On the Off-Label Use of Outer Approximations: An
External Active Set Strategy

Hoam Chung
Elijah Polak
S. Shankar Sastry

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-127
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-127 .html

October 26, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

The authors wish to thank Prof. Michael Saunders for his advice on warm
start of NPSOL and SNOPT, and to Prof. Rembert Reemtsen for supplying
us with the Kautz filter example and data. We are also grateful to Marcus
Edvall at TOMLAB Optimization Inc. for his advice on our codes. This work
Is supported by ARO SWARMS (W911NF-0510219) and ARO Phase I
STTR (W911NF-06-C-0192)

On the Off-Label Use of Outer
Approximations: An External Active Set
Strategy

H. CHUNG, E. POLAK, and S. SASTRY !

Abstract

Outer approximations are a well known technique for solving semi-
infinite optimization problems. We show that a straightforward adap-
tation of this technique results in a new, external, active-set strategy
that can easily be added to existing software packages for solving
nonlinear programming problems with a large number of inequality
constraints. As our numerical results show, the effect of this external
active-set strategy can be spectacular, with reductions in computing
time by a factor that can exceed 500.

Key Words. Outer approximations, inequality constrained optimization,
active set strategies.

!Authors are with the Department of Electrical Engineering and Com-
puter Science, University of California, Berkeley, CA, 94720-1770 USA,
hachung/polak /sastry@eecs.berkeley.edu.

1 Introduction

Outer approximations algorithms are used to solve semi-infinite optimization
problems of the form

Py min{f(z)|¢(z,y) <0,y € Y}, (1)

where Y C R™ is compact (with m = 1 most frequently) and f : R* — R
and ¢ : R" x R™ — ¢ continuously differentiable. In the most elementary
form, these algorithms construct a sequence of finitely constrained problems
of the form (see [8])

Py, min{f(z)|¢(z,y) <0,y € Yi}, (2)

reR™
1=20,1,2,..., where Yy C Y is arbitrary, and for ¢ > 1,

Yl =Y, U Y/ifla (3)

with Y;_; a finite subset of the active constraint set arg maxyey ¢(&i—1,9),
where 7;_; is the solution of Py, ,. It is straightforward to show that any
accumulation point Z of the optimizers z; is an optimizer of Py. Since the
constraint set of Py is a subset of the constraint set of Py;, for all ¢, the
naming of this approach “method of outer approximations” is obvious.

A characteristic of methods of outer approximations is that they, eventu-
ally, generate optimization problems with very large numbers of inequality
constraints. Unfortunately, standard nonlinear programming packages, with
the exception of CFSQP [5] including the excellent set found in TOMLAB
2], including SNOPT [7], NPSOL [1], Schittkowski SQP [10], and KNITRO?
[3], do not incorporate effective active-set strategies that can alleviate the
computational burden caused by large numbers of inequality constraints.

In this paper, we show that the above described outer approximations
approach can be reinterpreted as an external active-set strategy for solv-
ing nonlinear programming problems with a large number of inequality con-
straints. Our numerical examples, drawn from real world applications, show
that computing times can be reduced by a factor that can exceed 500, over the
use of “raw” optimization packages. The effectiveness of our new active-set
strategy increases as the number of constraints that are active at a solution

2KNITRO is a collection of optimization algorithms, and we use the algorithm option
‘Interior/Direct’ with quasi-Newton symmetric rank one updates in this paper.

decreases. Our new strategy is particularly effective when used with nonlin-
ear programming solvers that allow warm starts. It may be useful to observe
that a related strategy [9] for solving semi-infinite minimax problems using
log-sum-exponential smoothing has proved to be equally effective.

In Section 2 we state our strategy in the form of an algorithm and provide
a theoretical justification for it, in Section 3 we present numerical results, and
our concluding remarks are in Section 4.
Notation We will denote elements of a vector by superscripts (e.g., ') and
elements of a sequence or a set by subscripts (e.g., Ty). O

2 The Active-Set Strategy

Consider the inequality constrained minimization problem:

Pq min{ f°(z) | f(z) <0, € a}, (4)
where € R" and q = {1,...,q}. We assume that functions f7 : R® — R

are at least once continuously differentiable.
Next we define the index set g.(z) with € > 0 by

a(z) 2 {j€al f/(z) > (z) — e}, (5)
where .
(@) = max (), (6)
and .
¥4 (x) = max{0, ¥ ()} (7)
Definition 1. We say that an algorithm defined by a recursion of the form
Tr+1 = A(wk)a (8)

for solving inequality constrained problems of the form (4), is convergent if
any accumulation point of a sequence {x;}2,, constructed according to the
recursion (8), is a feasible stationary point for P. O

Finally, we assume that we have a convergent algorithm for solving inequality
constrained problems of the form (4), represented by the recursion function
A(+), i.e., given a point z;, the algorithm constructs its successor 51 accord-
ing to the rule (8).

Algorithm 2. Data: zg, € > 0, Ny, € N
Step 0: Seti =10, Qo = qc(wo).
Step 1: Set & = x; and perform Ny, iterations of the form &1 = A(&x)
on the problem
Pq,
min{ f*(§)[f(€) <0, j € Qi} (9)

to obtain &n,,,, and set x;11 = En,,,, -

Step 2: Compute (x;41).

if En,,.,. 1s returned as a global, local, or stationary solution of Pq, and
W(zip1) <0, then

STOP,
else
Compute
Qi1 = QiU gc(rit), (10)
and set i =1+ 1, and go to Step 1.
end if

Lemma 3. Suppose that € > 0 and that the sequence {x;}2,, in R, is such
that ©; — & as i — oo and that Q = U2 q.(x;) C q. For any x € R", let

1=

Yq(r) = max f/(z). (11)

JjeQ
If ¥q(#) <0, then (7)< 0.

Proof. Since the set q is finite, there must exist an i such that Q = U2 ,q.(x;).
Since qo(z;) C Q for all i > iy, it follows that (x;) = ¥q(x;) for all i > .
Now, both v(-) and ¢q(-) are continuous, and hence ¥ (%) = limy(z;) =
lim ¢q(z;) = ¥q(z). The desired result now follows directly. O

Lemma 4. Suppose that Q C q and consider the problem
Pq min{ f*(z)|f*(z) < 0,j € Q}. (12)
Suppose that & € R™ is feasible for Pq, i.e, f7(x) <0 for all j € q.

a) If z is a global minimizer for Pq, then it is also a global minimizer for
Q

P,.

b) If z is a local minimizer for Pq, then it is also a local minimizer for
Q

P

q-

(c) Ifz is a stationary point for Pq, i.e., it satisfies the F. John conditions
[4] (or Theorem 2.2.4, p. 188 in [8]), then it is also a stationary point
for Py.

Proof. Clearly, since & is feasible for Pg it is also feasible for Pq.

(a) Suppose that Z is not a global minimizer for Py. Then there exists an 2*
such that f7(z*) < 0forall j € qand fO(z*) < f°(#). Now, z* is also feasible
for Pq and hence & cannot be a global minimizer for Pq, a contradiction.
(b) Suppose that & is not a local minimizer for P4. Then there exists a
sequence {x;}3°, such that z; — 2, f%(z;) < f%(2) and f7(z;) < 0 for all ¢
and j € q. But this contradicts the assumption that z is a local minimizer
for Pq.

(c) Since # satisfies the F. John conditions for Pq, there exist multipliers
pu’ >0, 4 >0, j € Q, such that p° + >jeQ wo=1,

WOV &) + 30 WV (@) = 0 (13)
JEQ
and o
S f(E) =0, (14)
JjeQ
Clearly, & also satisfies the F. John conditions for P with multipliers @/ = 0
for all j ¢ Q and otherwise as for Pq. O

Combining the above lemmas, we get the following convergence result.

Theorem 5. Suppose that the problem Py has feasible solutions, i.e., there
exist vectors x* such that f7(xz*) <0 for all j € q.

(a) If Algorithm 2 constructs a finite sequence {x;}¥_,, exiting in Step 2,
with i +1 =k, then xy is a global, local, or stationary solution for Pg,
depending on the exit message from the solver defined by A(-).

(b) If {x;}32, is an infinite sequence constructed by Algorithm 2 in solving
Py. Then any accumulation point® I of this sequence is feasible and
stationary for Py.

3A point # is said to be an accumulation point of the sequence {z;}2, if there exists

an infinite subsequence, indexed by K C N, {x;};ck, such that z; Koiasi oo

Proof. (a) If sequence {z;}¥_, is finite, then, by the exit rule, it is feasible
for P4 and it is a global, local, or stationary solution for Pq,. It now follows
from Lemma 4, that it is also a global, local, or stationary solution for Py.

(b) Since the sets Q; grow monotonically, and since q is finite, there must
exist an 75 and a set Q C q, such that Q; = Q for all ¢« > 3. Next,
it follows from the fact that A(-) is convergent, that for any accumulation
point Z, ¥q(2) < 0 and hence, from Lemma 3 that ¢(z) < 0, i.e., that Z is
a feasible point for Pq. It now follows from the fact that A(-) is convergent
and Lemma 4 that any accumulation point & is stationary for Py. Il

3 Numerical Results

We will now present three numerical examples. One involving the control of
drones (also known as unmanned aerial vehicles, or UAV’s), one arising in
the development of integration formulas on the sphere, and one involving a
Kautz filter design.

All numerical experiments were performed using MATLAB V7.2 and
TOMLAB V5.5 [2] in Windows XP, on a desktop computer with an In-
tel Xeon 3.2GHz processor with 3GB RAM. Optimization solvers tested in
this paper were the Schittkowski SQP algorithm with cubic line search [10],
NPSOL 5.02 [1], SNOPT 6.2 [7], and KNITRO [3].

It should be clear from the form of Algorithm 2, that our strategy benefits
considerably from warm starts of the nonlinear programming solvers that are
to be used after constructing the active set Q;. Hence it is desirable to use
solvers with as extensive a warm start capability as possible, so that one
can transmit the last value of important information from the last iteration
of a solver on the problem Pq, as initial conditions for solving the problem
Pq,.,- SNOPT allows the user to provide initial variables and their states
and slack variables. NPSOL allows the user to provide initial variables and
their states, Lagrange multipliers, as well as an initial Hessian approximation
matrix for quasi-Newton updates. conSolve, the TOMLAB implementation
of the Schittkowski SQP algorithm, allows the user to provide an initial
solution vector and initial Hessian matrix approximation. KNITRO allows
the user to provide only the initial solution vector. For maximum efficiency,
this data must be saved at the end of the :—th run and transmitted as initial
data for the i + 1-th run of the solver.

3.1 Control of Eight UAV’s

This is a problem of controlling 8 identical UAV’s which are required to fly
inside a circle in a horizontal plane, without incurring a collision. Their
controls are to be determined by a centralized computer, in a scheme known
as Receding Horizon Control (see [6]).

For the sake of simplicity, we assume that each UAV flies at a constant
speed v and that the scalar control u;, for the i—th UAV determines its yaw
rate. The cost function for this problem is the sum of the energy used by the
UAV’s over the interval [0, 77, i.e.,

ZZ;/OT ui(7)dr. (15)

The constraints, to be made explicit shortly, are those of staying inside a
circle and collision avoidance.

In order to state the optimal control problem as an end-point problem
defined on [0, 1], we rescale the state dynamics of each UAV using the actual
terminal time 7" and augment the 3-dimensional physical state (x}, 22, 23)

1) 1) K3
with a fourth component, z},

1

73 (t) = /Ot gu?(T)dT, (16)

which represents the energy used by the i—th UAV. The resulting dynamics
of the i-th UAV have the form

Tvcos 3
dx; Tvsinz?| A

with the initial state x;(0) given. We will denote the solution of the dynamic
equation (17) by z;(t,u;), with ¢ € [0,1]. Let u = (u,ug,...,us). The
optimal control problem we need to solve is of the form

min () £ 3 a1, w) (18)

ueL8,[0,1

subject to two sets of constraints:

(a) Stay-in-a-circle constraints:
fioaltu) 2 ah(tu)? + 2t u')? < vy, YEe [0,1], i=1,2,...,8, (19)

and
(b) Pairwise collision avoidance constraints:

fc(a’])(ta Ui,y uj) = (xll(t7ul) - $]1'<t7uj))2 + (x?(ta uZ) - l'?(t,Uj))Q > 7’3&, (2())
Vte[0,1],i#j,i,j=1,2,...,8.

In order to solve this problem, we must discretize the dynamics. We use
Euler’s method to obtain

Filten) — Ti(te) = Ah(E:(t), G (t), 7:(0) = 2:(0), i =0,1,2,...,8 (21)

with A 2 1/N, N € N, t; SkAand k € {0,1,..., N}. We use an overbar to
distinguish between the exact variables and the discretized variables. We will
denote the solution of the discretized dynamics by z;(tx, @;, k = 0,1,..., N,
with .

u; = (a;(to), ultr), ..., wi(tn-1)), (22)

Finally, we obtain the following discrete-time optimal control problem:

w, €ERN, ie{l,...,Ng}

min - Pa) 2 a1, w) (23)

subject to u;(t;)| < bfork=0,1,..., N—landi=1,2,...,8, the discretized
dynamics of each UAV (21) and the discretized stay-in-a-circle and non-
collision constraints

7 VA _ _ _
flfnd,i(u) = le(tkaui)Q + x?(tlﬁui)2 < T}zndv k€ {17 cee vN}> (24>
and

NN _ _ _ _ _ _ _
fa7(i7j)(ui> uj) = (le(tk’ ul) - ‘T;(tk’ uj))2 + ('T?(tk’ ul) - $?<tk, uj))2 > Tga’
kef{l,... NYitj ij=12..8.
(25)
The total number of inequality constraints in this problem is 8N (8 — 1) /2 +
8N. Clearly, (23), (24), and (25) is a mathematical programming problem

8

which is distinguished from ordinary mathematical programming problems
only by the fact that adjoint equations can be used in the computation of
the gradients of the functions.

We set rpng = 4, 1ea = 1, T'= 25 and N = 64, resulting in 2304 nonlinear
inequality constraints. The initial conditions and initial controls for each
UAV are set as

rg = (2.5,2.5,7,0), G =—1.25x10""11,x
ri=(-2.5,2,—71/2,0), 42 =125x10""11,x
,—2.5,—1/4,0), 1 =1.25x 10" 1, n
rg = (2,-2.5,7/2,0), 5 =2.50x 10" 11,
z) = (2.5,0,7/2,0), 1y =250 x 10711y
28 = (=2.5,0,—7/2,0), a5 =1.25x 107111,y
zo=(0,3,-37/4,0), @)=1.25x10"11,n

x5 = (0,-3,7/4,0), a5 =—2.50x 10" 1, y.

The numerical results are summarized in the Tables 1-4. In these tables,
Ngyraa, the total number of gradient evaluations, and tcpy, the total CPU
time for achieving an optimal solution using Algorithm 2, are defined as
follows:
iT
Nyraqa = Z |Q;| x number of gradient function calls during i-th inner iteration
i=0
iT
topy = Z [CPU time spent for i-th inner iteration
i=0
-+ CPU time spent for setting up ¢-th inner iteration}.
(27)

In the above, and in the tables, i7 is the value of the iteration index ¢ at
which Algorithm 2 is terminated by the termination tests incorporated in
the optimization solver used, and isap is the value of index i at which |Q| is
stabilized. Also, % gaw, the percentage of topy with respect to the compu-
tation time with the raw algorithm, i.e. using the solver with the full set of
constraints (shown in the last row of each table), is used in tables.

Fig. 1 shows the trajectories for a locally optimal solution for the eight
UAV problem. There are only 16 active constraints out of 2304 at the end.

_5V

1

-6 -4 -2 0 2 4

Figure 1: Initial trajectories (dashed red) and optimal trajectories (solid
blue). Bounding circular region is represented by the dotted blue circle.

Table 1: External active-set strategy with Schittkowski SQP, eight-UAV ex-
ample. The best result is marked with a ‘¢’ after the data number. “*’
indicates that no meaningful data is available since the algorithm returns
without an optimum after 100 iterations.

’ Data # H € ‘ Niter ‘ ir ‘ fO ‘ Ngrad ‘ |Q| ‘ Ustab ‘ lopu ‘ %RAW ‘
01 1 10 | 74] 10.635 | 1107859 | 1196 | 65 | 16573 | 55.1
02 1 20 22 120452 | 102133 | 258 | 22 | 1841.3 | 6.12
03 1 30 | 19 | 3.0388 | 112905 | 299 | 19 | 2192.4 | 7.28

04 0.1 10 | 71 | 3.2144 | 223197 | 334 | 70 | 3932.0 | 13.1
05 0.1 20 | 53 | 3.4327 | 221146 | 244 | 53 | 4212.3 | 14.0
06 0.1 30 | 42 | 29046 | 171308 | 190 | 42 | 36959 | 12.3
07¢ 0.01| 10 | 64 |2.8008 | 51016 91 64 | 14295 | 4.75
08 0.01| 20 | 82 |4.2251 | 266843 | 144 | 82 | 5687.7 | 18.9
09 0.01| 30 | 100 * * * * * *
Raw 4.1973 | 2642688 | 2304 30106 100

10

Table 2: External active-set strategy with NPSOL, eight-UAV example

’ Data # H € ‘ Niter ‘ Z.T ‘ fO ‘ Ngrad ‘ ’Ql ‘ istab ‘ tC’PU ‘ %RAW ‘
01 1 10 | 17] 2.1366 | 28392 | 214 | 16 | 397.3 | 0.50
02 1 20 | 14 | 2.1601 | 46012 229 14 | 716.7 | 0.90
03 1 30 | 12 | 2.1256 | 66952 239 12 1072 1.34

04 0.1 10 | 21| 1.7028 | 11549 64 20 | 223.2 | 0.28
05 0.1 20 | 17] 1.7028 | 18001 64 17 | 336.0 | 0.42
06 0.1 30 | 14 | 1.7028 | 19698 60 14 | 374.7 | 0.47
07¢ 0.01| 10 |20 | 1.7028 | 5654 31 18 | 137.3 | 0.17
08 0.01] 20 |[19]1.7028 | 11888 34 19 | 268.3 | 0.34
09 0.01| 30 |19 |1.7028 | 15199 34 18 1 339.9 | 043
Raw 2.6809 | 7128576 | 2304 79817 | 100

Table 3: External active-set strategy with SNOPT, eight-UAV example

’ Data # H € ‘ Nz’teT ‘ iT ‘ fO ‘ Ngrad ‘ ’Q' ‘ istab ‘ tC’PU ‘ %RAW ‘
01 1 10 | 10 | 2.0874 | 10840 177 | 10 156.8 0.48
02 1 20 | 10 | 2.0897 | 12503 162 | 10 179.9 0.55
03 1 30 | 10 | 2.0840 | 14923 165 | 10 212.0 0.65

04 0.1 10 | 20 | 2.0838 | 12165 81 20 205.0 0.63
05 0.1 20 | 19 | 2.0838 | 13458 81 19 228.3 0.70
06 0.1 30 |20 | 2.0838 | 14471 81 20 239.8 0.74
07« 0.01 | 10 |18 |1.7028 | 3142 34 18 70.04 0.22
08 0.01| 20 |18 |1.7028 | 3189 34 18 70.68 0.22
09 0.01] 30 |[18]1.7028 | 3189 34 18 70.74 0.22
Raw 4.1381 | 3220992 | 2304 32425.7 | 100

11

Table 4: External active-set strategy with KNITRO, eight-UAV example

’ Data # H € ‘ Nite'r ‘ iT ‘ fO ‘ Ngrad ‘ |Q| ‘ Z.stab ‘ tCPU ‘ %RAW ‘
01 1 100 | 100 * * * * * *
02 1 200 | 100 * * * * * *
03 1 300 | 100 * * * * * *
04 0.1 | 100 | 100 * * * * * *
05 0.1 | 200 | 23 | 1.7028 | 183058 71 18 | 3494.8 | 7.81
06 0.1 | 300 | 15 | 1.7028 | 74569 67 15 | 1636.4 | 3.66
07 0.01 | 100 | 100 * * * g * *
08¢ 0.01 | 200 | 17 | 1.7028 | 32389 34 17 | 893.76 | 2.00
09 0.01 | 300 | 17 | 1.7028 | 32389 34 17 | 898.75 | 2.01
Raw 3.7896 | 4343040 | 2304 44728 100

These are all associated with staying in the circle; there are no active non-
collision constraints. When properly adjusted, Algorithm 2 accumulates
fewer than 40 constraints. Consequently, the reduction in the number of
gradient computations is huge.

In Table 1, the best result using Algorithm 2, with the Schittkowski
SQP defining the map A(-), was achieved with data set 7, which required
about 1/20 of the CPU time used by the raw Schittkowski SQP algorithm.
With NPSOL, the reduction was gigantic, and a locally optimal solution was
obtained using about 1/500 of the CPU time used by NPSOL with the full
constraint set (data set 7 in Table 2). When SNOPT was used as the map
A(+) in Algorithm 2, the reduction about 1/400 was achieved with data set
7 in Table 3. Since the KNITRO TOMLAB interface does not support any
warm start, Algorithm 2 with a small Ny, did not perform well. As shown
in Table 4, when KNITRO was used as the internal solver, we used larger
numbers of Ny.,’s. With KNITRO, if Ny, is too small (data set 4 and 7), or
€ is too big (data set 1-3), Algorithm 2 returned without a feasible stationary
point after 100 outer iterations (iz = 100). However, with proper values of
Niter and €, reduction up to 1/20 in CPU time could be achieved.

To summarize, our overall fastest solution of the optimal control problem
was obtained using data set 7 with the SNOPT algorithm. This computing
time is 1/429 of the computing time of Schittkowski SQP, 1/462 of SNOPT,
1/1139 of NPSOL, and 1/638 of KNITRO, without using Algorithm 2.

12

3.2 Polynomial Interpolation on The Unit Sphere

The next numerical example is a semi-infinite minimax problem which arises
in the polynomial interpolation on the unit sphere S? [9]. The objective of
the problem is to find sets of points n; € S?, j = 1,...,m that are good
for polynomial interpolation and cubature. Let x € R™ be the normalized
spherical parameterization of with n = 2m — 3. After discretization using
nested icosahedral grids over S?, the fundamental system 7 can be found by
solving the minimax problem involving Lagrangian sum of squares:

: 1 2
min mse |G () g () (28)
where n = {n1,7,...,7m} is the fundamental system of points on the unit

sphere S?, G(n) € R™™ is symmetric positive semi-definite basis matrix,
g : S?* — R is the reproducing kernel basis function.

In order to convert the minimax problem into a constrained nonlinear
programming problem, we introduce the slack variable 2! € R and define

0(z) & g1 7= [&]
@) e)
Fo@) 2 1G(n(2) g(yrs n(@)]s — 2", ke K.
The equivalent constrained minimization problem is now defined by
min 2""! (30)
i‘ERn+1
subject to
ff(z) <0, keK. (31)

We use n = 29 and the decision variable x is initialized with points obtained
by maximizing log det(G(+)) [11]. When our algorithm is applied to minimax
type problems, the initial value of 2" should be carefully chosen so that the
e-active set of the equivalent nonlinear programming problem is nonempty
in the beginning. Otherwise, the solver makes "™ — —oo in the first inner
iteration, and the solver gets stuck at wrong solution. In this paper, we set
up the initial value of 2"*! such that

! = max[|G(n(xo)) g (g (o)) 13, (32)

13

which implies the e-active set is not empty for any € > 0.

Tables 5-8 show the results with 2562 mesh points, i.e., K = {1,2,...,2562}.
Since many inequality constraints are in the e-active set at a solution, the
reduction in CPU time is much less than that in the previous example. In
the cases of Schittkowski SQP and KNITRO, no performance enhancement
was achieved by using Algorithm 2. However, with NPSOL, a locally opti-
mal solution was obtained using about 1/5 of the CPU time used by NPSOL
with the full set of constraints (data set 4 in Table 6). In Table 7, the best
reduction achieved by using SNOPT as the map A(+) is about 40% (data set
3).

As the number of inequality constraints increased from 2562 to 10242,
the Schittkowski SQP and SNOPT could not solve the problem with the full
set of constraints due to a memory fault. Therefore, in Tables 9-12, the
data field %gaw is available only for NPSOL and KNITRO. Even though
10242 inequality constraints caused memory faults in Schittkowski SQP and
SNOPT, Algorithm 2 enabled these solvers to find a solution, since, under
our algorithm, only a certain portion of the full constraint set is considered,
which results in a reduction of the total amount of memory required to solve
the problem. NPSOL still achieved 3% - 60% reductions in computation time
with certain parameter sets (data set 1 — 5 in Table 10). KNITRO did not
show any enhancement in this case. Our conclusion is that Algorithm 2 may
not work well on a problem with a large fraction of constraints active at a
solution, if the internal solver does not provide a warm start scheme.

In brief, data set 7 with NPSOL (Table 6) achieved the fastest solution
for the case with 2562 inequality constraints, and data set 1 with SNOPT
(Table 11) for the case with 10242 inequality constraints.

3.3 Design of pink-noise Kautz filter of even order

This problem requires the computation of coefficients for a Kautz filter so as
to get a best fit to the desired profile, defined by the function F(y), below.
The best fit is defined in terms of the solution of the semi-infinite minimax
problem

mgnmgx logyo(|H (2, y)|) —logio(F(y))], # € R*N, y € 1,1 — 1], (33)

14

Table 5: External active-set strategy with Schittkowski SQP, polynomial
interpolation on a sphere, with 2562 inequality constraints

’ Data # H € ‘ Niter ‘ iT ‘ fO ‘ Ngrad ‘ ’Ql ‘ Zbs‘cab ‘ tCPU ‘ %RAW ‘

01 1 10 | 100 * * * * *
02 1 20 4 | 3.5449 | 360280 | 1665 | 3 | 100.3 | 186.1
03 1 30 2 13.5449 | 207001 | 1663 | 2 | 57.99 | 107.8

04 0.1 10 | 26 | 3.5474 | 178619 | 439 | 24 | 63.68 | 118.3
05 0.1 20 | 25 | 3.5445 | 301395 | 423 | 25 | 109.9 | 204.3
06 0.1 30 15 | 3.545 | 224835 | 333 | 15 | 85.04 | 158.0
07 0.01 | 10 | 100 * * * * * *
08 0.01 | 20 | 75 | 3.5484 | 318130 | 145 | 75 | 176.5 | 328.0
09 0.01 | 30 | 8 | 3.5466 | 553489 | 155 | 85 | 295.3 | 548.8
Rawo 3.5449 | 179340 | 2562 53.81 | 100

Table 6: External active-set strategy with NPSOL, polynomial interpolation
on a sphere, with 2562 inequality constraints

’ Data # H € ‘ Nite'r ‘ iT ‘ fO ‘ Ngrad ‘ ’Q' ‘ istab ‘ tCPU ‘ %RAW ‘
01 1 10 3 | 3.5449 | 44734 | 1682 | 3 | 13.20 | 54.5
02 1 20 2 | 3.5449 | 47715 | 1662 | 2 | 12.94| 534
03 1 30 1 |3.5449 | 44109 | 1521 | 1 |11.34| 46.9
040 0.1 10 5 |3.5449 | 11136 | 205 5 4.84 | 20.0
05 0.1 20 | 29 | 3.5445 | 258654 | 455 | 29 | 90.45 | 373.7
06 0.1 30 | 32 | 3.5445 | 416286 | 437 | 32 | 145.6 | 601.7

07 0.01 | 10 | 100 * * * * * *

08 0.01 | 20 | 92 | 3.5450 | 244278 | 166 | 92 | 125.1 | 517.0

09 0.01 | 30 | 100 * * * * * *
Raw 3.5449 | 97356 | 2562 24.20 | 100

15

Table 7: External active-set strategy with SNOPT, polynomial interpolation
on a sphere, with 2562 inequality constraints

’ Data # H € ‘ Niter ‘ iT ‘ fO ‘ Ngrad ‘ ’Ql ‘ Zbs‘cab ‘ tCPU ‘ %RAW ‘
01 1 10 3 | 3.5449 | 55992 | 1675 | 3 16.4 | 68.0
02 1 20 2 | 3.5449 | 64349 | 1663 | 2 18.1 74.8
03¢ 1 30 1 [3.5449 | 50193 | 1521 | 1 13.7 | 56.8
04 0.1 10 31 | 3.5448 | 117975 | 502 | 31 | 434 | 179.9
05 0.1 20 28 | 3.5448 | 208670 | 419 | 28 | 73.0 | 302.5
06 0.1 30 32 | 3.5447 | 368526 | 488 | 32 | 125.4 | 5194

07 0.01 | 10 | 100 * * * * * *
08 0.01 | 20 | 100 * * * * * *
09 0.01 | 30 | 100 * * * * * *
Raw 3.5449 | 87108 | 2562 24.14 | 100

Table 8: External active-set strategy with KNITRO, polynomial interpola-
tion on a sphere, with 2562 inequality constraints

’ Data # H € ‘ Nite'r ‘ iT ‘ fO ‘ Ng'r'ad ‘ |Q| ‘ Z.stab ‘ tCPU ‘ %RAW ‘
01 1 100 | 18 | 3.5449 | 4126019 | 2504 | 17 | 1750 | 594.2
02 1 200 6 | 3.5446 | 2077923 | 2419 | 4 |900.0 | 305.6
03 1 300 6 | 3.5441 | 3634181 | 2433 | 5 1560 | 529.8
04 0.1 | 100 | 100 * * * * * *
05 0.1 | 200 | 100 * * * * * *
06 0.1 | 300 | 95 | 3.5465 | 16117359 | 1551 | 95 | 7571 | 2570
07 0.01 | 100 | 100 * * * * * *
08 0.01 | 200 | 100 * * * * * *
09 0.01 | 300 | 100 * * * * * *

Rawo 3.5446 | 773724 | 2562 294.5 | 100

16

Table 9: External active-set strategy with Schittkowski SQP, polynomial
interpolation on a sphere, with 10242 inequality constraints (Results with
e = 1 are not available because of memory fault)

[Data# | ¢ [Nuew | ir | /° | Ngaa | 1Q | istan | terv | Yoraw |

0lc 0.1 10 9 | 3.5531 | 139065 957 9 66.1
02 0.1 20 14 | 3.5542 | 552806 | 1421 14 247
03 0.1 30 26 | 3.5540 | 1822533 | 1562 | 26 787
04 0.01| 10 | 100 * * * * *
05 0.01 | 20 97 | 3.5533 | 996360 427 96 | 674.0
06 0.01| 30 67 | 3.5536 | 795553 278 67 | 626.2
Raw 10242

Table 10: External active-set strategy with NPSOL, polynomial interpolation

on a sphere, with 10242 inequality constraints

[Data# | € [Nie |ir | f° | Nyaa | 1Q] |istan | teru | Yoraw |
01 1 10 | 4 | 3.5542 | 391000 | 6746 4 | 167.8 | 93.6
02 1 20 2 | 3.5542 | 222742 | 6669 2 19454 | 52.7
03 1 30 1 | 3.5542 | 261053 | 6071 1 |108.2| 604
040 0.1 10 | 13| 3.5547 | 127068 | 1410 | 13 | 68.29 | 38.1
05 0.1 20 | 15 | 3.5542 | 342837 | 1393 | 15 | 173.2| 96.6
06 0.1 30 |29 | 3.5531 | 1275241 | 1550 | 29 | 620.2 | 346
07 0.01 | 10 |93 |3.5531 | 275429 | 408 93 |226.3 | 126
08 0.01 | 20 |97 |3.5534 | 654975 | 410 97 | 486.0 | 271
09 0.01 | 30 |89 |3.5529 | 695385 | 380 89 | 555.9 | 310
Raw 3.5542 | 542826 | 10242 179.3 | 100

17

Table 11: External active-set strategy with SNOPT, polynomial interpola-
tion on a sphere, with 10242 inequality constraints (Results with ¢ = 1 are
not available because of memory fault)

’ Data # H € ‘ Niter ‘ iT ‘ f'O ‘ Ngrad ‘ ‘Q‘ ‘ 2.stab ‘ tC’PU ‘ %RAW ‘
0lo 0.1 10 6 | 3.5551 | 44772 785 6 | 22.87
02 0.1 20 | 30 | 3.5532 | 909132 | 1646 | 30 | 394.1
03 0.1 30 | 28 | 3.5537 | 1294214 | 1662 | 28 | 552.5

04 0.01| 10 | 100 * * * * *

05 0.01| 20 | 100 * * * * *

06 0.01| 30 96 | 3.5536 | 900507 385 96 | 629.0
Raw 10242

Table 12: External active-set strategy with KNITRO, polynomial interpola-
tion on a sphere, with 10242 inequality constraints

[Data# | € [Niew | i | /° | Ngaa | 1Ql [isan | terv | %oraw |
01 1 100 | 100 * * * * * *
02 1 200 | 31 | 3.5530 | 56142701 | 9946 | 22 | 36705 759
03 1 300 | 15 | 3.5536 | 36236311 | 9146 6 22998 476
04 0.1 | 100 | 100 * * * * * *
05 0.1 | 200 | 100 * * * * * *
06 0.1 | 300 | 99 | 3.5536 | 40554982 | 3489 | 98 | 27447 568
07 0.01 | 100 | 100 * * * * * *
08 0.01 | 200 | 100 * * * * * *
09 0.01 | 300 | 100 * * * * * *

Rawo 3.5446 | 7712226 | 10242 4834.3 100

18

subject to the constraints

L2h=1 2 —(1—e) <0
1—82 2=
2k
_1,2]671_11‘ . _(1_€2)§O’ k:l,...,N,SQE(O,l)a (34>
—c2

o — (1 - 52)2 <0,

where
N . .
H(I,y) — Z (.’I?N+2k+1 pk(ez27ry . 1) + xN+2k qk(6227ry + 1))
k=1
1 k $2l +$21—1€i27ry + €i47ry <35>
1 4+ ple2my - p2eidmy 1:1_11 1 + p2Hlgi2my 4 1 2+2gidmy |
S \/(1 — 22F)(1 4 a2k — g2k 1)
’ (36)
. \/(1 — 22)(1 + a2k 4 22h-1)
¢ = 2
and
1 1
~ o Yy e [51, 5]
F(y) = 4 (37)

11 _
\/m y6[2,1 51]'

In order to transcribe this semi-infinite minimax problem into an ordinary
nonlinear programming problem, we discretize the set Y, and set it to be
Y ={y1,y2,...,yn,}. Note that the discretization should be logarithmically
spaced, since we are looking for the best fit in the frequency domain. Then
we introduce the slack variable z2V+1 > 0, and define

o2 |] 9

Then the original minimax problem becomes the nonlinear programming
problem
min 2V ! (39)
x

subject to constraints (34), and

—2?N T <log,o(|H (z,y:)|) — logyo(F(y:)) < a®V*1 i =1,2,..., Ny (40)

19

The above nonlinear inequality constraints are mostly active at a minimum.

For numerical experiments, we set ¢, = ¢ = 0.01, N = 20, and Ny = 63,
which results in 3 X N +2 x Ny + 1 = 187 inequality constraints. The initial
condition is set as

Ty — 0.7 12N><1- (41)
22V T is set using same manner in (32), i.e.,
BV = max [logg(|H (o))~ log(Fu)l. (42

This is a highly ill-conditioned problem which proved to be a challenge for the
solvers we were using. When solvers were required to solve the problem with
the full set of constraints, Schittkowski SQP reported an error message, ‘Too
large penalty’, and NPSOL ‘Current point cannot be improved on’. SNOPT
returned a solution after consuming a large amount of time (‘raw’ data set in
Table 15) in comparison with KNITRO (‘raw’ data set in Table 16). Using
Algorithm 2, with Schittkowski SQP and NPSOL as the map A(-), optimal
solutions could be found, as shown in Table 13 and Table 14. In Table 15,
SNOPT achieved a maximum 95% reduction in computation time. KNITRO
was compatible with Algorithm 2 on this example, but no enhancement was
obtained.

To summarize, ‘raw’ use of KNITRO achieved the fastest solution, but
Algorithm 2 allowed Schittkowski SQP and NPSOL to find a solution, and
enhanced the performance of SNOPT so that its computation time is com-
parable to the best case of KNITRO.

4 Conclusion

We have presented an external active-set strategy for solving nonlinear pro-
gramming problems with large numbers of inequality constraints, such as dis-
cretized semi-infinite optimization problems, using nonlinear programming
solvers. Our numerical results show that this strategy results in considerable
savings in computer time, with time reductions depending on the fraction of
constraints active at a solution. Reductions of computer time well over 500
have been observed.

20

Table 13: External active-set strategy with Schittkowski SQP Algorithm,
Kautz filter design example

’ Data # H € ‘ Niter ‘ iT ‘ fO ‘ Ngrad ‘ ’Q’ ‘ Z>stab ‘ tCPU ‘ %RAW ‘
01 1 10 25 | 1.5357e-4 | 104408 | 173 | 16 | 155.8
02 1 20 29 | 2.0326e-4 | 242488 | 172 | 20 | 344.7
03 1 30 | 100 * * * * *

040 0.1 10 30 | 1.1731e-4 | 66071 | 140 | 17 | 118.0
05 0.1 20 | 61 | 2.9738e-4 | 296798 | 163 | 45 | 445.2
06 0.1 30 75 | 1.7893e-3 | 568494 | 167 | 52 | 772.9

07 0.01 | 10 | 100 * * * * *
08 0.01 | 20 | 100 * * * * *
09 0.01 | 30 | 100 * * * * *
Raw 187 100

Table 14: External active-set strategy with NPSOL, Kautz filter design ex-

ample
’ Data # H € ‘ Nite'r ‘ iT ‘ fO ‘ Ng'rad ‘ |Q’ ‘ istab ‘ tCPU ‘ %RAW ‘
01 1 10 | 100 * * * * *
02 1 20 | 100 * * * * *
03 1 30 | 100 * * * * *
04 0.1 10 | 100 * * * * *
05 0.1 20 | 100 * * * * *
06 0.1 30 | 100 * * * * *
07 0.01 | 10 | 100 * * * * *
08¢ 0.01 | 20 04 | 1.3408e-7 | 289889 | 130 | 23 | 4914
09 0.01 | 30 o4 | 5.2361e-8 | 429368 | 135 | 23 | 697.9
Raw 187 100

21

Table 15: External active-set strategy with SNOPT, Kautz filter design ex-

ample
’ Data # H € ‘ Niter ‘ Z.T ‘ fO ‘ Ngrad ‘ ’Q’ ‘ Z>stab ‘ tCPU ‘ %RAW ‘
01 1 10 | 15| 1.442e-5 | 82337 | 171 | 14 | 117.8 | 4.77
02 1 20 |11 | 2.242e-5 | 116207 | 170 | 9 | 162.7 | 6.59
03 1 30 |17 | 3.010e-6 | 329064 | 178 | 10 |429.1 | 174
040 0.1 10 | 36 | 4.638e-6 | 63408 | 153 | 29 | 94.19 | 3.81
05 0.1 20 [29| 1.701e-6 | 63213 | 149 | 28 |98.80 | 4.00
06 0.1 30 |40 | 2.664e-7 | 203058 | 156 | 39 |286.2 | 11.6
07 0.01| 10 |57 | 1.666e-6 | 114975 | 142 | 40 | 185.6 | 7.52
08 0.01 | 20 |61 | 3.024e-6 | 142929 | 144 | 42 | 231.0| 9.35
09 0.01 | 30 |67 | 4.482e-6 | 548091 | 150 | 57 | 823.7 | 334
Raw 1.934e-06 | 2102172 | 187 2469 100
Table 16: External active-set strategy with KNITRO, Kautz filter design
example
’ Data # H € ‘ Nite'r ‘ iT ‘ fO ‘ Ng'rad ‘ |Q’ ‘ istab ‘ tCPU ‘ %RAW ‘
01 1 100 | 100 * * * * * *
02 1 200 | 26 | 1.0781e-4 | 661792 | 186 | 25 | 936.6 | 1516
03 1 300 | 100 * * * * * *
04 0.1 | 100 | 100 * * * * * *
05 0.1 | 200 | 100 * * * * * g
06 0.1 | 300 | 100 * * * * * *
07 0.01 | 100 | 100 * * * * * g
08 0.01 | 200 | 100 * * * * * *
09 0.01 | 300 | 100 * * * * * *
Rawo 1.0471e-4 | 48546 | 187 61.78 | 100

22

Acknowledgment

The authors wish to thank Prof. Michael Saunders for his advice on warm
start of NPSOL and SNOPT, and to Prof. Rembert Reemtsen for supplying
us with the Kautz filter example and data. We are also grateful to Marcus
Edvall at TOMLAB Optimization Inc. for his advice on our codes. This
work is supported by ARO SWARMS (W911NF-0510219) and ARO Phase
II STTR (W911NF-06-C-0192).

References

1]

P. E. Gill, W. Murray, Michael A. Saunders, and Margaret H. Wright.
User’s guide for NPSOL 5.0: A fortran package for nonlinear program-
ming. Technical Report SOL 86-2, Systems Optimization Laboratory,
Department of Operations Research, Stanford University, 1998.

K. Holmstrém, A. O. Goran, and Marcus M. Edvall. User’s Guide for
TOMLAB. Tomlab Optimization Inc., December 2006.

K. Holmstrém, A. O. Goran, and M. M. Edvall. User’s Guide for TOM-
LAB/KNITRO v5.1. Tomlab Optimization Inc., April 2007.

F. John. Extremum problems with inequlaities as side condtions. In
K. O. Friedrichs, O. W. Neugebauer, and J. J. Stoker, editors, Studies
and Essays: Courant Anniversary Volume, pages 187-204. Interscience
Publishers, Inc., New York, 1948.

C. T. Lawrence, J. L. Zhou, and A. L. Tits. User’s guide for cfsqp version
2.5: A C code for solving (large scale) constrained nonlinear (minimax)
optimization problems, generating iterates satisfying all inequality con-
straints. Technical Report TR-94-16r1, Institute for Systems Research,
University of Maryland, 1997.

D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Survey
paper: Constrained model predictive control: Stability and optimality.
Automatica, Vol. 36, pp. 789-814, 2000.

W. Murray, P. E. Gill, and M. A. Saunders. SNOPT: An SQP algorithm
for large-scale constrained optimization. SIAM Journal on Optimization,
12:979-1006, 2002.

23

8]

[9]

[10]

[11]

E. Polak. Optimization: Algorithms and Consistent Approximations,
Volume 124 of Applied Mathematical Sciences. Springer, 1997.

E. Polak, R. S. Womersley, and H. X. Yin. An algorithm based on ac-
tive sets and smoothing for discretized semi-infinite minimax problems.
Journal of Optimization Theory and Applications, 2007. in press.

K. Schittkowski. On the convergence of a sequential quadratic pro-
gramming method with an augmented lagrangian line search function.
Technical report, Systems Optimization laboratory, Stanford University,
1982.

Robert S. Womersley and Ian H. Sloan. How good can polynomial in-
terpolation on the sphere be? Advances in Computational Mathematics,
14:195-226, 2001.

24

