive material). It is not, however, a particularly compelling model for file system workloads.
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Instead, studies of file system usage in production environments have shown that workloads are

typically bursty [BHK+91].

Even if we could describe these workloads mathematically, a steady-state analysis like

we performed in Section 5.5.2 would be impenetrably complex and unlikely to yield any signif-

icant insight. To understand the system response to more realistic workload models, we rely on

approximation techniques from the queueing theory literature. Specifically, we will extend the fluid

approximation for simple queueing systems to model systems with multiple event classes of differ-

ent priorities. Although the fluid approximation is a well-known tool in queueing theory texts and

literature, we are not aware of any prior work that uses the fluid approximation to analyze systems

with events of multiple priorities the way we describe here. Using this approach, we can study the

system’s transient response to various workloads.

To model bursty workloads, we allow the request arrival rate to vary with time, λ(t).

(The capacity of the server may also vary with time, such as when network conditions change,

but fluctuations in the service rate are typically less than the arrival rate. In this analysis we will

assume the server has a fixed maximum capacity of µ.) From steady state analysis, we know that

in the limit the utilization factor must not exceed unity. In this transient analysis, however, we are

most interested in the system response during periods of heavy load where the utilization factor

ρ(t) = λ(t)/µ exceeds unity.

Let us begin by understanding the fluid approximation for queues. The fluid approxima-

tion [Kle76] is most useful for understanding the response of a system in overload. It estimates

the discrete, discontinuous flow of events in the system as a continuous flow without stochastic

variation. Consider, first, the discrete case. Let

α(t) = Number of request arrivals in (0, t)

δ(t) = Number of request departures in (0, t)

The number of events in the system, then, is given by

N(t) = α(t)−δ(t)

The fluid approximation replaces the discontinuous stochastic processes α(t) and δ(t)
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with continuous deterministic processes α(t) and δ(t) where

α(t) =
Z t

τ=0
λ(τ)dτ

δ(t) =

Z t

τ=0
µ(τ)dτ

and the time-varying function for the amount of service performed is given by

µ(t) =







µ for N(t) > 0

λ(t) for N(t) = 0

Analogously, the number of customers in the system, is given by

N(t) = α(t)−δ(t)

Figure 5.8 illustrates the application of the fluid approximation. Figure 5.8(a) plots the

flow rate for events in the system; it shows that the client demand exceeds the system’s service

capacity during the period 3 < t < 6. The fluid approximation estimates the queue length to be

the difference between the cumulative number of requests that have entered the system and the

cumulative number of requests that have left the system. Figure 5.8(b) plots the cumulative number

of arriving and departing requests. The length of the queue is represented by the difference between

the two curves, which is also plotted in Figure 5.8(c). Notice that the queue begins to form when

the instantaneous utilization factor, ρ(t) = λ(t)/µ, exceeds unity. The length of the queue continues

to grow until λ(t) drops back below µ, at which point the queue is drained. The rate at which the

system empties the queue is determined by the amount of excess capacity µ−λ(t).

It is important that we understand the limitations of the fluid approximation. The fluid

approximation accurately predicts queue lengths for systems in overload. The weakness of the

approximation is that it neglects the formation of queues due to variability in event arrival before

overload. However, if we assume that the arrival rate is either above or significantly below the ser-

vice rate at all times—that is, client behavior can be approximated as a process that is either “on” or

“off”—then queueing due to stochastic variations in arrival rate is minimal, and this approximation

models the system accurately.

Now let us extend the fluid approximation to handle multiple event classes. We will again

assume that each event is assigned to one of P different priority classes and each event class has an
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Figure 5.8: Fluid Approximation Example: An example illustrating the utility of the fluid approx-
imation for queues. (a) During overload, a time-varying arrival rate can exceed the service rate. (b)
To compute the queue length, we first compute the cumulative number of event arrivals and depar-
tures. The length of the queue is represented by the area between the curves. (c) A queue begins
to form when the instantaneous utilization factor exceed unity and is at its longest when utilization
factor drops back below the service rate.
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accompanying service time distribution. To accommodate these features, rather than tracking the

flow of requests in the system, we track the flow of work units in the system. Let u p(t) be the arrival

rate of work units of priority p and wp(t) be the rate that work units of priority p are serviced.

Let Up(t) represent the cumulative amount of work of priority p that has entered the

system and Wp(t) be the cumulative amount of work of priority p that has been serviced. That is,

Up(t) = Number of work units

of priority p arriving in (0, t)

Wp(t) = Number of work units

of priority p serviced in (0, t)

As before, we replace the discontinuous stochastic processes Up(t) and Wp(t) with con-

tinuous deterministic processes Up(t) and Wp(t) where

Up(t) =
Z t

τ=0
up(τ)dτ

Wp(t) =

Z t

τ=0
wp(τ)dτ

The number of work units of priority p waiting in the queue is given by

Np(t) = Up(t)−Wp(t)

To apply this result to evaluate a queueing system, we must define the rate that work units

arrive and depart. The arrival rate of work depends on the rate that requests enter the system and

the amount of work required to service each request. In our particular domain, the amount of work

needed to service a request could be considered a property of the application, while the request

rate could be considered a function of how much processor time is allocated to the application. Let

λp(t) be the rate that events of priority p enter the system, and assume that each event of priority p

requires ωp work units to service. Then up(t) = ωpλp(t).

The rate that work of varying priority departs the system depends on how the system

allocates it resources to servicing requests of different priority. Assume a single server can process

µ(t) work units per unit time. A server services work of priority p at a rate of µ p(t). Of course,

∑µp(t) ≤ µ(t) for all t. By this definition, wp(t) = µp(t). A system implementing preemptive
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priority resume would allocate service to different priority classes as defined below.

µp(t) =















µ(t)−
P
∑

k=p+1
µk(t) for Np(t) > 0

up(t)−
P
∑

k=p+1
µk(t) for Np(t) = 0

This definition states that service will be allocated to events of the highest priority first. The amount

of service allocated to a given priority class will not exceed the work load imposed by that class.

If the system has excess capacity after servicing events of the highest priority, the remainder of

the capacity may be allocated to requests in lower priority classes. Of course, the amount of work

allocated to service requests of any event class must be non-negative.

We can now estimate the behavior of our system modeled as in Figure 5.6. Let ω2 be the

number of work units required to service the high-priority intent of the first phase of our schedule.

Let ω1 be the number of work units required to complete the low-priority data transfer of the second

phase of our schedule. The weak network link can transmit µ work units per unit time. Because

each application-level request is converted into two network-level requests, λ1(t) = λ2(t).

Consider the example in Figure 5.9. In this example, the work contributed by an intent

is ω2 = 1; the work required to service each data transfer is ω1 = 4. The system can service µ = 2

work units per unit time. Figure 5.9(a) plots the instantaneous request rate in the system showing

bursts of activity at 3 < t < 5 and 13 < t < 15. Figure 5.9(b) shows the cumulative flow of work

in the system, as well as the total amount of work and the amount of work that has been serviced.

As in the example of Figure 5.8, the queue lengths in the system can be extracted by computing the

difference between the curves. Figure 5.9(c) shows the queue lengths corresponding to intents and

data transfers.

Figure 5.10 shows the analysis of the queue length without using intention updates. In this

analysis, we have assumed that each user-level request requires ω = 4 units of service. A comparison

of this analysis with Figure 5.9(c) is thus conservative since a request requires ω1 +ω2 = 5 units of

service when using intention updates. That is, we assume that the cost of processing intents is purely

overhead compared to the base system. In comparing the graphs of queue lengths, note the time that

the client receives a response to the last request. With the traditional approach, the response to the

last request in the first burst is sent at time t = 23 (computed by extrapolating the first downward

sloping segment of the curve to the x-axis). The response to the last request in the second burst

is sent when the queue is drained at time t = 35. With intention updates, the response to the last
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Figure 5.9: Approximating Queue Length with Intention Updates: (a) The request stream ex-
hibits bursts of activity at 3 < t < 5 and 13 < t < 15. (b) Each request is converted into two
network-level requests that each require a different amount of work to process. The graph plots the
cumulative amount of work in the system of each type and the amount of work serviced. (c) With
the first burst of activity, queues containing both types of requests begin to form. The intent queue
is drained, and the client receives a response to the last request of the first burst, at time t = 8. The
system then works to transfer data until it is interrupted by the next burst. The client receives a
response to the last request of the second burst at time t = 16. Data transfer is finally completed at
time t = 43.
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Figure 5.10: Approximating Queue Length with Unified Updates: An analysis of the queue
length of the system shown in Figure 5.9 assuming traditional, unified updates. The queue is
drained, and the client receives a response to the last request, at time t = 35.

request of the first burst is sent when the intent queue is drained at time t = 8. The response for the

last request of the second burst is send at time t = 16. By requiring the client to block only until the

intent is processed, response time is kept low. Of course, with intention updates, the improvement

in response time comes at the expense of durability. The modifications are not completely durable

until the data queue is drained at time t = 43. Until that time, some data is stored only at the client

and is susceptible to loss.

5.6 Evaluation via Simulation

Next, we consider how simulation can improve our understanding of the behavior and

consequences of intention updates. With simulation, we can compare the behavior of intention

updates against other protocols currently in use. Also, we can test with realistic workloads from

traces that have been widely studied in the literature.

5.6.1 Simulation Methodology

Figure 5.11 illustrates the simulator architecture. A trace generator feeds an identical

stream of requests to a “reference” system and a “test” system. The trace generator may output

synthetic traces or real traces from the literature (e.g. [Har93, RLA00]). Each subsystem consists

of one or more clients communicating with a single remote server. Each client has a dedicated
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Figure 5.11: Simulator Architecture: The simulator executes an identical stream of requests on
two systems in parallel. Typically, the “reference” system is configured to simulate ideal network
links (with no latency and infinite bandwidth), while the “test” system models more realistic con-
nections. Servers process requests without adding delay. After the event is executed in both system,
the simulator compares the outcomes and records the results.

connection to the server. Message delay is computed using the familiar α + β · n model, where

α corresponds to link’s latency, β corresponds to the link’s bandwidth, and n is the size of the

message in bytes. We typically configure the “reference” system to use “ideal” network links with

infinite bandwidth and no latency. Other network models we use are shown in Table 5.1. In both

subsystems, we assume that the server is infinitely fast; thus, a request’s service time is dependent

only on the network transmission delay. After an event is executed in both subsystems, the simulator

compares the results and records the outcome.

We record the absolute metrics of response time, durability latency, and visibility latency.

Network Type Latency Bandwidth
(ms) (kbit/s)

Ideal 0 ∞
Telephone Modem 100 56
Cable Modem 30 384 down/

128 up

Table 5.1: Network parameters: Message delay is computed based on a link’s latency and band-
width. The parameters corresponding to different networking technologies are shown in the table.
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We also record, to compare the two systems, relative metrics including response time penalty, dura-

bility latency penalty, and visibility latency penalty. See Section 2.2 to review how these metrics are

defined.

5.6.2 Modeling Client Protocols

In addition to modeling the behavior of intention updates, we model the protocols of

several well-known remote file systems. The NFS model exemplifies a stateless remote file system

like NFS [SGK+85] where open() and close() operations are performed locally. Our NFS model

does not perform any caching and thus transfers data between the client and server on all read()

and write() operations. The AFS-poll model is based on the initial version of AFS [HKM+88].

It implements whole-file caching; modifications are buffered locally and propagated back to the

server on close(). To ensure consistency, the client polls the server on each open() operation.

The AFS-cb model is similar to the AFS-poll model, but it uses callbacks to maintain consistency.

While callbacks were originally designed to improve scalability by reducing the number of requests

that must be handled by a server, they also benefit weakly connected clients by reducing the number

of messages that must traverse the weak link. Finally, the Coda-wc model implements Coda’s

strategy for supporting weakly connected clients [MES95]. Built atop AFS, Coda also uses whole-

file caching with write-back on close. To support weakly connected clients, Coda introduced trickle

integration which propagates data to the server asynchronously. All of these models use a unified

message to communicate metadata and data changes.

In evaluating the simulation results, we focus on how different protocols respond to store

operations because that is where the protocols differ most markedly. The file system operation

that actually transfers the data to the server differs between the protocols. For NFS, we focus on

write() operations; for models based on whole-file caching, we monitor the close() operation.

We can predict much about client behavior even before running any simulations. To

predict the performance of different protocols, we calculate the expected latency to access and store

data in the remote storage system based on the network messages required by the protocol. Our

model uses the parameters defined in Table 5.2. Let αu and αd signify the latency of the uplink and

downlink, respectively; let βu and βd be the bandwidth of the uplink and downlink; and assume a

message that transfers data is of size Mt while other small protocol messages (such as consistency

check, intent, and acknowledgement messages) are of size Ms bytes. From these definitions, we can

describe the read and write latency for each protocol.
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Parameter Definition
αu latency of the uplink
αd latency of the downlink
βu bandwidth of the uplink
βd bandwidth of the downlink
Mt size of message that transfers data
Ms size of “small” message that does not transfer data

Table 5.2: Parameters for Modeling Remote File System Performance: To estimate the perfor-
mance of different remote storage system protocols, we estimate the latency to access and store data
in the system based on the network messages required by the protocol. Our analysis depends on the
parameters define in this table.

Client Protocol Access Latency

NFS αu +Ms/βu +αd +Mt/βd

AFS-poll (uncached) αu +Ms/βu +αd +Mt/βd

AFS-poll (cached) αu +Ms/βu +αd +Ms/βd

AFS-cb
αu +Ms/βu +αd +Mt/βdCoda (uncached)

Intent
AFS-cb

0Coda (cached)
Intent

Table 5.3: Computed Read Latencies: The cost of accessing data depends on the protocol used by
the client and whether the client already has a valid copy in the cache. For NFS, the computations
apply to the read() operation; for other protocols based on whole-file caching, the computations
apply to the open() operation. The cost of accessing data depends primarily on the transmission
delay of the reply message, which depends on whether the server must supply the client with the
requested data or merely validate the copy in the client’s cache.
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Client Protocol Store Visibility Store Durability Store Response
NFS αu +Mt/βu VisNFS VisNFS +αd +Ms/βd

AFS-poll αu +Mt/βu VisAFS−poll VisAFS−poll +αd +Ms/βd

AFS-cb αu +Mt/βu VisAFS−cb VisAFS−cb +αd +Ms/βd

Coda-wc αu +Mt/βu VisCoda−wc 0
Intents αu +Ms/βu Respintent +αu +Mt/βu Visintent +αd +Ms/βd

Table 5.4: Computed Write Latencies: We analyze the cost of store operations using three met-
rics: visibility, durability, and response time. For NFS, the computations apply to the write()
operations; for AFS-based protocols, the computations apply to the close() operation. For tradi-
tional approaches that use unified updates, the visibility latency and durability latency are equal.
Intention updates reduce visibility latency and response time by sending only a small intent to the
server to make changes visible. The costs shown for VisCoda−wc, DurCoda−wc, and Durintent represent
minimum possible costs; costs can increase if other requests stall low-priority write-back traffic.

Tables 5.3 shows the read latency for the various protocols, depending on whether the

client has the document cached, in terms of the parameters of Table 5.2. Most protocols require the

client to contact the server when accessing data. When the client communicates with the server, it

must wait for the latency and transmission delay of both the upstream request and the downstream

reply. The upstream and downstream latency is a property of the link, not the protocol, and thus all

protocols pay the same cost (αu +αd ). The transmission delay depends on the size of the message

being sent. In our model, in which all protocol messages have the same size (Ms), the transmission

delay for the request is the same for all protocols (Ms/βu). The size of the reply message, however,

depends on whether the server needs to supply the client with data or merely validate the copy in

the client’s cache. Only the latter is needed in the AFS-poll model when the client has the data

cached, and thus the transmission delay of the reply is Ms/βd . For all other scenarios we model, the

server must supply the client with data and the transmission delay of the reply is Mt/βd . Of course,

for callback-based protocols (AFS-cb, Coda, and Intent), once the client has the data cached, it can

access the data again without contacting the server until it receives a callback for the object. Details

of the access costs are shown in Table 5.3.

For operations that write data to the server, we calculate three key points for each opera-

tion: when the application receives a response, when the data is visible, and when the data is durable.

Table 5.4 shows the results of those computations. For the traditional protocols that use unified up-

dates (NFS, AFS-poll, AFS-cb, and Coda-wc), the update becomes visible when the server receives

the write request. All of these protocols send the new data in the write request, and thus, the mes-

sage latency is αu + Mt/βu. Because the data is included in the request, the durability latency is
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equal to the visibility latency. In most cases, the client blocks until it receives a response, a small

protocol message, from the server. In the Coda-wc protocol, however, the client does not block

at all on write requests. The behavior of a system using intents differs greatly. In an intent-based

system, updates are visible after the server receives the intent message. We consider an intent a

protocol message, and thus it is much smaller (Ms) than a message that includes the new data (Mt ).

By virtue of the small size of an intent, the visibility latency is lower for systems using intention

updates. After submitting an intent, the client blocks until it receives a response to the intent. That

is, the client waits until the server responds with a small protocol message. The update becomes

durable when the server receives the data transfer message. At the earliest, the client can send the

data transfer message after it receives the intent response. The update is durable after an additional

time of αu + Mt/βu. The durability latency can increase, however, if the data transfer message is

preempted by other messages.

From these computations, we can predict the general trends that the simulator will reveal.

For example, given that Ms�Mt , we expect clients using intention updates to be more responsive

than clients using other protocols. Also, because of the high cost of accessing data in the NFS and

AFS-poll protocols, we expect these protocols to exhibit significant cumulative delay.

5.6.3 Simulating Synthetic Workloads

We begin our simulation studies by driving the simulator with a synthetic trace generator.

Using a synthetic workloads helps us identify the salient characteristics that distinguish the different

protocols.

The bursty traffic generator models clients that alternate between idle periods and periods

of activity, as shown in Figure 5.12. The cycle time determines the amount of time between consec-

utive periods of activity, and the bursty period dictates the length of the busy period. The average

interarrival time describes the event arrival rate averaged over the entire cycle. The event arrival

time is scaled by the relative length of the bursty period to ensure the specified average interarrival

time. Additional parameters control other aspects of the generated workload like the size of the

client’s file set, the file size distribution, and the read/write ratio.

First, consider the response to a bursty workload with files of uniform size. Figure 5.13

shows the simulation results to a bursty workload with 10-minute cycle time, 30-second bursty

period, and 10-second average interarrival time. Each client accesses a file set of 1000 4KB files;

20% of accesses write data. Clients in the reference system use ideal links; clients in the test system
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Figure 5.12: The Bursty Workload: The bursty workload is a synthetic workload that can be
useful for studying the response of storage systems in overload. In this workload, clients alternate
between idle periods and periods of activity. Parameters control the intensity of the bursty periods
and characteristics of the file set.

rely on telephone modems. This is a relatively light workload that does not saturate the modem

connections.

Figure 5.13(a) shows the cumulative distribution function (CDF) of response time, visi-

bility latency, and durability latency of store operations for the various protocols in the test system.

Because the files are of uniform size, most latencies are constant, as shown by the vertical lines.

The curves cross the x-axis at points predicted by the computations of Table 5.4. The curves corre-

sponding to Coda-wc’s visibility/durability latency and intention update’s durability latency exhibit

a tail with some operations taking longer than the computed minimum. These latencies are all de-

pendent upon the delivery of asynchronous messages. During bursts of activity, these asynchronous

messages can queue up behind one another at the client. The tail becomes more pronounced as the

intensity of the bursty period increases.

Although the latency of individual operations is regular and predictable, the cumulative

impact of the latency leads to more stochastic behavior. Figure 5.13(b) shows the CDF of the

response time penalty, visibility latency penalty, and durability latency penalty of store operations,

comparing the behavior of the test and ideal systems. Recall that the penalty measurements are

cumulative; one slow event can increase the penalty of later operations. The backlog may persist

indefinitely, but idle periods provide an opportunity for the client to empty its queue of waiting

events, “catching-up” to the reference system. First, we note that many of the curves contain vertical

segments intersecting the x-axis in the same place as in Figure 5.13(a). This indicates that most

operations are able to complete before subsequent operations arrive and reinforces that claim that
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Figure 5.13: CDF of Store Operation Performance with Uniform File Size: The synthetic bursty
workload is created with 10-minute cycle time, 30-second bursty period, and 10-second average
interarrival time. Each client has a file set of 1000 4KB files, and 20% of accesses are writes. The
reference system uses ideal links; the test system uses telephone modems.
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this is a relatively light workload. The x-intercepts of the AFS-cb curves are shifted slightly because

AFS-cb must poll the server on every open() operation. Next, we observe that all of the curves do

exhibit a tail. These features show that, even with light workloads like this one, queueing due to

slow networks can significantly increase the amount of time it takes the user to complete a sequence

of operations. The response time penalty of Coda-wc is negligible; a few operations are delayed

to fetch uncached data. The Intent model is the next most responsive; this model avoids delays by

requiring the client to send only small messages in the critical path of the operation. For the same

reason, the Intent model provides the minimum visibility latency penalty (with little impact on the

response time penalty). The durability of all models that use callbacks to maintain consistency is

roughly comparable. The high cost of accessing data dramatically affects the latency penalty of the

NFS and AFS-poll protocols. Some requests are serviced 10-40 seconds later than they would be

on a well-connected client. Finally, though the Intent model must send more total data across the

network, the durability latency penalty is not significantly greater than that of other protocols.

5.6.4 Simulating Traced Workloads

Understanding the basic features that the simulations reveal, we now model the response

of different protocols to real-world workloads. Specifically, we drive the simulator with the Roselli

traces [RLA00]. We use the workload recorded in the March, 1997 segment of the “research” trace.

This portion of the trace contains activity from 23 unique users. The “reference” subsystem still

models ideal network links; clients in the “test” system, however, now use faster networks modeled

on cable modem technology.

Figure 5.14(a) shows the CDFs for response time, visibility latency, and durability latency

for the different client protocols. Each curve combines the results of all users in the trace. The

graph shows many of the same trends as Figure 5.13(a). Each curve intersects the x-axis at the

point predicted by Table5.4. Many of the curves share a common point of intersection because

the trace contains some accesses to files that are empty or of very small size. As predicted by the

model, when Mt = Ms, many of the protocols behave in a congruent manner. Because the size of

the intent message is fixed, the response time and visibility latency of the Intent model are fixed.

The latency for other models increases as the size of the file, and consequently the size of the

message increase. For AFS-poll and AFS-cb, more than 10% of store operations take more than

10 seconds to complete. The durability latency of the Coda-wc and Intent models are comparable

with some writes taking more than several minutes to reach the server. The performance of the NFS
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Figure 5.14: CDF of Store Operation Performance with Workload from Roselli Traces: The
plots show the response of different protocols to the workload recorded in the March, 1997 segment
of the Roselli research trace. The reference system uses ideal links; the test system uses cable
modems.
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model appears to be competitive with the AFS-based models, but recall that NFS issues a write()

operation for each block written by the application. Although individual operations are relatively

fast, this approach has a pernicious effect on overall performance as we will see below.

Figure 5.14(b) shows the CDF of the response time penalty, visibility latency penalty,

and durability latency penalty of store operations, comparing the behavior of the test and ideal

systems. Again, recall that the penalty measurements are cumulative. The Coda-wc and Intent

models provide the best response time. By using small intent messages to make changes visible

at the server, the Intent model has a low visibility latency penalty too. The Intent model is able

to provide this improved service with negligible impact on durability latency penalty—the time

to durability is similar for all AFS-based protocols. Because it contacts the server on every write

operation, the NFS models lags in performance for most operations.

5.7 Simulating Variations

We now evaluate two of the key variations described in Section 5.3.

Asynchronous intents: In that section, we argued that some applications might benefit from the

improved response time of asynchronous intents. Figure 5.15 shows the potential performance

improvements. In this experiment, we use the workload generated from the Roselli traces assuming

clients rely on cable modem connections. We simulate both synchronous intents and asynchronous

intents. We measure the response time penalty, visibility latency penalty, and durability penalty

compared to clients working over ideal links.

With asynchronous intents, about 25% of all store operations have no response time

penalty—the user receives a response at the same time in both the ideal and test systems. For the re-

maining operations, the response time penalty is non-zero but is less than the response time penalty

of synchronous updates by roughly the round-trip latency of the link. The response time penalty is

non-zero because of delay accumulated from prior operations. However, when the operations are

finally issued, they complete with no delay.

As we would expect, the visibility latency penalty and durability latency penalty are

roughly equivalent whether intents are performed synchronously or asynchronously. The window

of vulnerability when the client believes the data to be visible and when it actually becomes visible

is less than 100 ms.
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Figure 5.15: Performance of Asynchronous Intents: Simulating clients from the Roselli traces
accessing remote storage over cable modems, we compare the behavior of synchronous and asyn-
chronous intents. Asynchronous intents reduce the client-perceived response time. The visibility
latency penalty and durability latency penalty are roughly equivalent.

Re-ordering data transfers: Also in Section 5.7, we explained how intention updates enable

clients to alter the order that data was transmitted to the server without risk of inconsistent access.

A client might re-order data transfer to provide better durability for certain types of data or to share

data with other users more quickly.

Figure 5.16 shows how re-ordering data transfers can improve performance for clients

sharing data. In this experiment, a user is accessing data from two devices simultaneously. The user

initiates most accesses from the primary device, but, occasionally, after writing data with the pri-

mary device, the user accesses the data on the second device (for example, to check cross-platform

compatibility). In the base case, data is propagated from the primary device in the order that it is

created, and the server blocks the accesses of the secondary device until data is available. In the

optimized case, when the secondary device requests data that is not yet available at the server, the

server sends a hint to the primary device requesting that it increase the priority of the transfer of the

requested data. We record the read latency distribution of accesses from the secondary device. The

results show that re-ordering data transfer messages can dramatically reduce the latency to prop-
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Figure 5.16: Re-ordering Data Transfers: The user accesses a file set of 1000 files with size
distributed as in the “large” workload. We simulate a bursty workload with 10-minute cycle time,
30-second bursty period, and 5-second average interarrival time. 20% of access are writes. The
secondary device accesses every 100th file touched by the primary device. Both devices use 56 kb/s
network connections. The graph plots the latency of accesses from the secondary device.

agate critical data to the server by ensuring that it is not queued behind other, less critical data.

The long-tail of the optimized case is due to large files—modifications to large files can be slow to

propagate, even when granted priority.

5.8 Discussion

In this study, we have explored how decoupling the update of metadata and user data can

improve the client-perceived responsiveness of a remote storage system.

We have seen through simulation of file system traces that bursts of activity are common

in real workloads. Further, we have seen that waiting for communication across a weak network

during bursty periods can delay requests, triggering the formation of queues of requests at the server

and increasing the time that it takes to service requests. As the queue length grows and the average

queue waiting time increases, client performance drops. To users, it appears that the system is
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sluggish; we have seen that it can take many minutes longer to complete some sequences of bursty

operations on a weak link than on a high-speed link.

The simulations also validated, however, the contention that we can create new protocols

to improve the responsiveness of remote storage systems. Specifically, we explored how a proto-

col that emphasizes update visibility and response time can reduce the amount of time users spend

waiting for requests to be serviced. In fact, simulations reveal that such protocols can reduce the

time needed to complete a session by as much as hundreds of seconds. These results corroborated

the results from out queueing theory analysis in Sections 5.5. The simulation reinforced the intu-

ition that small, high-priority messages can improve client-perceived performance by transmitting

messages from the client to the server quickly and keeping the state stored at the server current. We

were especially encouraged to see that intention updates could achieve these benefits at such a small

cost to data durability.

Finally, in simulating some variations of intention updates, we observe that the ability

to re-order data transfer messages could be a big benefit to weakly connected clients. With the

guarantee that the server can protect clients from accessing stale data, writers can re-order transfers

to push critical data to the server first. This feature can improve the durability and critical data and

facilitate sharing among weakly connected clients. We also note that the effect of asynchronous

intention updates is insignificant when using broadband networking technologies.



101

Chapter 6

Extent-Based Content-Addressable

Storage

In Section 1.4, we assumed that the interaction between the middleware file server and the

storage infrastructure had no impact on the client-perceived performance of the system. Of course,

this assumption is not trivially true. If a large network distance separates the middleware file servers

from a centralized storage provider or some members of a distributed storage infrastructure, then

interaction between the file servers and the storage infrastructure will impose additional latency on

requests.

In our experiences with large, distributed, content-addressable storage systems, like the

one that motivated our work, we observed that the latency of interacting with the storage infras-

tructure is even greater than the network latency would suggest. Attempting to reduce the latency

of reading and writing data to the system, we developed a new API for interacting with content-

addressable storage systems. In this chapter, we describe the problems that plague traditional

content-addressable systems and present the API that helped us overcome these problems. We

describe a wide variety of benefits that result from the adoption of this interface.

6.1 Background

Self-verifying data and the content-addressable interface have proven to be a solid founda-

tion on which to build large, distributed storage infrastructures. We begin by reviewing the concept

of self-verifying data and describing how designers exploit its properties to build distributed, scal-

able storage systems.
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6.1.1 Self-Verifying Data

Data is said to be self-verifying if it is named in a way that allows any client to validate

the integrity of data against its name. Traditionally, data is made self-verifying via one of two

techniques: hashing and embedded signatures. These techniques were made popular by the Self-

certifying Read-only File System [FKM00]. Hash-verified data is named by a secure hash of its

content. A client can verify hash-verified data by computing the hash of the returned data and

comparing it to the name used to fetch the data. Hash-verified data is immutable—if the data

changes, the hash-verified name of the data changes too.

Key-verified data is verified by a certificate that is signed by a user’s public key. The

certificate contains some token, such as a secure hash of the content, that securely describes the

data. To verify key-verified data, a client checks the signature on the certificate and compares the

data against the verifier in the certificate. Commonly, key-verified data is named by a hash of the

public key that signs the data’s certificate. With this approach, each key pair can be associated with

only a single object. To allow the system to associate multiple objects with a single key pair, other

schemes hash a combination of data, such as the public key and a human-readable name, to create

the name for the data. Key-verified data can be mutable—a client can associate new data with a key

by creating a new certificate.

Many systems employ Merkle’s chaining technique [Mer88] with hash-verified data to

combine blocks into larger, self-verifying data structures. Such systems embed self-verifying names

into other data blocks as secure, unforgeable pointers. To bootstrap the process, systems often

store the name of the root of the data structure in a key-verified block, providing an immutable

name for mutable data. To update data, a client replaces the key-verified block. See, for example,

CFS [DKK+01], Ivy [MMGC02], and Venti [QD02].

6.1.2 Content-Addressable Storage Systems

In content-addressable storage (CAS) systems, data is addressed not by its physical loca-

tion but by a name that is derived from the content of that data. CAS systems provide an interface

similar to the put()/get() interface of the traditional hashtable.

Figure 6.1 illustrates the the primary components of a distributed content-addressable

storage system. Clients issue read and write requests to the system. The storage servers provide the

actual storage for blocks stored in the system. The query router routes client requests to the storage

server that can fulfill the request. The distributed hash table (DHT) is a common implementation of
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Clients

Query Router

Storage Servers

Figure 6.1: Components of a Content-Addressable Storage System: A distributed content-
addressable storage system contains three primary components. Clients issue read and write re-
quests to the system. The storage servers are responsible for actually storing the data. The query
router routes client requests to the storage server that can fulfill the request.

Traditional interface:
put hash(H(data), data);
put key(H(PK), data);

data = get(h);

Table 6.1: The CAS System put()/get() Interface: First-generation distributed CAS systems
use a simple put()/get() interface. The put hash() and put key() functions are often combined
into a single put() function. H() is a secure, one-way hash function; h is a secure hash, as output
from H().

the query router.

In traditional CAS systems, all components operate at the granularity of a block using an

interface like the one shown in Table 6.1. Using this interface, the client issues a separate request

for every block access; storage servers distribute data at the block granularity; and the query router

indexes each block individually. Although we have shown put hash() and put key() as distinct

members of the interface, they are often implemented as a single put() function.

Not only do many system use a common interface, but they also to use self-verifying data

and the put()/get() interface in a common manner, illustrated in Figure 6.2. A client divides data

into small blocks, typically 4–8 KB or less. It computes the hash-verifiable name of each block

and links the blocks together, using the names as unforgeable references, to create a Merkle tree.

Finally, the client stores all blocks of the tree in the CAS system using the put hash() interface.

If the system supports mutable data, the client will typically use the put key() function to store a

key-verified block that points to the root of the Merkle tree, providing an immutable name to the

mutable data.
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Figure 6.2: Use of Self-Verifying Data in CAS Systems: Clients divide data into small blocks that
are combined into Merkle trees. A key-verified block points to the root of the structure. To update
an object, a client overwrites the key-verified block to point to the new root. (V = version, R =
version root, I = indirect node, B = data block)

To read data, a client first retrieves and validates the key-verified root block of the data

structure using the get() function. It can then iteratively fetch and verify the other hash-verified

blocks by following the chain of hash-verified names embedded in the tree.

Because each new hash-verified block of data has a unique name, CAS systems nat-

urally provide versioning capabilities. Some systems expose the versioning feature to the end

user [REG+03] while others do not. Using copy-on-write to provide efficient versioning has also

been implemented in other systems predating the distributed CAS systems that we describe [MT85].

Distributed storage systems derive several favorable properties from the use of the CAS

interface. First, a CAS interface helps ensure data integrity. If a system carefully selects the method

used to derive names from data, clients can validate the integrity of data retrieved from the system

against the name by which it was accessed. With self-verifying data, clients can detect data altered

by faulty or compromised components and re-fetch from alternate sources. Also, a CAS interface

promotes system scalability. Because the interface does not expose physical addresses to applica-

tions, the system can replicate and transfer data freely to add hardware resources or upgrade internal

protocols.

Self-verifying data is naturally well-suited to work with content-address storage systems,

with the self-verifying name serving ideally as a block’s identifier in the system. The self-verifying

property enables clients to request data from any machine in the network without concern of data
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corruption or substitution attack. A malicious or compromised machine cannot deceive a client with

corrupt data—its attack is limited to denying a block’s existence.

A number of recent distributed storage systems used self-verifying data and the content-

addressable interface as their foundation. Despite their independent development, many systems

share important design features. In identifying common design features, we have considered a

number of popular, first-generation content-addressable storage systems in the research literature

including CFS [DKK+01], Ivy [MMGC02], OceanStore [REG+03], Total Recall [BTC+04], and

Venti [QD02].

One notable counterexample to these design patterns is the PAST [RD01] system. PAST

uses the put hash() function to store whole objects as hash-verified blocks. As a result, PAST

cannot incrementally update objects; it can only completely overwrite old versions.

6.1.3 Consequences of the CAS Interface

The common design features have a significant impact on the behavior of the resulting

CAS systems. For example, the put()/get() interface forces the storage infrastructure to manage

data at the same granularity as the client. Although some applications, like off-line data processing,

handle data in large chunks, many interactive and user-oriented applications tend to create and

access relatively small blocks of data. By supporting fine granularity access, these systems allow

applications to fetch data without wasting scarce bandwidth at the edges of the network retrieving

data that is not needed or already cached. It allows applications to push data to the infrastructure as

soon as it is created, improving durability.

Coupling the infrastructure’s unit of management with the client’s unit of access, how-

ever, has several disadvantages. For example, because each block is managed independently in the

infrastructure, the storage system cannot identify locality. In fact, because most storage systems

use a block’s name to determine its placements, and because block names are effectively random

bit strings, the blocks comprising a single file or object are usually distributed among many servers

in the storage system. This has a detrimental impact on efficiency. To retrieve a file or object, the

client must flood the system with separate requests for each block and retrieve blocks from a large

number of servers.

Managing blocks individually also has a negative impact on the efficiency of indexing,

management, and maintenance. Some costs associated with these tasks are independent of the block

size. Thus, managing the small blocks created at the client increases the load on the infrastructure.
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Finally, the use of the block-based put()/get() interface dramatically increases the cost

of determining the owner of data stored in the system. Identifying the owner of a piece of data is

critical for any system that wishes to monitor per-user storage consumption or compute usage-based

fees. The approach most commonly proposed for implementing such functionality is to include

a certificate with each block of data. The certificate provides a secure, non-repudiable binding

between the data and its owner. The certificate remains co-located with the data, even as the data

is replicated or transferred. Although this solution is conceptually simple, the runtime cost of the

scheme is steep because the client must create and sign a certificate for each block it stores in the

system. In fact, some designers have deemed the feature infeasible because the cost of producing

certificates is prohibitively expensive [FKM00]. To illustrate this problem, assume an application

running on a 3 GHz processor wishes to store 1 TB of data. Dividing the data into 8 KB blocks

and using 1024-bit RSA cryptography, it would take more than six days to create certificates for the

data 1.

6.2 Improving CAS with Aggregation

We observed that many of the problems associated with current CAS systems stem from

the adoption of a block-based interface for storage, retrieval, indexing, management, and mainte-

nance. We now look at how to apply the lessons of previous storage systems research that used

aggregation to improve system efficiency to our domain.

The classical filesystems literature demonstrates repeatedly how aggregation can improve

the efficiency of storage systems. For example, the Fast File System (FFS) [MJLF84] increases

system performance, in part, by aggregating disk sectors into larger blocks for more efficient transfer

to and from disk. XFS [SDH+96] further aggregates data into extents, or sequences of blocks, to

reduce the size of the metadata and allow for fast sequential access to data. GoogleFS [GGL03]

aggregates data from a single file further still into 64 MB chunks, improving performance and per-

object maintenance costs for large files typical of their application domain.

More recently, the Glacier [HMD05] distributed CAS system, has shown how aggregation

can reduce the number of objects that the system must index and manage. Glacier [HMD05] relies

on a proxy trusted by the user to aggregate application-level objects into larger collections. All

collections in Glacier are hash-verified and thus cannot be modified after they are created.

1A 3 GHz Pentium-class processor can create a signature in 4 ms, as measured with the command openssl speed
rsa1024.
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Although Glacier pioneered the use of aggregation in a distributed CAS systems, their

solution does not directly apply to our target environment. We list below the goals that guide our

design for using aggregation in content-addressable storage systems.

• Self-verifiability: To protect data integrity, all data must be self-verifying at both the fine

granularity of the block and the coarse granularity of the aggregate. Self-verifiability allows

clients to verify data locally without rely on secure servers.

• Incremental update: For data durability, a client must be able to write data to the system

as it is created, without local buffering. Thus, the system must allow clients to add blocks to

aggregates that are already stored in the system.

• Fine-granularity access: To conserve bandwidth at the edges of the network, the system

must allow clients to access individual blocks without retrieving the entire aggregate.

• Low infrastructural overhead: The system should not require the infrastructure to index

and maintain data at the block level. The design should allow the infrastructure to amortize

the cost of maintaining data and verifying certificates over the larger aggregates.

• Identification of data owners: The system must be able to identify the owner of any piece

of stored data in a secure and non-repudiable fashion without reference to other blocks. This

allows individual nodes in the system to monitor consumption and compute usage fees on a

per-user basis locally, without contacting other machines in the system.

6.3 Extent-Based Content-Addressable Storage

To exploit the benefits of aggregation, we developed an API which raises the granularity

of management in content-addressable storage systems from the application-level block to container

objects called extents. In this section, we describe this interface, first at a high-level and then in a

detailed manner that includes the actual interface.

6.3.1 Overview of Extent-Based CAS

In an extent-based content-addressable storage system, storage servers stores container

objects, called extents, instead of individual blocks. Figure 6.3 illustrates the different contents of

a storage server in a traditional and extent-based CAS system. Each extent is filled with a set of



108

(a) Traditional CAS System
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(b) Extent-Based CAS System

Figure 6.3: Comparison of Storage Server Contents in Traditional and Extent-Based CAS
Systems: In traditional CAS systems, storage servers store and manage individual application-level
blocks. In an extent-based CAS system, storage servers store extents, which contain a collection of
application-level blocks and a certificate that identifies the owner of the data.

variable-sized application-level blocks. The contents of an extent are always collocated on a single

storage server. Extents are either mutable key-verified objects or immutable hash-verified objects.

All data in an extent is owned by a single principal. Associated with each extent is a certificate

signed by a client that includes the client’s identify. The certificate serves our goal of allowing

components to identify the owner of the data. The certificate also contains a token that represents

the current contents of the extent. The token is a cryptographically secure verifier (e.g. secure hash)

that summarizes the contents of the extent.

The system supports incremental update by allowing a client to add data to a key-verified

extent. The extent records the component blocks as a set ordered by the time they were written.

Adding blocks to an extent, then, can be understood as appending blocks to the extent. The client

submits a write request to the storage infrastructure that includes the data to be written and a new

certificate. The certificate contains a new verifier, updated to reflect the data to be added.

To allow different components in the system to manage data at different granularities, the

system supports two-level naming. In two-level naming, each block is identified not by a single

name, but by a tuple. The first element of the tuple identifies the enclosing extent; the second el-

ement names the block with the extent. Retrieving data from the system is a two-step process, as

illustrated in Figure 6.4. The system first locates the enclosing extent; then, it extracts individual

application-level blocks from the extent. Two-level naming reduces the management overhead in-

curred by the infrastructure by decoupling the infrastructure’s unit of management from the client’s

unit of access. The infrastructure needs only to track data at the extent level, and the client can still

address individual blocks at random.
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Figure 6.4: The Two-Level Look-up Process: In an extent-based CAS system, reading data re-
quires a two-level look-up process. Here a client requests to read block B1 from extent E1. First,
the query router routes the request to a storage server that stores extent E1. Then, the storage server
extracts block B1 from the extent and returns it to the client.

6.3.2 An API for Extent-Based CAS

Before developing an interface for an extent-based CAS, we must first must first define

how blocks and extents are named and verified. We will present our method for naming here without

completely explaining the reasons why this approach was chosen. As we subsequently present the

interface, we will highlight how this naming method supports and interacts with the API.

Blocks are named by a secure, one-way hash function, like traditional hash-verified data.

The key advantage of this approach is simplicity. Clients can compute and verify block names easily

without considering how blocks are aggregated into extents.

The approach used to name extents differs depending on whether the extent is key-verified

or hash-verified. Key-verified extents, like traditional key-verified data, are named by a hash of the

public key that verifies the certificate embedded in the extent. The name of a hash-verified extent,

like traditional hash-verified data, depends on the contents of the extent. We do not, however, merely

hash the contents of an extent.

A hash-verified extent is named by its verifier. To compute an extent’s verifier, we use a

chaining method [LKMS04] as shown in Figure 6.5. Assume an extent containing a sequence of

data blocks, Di, with names H(Di). The verifier is computed using the recurrence relation Ni =

H(Ni−1 + H(Di)), where + is the concatenation operator. We bootstrap the process by defining

N−1 to be a hash of the public key that signs the extent’s certificate. By defining N−1 in this was,

we ensure that the names of extents signed by different principals do not conflict. We call the
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Figure 6.5: Procedure for Computing Extent Verifiers: To compute the verifier for an extent, the
system uses the recurrence relation Ni = H(Ni−1 +H(Di)). N−1 = H(PK) where PK is a public key.

Two-Level interface:
status = create(H(PK), cert);
status = append(H(PK), cert, data[ ]);
status = snapshot(H(PK), cert);
status = truncate(H(PK), cert);
status = put(cert, data[ ]);

cert = get cert(ext name);
data[] = get blocks(ext name, block name[ ]);
extent = get extent(ext name);

Table 6.2: The Extent-Based CAS System Interface: By extending the traditional put()/get()
interface, CAS systems can support extents and two-level naming.

value produced by the recurrence relation a verifier because, in addition to naming the hash-verified

extent, we also use that value to verify the contents of a key-verified extent. That is, to create or

update a key-verified extent, the client must include in the certificate that will accompany the extent

a verifier to validate the content of the extent.

Using chaining to create verifiers has several advantages. It allows the system to compute

the verifier incrementally; when a block is added to an extent, the system must hash only the new

data, not all data in the extent, to compute the running verifier. Also, chaining creates a verifi-

able, time-ordered log recording data modifications. Finally, we will see below that this approach

simplifies the conversion of key-verified extents to hash-verified extents.

With these definitions for block names and extent names, we can now define an inter-

face for extent-based CAS systems, shown in Table 6.2. All operations that modify data stored in

the system require the client to provide a certificate authenticating the change; Table 6.3 lists the

contents of a certificate. To support the extent-based model, the interface extends the traditional

put()/get() interface, shown in Table 6.1, defining additional operations for key-verified data.
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Certificate contents:
verifier token that verifies extent contents
num blocks the number of blocks in the container
size the size of data stored in the container
timestamp creation time of certificate
ttl time the certificate remains valid

Table 6.3: Contents of an Extent Certificate: The certificate stored with each extent includes fields
to verify the contents of the contains and to identify the owner of the data.

putappend
truncate

create

Key−verified Data Hash−verified Data

snapshot

get

Figure 6.6: A Comparison of the Traditional and Extent-Based CAS Interface: The expanded
interface of Table 6.2 provides different commands to operate on different types of self-verifying
data. Commands create(), append(), and truncate() operate on key-verified extents while
snapshot() converts a key-verified extent into a hash-verified extent.

The new operations allow the system to support extents and two-level naming. Fig-

ure 6.6 shows how the operations relate to the different extent types. The create(), append(),

and truncate() operations allow clients to manage key-verified extents. The create() operation

initializes a new, empty key-verified extent for the client; append() allows the client to add data to

an existing key-verified extent; and truncate() deletes the contents of a key-verified extent. The

first argument in each request type identifies the key-verified extent to be modified. The second

argument is a certificate provided by the client that contains the verifier that securely describes the

new contents of the extent. To compute a valid verifier, the client must know the contents of the

extent prior to the requested change.

Another extension in the interface is the snapshot() operation. The snapshot() op-

eration converts mutable key-verified extents to immutable hash-verified extents. Although the

interface derives much of its power from the ability to append data to key-verified extents, it is not

feasible to store all data in key-verified extents. Because the name of a key-verified extent is a func-

tion of the key that verifies its contents, doing so would require clients to manage a large number

of key pairs (which is a difficult key management challenge) or extents to grow boundlessly large
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(which is undesirable because it limits how the storage system can replicate, manage, and transfer

data). Depending on the implementation, the system may copy the extent to a new set of servers

during the snapshot() operation. Since the verifier is a cryptographically secure digest of the con-

tents of an extent, it is a natural name for the new hash-verified extent. Since the client must sign a

certificate that contains the verifier, it must know the eventual name for a hash-verified extent even

before the snapshot() operation completes. We envision that a client-side library responsible for

communicating with the storage system will call the snapshot() on behalf of the application when

an extent reaches a specified maximum capacity.

The interface also provides three functions to access data stored in the system. The

get blocks() operation is the primary function for reading data, allowing applications to retrieve

one or more application level blocks from the system. The get cert() operation returns the cer-

tificate associated with an extent, allowing an application to determine the state of data stored in

the system. Finally, the get extent() operation supports bulk transfer and retrieval; it returns the

entire container including all blocks and the certificate. A single set of read functions support the

retrieval of data from key-verified and hash-verified extents—the query router does not distinguish

between the different types of extents, and the storage servers execute the request the same for both

types of extents.

6.3.3 An Example Use of the Extent-Based API

Consider the following example to illustrate a typical use of the proposed interface. Upon

joining the system for the first time, a client uses the create() interface to create a new key-verified

extent in the system. The storage system recruits one (or more, if an extent is replicated) storage

servers to allocate space for the extent. (For the current discussion, assume the existence of a black

box that can identify candidate servers. We call this the set identification service.) The set of servers

allocate space for the extent and agree to participate in its management.

After an extent has been created, the client can add data using the append() operation.

A client can append data to any key-verified extent for which it can create a certificate, signed with

the proper key, that asserts those changes.

When the key-verified extent reaches a predetermined maximum size, the client (or more

likely, a library working on behalf of the client) converts mutable extent to an immutable hash-

verified extent using the snapshot() interface. Like create(), snapshot() must query the set

identification service; however, the service may return a set containing some or all of the servers al-
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ready hosting the key-verified extent. If the sets do intersect, the system may consume less network

bandwidth in creating a hash-verified version of the extent.

After saving data in an immutable format, the client can reinitialize the key-verified extent

with a truncate() operation. The truncate() operation removes all blocks from the extent,

leaving a key-verified extent that is equivalent to a newly created extent. Although snapshot()

and truncate() are typically used together, we have elected to make them separate operations for

ease of implementation. Individually, each operation is idempotent, allowing clients to retry until

successful execution is assured. In Section 6.5, we will show how the snapshot() and truncate()

operations can be used to facilitate storing streams of data. Alternatively, an application could use

truncate() without snapshot() to overwrite data stored in the system.

The append(), snapshot(), and truncate() operations that transform key-verified ex-

tents are useful for applications that periodically write small amounts of data, allowing the system to

aggregate data in a way that was not possible previously. But in situations that applications quickly

write large amounts of data, using the sequence of operations can be inefficient. Instead, applica-

tions may write collections of blocks directly to hash-verified extents using the put() operation. A

client can have multiple outstanding put() operations for a single key pair. The put() operation

also relies of the set identification service.

In addition to supporting incremental update and fine-granularity access, extents and two-

level naming also allow distributed CAS systems to amortize some management costs. For example,

two-level naming reduces the cost storing certificates by amortizing the storage overhead over a

whole extent, allowing systems to devote a greater percentage of their resources to storing user data.

Similarly, two-level naming reduces the query load on the system because clients need to query

the infrastructure only once per extent, not once per block. Finally, assuming data locality—that

clients tend to access multiple blocks from an extent—systems can exploit the use of connections

to manage congestion in the network better.

Also, by using a single certificate to identify the owner of an entire extent, the extent-based

API makes tracking the owner of data stored in the system feasible. Consider again an application

running on a 3 GHz processor that wishes to store 1 TB of data with certificates produced using

1024-bit RSA cryptography. We saw that, dividing the data into 8 KB blocks, it would take more

than six days to create certificates for the data. If instead, the application stored data in an extent-

based system with 4 MB extents, it could create the necessary certificates in 17 minutes, a reduction

of three orders of magnitude over a system that implements the certificate-per-block approach.



114

6.4 A Secure, Append-Only Log Abstraction

Although the extent-based API meets the goals we defined in Section 6.2, it is not a famil-

iar or convenient interface for application writers. To bring the power of the interface to application

writers, we have layered a secure log API on top of the extent-based API. The log serves as a simple,

familiar, powerful abstraction for interacting with extent-based content-addressable storage.

Within the log abstraction, a log is owned by a single principal, identified by a crypto-

graphic key pair. Only the owner of the log can modify it. If, however, multiple devices share a

private key, then they all can modify the log.

The log interface exports a very limited interface: create(), append(), flush(), read(),

and getHead(). The log does not support a delete operation. The create() operation creates a

new log. The append() function adds one or more application-level blocks to the head of the log.

An application can ensure that all previously written data is stored durably by issuing flush(). The

read() function reads one or more blocks from the log. Finally, the getHead() function returns the

data block at the head of the log. For many applications, when activity to the log quiesces, the block

at the log head is similar to the root directory of a file system. As such, the getHead() function is

commonly used when “opening” or accessing a log for the first time. In the case that a client crashes

leaving the log in an inconsistent state, it may be necessary to use the low-level extent-based API to

scan back through the log seeking the last stable checkpoint to allow the application to recover. We

do not consider recovery of the log further.

To service requests using the log API, a library at the client translates commands of the

log API into commands from the extent-based API. The client library stores each log as an ordered

sequence of extents, each containing multiple, variable-sized application-level blocks. The extent

representing the head of the log is a key-verified extent. The client library appends blocks to the

log by appending them to the key-verified extent. When the extent at the head of the log reaches a

specified maximum capacity, the library snapshots the extent to convert it to an immutable, hash-

verified extent. The library then truncates the key-verified extent, preparing it to store new data at

the log head. As a consequence of the process, most data in the log is stored in hash-verified extents.

To maintain the log, the library inserts a small block of metadata as the first block into each extent.

This metadata block serves to link the extents into a single chain and aid in reading data from the

log.

The biggest challenge to using extents to implement a secure log is in determining how to

name blocks. When applications are serializing data structures to store in the log, they often embed



115

s=−1−> s=−1−> s=−1−>s=−1−>

s=1−>(E1,M1)
s=0−>(E0,M0)

Bl
oc

ks

D
at

a

s=0−>(E0,M0)

Bl
oc

ks

D
at

a

Bl
oc

ks

D
at

a

M2:  s=2 M1:  s=1 M0:  s=0

Name=E0Name=E1Name=E2

Log Head

Name=H(PK)

s=1−>(E1,M1)
s=2−>(E2,M2)

s=0−>(E0,M0)

M3:  s=3

Bl
oc

ks

D
at

a

Figure 6.7: Layering the Secure Log on Top of Extents: Shown here is a log that extends across
four extents. The head of the log is at the left; the oldest extent of the log is on the right. The first
(bottom) block in each extent is a metadata block that maintains the state of the log. The metadata
block (named M0, M1, etc.) contains the extent’s sequence number (s = 0, s = 1, etc.) in the log,
and a set of mappings to previous extents and metadata blocks in the log.

the names of blocks into the data structure. Recall that, using the extent-based API and two-level

naming, a block is addressed by a tuple that includes the extent name and the block name. When,

however, the extent at the head of the log is converted to hash-verified form, the name of an extent

changes. We cannot know the eventual hash-verified name of an extent as long as it remains in

key-verified form. To embed data structures in the log, applications need to know the name of a

block after it is appended to the log so that they can refer to those blocks. So, without knowing

the eventual hash-verified name of an extent, how do we refer to a block when serializing data

structures?

To create unique, unforgeable references for blocks stored in key-verified extents, the

client library assigns a sequence number, s, to each extent in the log chain. The first extent in a

new log is initialized with s = 0. After the extent at the head of the log is filled and the client

library issues the snapshot() and truncate() operations to prepare the log to accept more data,

the library clones the metadata block of the previous extent in the chain, increments the sequence

number, and inserts the block in the otherwise empty key-verified extent at the head of the log. For

the log interface, blocks are named by a tuple of the form (s,H(Di)) where H(Di) is the hash of the

block. When applications store blocks in the log, the client library returns the blocks’ new names.

Those names can be embedded in the application-level data structures.

The block names used in the log interface cannot, however, be used to retrieve data directly

because the extent-based storage system does not identify extents by log-defined sequence numbers.

To convert the log interface’s block names to the form used by the extent-based API, the client
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Figure 6.8: An Example Directory Tree: A simple file system used as a running example.

library maintains a mapping that resolves the sequence number to the permanent, hash-verified

extent name. This mapping is placed along with the sequence number in the metadata block in each

extent. Each time the mutable extent is made hash-verified and then truncated, the client library

records the mapping s j−1 → (E j−1,M j−1) where E j−1 is the hash-verifiable extent name of the

previous extent and M j−1 is the block name of the metadata block in the previous extent. Figure 6.7

illustrates how the client library uses extents to store the log, including the contents of the metadata

block.

6.5 Example Application: Versioning Back-up

To illustrate the use of the secure log, the translation of the log API to the extent-based

API, and the role of the log’s metadata blocks, we present a sample application. Specifically, we

show how a versioning file system back-up application stores data into a secure log.

A file system back-up application must convert the tree-based directory structure of a file

system into a form that can be stored in a log. In the simple design we present here, each directory

is stored as a single, variable-sized block containing the directory entries and a verifiable reference

to each child; each file is stored as a single, variable-sized block containing the file metadata and

data. (A more complete implementation could use the same techniques described in this section to

divide large directories and files into blocks.)

To archive a file system—for example, the simple file system shown in Figure 6.8—

the application translates the file system into a self-verifying Merkle tree in a depth-first manner.

The form of the resulting Merkle tree for the sample file system is shown in Figure 6.9(a). Into

each directory, the application embeds a verifiable pointer that refers to each child. The verifiable

pointers are the block names of the children in the log. The translation process is analogous to that

used in CFS [DKK+01]. Note the similarity between Figure 6.9(a) and the first version of the object

shown in Figure 6.2.
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Figure 6.9: Archiving the Initial Version of a File System: (a) The back-up applica-
tion translates the file system into a Merkle tree. The verifiable pointers are of the form
(extent sequence number,block name). Verifiable pointers refer to extent by sequence number be-
cause the permanent, hash-verifiable name is not known until later in the archiving process. (b)
The Merkle tree is stored in two extents. The first extent, E0, is filled and has been converted to a
hash-verified extent. The second extent, H(PK), is a partially filled key-verified extent. Notice that
the first block in extent H(PK) contains metadata including a reference to the metadata block, M0
of the previous extent.

Figure 6.9(b) shows the contents of the chain of extents after archiving the first version

of the file system. The first block in each extent contains the log metadata including the sequence

number of the extent and the mappings between previous sequence numbers and the corresponding

hash-verified names of their extent. In storing the initial version of the file system, the application

completely filled one extent and partially filled another. The filled extent, E0, has been converted

to a hash-verified extent by the client library and is immutable. The partially filled extent H(PK) is

a key-verified extent and can store more data at a later time. The first block in H(PK), its metadata

block, includes the mapping for the previous extent E0.

Figure 6.10 shows how the application handles modifications to the file system. Assume
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Figure 6.10: Archiving an Update to the File System: (a) The Merkle tree resulting from translat-
ing the updated file system. The dashed pointer indicates a reference to a block from the previous
version. (b) The contents of the extent chain after storing blocks of the updated file system.

the user edits the files in the proj2 directory. Figure 6.10(a) shows the Merkle tree resulting from

these changes. The dashed pointer indicates a reference to a block from the previous version, namely

block (s = 0,H(proj1)). Figure 6.10(b) shows the contents of the extent chain after recording

the changes. The application again filled the key-verified extent which has been converted to the

immutable hash-verified extent E1 by the client library. It then re-initialized the key-verified extent,

filled it with a metadata block recording the hash-verified names of previous extents and the name

of the metadata block in those extents, and appended the remainder of the file system data.

To recover the name of an extent corresponding to a sequence number, the client library

must consult the mappings that are stored in the extent. The mapping can always be found as the first

data block of the key-verified extent corresponding to the log. The client library can trade storage

for lookup latency by storing more or fewer mappings in each extent. In our implementation of the

log library, we maintain a logarithmic number of mappings in each extent which enables the client
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library to resolve any extent name in a logarithmic number of steps. The library may also keep a

local cache of these immutable mappings to accelerate future translations.

To read the file system stored in the log, the application will begin by requesting the data

block at the head of the log. The client library will query the key-verified extent at the log head

for a certificate to learn of the content of the extent; it will then request the last block to be added

to the extent and return it to the file system application. The head block corresponds to the root

directory of the file system and contains pointers to all of its children. To read one of the children,

the application issues a read() request that includes the pointer embedded in the root directory.

The pointer contains the sequence number of the extent containing the child and the block name of

the child. The client library will resolve the extent sequence number to extent name by consulting

the mappings stored in the metadata blocks of the log. It will then read the block from the extent

directly.

6.6 Prototype Implementation and Evaluation

The API presented in this chapter serves as the foundation of the Antiquity distributed

storage system. For a complete description of Antiquity, the reader should refer to other publica-

tions [WECK07]. In this section, we describe the high-level features of the Antiquity design that

relate to the extent-based API and present some evaluation results from the system.

6.6.1 Antiquity: A Distributed, Extent-Based CAS System

The Antiquity prototype demonstrates how to implement the extent-based API and two-

level naming interface efficiently in a distributed system. Antiquity uses a secure log to maintain

data integrity, replicates each log on multiple servers for increased durability, and uses dynamic

Byzantine fault-tolerant quorum protocols to ensure consistency among replicas.

Figure 6.11 illustrates the main components of the system. The primary role for most

machines participating in the system is that of storage server. Storage servers are responsible for

long-term storage of extents; they also handle requests to append data to existing extents, to convert

key-verified data to hash-verified form, and to read data from the system. To ensure availability

and durability in the presence of Byzantine failures, the storage servers implement replicated state

machines. Storage servers rely on distributed hashtable (DHT) [DZD+03] for query routing.

To access the system, a client communicates with a nearby gateway using RPC. The
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Figure 6.11: Components of Antiquity: Each node in Antiquity serves as a storage node and a
gateway for nearby clients. The administrator identifies sets of storage nodes to host extents.

gateway uses the underlying DHT to locate the appropriate storage servers to execute the request.

For operations that update the state of the storage servers, the gateway forwards the message to

each replica. If a client cannot obtain a satisfactory result through a given gateway, it can retry the

operation through an alternative gateway.

The administrator tracks the availability of storage servers provides the storage set iden-

tification service described in Section 6.3. That is, it identifies sets of storage servers to participate

in the management of an extent. The prototype implements this service as a single machine that

creates storage sets based on the neighbor lists from the underlying DHT. Design of a more robust

and fault-tolerant storage set identifier service is planned.

This prototype is written in Java. It uses the Java implementation of 1024-bit RSA cryp-

tography and makes extensive use of RPC. It uses the Bamboo DHT [RGRK04].

6.6.2 Experimental environment

We use several different shared test-beds to run our experiments. The storage cluster is

a 64-node cluster; each machine has two 3.0 GHz Pentium 4 Xeon CPUs with 3.0 GB of memory,

and two 147 GB disks. Nodes are connected via a gigabit ethernet switch. Signature creation and

verification routines take an average of 7.8 and 0.5 ms, respectively.

The test cluster is a 42-node cluster; each machine has two 1.0 GHz Pentium III CPUs

with 1.0 GB of memory, and two 36 GB disks. Signature creation and verification takes an average

of 24.9 and 1.4 ms, respectively. The cluster shares a 100 Mbps link to the external network.

Finally, PlanetLab is a distributed test-bed for research. We use 300 heterogeneous ma-
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chines spread across most continents in the network. While the hardware configuration of the Plan-

etLab nodes varies, the minimum hardware requirements are 1.5 GHz Pentium III class CPUs with

1 GB of memory and a total disk size of 160 GB; bandwidth is limited to 10 Mbps bursts and 16

GB per day. Signature creation and verification take an average of 19.0 and 1.0 ms, respectively.

The prototype has been running semi-continuously in two separate installations. We run a

small test installation on the storage cluster and a larger installation on PlanetLab. Both installations

are configured to replicate each extent on four storage servers.

6.6.3 Performance results

At an early stage of the Antiquity development, we used the several microbenchmarks to

measure the preliminary performance of the system and verify the benefits of the extent-based API.

The throughput microbenchmark: The extent-based API should improve client write through-

put. When storing multiple blocks, the client needs to provide only a single signed certificate to

authorize all of the changes. Because computing the signature for a certificate is a relatively expen-

sive operation, this change should result in a significant improvement.

We measure this effect using a simple throughput microbenchmark. In this test, a single

client write data as quickly as possible using the append() operation. When an extent contains

1 MB of data, the client library calls snapshot() and truncate() on behalf of the application.

Each update contains one or more 4 KB application-level blocks; we measure the throughput of the

application as we vary the size of the update. Each test lasts 60 seconds.

Figure 6.12 shows the throughput of a client as the update size varies for the deployment

running on the storage cluster. Each data point is the average of 5 tests. The plot shows that

clients using the proposed interface can achieve a near-linear improvement in write throughput

by amortizing the cost of computing signatures over larger updates. The graph also shows the

throughput of a clients using the traditional put()/get() interface which requires a separate signed

certificate for each block.

The latency microbenchmark: The second microbenchmark measures the latency of individual

operations. For each operation, we define the latency to be the time from when client begins send-

ing a request to the gateway until the client receives the response. In Figure 6.13, we report the

cumulative distribution function (CDF) of the latency of each type of operation assuming 1 MB ex-

tents, 32 KB updates, and 4 KB blocks. Figure 6.13(a) reports on the system hosted on the cluster;
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Figure 6.12: Throughput Improvement Due to Extent-Based API: Client throughput increases
with update size by allowing the clients to amortize the cost of producing certificates over multiple
blocks of data.

Figure 6.13(b) reports on the system hosted on PlanetLab.

First, consider the performance on the cluster (Figure 6.13(a)). In general, the latency

of an operation depends on how much data the operation must transfer and whether the operation

requires the use of the storage set identifier service. The append() and truncate() operations

are the fastest. These operations transfer little or no data and do not require the use of the set

identifier service. The append() operation (median latency of 78 ms) is faster than the truncate()

operation (median latency of 132 ms) because the former requires one sequential write to the local

disk whereas the latter requires several writes to delete data that is scattered across the disk, and,

in the local cluster, disk latency dominates network latency. The create() operation is the next

fastest operation. Although it does not transfer any data, it must query the set identification server

for a set of servers to host the new extent. Finally, the snapshot() and put() operations are the

slowest. Not only must they query the set identification service, but they must also transfer a full

1 MB extent to multiple storage servers. The snapshot() operation copies data to a new set of

storage servers because the set identification service determines storage sets based on extent name.

The performance trends on the PlanetLab deployment (Figure 6.13(b)) mirror those on

the cluster. The append() and truncate() operations are the fastest. On PlanetLab, however, the

truncate() operation (median latency of 1293 ms) is faster than the append() operation (median

latency of 2466 ms) because network latency dominates disk latency. Because of the cost of trans-

ferring large extents across the wide area, snapshot() and put() are very high latency operations;
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the median latency for put() operations is 13,462 ms and the median latency for snapshot() is

23,332 ms. We believe that snapshot() takes longer than put() because the disk is a highly con-

tended resource in PlanetLab and reading the key-verified extent from disk before transfer can take

a significant time.
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125

Part III

Putting It All Together
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Chapter 7

Moxie: A Prototype Remote Storage

System for Weakly Connected Clients

In this chapter, we present the design and evaluation of Moxie, a prototype remote storage

system for weakly connected clients. Moxie implements the delta-encoding and intention updates

techniques described previously in this thesis. It stores data in a secure log that is accessed through

the two-level API described earlier. In building the Moxie prototype, we seek to validate the use

of the techniques previously studied in simulation in real-world systems. We also demonstrate that

these techniques can be combined in a single system.

7.1 Moxie Overview

The key components of the Moxie prototype are shown in Figure 7.1. The Moxie proto-

type includes an implementation of the client library and middleware server. Clients communicate

with servers via Remote Procedure Call (RPC) using a custom protocol defined using the External

Data Representation (XDR) standard. The protocol supports delta-encoding as described in Chap-

ter 4 and intention updates as presented in Chapter 5. The middleware server stores data to a secure

log implementation with an interface as described in Chapter 6.

To support delta encoding, the prototype is designed around the use of the data structure

described in Section 4.1. The client and server can manipulate and interpret this structure. The

client/server protocol supports operation-based updates, allowing the client to describe changes to

be made as a series of block insert and delete operations. The server applies updates and writes new

blocks to the secure log.
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Figure 7.1: Components of the Moxie Prototype: The Moxie prototype include an implementation
of the client library and the middleware server. The server writes data to a secure log.

The prototype also implements intention updates. When a client modifies a file, it sends a

synchronous intent to the server. After the server processes the intent and responds to the client, the

application may continue. The corresponding user data is transferred to the server asynchronously

as bandwidth is available. By default, buffered data is transferred in a FIFO manner. Data transfer

messages have the lowest priority for the network; all other file system traffic is transferred with

higher priority and in the order it was generated. The prototype includes two implementations of

the agent responsible for managing the transfer of data. The DB transfer manager buffers data in a

local database ensuring data durability should the client crash. This durability comes with the cost

of lower performance because of the data must be copied to and from the database on each update.

The hash transfer manager buffers data locally in in-memory hashtables until bandwidth is available

to transfer it to the server. This transfer manager is fast, avoiding extra data copies. However, the

hash transfer manager does not ensure data durability if the client should crash, and the amount of

data that can be buffered is limited by the amount of client memory. The hash transfer manager

understands how blocks comprise files, and, thus, can support more advanced forms of data transfer

reordering. We will show the effectiveness of this advanced feature in Section 7.5. To support

intention updates, we extended the secure log API of Chapter 6; we will discuss these changes in

more detail below.

The Moxie middleware file server writes data to any backing store that supports the two-

level API presented in Section 6. Currently, we have two backing stores that support this inter-

face. The database log stores the log in a database. The database log is designed to run on the

same machine as the file server. Data is written to the local disc only; it is not replicated. An-

tiquity [WECK07] is a wide-area distribute storage system that exploits the secure log and API to
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provide stable storage from a collection of loosely connected, geographically distributed machines.

Antiquity replicates each extent on multiple machines for durability, uses Byzantine quorum pro-

tocols to maintain consistency of replicas, and integrates fault-tolerance protocols to recover from

outages and Byzantine attacks.

The Moxie prototype parameterizes many features to allow rapid reconfiguration. By re-

configuring the system, we can observe and measure the system with different feature sets. To allow

us to evaluate some of the key topics of this thesis, the prototype can be configured to use different

write-back strategies and methods for update encoding. The Moxie client implements two write-

back strategies: intention updates and unified, synchronous updates. When using intention updates,

the client sends intents to the server synchronously; if the intent is accepted, the corresponding data

is transferred asynchronously. Intents are signed; data transfer messages are not. To allow compari-

son, the client can also be configured to use synchronous, unified updates for write-back. The client

must sign the entire unified update message. To compute updates, the client can be configured to

use one of three methods. Using whole-file write-back, the client updates the entire file if even a

single byte has changed. In block-based write-back, the client divides a file into fix-sized blocks

and updates only those blocks that have changed. The prototype can also be configured to compute

differential updates using Rabin fingerprinting as described in Chapter 4.

To allow us understand how mechanisms for ensuring data privacy and integrity affect the

performance of a remote storage system, we can configure the cryptography algorithms used by the

prototype. Data privacy is guarded through client-side encryption. We compare the performance

of prototype using the null cipher, which leaves the data unencrypted, to data encrypted with the

Advanced Encryption Standard (AES) cipher with 128-bit keys. To guard data integrity, the system

relies on public key cryptography and digital signatures. We compare the performance of the pro-

totype without signatures, with 3-kilobit RSA signatures, and 256-bit elliptic curve cryptography

(ECC) signatures. The key sizes for RSA and ECC cryptography are chosen to provide comparable

security [Age06].

7.2 Moxie Implementation

The Moxie prototype is implemented as a user-level filesystem. Developing the prototype

at user-level allowed us increased flexibility in selecting the programming language and develop-

ment tools for the project. It decreased development time because bugs in Moxie did not crash the

kernel. Finally, it allowed us to use a number of libraries built as part of the OceanStore project.
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The Moxie client and server are implemented in the Java programming language, writ-

ten in an staged, event-driven style [WCB01] using the Bamboo toolkit [RGRK04]. This style,

combined with the use of asynchronous I/O libraries, simplifies the implementation of network

services by dividing the design among multiple, cooperating stages and avoiding the thread-based

concurrency models that are hard to understand [WCB01]. The event-driven model also allows us

to exploit a number of libraries and modules built for related systems in the OceanStore project to

reduce development time. For example, we use RPC libraries developed for the Antiquity prototype

and an asynchronous interface to Berkeley DB originally used in the OceanStore Pond prototype.

The core implementation of the Moxie is approximately 23,000 lines of Java code. Test

code and custom libraries are another 11,000 lines of code. The Moxie client/server API defines 15

remote procedure calls.

7.2.1 User-Level File System Toolkits

We elected to build Moxie using the FUSE (Filesystem in USErspace) toolkit [Sze04].

The FUSE distribution includes a Linux kernel module and a user-level library. The kernel module

can be installed in a running kernel to intercept system calls to the file system at the VFS layer. The

kernel module passes all file system requests to a user-level library through a domain socket. The

library, in turn, propagates the event to a user-level implementation that has been registered with the

library. After handling the request, the file system implementation returns the result to the user-level

library, which responds to the kernel module through the domain socket. Figure 7.2 illustrates this

architecture.

While numerous options for building user-level file systems exist, we chose FUSE for

several reasons. It appears to be a stable, well-supported project with a vibrant user community and

has recently been accepted into the official Linux kernel source tree. It has been used to build a

number of file systems, including at least one that is in the research literature [CDB04]. Finally, it

provides Java bindings so that we can reuse much of code we have already written—including code

from simulations, code in the Antiquity prototype [WECK07], and even code from the OceanStore

Pond prototype [REG+03].

We debated using several other approaches and toolkits. A standard approach for devel-

oping user-level file systems is to build a NFS loopback server. We rejected this approach because

it limits a file system to using the NFS protocol that, among other limitations, does not include

open() and close() system calls. We considered using the SFS toolkit [Maz01]. We rejected this
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Figure 7.2: The FUSE Architecture: The FUSE toolkit includes a kernel module and user-level
library. The kernel module receives file system requests through the VFS interface and passes the
requests to the user-level library through a domain socket. The library then passes the requests to
the file system implementation that has registered with the library. Results pass through components
in the reverse order before reaching the application.

library because it provides an NFS interface and requires the use of a complicated programming

model. The Arla project [DW98] is a free re-implementation of AFS. Although most of the code

runs at user-level, it uses a kernel module called xfs or nnpfs (depending on the version) to for-

ward file system calls to user level. While nnpfs is meant to provide similar functionality to the

FUSE kernel module, it is not a complete or mature implementation. The LUFS (Linux Userland

FileSystem) [Mal02] is a project with similar goals and approach as FUSE. Like Arla, however, it is

less mature and not well supported. Also, the SFS toolkit, nnpfs kernel module, and LUFS project

provide no support for programming in Java. Finally, FiST [ZN00] (File System Translator) is a

tool that generates code for stackable file system layers. We rejected this tool because the code it

produces is intended to run in kernel-mode which slows development time.

7.2.2 Moxie Client

Figure 7.3 shows the key components in the Moxie client implementation. To support the

use of Java and the event-driven programming model, we use FUSE-J and a custom programming

model translator. FUSE-J [Lev05] is a set of Java bindings that provide access to FUSE through the
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Figure 7.3: Key Components in the Moxie Client: The Moxie client is implemented by several by
several cooperating stages. The Moxie Client Logic oversees the execution of each request, relying
on other stages for handling specialized tasks. All components shown in the figure execute with a
single JVM.

Java programming language via the Java Native Interface (JNI). The programming model translator

converts FUSE’s threaded programming model to Moxie’s event-driven style. It supports multiple

concurrent requests and records a number of statistics for evaluating the performance of the file

system implementation on the different types of requests. The translator is not specific to Moxie; it

could be used by other developers building user-level file systems in the Bamboo framework.

The Moxie Client Logic oversees the actions initiated by the request, relying on other

stages to help service the request. The Cache Manager maintains the local disk cache. Because

the prototype implements whole-file caching with write-back on close, all read() and write()

requests are executed in the cache. When an application issues a close() request after modifying

file data, the Update Encoder computes the changes that must be sent to the server. The Update

Encoder also maintains the data structures, like the file summaries, that are used to compute updates.

The Transfer Manager supervises the asynchronous write-back of data when using intention updates.

When the client uses unified updates, the Transfer Manager is not needed. Finally, all requests that

must be passed to the server are sent to the RPC scheduler that manages the order that messages are

transmitted to the network.

7.2.3 Moxie Server

Figure 7.4 highlights the key components in the implementation of the Moxie middleware

file server. In a similar fashion to the client implementation, the Moxie Server Logic oversees

the handling of each request. The server maintains two caches: the Data Cache stores recently
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Figure 7.4: Key Components in the Moxie Middleware File Server: The Moxie server is imple-
mented by a collection of cooperating stages. While the Moxie Server logic oversees the execution
of each request, most of the complexity at the server serves to interact with the log. All components
shown in the figure execute in a single JVM.

accessed data blocks and the Resolve Cache stores information to allow the server to map file paths

to addresses in the log. Most of the complexity at the server serves to translate data structures to

and from the format stored in the log. The Data Formatter manages the storage and retrieval of the

B-tree-like data structure to and from the log. The Log Formatter manages the inode map [RO92]

that allows the server to find files and directories stored in the log. The Secure Log stage uses the

log API to store and retrieve data in the log which may be stored locally or distributed and replicated

across the wide-area.

7.3 Implementation Issues

In translating the ideas of Chapters 4, 5, and 6 into a single prototype implementation, we

discovered several interesting challenges. In this section, we describe three of those issues.

7.3.1 File Summaries and Delta Encoding

As the development of the prototype progressed, we were frustrated to observe that the

delta-encoding mechanisms were not detecting any commonality between consecutive versions of

files. This was especially puzzling because the implementation of the core algorithms was the same

code that was used in the simulations of Chapter 4.
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Upon further investigation, we discovered that the most common uses of the file system

API would prevent our implementation from ever detecting any commonality. When writing a new

version of a file to storage, most applications and utilities first issue a truncate() or remove()

operation to erase the old contents of the file. As a consequence of this procedure, between any two

application-level versions of a file, there is, in the file system, an additional version that contains no

data. Consequently, in the common case, no two consecutive versions of a file would ever exhibit

any commonality. Of course, the intermediate version which contained no data is typically very

short-lived.

To overcome this issue, we exploit the fact that, at the lowest level, the data stored in

Moxie is stored in a log and is not ever deleted. Because all data is stored in non-erasable, log-

based storage, the client can compute delta-encoded updates against any previous version of the

file, not just the immediately preceding version. Based on common usage patterns, the client should

compute an update based not on the version of a immediately preceding version of the file, but rather

against the version preceding the transient, empty version of the file.

To allow the client to compute updates against older versions of a file, the client must

maintain the file summaries of multiple previous versions. Practically, Moxie maintains the file

summary for the previous two versions of the file. Considering that one of these summaries typically

describes a version of the file that contains no data, the storage overhead of one extra summary per

file is small. A couple of simple heuristics determine which of the previous file summaries to

use as the base version for computing updates. With this additional insight and upgrade, the Moxie

prototype was able to exploit commonality between versions of a file as predicted by the simulations

of Chapter4.

7.3.2 Control of Data Write-back

While testing Moxie’s support for intention updates, we observed that the order requests

were being sent to the network did not match the desired results. In particular, we observed that

low-priority data transfer messages were often transmitted before other high-priority requests. We

will present the experimental results that led to this observation in Section 7.5.4.

We learned, after further investigation, that the problem was due to the fact that the Moxie

client, operating at the user-level and inside the JVM has no direct access to the network buffers.

The Moxie client can query when the underlying network connection can accept more data to write,

however, it has no control over how long the data will wait in the network buffer before being
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Interfaces for Intention Updates:
status = reserve(H(PK), cert, reservation[ ]);
status = fill(H(PK), reservation[ ], data[ ]);

Table 7.1: Extensions to the Extent-Based API for Intention Updates: To support intention
updates in an extent-based content-addressable storage system, we extend the API of Chapter6 with
two new operations that reserve space in the extent and fill the reservation.

transmitted. This makes it very hard to schedule network traffic at the application level.

Interestingly, this is the same problem describe in the documentation for Linux’s Ad-

vanced Routing and Traffic Control [Hub04] that we use to shape traffic to emulate wide-area net-

work connections. That documentation explains that to schedule traffic effectively, one must “own

the queue” of the bottleneck link.

We believe that, to implement intention updates in an optimal manner, the Moxie client

must have low-level access to the queue at the network. It is not sufficient merely to place an order

on requests as they enter the queue. To prioritize traffic, the Moxie client must be able to control

the order that requests exit the queue and enter the network.

7.3.3 Supporting Intents in the Secure Log

To support intention updates, the data format and underlying storage layer must be able

to record the existence of a data block without access to the actual block. The extent-based API

presented in Chapter 6 does not support this.

To support intention updates in the extent-based API, we extended the API with two

new operations. The extension introduces the concept of a reservation in an extent. A reservation

describes a block of data that the system will receive at a later time. The reservation includes a

secure hash of the block and the amount of data in the block.

Table 7.1 shows the new operations that an extent-based content-addressable storage sys-

tem must implement to support intention updates. The reserve() operation is similar to the

append() but includes one or more reservations instead of data blocks. The storage system handles

a reserve() request in a similar manner as an append() request; it confirms that the certificate in-

cludes a valid verifier that summarizes the state of the extent after adding the data described by the

reservations and, if the certificate is valid, updates the extent to reflect the changes. A reservation

supplies the storage system with enough information to compute the extent’s new verifier and track

the size of the extent’s contents.
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The client uses the fill() operation to consummate a reservation with the actual data.

The storage system finds the reservation stored in the extent, confirms that the block matches the

data described in the reservation, and then inserts the data into the extent. Note that the fill()

does not require a certificate. The secure hash in the reservation allows the storage system to verify

the integrity of the data in the request. If the storage system cannot find a matching reservation or

the data does not match that described in the reservation, then the request can be ignored.

7.4 Experimental Environment

To evaluate the Moxie prototype, we run the client and server implementations on two

machines connected via a local-area network. We emulate weak network connectivity by restricting

bandwidth and imposing latency on all traffic between the two machines.

The Moxie client runs on a machine with a dual-core, 3 GHz Intel Pentium 4 processor

and 1 GB of memory. The machine runs the Debian “Etch” distribution with the 2.6.17 Linux

kernel. The Moxie server runs on a machine with two dual-core, 3.8 GHz Intel Xeon processors and

6 GB of memory. The server machine runs the Red Hat 3.4 distribution with a 2.6.9 Linux kernel.

Both the client and server run in Sun’s Java 1.6 “Mustang” JVM. Elliptic curve cryptography is

provided by Mozilla’s Network Security Services (NSS) libraries.

We use Linux’s traffic control mechanisms [Hub04] (and the tc utility) to emulate weak

network connectivity. All traffic related to the prototype is enqueued to a queueing discipline that

includes a token bucket filter (tc’s tbf queueing discipline) to limit outbound bandwidth and a

network emulator (tc’s netem queueing discipline) to impose latency on all packets. We control

outbound traffic on both the client and server, enabling the emulation of asymmetric connections.

We verified the latency and bandwidth of the traffic control configuration using a custom ping appli-

cation written using the same tools as the Moxie prototype that can be configured to carry variable-

sized payloads.

7.4.1 User-Level NFS Implementation

For comparison against a known system, we have built a user-level NFS (version 2) client

and server. The file system is implemented using the same tools used to create the Moxie pro-

totype including FUSE, FUSE-J, Bamboo, the programming model translator, and RPC libraries.

At the server, data is stored on the local file system using Java’s I/O facilities. To access file sys-
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tem interfaces not accessible by Java’s API, we spawn external processes. This approach is used

to handle link(), symlink(), readlink(), rmlink(), stat(), chown(), chgrp(), chmod(),

atime(), and mtime() requests. Although the number of request types that must use external

processes is significant, these request types comprise only a small percentage of total requests in

most workloads. The common file operations (create(), open(), close(), read(), write(),

and remove()) and directory operations (mkdir(), rmdir(), readdir()) can be handled purely in

Java. The NFS implementation supports attribute caching and data caching as described by Stern,

Eisler, and Labiaga [SEL01] and Smith [Smi06].

7.5 Experimental Results

We now describe a number of experiments and their results that demonstrate the features

and advantages of the Moxie prototype.

7.5.1 Delta-Encoded Updates

We begin by demonstrating the effectiveness of delta-encoded updates. To exercise this

feature, we apply a workload that upgrades a software distribution. We first copy the source code

distribution for Tcl 8.4.13 into the remote file system. This distribution includes 754 files and

directories and 16 MB of data. We then upgrade the tree to the development version 8.5a4. This

latest development version includes 23 MB of data in 1501 files and directories.

To update the distribution, the file system performs 2112 updates. The workload produces

more than one update per file because files that already exist in the previous version are first trun-

cated and then filled with new data. Without delta-encoding, the updates would write 18.5 MB to

the remote file system. Delta-encoding is able to reduce the amount of data written by 16.6%.

We execute this workload on a file system hosted by Moxie under several different net-

work types. We measure the total runtime of the workload with and without delta-encoding enabled.

For this experiment, we configure the prototype to use unified updates. The client does not sign re-

quests or encrypt data.

Figure 7.5 shows the effect that delta-encoding has on the total runtime of this workload.

The total runtime of the workload increases dramatically as the bandwidth of the network decreases.

Delta-encoding has little if any impact on the initial copy phase of the workload; this is not surpris-

ing because the initial phase does not include any opportunities to find similarity to previously stored
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Figure 7.5: Effect of Delta Encoding on Runtime: Delta-encoding improves the total runtime
of a workload depending on the amount of commonality in the workload and the bandwidth of
the network. Comparing the copy phase of the workload shows that delta-encoding imposes little
overhead when copying files into the file system. Delta-encoding decreases the runtime of the
update phase by transferring fewer bytes to the server.

versions. It is encouraging, however, that the overhead of fingerprinting each file and creating file

summaries does not slow the client appreciably.

Delta-encoding does reduce the total runtime of the second phase. At high bandwidths,

the improvement due to delta-encoding is negligible because the small amount of bandwidth con-

served is insignificant compared to the available bandwidth. At lower bandwidths, however, the

improvement is appreciable. At 56 kb/s, the workload completes more than 6 minutes faster when

delta-encoding is used. Measured in percentages, the improvement in runtime approaches the frac-

tion of commonality in the workload.

7.5.2 Intention Updates

To demonstrate the benefits of intention updates, we write a large data set to the file system

hosted by Moxie. Specifically, we store 10 digital photos with a cumulative size of 24 MB using

the standard file system copy utility. We record the client-perceived response time, the visibility

latency, and the durability latency using both traditional, synchronous, unified updates and intention

updates. For this experiment, the client does not sign requests or encrypt data.
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Figure 7.6: Effect of Intention Updates on Runtime: Intention updates reduce the visibility la-
tency and response time by more than an order of magnitude compared to traditional, synchronous,
unified updates. With intention updates, the durability latency is roughly equal to the response time
of traditional updates. The current implementation introduces a slight additional delay in durability.

Figure 7.6 compares the amount of time to execute this workload using a variety of dif-

ferent network types. The bars corresponding to unified updates show the response time. The client

machine blocks during this period. With unified updates, the data is visible and durable before the

client received a response.

The bars corresponding to intention updates show both the visibility latency (the thin

white sliver at the x-axis) and the durability latency. The response time is slightly longer than the

visibility latency by the one-way network latency. With intention updates, the visibility latency

and response time are more than an order of magnitude faster than the response time of traditional

updates.

The time to durability is greater for intention updates than unified updates. Some dura-

bility latency penalty is expected because of the bandwidth overhead of using intents and the low

priority given to data transfers. The durability latency penalty of the Moxie prototype is greater still

due to implementation issues. The current implementation of the DB transfer manager is block-

based rather than file- or object-based. Although this gives the data transfer manager great flexi-

bility in ordering data transfers messages, it does introduce additional overhead in the data transfer

phase. We believe that further optimization of the data transfer manager component could reduce

the durability latency penalty.



139

 0  500  1000  1500

W
ri

te
 O

pe
ra

tio
n

Time (s)

Issue Time, Visibility, and Durability Timeline

(a) Unified Updates.
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(b) Intention Updates.

Figure 7.7: Visibility and Durability Timelines: The timelines illustrate how the execution of
individual updates leads to the behavior reported in Figure 7.6. Each horizontal line corresponds to
an update; the points on the line highlight important points in the life of the update. (a) For unified
updates, the points show when the update is issued and when the response is received. (b) For
intention updates, the points represent when an update is issued, when the update is made visible,
and when the update is made durable.
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Refer to Figure 7.7 to visualize the behavior of intention updates. These graphs present a

timeline of activity for the workloads reported on in Figure 7.6. Each horizontal line on the timeline

refers to the copy of a single photo to Moxie. The points on the line show the timing of significant

parts of the process. Figure 7.7(a), for example, shows the time when the client issues the update

request to write a photo to the server and the time the client receives the response. The “step-shaped”

pattern in the figure shows that the client transfers a photo entirely before continuing on to another

photo. The user does not receive a response until the entire operation (the transfer of 10 photos)

completes.

Figure 7.7(b) shows the timeline when intention updates are used. The points on each

line correspond to when the update is issued, when the update is visible, and when the update

is durable. Given the scale of the figure, the first two points are mostly overlapping. The client

receives a response to each update quickly (after the update is visible) and can then issue the next

update. Notice that the issue time of the updates is staggered only slightly. As long as the client

continues to issue updates, the data transfer proceeds only with low priority. This allows the updates

to complete promptly, and the user receives a response quickly. After the last update completes, the

client allocates the full bandwidth of the link to transferring the data. The data transfer manager

pushes the data out to the network in a first-in, first-out manner. This timeline illustrates how

intention updates benefit weakly connected clients by prioritizing small intent messages to make

updates visible and overlapping the transfer of data with other operations.

7.5.3 Reordering Data Transfers

Intention updates allows clients to keep server state current while providing clients with

exceptional flexibility in scheduling how the user data is transferred to the server. To demonstrate

the potential of this feature we devised a simple microbenchmark in which two clients share data.

One weakly connected client serves as the “writer”. The writer first populates the shared filesystem

with a set of files and then sends a continuous stream of intention updates that target a randomly

selected file. We adjust the update rate of the writer to control the amount of data buffered at the

client in the data transfer manager. Another client acts as the “reader”, repeatedly issuing reads to

the server. The server responds to each read with the latest visible data. Because the latest visible

data may not be durable, the server must sometimes block until the writer transfers the data to the

server. Without data reordering, the server (and the reader) must wait until the data buffered at

the writer reaches the front of the data transfer queue and is transmitted. With data reordering,
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Figure 7.8: The Benefits of Reordering Data Transfers: Intention updates afford the client great
flexibility in ordering how data is sent to the server. This sharing microbenchmark shows how the
server can suggest reordering to improve service for clients reading data from the server. Two users
share a set of 100 8-KB files. The user constantly writes files at random; the other repeatedly reads
random files. The writer is weakly connected, using a telephone modem; the reader is strongly
connected.

however, when the server receives a read request for data that is not durable, it sends the writer a

“hint” requesting that the requested data be moved to the front of the data transfer queue. With this

optimization, the data is transferred to the server sooner, and the server can respond to the reader

with less delay.

For this experiment, the clients use the hash transfer manager, which includes support for

reordering data in the transfer queue and understands how blocks relate to files. The data shared

between the reader and writer consists of 100 8-kilobyte files. The writer is connected to the server

via a telephone modem. The reader is strongly connected to the server, allowing us to focus on

clearly on the benefits of reordering data transfers between the writer and server. We measure the

latency of 100 read operations which require the server to block.

Figure 7.8 shows the results of this set of experiments. We vary the update rate of the

writer to maintain a specified amount of data buffered in the data transfer queue and alternate

whether the server sends hints to the writer to reorder data in the transfer queue. The solid lines

correspond to tests in which the server passively waits for requested data without sending the writer
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hints. The average latency to satisfy a read request increases as the amount of data buffered at the

writer increases. In effect, the reader is requesting data that is randomly and uniformly distributed

in the queue. As the queue length increases, the time for the randomly selected block to reach the

front of the queue and be transmitted to the server also increases. Of course, sometimes the reader

randomly selected a block that is already near the front of the queue. In those instance, the reads

will still return relatively quickly.

The dashed lines correspond to tests in which the server sends hints to the writer suggest-

ing that data in the transfer queue be reordered to better server the needs of other clients. When data

reordering is used, the latency observed by the reader is independent of the size of the data transfer

queue on the writer. When the reader requests data and the server submits a hint to the writer, that

requested data is immediately moved to the front of the transfer queue and transmitted to the server.

Of course, the writer’s buffer size affects the likelihood that the reader will be able to fetch

the file it is requesting without blocking. When the writer has a large local buffer, the data the reader

requests is more likely to be in that buffer, and the reader will be more likely to request a file that

requires the server to block. In these experiments, the server was required to block on between 14%

(with a 64 KB buffer) and 81% (with a 512 KB buffer) of all requests from the reader.

These results show that reordering data transfers can be effective in satisfying requests for

data from other clients. Although this technique can reduce the time requested data is stuck in the

writer’s network queue, it cannot reduce the time it takes to transmit data across the network. In the

test above, the reader was able to retrieve files in just a few seconds because the benchmark included

only small files. Even with data reordering, the time to retrieve large file would be much longer. For

example, if the reader requests a 5 megapixel (≈ 2.5 MB) digital photo, it would take roughly 2.5

minutes for the writer to upload the photo over a cable modem (and more than 6 minutes using a

telephone modem). It is unlikely that a reader would wait that long. The writer could, however, offer

a smaller, transcoded version of the requested data to the client. For example, by offering a small,

thumbnail photo (≈ 25 KB), a writer connected via cable modem could provide the reader with data

in just a couple of seconds (and in less than 5 seconds using a telephone modem). Because intention

updates ensure that the server always stores the current metadata for each object, the reader can

make the ultimate decision about how long to wait for data. The utility of this transcoding scheme

will vary greatly depending on the application. While it seems well-suited for media (photo, video,

audio) applications, it is likely not appropriate for office and development workloads.



143

Phase Action
1 Construct a directory tree.
2 Copy files into the directory tree.
3 Examine the status of every file in the tree.
4 Scan every byte in the tree.
5 Compile the application in the tree.

(a) Andrew Benchmark.

Phase Action
1 Extract the archive.
2 Examine the status of every file in the tree.
3 Scan every byte in the tree.
4 Configure the source for compilation.
5 Compile the application.

(b) Tcl Benchmark.

Table 7.2: Comparison of the Andrew and Tcl Benchmarks: (a) The Andrew benchmark consists
of five phases that populate a directory tree, access data stored in the tree, and then compile an
application in the tree. (b) The Tcl benchmark consists of five phases that populate a directory tree,
access data stored in the tree, and compile an application. The actual work performed in each phase
differs slightly from the Andrew benchmark.

7.5.4 The Tcl Benchmark

To observe the response of Moxie under more rigorous workloads, we created the Tcl

benchmark. The Tcl benchmark is a synthetic benchmark based on activities common for software

developers. It is modeled after the famed Andrew benchmark [HKM+88]. While we do not neces-

sarily believe the most weakly connected users of a remote storage system will be executing such

workloads, such a benchmark does reflect a least one type of real-world workload. It is also a pow-

erful tool for comparing Moxie against other file systems in the literature because it has become

customary for researchers to evaluate their systems with benchmarks like the Andrew benchmark.

The original Andrew benchmark was developed to provide a synthetic workload that had

similar characteristics to typical developer workloads. The benchmark ran a script that executed

five phases shown in Table 7.2(a). The directory tree for used by the Andrew benchmark included

93 files with a total size of 616 KB. The small size of the original Andrew benchmark renders it

unacceptable for evaluating today’s systems; however, similar benchmarks using larger data sets

do remain useful. We construct such a benchmark based on the Tcl source code distribution. The

phases of the Tcl benchmark are enumerated in Table 7.2(b). The source code for Tcl (version

8.4.13) is distributed as a 3.4 MB compressed archive. When extracted, the archive contains 754



144

1 M
bit/s

Cable
56 kbit/s

1 M
bit/s

Cable
56 kbit/s

Network Type

0

500

1000

1500

2000

2500

3000

3500

4000

4500

L
at

en
cy

 (s
)

Build Sources

Configure Sources

Read Data

Read Metadata

Extract Archive

NFS Moxie

Figure 7.9: Comparing Moxie Against NFS: With the Tcl benchmark, we compare the behavior of
Moxie and NFS. The benchmark contains mostly small files which limit the effectiveness of Moxie’s
mechanisms. However, the benchmark demonstrates a surprising benefit from delta-encoding in the
configuration and compilation phases of the benchmark.

files and directories with a combined size of 16 MB. After configuring and building the tool for a

Unix-based machine, the tree contains 18 MB of data among 838 files.

We use the Tcl benchmark to compare the behavior of Moxie against the well-known

remote file system NFS. We use the implementation of NFS version 2 described in Section 7.4.1.

Figure 7.9 displays the time it takes Moxie and NFS to execute the different phases of the benchmark

with varying network types. For these experiments, Moxie is configured to use intention updates

and Rabin fingerprint-based delta encoding. The client does not sign requests or encrypt data.

Though Moxie outperforms NFS, most of the improvement is observed in the compilation phase of

the benchmark.

We were surprised and disappointed that Moxie’s intention update mechanism did not

result in reduced runtime for the first phase of the benchmark that extracted the archive. Upon

further inspection, we found several reasons for this behavior. First, to copy a file extracted from

the archive to the remote file system, the application performs a series of operations including

querying the remote file system to ensure that the file does not exist, creating the file, and finally

writing the data to the file. The client must issue a synchronous request to the server to satisfy each
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request. The latency of the synchronous requests impacts the runtime of the operation more than the

cost of transferring the data. One might consider a form of speculative execution to reduce the cost

of the multiple, synchronous round trips [NCF05]. Secondly, the small size of the files extracted

from the archive reduces the effectiveness of Moxie’s intention updates. Given Moxie’s overhead,

including the cost of computing file summaries and delta-encoded updates and managing intents,

masks the benefits that are obtained by moving the transfer of small amounts of data off the critical

path. Finally, we observed that we were not able to control the order of requests on the network as

is required for intention updates. We will provide more details regarding this last point below.

Both NFS and Moxie execute the next two phases of the benchmark quickly. The phases

read the metadata and data for each object. Efficient caching policies enable both file system im-

plementations to perform well. NFS does generate some network traffic in these stages because its

time-based caching policies require periodic contact with the server to exchange state about each

file. Moxie’s callback-based caching policies allow it to satisfy reads without contacting the server.

Finally, Moxie outperforms NFS in the last two stages of the benchmark that prepare

the source for compilation and build the software package. These phases require the file system

to service interleaved read and write requests to many files. Moxie’s caching policies help in these

phases, satisfying most reads from the local cache. Interestingly, Moxie’s support for delta-encoding

seems to be a significant part of Moxie’s advantage over NFS. It is not, however, the delta-encoded

updates which benefit Moxie. Rather, the support for delta-encoding enables Moxie to detect when,

though a file’s metadata has changed, the file’s data remains unchanged. This reduces the amount

of data that the server must transfer to the client.

We also use the Tcl benchmark to observe Moxie’s response to different types of file

system requests. Figure 7.10 includes a series of plots that show the cumulative distribution function

of latency for several of the most common and important operations performed by the file system.

Plots 7.10(a) and 7.10(c) show the distribution when the prototype is configured to use unified

updates at two different network speeds. Plots 7.10(b) and 7.10(d) show the results of similar tests

when the client uses intention updates. Curves that do not meet the x-axis represent operations

that may serviced from the local cache without communication with the server. The y-intercept

corresponds to the percentage of such requests that can be satisfied locally.

Consider Plot 7.10(a) showing the system response using unified updates across 1 Mbit/s

network connection. It shows that most requests (that cannot be handled locally) take between sev-

eral milliseconds and several tens of milliseconds. The performance for most operations is relatively

consistent. The curve with the longest tail corresponds to the release() operation which is issued
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(a) Unified Updates, 1 Mbit/s Network.
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(b) Intention Updates, 1 Mbit/s Network.
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(c) Unified Updates, Cable Modem.
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(d) Intention Updates, Cable Modem.

Figure 7.10: Operation Latency Distribution in Various Configurations: The series of plots
show the distribution of latency for various operations as write-back strategy and network speed
vary. These plots demonstrate how intention updates reduce update latency compared to unified up-
dates. They also illustrate the problems with Moxie’s network scheduling implementation. Because
it does not have direct access to the network interface’s buffer, the Moxie client is not able to ensure
that message priorities are strictly observed. Consequently, some high-priority messages are queued
behind background transfer traffic.
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when the last open file descriptor to a file is closed. If a file is modified, the release() operation

triggers write-back to the server. Note that the curve does not cross the x-axis; in more than 60%

of all release() calls, the file is unmodified and the client does not need to write-data back to the

server. The plot shows that it can take up to 1 second to complete the the operation when write-back

is required. The key factor determining the latency to complete the release() operation is the

amount of data that must be transferred to the server.

Compare Plot 7.10(a) to Plot 7.10(b) which describes an identical configuration except

that intention updates are used. First note that the tail of the distribution corresponding to the

release() operation is much shorter with intention updates. With intention updates, the latency of

release() depends much less on the amount of data that must be written back and is, in general,

much shorter. The short tail shows that intention updates are improving response time, as intended.

Unfortunately, this plot also shows that the performance of other operations is much less consistent

than in a system that employs unified updates. This inconsistency occurs because the Moxie client

cannot strictly enforce the priority assigned to network messages. Because the Moxie client does

not have direct access to the network buffers, some low-priority data transfer message are queued

ahead of other high priority messages. We describe the problem above and in Section 7.3.

The latency of create() operation is especially affected in this workload because, when

extracting the archive during the first phase of the benchmark, the application triggers the write-back

of one file immediately before creating another file. Some data transfers requests for the write-back

operation are queued to the network ahead of the subsequent create() request.

Plots 7.10(c) and 7.10(d) show similar trends using a slower network connection.

To estimate the potential performance of an implementation that can schedule traffic effec-

tively, ensuring that high-priority messages are not delayed by low-priority messages, we modified

Moxie to use the Linux traffic shaping functionality to enforce message priorities. Specifically, we

changed the middleware server to accept requests on multiple ports. All data transfer messages were

directed at one port; all other messages were destined for another port. We then altered the Linux

traffic control configuration running on the client to filter messages based on the destination port

and prioritize data transfer messages below other traffic.

Figure 7.11 shows the runtime of Moxie using Linux’s traffic shaping tools to support

intention updates versus the runtime of Moxie when it attempts to schedule traffic at the application-

level. The results show that properly enforcing message priorities can have a significant impact on

total runtime, especially at lower bandwidths. At higher bandwidths, the penalty of for failing

to prioritize message properly is small because the transmission delay for data transfers is small.
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Figure 7.11: Scheduling Traffic in Moxie Versus Linux: Figure 7.10 shows that Moxie is unable
to enforce the priority of network messages at the application level. To estimate the performance
of system that does schedule traffic properly, we modified Moxie to use the Linux traffic shaping
tools to enforce message priorities. This plots shows the results of that experiment. By scheduling
network traffic correctly, we reduce the runtime of the Tcl benchmark dramatically, especially at
lower network bandwidths.

Also, in the Tcl benchmark, most files are small, so even if the transfer was in the critical path,

the added latency would be small. At lower bandwidths, however, the time to transmit data blocks

increases, and, consequently, the penalty for mis-scheduling message increases. By using the Linux

traffic shaping tools to schedule traffic correctly, the prototype can reduce the runtime of the Tcl

benchmark by 3x over a cable modem and by more than 4x over a telephone modem.

Figure 7.12 shows the effect that proper message scheduling has on the latency of various

operations. Compare these graphs to those presented in Figure 7.10. These graphs show that, with

proper message scheduling, latency of all operations is relatively predictable. The curves in these

graphs do not exhibit the same long tail that we observed in Figures 7.10(b) and 7.10(d). Some of

the curves do show a slight tail. This should expected due to instances when a high priority message

finds a low-priority message already partially transmitted. The high-priority message must wait for

transmission of the other message to complete. Using the Linux traffic shaping tools to schedule

traffic, we do not see evidence, however, that high-priority messages must wait for multiple blocks

to be transferred like we did when attempting to enforce message scheduling in Moxie.
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(a) Linux Scheduling, 1 Mbit/s Network.
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(b) Linux Scheduling, Cable Modem.

Figure 7.12: Operation Latency Distribution Using Linux Network Scheduling: These graphs
show the distribution of operation latency in Moxie with network scheduling performed by the Linux
traffic shaping tools. Compared to the graphs in Figure 7.10, these curves exhibit a much shorter
tail, indicating that high-priority messages are transmitted quickly and not delayed by low-priority
transfer messages.

The Moxie prototype is unable to enforce the scheduling policies required by intention

updates in the Java Virtual Machine. These experiments, however, demonstrate the potential of

intention updates when those policies are strictly enforced and the importance of managing the net-

work schedule at a low level. It also suggests that an user-level implementation of intention updates

might benefit from being designed to use the Linux traffic shaping tools for network scheduling.

7.5.5 The Cost of Security

In all of the experiments described previously in this section, Moxie has been configured

to leave requests unsigned and data unencrypted. We now consider the cost of securing the commu-

nications and data. We again execute the Tcl benchmark on Moxie, this time varying the algorithms

used to sign requests and encrypt data. The Moxie client is configured to use intention updates

and to compute updates using Rabin fingerprint-based delta-encoding. The network between the

client and middleware server is configured to restrict bandwidth to 1 Mbit/s without imposing any

additional latency.

We measure the overhead of two different public key cryptography technologies: 3072-

bit RSA cryptography and 256-bit elliptic curve cryptography (ECC). The key sizes used for these

experiments was chosen to provide comparable levels of security. Reduced computation and sig-

nature size are key advantages of ECC. We also measure the overhead of encrypting data using the
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Figure 7.13: The Cost of Security: The use of standard public key cryptography algorithms, like
RSA, for signing requests can slow Moxie considerably, newer technologies, like elliptic curve
cryptography, can provide similar security with only marginal cost. Clients can also protect data
privacy by encrypting data with little cost in total runtime.

Advanced Encryption Standard (AES) with 128-bit keys.

Figure 7.13 shows the runtime of the Tcl benchmark on Moxie using differing combi-

nations of signature and encryption technologies. Clearly, changing the signature and encryption

algorithms should only affect the phases that write data to the file system. The Tcl benchmark writes

data in the first, fourth, and fifth phases, with the first phase being write intensive. RSA cryptog-

raphy more than doubles the runtime of the benchmark because of the high computational costs of

computing RSA signatures with large keys. ECC cryptography slows the client only marginally,

demonstrating the advantages of ECC. Encrypting data on the client also has a relatively minor

effect on total runtime of the benchmark.

Table 7.3 reports the average latency of the intent in the different configurations. The

Tcl benchmark issues 1029 intent operations. Several general trends emerge: RSA signatures are

very expensive, ECC signatures have a much lower computational overhead, and encryption adds

little delay. Attempting to draw more specific conclusions, however, is difficult. Interference from
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Operation No sigs, RSA sigs, ECC sigs, No sigs, ECC sigs,
Null cipher Null cipher Null cipher AES cipher AES cipher

write-back 40.7 430.1 70.9 50.5 59.5

Table 7.3: Mean Latency of Write-back Operations with Different Security Configurations:
The cryptographic algorithms used by the Moxie client affect the latency of operations that change
file system state. This table reports the latency of file write-back operations. Although general
trends can be deduced from these measurements, interference from low-priority data transfer traffic
prevents more detailed conclusions.

the background transfer operations obscures the true latency of the intent. This problem can be

observed in the “ECC sigs, Null cipher” and “ECC sigs, AES cipher” columns in the table. In the

latter configuration, the system is performing more work, but, due to the interference, the former

configuration was faster on average. Refer to the discussion in Section 7.3.2 for an explanation of

why message priority is not strictly enforced in Moxie.

7.6 Interfaces for Intention Updates

Intention updates introduce several new failure modes and options for interacting with

storage. The traditional file system API does not provide interfaces to support this interaction.

Consequently, for the experiments described in this chapter, we specify the behavior of the system

through static configuration files that defined the behavior for an entire mounted file system. In

this section, we discuss the new operating modes of intention updates and propose some interface

extensions to allow application writers to control interaction with the storage system better.

7.6.1 Defining Data Freshness Requirements

The key new scenario that can arise with intention updates is that a client can request data

which the server knows exists but does not store. This corresponds to a file for which an intent has

been processed but the subsequent data transfer has not yet taken place. In this case, data is visible

but not yet durable. The two-phase update process of intention updates exposes a new state—visible

but not yet durable—but the traditional file system API cannot respond to that state.

Consider the potential response that a client requesting data that is visible but not durable

may wish to make.

• Fail: The reader will fail, returning an error code to the application indicating the data is

unavailable.
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• Block: The reader will block until the visible changes become available from the server.

• Block until deadline: The reader implements a hybrid approach, combining “Fail” and

“Block”. The client waits for the data for a specified time period. If data is not available

before the deadline, an error is returned to the application.

• Use stale version: The reader will use a version cached locally or an older version that is

wholly available at the server.

• Fetch data from source: The reader will identify the most recent version from server and

attempt to fetch unavailable data from source client. This could be appropriate for devices on

the same side of the weak network link.

If a client attempts to update an object, but cannot access the latest version at the server,

it may also define one of several approaches.

• Fail: The writer will refuse to update a file if it cannot first access the current state of the file

from the server.

• Branch: The writer will create a private, but related, copy of the data. Although branching

can prevent clients from making conflicting updates to a single copy of the file, it can lead to

divergent versions on different branches. To control divergence, the application may wish to

merge changes back into the main trunk.

• Overwrite with local version: The writer simply overwrites the current, unaccessible version

with a local copy. This is similar to a “last-writer wins” consistency model.

In the Moxie prototype, we have selected a static policy for dealing with situations when

a client attempts to read data that is not yet durable. Currently, Moxie blocks the reader until data is

available. It may be desirable to allow applications to define alternative responses to such situations.

We describe two different approaches to allow applications to specify the system response at a fine

granularity.

A system could support a configuration file that specifies the desired behavior for different

collections of file in the file system. The configuration file would consulted at mount time to initial-

ize a set of policies that would guide how the file system responds to future requests. Users (or appli-

cations on behalf of users) could define policies based on directory structures, file types, or custom-

defined projects. This approach could be considered similar to Coda’s hoard database [SKK+90].



153

How would you like to proceed?
Wait for copy from Larry’s laptop
Access older version
(written two days ago from Larry’s laptop)

I cannot access that version.
updated on another computer (Larry’s laptop) and
The file your are trying to access (schedule.doc) was

Work on a private local copy
Quit

Continue

Figure 7.14: Mock-up of a Graphical Interface for Managing Intents: In a system with inten-
tion updates, a user may attempt to access data that is visible but not yet durable. A graphical
interface, such as this, may be helpful in helping users understand this uncommon case. The exact
implementation of such an interface should be guided by research in the field of human-computer
interaction.

To allow the application to specify the behavior of the file system programmatically, a

system could extend the use of flags in the file system’s open() call. The flags would specify how

the system should service the request. The flags could, for example, specify “open latest version or

fail” or “open latest version or block” or “open latest available version”. The return values should

include information about the version that was opened. This approach would allow the application

to change the behavior of the file system on a per-access basis.

The extended file system interface could be used to build a library that would allow users

to request certain behavior interactively. Figure 7.14 illustrates a mock-up of how such an interface

might look. The interface should help a user understand that a new version of the requested file

exists but cannot currently be accessed. It should help the user choose an appropriate course of

action to proceed. The actual implementation of such a library and interface should be guided by

the conventions and results of researchers in the field of human-computer interaction.

7.6.2 Defining Write-back Requirements

Applications may also wish to control how data is buffered at the client and transferred

back to the server.

For most applications, simple policies to guide the order of data transfers would likely

suffice. The simplest write-back policy is the “first-in, first-out” (FIFO) policy. With FIFO, data is
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transferred to the server in the order that it is created. The oldest block of data is always transferred

to the server first.

For workloads in which files are frequently overwritten, a “most recent version first”

policy would be more appropriate. Under this policy, updates are transferred to the server in a

FIFO order unless an update in the transfer queue is overwritten. In that case, the update that was

overwritten would be removed from the queue and placed in a buffer, not to be transferred until the

transfer queue is empty. This policy works to ensure that the most recent version of each file is

available at the server. If a file is overwritten frequently, the transfer manager would probably want

to ensure that a complete version of the file is transferred periodically to protect against potential

client failure.

Some usage patterns may call for even greater control over data write-back. For example,

in a specialized device with control over the entire suite of application, developers may wish to

prioritize the transfer of data from different applications. A system could provide such a feature by

supporting an additional parameter to the write() that defines the relative priority of the data being

written.

Although the two-phase update process does provide many benefits, the data buffered at

the client awaiting transfer to the server can be considered a liability. Applications may wish to limit

that liability by limiting the amount of data that may be buffered at the client. To support this, the

file system interface could be extended to support a limit() operation that takes as an argument an

number that defines that maximum amount of untransferred data to be buffered locally. Attempts to

write data that would cause the limit to be exceeded would fail with an appropriate error code like

EFBIG or ENOSPC. To ensure that all data has been flushed to the infrastructure (for example, when

putting a device to sleep), the application could issue a limit(0) request.

This functionality could alternatively be supported by defining a new resource type to be

managed by the getrlimit()/getrusage()/setrlimit() interfaces. If the amount of buffered

data is to be managed at a per-process, the transfer manager would need to support multiple queues

and ensure fairness among the queues.

7.6.3 Failure Recovery

Buffering data at clients introduces one other liability: an update may be made visible

just before a client permanently fails, thus never completing the data transfer operation. This is

similar to the situation discussed above in which a reader attempts to access data that is visible but
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not durable. The difference is that, in this scenario, the data will never be available at the server

regardless of the amount of time a reader waits.

To recover from this failure, another client would need to use one of the options described

above to write a new version of the lost file. In most circumstances, the source for the new version

of the file would likely be a previous version of the file.

Detecting when a client has permanently failed, how to present that information to the

user, and how to help the user reason about how to restore the file are unsolved problems that

require further research.
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Chapter 8

Future Work and Conclusion

To conclude this thesis, we enumerate several interesting future directions for this research

and review the key results presented in this work.

8.1 Future Work

The results presented Chapter 7 showed that the techniques proposed in this thesis can

improve access to remote storage systems for weakly connected users. That evaluation used a

number of short-running benchmarks. An evaluation of long-term usage of such a system would

like provide other valuable insights.

As part of a long-term evaluation driven by day-to-day usage of a system like Moxie, we

could address a number of questions. How bursty is write traffic and how does it affect the amount

of time data is buffered at the client before transfer to the server? How often is data “trapped” on a

client device for extended periods of time because the device is turned off or put in a power conser-

vation mode? How frequently does a user attempt to access data that has not yet been transferred to

the server?

Results from a long-term evaluation could help drive some of the user interface questions

mentioned in Chapter 7. By understanding how often users attempt to access data that is unavailable

and how they react, we might be able to begin to develop policies and interfaces to help them manage

those situations. One area of computing that might react most positively to such interfaces would

be cellular phone-based mobile computing. Many multimedia capture devices, like cameras and

audio recorders, and bundled with newer mobile phones. Simultaneously, many new applications

and services are being developed for these devices. Finally, many service plans for mobile phones
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include per-byte or air-time charges for data transfers. All of these features combine to suggest

that the cellular phone platform may be an interesting application domain for the ideas we have

discussed.

Finally, Moxie’s implementation of the data transfer manager is relatively primitive. The

prototype schedules data transfers in a FIFO manner and can respond to hints from the server to

move requested data to the front of the queue. We believe it would be beneficial to study further the

design of the data transfer manager. Are there techniques that enable effective network scheduling

at the application level? How must the design be altered to support more advanced scheduling

policies, like most recent version first? Is it feasible to support application-defined data priorities?

How should the data transfer manager optimize the use of the link among multiple, competing

applications that are writing back data?

8.2 Key Lessons

The experience of working on this thesis has taught the author several important lessons.

At a grand scale, the work for this thesis has highlighted the importance of considering

how a system is used by other systems and its role in the entire application stack. Failure to consider

the broader perspective may result in systems that are useful only within the rigid boundaries of a

single component.

For example, to the cynic, it may appear as though early distributed CAS systems were

designed with little regard for how applications might actually use them. Although the block-level

interface is simple and elegant when considered from the perspective of the CAS system, it is terribly

inefficient and wasteful of client resources. In Chapter 6, we described how the block-level interface

also wasted resources within the storage system itself. Through our development of the extent-based

API, we showed how considering the requirements of both the clients using the storage system and

the CAS system itself can lead to improved designs.

Similarly, our study of write-back strategies and their impact on client-perceived perfor-

mance showed how limiting the POSIX file system API can be. While it is hard to fault the design

of the POSIX API—after all, it was designed in a different era when storage systems had dras-

tically different performance characteristics—our development of intention updates demonstrated

how extending the API to differentiate between visibility and durability enabled optimizations in

the storage system resulting in better performance for the clients.

In some sense, the lesson of considering a system’s role from a broad perspective is a
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reinforcement of the end-to-end argument for system design [SRC84].

The development of intention updates also provided a valuable lesson in balancing the

competing interests of the common case and the uncommon case. With regard to data write-back,

the common case is that the data written back is only being used by the client that is propagating

the changes to the server. The uncommon case is that the data being written back is being actively

shared with other clients. In the common case, the user wants the system to respond quickly and

cares little for any mechanisms for enforcing consistency that slows it down. In the uncommon

case when sharing is present, the clients sharing the data will often be more concerned that data

not be corrupted by conflicting writes and the accesses reflect current modifications. With intention

updates, we were able to satisfy these competing goals, with very reasonable cost. While certainly

it is not always possible to satisfy all competing parties, it was especially satisfying to be able to do

so in this case.

8.3 Summary

In this thesis, motivated by the emergence of new distributed storage architectures with

the potential to deliver managed storage services to new user populations, we have explored how to

improve access for weakly connected clients to remote, content-addressable storage systems.

After discussing the social and technological trends that drive our work and defining the

system model that we assume throughout our research, we used simulations to identify the issues

that weakly connected users face when accessing remote storage systems. These simulations re-

vealed that weak-connectivity can increase the time to execute a sequence of operations in a session,

making the system seem sluggish and unresponsive to users. Using telephone modem connections,

the penalty can be 10’s of minutes. If users also use multiple devices to access data, they face

challenges of sharing data between devices. Simulations show that cache management traffic can

increase by as much as 40%, and traditional file systems may allow inconsistent accesses in half of

all sessions.

Understanding the challenges that weakly connected users face, we examine several tech-

niques to improve the effective bandwidth and latency of the network connection to serve users

better. To increase the effective bandwidth of the link without sacrificing data privacy, we devel-

oped privacy-preserving delta-encoding. The technique uses LBFS’s approach to split a file into

blocks and identify blocks shared between files. To apply updates to encrypted data, the client and

server share a data format that allows efficient insertion and deletion of variable-sized blocks of ci-
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phertext. Although the exact performance improvement depends on the amount of data unchanged

between versions of a file, the approach approximates the improvement of other delta-encoding

approaches while maintaining data privacy.

To reduce the effective latency of the link, we propose a new write-back method called

intention updates. The approach uses a small, synchronous intent message to update metadata at the

server quickly. The data is later transferred to the storage system asynchronously. The two-phase

update process makes changes visible quickly, with little cost to data durability. It also allows clients

to schedule data write-back, prioritizing the transfer of important data.

We also explore how to improve the efficiency of content-addressable systems via ag-

gregation and two-level naming. With two-level naming, the storage system aggregates multiple

application-level blocks into extents. While the storage system needs only to manage data at the

granularity of the extent, clients can still address blocks individually and update data incrementally.

Two-level naming also dramatically decreases the cost of creating certificates to authenticate data

stored in the system.

Finally, we present the Moxie prototype storage system for weakly connected clients.

Moxie demonstrates how to combine the techniques we explored individually into a single system.

Moxie exposed the importance of being able to control the schedule of the network accurately. Even

small deviations from the ideal message schedule can quash the benefits of intention updates. Un-

fortunately, enforcing a precise message order is difficult to do at the application level. Experience

with the prototype revealed that the techniques can be combined to improve dramatically access to

remote storage for weakly connected users. For example, we measured Moxie to execute a workload

similar in format to the Andrew benchmark 75% faster than NFS (version 2).
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