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Abstract

We give a denotational framework for composing interactive components into closed or
open systems and show how to adapt classical domain-theoretic approaches to open sys-
tems and to timed systems. For timed systems, prior approaches are based on temporal
logics, automata theory, or metric-spaces. In this paper, we base the semantics on a CPO
with a prefix order, as has been done previously for untimed systems. We show that ex-
istence and uniqueness of behaviors are ensured by continuity with respect to this prefix
order. Existence and uniqueness of behaviors, however, does not imply that a composition
of components yields a useful behavior. The unique behavior could be empty or smaller
than expected. We define liveness and show that appropriately defined causality conditions
ensure liveness and freedom from Zeno conditions. In our formulation, causality does not
require a metric and can embrace a wide variety of models of time.
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1 Introduction

Wegner [63] argues that interaction is more expressive than algorithms. Indeed
there is a family of approaches to computing being studied by diverse commu-
nities that are distinctly interactive rather than algorithmic. These go under the
names of coordination languages, agents, actors, and process networks. They all
refactor software into components that co-exist and engage in dialog with one an-
other. Key to the expressiveness of such component interactions is “entanglement”
[64], where outputs from a component depend on previous outputs, in dialog with
the environment. This is distinct from classical models of computing based on the
Turing-Church thesis, which do not model such interaction.

In this paper, we will use the term “actors” for interactive components. 1 In con-
trast to objects, actors are concurrent, in charge of their own actions. Their environ-
ment (which can include other actors) provides them with data, and they react and
provide the environment with additional data. Actors engage in dialog with their
environment. An immediate consequence is that actor-oriented designs tend to be
highly concurrent.

The term “actors” has, of course, been used for models of this type. In the classi-
cal actor model of Hewitt and Agha [4,29], components have their own thread of
control and interact via message passing. The term “actors” has also been used by
the dataflow community [22] to refer to chunks of computation that react to the
availability of input data by “firing” and producing output data.

We are using the term “actors” more broadly, inspired by the analogy with the phys-
ical world, where actors control their own actions. In fact, the most widespread
use of interactive models fitting our notion of actors is not rooted in any of these
classical communities, but is rather focused on embedded software (where interac-
tion is intrinsic). For example, the synchronous/reactive languages [11] are “actor-
oriented” in our sense. Components react at ticks of a global clock, rather than
reacting when other components invoke their methods. In the synchronous lan-
guage Esterel [13], components exchange data through variables whose values are
determined by solving fixed point equations. The Lustre [28] and Signal [12] lan-
guages focus more on the flow of data, but are semantically similar. Asynchronous
dataflow models based on Kahn process networks [31] are also actor-oriented in our
sense, and are used for media intensive embedded signal processing software [21].
The more specialized dataflow models in LabVIEW (from National Instruments)
are used in instrumentation systems, configurable hardware design, and embed-
ded software design. Discrete-event (DE) systems are also actor oriented, and are
commonly used in hardware design (VHDL and Verilog are DE languages) and

1 The term “agents” is equally good, but we avoid it because in the mind of many re-
searchers, agents include a notion of mobility, which is orthogonal to interaction and irrel-
evant to our current discussion.
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in modeling and design of networked systems [16,8]. In DE, components interact
via timed events, which carry data and a time stamp, and reactions are chrono-
logically ordered by time stamp. Modeling software, such as Simulink (from The
MathWorks) and Modelica [26] go further by modeling continuous-time dynamics,
where components interact via continuously evolving signals.

Wegner argues that interactive models are less amenable to formalism than algo-
rithmic ones [63]. This is debatable, however. While the formalisms may be more
complex (this should be expected), they are no less rigorous. Surrounding the actor-
oriented approach are a number of semantic formalisms that complement tradi-
tional Turing-Church theories of computation by emphasizing interaction of con-
current components rather than sequential transformation of data. These include
stream formalisms [31,15,59] and discrete-event formalisms [66,35]. A few such
formalisms are rich enough to embrace a significant variety of actor-oriented mod-
els of computation, including interaction categories [2], behavioral types [39,7],
interaction semantics [61], and the tagged-signal model [38].

Models of actors that have been previously given include the I/O automata of Lynch
and Tuttle [45], which extend the rendezvous semantics of CSP [30] and CCS [50]
with notions of input and output. This formalism bases its analysis on interleavings
of system state trajectories and uses the automata theoretic concepts of refinement
and simulation [51] for analysis.

For timed systems, there is a rich history of formalisms. I/O automata have been ex-
tended to Hybrid I/O Automata, which embrace timed models, including continuous-
time dynamics [43]. Subsequently, Hybrid I/O Automata were specialized to Timed
I/O Automata [33], which describe the passage of time but do not allow interactions
of continuous-time dynamics.

An alternative approach builds on temporal logics, also known as tense logics. The
pioneering work of Pneuli [54] showed how to use temporal logic for understanding
reactive systems. Our actors are (individually) reactive systems, so an actor network
is a composition of reactive systems. Temporal logics focus on qualitative aspects
of timed behavior such as invariance, precedence, and responsiveness. Many vari-
ants are surveyed in [6,24,47], including some that represent quantitative aspects
of timing. The TLA-based model of timed systems by Abadi and Lamport [1] in-
cludes analysis of Zeno systems, similar in spirit to the study in this paper, though
achieved by different methods that are arguably more complicated. In temporal
logic models as in I/O automata, a system is described as a sequence of state transi-
tions (variously called “actions”). Various logics provide rules for reasoning about
state sequences (linear time logics) or trees of possible state trajectories (branching
time logics). Compositions of systems lead to (typically nondeterministic) inter-
leavings of state transitions (interleaving semantics) or sequences of observables
(trace semantics). Our approach here is closest to the trace semantics, but deviates
completely from the focus on state trajectories.
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In [36], one of us argues that concurrent semantics based on interleaved state tra-
jectories introduces spurious nondeterminacy that complicates analysis, limits scal-
ability, and impedes understanding. Fundamentally, the focus on sequences of state
transitions is more operational than denotational. In concurrent systems, the “sys-
tem state” may not be observable, and may not even be well defined. Why base
a semantics on such a questionable foundation? In addition, models based on dis-
crete state transitions are not capable of fully embracing the time continuum, ad-
mitting for example components whose behavior is given by ordinary differential
equations. Our approach in this paper admits such systems, and avoids spurious
nondeterminacy.

An alternative approach to the semantics of timed systems that is distinctly denota-
tional builds on metric spaces. In 1988, Reed and Roscoe [57,58] gave a semantic
framework for concurrent systems, specifically timed CSP, based on complete met-
ric spaces, saying that they “seem a natural method by which to induce a hierarchy
on the various models” and they “appear more appropriate for modelling continu-
ous concepts such as real time.” The basic approach is to define a metric (actually,
typically an ultrametric) on the set of traces of signals communicated between ac-
tors. The actors are then modeled as contraction maps, and the Banach fixed point
theorem yields a fixed-point semantics. This approach has been pursued by oth-
ers for both timed systems [66,35] and more conventional concurrent programs
[9,10,20]. In [10], Baier and Majster-Cederbaum compare metric space approaches
and CPO-based approaches for concurrent systems using CCS. Our objective here
in this paper is to show that CPO-based approaches also work for timed systems,
and hence similar tradeoffs can be explored.

In this paper, we seek a similarly denotational semantics, but we are not satis-
fied with the metric space models. In [42], we collaborated with Matsikoudis to
show that the standard metric-space formulation excessively restricts the models
of time that can be used. In particular, it cannot handle super-dense time [46,48],
used in hardware description languages, hybrid systems modeling, and distributed
discrete-event models. Super-dense time is essential to cleanly model simultaneous
events without unnecessary nondeterminism, and is related to the interleaving se-
mantics introduced in temporal logic approaches [6]. Moreover, the metric-space
approaches do not handle well finite time lines, and time with no origin. Moreover,
if we admit continuous-time and mixed signals (essential for hybrid systems mod-
eling) or certain Zeno signals, then causality is no longer equivalent to its formal-
ization in terms of contracting functions. In [42], we give an alternative semantic
framework using a generalized ultrametric [55] that overcomes these limitations.
The existence and uniqueness of behaviors for such systems comes from the fixed-
point theorem of [56], but this theorem gives no constructive method to compute the
fixed point. In [17] we go a step further, and for the particular case of super-dense
time, we define petrics, a generalization of metrics, which we use to generalize
the Banach fixed-point theorem to provide a constructive fixed-point theorem. In
this paper, we are in part reacting to the ever growing algebraic elaborations of the
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metric-space approaches, giving an alternative that appears to be simpler. It does
not, however, define exactly the same set of models.

One of the issues we address in this paper is the possibility of Zeno behaviors in
timed systems, where an infinite number of events occur in a finite time. Most of the
prior work either imposes excessive restrictions (lower bounds on time intervals be-
tween events [14,58] or simply assumes the problem away [6,44]. Abadi and Lam-
port [1] confront the problem head on, and establish a linkage between “machine
closure” [34] and freedom from Zeno conditions. The potential lack of machine
closure, however, proves to be a source of incompleteness; Abadi and Lamport
nonetheless give conditions (which they admit are intricate) that are significantly
less conservative than the excessive restrictions used by others. Our model is sim-
ilarly incomplete, and like Abadi and Lamport, we give only sufficient conditions
for a system to be non-Zeno.

This paper builds on domain theory [3], developed for the denotational semantics of
programming languages [65,60]. But unlike many semantics efforts that focus on
system state and transformation of that state (temporal logics and automata theory),
we focus on concurrent interactions, and do not even assume that there is a well-
defined notion of system state. In particular, we develop a timed version of the
fixed-point semantics for process networks as introduced by Kahn [31]. Our version
uses the tagged-signal model [38].

In the next section, we explain the structure of programs. In the following sec-
tion, we review the tagged signal model and define signals, which encompass the
communication histories between actors. In section 4, we define compositions of
interacting actors and open systems. We show that familiar fixed-point semantics,
which are traditionally applied to closed systems, can be extended to open systems.
In section 5, we specialize to timed systems, and show that the same fixed point
semantics give conditions for existence and uniqueness of behaviors. In contrast
to other authors [14,52,66], we do not require causality for existence and unique-
ness of behaviors. Causality, however, is useful for liveness, the timed analog of
freedom from deadlock. We define strict causality without the use of a metric, and
like Naundorf [52], show that strict causality in a feedback loop is sufficient for
liveness. This contrasts with other authors [14,66], who require a stronger form of
causality called delta causality or time guardedness. Moreover, we extend Naundorf
by including open systems, by giving conditions for freedom from Zeno behaviors,
and by showing that the fixed point is constructive. We close with a discussion of
Zeno conditions in timed systems.

5



Fig. 1. A composition of three actors and an abstraction.

2 Program Structure

Programs will be given as hierarchical networks of actors like those shown in figure
1. In figure 1(a), a program is given as a network of three actors, A1, A2, and A3.
The boxes represent actors, and the triangles on the boxes represent ports. The ports
pointing into the boxes are input ports and the ports pointing out of the boxes are
output ports. The interconnections (“wires”) between actors represent interaction
pathways (”signals”). We take this structure to be static, effectively providing the
“source code” for the program. The behavior, of course, may be highly dynamic.

We use a visual syntax here for convenience of exposition, and do not mean to
advocate for or against visual syntaxes. A textual syntax for the composition in fig-
ure 1(a) might associate a language primitive or a user-defined module with each
of the boxes and a variable name with each of the wires. The synchronous lan-
guages Esterel, Lustre, and Signal, for example, have principally textual syntaxes,
although recently visual syntaxes for some of them have started to catch on. Ports
and connectors are syntactically represented in these languages by variable names.
Using the same variable name in two modules implicitly defines ports for those
modules and a connection between those ports. Visual syntaxes are more explicit
about this architecture. Examples with visual syntaxes include Simulink (from The
MathWorks), LabVIEW (from National Instruments), and Ptolemy II [23].

We assume that some actors are “primitive” in the sense that they are not defined
in terms of other actors. They might be primitive operations of an actor-oriented
language, or software components given in a host language. In the latter case, the
actor-oriented language is serving as a coordination language or a composition lan-
guage.

Actor networks, of course, may be abstracted. In figure 2(b), the three actors are
outlined, and then in figure 2(c), aggregated into a single actor. All but two of the
ports are hidden. A major objective of this paper is give the semantics of arbitrary
aggregations and abstractions like these.

In this paper, we are not assuming a particular syntax, and we consider a family of
semantic models rather than a single one. As such, we are not giving a semantics for
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a particular language, but rather are giving a framework that can be used to develop
semantics for a family of languages. Specifically, rather than a particular syntax, we
assume only an abstract syntax, which asserts that a program is a composition of
actors and connectors, that actors are associated with ports, and that a composition
is an actor. The family of semantic models that we focus on includes a variety of
timed actor-oriented systems.

3 Tagged Signals

The tagged-signal model [38] provides a formal framework for considering and
comparing actor-oriented models of computation. It is similar in objectives to the
coalgebraic formalism of abstract behavior types in [7], interaction categories [2],
and interaction semantics [61]. As with all three of these, the tagged signal model
seeks to model a variety of interaction styles between concurrent components.

In the tagged-signal model, each discrete communication between actors is called
an event. An event is defined to be a pair (t, v), where t ∈ T is a tag and v ∈ V
is a value. A signal is a set of events that typically represents the sum total of the
communication between two actors along some communication path. The “wires”
in figure 1 carry signals. For the systems we are interested in, these sets are very
likely infinite. Most applications of the tagged-signal model impose structure on
the tag set T and study the consequences of that structure. For example, T might
represent causality properties, time, or activation orders.

Later in this paper, we will model time using totally-ordered tag sets. But there is
no need to impose that restriction yet. In general, the tag set is partially ordered (a
poset). A poset (T,≤) is a set T and a binary relation ≤ that is reflexive (t ≤ t),
antisymmetric (t1 ≤ t2 and t2 ≤ t1 ⇒ t1 = t2), and transitive (t1 ≤ t2 and t2 ≤
t3 ⇒ t1 ≤ t3).

In this paper, we constrain the tagged signal model of [38] in a subtle but important
way. Specifically, we assume that a signal is a partial function defined on a down
set of T (a similar restriction is made in [52]). Formally,

Definition 1 (Down Set) Let (T,≤) be a poset. A subset T ′ of T is a down set if
for all t′ ∈ T ′ and t ∈ T , t ≤ t′ implies t ∈ T ′.

Down sets are also called initial segments in the literature [27].

Definition 2 (Signal) Let (T,≤) be a poset of tags, and V a non-empty set of val-
ues. A signal s : T ⇀ V is a partial function from T to V such that dom(s) is a
down set of T .

In the above definition, dom(s) is defined to be the subset of T on which s is
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defined.

Let S denote the set of all signals with tag set T and value set V . That is, this is the
set of partial functions with domain T and codomain V that are defined on a down
set of T . S is a poset under the prefix order, defined next.

Definition 3 (Prefix Order) For any s1, s2 ∈ S, s1 is a prefix of s2, denoted by
s1 v s2, if and only if dom(s1) ⊆ dom(s2), and s1(t) = s2(t), ∀t ∈ dom(s1).

That is, a signal s1 is a prefix of another signal s2 if the graph of the function s1

is a subset of the graph of the function s2. The prefix order on signals is a natural
generalization of the prefix order on strings or sequences, and the extension order
on partial functions [62].

A complete partial order (CPO) (P,≤) is a poset where P has least element
⊥P ∈ P , and where every directed subset of P has a least upper bound. A subset
D ⊆ P is directed if for all d1, d2 ∈ D, {d1, d2} has an upper bound in D.

A signal set with the prefix order (S,v) is a CPO [41]. The least element of S is
s⊥ : ∅ → V , an empty signal (it has no events). If a signal is defined for all tags in
T , then it is a maximal element of S, and is called a total signal.

Note that any pair of signals {s1, s2} ⊂ S has a greatest lower bound s1 ∧ s2 ∈ S.
This greatest lower bound is the common prefix, which may be the empty signal
if the two signals have nothing in common. In fact, any non-empty subset S ′ ⊆ S
has a greatest lower bound, which makes S a complete semilattice in addition to a
CPO [19].

4 Tagged Systems

Signals, defined in the previous section, represent communication between actors.
Actors receive and produce events on ports. Thus, a port is associated with a signal,
which is a set of events. In this section, we give a declarative definition of actors
and show how actors can be composed and abstracted.

4.1 Behaviors

Consider actor A with a finite set of ports PA = {p1, p2, ..., pn}. Assume each port
sends or receives signals in a signal set Si with tag set Ti and value set Vi. Let
SA = S1 ∪ S2 ∪ ... ∪ Sn. A behavior of A is a function

σ : PA → SA,
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with the constraint that σ(pi) ∈ Si. A behavior for a set of ports assigns to each
port a signal. The set of all behaviors for ports PA is written ΣPA

⊆ (PA → SA).

The prefix order can be generalized to behaviors. Given two behaviors σ1, σ2 ∈
ΣPA

, we say σ1 v σ2 if and only if for all p ∈ PA, σ1(p) v σ2(p). It is then easy to
see that (ΣPA

,v) is a CPO and a complete semilattice.

Other definitions also generalize naturally. For instance, a behavior σ : PA → SA is
total if for all p ∈ PA, σ(p) is total.

4.2 Actors as Sets of Behaviors

An actor A with ports PA is a set of behaviors A ⊆ ΣPA
. That is, an actor can be

viewed as constraints on the signals at its ports. A signal s ∈ Si at port pi ∈ PA is
said to satisfy an actor A if there is a behavior σ ∈ A such that s = σ(pi).

A connector C between ports in set PC is also a set of behaviors C ⊆ ΣPC
, but

with the constraint that for each behavior σ ∈ C, there is a signal s ∈ SC such that

∀ p ∈ PC , σ(p) = s.

That is, a connector asserts that the signals at a set of ports are identical. A connec-
tor is an actor as well. In figure 1, actors are shown as rectangles, ports as triangles,
and connectors as lines. In this syntax, actors can share ports with connectors.

Notice that because all signals in a behavior of a connector must be identical, there
is a type check that must be performed on actor composition. Moreover, whereas a
classical type system would focus only on the value sets V , our type check has to
also check the tag sets T . This means that actors communicating through connec-
tors must have compatible semantics on their ports. For example, if an actor sends
a stream, the receiving actor must accept a stream. If an actor sends timed events,
the receiving actor must accept timed events. Composing incompatible actors will
result in empty behaviors.

4.3 Composition of Actors

Given two actors, A with ports PA and B with ports PB, the composition behavior
is the intersection, defined as

A ∧B ⊆ ((PA ∪ PB) → (SA ∪ SB)),

where
A ∧B = {σ | σ � PA ∈ A and σ � PB ∈ B},
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where σ � P denotes the restriction of σ to the subset P of ports. Note that this is
not the intersection of the graphs of the functions. It is larger.

This composition extends easily to arbitrary sets of actors. A composition A of
actors A1, · · · , An is given by

A = A1 ∧ · · · ∧ An.

Such a composition is itself an actor, and is called a composite actor when we wish
to emphasize that it is composed of other actors. We will consider only composi-
tions of a finite number of actors.

Given an actor A with ports P and a subset Q ⊂ P , an abstraction AQ exposes
only those ports in Q. That is,

AQ = {σ � Q | σ ∈ A}.

An abstraction of an actor is also an actor.

Notice that our formalism does not require that the ports of distinct actors be dis-
joint. In fact, an actor will normally share ports with one or more connectors, and
also possibly with abstractions. A syntax like that in figure 1 imposes specific con-
straints. An actor A shares ports only with connectors and (possibly) with abstrac-
tions of composite actors that include A. Otherwise, ports of actors are disjoint.
Although our semantics does not require such constraints, they are useful syntactic
devices in actor-oriented languages.

In many actor-oriented formalisms, ports are either inputs or outputs to an actor
but not both. Lynch and Tuttle [45] show that the distinction is important, in that
models that do not distinguish inputs from outputs, such as CSP [30] and CCS [50],
do not capture the notion of control, where one component initiates and controls an
event while another reacts to it.

Consider an actor A with ports PA = Pi ∪ Po, where Pi are the input ports, Po are
the output ports, and Pi ∩ Po = ∅. The actor is said to be functional if

∀ σ1, σ2 ∈ A, (σ1 � Pi = σ2 � Pi) ⇒ (σ1 � Po = σ2 � Po).

Such an actor can be viewed as a function from input signals to output signals.
Specifically, given a functional actor A with input ports Pi and output ports Po, we
can define an actor function

FA : (Pi → Si) ⇀ (Po → So). (1)

When it creates no confusion, we make no distinction between the actor (a set of
behaviors) and the actor function. If the actor function is total, the actor is said to
be receptive.
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Fig. 2. A composition of three actors and its interpretation as a feedback system.

An actor with no input ports (only output ports) is functional if and only if its
behavior set is a singleton set. That is, it has only one behavior. An actor with no
output ports (only input ports) is always functional.

A useful syntactic constraint (which again is not required in the semantics) con-
strains connectors to have at most one output port. If the output ports of two func-
tional actors are shared by a connector, then unless the output signals of the two
actors are identical, the behaviors of the connector and the actors will be empty.
Preventing this error through syntactic constraints is advisable when defining a lan-
guage.

The input ports of a composite actor are the input ports of those actors in the com-
posite that are not shared by connectors with an output port. For example, in figure
1(b), the composite actor represented by the large rectangle has input port p1. This
composite is abstracted to actor A in figure 1(c), where A has only one output port,
p4.

If a composite actor has no input ports, it is said to be closed. A composition is de-
terminate if it is functional. A key question in many actor-oriented formalisms is,
given a set of total functional actors and connectors, is the composition functional
and total? This translates into the question of existence and uniqueness of behaviors
of compositions. It determines whether a composition is determinate and whether
it is receptive. Note that determinacy here is relative to the tag system. Anything
not expressed in the tag system is irrelevant. For example, if the tag system is not
totally ordered (and hence does not directly express time), then the fact that there
are multiple linearizations of partially ordered events does not, by itself, introduce
nondeterminacy. This contrasts with formalisms based on system state, which must
express progress as progressions from one state to the next, and multiple interleav-
ings are a source of nondeterminacy even if they are semantically irrelevant.
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4.4 Fixed Point Semantics

The composition in figure 2(a) can be redrawn as shown in figure 2(b). Figure 2(c)
composes the actors A1, A2, and A3 to form actor A, which it then composes with
the three connectors. It is easy to see that any block diagram of this type can be
redrawn in this way and abstracted to a single actor with the same number of input
and output ports, with each output port connected back to a corresponding input
port.

It is also easy to see that if actors A1, A2, and A3 in figure 2(b) are functional
and receptive, then the composite actor A in figure 2(c) is functional and receptive.
Let FA denote the actor function for actor A. Assuming the component actors are
functional and receptive, it has the form

FA : (Pi → Si) → (Po → So).

The feedback connections in figure 2(c) compose to form an actor with function

C : (Po → So) → (Pi → Si)

that requires the signals at ports Pi to be the same as the signals at ports Po. The
feedback system function is thus a composition of the actor function and the feed-
back connections,

(C ◦ FA) : (Pi → Si) → (Pi → Si). (2)

Then the behavior of the feedback composition in figure 2(c) is σ ∈ (Pi → Si) that
is a fixed point of C ◦ FA. That is,

(C ◦ FA)(σ) = σ.

A key question, of course, is whether such a fixed point exists (does the composi-
tion have a behavior?) and whether it is unique (is the composition determinate?).
This question has been addressed for dataflow process networks using fixed-point
theorems on CPOs [31]. For discrete-event models, prior work has defined se-
mantics somewhat differently, by defining a metric space on the set S of signals
[66,35,20], and making causality requirements on the components. We show here
that the causality requirements are unnecessary for existence and uniqueness.

4.5 Open Systems

Note that the composition in figure 2 is closed (it has no inputs). We can general-
ize the formulation to allow open compositions like the example in figure 3 (and
generalizations, where A is a composite actor and multiple signals are fed back or
serve as inputs). In such cases, we partition the input ports of the composition actor
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Fig. 3. A composition with feedback and input ports.

into two disjoint sets Pi = P ′
i ∪ P ′′

i , where P ′
i is the set of input ports of actor A

that are not connected to any output port of A, and P ′′
i = Pi \ P ′

i . Thus, in fig-
ure 3, P ′

i = {p2} and P ′′
i = {p1}. Let Po denote the output ports of A. In figure 3,

Po = {p3}. We assume without loss of generality that all output ports are connected
back to input ports in P ′′

i . Then the actor function can be written

F ′
A : (P ′

i → S ′
i)× (P ′′

i → S ′′
i ) ⇀ (Po → So),

where S ′
i and S ′′

i are the signal sets of ports p′i and p′′i . As before, we define a
connector for the feedback path, which will be a function of the form

C : (Po → So) → (P ′′
i → S ′′

i ).

The feedback system function is then

(C ◦ F ′
A) : (P ′

i → S ′
i)× (P ′′

i → S ′′
i ) ⇀ (P ′′

i → S ′′
i ). (3)

Given an input behavior σi ∈ (P ′
i → S ′

i), if the feedback composition of figure 3
has a feedback behavior σo ∈ (P ′′

i → S ′′
i ), then it must be true that

(C ◦ F ′
A)(σi, σo) = σo.

That is, the behavior on the output ports is a fixed point of a function that is pa-
rameterized by the input signal. If this fixed point exists and is unique for all input
behaviors, then the composition function of figure 3 has the form

F : (P ′
i → S ′

i) → (Po → So). (4)

Because we can model open systems, we no longer need to hide input ports when
abstracting systems. Thus, if we assume that nondeterminism (where actors are
not functional) is resolved at run-time by external influences, and we model those
external influences using input ports, then any source of nondeterminism can be
converted into an input port. Thus, the ability to cleanly model open systems sig-
nificantly reduces the incentive to model nondeterministic systems. If the source
of nondeterminism in a system is external events, then a determinate model of an
open system is probably better than a nondeterminate model of a closed system.
Nonetheless, we conjecture that an adaptation of Plotkin’s powerdomain construc-
tion would work to provide a generalization to nondeterminate systems [53]. (It
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needs to be adapted because it is based on transformations of global system state,
which is not a well-defined concept in our model.)

We examine next the conditions for existence and uniqueness of the fixed point.

4.6 Existence and Uniqueness of Fixed Points

In this section, we review classical results [19] and apply them to our formulation
of actor networks. Let (D,v) and (E,v) be CPOs. A function G : D → E is
monotonic if it is order-preserving,

∀d1, d2 ∈ D, d1 v d2 =⇒ G(d1) v G(d2).

The same function is (Scott) continuous if for all directed sets D′ ⊆ D, G(D′) is
a directed set and

G(
∨

D′) =
∨

G(D′).

Here, G(D′) is defined in the natural way as {G(d) | d ∈ D′}, and ∨X denotes the
least upper bound of the set X .

It is easy to show that every continuous function is monotonic. A classic fixed point
theorem [19] states that if G : D → D for CPO D is continuous, then it has a least
fixed point, and that least fixed point is∨

{Gn(⊥D) | n ∈ N}, (5)

where ⊥D is the least element of D and N is the natural numbers.

These results can be immediately applied to closed actor systems like those in figure
2. If each component actor is receptive and continuous, then the system function
C ◦ FA of (2) is a continuous function on a CPO. Thus, it has a least fixed point,
and that fixed point is given by (5). Following [31], we can define the semantics of
the feedback system to be the single unique behavior that is the least fixed point.
As we will see, however, this result applies much more broadly than to the process
networks of [31].

It is intuitive for actors to be monotonic in the prefix order. Consider an actor A with
a single input port, a single output port, and actor function FA. Consider two possi-
ble input signals s1 and s2, where s1 v s2. That is, s2 extends (or equals) s1. If FA

is monotonic, then FA(s1) v FA(s2). That is, FA(s2) extends (or equals) FA(s1).
Intuitively, extending the input does not result in changes to “previously produced”
outputs (the portion of the output that results from the unextended input). Thus, it
is natural for actor functions to be monotonic. Intuitively, if an actor function is
also continuous, then this means that the actor does not wait forever before pro-
ducing output. This behavior is also intuitive and natural. Thus, we conclude that
constraining functional actors to be continuous is not onerous.
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To handle open systems like those in figure 3, we have a bit more work to do, but
again, classic results can be applied almost immediately. As before, let (D,v) and
(E,v) be CPOs, but now we consider a function of the form

G : D × E → E. (6)

For a given d ∈ D, let G(d) : E → E be the function such that

∀ e ∈ E, (G(d))(e) = G(d, e).

If G is continuous, then for all d ∈ D, G(d) is continuous (lemma 8.10 in [65]).
Hence, G(d) has a unique least fixed point, and that fixed point is∨

{(G(d))n(⊥E) | n ∈ N},

where ⊥E is the least element of E.

We recognize immediately that the feedback system function of (3) is a function
of form (6). Moreover, if the component actors are receptive and continuous, then
the feedback system function will be receptive and continuous, and given an input
behavior σi ∈ (P ′

i → S ′),

(C ◦ F ′
A)(σi) : (P ′′

i → S ′′
i ) → (P ′′

i → S ′′
i )

is continuous and hence has a least fixed point. We take that least fixed point to be
the semantics of the system. Thus, for any input behavior σi, the feedback compo-
sition has a unique semantics, and that semantics is a function of the form (4). We
now show that that function is receptive and continuous.

Since for any input behavior the system in figure 3 has a unique semantics, the
composition function F of (4) is well defined. More interestingly, we can show that
if each of the component actors is receptive and continuous, then the composition
function F is receptive and continuous. This follows first from the (trivial) obser-
vation that F ′

A, C, and (C ◦ F ′
A) are receptive and continuous, and second from the

following theorem.

Theorem 4 Let (D,v), (E,v) be CPOs, and let G : D×E → E be a continuous
function. Define a function F : D → E such that

∀ d ∈ D, F (d) =
∨
{(G(d))n(⊥E) | n ∈ N}.

That is, F (d) yields the least fixed point of the function G(d) : E → E (which exists
and is unique). F is continuous.

Proof. Let [E → E] be the set of all continuous functions from E to E. We can
define a partial order on this set by ∀ p, q ∈ [E → E],

p v q ⇐⇒ ∀ y ∈ E, p(y) v q(y).
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With this partial order, [E → E] is a CPO. For any directed set D′ ⊆ D, {G(d) | d ∈
D′} ⊆ [E → E] is a directed set, and∨

{G(d) | d ∈ D′} = G(
∨

D′),

so the function G : D → [E → E] is continuous. Let fix: [E → E] → E denote
the function that yields the unique least fixed point of any continuous function in
[E → E]. By Theorem 2.1.19 in [3], fix is continuous. Note that

F = fix ◦G.

Since this is the composition of two continuous functions, F is continuous. 2

5 Timed Interactive Networks

Our framework so far can easily subsume some classical results. For example, if
the tag set for all signals is T = N, the natural numbers, then our networks are
Kahn process networks [31]. The constraint that signals be defined on a down set
of T is natural in this case. However, our framework is more general, and in this
paper, we focus on its use for timed interactive networks.

5.1 Models of Time

Our framework admits several models of time. In all cases, the tag set T will be
totally ordered. Perhaps the most natural choice, where T = R+, the non-negative
reals, reflects a Newtonian physical view of time. The fact that we include only the
non-negative reals implies that our timed interactive networks have a starting point.

A more interesting model of time is super dense time (SDT) [48], where T =
R+ × N with lexical ordering,

(r1, n1) ≤ (r2, n2) ⇐⇒ r1 < r2, or r1 = r2 and n1 ≤ n2 . (7)

This is a total order. SDT can be similarly defined as T = I × N, where I is any
interval of real numbers. SDT has been used in studying the semantics of hybrid
systems [32,40,46]. A subset T = N×N, is used as the model of time in some
hardware description languages (notably VHDL). SDT is in a sense “strictly richer”
than R+ as a model of time, in that one can show that there is no order-embedding
of T = R+ × N in R+.

We make few constraints on the value sets, but for most models, it is useful to
assume that every value set V contains a special element ε ∈ V that represents
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0 1 2 3 t

(a)

0 1 2 3 t

(b)

0 1 2 3 t

(c)

0 1 2 3 t

(d)

Fig. 4. Examples of timed signals: (a) const1, (b) clock1, (c) zeno, (d) dzeno.

absence of a value. Without this choice, only signals defined on a connected interval
of R+ including 0 would meet our requirement that signals be defined on a down
set. This would unnecessarily constrain us to continuous-time signals.

5.2 Defining Signals

For convenience in giving examples, we will give signals as a tuple, (dom(s), E)
where dom(s) is the domain of the signal (a down set of T ), and E is the set of
events that are not absent,

E = {(t, s(t)) | t ∈ dom(s), s(t) 6= ε}.

By implication, all other events with a tag in the domain are absent. If E is a finite
set, signal s is called a finite signal. For example,

s⊥ = (∅, ∅),
sε = (T, ∅).

The empty signal s⊥ has no events, whereas the absent signal sε has absent events
(t, ε) for all t ∈ T .

The following examples, with T = R+ and V = {0, 1, ε}, are sketched in figure 4:

const1 = (R+, {(t, 1) | t ∈ R+}),
clock 1 = (R+, {(k, 1) | k ∈ N}),
zeno = (R+, {(1− 1/2k, 1) | k ∈ N}),

dzeno = ([0, 1), {(1− 1/2k, 1) | k ∈ N}).

The only difference between zeno and dzeno is the tag set.
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Fig. 5. A composition that can be shown to be live.

5.3 Examples of Actors

We now consider two example actors, Delayd and Merge . Let d be any positive real
number. The Delayd : S → S actor shifts every event in its input signal by d into
the future such that if r = Delayd(s), then

dom(r) = {t ∈ T | t− d ∈ dom(s) or t− d /∈ T},

r(t) =

s(t− d) t− d ∈ dom(s),

ε otherwise.

(8)

The Merge : S2 → S actor combines the present events in its input signals into
its output signal, giving precedence to its first input when both input signals are
present at the same time. Specifically, if s = Merge(s1, s2), then

dom(s) = dom(s1) ∩ dom(s2),

s(t) =

s1(t) s1(t) 6= ε,

s2(t) otherwise.

(9)

It is easy to prove that actors Delayd and Merge are both continuous [41]. They are
also obviously both receptive.

5.4 Live Systems

A closed composition of actors is said to be live if all its behaviors are total (if it is
determinate, then there is only one behavior). An open composition of actors is live
if, given input signals that are total, all behaviors are total. This broadly captures
the notions of freedom from deadlock, livelock, and causality loops. By contrast, in
[5], a system is live if an infinite number of inputs generates an infinite number of
outputs. Our definition is stronger, in that the output must be defined on the entire
tag set, and weaker in that there need not be any output at all, and both the output
and the input may be continuous-time signals.

Consider the composition shown in figure 5, which has the form of that in figure
3 when the Merge and Delayd are aggregated. Since both Merge and Delayd are
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receptive and continuous, the composite actor A is receptive and continuous, and
hence the feedback composition is itself a continuous function, using results from
section 4.6 above. We can also show that it is live.

To show that the composition in figure 5 is live, we use abstract interpretation [18],
considering the actors only to be relations on the domains of the signals,

dom(s2) = dom(s3) ∩ dom(s1),

dom(s3) = [0, d) ∪ {t + d | t ∈ dom(s2)}.

If the input s1 is total, then dom(s1) = T and dom(s2) = dom(s3). This implies
that

dom(s3) = [0, d) ∪ {t + d | t ∈ dom(s3)}.
The only subset of R+ that satisfies the last equation is R+, so both s2 and s3 are
total signals.

Not all timed process networks have this property. Suppose we replace the Delayd

actor in figure 5 with an actor LookAheada : S → S, where a is a positive real
number. Given a signal s, the output r = LookAheada(s) is defined by

dom(r) = {t ∈ T | t + a ∈ dom(s)},
r(t) = s(t + a),

It is easy to show that LookAheada is continuous.

If we replace Delayd in figure 5 with LookAheada, the composition still yields
a receptive and continuous function from inputs to outputs, because like Delayd,
LookAheada is continuous. However, the composition is not live. Given any input
s1, the least fixed point is s2 = s3 = s⊥, the empty signal. Thus, the feedback
composition gives a function that maps all inputs to the empty signal. This func-
tion is certainly receptive and continuous, but it’s not very useful. This situation is
analogous to deadlock in Kahn process networks.

It is well known that, in general, whether a network of actors is live is undecid-
able (this is known for Kahn process networks, which are a special case of our
framework, so we must assume that in general liveness is undecidable). We have
two alternatives. We can specialize the semantics of actors and tag systems to de-
cidable subsets (such as synchronous dataflow [37] and the synchronous/reactive
languages [11]), or we can find sufficient conditions for a network to be live, where
the sufficient conditions are checkable and not overly restrictive.

The latter approach is commonly used in timed systems such as discrete-event lan-
guages [66,35], where a metric space of signals is constructed and contraction maps
combined with the Banach fixed point theorem yield live systems. For systems of
the types represented by figures 2 and 3, a sufficient condition for a system to be
live is that the composite actor A be a contraction map. This corresponds to the
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more intuitive requirement that every directed loop in a timed actor network in-
clude a time delay greater than some α > 0. In practice, even though this condition
is only sufficient and not necessary, this constraint is not onerous. Designers using
discrete-event languages, such as hardware description languages, have no diffi-
culty complying, and no difficulty understanding why the requirement is needed.
Indeed, they would consider systems that do not comply but are still live to be
pathological. However, in the context of hybrid systems [40], contraction maps are,
in fact, overly restrictive.

The metric space approach has been adapted to untimed systems (specifically Kahn
process networks) by Matthews [49], who uses a partial metric where the distance
of a sequence to itself is greater than zero if the sequence is finite, and is zero only
if the sequence is infinite. Matthews develops a generalization of the Banach fixed
point theorem to partial metrics and shows that if you have a contraction, then the
system is live (he calls the system “complete” rather than “live”).

The metric space approach has also been generalized to handle hybrid systems
better. In [42], we give an alternative semantic framework using a generalized ul-
trametric [55] and the fixed-point theorem of [56]. In [17] we address the particular
case of super-dense time and define petrics, a generalization of metrics, which we
use to generalize the Banach fixed-point theorem to provide a constructive fixed-
point theorem.

In this paper, we give a sufficient condition for a system to be live that does not
require the machinery of a metric, partial metric, generalized ultrametric, or petric,
and yet subsumes these mechanisms as special cases. Our approach is based on a
simple and intuitive definition of causality.

5.5 Causality

Causality is the relationship between causes and effects. If a timed process models
a physical or computational process, the time of an effect cannot be earlier than
the time of the corresponding cause. This intuition is captured by the following
definition.

Definition 5 (Causality) An actor A with input ports Pi and output ports Po is
causal if it is monotonic, and for all behaviors σ ∈ A,⋂

p∈Pi

dom(σ(p)) ⊆
⋂

p∈Po

dom(σ(p)) . (10)

An immediate consequence of this definition is that a causal actor is live. Thus,
whether a composition of actors is causal will tell us whether it is live.
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To understand this definition intuitively, consider the case where the tag set T is
totally ordered. Then this definition says that if the inputs to a causal actor are
known up to some tag t ∈ T , then the outputs are known at least up to that same
tag t.

Also, a consequence of this definition is that if the input signals in one behavior
σ ∈ A are the same as the input signals in another behavior σ′ ∈ A up to some tag
t, then the corresponding output signals will be the same up to the same tag t.

We can make this precise. Let D(t) = {τ ∈ T | τ ≤ t} for some t ∈ T denote the
smallest down set including t. If an actor A is causal, then for any two behaviors
σ, σ′ ∈ A and time t such that

t ∈
⋂

p∈Pi

dom(σ(p)) ∩ dom(σ′(p)),

∀ p ∈ Pi, σ(p) � D(t) = σ′(p) � D(t) =⇒
∀ p ∈ Po, σ(p) � D(t) = σ′(p) � D(t).

This follows immediately from the definition of causality and the fact that the actor
is monotonic.

Among the actors discussed so far, Delayd and Merge are causal, whereas LookAheada

is not.

Neither causality nor continuity implies the other. The LookAheada process is con-
tinuous but not causal. A minor variant of the Merge actor that we call MaxMerge
is causal but not continuous. The MaxMerge : S2 → S actor is such that s =
MaxMerge(s1, s2) is given by

dom(s) = {t ∈ dom(s1) | ∀τ ∈ D(t) \ dom(s2), s1(τ) 6= ε}, (11)

s(t) =

s1(t) s1(t) 6= ε,

s2(t) otherwise.
(12)

Intuitively, if the input signal s1 is continuously present over a time interval beyond
dom(s2), then those present events are in the output of MaxMerge . The “Max” in
the name is suggestive that this actor, unlike Merge , produces the maximal output
for a given pair of inputs.

Lemma 6 MaxMerge is not continuous.
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Proof. Assume T = R+ and consider two signals

u1 = ([0, 1], {(1, 1)}), (13)
u2 = ([0, 1), ∅), (14)

MaxMerge(u1, u2) = u1. (15)

Let

rk = ([0, 1− 1

2k
), ∅), k ∈ N,

D = {(u1, rk), k ∈ N}.

D is a directed set, and

MaxMerge(u1, rk) = rk,
∨

MaxMerge(D) = u2.∨
D = (u1, u2), MaxMerge(

∨
D) = u1.∨

MaxMerge(D) 6= MaxMerge(
∨

D) .

Hence, the actor is not continuous. 2

It is easy to see that any composition of causal actors without directed cycles is
itself a causal actor. This is not in general true when there are directed cycles. In
this case, we will require that at least one actor in the loop be strictly causal, as
defined next.

Definition 7 (Strict Causality) An actor A with input ports Pi and output ports
Po is strictly causal if it is monotonic, and for all behaviors σ ∈ A, either σ(p) is
total for all p ∈ Po or ⋂

p∈Pi

dom(σ(p)) ⊂
⋂

p∈Po

dom(σ(p)) . (16)

Here ⊂ denotes a strict subset relation. Note that if A is a strictly causal actor with
one input and one output, then A(s⊥) 6= s⊥. A must “come up with something from
nothing.” This is, of course, why strictly causal actors are useful in directed cycles.
Strict causality in our sense serves a similar role to “delta causality” in metric space
formulations, but ours does not require a metric.

We might assume that Delayd is strictly causal, but this is not always the case. If
the tag set is T = R+, then Delayd is strictly causal for any d > 0. The same holds
if T is any interval in the reals that is not a down set of R. If T is a down set of R,
such as (−∞, 0] or R itself, then Delayd is not strictly causal, as evidenced by the
fact that Delayd(s⊥) = s⊥.

We finally come to the main result of this section. The following theorem effectively
gives us a sufficient condition for networks to be live, since causal actors are live.
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Theorem 8 (Causality of Feedback Compositions) Given a totally ordered tag
set and a network of causal, receptive, and continuous actors where in every de-
pendency loop in the network there is at least one strictly causal actor, then the
network is a causal, receptive, and continuous actor.

Proof. (Sketch) We will prove the theorem for networks of the form of figure 3.
The composition actor has input port p2 and output port p3. Note that since actor
A is continuous, the composite actor is receptive and continuous by the results
of section 4.6. So we only have to show causality. The generalization to arbitrary
networks is notationally more tedious, but conceptually identical, and is given in
[41].

We proceed by contradiction. Suppose the composite actor is not causal. Then there
exists an input signal s2 at port p2 and output signal s3 at p3 where dom(s2) 6⊆
dom(s3). Since the tag set is totally ordered, the set of down sets of the tag set
is totally ordered by set inclusion. Thus, if dom(s2) 6⊆ dom(s3), then it must be
true that dom(s3) ⊂ dom(s2) (a strict subset). The signal s1 at port p1 is the same
as s3, so dom(s1) ⊂ dom(s2) and dom(s1) ∩ dom(s2) = dom(s1). Hence, strict
causality requires dom(s1) ⊂ dom(s3), but we have dom(s1) = dom(s3), a con-
tradiction. 2

Note that this proof is not constructive. It does not tell us how to find the behavior
of the actor network, it just tells us that there is a well-defined behavior, and it im-
plies that if the input is total then the output is total. Since we assume the actors are
receptive and continuous, the behavior of the network is the same as obtained con-
structively by theorem 4. However, although theorem 4 is constructive, behaviors
of the system may not be computable in practice. We examine this issue next.

6 Discrete-Event Systems

An important subclass of timed systems are discrete event (DE) systems [16,25,35].
Here, we give a strong definition of such systems, showing that they provide a
subset of timed systems that can be computed one event at a time. In particular,
appropriately constrained DE systems yield a countable set of events and avoid
Zeno conditions, which in practice can be as big an obstacle to practical utility as
lack of liveness. We begin with the definition of DE signals and their properties.
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6.1 DE Signals

Definition 9 (Discrete Event Signal) A timed signal s ∈ S is a discrete event
(DE) signal if there exists a directed set D ⊆ S of finite timed signals such that

s =
∨

D .

Let Sd ⊆ S denote the set of all DE signals with the same tag and value sets as S.
Among the signals in figure 4, clock 1 and dzeno are DE signals, but not const1 and
zeno. 2 Both the empty signal s⊥ and the absent signal sε are DE signals.

There are several equivalent definitions of DE signals, as established by the follow-
ing lemmas.

Lemma 10 A timed signal s is a DE signal if and only if for all t ∈ dom(s),
s � D(t) is a finite signal.

Proof. Let s be a DE signal and D a directed set of finite signals such that s =
∨

D.
For all t ∈ dom(s), there exists r ∈ D such that t ∈ dom(r).

r v s =⇒ s � D(t) = r � D(t).

r is a finite signal implies r � D(t) is a finite signal, so is s � D(t).

For any timed signal s, let

Ds = {s � D(t) | t ∈ dom(s)} ∪ {s⊥} .

Ds is a directed set and s =
∨

Ds. If for all t ∈ dom(s), s � D(t) is finite, then s is
a DE signal. 2

Lemma 11 A timed signal s ∈ S is a DE signal if and only if s−1(V \ {ε}) is
order-isomorphic to a down set of N, and if s−1(V \ {ε}) is an infinite set, then

dom(s) =
⋃

t∈s−1(V \{ε})
D(t) . (17)

This definition is used in [35]. If s−1(V \ {ε}) is order-isomorphic to a down set
of N, then the present events of s can be enumerated in the order of their time. If s

2 The only difference between zeno and dzeno is the domain of the signal. For dzeno, the
domain is [0, 1), the left-closed interval between 0 and 1. Given any t ∈ [0, 1), there are
only a finite number of events before tag t, so by lemma 10, dzeno is a DE signal.
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is present at an infinite number of times, then equation 17 guarantees that for any
t ∈ dom(s), s is present at a time later than t.

With these lemmas, we have three equivalent definitions of DE signals. Definition
9 states that DE signals can be approximated by “simple” elements of S, the finite
signals. Lemma 10 is very useful in proving properties of DE signals. By lemma
11, the present events in a DE signal can be treated as a sequence with increasing
time tags.

The following lemma summarizes the properties of Sd, the set of DE signals.

Lemma 12 For any totally ordered tag set T ,

(a) Sd is a down set of S.
(b) Sd with the prefix order is a CPO.
(c) Sd is a complete semilattice.

Proof. Part (a) is straightforward, as any prefix of a DE signal is also a DE signal.

Part (b). Let D be a directed set of DE signals from Sd. As a subset of S, D is also
a directed set. Since S is a CPO, there exists u ∈ S such that u =

∨
D in the CPO

S. For all t ∈ dom(u), there exists s ∈ D such that t ∈ dom(s).

s v u, t ∈ dom(s) =⇒ u � D(t) = s � D(t).

s � D(t) is a finite signal, so is u � D(t). u is a DE signal, so D has a least upper
bound in Sd. Sd is a CPO.

Part (c). The proof follows directly from the fact that S is a complete semilattice
and part (a) of this lemma. 2

Definition 13 (Non-Zeno Signal) A DE signal s ∈ Sd is non-Zeno if either s is a
finite signal, or s is a total signal, dom(s) = T .

Of the signals in figure 4, clock 1 is the only non-Zeno DE signal. The only other
DE signal, dzeno, is a Zeno signal—it is neither total nor finite. Intuitively, it is
Zeno because it is present at an infinite number of times in a strict subset of its
tag set. The significance of this is that if the signal is computed by enumerating its
present events ordered by time, then any t ∈ T \ dom(dzeno) cannot be covered in
any finite number of computational steps.

Note the role of the tag set T in definition 13. If we change the tag set to T = [0, 1),
then the signal

([0, 1), {(1− 1

2k
, 1) | k ∈ N})

25



is present at the same set of times as dzeno, but it is a non-Zeno signal because its
tag set T is [0, 1) and it becomes a total signal.

A key property of non-zeno DE signals is that all approximations defined over a
subset of T have a finite number of (non-absent) events. This property is extremely
helpful when computing the signals in a composition. It means that a computation
can successively approximate signals over downsets of T , iteratively increasing
these downsets towards the limit of T , and the computation will never have to rep-
resent more than a finite number of events. Discrete-event simulators, for example,
execute a composition in precisely this manner, by advancing time and representing
signals up to the advancing time. This observation motivates the following defini-
tions.

Definition 14 (Non-Zeno closed compositions) A closed composition is non-Zeno
if it has a finite number of behaviors and every signal in every behavior is a non-
Zeno DE signal.

Definition 15 (Non-Zeno open compositions) An open composition is non-Zeno
if given non-Zeno DE signals for inputs it has a finite number of behaviors and
every signal in every behavior is a non-Zeno DE signal.

6.2 Discrete-Event Actors

Definition 16 (Discrete-Event Actor) A discrete event actor is a function from
DE signals to DE signals.

All input and output signals of a DE actor have the same tag set. Among the actors
discussed above, Delayd, Merge , and LookAheada are DE actors. MaxMerge is not
a DE actor, as it has the following behavior,

s1 = ([0, 1], {(1, 1)}) ,

s2 = dzeno,

MaxMerge(s1, s2) = ([0, 1], {(1− 1

2k
, 1) | k ∈ N} ∪ {(1, 1)}) .

MaxMerge(s1, s2) is not a DE signal.

Definition 17 (Non-Zeno Actor) A DE actor P : Sd → Sd is a non-Zeno actor if
for any non-Zeno signal s ∈ Sd, P (s) is a non-Zeno signal.

Such actors are called simple processes in [17].

Theorem 18 A causal DE actor is non-Zeno.
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Proof. Let P : Sd → Sd be a causal DE process. Let s ∈ Sd be any non-Zeno
signal. If s is a total signal, P is causal implies P (s) is a total DE signal. P (s) is
non-Zeno.

If s is not a total signal, then s is finite. Let s′ ∈ Sd be a total signal such that

s′(t) =

s(t) if t ∈ dom(s),

ε otherwise.

s′ is a total non-Zeno signal, and s v s′. P (s′) is a non-Zeno signal. P is causal, so
it is monotonic by definition. P (s) v P (s′), so P (s) is non-Zeno. 2

6.3 Composition of Discrete-Event Actors

Combining the previous results, from section 4, we know that if all actors in a
network of DE actors are continuous, then the network, as a functional actor that
maps input signals to the least solution of the network equations, is continuous. The
following theorem is proved essentially identically to theorem 8.

Theorem 19 (Causal DE Process Network) If all actors in a DE actor network
are causal and continuous, and in every dependency loop in the network there is at
least one strictly causal actor, then the network is causal and continuous.

Corollary 20 A DE actor network that satisfies the assumptions of theorem 19 is
non-Zeno.

This corollary follows directly from theorems 19 and 18. Note that unlike [67,66,35]
and most other treatments of DE systems, we do not require that two present events
in a signal be separated by a minimum time interval, nor that actors be required to
introduce a minimum time delay.

7 Conclusion

We have given a domain-theoretic denotational framework for timed interactive
systems. We have shown that classical CPO-based techniques determine existence
and uniqueness of (least fixed point) solutions, while causality determines liveness.
In particular, strict causality, the definition of which does not require a metric space,
ensures live feedback loops, which in turn ensures freedom from Zeno conditions.
Our approach contrasts with metric space approaches, where contractions and the
Banach fixed point theorem ensure existence and uniqueness of fixed points to-
gether with liveness. Separating liveness concerns from existence/uniqueness con-
cerns allows us to admit non-causal components. Moreover, our approach does not
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require a metric space and consequently embraces easily a wide variety of models
of time, including super-dense time.
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