
End-User Service Composition in Ubiquitous
Computing Environments

Mark Webster Newman

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-138

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-138.html

November 27, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

End-User Service Composition in

Ubiquitous Computing Environments

by

Mark Webster Newman

B.A. (Macalester College) 1992

M.S. (University of California, Berkeley) 2000

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUAT E DIVISION

of the

UNIVERSITY O F CALIFOR NIA, B ER KELEY

Committee in charge:

Professor James Anthony Landay, Co-chair

Professor John Canny, Co-chair

Professor Athony D. Joseph

Professor Peter Lyman

Fall 2007

The dissertation of Mark Webster Newman is approved:

Co-chair Date

Co-chair Date

Date

Date

University of California, Berkeley

Fall 2007

End-User Service Composition in

Ubiquitous Computing Environments

Copyright Fall 2007

by

Mark Webster Newman

 1

ABSTRACT

End-User Service Composition in

Ubiquitous Computing Environments

by

Mark Webster Newman

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor James A. Landay, Co-chair

Professor John Canny, Co-chair

The era of ubiquitous computing is upon us. We are seeing a sustained explosion in the

numbers and types of networked devices and services with which users can interact. This

means that great new capabilities are available to end-users, but such capabilities may

come at a cost in terms of the complexity of understanding and managing multiple

heterogeneous devices and services. In this dissertation, I present work on the design,

development, and evaluation of three systems that offer solutions to existing approaches’

shortcomings with regard to developing networked devices and services for end-users.

The Obje Framework is a distributed middleware platform that overcomes the

problem of piecemeal interoperability by providing a robust interoperability solution for

distributed services by dictating minimal up-front agreements and allowing the details of

interoperation to be supplied at runtime through the delivery of mobile code.

 2

The Obje Display Mirror (ODM) is a service that allows users to connect their

laptops to any shared display device within a collaborative work environment, enabling

seamless access to and interaction with remote devices. A study of ODM usage across six

months indicated that its adoption had impacted workplace information sharing practices

in a positive way.

OSCAR is an application that allows users to discover, control, and connect devices

and services in a home media network. It leverages Obje to provide solutions to both

piecemeal interaction and sluggish adaptation by allowing integrated control of all devices on

the home network and allowing end-users to compose their own functionality from

disparate devices and services. A two-phase user study involving 18 participants with

varying degrees of technical skill demonstrates that users could employ OSCAR to create

and access a range of functionality and that users were able to identify a wide variety of

needs for which OSCAR would provide assistance.

The experiences with these systems reported in this dissertation point towards

principles for designing frameworks and end-user tools to support an integrated, yet

flexible and customizable user experience of ubiquitous computing environments.

__

Professor James A. Landay

Dissertation Committee Co-chair

__

Professor John Canny

Dissertation Committee Co-chair

 i

To my amazing long-term domestic partner,

Valerie Jo Taylor

 ii

Table of Contents

CHAPTER 1 INTRODUCTION 1

1.1 Problems and Opportunities with Networked Services 2

1.1.1 Near-Future Home Networking Scenario 3

1.2 Towards an Integrated User Experience 7

1.3 Thesis and Contributions 11

1.4 Dissertation Outline 14

CHAPTER 2 RELATED WORK 15

2.1 Overview of Related Work 15

2.2 Interoperability Frameworks 18

2.2.1 Universal Plug and Play and the Digital Living Network Alliance 18

2.2.2 Jini Network Technology 20

2.2.3 Web Services 20

2.2.4 Shortcomings of Existing Interoperability Frameworks 21

2.3 Ubicomp Application Frameworks 22

2.3.1 Toolkits for Building Specific Types of Ubicomp Application 23

2.3.2 General-Purpose Ubicomp Application Frameworks 25

2.3.3 Shortcomings of General Ubicomp Frameworks 27

2.4 Automatic Service Composition 28

2.4.1 Automatic Data Flow Path Creation 28

2.4.2 User-Initiated Automatic Service Composition 29

2.4.3 Shortcomings of Automatic Service Composition 30

2.5 Universal Remote Control 31

2.5.1 Infrared-based Universal Remotes 31

 iii

2.5.2 Software-based Universal Remote Control of Networked Devices 32

2.5.3 Providing Devices with Web Presence 33

2.5.4 Shortcomings of Universal Remote Control 34

2.6 End-User Composition of Networked Services 35

2.6.1 End-User Programming in the Digital Home 36

2.6.2 Design and Prototyping Tools for Ubicomp Applications 39

2.6.3 Shortcomings of Existing End-User Composition Systems 40

2.7 Summary 42

CHAPTER 3 THE OBJE FRAMEWORK 44

3.1 Introduction 44

3.2 The User Experience of Interoperability 45

3.2.1 Patterns of Communication 47

3.2.2 The Recombinant Computing approach 49

3.2.3 The Role of User-Supplied Semantics 52

3.3 The Obje Framework 54

3.3.1 Bootstrap Protocol and Code Formats 56

3.3.2 The Obje Programming Model 60

3.3.3 Obje Service Roles and Communication Patterns 67

3.3.4 Integrated User Control 85

3.4 Experiences with the Obje Framework 90

3.4.1 Specialized Applications 92

3.4.2 Generic Tools for Service Composition 96

3.5 Discussion 102

3.5.1 Contributions of the Obje Framework 102

3.5.2 Discussion of Specialized and Generic Application Types 104

3.6 Summary 106

CHAPTER 4 THE OBJE DISPLAY MIRROR 109

4.1 Initial Goals and Context 110

4.2 Supporting Unremarkable Computing 113

4.3 Observing Device-Oriented Practices in the Workplace 116

 iv

4.3.1 Studying Meeting Rooms 116

4.3.2 Observation Methods 118

4.3.3 Initial Study Results and Observations 121

4.3.4 Preparing to Intervene 128

4.4 The Display Mirror 129

4.4.1 Looking Into the Display Mirror 133

4.5 Discussion 144

4.5.1 Studying Boring Things 144

4.5.2 Challenges for Sustained Deployment, Usage, and Evaluation of Ubicomp

Technology 149

4.5.3 Supporting Micro-tasks: Micro-applications or General Tools? 153

4.5.4 The Obje Advantage 157

4.5.5 Contributions and Limitations 159

4.6 Summary 161

CHAPTER 5 DESIGNING AND BUILDING OSCAR 163

5.1 Motivation for OSCAR 164

5.1.1 Stuck in the Middle 164

5.1.2 Focusing on Home Networking 169

5.2 Designing OSCAR 175

5.2.1 Issues with “Custom Configurations” 176

5.2.2 Personas and Scenarios 178

5.2.3 First OSCAR Prototype: Paper Prototype 183

5.2.4 First Expert Evaluation 204

5.2.5 Second OSCAR Prototype: Medium Fidelity Mockups 208

5.3 OSCAR 1: The First Interactive Prototype 226

5.3.1 The OSCAR Testbed 226

5.3.2 The OSCAR1 User Interface 228

5.4 Summary: Towards OSCAR2 240

CHAPTER 6 THE OSCAR USER STUDY 241

6.1 User Study Design 242

6.2 User Study Sessions 247

 v

6.2.1 Introduction and scene setting 247

6.2.2 Tasks 248

6.2.3 Questionnaire 249

6.2.4 Screen-by-screen usability assessment 251

6.2.5 Interview 251

6.3 Results of the OSCAR1 Study 257

6.3.1 Screen-by-screen assessment results 263

6.3.2 Reactions to the Recipe Metaphor 265

6.3.3 Subjective Impressions and Interview Results 266

6.4 The OSCAR2 Prototype 267

6.5 Results of the OSCAR2 Study 272

6.5.1 Analysis of breakdowns 276

6.5.2 Additional usability issues 285

6.5.3 Screen-by-screen assessment of OSCAR2 287

6.5.4 Subjective Perceptions of OSCAR1 and OSCAR2 290

6.5.5 Correlations with Computer and Networking Experience 292

6.6 Interview Results 296

6.6.1 Projected Activities 296

6.6.2 Sharing Attitudes 301

6.6.3 Form Factor 304

6.7 Discussion 305

6.7.1 Contributions of OSCAR 307

6.7.2 Significance of the OSCAR User Study 312

6.8 Summary 315

CHAPTER 7 FUTURE WORK 317

7.1 Improvements to OSCAR 318

7.1.1 Usability Improvements 318

7.1.2 Increasing OSCAR’s range of functionality 329

7.2 Studying OSCAR in daily use 333

7.3 Sharing Devices and Media 334

7.4 Sharing Setups Across Households 338

 vi

7.4.1 Support for Wide-Area Sharing: Communities of Composition 345

7.5 Summary 347

CHAPTER 8 CONCLUSION 348

8.1 Thesis Statement 348

8.2 Contributions 350

8.3 An Integrated User Experience of Ubiquitous Computing 353

CHAPTER BIBLIOGRAPHY 354

 vii

List of Figures

Figure 1-1: Functionality can be delivered to users in ways that span a

spectrum between ease-of-use for any given task and the flexibility

to accomplish various different tasks. This dissertation explores

end-user composition, which is an attempt to locate an optimal

tradeoff between ease-of-use and flexibility in the domain of

networked services. 9

Figure 3-1: The application on the left discovers the device on the right. A

Component Descriptor, passed via the bootstrap protocol,

encapsulates information describing the device (1). The

Component Descriptor is used by the messaging kernel in the

application to create a component representation as a proxy for the

device (2). 65

Figure 3-2: The application interacts with the component to retrieve

granules from the device, which allow the application to specialize

its behavior for protocol, data type, and UI handling. Here, the

application invokes a local method call on the the component (1)

that causes it to request a granule from the backend device. That

device returns granules that provide new protocol implementation,

data type handling behavior, and UI specific to controlling

communication (2). These are loaded into the application and

returned as custom objects via the local method call on the

component, where they can be used by the application. 66

Figure 3-3: Data transfer initiated by a client application 69

Figure 3-4: A projector device uses a typehandler to process data in an

unknown format 74

Figure 3-5: Common discovery patterns using ResultSets. On the left, a

ResultSet granule provides access to a discovery proxy running on a

remote machine. On the right, a ResultSet granule implements a

custom discovery protocol that executes in the application. 80

 viii

Figure 3-6: Using aggregates to provide access to legacy resources. Here, a

Bluetooth bridging service executes on a remote machine to

provide access to legacy Bluetooth devices that do not run Obje. As

the service discovers a Bluetooth device (on the left), a

ComponentDescriptors is generated for it and delivered to the

client application via the bridging service’s ResultSet granule,

embedded in the client. The client can operate on this “proxy”

component just as it can any other component. On the right, data

transfer operations invoked on the component are forwarded back

to the bridge service, which uses the Bluetooth device’s native

protocols (RF-OBEX) to transfer data to it. 83

Figure 3-7: Projector and Slide Show controllers running on an iPaq PDA.

The client application solicits to receive controllers from any

session in which it is involved. Received controllers for a given

session are presented in tabbed panels. 89

Figure 3-8: Two main screens from the Obje set-top application. The

image on the lower left shows some of the main menu items in the

user interface. Each selection represents a built in template of

functionality related to a particular media or device type. The

image on the upper right shows a specific user interface for tuning

channels on a television tuner component. 93

Figure 3-9: Casca and the Sharing Palette are two collaborative

applications built atop the Obje Framework. The Casca main

window ((a), in the back) is divided into three panes, with the

leftmost pane showing all devices and services being shared by the

current user, the center pane showing all discoverable devices and

services, and the rightmost pane showing the contents of a single

“Converspace.” The Converspace is represented by an initially

blank canvas into which files, services, and devices can be dragged

and dropped, sharing them with the other members of that shared

space, who are shown along the bottom right. The Sharing Palette

(b), a lightweight interface for small group sharing. It, too, is

divided into three regions, with the top left showing all resources

that are shared with particular individuals or groups, the bottom

 ix

left showing all resources that are publicly available to all users,

and the right showing all other users and groups with whom

sharing is possible. 95

Figure 3-10: The Obje Display Mirror before and after a connection is

made. On the left, the user sees a list of available screens. After

connection, a control UI is presented to all connected users of the

selected screen, allowing control of the display to be shared. 96

Figure 3-11:The Nexus is an example of generic service browsers that

allow a user to discover, connect, and control Obje components

available on the network. 98

Figure 3-12: The Orbital Browser’s interface, and its input device.

Spinning and pressing the knob allows users to navigate to any

discoverable device, initiate and terminate connections, and so

forth. 98

Figure 3-13: The Obje Handheld Browser running in a PDA web browser.

Basic facilities are shown for sorting and selecting components by

location (a) and by owner (b). 100

Figure 4-1: The Obje Display Mirror was used in meetings on a regular

basis over a period of approximately six months. This figure shows

the type of meeting for which the Obje Display Mirror was useful. 110

Figure 4-2: We developed a custom tool for reviewing and coding our

observational data. Each column represents a time sample, and

each row represents one of the cameras installed in the room. 121

Figure 4-3: Two forms of advertisement used to promote the Obje Display

Mirror. A screen saver advertises the existence of the Display

Mirror (a) as does a tag attached to the VGA cable dangling from

the wall jack (b). 131

Figure 4-4: The Display Mirror client before and after a connection is

made. First, (a) the user sees a list of available screens. After

connection, a control UI (b) is presented to all connected users of the

selected screen, allowing control of the display to be shared. 131

 x

Figure 5-1: OSCAR is a handheld, touchscreen based application that

allows users to discover, connect, and control multiple devices and

services on a home network, as well as create re-usable

compositions for quick access to commonly-used functions. 174

Figure 5-2: An example of the information produced for one of the

OSCAR Household Personas. 182

Figure 5-3: The entire Paper Prototype, including the major screens and

many “widgets” representing contents of the screens that a user is

expected to encounter during the course of carrying out the

usability test tasks. 186

Figure 5-4: The main screen that greets a user of the initial OSCAR paper

prototype. A list of templates is presented, from which the user can

select one to “activate,” “duplicate,” “remove,” or “edit.” Also the

user can choose to create a new Template from scratch. 187

Figure 5-5: The “Template Interaction” screen showing a currently

inactive Template (as evidenced by the dotted arrow). The

template depicted consists of one connection, whose source is the

“Entire Library” of photos and whose destination is the “Living

Room Picture Frame.” If the user tapped the arrow, the

connection between the Photo Library and the Picture Frame

would be established, and specific photos would be chosen for

display based on the advanced settings that could be accessed via

the gear icon to the lower right of the arrow. 188

Figure 5-6: The “Template Interaction” screen while the user is selecting

a particular source for a connection from an Aggregate containing

multiple possible sources. 189

Figure 5-7: The connection is active and the user has access to controls

specific to controlling this connection—in this case the controls

allow a user to play, pause, rewind, etc. a video stream that is

playing on a TV. 190

Figure 5-8: The “Template Interaction” screen after the user has elected

to configure the rules for selecting a destination. 191

 xi

Figure 5-9: The screen from the initial OSCAR paper prototype viewed

by a user as they attempt to carry out Step 3 of Task 3 (“Create a

template that causes the picture frame by the front door to display

a new image from your photo library every time you activate the

template”). In the previous step, the user selected the template

“View Picture on Frame.” In Step 3, the user will tap the

“Activate” button at the bottom of the screen. 197

Figure 5-10: After pressing “Activate” on the screen shown in Figure 5-9,

the user is prompted to select a photo. 198

Figure 5-11: After selecting a photo, the user taps the “gear” icon below

the source slot, which results in this screen being shown. 199

Figure 5-12: The user wishes to choose a collection from which photos will

be selected for display when this template is activated. After

pressing “Browse…” to the right of the label “In collection” on the

screen shown in Figure 5-11, this screen is shown. 200

Figure 5-13: Once configuration of the source slot is complete, the current

state of the connection is shown. 201

Figure 5-14: In order to choose a destination for this template’s connection,

the user taps the button “Choose” under the destination icon in

Figure 5-13. This screen is the result. 202

Figure 5-15: Finally, after completing the configuration, the user activates

the template. This screen shows the active template with one

connection that can be stopped and started using the arrow in the

center. Also device-specific controls are shown along the bottom. 203

Figure 5-16: A few elements of the initial OSCAR paper/walkthrough

prototype were called out by the panel of experts as being valuable

design elements. Three of those design are represented here in the

left column, with the aspect of the depicted design that was called

out by the panel listed in the corresponding right column. 206

Figure 5-17: The list of recipes as they appeared in the OSCAR medium-

fidelity prototype. From this screen the user can activate, edit,

delete, or duplicate any existing recipes, or can create a new one. 214

 xii

Figure 5-18: The screen shown after a user has elected to “create new

recipe.” Both source and destination slots are undefined as

indicated by the dotted outlines and the fact that the “Activate”

button is disabled. 215

Figure 5-19: If the user elects to “Search for ingredients when the recipe is

activated,” they are presented with a set of options that allow them

to define the search criteria for the selected slot. In this example,

the user is defining criteria for source components. 216

Figure 5-20: The user can also elect to specify one or more specific

components for the source or destination slot. In this example, the

user is browsing for a component to use as the destination of this

template’s connection. 217

Figure 5-21: After choosing a destination component, the recipe is shown

as ready to activate, as evidenced by the now-enabled “Activate”

button and the arrow with a solid border. 218

Figure 5-22: The user can give the recipe a name by tapping in the

“Recipe Name” textbox and using the soft keyboard to enter a

name. 219

Figure 5-23: After completing configuration of the new recipe, the user

returns to the list of recipes and sees the newly created recipe at

the top. 220

Figure 5-24: At any point, the user can tap the “Connections” tab in order

to view the list of current connections. This list allows the user to

monitor, control, and view details on any connection that OSCAR

has created. 221

Figure 5-25: When viewing details on a connection, the user sees the

currently connected components and the current status of the

connection (Active, Ready, Stopped, Failed, Unavailable). In

addition this screen provides controls to stop and start the

connection and control the components involved in the connection. 222

Figure 5-26: The “Ingredients” tab provides access to an always-available

list of the components (devices and media) that have been

discovered by OSCAR. The icons in the “role” column express the

 xiii

device/media source’s role(s) in Obje data transfer and aggregation,

and the graphics in the rightmost column are intended to show the

number of connections in which the ingredient is involved. 223

Figure 5-27: The Ingredient Details screen provides access to the controls

for the selected device, as well as information about which

connections and recipes the devices is a part of. 224

Figure 5-28: A schematic of the room that was used as a testbed for the

OSCAR development and user studies. 227

Figure 5-29: The OSCAR1 list of recipes. This is the first screen that a

user sees when interacting with OSCAR1. From this screen, the

user can “prepare,” delete, or view details/edit a recipe. In addition,

from this or any screen the user can tap the globally available tabs

at the top of the screen to jump to a different part of the UI. 232

Figure 5-30: The user can edit a recipe by defining specific components to

be used in a connection, as shown here, or by defining “Dynamic

List” criteria. In addition, for situations where more than one

component can populate a source or destination slot, the user can

define selection rules (shown under the heading “2. Select the

ingredient” that will determine how the component will be

selected when the recipe is prepared. 233

Figure 5-31: After preparing a recipe, a connection is created. In some

cases, depending on the selection rules defined by the user and the

available components at the time of preparation, the result is an

active connection like the one shown here. In this case, a playlist of

Led Zeppelin songs is being streamed to the living room speakers. 234

Figure 5-32: At any point during the life of a connection, the user can

elect to change the source or destination component being used. By

tapping the “Change” button on the screen shown in Figure 5-31,

the user is presented with a dialog that allows them to browse for a

replacement component. 235

Figure 5-33: The user can monitor and control multiple connections at the

same time via the Connections List screen. This screen is always

accessible via the “Connections” tab. 236

 xiv

Figure 5-34: The list of available devices and media is also always available

via the “Ingredients” tab. From here, the user can view details on

any component that OSCAR has discovered on the network. 237

Figure 5-35: Via the Ingredient Detail screen, the user can access controls

specific to the selected device, view and access any connections or

recipes in which the device is involved, and create a new recipe

that uses this device. 238

Figure 6-1: The study setup used for the OSCAR user study. These

images show the testbed room from two angles, showing the “living

room” (left) and “kitchen”/ “front door” (right). 245

Figure 6-2: The test setup used for the OSCAR user tests. One of the

research team members (on the couch, to the right) handled all the

communication with the participant (on the couch, to the left),

except for the interview, which was conducted by both research

team members. The second team member (behind the couch) was

responsible for running the video cameras and setting up and

maintaining OSCAR and all of the Obje components before and

during the sessions. 245

Figure 6-3: An example of one of the OSCAR1 participants interacting

with OSCAR during the session. This shot represents the view

captured by the “over-the-shoulder” camera. 246

Figure 6-4: The subjective usability and preference questionnaire that was

administered to OSCAR user study participants. Questions 1-10

were derived from Brooke’s System Usability Scale instrument [16],

and the latter questions were designed to measure participants’

preference for OSCAR as compared to existing alternatives. 250

Figure 6-5: The list of recipes presented to users for ranking and discussion.

Participants ranked the recipes by assigning each recipe a number

from 1-9 in the “Use” column, with 1 being the most useful recipe

and 9 being the least. In addition, participants could place an “X”

in the “Excite” column next to any recipe that they would be

excited to try but that they were not sure would necessarily be

immediately useful. The purpose of this study instrument was to

 xv

present all participants with the same set of recipes to determine

whether different users would be likely to use OSCAR in different

ways. 255

Figure 6-6: Another list of recipes that were presented to study

participants for ranking. In contrast to the list shown in Figure 6-5,

the recipes in this second set involved communications with

devices or services outside the home network. Again, participants

ranked the recipes from 1-8 in the “Use” column according to their

perceived usefulness to them, and could place an “X” in the

“Excite” column next to any recipe that they would be excited to

try. While this functionality was not present in the versions of

OSCAR used in the user tests, its addition had been designed for

future iterations. 256

Figure 6-7: Three of the most significant usability problems with

OSCAR1 were located on the Connection Details screen. The

language used in (A) when a new connection is being prepared

from an existing recipe was confusing to many users. The label

“Preparing (Ready soon…)” was interpreted to mean that the

system was busy, rather than that the user was expected to browse

and select a component in the browse dialog below. The list in (B)

would only show components that had been predetermined in the

originating recipe, whether by explicit inclusion or by defining

abstract criteria. There was no way for users to override this list

and select some other component, which led to difficulties.

Additionally, several users failed to notice that the “Choose” button

became enabled once a component had been selected, and that

they were expected to tap “Choose” in order to complete the

configuration of the connection. 261

Figure 6-8: The “Belly Issue” experienced by some of the OSCAR1

participants. Because the OSCAR tablet was used on a couch,

some users held the tablet in such a way that they were unable to

view the entire screen. In particular, the lower portion of the

screen was occluded by some users’ stomachs and clothing that

 xvi

protruded over the edge of the device when it was resting against

their waists. 262

Figure 6-9: The “Recipe Details” screen, and in particular the “Selection

Rules” section of the screen, was flagged by several users as a

difficult part of the OSCAR1 user interface. 264

Figure 6-10: Both the “Connection Details” and “Ingredient Details”

screens were also flagged by participants as troublesome parts of

the OSCAR1 user interface. 265

Figure 6-11: Each of the “List” screens (“Recipes,” “Connections,” and

“Ingredients”) were identified by multiple users as particularly

helpful portions of the OSCAR1 user interface. 265

Figure 6-12: The Devices & Media screen offers a list of Obje services and

devices that have been discovered by OSCAR. 269

Figure 6-13: This view of the Setup Detail screen shows an edited setup

that will allow the user to play all songs by the Beatles on either of

two speaker sets, which will be selected by the user when the

setup is run. 270

Figure 6-14: This view of the Connection Detail screen shows a

connection in the process of being set up. This screen underwent

significant improvements between OSCAR1 and OSCAR2. 271

Figure 6-15: The “Setup Details” screen caused a number of difficulties for

users. One user did not understand the function of the “Run”

button and was unable to complete Task 4b without help despite

having created a correct Setup. Two users required help to choose

among the “Selection Options” for one or both of the Setup slots.

Additionally, numerous minor errors were attributable to this

screen. Many users failed to choose the correct Selection Option(s)

or even notice that they were available. Other users failed to select

items for either or both of the “Source Candidate” and “Destination

Candidate” lists and ended up running a partially defined Setup. 278

Figure 6-16: Users struggled with the Connection Details screen,

especially when “running” a Setup with a slot whose Selection

Options were set to “Show items to me and let me choose.” Two

 xvii

users required help because they did not realize that they were

required to tap “Choose” after making a selection in the Browser

overlay. This figure also highlights another difficulty that users

encountered. A number of users did not realize that, with the

screen in the state shown here, they could tap “Choose” to select

all of the contents of the “Music Library. “Rather, they believed

that because the contents had been expanded to the right when

the Music Library had been initially chosen, they were obligated to

select among one of the expanded items. These users struggled

with tasks like 4a and 4b that required them to select a collection

of music to be the source of a Setup or Connection. 280

Figure 6-17:The Connection Details screen allows the user to select a

different source or destination for the displayed connection at any

time by tapping on the “Change” button below the currently

selected item. This means that users can make effective use of even

partially or incorrectly defined Setups by adjusting their

parameters after they have been “Run.” 282

Figure 6-18: Participants’ assessments indicated that significant problems

continued to exist with the usability of the “Setup Details”

(formerly “Recipe Details”) screen. However, the comments

regarding OSCAR2’s Setup Details screen were considerably more

detailed and suggested a greater overall understanding of the intent

of the screen and the function of each of its controls. 288

Figure 6-19: As with OSCAR1, each of the List screens received positive

comments from users. In particular, the new “Devices & Media”

list screen was well received. 289

Figure 6-20: The SUS scores given by OSCAR1 participants (shown on

the Y-axis) plotted against the amount of help required by each

participant (shown on the X-axis). As expected, users that

required more help gave OSCAR a lower score in terms of

perceived usability. 294

Figure 6-21: The SUS scores given by OSCAR2 participants (shown on

the Y-axis) plotted against the amount of help required by each

participant (shown on the X-axis). Unlike the relationship observed

 xviii

in OSCAR1 (Figure 6-20), users that required less help gave

OSCAR a lower score in terms of perceived usability, indicating

that more successful users had a lower opinion of OSCAR’s

usability. 294

Figure 6-22: When asked to respond to an open-ended question about

what they would use OSCAR for in their own households, users

gave a range of different responses. Many participants mentioned

some variant of the activities represented in the tasks they had just

performed (e.g., listen to music, view security cameras, and view

photos), but participants went beyond the capabilities that had

been demonstrated and came up with several creative uses that

had not been anticipated such as “drunk driving video call.” Three

of the top 5 most-mentioned were activities that the users had just

performed: “Listen to music,” View security camera,” and “View

Photos / Slideshows.” This graph shows the number of participants

(along the Y axis) who mentioned each type of activity (along the X

axis). 297

Figure 6-23: OSCAR study participants ranked several potential recipes

highly, with six of the nine candidates ranked in the top 3 by at

least 1/3 of the participants. Even the relatively unpopular “Room

monitor” setup was given a #1 ranking by 3 of the 18 participants,

indicating that users’ interests in terms of how they would use a

system like OSCAR are quite varied. Users’ explanations about

their choices reinforced the diversity of their interests and also the

strength of their interest in performing the activities that OSCAR

would make available to them. 299

Figure 6-24: Just as different users had expressed a preference for a range

of different in-home setups, different users responded differently to

the ranking of Setups involving devices and services that were

shared across homes. These responses, and the explanations given,

again showed the diversity of users’ interests. 299

Figure 6-25: Users’ attitudes towards the value of a system that facilitates

the sharing of devices and media across homes was fairly evenly

spread across the spectrum. Even more interestingly, some users

 xix

were passionately arguing for the importance of adding sharing

capabilities to OSCAR while others were just as passionate in

denouncing the potential for security and privacy risks and the fact

that such a capability would cause them to reject the system

outright. 303

Figure 6-26: Users’ attitudes about the value of sharing setups/recipes

across households was similarly varied, but somewhat more neutral

than attitudes towards shared devices and media. Additionally,

there was a larger contingent of people who were strongly negative.

One reason for this lack of enthusiasm may have been the

sentiment expressed by several users that setups were so simple

and easy to understand that sharing them was unnecessary. More

complex recipes may have made the motivation for sharing more

clear. 303

Figure 6-27: Attitudes about the desired form factor (a) and the number

and distribution of OSCAR devices (b) were varied, indicating

that different users would prefer to integrate OSCAR’s

functionality into their homes in different ways. 305

Figure 7-1: A possible redesign for the OSCAR browser that would allow

users to clearly distinguish between selecting an Aggregate

component and showing the contents of the Aggregate to select

among its contents. The original design is shown in (a), and the

proposed redesign is shown in (b). 319

Figure 7-2: The language for controlling active connections in OSCAR

remains generic, regardless of the types of media and devices being

connected and controlled. In the two examples shown in (a) and

(b), the label describing how to stop the connection is the same for

both a webcam and streaming audio connection. As this caused

difficulty for some users, an area of possible future work is to look at

how to support more finely tuned language choices for controlling

different types of connections without requiring clients such as

OSCAR to have extensive advance knowledge of the semantics of

different media and device types. 321

 xx

Figure 7-3: The “Setup Details” screen received more attention during

design and was subjected to more changes than any other screen in

OSCAR. Here the versions produced for the OSCAR Paper

Prototype (a), the OSCAR Medium Fidelity Prototype (b),

OSCAR1 (c), and OSCAR2 (d) are shown for comparison.

Despite the intensive effort, the final version was still difficult for

some users to use. 325

Figure 7-4: The Jigsaw Editor [66, 122] represents an end-user

programming user interface that is based entirely on visual

representations of objects and linear combinations of them to form

processing rules. This user interface may be more immediately

compelling for users than OSCAR’s option-setting dialogs, but the

lack of control over configuration options could lead to eventual

frustration. 328

Figure 7-5: The CAMP user interface [145] is based on a “magnetic

poetry” metaphor. The textual programming interface provides

users with more fine grained control than OSCAR, but the range

of options may also lead to a reduced ease-of-use and steeper

learning curve. Further studies are required to discover the relative

strengths and weaknesses of Jigsaw, CAMP, and OSCAR. 328

Figure 7-6: iCAP’s sketch-based user interface [30] provides users with a

great deal of control over the conditions under which context-

triggered actions should fire. However, the control over the actions

themselves is less of a focus of the work. Combining iCAP’s

strengths for rule-setting and OSCAR’s strengths in defining

complex actions could provide users with a high degree of

expressiveness and control. Further research is required to

determine whether such increased power can be provided without

sacrificing usability. 333

 xxi

List of Tables

Table 3-1: The four primary modes of extensibility defined by Obje are

described as four “roles” in which devices can be used; devices that

play one or more of these roles can provide or use a fixed set of

granule types. Devices may participate in multiple roles. 59

Table 4-1: Frequency of personal device usage in meetings during Phase 1

of the study. This data shows that while a minority of meeting

participants had access to a personal device, at least one

participant had access to one in a majority of meetings. 123

Table 4-2: Frequency of room device usage in meetings during Phase 1 of

the study. In both phases printout and projector use dominated the

means of data sharing support preferred by attendees. Interestingly,

the addition of a publicly available PC and 50” Plasma screen in

Phase 1b did not affect attendees choice of data sharing

mechanisms with the exception of one meeting. 124

Table 4-3: Personal device and display usage statistics for Phase 2a and 2b.

Phase 2a spanned the four weeks immediately after the

deployment of the Display Mirror. Phase 2b represents six weeks of

observations after the service had been available for six months. 137

Table 4-4: Adoption figures for the Display Mirror (ODM). In Phase 2b,

the ODM was used for 55% of all display connections. Note that in

contrast to Table 4-3 this table references the total number of

display connection events rather than the number of meetings in

which displays were used. 137

Table 4-5: Types of multiple display events with and without the Display

Mirror. Multiple-user display events (including serial, interleaved,

and overlapped events) increased overall, and two new types of

multiple user display events were observed. 139

Table 5-1: An overview of the Household Personas used to help design

OSCAR. 181

 xxii

Table 6-1: The amount of help required by each user to complete each

task in OSCAR1. The individual “help required” score for each

user is computed as the sum of the amount of help required for

each task, where * = 1, ! = 2, and !!= 3. 258

Table 6-2: The correctness of each OSCAR1 user’s solutions to each task.

Individual users’ “degree wrong” is computed by assigning 1 point

to partially incorrect solutions and 2 points to completely incorrect

ones. 258

Table 6-3: The amount of help required by each user to complete each

task in OSCAR2. The individual “help required” score for each

user is computed as the sum of the amount of help required for

each task, where * = 1, ! = 2, and !!= 3. The amount of help

required for users of OSCAR1 is shown again in Table 6-4 for

comparison. 274

Table 6-4: A summary of the amount of help required to complete each

task in OSCAR1. This data is copied from Table 6-1 and

presented here for comparison with the OSCAR2 help data

presented in Table 6-3. The comparison shows that quite a bit less

help was required by users of OSCAR2. 274

Table 6-5: The correctness of each OSCAR2 user’s solutions to each task.

Individual users’ “degree wrong” is computed by assigning 1 point

to partially incorrect solutions and 2 points to completely incorrect

ones. 275

Table 6-6: A summary of the correctness of users’ solutions to each task in

OSCAR1. This data is copied from Table 6-2 and presented here

for comparison with the OSCAR2 help data presented in Table

6-5. The comparison shows that users solutions did not improve

much between OSCAR1 and OSCAR2, though the severity of the

errors did decrease somewhat. 275

Table 6-7: Average responses to questions regarding subjective preference

given by participants in the OSCAR1 and OSCAR2 user studies.

In each case, the average reflects responses given on a scale of 1-5,

where 5 meant that the user “Strongly Agreed” with the statement.

 xxiii

This data shows that OSCAR2 was more acceptable to users than

OSCAR1 by a significant margin. 291

Table 6-8: Responses to the question “Who is this system for?” indicated a

significant improvement between OSCAR 1 and OSCAR 2, and

indicated that OSCAR 2 was well received by users 295

Table 7-1: The devices in Alice’s house that are used in a Setup that she

wishes to share with Bob. 340

Table 7-2: The devices in Bob’s house that he would like to use in his

version of Alice’s Setup for viewing a security camera in multiple

locations. 341

 xxiv

Acknowledgements

It takes a village to raise a dissertation. I had an enormous amount of support both

professionally and emotionally without which this document would have never

come into existence.

My primary advisor, James Landay, refused to listen to me the several times I

told him I was abandoning the Ph.D., and waited patiently each time until I

came to my senses. His confidence in me (which greatly exceeded my own at

many points) is probably the primary reason that I was eventually able to bring

this project to a successful conclusion. John Canny stepped in to help advise me

after things became complicated with James’ departure to U. Washington, and his

assistance was invaluable. I am deeply indebted to the now-departed Peter

Lyman whose early enthusiasm about my project played a key role in motivating

me to finish.

The work reported in this dissertation was largely carried out while I was

employed at the (Xerox) Palo Alto Research Center. While I was there I had the

privilege of working with an amazing set of collaborators. Several of those

collaborators worked with me directly on aspects of the work in this dissertation.

Keith Edwards was the originator of the Obje (neé Speakeasy, a.k.a. RNC, a.k.a.

Recombinet) project and the mastermind behind the concept of recombinant

computing that underpins the Obje Framework. It was a great pleasure and an

 xxv

enormously educational experience to work with Keith during the four years we

collaborated. His vision and perspective is inextricably intertwined with all of the

major themes of this dissertation. I had the pleasure of working shoulder-to-

shoulder with Trevor Smith for nearly the entire seven years I was at PARC,

including the many, many months of pair programming which were probably the

most stimulating periods of my career so far. Trevor’s challenging questions and

insights played an instrumental role in shaping all aspects of this dissertation work,

and in shaping my views about how to Get Things Done in general. In addition,

his technical craftsmanship is unparalleled in my experience and serves as a

standard for producing quality software that I shall probably never meet. Jana

Sedivy was the fourth member of the original Four Horsemen of Obje, and was a

great pleasure to work with. She played the critical role of keeping the project

somewhat sane and keeping the rest of us from drifting off into intellectual

irrelevance or incessant “code-rewhacking.” Chronic intern Shahram Izadi was a

shot of adrenaline and fresh ideas when he was in town, and was always a joy to

work with.

Nic Ducheneaut was my key collaborator on the Obje Display Mirror project,

and his influence was significant, especially in deciding how to conduct user

observations. As my next-door office neighbor and fellow Golden Bear, he was also

the first place I would go to gripe about PARC management and UC Berkeley

bureaucracy. In the last few years, he was also the first place I would go to talk

 xxvi

through ideas and plans to get his feedback on what made sense to say and do. I

worked intensively with Ame Elliott on the OSCAR user studies, which was an

absolute pleasure, and especially satisfying after trying to find a way to collaborate

with her since the early days of GUIR in 1997-1998. Ame and Nic were also very

important sources of encouragement and support during the final throes of trying

to finish the dissertation work and get on with my life. Beki Grinter and Allison

Woodruff, along with Nic and Keith, rounded out the “Ass Kicking Committee”

that I convened to help keep me focused on the dissertation amongst all of

PARC’s distractions. Their feedback and encouragement was quite helpful,

though frankly it turns out I could have stood to have my ass kicked a bit more.

Still could.

Finally, Bo Begole and Kurt Partridge came into the PARC picture too late to

be direct collaborators on the work presented here, though my other collaborations

and interactions with them certainly made my last couple of years at PARC

stimulating and enjoyable. Bo was extremely supportive of me as my manager, and

went above and beyond several times to ensure that I could make progress towards

finishing my dissertation, particularly in the face of bizarre and challenging

roadblocks erected by a certain governmental agency whose name rhymes with

“pissed.”

Scott Klemmer was a tremendously valuable resource as I laboriously

progressed through the various stages of dissertating. Though he came to Berkeley

 xxvii

as my “junior colleague” two years after me, he quickly surpassed me at which

point I began to employ him as a scout in uncharted territory. His advice and

guidance were instrumental in getting me through the final few hurdles and

especially in navigating the perils of the academic job market. Jason Hong was also

a good friend and confidant in these final phases (not to mention the very early

phases when I was his Soda Hall officemate).

Jimmy Lin’s dissertation nightmare provided important lessons (thanks for

taking that bullet), and his guidance through the writing process was helpful, not

to mention his sharing of the very MS Word template within which I am writing

these words. Scott Carter also provided key late-stage help with navigating the

UC Berkeley bureaucracy and with maintaining contact with difficult-to-reach

committee members (along with help from Nathan Good).

My mother never flagged in her support of me, whether the plan of the

moment was to dedicate myself to finishing the Ph.D. or dropping out to start an

organic goat dairy. I suspect she preferred the former, but did a pretty good job of

keeping her opinions to herself. My father remained supportive throughout as well,

despite my suspicion that he doesn’t quite understand why I don’t just go make a

bunch of money like a normal person. I’m not sure I understand it either.

This dissertation lasted long enough to see the entire cycle of life play out in

my family. My dear stepfather Robert Weiskopf passed away a few months before

the completion of the dissertation. As he was a psychology professor and thus a

 xxviii

representative of the “academic wing” of my family, along with my dear aunt and

constant inspiration Ann Steiner, I would have loved to have him live to see me

finish the project. At the other end of the cycle, Søren Francis and Ingmar Samuel

Newman-Taylor showed up while the dissertation was still in progress, and while

I can’t honestly say they “helped” the dissertation in any pragmatic way (in fact,

strong arguments could be made in the opposite direction), they certainly did

provide a strong motivation to finish the thing and get on with the next phase of

life.

Finally, and by far most importantly, none of this would have been possible

without the undying support, encouragement, and confidence of my amazing and

wonderful long-term domestic partner (archaically referred to as “my wife”)

Valerie Jo Taylor. Her constant support during my many setbacks, changes of

heart, and emotional collapses was the glue that held the contraption together

long enough for it to putter over the finish line. It is to Valerie that I dedicate this

dissertation and my love.

 1

1 Introduction

The era of ubiquitous computing [160] is upon us. We are seeing a sustained

explosion in the numbers and types of networked devices and services with which

users can interact. At the same time we are constantly expanding the

environments in which users want or expect to be able to take advantage of

computation. Implicit in this is the fact that the number of tasks or activities that

users can carry out using computers is constantly increasing. In the leisure domain,

activities such as watching TV and listening to music are increasingly carried out

using general-purpose computers or using special-purpose devices with significant

general-purpose communication and processing capabilities (e.g., TiVos, iPods),

which open up vast new possibilities in terms of the patterns and practices of

media consumption. In the workplace, computing technology has long been

dominant, yet the variety of activities to which it is applied is constantly growing

as patterns of communication and data sharing emerge along with new patterns of

corporate organization and collaboration. Devices in the workplace are more easily

networked, as well, allowing for the incorporation of various media consuming-

1.1 · Problems and Opportunities with Networked Services 2

and producing-devices into work practices (e.g., data presentation,

videoconferencing).

The explosion of networked devices and services is being facilitated by the

increasing availability of data networks in a variety of environments, including the

home, the workplace, and public spaces. It is further being facilitated by the

development and adoption of interoperability standards for networked services

such as Universal Plug and Play (UPnP) [153] and Web Services standards such

as the Web Services Description Language (WSDL) [23] and the Simple Object

Access Protocol (SOAP) [58]. These developments lay the basic groundwork so

that, in principle, almost any device can interact with any other device. However,

these approaches alone do not guarantee that users will be able to connect and

control the devices and services they need to use in order to carry out the tasks

they want to accomplish.

1.1 Problems and Opportunities with Networked Services

From a user’s perspective, the explosion of networked devices and services has the

potential to transform the experience of interacting with many aspects of the

surrounding environment. On the one hand, awesome new possibilities emerge

from the ability to interact with devices, information, and other people both

locally and at a distance, as well as from the ability to combine functionality from

multiple sources to effect new applications. On the other hand, the realization of

1.1 · Problems and Opportunities with Networked Services 3

these possibilities will not come about of their own accord, but will rather require

new approaches to interoperability, interaction design, and application

development. In this section I will present an ideal scenario of near-future home

network use, along with a discussion of the challenges that must be overcome to

realize such a scenario—in particular the challenges that will face users as they

attempt to make sense of the capabilities of their environments and the tools at

their disposal for accessing those capabilities. Following the discussion of problems,

I will outline the coordinated approach to delivering a sensible, integrated user

experience explored in this dissertation—an approach that provides solutions for

robust interoperability, integrated multi-device control and interaction, and

support for lightweight end-user composition of varied devices and services. In the

final section of this Introduction, I will present the central thesis of this

dissertation and outline the concrete contributions that my work has made in

support of this thesis.

1.1.1 Near-Future Home Networking Scenario

The following scenario illustrates both the benefits and challenges of near-future

home media networks.

Alice is sitting in her living room on a Saturday afternoon reading news on her

laptop. She decides she would like to listen to some music so she navigates to her

favorite online music service and arranges to have some music streamed directly to her

1.1 · Problems and Opportunities with Networked Services 4

living room speakers. A short while later, the doorbell rings. Engrossed in the news,

she does not wish to get up, so she directs the webcam above the front door to send its

output to a digital picture frame that is mounted on the wall next to her. Seeing a

delivery person on the screen, she remembers that she is expecting a package, so she

connects her laptop’s microphone to the intercom speaker next to the front door to say

“Hold on, I’ll be right there.” The delivery person’s “OK” is heard through the living

room speakers as Alice leaps off the couch to head for the door.

The experience presented in this scenario is one of convenient, seamless access

to a variety of resources both within and without the home. The benefit to Alice is

that she is able to connect and control her available devices and services with

little effort and minimal advance planning. The challenges to realizing such an

integrated user experience, however, are substantial.

The first challenge is that there needs to be a plethora of networked devices,

and that currently hardwired devices such as speakers, microphones, and displays

need to be recast as networked services that can be easily connected and

disconnected from each other. This challenge is being addressed quite rapidly by

the consumer electronics industry as evidenced by the rapid proliferation of new

networked media devices that are announced at an ever-increasing rate [44].

However, the mere existence of such devices is not sufficient to enable the

scenario described. Current approaches to the design of networked services and

1.1 · Problems and Opportunities with Networked Services 5

applications suffer from two key problems: piecemeal interoperability, piecemeal

interaction, and sluggish adaptation.

Piecemeal interoperability refers to the situation where a service is designed to

interoperate with a particular subset of its peers but not with others. For example,

it is not hard to imagine buying a set of networked speakers that are designed to

work well with one or more streaming music services but would be difficult if not

impossible to use with an in-home intercom system.

Piecemeal interaction describes the experience of using different applications,

often with very different user interface styles, to interact with and control the

different devices and services with which one interacts. In the scenario above, this

would occur if Alice needed to use one application to control her streaming music

and a different one to connect the webcam to the picture frame. The fact that

different applications may be required for these different operations is less critical

than the fact that these applications may have significantly different user

interfaces and require Alice to learn and master different interaction styles. In the

worst case, these applications may require Alice to interact with different physical

devices in addition to employing different techniques. Again, based on existing

networked services and the applications to control them, it is easier to imagine a

world of piecemeal interaction than one that supports the integrated user

experience posited by the above scenario.

1.1 · Problems and Opportunities with Networked Services 6

Sluggish adaptation is the problem that is experienced when capabilities that

are theoretically available within a collection of devices fail to be realized by users

because the application user interfaces available to them do not expose them. In

the domain of networked services, this problem is dramatically exacerbated when

the capabilities in question are emergent properties of the combinations of devices

available in any one user’s particular environment. As such environments increase

in size, variety, and number, and as the amount of and variety of functionality

desired by users increases, traditional developer-based approaches to application

development will prove to be unacceptably slow. The scenario above would be

sabotaged by sluggish adaptation if Alice were unable to connect the front door

webcam to the picture frame in her living room, despite the fact that both are

networked devices that share a common video data format, or if Alice does not

have access to a client application or device that provides the ability to connect

these particular devices together. Perhaps the developers of the webcam had only

anticipated that users would want to access its stream from a web browser

running on a conventional laptop or desktop computer, and the picture frame

developers only anticipated that their device would be connected with a user’s

digital family photo and video albums. Even after a set of users recognize that a

webcam-to-picture frame connection capability would be valuable, conventional

approaches require that, in almost all cases, someone with software development

skills invest time and effort into creating the needed application functionality

1.2 · Towards an Integrated User Experience 7

before users can reap the benefits of the capabilities that, in some sense, they

already possessed.

1.2 Towards an Integrated User Experience

Given the anticipated continued churn in devices, services, media formats, and

data transfer protocols, it will be practically impossible for application developers

to provide custom-built applications that support the range of things that people

want to do given the variety of resources they have available at any particular

point in time. In fact, “applications,” by their very nature, are piecemeal. They are

designed to run on particular platforms and devices, they are designed to interact

with specific types of devices and services, and they are designed to allow users to

carry out specific tasks. A promising approach to overcoming these various issues

and to providing an integrated overall user experience, which is the approach

explored in this dissertation, is to provide basic tools and infrastructures that allow

users to compose resources flexibly and intuitively to carry out the tasks they want

to accomplish. Indeed, it is end-users themselves who are in the best position to

know not just what they want to do but also which resources they have available

and how those resources should be composed. Of course, they may not know all of

the details of how to assemble the given resources—for example the best protocol

to use for data transfer, or the specific parameters that need to be set to use a

1.2 · Towards an Integrated User Experience 8

particular service, and this is where my research comes in. A central goal of the

research in this dissertation is to find the sweet spot on a spectrum that ranges

from extreme ease of use for any particular application—represented by pre-built

single-function applications or devices—to extreme flexibility in accomplishing a

variety of tasks—represented by general-purpose programming languages like Java

or C++. I refer to the sweet spot being sought as “end-user composition” to express

both its affinity with and difference from the more widely explored concept of

“end-user programming,” which broadly speaking is intended to allow end-users to

express very rich and in many cases arbitrary programs using metaphors and tools

that are easier to learn and master than general purpose textual languages. I

define an end-user composition system as a system that provides end-users with

coarse building blocks that can be assembled in simple, constrained ways to accomplish

a variety of tasks. End-user composition is aimed at a point in the ease-of-

use/flexibility spectrum that is less flexible and powerful than end-user

programming, but ideally easier to use for untrained users (see Figure 1-1).

1.2 · Towards an Integrated User Experience 9

Figure 1-1: Functionality can be delivered to users in ways that span a spectrum between ease-of-use for any
given task and the flexibility to accomplish various different tasks. This dissertation explores end-user
composition, which is an attempt to locate an optimal tradeoff between ease-of-use and flexibility in the
domain of networked services.

Supporting an integrated user experience of networked devices and media

requires research at two levels:

• Infrastructure: How should the constituents of the network be built so

that they can be discovered, composed, and controlled by end users?

• End-user tools: How can we build tools that allow untrained, non-

technical end-users to compose and control complex networks of

devices to accomplish a variety of tasks?

The work presented in this dissertation addresses the key questions at both of

these levels. At the infrastructure level, I will present the Obje Framework, which

is an interoperability framework for networked services that supports robust

interoperability among devices and services that have little prior knowledge of

1.2 · Towards an Integrated User Experience 10

each other’s inner workings and also supports end-user composition1. At the level

of end-user tools, I will present two systems along with their evaluations: the Obje

Display Mirror and OSCAR.

The Obje Display Mirror, allows users to easily discover public displays in a

workplace setting and mirror their laptop’s display onto them. It leverages the

Obje Framework to enable users to perform an otherwise tedious task, and

provides advantages over the VGA cable-based display connection system that it

replaces. A year-long study of adoption and use of the Obje Display Mirror

showed that its availability produced subtle but important shifts in users’ patterns

of behavior, and also illuminated some of the advantages and problems associated

with re-casting a commonly used function from a tangible, hardware-based

interaction into a virtualized, networked service-based interaction.

OSCAR provides a touch-based user interface that allows users to discover,

connect, and control a variety of Obje services and devices on a home network,

and also allows them to create Setups—reusable compositions of services to carry

out recurring activities. A study involving 18 users with varied technical

backgrounds revealed that users could effectively user OSCAR to create both ad-

hoc and reusable compositions to accomplish varied tasks. The results of the study

1 Obje also supports transport-layer security (TLS) to allow all communication among services
to be authenticated and encrypted. This feature of Obje is not discussed further in this
dissertation, but an demonstration of Obje that highlights its security features is described in
[136].

1.3 · Thesis and Contributions 11

also suggested guidelines for the development of future systems with similar goals

as well as directions for future research.

1.3 Thesis and Contributions

The thesis statement of this dissertation is:

An integrated, yet flexible and customizable user experience of interacting with

multiple heterogeneous devices and services is achievable through a combination of

• a middleware framework that supports robust interoperability;

• mechanisms and end-user tools that allow ad hoc connections among

distributed devices and services;

• framework- and application-level support for dynamically distributable

control that allows users to monitor and control both individual devices and

ongoing connections; and

• end-user tools that support the discovery, connection, and control of individual

devices as well as the creation, modification, and invocation of both

temporary and reusable service compositions.

It is not the goal of this dissertation to evaluate the relative contribution of each of

these components to a compelling user experience of ubiquitous computing

environments. Rather I wish to argue that all of these components are needed to

1.3 · Thesis and Contributions 12

achieve the end goal. My work provides a complete, coherent demonstration of an

end-to-end system bringing together each of these components in order to deliver

an integrated, flexible, and customizable user experience. Throughout this

dissertation, I will provide support for the thesis statement by describing my

work’s three main contributions:

1) A service framework that supports robust interoperability and end-user composition.

The Obje Framework dictates a minimal set of a priori agreements among

cooperating services and employs mobile code to allow one service to extend

another’s behavior at runtime, thus lowering the bar for interoperability. In

addition, Obje defines simple, standard service interfaces that describe the

roles that services can play in compositions, thus laying the groundwork for

end-user composition.

2) A case study of a shared display service that demonstrates how a persistent, networked,

user-accessible service can provide advantages over the hardwired legacy system it

replaced.

The Obje Display Mirror lowers the barrier for displaying information to other

co-located users and allows multiple simultaneous users to connect easily to

public displays. Positive effects on user interactions (such as increased

incidence of multi-user display use and verbal reports of improved satisfaction)

were observed over an extended period of time. This contribution includes the

1.3 · Thesis and Contributions 13

application itself, including its novel features, the lessons learned from

observing users, and the novel adaptation of existing observation methods

(especially Lag Sequential Analysis [51]) employed to conduct comparative

analyses of user behavior before and after the service was deployed.

3) A novel application and user interface for end-user composition in home media networks

that can be used effectively by people with a range of technical skill to accomplish a

variety of tasks.

The OSCAR application is an embodiment of an end-user composition system

built atop a middleware framework that supports robust interoperability, ad

hoc connections, dynamically distributable control, and support for both

temporary and reusable compositions of devices and services. It thus provides a

working, testable example of the “integrated, yet flexible and customizable user

experience” described in the thesis statement. A two-phase user study showed

that users could employ OSCAR effectively to accomplish a range of tasks, and

that they preferred OSCAR to their current systems for accomplishing similar

tasks.

1.4 · Dissertation Outline 14

1.4 Dissertation Outline

The remainder of this dissertation discusses relevant related work, describes in

detail each of the contributions enumerated in the previous subsection, indicates

directions for further research on this topic, and provides a set of conclusions.

In Chapter 2, I present related work that has attempted to address one or more

aspects of delivering an integrated user experience of ubiquitous computing, and

describe how such work informs, complements, and differs from the research in

this dissertation. In Chapter 3, I describe the Obje Framework and show how its

unique “recombinant computing” approach to network service design provides a

robust and flexible solution for interoperability among arbitrary devices and

services. The Obje Display Mirror application design, development, and

evaluation is the topic of Chapter 4. OSCAR is described in the following two

chapters, with Chapter 5 focusing on the design and implementation, and Chapter

6 focusing on the user study and results. In Chapter 7, I discuss pathways for

future work that have the potential to build upon this dissertation to deliver an

even more comprehensive integrated user experience of ubiquitous computing.

Finally, in Chapter 8, I conclude by returning to the problems, solutions, and

contributions outlined in this Introduction and summarize the ways that the work

described in Chapters 3-6 connects with the broader goals and claims of the

dissertation as a whole.

 15

2 Related Work

In this chapter I will present a discussion of related work that covers both

infrastructures for combining networked services as well as end-user tools for

effecting compositions. The unifying theme of all of the work presented here is

that it plays a role in providing an integrated user experience of interacting with

an environment of networked devices and services. However, as we shall see, there

remain significant gaps in the literature and it has been my goal to address these

gaps.

2.1 Overview of Related Work

On the infrastructure side, there are two main bodies of work to be considered:

Interoperability Frameworks and Ubicomp Application Frameworks. The work on

Interoperability Frameworks comprises initiatives from the software and consumer

electronics industries that have attempted to define standards of interoperation

among services in various domains. These are important because they demonstrate

a strong desire on the part of industry to promote interoperability among devices

and services produced by different manufacturers. Further, it is essential to

2.1 · Overview of Related Work 16

discuss them because in examining their shortcomings we will see why it was

necessary to build the Obje Framework. The work on Ubicomp Application

Frameworks has largely been carried out within the HCI, ubicomp, and systems

research communities. The reason for considering this work is that, although many

of the frameworks that have been developed do not address the same concerns as

Obje, they often do share the same high-level goal of providing users with a

seamless experience of interacting with multiple devices and services.

As I shall discuss, however, both the Interoperability and Application

Framework approaches suffer from the same fundamental drawback: a reliance on

software developers to perform the integration of services and provide functionality

to users in the form of targeted applications. As described in the introduction, my

work attempts to eliminate this drawback by providing support for end-user

composition. Other approaches to reducing or eliminating dependence on

developers have been proposed as well, and so before discussing work related to

end-user composition, I will present work related to the competing strategy of

Automatic Service Composition.

Automatic Service Composition systems take a description of a desired capability

or application and a set of available services and automatically generate a

composition of those services that provide the capability. Among the various

systems in this category, the descriptions of desired capabilities can take different

2.1 · Overview of Related Work 17

forms and can be produced by different parties such as developers, local

administrators, or the end-users themselves. Often, the automatic composition

systems themselves are agnostic to who has created the description or the form in

which it is expressed, and instead focus on creating an optimal composition from

the given description.

Finally, I will discuss two approaches that allow end-users to have an

integrated experience of using multiple devices and services without the

intervention of developers, designers, or administrators. The first, Universal Remote

Control, employs techniques to allow devices to publish descriptions of their

functionality in such a way that a client device can be configured (with varying

degrees of automation) to control each device, either one-at-a-time or in

conjunction with the other available devices. The second approach, End-User

Composition of Networked Services, allows users to create persistent or re-usable

configurations of devices and services that go beyond simple control. For example,

a user can set up a connection between two devices that allow the first device to

stream media to the second device, or can configure a device to respond to another

device’s change in state. The OSCAR system and user study described in

Chapters 5 and 6 of this dissertation falls into the category of End-User

Composition of Networked Services, and in my discussion of prior work I will

2.2 · Interoperability Frameworks 18

discuss the shortcomings of work in this area that OSCAR was designed to

address.

2.2 Interoperability Frameworks

With respect to networked devices and services, an interoperability framework is a

set of standards that describe how a new device or service must present itself to

existing entities on the network so that it can be used in certain prescribed ways.

More precisely, an interoperability standard will describe how services are named

and identified, how they can be discovered, how their capabilities are provided for

inspection by clients and other services, and what particular service description or

application programming interface (API) elements they must include to engage in

particular types of interoperation. For example, an interoperability standard might

dictate how a new networked music player can discover and connect to a

networked audio rendering device (e.g., set of speakers) and be controlled from a

user’s home computer. Similarly, an interoperability standard might dictate how a

new web-based mapping service must present itself so that it can be accessed by

third-party services that wish to plot geographic data onto a graphical map.

2.2.1 Universal Plug and Play and the Digital Living Network Alliance

The Universal Plug and Play (UPnP) set of standards [153] was developed by

a consortium of software and consumer electronics vendors in the hopes of

2.2 · Interoperability Frameworks 19

ensuring interoperability among devices that are co-located on a local area

network. A wide array of standards has been produced to define the operation of

various classes of devices such as printers, scanners, Internet gateway devices, and

audiovisual devices. As of July 2007, these standards have begun to be adopted in

some areas—most notably in the Internet gateway device product category—, and

in other areas additional consortia have been assembled to further specify the

details of how devices will interoperate. One of the most significant efforts along

these lines is the Digital Living Network Alliance (DLNA). The DLNA is

focused on maintaining, evolving, and promoting the UPnP Audiovisual standard

(UPnP AV) [126], and has built an additional set of standards [34] on top of

UPnP to dictate the details of interoperation left open by UPnP such as the media

formats and data transport protocols that A/V devices must support in order to be

compatible with the standard.

DLNA needed to come into existence in large part to fill in the gaps left by

the UPnP standard. This is because UPnP exemplifies a class of interoperability

technologies that fundamentally require agreement on an expanding coterie of

standards to achieve compatibility. Devices and applications are coded against the

specifics of particular “device profiles”—a specification of the standard operations

supported by a given device type—as well as the specific family of protocols

defined by UPnP. A device, such as a networked camera, coded to use a UPnP

MediaServer must be recoded to use a UPnP Printer, and again for a UPnP

2.2 · Interoperability Frameworks 20

MediaRenderer. Further, these profiles themselves are subject to change,

meaning that an application coded against a particular version of a particular

device’s profile may not work with other versions. This situation limits evolvability

in digital networks—the presence of a new device type requires that all other

devices on the network be updated in order to use it.

2.2.2 Jini Network Technology

Technologies such as Sun’s Jini [158] provide a degree of “insulation” between the

APIs that client applications are coded against and the actual protocols used to

communicate with a remote service. In Jini, mobile code is used to provide a

service-specific implementation of an interface that a client is written to use. At

runtime, then, this implementation can augment the client’s functionality to

communicate with the service using a protocol not previously built into the client.

Still, however, like the systems discussed previously, Jini requires that clients and

services be written against each other’s specific interfaces in order to use each

other. Jini provides a platform for mobile code on top of which a set of

recombinant interfaces could be developed, but does not itself address the

challenge of providing such a set of interfaces.

2.2.3 Web Services

Web services are the currently dominant evolution of re-usable object oriented

programming architectures [78], whose evolution has included RPC systems

2.2 · Interoperability Frameworks 21

[162], distributed components [53, 119], and component frameworks [103, 142].

Web service frameworks [71] are distinguished from their predecessors by the

protocols they use for discovery and messaging, and the formats used for service

description, and not in any particular technological capability. Web services do

bring something fundamentally new to the table, however—the notion of

persistent and universally available services that can be used as components in a

variety of systems. Even previous distributed component frameworks (e.g., [103,

106, 142]) did not tend to permeate beyond the enterprise network.

2.2.4 Shortcomings of Existing Interoperability Frameworks

Any of the approaches described in this subsection can serve as the basis for a

framework that supports interoperable services and an integrated user experience.

However, the current state of these efforts remains inadequate for a number of

reasons. Firstly, each of them requires developer intervention to create new

application functionality for users. Secondly, they stop short of defining sufficiently

detailed service description standards to actually guarantee interoperability. This

second point is at least partly overcome in the case of DLNA, which was formed

in large part to address this very concern. They have extended UPnP to specify

not only the types of services that can interact with each other, but critical

parameters of interoperation such as acceptable media types and data transport

formats. However, as I shall discuss in Chapter 3, the level of detail of these

2.3 · Ubicomp Application Frameworks 22

specifications, while necessary for ensuring interoperation, will also serve as an

impediment to achieving sustained compliance among the many vendors hoping to

participate in the standard. The large number of detailed agreements required to

guarantee interoperability will be expensive and difficult to implement for many

vendors, and, perhaps most importantly, they will serve as a barrier to evolution.

In order for a new device type, media type, protocol, etc. to be introduced into the

system, an additional set of standards must be written and agreed upon by the

many participants in the alliance—a lengthy and expensive process. The Obje

Framework, presented in Chapter 3, overcomes these shortcomings by dictating

agreements about only the most basic levels of communication and interoperation,

and allowing the detailed agreements to be worked out at runtime using the

distribution of mobile code.

2.3 Ubicomp Application Frameworks

A number of frameworks have been built to make it easier to develop certain types

of ubiquitous computing applications and, by extension, provide a compelling

experience of interacting with multi-device environments to end users. Some of

these frameworks are focused on supporting particular aspects of ubicomp

applications, such as providing contextual user interface adaptation or supporting

capture and access applications. Others of these are designed to provide more

2.3 · Ubicomp Application Frameworks 23

general application support to a wide range of possible applications that are

coordinated across multiple devices and services.

2.3.1 Toolkits for Building Specific Types of Ubicomp Application

The Context Toolkit, Context Fabric, and INCA are examples of Ubicomp

Application Frameworks that support a particular style of ubicomp application or

support a particular component of a more general application style. The Context

Toolkit [32, 134] is aimed at making it easier for developers to incorporate

contextual inputs such as a user’s identity and location into an application. In

doing so, it implicitly facilitates the creation of compositions of various low-level

distributed services in a way that is invisible to the end user and perhaps even to

the application developer, at least inasmuch as the contextual data is provided by

sensors that are controlled by hosts distinct from the application’s host. Context

Fabric [65, 66] explicitly supports composition of distributed services, as its

model is based on the assembly of distinct InfoSpaces. Context Fabric’s

distributed architecture provides a general, shared infrastructure to support the

construction of varied context-aware applications while also providing users and

system administrators with the ability to define enforceable privacy and

information access policies independently of any particular application. INCA

[149] also explicitly supports coordination of distributed services by allowing its

2.3 · Ubicomp Application Frameworks 24

Capturer, Accessor, and Storage components to run on different hosts and be located

by applications via the Registry.

With each of these frameworks,, the target audience is the community of

developers, and one of the functions of the framework is to make it possible to hide

the distributed nature of the component services from the user and to a large

extent from the developers as well. For the intended applications, this level of

encapsulation is probably appropriate—the developer who is using the Context

Toolkit to build a context-aware In/Out Board application may not need to know

whether the presence of the application’s users within the building is sensed using

RFID badges, face recognition software attached to the building’s security

cameras, or keyboard and mouse activity detectors attached to the users’ desktop

computers. Certainly, one hopes, it will not be important for users to be aware of

this level of detail. For other applications, such as the creation of an ad-hoc video

conference, it may be quite important for the users to specify exactly which

camera, microphone, display, and speakers he or she wishes to use for the

application. In this latter case, exposing the specific devices directly to the user

and allowing them to assemble them as they see fit is the best way to provide

them with the functionality they need. Frameworks such as the Context Toolkit,

Context Fabric, and INCA that are aimed at encapsulating the distributed nature

of services in order to ease the task of application development are not well suited

2.3 · Ubicomp Application Frameworks 25

to supporting applications that require that users are aware of the distinct identity

of each service.

2.3.2 General-Purpose Ubicomp Application Frameworks

More general-purpose Ubicomp frameworks such as iROS, GAIA, and one.world

have also placed an emphasis on supporting developers.

The iRoom Operating System (iROS) [47] provides ad hoc interoperation of

loosely coupled services by allowing them to share data through tuplespaces [19].

GAIA [131] attempts to extend traditional operating system concepts, such as file

systems, process management, and user sessions, to multi-device, multi-user

“Active Spaces.” Leveraging well-understood constructs allows developers to more

easily understand how to create applications for these new types of environments

and adapt existing application patterns to the domain of ubiquitous computing.

The goal of one.world [54] is to provide a new programming model for application

development that emphasizes three principles that are more pronounced in

ubiquitous computing than in traditional single-OS or distributed system: embrace

contextual change, encourage ad-hoc [automatic] composition, and recognize sharing as the

default. Aura [138] allows abstract definitions of users’ “tasks” (i.e., collections of

resources and services related to a particular user goal such as “organize

conference” or “write dissertation,” along with status information about the most

recent usage patterns of those services and resources) to be executed in a variety of

2.3 · Ubicomp Application Frameworks 26

mobile contexts by adapting themselves to the available services. Services are

provided according to the operations they support (e.g., “editText” or

“watchVideo”) and provide a range of parameters (e.g., display window

dimensions, current scroll position, spell checking enabled/disabled) that can be

accessed and controlled during the task initiation process. It is not clear what

degree of standardization regarding service types and parameters, in conjunction

with the task definitions that must control them, would be required to make Aura

tenable across the varied, heterogeneous environments they envision, but it would

appear to be quite substantial.

Each of these systems allow developers to create applications that seamlessly

adapt to the addition or removal of clients and services, run on heterogeneous

platforms, and accommodate multiple simultaneous users. In principle, each of

them could be extended to support the ability of end users to compose services;

however this is not a capability that any of them possess in their published forms.

It is not the goal of such platforms to provide a set of standardized service types

that can be assembled by end-users in pre-defined ways, and therefore it remains

the responsibility of developers to create the applications with which users will

interact.

2.3 · Ubicomp Application Frameworks 27

2.3.3 Shortcomings of General Ubicomp Frameworks

The purpose of discussing these various Ubicomp frameworks is not so much to

compare them to Obje or point out their deficiencies, but to point out the range of

purposes for which such frameworks are built. Many of the features provided by

iROS, Gaia, one.world, and Aura (e.g., interprocess event propagation, process

migration, single-process adaptation to changes in execution context) are not

provided by Obje, and several of the features provided by Obje (e.g., robust

interoperability through mobile code exchange and dynamically distributable user

interfaces) are not provided by these frameworks. From the perspective of this

dissertation, the most important fact is that none of the four Ubicomp frameworks

discussed here are capable of supporting end user composition without significant

further specification. They do not dictate the specific inter-compatible service

interfaces that are required to enable end-user composition tools to be written.

While such interfaces could, in all likelihood, be defined on top of one or more of

these frameworks to enable an application such as OSCAR, is is not a part of

these frameworks’ contribution to describe how those interfaces should be defined,

and what additional framework features should be supported, in order to support

end-user composition. In other words, while OSCAR could have been built atop

2.4 · Automatic Service Composition 28

any of these frameworks with enough additional design and development, there

would be no particular advantage or cost savings in doing so2.

2.4 Automatic Service Composition

Various research projects have investigated how a multi-component configuration

can be automatically composed from a more abstract specification [52, 91, 108].

For the most part, these projects have been agnostic to how the specification for a

composition was generated, or they assume that a programmer created the

specification. A shared assumption, however, is that the details of the composition

are of no interest to the user and should be hidden.

2.4.1 Automatic Data Flow Path Creation

Ninja’s Automatic Path Creation [52] and the closely-related Service

Composition work at Stanford [67, 80, 81] take a data flow approach to service

composition. Sequences of data transforming services are composed automatically

or semi-automatically (with the help of developer-created scripts) to deliver data

from one service to another service or client in a requested format. Care is taken to

2 The Obje Display Mirror, on the other hand, could be built atop any framework that
provides ad hoc discovery and a reliable way to establish a streaming connection using a predefined
data format. Thus, any of the frameworks described in this section and to a large degree the
Interoperability Frameworks described in the previous section would suffice for that particular
application. The unique contributions of Obje are far better reflected in the OSCAR system and
study, whereas the Obje Display Mirror project provides other insights and contributions as will
be described in Chapter 4.

2.4 · Automatic Service Composition 29

ensure that the data flow paths provide optimal quality-of-service. Most

importantly, the paths are constructed automatically and the details are hidden

from users and in many cases from the developers of the applications. While this is

appropriate for many of the situations that are targeted by these systems, such as

Internet-scale services that present a simple, unified interface to consumers of

data, these approaches will not suffice for situations where users want or need to

assemble components in new ways to accomplish tasks unforeseen by developers.

2.4.2 User-Initiated Automatic Service Composition

Other projects have attempted to provide a solution for semi-automatic service

composition that reaches all the way out to the end user. For example, both Task

Computing [98] and InterPlay [100] perform automatic service composition

based on simple inputs that are, in at least some cases, generated by end users. In

the case of Task Computing, the inputs are pairs of services and in the case of

InterPlay, the inputs are structured “pseudo-sentences” that can be constructed

with the aid of a wizard-like user interface. Both systems strive to hide the details

of the composition from the user, which may result in a fluid user experience

when it works, but will leave the user helpless to understand what went wrong

and how to correct it when things do not go as planned. Surprisingly, neither of

these systems has been subjected to studies with users to determine how well they

will serve users’ needs under realistic circumstances.

2.4 · Automatic Service Composition 30

2.4.3 Shortcomings of Automatic Service Composition

While it is generally true a large portion of the time that the details of how a

computational system is going about accomplishing its task are of little or no

interest to the user, it cannot be said that such details are never of interest. It is

important for users to be able to understand and control their networks at some

level because, ultimately, when engaging in setup or maintenance tasks, they will

have to understand something about what is going on. For example, if an attempt

to carry out an activity such as “listen to music in the kitchen” fails, it will fall to

the user to attempt to understand if the failure occurred because the user’s action

to initiate the activity was incorrect or misinterpreted, whether the system was

unable to effect the composition because of an incompatibility, miscommunication,

or failed operation, or whether some out-of-band problem has occurred such as a

general network failure, wire disconnection, or hardware failure. Systems that take

control away from users in the interest of making everyday interactions “easy to

use” will ultimately lead to frustration and abandonment. While end-user

composition is not a panacea for all of the troubleshooting ills that will befall users

of increasingly complex networks of devices and services, it stands to reason that a

system that allows users to express their compositions using constructs that

resemble the system’s own constructs will give users a firmer basis upon which to

later understand problems that arise.

2.5 · Universal Remote Control 31

2.5 Universal Remote Control

In terms of providing user interfaces for an integrated user experience, there is

relevant work coming from both industry and research sources using the metaphor

of a universal remote control.

2.5.1 Infrared-based Universal Remotes

The model promoted by industry is that of universal remote control—handheld

devices that can be used to control a variety of different A/V components.

Traditionally, these devices have been regarded as extremely cumbersome to

configure and use, but current best-of-breed devices like the Logitech Harmony

[18] have significantly eased the pain of the initial setup by allowing programming

codes to be downloaded into the device directly from the Logitech website. They

have also improved the user experience by allowing single button presses to send

commands to multiple devices to set up the whole system to carry out an activity

like “Watch a DVD,” or “Listen to CD.” The Harmony, like all other universal

remotes, is not capable of making ad-hoc connections among networked services.

It is also designed to only make device-device connections, and has no notion of

interacting with content. As media becomes virtualized and is capable of being

aggregated and served by large-scale content services, it will become increasingly

important for users to be able to interact with content as a first-order entity. In

2.5 · Universal Remote Control 32

contrast, Obje and OSCAR transparently support the intermixing of devices and

content and the experience of content as a first-order entity.

2.5.2 Software-based Universal Remote Control of Networked Devices

Software-based universal remote control systems such as the Pebbles Personal

Universal Controller [114], UNIFORM [113, 115], Huddle [116], the Trace

Universal Remote Console specification [155], the Stanford iRoom’s iCrafter

[121], and the User Interface Markup Language [3] seek to improve upon

infrared-based universal remotes like the Harmony by allowing devices to provide

abstract descriptions of their capabilities and allowing client-specific UIs to be

generated automatically based on those descriptions. Despite these advantages,

these technologies are limited by the same factors that limit commercial industrial

remotes: they cannot create ad-hoc connections and they do not address content-

to-device interactions.

Roadie [89] provides a mixed-initiative user interface that allows users to

specify high level goals such as “Watch a movie on DVD” and attempts to

automatically formulate step-by-step plans that will enable the accomplishment of

the goal. Where Roadie is unable to carry out a step by itself, it gives the user

instructions about what needs to be done. In that the user interaction is based

around the user expression of high-level goals that are mapped to system

configurations by an internal planning algorithm, Roadie resembles the InterPlay

2.5 · Universal Remote Control 33

[100] and Task Computing [98] systems mentioned earlier. As these approaches

trade end-user composition for automated composition, they provide users with

less control and are less able to adapt to unconventional user needs.

2.5.3 Providing Devices with Web Presence

HP’s Cooltown project [83] was concerned with extending web presence to

devices and services situated in the physical world. While it was not the stated

goal of Cooltown to enable “remote control” of devices or services, but rather to

provide location-bound services and devices with points-of-presence on the World

Wide Web, the effective user experience of using devices in Cooltown is very

similar to the experience of universal remote control. The user’s client device (in

this case running a web browser) obtains access to a control channel to the device

(in this case by obtaining its URL through an out-of-band mechanism such as

barcode scanning or RFID reading) and thereby presents the user with a set of

controls (in the form of a web page) for the device. The device is free to provide

any form of control or content via its web interface that it wishes—no standard

controls, service interfaces, or description languages are dictated by Cooltown.

While this should make it relatively easy to create and deploy new services, as web

technology for both servers and clients is extremely common and familiar to most

software developers, it does not ensure any consistency of user experience across

services and it does not support end-user composition of multiple services. Each

2.5 · Universal Remote Control 34

service is a standalone island of functionality that cannot be easily combined with

any other island’s functionality.

2.5.4 Shortcomings of Universal Remote Control

The primary disadvantage of the universal remote control approach is that it only

supports the one-to-one association of clients and devices for the purpose of

control. If a user wants to create or control a connection between two or more

devices, as is the case when for example media from one device is being streamed

to and rendered on another device, the universal remote—whether software or

hardware—will be unable to assist with that process. What is required instead is

that the connection be made in advance through a separate, out-of-band

mechanism (such as connecting the devices with dedicated A/V wiring), at which

point the universal remote can activate or deactivate the connection by treating

the connection as a control parameter of one of the devices. For example, if a DVD

player is connected to a TV’s “AUX” port, the universal remote will be able to

effect the connection between the two by turning on the TV, turning on the

DVD, and then switching the TV’s input to “AUX.” If the DVD player had not

been previously connected to the TV in this fashion, the connection would not be

possible using the universal remote. Even the software remote control systems

described in this subsection have not addressed this concern, and remain unable

2.6 · End-User Composition of Networked Services 35

to forge ad-hoc spontaneous connections among devices that do not have a

previous association with one another.

2.6 End-User Composition of Networked Services

End-User Programming is a long-established field of research that looks at how to

provide end users with the tools, skills, and motivation to create their own

functionality. The huge number and wide variety of end-user programming

systems (for a thorough survey, see [79]) precludes a thorough treatment of all of

them here, so I will instead focus on the subset of end-user programming systems

that have looked at providing users with the means to construct new functionality

out of networked services.

These systems share two key characteristics: their emphasis tends to be

compositional rather than behavioral and they must adapt dynamically to

changing conditions in the environment. To say that they are compositional rather

than behavioral in emphasis is to highlight that each of these systems is aimed at

providing users with the ability to assemble blocks of predefined functionality,

rather than create functionality from the ground up. In this sense, they resemble

the domain-specific programming languages [99] (such as the Excel formula

language [159]) advocated by Nardi in her seminal study of end-user

programming [109] rather than general purpose programming languages such as

Java [144] or even languages such as Logo [90] and Visual Basic [101] with

2.6 · End-User Composition of Networked Services 36

explicit aims to be accessible to a wider range of end-users than traditional

programming languages. To note that these systems must adapt dynamically to

changing conditions in the environment is to say that they have the additional

challenge of presenting to users different sets of functionality at different times,

depending on the compositional components that are available for use. This is

different from traditional end-user programming systems where the set of

functionality remains fixed unless the system has been explicitly upgraded by the

user.

In addition, all of these systems happen to share the characteristic that they

are primarily targeted for domestic environments, which suggests the additional

shared characteristic that they must be extremely easy to learn and use since it is

presumed that domestic users are less motivated than professional users to learn

and master complex software in the hopes of an eventual return on their

investment of time and effort.

2.6.1 End-User Programming in the Digital Home

The AutoHAN Media Blocks [9] provide a tangible user interface to allow

configuration and control of domestic appliances. Each block represents an

operation, object, or programming construct. Users construct configurations by

arranging the pre-assigned blocks to construct statements. The blocks are also

capable of being used directly with certain devices, so for example a “play” block is

2.6 · End-User Composition of Networked Services 37

able to be associated with the “play” command on any device that supports such a

command, such as a CD player or VCR.

The Jigsaw Editor [70, 127] employs a jigsaw puzzle-based metaphor for

snapping together functionality. This metaphor is built and studied in both a

tangible and graphical form. Like AutoHAN’s blocks, jigsaw puzzle pieces

represent devices and data items, and users may create rules by connecting them

into linear chains that are then mapped into system configurations that are

evaluated and triggered when appropriate. The paper does not exhaustively

describe the capabilities of the compositional system; indeed their system was

developed in large part to engage end-users in participatory design activities to

determine what capabilities are needed for a system that allows end-user

programming for “smart home” behavior.

CAMP [150] takes a similar approach to AutoHAN and the Jigsaw Editor in

that it allows users to compose functionality by selecting from a predefined set of

operators and objects and arranging them into sequences in order to express rules

and compositions. In the case of CAMP, a metaphor of magnetic poetry is used,

and the operators and objects are English words and phrases rather than blocks or

iconic representations. CAMP focuses on allowing users to create capture and

access applications, and thus restricts the domain of interest somewhat. Within

this domain, however, CAMP is able to express more sophisticated compositions,

and is able to express them in less ambiguous terms than the other two systems.

2.6 · End-User Composition of Networked Services 38

iCAP [33] provides a graphical UI that allows users to define conditional (if-

then) rules by dragging and dropping icons representing inputs and outputs onto

the appropriate graphical region of the UI window. Unlike the previous systems,

the user is in charge of defining and parameterizing the inputs and outputs, and in

assigning them a graphical representation. This would appear to offer a high

degree of flexibility in terms of defining arbitrary inputs and outputs, though the

available options for creating these entities are not described in detail. Also, the

restriction to define compositions as if-then statements restricts the types of

compositions that can be created.

In each of these projects, the focus is largely on the user interface for specifying

a composition, and less on other aspects of interacting with compositions such as

storing and organizing compositions for later access, invoking previously created

compositions, understanding and modifying existing compositions, or sharing

compositions with others. One exception to this generalization is the AutoHAN

system, which uses a language-independent script representation called Lingua

Franca [59] to store programs created by the Media Blocks. These scripts can, in

principle, be translated to and from a variety of programming languages including

textual scripting languages, visual programming languages, and tangible languages

such as the Blocks. Consequently, the scripts may be manipulated in different

ways and possibly by different individuals.

2.6 · End-User Composition of Networked Services 39

Lingua Franca provides a mechanism for user-created compositions to live

beyond their initial creation, and this capability foreshadows the most significant

shortcoming of all work related to end-user composition or programming in the

home, which is a failure to account for the entire lifecycle of user-authored

functionality. In the next section we present our view of the end-user composition

lifecycle and examine how this viewpoint affects our understanding of the

requirements for systems that intend to support such activities.

2.6.2 Design and Prototyping Tools for Ubicomp Applications

Another body of work that shares an affinity with end-user composition is the

research surrounding design and prototyping tools for ubicomp applications. Like

end-user composition systems, such tools are focused on allowing non-developers

to create applications quickly. These tools differ from end-user composition

systems primarily in that their intended audience is designers who are typically

producing or prototyping applications for someone other than themselves, whereas

end-user composition systems are primarily focused on allowing users to create

new functionality for self-benefit.

While not explicitly compositional, location-based experience design tools like

Topiary [88], MOPS [15], and the Mobile Bristol toolset [69] allow designers to

craft behaviors that are based on information about users’ locations and other

contextual factors. The information about the users’ location can be obtained from

2.6 · End-User Composition of Networked Services 40

a variety of sources, and to the extent that this information will ultimately be

obtained from external sources such as sensors placed in the environment, the

tools are facilitating the design of a composed application.

The “mash-up” is a form of web service composition that is rapidly gaining

popularity [64]. In essence, a web mash-up is a new web service or site that

incorporates data from two or more other web sites using the sites’ web service

API or by creating a programming interface to the web site through the use of

“scraping” tools that parse a site’s HTML output and allow programmatic access

to the site’s functionality. End-user- and designer-focused mash-up creation tools

are beginning to emerge both within the research community [12, 62, 166] and

outside of it [85, 102, 168], though usage experiences with these systems have not

been reported extensively in the literature up to this point.

2.6.3 Shortcomings of Existing End-User Composition Systems

The systems presented in this final subsection of Chapter 2 are aimed at

providing end-users with the tools to create functionality they need by composing

services that may be distributed among various hosts in the local- and wide-area

network. As such, they come the closest to providing the user experience that is

required for emerging ubicomp environments—that is, a customizable, integrated

user experience of a large and rich network of devices and services. However, these

projects share two key shortcomings: first, with the exception of the work on web

2.6 · End-User Composition of Networked Services 41

service mash-ups, they have not been linked to generalizable service frameworks

that would allow them to be deployed in a realistic setting outside the laboratory.

Rather, they have been developed and tested with constrained sets of custom-

built services which were tailored specifically for the scenarios they were designed

to support. Secondly, most of them have not been tested with users in a realistic

setting with live, reactive services. For example, the user studies for the Jigsaw

Editor, iCAP, and CAMP, while certainly informative, all used mockups that

were not connected to the underlying infrastructure and therefore did not allow

users to experience the effects of their compositions in anything but an abstract,

imagined way. Other systems, such as Topiary, that have conducted user studies

with realistic, simulated, or wizard-of-oz data have been aimed at application

designers rather than end-users designing for their own consumption.

Some of the systems described under the heading “End-User Programming for

the Digital Home” could perhaps be adapted for use with Obje devices and

services. In particular, the Jigsaw Editor, CAMP, and iCAP are sufficiently

general in their scope that the ability to make data-centric connections along

similar lines to the connections created and managed by OSCAR could be

implemented without significant difficulty. However, none of these systems as

they have been designed provide facilities for ad hoc discovery or control of

components, distinguishing between one-off, temporary connections and

persistent, reusable compositions, or ongoing monitoring and control of active

2.7 · Summary 42

connections. AutoHAN is even more limited because of its exclusive focus on

tangible input—adaptive control and monitoring is essentially impossible without

significant redesign. Thus, even if these UIs could be adapted for use with Obje,

they would have to be significantly expanded and redesigned to support all of the

end-user composition and control features that are supported by OSCAR.

The systems described in “Design and Prototying Tools for Ubicomp

Applications” are, for the most part, similarly amenable to being adapted for use

with Obje services. However, these systems are not designed to be used by the

ultimate end-users of the functionality they allow to be created, and so have many

aspects (e.g., support for authoring of complex, abstract behaviors and support for

Wizard-of-Oz user testing) that are suitable for designers but much less so for

end-users.

2.7 Summary

I have described a wide range of work that has addressed various aspects of

providing a seamless, adaptable user experience of interacting with multiple

devices and services, and I have shown that, thus far, there has been a shortage of

work that adequately pulls together the required pieces to provide such an

experience. In the next chapter I will present the Obje Framework, a robust

interoperability platform that is designed to support interoperability in the face of

open evolution of various device and service types and communication standards,

2.7 · Summary 43

and is designed to enable end-user composition of devices and services. Following

the presentation of Obje, I will present two case studies of Obje applications,

including their design, implementation, and use, and will show how those

experiences shed light on the design of integrated user experiences of ubicomp

environments.

 44

3 The Obje Framework

1.1 Introduction

For users to have an integrated experience of the range of interconnected devices

and services that comprise their physical/digital environment, it is necessary that

the components of that environment work together reliably and consistently, with

minimum effort on the part of the user. The goal of a system that supports end-

user composition is to enable users to remain in control of what is to be connected

and when, and to reduce as much as possible the necessity of users’ involvement in

negotiating how they connect. Thus it is a key role of infrastructure to facilitate

the interoperability of devices and services in ubiquitous computing environments.

In addition, infrastructure must provide basic facilities, such as allowing users to

discover, identify, comprehend, interact with, control, and extract information

from the services they encounter.

In this chapter, I describe the Obje Framework3, which is an infrastructure for

ubiquitous services that provides all of the facilities described above. Some of

3 This chapter describes joint work carried out principally with Keith Edwards, Trevor Smith,
and Jana Sedivy. Portions of the work described in this chapter have been previously described in
[42] and [112].

3.1 · The User Experience of Interoperability 45

these facilities are not provided by Obje in a manner that is particularly unique or

interesting. For example, the mechanism for discovering services in Obje is based

on the zeroconf standard which is the same as the mechanism used by Apple’s

Bonjour [4] and isomorphic to the mechanisms used by UPnP’s SSDP [50] and

Jini’s Discovery protocol [143]. However, there are two key areas where Obje’s

approach differs from all other approaches that have been taken in this domain.

One area is Obje’s approach to interoperability, which allows runtime negotiation

of many details of interoperation through the leveraging of “meta-interfaces”

combined with distribution of mobile code. The other area is Obje’s ability to

facilitate the delivery of user interfaces to various client devices in a way that

allows services to “push” control UIs to clients at particular stages of their

interaction with the user and with other services, and that allows clients to

present integrated UIs for the simultaneous control of multiple devices without

requiring specific advance programming or configuration of those clients.

3.1 The User Experience of Interoperability

Many scenarios of mobile, pervasive, and ubiquitous computing envision a world

rich in interconnectable devices and services, all working together to help us in

our everyday lives. Indeed, we are already seeing an explosion in new, networked

devices and services being deployed in workplaces, the home, and in public spaces.

And yet, in reality it is difficult to achieve the sorts of seamless interoperation

3.1 · The User Experience of Interoperability 46

among them that is envisioned by these scenarios. How much more difficult will

interoperation become when our world is populated not only with more devices

and services, but also with more types of devices and services?

These visions of ubiquitous computing raise serious architectural questions:

how will these devices and services be able to interact with one another? Must we

standardize on a common, universal set of ubicomp protocols that all parties must

agree upon? Will only the devices and services that know about one another, and

are explicitly written to use one another, be able to interoperate, while others

remain isolated? How will such networks be able to evolve to accommodate new

devices that may not have even existed at the time current devices were created?

These architectural questions in turn pose pressing issues for the user

experience of ubiquitous computing. Architectures that impose such constraints,

that prevent us from easily adapting and using the technology around us for the

purpose at hand, cannot support the sort of “calm technology” envisioned by

Weiser and Brown [161]. Instead, they are likely to bring the frustrations of

software incompatibility, driver updates, communication problems, and version

mismatches—limited islands of interoperability, with few bridges among them.

As will become clear shortly, these weaknesses are inherent in current

architectural approaches to interoperability. Overcoming these impediments

requires new approaches in which devices and services can interact with peers

without having to know about them ahead of time. Such an approach would allow

3.1 · The User Experience of Interoperability 47

devices to work with one another without requiring replacement, upgrade, or

patching, allowing networks to evolve to accommodate entirely new types of

devices easily. In other words, such an approach would remove the system-

imposed constraints on interoperability that prevent us from freely combining and

using the technology around us. If, on the other hand, the software in our devices

must be updated to work with every possible new type of thing they may

encounter, then we will be locked into a world of limited interoperability and the

requirement for lockstep upgrades of the devices on our networks.

3.1.1 Patterns of Communication

Fundamentally, communication between any two systems depends on prior

agreement about the interfaces supported by those systems. These take the form

of the protocols, operations, data types, and semantics that, ultimately, two

systems must be coded against in order to work with each other. For example, to

interact with a service, a client must be explicitly written to “understand” the

service’s interface—what operations are available, how to invoke them, and what

the semantics of these operations are. In the case of the web, for instance, there is

agreement on the form of communication (HTTP), the format of data exchanged

(HTML, mainly), and the semantics of that data (most clients will issue a GET

request when they encounter an IMG tag, for instance). In the case of Universal

Plug’n’Play (UPnP)[74], these agreements include not just the generalities of

3.1 · The User Experience of Interoperability 48

UPnP itself (such as the SOAP protocol, and device descriptions expressed in

XML), but also the device-specific profile used by a particular UPnP device,

which defines the set of allowable operations for that device type.

Current approaches to interoperability take what might be termed an

ontological approach—a standard is created that defines how a device’s

functionality may be exposed to and accessed by peers on the network. Knowledge

of this standard—in the form of software that implements its required protocols,

data formats, and semantics—is then built into peer devices on the network. New

types of devices, which do not sufficiently resemble the existing ontology to the

point that they can be retrofitted into it, necessitate the creation of yet more

interface definitions.

This same approach is taken by virtually all networked communication

systems today. UPnP defines device interfaces, termed profiles, for a range of

device types, including scanners, printers, media devices, HVAC systems, and so

forth. Bluetooth likewise defines similar profiles for headsets, telephones, hands-

free car systems, and so forth. Virtually without exception, new versions of these

standards define new device interfaces (or revise existing device interfaces) that

will be unknown to existing devices on the network.

Arrangements such as these gain interoperability at the expense of evolution.

Because the agreements necessary for communication must be built in at

development time to all communicating parties, the network cannot easily take

3.1 · The User Experience of Interoperability 49

advantage of entirely new types of devices. New types of devices must either be

retrofitted into the existing interfaces in order to maintain backwards

compatibility (at the cost of losing access to whatever specialized functionality the

new device type provides), or new interfaces must be created that describe the

new device type (at the cost of having to update all existing devices with the

programming to communicate with the interface used by the new device type—or,

more likely, by simply replacing the existing devices with newer ones).

Such models of communication seem fundamentally at odds with a vision of

ubiquitous computing predicated on device abundance, in which new types of

technology are easily deployed, integrated into the environment, and appropriated

by users.

3.1.2 The Recombinant Computing approach

If communication requires such up-front agreement, then the central question

posed by this research is: is there an approach to creating such necessary

agreements that can better accommodate current devices and services while

supporting evolution to accommodate future devices and services? Further, can

this be done in a way that supports rich and useful interactions?

The conceptual foundation of the Obje Framework is an approach we call

recombinant computing. The key insight behind recombinant computing is that

robust, evolution-resistant interoperability can be obtained by shifting a portion of

3.1 · The User Experience of Interoperability 50

the knowledge necessary for communication from development-time to run-time.

This shift is made possible by dictating an agreement on a minimal set of

development-time interfaces that are then used to allow devices to negotiate

further necessary agreements—along with the behavior needed to implement

these—at runtime. The term “recombinant computing” is meant to evoke a sense

that devices and services can be arbitrarily combined with each other, and used

by each other, without any prior planning or coding beyond this minimal set of

development-time agreements.

To achieve interoperability in this model, three criteria must be met for the

base-level agreements that are built into devices at development time. The first is

that the interfaces that devices support must be fixed, since this is what

guarantees future compatibility. If the interfaces necessary for communication are

allowed to evolve, then existing devices may be unable to speak the later versions

of the interfaces supported by newer devices. Second, the interfaces must be

minimal. Otherwise they are unlikely to be adopted and implemented fully by

developers, imposing new barriers to interoperability. Finally, such a fixed and

minimal set of interfaces will necessarily be generic, since any small fixed set of

interfaces cannot capture all possible device-specific notions, for all unforeseen

types of devices.

The problem, however, is that relying only on a small set of static, generic

interfaces is incredibly limiting, and supports only simplistic interactions among

3.1 · The User Experience of Interoperability 51

devices. For example, although one could achieve interoperability by dictating

that all parties on the network, no matter what their function or semantics,

exclusively use plain text over FTP as their communication mechanism, such an

arrangement clearly limits the range of possible applications.

Therefore, our system couples these static development-time interfaces with

the runtime exchange of new behaviors over the network. In essence, the fixed

agreements become meta-interfaces that, rather than dictating how a service and a

client interact with each other, dictate the ways in which the service and client

can acquire new behavior that allows them to interact with each other. This new

behavior takes the form of mobile code that is provided by devices on the network

to their peers at the time of interaction.

The approach is reminiscent of Kiczales, et al.’s metaobject protocols [82], in

which a set of fixed interfaces can be used to provide runtime extensibility (in

Kiczales et al.’s case, of programming languages). Here, however, new behaviors

are provided over a network connection in the form of mobile code, rather than

simply across a procedure call boundary.

Using this model, devices only build in the most generic agreements (the

interfaces for acquiring and invoking mobile code), and defer other agreements

necessary for interoperation until runtime. When new devices appear on the

network, they provide certain behaviors to existing peers to bring them into

compatibility, essentially “teaching” their peers how to interact with them.

3.1 · The User Experience of Interoperability 52

The recombinant computing approach is fundamentally different than the

standard “ontological” approach based on detailed a priori agreements about all

aspects of a device’s syntax and semantics. Approaches based on extensive and

changing ontologies (or “profiles,” or “service descriptions”) place the burden of

work inappropriately: when a new type of device appears, every single other device

on the network must be updated to work with it. In an approach based on

runtime agreements, in which functionality needed for interoperation with a new

device is provided by the device itself, the burden of work is borne only by that

new device.

3.1.3 The Role of User-Supplied Semantics

Ad hoc interoperability poses important implications for the user experience.

Under current ontological approaches, if a device can interoperate with a peer at

all, one can reasonably expect that the device understands the semantics of that

peer—what it does, when to use it, and so forth. A Bluetooth phone, for example,

“knows” what a Bluetooth headset is capable of, and when to use it (when a phone

call happens, connect to the headset and stream audio between it and the phone)

because this understanding of how to seamlessly mesh the semantics of the two

devices has been built into them by their developers, allowing rich and

semantically-informed interactions between them.

3.1 · The User Experience of Interoperability 53

Such is not the case in a world of ad hoc interoperability, however. If

applications can only interact with the things with which they are expressly

written to interact, then new types of devices will be inaccessible to them. Instead,

the common case will be that applications will encounter new types of devices,

about which they have no special semantic knowledge: they will be able to

communicate with such devices, yet without necessarily knowing what the new

device does.

For example, under a model of ad hoc interoperability, a phone may detect

that there’s a device present that it can communicate with, and perhaps send

audio to, but may not be expected to know whether that device is a headset, a

speaker in a public place, a storage device, or a service for transcribing speech to

written text. Nor arguably should the phone have to have such knowledge in order

to communicate with the new device since, if interoperability is our goal, we do

not want to require that devices only be able to interact with things they already

know about.

If devices do not contain the specialized programming necessary to allow them

to work in semantically-informed ways with specific types of peers, then it will

sometimes, perhaps even often, fall upon the user to provide the semantic

interpretation and arbitration missing in the devices’ programming. In the

example above, it must be the user who is tasked with understanding what a

particular device does, when it makes sense to use it, and so forth; the role of the

3.2 · The Obje Framework 54

infrastructure, under this approach, is simply to allow the interaction to take place,

should the user decide to do it. This is an example of what Fox and Kindberg have

termed “crossing the semantic Rubicon”—requiring users to take on some of the

burden of semantic interpretation that once was the domain of applications [84].

The implication that users must be “in the loop” in determining when and

how to use newly encountered devices is inherent in any model of ad hoc

interoperation, and it is central to the design of Obje. Users will typically have the

role of providing the semantic interpretation that may be missing in the

programming of the application. This requirement has ramifications on the sorts of

user experiences that we can create, which in turn has implications for the design

of the infrastructure that must allow users to easily understand and use the

resources around them.

3.2 The Obje Framework

This section describes the basic design of Obje. We first examine the low-level

capabilities that we expect to be built into devices and applications that

implement the Obje software stack; then we describe how these low-level

capabilities are wrapped in a programming model that supports the creation of

dynamically extensible devices and applications.

The most distinguishing feature of our middleware platform is that it allows

runtime extensibility of devices and applications, allowing new devices that enter

3.2 · The Obje Framework 55

the network to provide code to peers to allow them to interoperate with the new

device.

This function is exposed through a bootstrap protocol, layered on top of

TCP/IP that provides a number of operations designed to support runtime

extensibility. Most importantly, the protocol allows a new device on the network

to provide a peer with:

• An implementation of a new network protocol needed to communicate

with the device

• An implementation of one or more type handling modules, to render or

process media or other data received from the new device

• An implementation of new user interface controls, which can be used to

control the device remotely

• A transparent bridging mechanism that can allow a peer to acquire new

discovery protocols, or the ability to interact with devices that may not

exist on the IP network, or that may not support the Obje software

platform

We call this protocol a bootstrap protocol because it is used for the initial

negotiation and transfer of new capabilities necessary for compatible

communication. Once this transfer has been completed, two devices communicate

with each other directly using these new capabilities; the bootstrap protocol is not

used for further communication.

3.2 · The Obje Framework 56

These implementations of new capabilities are in the form of mobile code—

self-contained executable content delivered over the network to the peer device.

Our middleware platform allows for a variety of code formats, including platform-

independent code (e.g., Java bytecodes) as well as highly-tuned, platform-specific

code (which of course would only be executable on a compatible target device).

To participate natively in the Obje platform, devices must carry an

implementation of the bootstrap protocol, may have one or more versions of mobile

code intended for use by peers (these would typically be carried in some form of

stable storage, such as firmware, flash, or on a disk), and may optionally have the

ability to execute code received over the network. As we explain in later sections,

our architecture also provides for non-Obje devices to participate in the platform

indirectly, through proxies provided by a host computer or other device.

1.1.1 Bootstrap Protocol and Code Formats

The Obje bootstrap protocol is defined as a profile on the Blocks Extensible

Exchange Protocol (BEEP) [132], a generic application protocol framework for

bidirectional, connection-oriented communication. BEEP provides facilities for

Transport Layer Security (TLS), which provides message integrity and privacy as

well as authentication of peers on the network.

Devices advertise their presence over the local link via Zeroconf [72], a

widely-supported discovery mechanism based on multicast DNS (mDNS) [22]

3.2 · The Obje Framework 57

and DNS Service Discovery (DNS-SD) [21]. These advertisements take the form

of Uniform Resource Identifiers (URIs) that indicate the address of the device.

Once a URI for a given device has been discovered, an Obje peer may

communicate with it using the bootstrap protocol. This initial communication

comprises a FetchRequest message to the peer, which responds with its

ComponentDescriptor. ComponentDescriptors are short XML documents that

provide descriptive information about a device (name, icons, and so forth) as well

as information about which roles the device may play (source or recipient of data,

and so forth, as described below), and any mobile code that may be provided by

the device.

These stand-alone bundles of mobile code are called granules, and they are

represented in the protocol by elements called GranuleDescriptors. Each

GranuleDescriptor indicates a location from which the mobile code may be loaded

(typically, from the device itself), as well as parameters used to initialize loaded

code granules, a unique version identifier that may be used by clients to cache

code granules, and a specification of the platform requirements of the code

granules.

Devices that can send or receive data declare in their ComponentDescriptors

any content types that they may be able to process “natively” — meaning, without

the need to acquire any code granules from a peer in order to interpret the

received data. These declarations are in the standard MIME format [13]. This

3.2 · The Obje Framework 58

mechanism allows for the creation of devices and services that can participate

natively in the Obje platform, but do not require the ability to download and

execute mobile code, albeit at the cost of losing runtime extensibility. For example,

a small viewing device may declare that it can accept JPEG and PNG image data

only, and refuse to accept (or be unable to process) granules that could extend its

type handling behavior to other image formats.

Depending on the roles a device plays with respect to its interoperation with

other devices, it may provide a number of types of granules for specialized uses.

For example, devices that play the role of originating data (called DataSources)

may be able to transmit specialized granules that provide new protocol

implementations or new type handling behavior (such as new CODECs) as

described in the section Data Transfer, below. Other sorts of devices may provide

custom UI implementations or custom discovery protocols other than Zeroconf

(see the sections User Control and Metadata and Aggregation, respectively).

There are a fixed number of device roles defined by Obje, and thus a fixed

number of granule types. Devices that play a given role are written to provide or

accept the granule types defined by that role.

3.2 · The Obje Framework 59

Table 3-1: The four primary modes of extensibility defined by Obje are described as four “roles” in which
devices can be used; devices that play one or more of these roles can provide or use a fixed set of granule
types. Devices may participate in multiple roles.

Table 3-1 shows an overview of the different device roles and the corresponding

granule types used by those roles. Device that can participate in data transfer

implement one or both of the DataSource or DataSink interfaces; such devices

support extensibility over support various aspects of data transfer, using Session,

Typehandler, and Controller granules. Devices that can provide access to other

devices—for example by encapsulating a new discovery protocol—support the

Aggregate role, which provides extensibility in how peers acquire access to other

devices on the network through ResultSet granules. Devices that provide access to

custom user interfaces to control them, as well as to descriptive metadata,

participate in the Component role, which is considered a base-level role that all

devices should support; these devices use UI and Context granules to support

extensibility along these dimensions.

3.2 · The Obje Framework 60

Once a granule, such as a new protocol implementation, is transferred to a

peer, it can be executed directly by that peer. Thus, after the initial bootstrap

phase to exchange any code necessary for compatibility, two Obje peers can

communicate directly with one another, using the protocol and data types

provided by the source device. Thus, further communication does not involve the

bootstrap protocol itself.

Effectively, this mechanism allows peers to be built against a static protocol

specification (the bootstrap protocol), which is then used to exchange new

capabilities necessary for compatibility (in the form of granules), as new peers

enter the network. It is this approach that allows devices to be coded against a

fixed protocol, and fixed set of granule types, and yet be extensible to support new

devices encountered “in the wild.”

3.2.1 The Obje Programming Model

We have developed a programming model that wraps the low-level boostrap

protocol, along with other aspects of our infrastructure, including remote code

loading and discovery extensibility. This programming model not only allows

easier creation of applications, but also maps the capabilities of the platform into a

polymorphic, object-oriented framework: devices on the network appear to

applications as objects in their local address spaces; the roles those devices can

play are mapped on to the fixed set of meta-interfaces in our conceptual model;

3.2 · The Obje Framework 61

the methods in those interfaces use and return objects that themselves implement

well-known interfaces, and which are implemented by the granules returned from

devices on the network. Thus, to applications, the loading of code granules is

transparent, appearing simply as new, polymorphic implementations of already-

known interfaces.

This approach of transferring necessary implementations of known interfaces

across the wire, rather than through standard single address-space method calls, is

similar to the model used by Java’s Remote Method Invocation (RMI) framework

[164]. However, our implementation differs from RMI along a number of key

dimensions. First, it is not specifically tied to the Java programming language, and

can support mobile code in a number of formats. Second, it neither provides nor

requires the distributed garbage collection facilities of RMI; code transferred to an

application is used to create a new instance of an object in the application’s

address space, rather than a reference to a remote object that must be factored in

to a reachability analysis for distributed garbage collection. Third, it does not use

serialization (which can often be fragile, especially in the face of object versioning

or the need for multi-platform support) to transfer instance data across the wire;

only implementations are moved.

Devices are represented in Obje by components, which are simply objects that

reside in the address space of the client applications that use them. Components

can be thought of as proxies for accessing a device such as a projector, printer, or

3.2 · The Obje Framework 62

PDA. This programming model is implemented by a small messaging kernel,

against which applications are linked. The messaging kernel implements the Obje

bootstrap protocol, and is responsible for creating new component proxy object

representations within the client application’s address space; this representation is

created from information contained in the device’s ComponentDescriptor. The

kernel, upon receipt of the ComponentDescriptor from a device, generates a proxy

object that represents the new device, and notifies the application that it is

available via a simple event interface.

The component proxy objects that are generated by the kernel implement one

or more programmatic interfaces that allow applications to access information

about the remote device, as well as to acquire mobile code from it. Thus, while

applications operate on these component objects using normal local method calls,

these calls are translated into wire messages in the bootstrap protocol by the

messaging kernel, and are sent to the backend service or device. For example,

invoking one of the data transfer-related interfaces on a component (as described

below) causes a request for the necessary granule to be encapsulated into the

bootstrap protocol and sent to the remote device, which then returns the code to

the client.

Figure 3-1 illustrates the process. Here, the messaging kernel in the

application first discovers the device, and then acquires its ComponentDescriptor,

which the kernel uses to create a new component proxy object. The application

3.2 · The Obje Framework 63

can interact with this new component object to query its name and other

descriptive information, as well as to obtain mobile code from it that can be used

to extend the application’s behavior in certain prescribed ways.

When mobile code granules are transferred to a client device or application,

the messaging kernel expose one or more of the granule-provided objects that

implement a set of known interfaces that define the ways in which client

applications can interact with new implementations to specialize the client’s

behavior. The objects provided by the messaging kernel are simply the

instantiation of a granule loaded across the network (in the case of a Java-based

granule), or a wrapper object (in the case of a native code-based granule). Thus,

applications written against the high-level programming model never see granules

directly, but rather normal Java objects that implement well-known interfaces,

but whose implementations come from granules delivered over the wire.

Figure 3-2 illustrates the process of acquiring and using granules from the

application’s perspective. Here, application code interacts with a component,

which proxies for the device shown on the right. Local method calls on the

component cause the messaging kernel to request necessary granules from the

backend device, which are then returned to the application; both the request and

the response are transmitted over the bootstrap protocol. Once the granules are

returned, the messaging kernel wraps them in objects that implement interfaces

assumed to be well-known to the client, where they can be operated on using local

3.2 · The Obje Framework 64

method calls. In the case shown here, granules provide a custom protocol

implementation, custom data type handling code, and a custom user interface for

interacting with the device; these granules represent polymorphic

implementations of the interfaces known to the client, transferred over the wire

from the originating device. Once the new protocol granule has been loaded and

wrapped as an object, the application communicates with the device using the

protocol implemented by that granule, rather than the bootstrap protocol.

3.2 · The Obje Framework 65

Figure 3-1: The application on the left discovers the device on the right. A Component Descriptor, passed
via the bootstrap protocol, encapsulates information describing the device (1). The Component Descriptor
is used by the messaging kernel in the application to create a component representation as a proxy for the
device (2).

3.2 · The Obje Framework 66

Figure 3-2: The application interacts with the component to retrieve granules from the device, which allow
the application to specialize its behavior for protocol, data type, and UI handling. Here, the application
invokes a local method call on the the component (1) that causes it to request a granule from the backend
device. That device returns granules that provide new protocol implementation, data type handling
behavior, and UI specific to controlling communication (2). These are loaded into the application and
returned as custom objects via the local method call on the component, where they can be used by the
application.

3.2 · The Obje Framework 67

In our current implementation, the messaging kernel is implemented in Java,

and produces component proxy objects that implement a small, fixed set of Java

interfaces corresponding to the device roles described above. Thus, our high-level

programming model most easily supports applications written in Java, although as

noted we do support transfer and loading of native mobile code (described later in

the section Experiences with the Obje Framework). Because the core protocols

and wire formats of Obje are language-independent, devices and applications can

be written against the bootstrap protocol directly, in languages other than Java.

The next sections describe the patterns used by devices in specific roles to

support extensibility of data transfer, discovery, user control, and metadata.

3.2.2 Obje Service Roles and Communication Patterns

This section describes the patterns used by devices in specific roles to support

extensibility of data transfer, discovery, user control, and metadata. These

patterns and roles are the embodiment of the meta-interfaces described above in

the section “The Recombinant Computing Approach.”

3.2.2.1 Data Transfer

The most important (and most complex) Obje mechanisms are those that support

extensible data transfer between components, such as a PDA sending data to a

printer or a video camera sending a video stream to a fileserver. These

mechanisms have been successfully used in a wide range of devices and client

3.2 · The Obje Framework 68

applications (see the section The Experiences with the Obje Framework for

details), and provide runtime extensibility along three important dimensions:

extensibility to new protocols, extensibility to new data types, and extensibility to

new user interfaces for controlling a data transfer. The three sections below

discuss each of these in turn.

3.2.2.1.1 Protocol Extensibility

Obje devices can play two roles in a data transfer: data sources and data sinks.

These roles dictate how the devices will exchange mobile code during a data

transfer: data sources provide new mobile code-based protocol implementations,

which are then used by data sinks to retrieve data from the source using the new

protocol. In the Obje terminology, this new protocol implementation is carried in

a type of granule called a session.

Many connections between devices are initiated as a result of some user action

at a client, the basic pattern of use supports transfers started by a third party such

as a browser or other application. In this pattern, a client application requests a

session granule from a source. The client will then pass this session to a data sink

component to start the transfer. From this point, the source and sink exchange

data directly, without it passing through the client. Figure 3-3 illustrates how a

session is passed from source to sink by way of a client application that initiates

the connection.

3.2 · The Obje Framework 69

Figure 3-3: Data transfer initiated by a client application

Note that the act of requesting a session from a source, as well as passing it to

a sink, will involve a number of messages in the bootstrap protocol. Specifically,

this sequence of operations will cause a request for the session granule to be sent

to the remote source device, the mobile code for the session granule being

returned over the network from the remote source to the client, and then passed

from the client to the remote sink. The Obje messaging kernel performs these

requests as the client invokes operations on the component objects in its address

space, hiding the details of them from the client.

In terms of our programming model, data source components provide a

method that allow clients to list the formats of the data they provide (in the form

of MIME types [13]), as well as a method to return a new session granule from

the device. Once a client has retrieved the session granule from the source device,

3.2 · The Obje Framework 70

it can pass it to any data sink device, through a method defined on sink

components. The session granule is then marshaled, and passed over the network

to the receiving device, which unmarshals it and invokes the code within it to read

data from the original source.

Since the source device provides the session granule, it effectively has control

over both endpoints of the communication, allowing it to use whatever protocol is

appropriate for the type of data being transferred. This process is transparent to

the receiver of the data. In addition to providing protocol implementations, session

granules also support a number of operations that allow clients to control the

transfer of data between devices. Specifically, clients can terminate a session

(stopping the flow of data), and can also subscribe to receive notifications about

changes in the state of the transfer (that it has failed, for instance). In essence, the

session acts as a capability, allowing any party that holds it to change its state, or

be informed of changes in its state. Distribution of state updates happens in a

semi-centralized manner: updates cause a message to be sent to the source that

created the session, which sends the update to other holders of the session. In

addition, each party’s copy of the distributed session object monitors the

connection with each of the other parties via periodic Heartbeat messages, and is

thus able to detect quickly when one of the other parties has failed or crashed.

Thus each party is able to recover from any other party’s failure and restore its

own state appropriately. As described below, this same mechanism is also used to

3.2 · The Obje Framework 71

asynchronously distribute user interface granules to devices involved in the

transfer.

3.2.2.1.2 Data Type Extensibility

The features of the data transfer pattern outlined above—independence from

specific protocols, the ability for third parties to initiate connections, and the

ability to receive notifications about changes in the state of a transfer—are

necessary but not sufficient for providing the flexible and seamless version of

recombination that we envision. Namely, it allows easy, protocol-independent

interconnections among components, but only insofar as those components

understand the same data types.

Just as we believe that future devices will bring with them new protocols, an

ability to work with new data formats and media types is also required. If

components must be prebuilt to understand each other’s data types in order to

work together, we drastically limit their ability to interoperate in a truly ad hoc

fashion, and to evolve to support arbitrary new devices. We need to move away

from the requirement that devices must be replaced or manually updated each

time a new data format appears on the network.

There are a number of approaches one might take to overcome this

conundrum of extensibly handling new data types. One approach (reminiscent of

Ninja’s paths [52, 97]) would be to allow filter services (such as [120]) to exist on

3.2 · The Obje Framework 72

the network that accept data in one format and translate it to another. We

intentionally avoided this approach, however, primarily because of its implications

on the user experience of applications. If the data flow paths are created

automatically, it may result in increased system complexity that is hidden from

the user until such time as an error or breakdown occurs. At this point the user

will likely have difficulty understanding the actions the system has already taken

on his or her behalf and will be faced with a daunting recovery task. If, on the

other hand, the user model requires users to explicitly connect a chain of format

conversion filters, the user interface will reflect considerable complexity and in

many cases ask the user to make decisions about data routing that they may not be

able to fully comprehend.

Instead, the approach taken by Obje is to use mobile code to allow for

extensibility to handle arbitrary data types, without the need for excessive user

involvement, and especially without the need for a “wiring diagram” model of

connection. Obje allows devices to broaden their statements of compatibility

beyond simple MIME types. Specifically, devices declare the programmatic

interfaces, or “representation class” by which they can provide or receive data in

addition to the format of the data itself. For example, a projector—a device that

by its semantics is designed to display things—might claim that it can understand

not only JPEG data (expressed as the MIME type image/jpeg; along with the

default representation class java.io.InputStream), but also that it understands

3.2 · The Obje Framework 73

the semantics of other things that are displayable (expressed as application/x-

obje-typehandler-

granule;representationClass=”com.parc.obje.datatransfer.Viewer”).

In other words, a component might claim that it understands some abstract

representation of a set of operations that it can perform on data (e.g., allocate a

rectangle of its screen and invoke the method Viewer.getPanel() to allow a

bundle of hosted mobile code to render arbitrary visual data), without having to

understand the data itself.

By declaring that it understands a particular interface, a sink indicates that it

is written to understand and use objects that implement that interface. Likewise,

a source that declares that it can provide a particular interface means that it can

transfer a specific implementation of that interface.

We call these mobile code-based implementations typehandlers, because they

wrap a previously unknown data type in an object of a type known to a receiver. In

essence, this extension of the type system allows sources and sinks to negotiate

richer interfaces to the data they exchange and allows data type-specific

implementations of these richer interfaces to be acquired at runtime. If both the

source and sink agree on an interface they understand, a mobile code-based

implementation of this interface will be transferred from the source to sink as a

granule, and invoked by the sink to handle the data.

3.2 · The Obje Framework 74

The set of interfaces that these typehandlers may implement is open-ended

and extensible. This is the same as with MIME types: there is an extensible set of

them, new ones will come over time, and they must be known to the involved

parties for communication to occur, but no one else need understand them.

Figure 3-4 shows an example, displaying Powerpoint format data on a

projector that is not explicitly written to use such data. In this case, the projector

is written to understand a number of raw data types (GIF and JPEG, in our

current implementation), and is also written to understand objects that

implement an interface called Viewer. Any party that can provide a Viewer

wrapper around its data can thus connect to the projector. Here, the projector

downloads and uses a specific typehandler implementation of this interface that

renders Powerpoint, a format previously unknown to the projector.

Figure 3-4: A projector device uses a typehandler to process data in an unknown format

The use of typehandler granules does not solve all problems with type

compatibility— in the example above, even though the projector doesn’t have to

3.2 · The Obje Framework 75

understand Powerpoint directly, it must still be written to understand the Viewer

interface. The typehandler approach does, however, provide a number of concrete

benefits over simply requiring agreement on simple data types. Most importantly,

typehandlers provide a means for dynamic extension of the set of types that can be

used between two devices. As long as a sink is written to accept a typehandler

interface, components that were previously incompatible with it can be made

compatible through the addition of a typehandler that meets that interface. Such

easy, dynamic extension of type compatibility is not possible when only static

types are allowed, without rewriting either source, sink, or both.

Such dynamic extensibility is especially important when a source provides an

unusual format. For example, one of our current components provides a live video

stream of a computer’s display, using VNC [125]. We neither require nor expect

all receivers to be able to parse and process VNC data, so the source provides a

typehandler that implements a Viewer interface. Through this interface, any sink

that is written to understand the semantics of Viewers can accept and display a

live VNC stream.

Together the dimensions of runtime extensibility provided by the Obje data

transfer mechanisms—extensibility to new protocols, new data type handling

behavior, and new UIs (described below)—allow applications and devices to richly

interact with each other, while requiring only minimal up front agreements about

each others’ interfaces.

3.2 · The Obje Framework 76

Note that Obje’s commitment to reducing the number and degree of a prior

agreements required in order to work together means that Obje stops short of

guaranteeing aspects of data transfer interoperation beyond a the basic ability to

share and process data. For example, Obje does not make quality of service (QoS)

guarantees, nor does it make any guarantees about the ability to, for example,

synchronize multiple streams that a user may consider part of the same “logical”

transfer. Since DataSources provide their own transfer endpoints, QoS guarantees

can be made and enforced by the sources themselves, without requiring buy-in

from the sink (though, admittedly, the source may in some cases require

information about the sink’s capabilities and performance that would ultimately

require additional agreements [17]). The case of inter-stream synchronization

requires agreements among the cooperating services, for example agreement on a

globally shared clock [45] or designation of a master stream [122]. Such

extensions could be implemented within Obje as a set of agreements that are

made among typehandlers, but that remain opaque to the Obje bootstrap layer.

For example, a SynchronizedViewer interface could be implemented that allows

the typehandlers that implement it to participate in synchronized media transport

sessions with other coordinated SynchronizedViewers, though again such a

solution may require all cooperating sinks and services to provide additional

information about their capabilities that is not currently made available through

the Obje interfaces.

3.2 · The Obje Framework 77

3.2.2.2 Aggregation

The second major group of mechanisms in Obje supports aggregation. Aggregates

are devices that appear as logical collections of other Obje components. In Obje

this pattern is used in a wide range of situations—to access filesystems, which

appear as collections of components representing files and folders; to support

devices that encapsulate new discovery protocols; and also to support devices that

provide access to both devices on non-IP networks, and legacy (non-Obje) devices.

Any situation in which a device provides access to other devices uses this interface.

From the perspective of our programming model, applications initiate an

interaction with an aggregate component by performing a query() method call,

defined by the Aggregate component interface. Applications pass a parameter that

allows them to match devices based on their type, or metadata associated with

them (see the section User Control and Metadata for details on device metadata),

allowing applications to only be notified of a subset of available devices that pass

some filter. The query operation returns a ResultSet to the requesting application.

ResultSets are granules that present a simple dictionary view (component IDs as

keys, and components as values) of the devices that match the query. Once an

application has a ResultSet, it can iterate through the “contained” devices, and

can solicit notifications about changes in the set of devices that the original query

matches, allowing push-based notification of new devices. Thus, the semantics of

3.2 · The Obje Framework 78

ResultSets are that they are “live,” and may be continually updated as matching

devices come and go.

In our high-level programming model, initial Zeroconf-based discovery is

presented to applications as a “root” Aggregate component that contains all

Zeroconf devices on the local link, and supports the same query and notification

mechanisms described here.

Because ResultSets are implemented as mobile code-based granules, this

simple pattern can support a great deal of extensibility and power. For example,

this mechanism allows applications to take advantage of arbitrary new discovery

protocols, and to interact with devices on physical networks that the applications

themselves do not have direct access to. The sections below describe how these

scenarios work in Obje.

3.2.2.2.1 Discovery Extensibility

While Obje devices support Zeroconf as their standard discovery mechanism,

such a “one size fits all” approach is untenable in a world of rich variety of devices

and networked environments [38]. As a simple example, Zeroconf does not

provide the ability to easily discover devices outside the local link; in such cases, it

may be useful to support discovery mechanisms that use alternative approaches

such as registry services [152], hierarchical discovery [30], or federation [143]

3.2 · The Obje Framework 79

which can allow better adminstrative configuration over which devices are

discoverable.

Thus, one key application of the aggregation mechanism is to provide

alternative means of discovery for Obje devices and applications. In addition to

allowing devices and services to be deployed onto the network to be discovered

“normally” via Zeroconf, it allows Aggregate services to be deployed that allow

devices and services that do not support Zeroconf to be discovered as well. In

essence, an Aggregate component can act as a bridge between Obje and other

discovery protocols. The Obje client first discovers the Aggregate via Zeroconf,

and then interacts with the Aggregate to obtain ResultSet granules which in turn

support the discovery of components that are known to the Aggregate through

some other protocol.

ResultSets embody a great deal of flexibility, and can provide access to a huge

range of devices and protocols without requiring that the applications that use

them be aware of how they work. In the most simple case, the ResultSet granule

can simply forward the operations performed on it by the application to a remote

device or service that performs discovery on its behalf. This allows a device or

service to serve as a discovery proxy—it can perform discovery using arbitrary

other protocols, and return the results to unmodified applications in the form of

standard Obje ComponentDescriptors. In other cases, the ResultSet granule may

itself provide a custom implementation of a new discovery protocol that executes

3.2 · The Obje Framework 80

directly in the client, thereby allowing clients to directly discover other peers that

may have been inaccessible to them previously.

Figure 3-5: Common discovery patterns using ResultSets. On the left, a ResultSet granule provides access to
a discovery proxy running on a remote machine. On the right, a ResultSet granule implements a custom
discovery protocol that executes in the application.

Figure 3-5 illustrates both of these cases. In the first case in Figure 5, a

lightweight “shim” ResultSet communicates using a custom, private protocol to a

backend service that serves as a discovery proxy for Jini services; this backend

service invokes the Jini discovery protocol [143], and returns discovered services to

the client. Because ResultSets leverage mobile code, however, other configurations

are possible. For example, a ResultSet granule can provide a full implementation

of a new discovery protocol, which can then be delivered to the client where it

executes locally. In the second case in Figure 5, the discovery process does not

happen in the external service; instead, it happens within the client itself, which

has been dynamically extended to use the Jini discovery protocol through the code

contained within the granule.

3.2 · The Obje Framework 81

Whether discovery happens in the application or in some external service or

devices is up to the service or device that provides the ResultSet granule. In either

case, the application simply operates on the ResultSet using the standard iteration

operations defined on it, and need not care how the custom implementation does

its work.

3.2.2.2.2 Legacy Device Support

The Aggregate pattern is also used by Obje to provide access to legacy devices,

meaning both non-Obje devices and devices on non-IP networks. In these cases

the Aggregate device acts as a proxy for one or more devices that do not

themselves implement the Obje bootstrap protocol. This can allow, for example,

USB connected devices on a PC to be exposed as if they were native Obje devices

through a “USB Aggregate” that understands how to communicate with these

devices, generates ComponentDescriptors for them, and can participate in the

Obje bootstrap protocol on their behalf.

Figure 3-6 illustrates a Bluetooth Aggregate. This is a service running on a

machine with both a Bluetooth and a traditional wired network interface, that

exposes itself as an Obje aggregate device. The ResultSet granule delivered to

clients by this component will communicate with the backend machine, where

the Bluetooth discovery protocol (SDP) [11] is used to discover devices within

range. As devices are discovered, the service generates a ComponentDescriptor for

3.2 · The Obje Framework 82

each of the devices, returning them to the client through the ResultSet, as shown

in the first illustration. To the client, these aggregate-generated components are

indistinguishable from any other component; the Bluetooth aggregate itself simply

appears as a collection of all of the Bluetooth devices on the network. Operations

on these proxy components, however, are relayed over the wired network to the

remote machine, which then uses the Bluetooth RFOBEX protocol to

communicate with the device. In this way, aggregates can play a bridging role,

acting as an intermediary in interactions between the proxy component for a

device, and the device itself. This arrangement can allow the interconnection and

use of arbitrary devices, even on different networks.

3.2 · The Obje Framework 83

Figure 3-6: Using aggregates to provide access to legacy resources. Here, a Bluetooth bridging service
executes on a remote machine to provide access to legacy Bluetooth devices that do not run Obje. As the
service discovers a Bluetooth device (on the left), a ComponentDescriptors is generated for it and delivered
to the client application via the bridging service’s ResultSet granule, embedded in the client. The client can
operate on this “proxy” component just as it can any other component. On the right, data transfer operations
invoked on the component are forwarded back to the bridge service, which uses the Bluetooth device’s native
protocols (RF-OBEX) to transfer data to it.

We have created a number of such bridging aggregates for legacy devices, allowing

fully networked access to devices such as USB cameras, web cams, and music

players, and Bluetooth phones and PDAs.

From a client’s perspective, all of these varied uses are possible using the same

Aggregate interface, and without rewriting. New discovery protocols can be made

available (either directly, or indirectly through proxying) to all clients simply

through a single new device on the network. Likewise, bridges to devices residing

on different networks, or to devices that do not communicate using Obje at all,

can likewise be achieved through the addition of the necessary bridging aggregate

to the network. We believe that this range of uses demonstrates the potential of

combining fixed interfaces with mobile code—by installing one device on the

network, all existing devices and clients can benefit.

3.2 · The Obje Framework 84

3.2.2.3 Metadata

Obje also provides a mechanism that allows devices to provide arbitrary

descriptive metadata about themselves. Since our premises dictate that the

semantic decisions about when and whether to use a component must ultimately

lie with the user, we must provide mechanisms to allow users to understand and

make sense of the services available on the network. For example, simply knowing

that a device can be a sender or receiver of data provides little utility if no other

information can be gleaned about it. For this reason, Obje devices support the

ability for applications to retrieve a granule from a device that provides metadata

about that device, which may include such details as name, location,

administrative domain, status, owner, and so on.

Our representations for metadata are very simple: metadata granules provide

access to a simple map of key-value pairs, with keys indicating the names of

attributes (“Name,” “Location,” and so on), and values that are arbitrary objects.

The set of keys is extensible, as we do not believe any fixed set is likely to support

the needs of all applications or components. Likewise, we do not require nor

expect that all applications will know the meaning of all keys, nor share a common

metadata ontology. The goal of this mechanism is primarily to allow sensemaking

by users, and only secondarily to allow programs to use metadata in their

interactions.

3.2 · The Obje Framework 85

3.2.3 Integrated User Control

There are two mechanisms provided by Obje to support user control of devices

and services. User can obtain or “pull” user interfaces from services on demand. In

addition, services can “push” user interfaces to clients during active

communication sessions to allow users to control aspects of the specific session, or

to prompt the user for needed information. The “pull” UIs are most useful for

situations where the user wishes to configure or manipulate global settings on a

device, or wishes to effect controls that are independent of any particular

connection. Among other things, this allows Obje to provide access to devices and

services that are not oriented around data or media transfer, such as lighting or

heating controls. The “push” UIs are expected to be used to allow users to control

session-specific parameters such as the playback position of a media stream, or to

prompt users to enter needed information such as an access key, confirmation of

data destruction, and so forth.

3.2.3.1 On-demand User Interfaces

The first of these capabilities allows client applications to directly request a UI

from a device. The ability of a device to provide UIs for controlling them is a kind

of “escape hatch,” allowing Obje devices to provide access to functionality that

cannot be easily represented using the data transfer or aggregation interfaces. In

the case of a printer for example, an application could request the printer’s UI

3.2 · The Obje Framework 86

granule and invoke it to display a control panel to the user, allowing control over

defaults such as duplex, stapling, and so on.

In keeping with the general requirement to minimize the number of up-front

agreements required for interoperation, clients and services agree on the

mechanisms for acquiring and displaying UIs, but clients have no knowledge of the

particular controls provided by any UI.

Since different client platforms support a wide range of possible UI

mechanisms, Obje allows devices to provide multiple UI granules; applications

select from these by specifying the platform of the desired UI. For example, a

client running on a laptop might request a “javax.swing” GUI, while a PDA might

request a “thinlet” XML-based UI. The strategy is flexible in that it allows

devices to present arbitrary controls to users, and allows multiple UIs, perhaps

specialized for different platforms, for a given device. Regardless of the style of UI

selected, Obje provides a message-based communication channel between the UI

delivered to the client and the service it is meant to control. This allows a custom

control protocol to exist between the control user interface and its host service

that is completely opaque to the client application.

One drawback of the approach taken by Obje is that it requires device

developers to create separate UI granules for each type of presentation platform. A

solution would be to use a device-independent UI representation, such as those

proposed by Hodes, et al [63] or UIML [61], and then construct a client-specific

3.2 · The Obje Framework 87

instantiation of that UI at runtime. This is an orthogonal consideration to the

mechanism for negotiating and delivering the user interface bundles and the

construction of the communication channel between the client-hosted UI code

and the Obje service. In fact, if a client declared that it could accept UIML (or

similar) user interface bundles, and a service declared it could provide one, the

current Obje mechanisms would support their interoperation.

3.2.3.2 Transfer Control Extensibility

Obje’s mechanisms for transfer-specific control allow the user to receive control

user interfaces that are relevant to a given data transfer connection that are

provided by the components involved in the connection. The granules that are

used for transfer control UI delivery are the same as those described for the “pull”

UIs, and therefore have the same advantages and drawbacks in terms of client-

service interoperability described above.

As a motivating example, if a user uses an Obje client to connect a file of

Powerpoint slides to a projector, we would like to display to the user controls

specific to that interaction. This may include UIs for the particular model of

projector and for the slide show. Of course, we need to be able to do this without

requiring that the client be specifically written to understand the details of

projectors, or of Powerpoint slides. This ability to acquire and display arbitrary

3.2 · The Obje Framework 88

per-component user interfaces is necessary, given the user-in-the-loop philosophy

that is fundamental to the Obje approach.

Obje uses the same state notification mechanism defined by session granules

to deliver yet another type of granule—which we call controllers—to any of the

parties that hold a copy of the session object [111]. Using this mechanism, any

party that holds the session can “add” a controller granule, which causes it to be

delivered to any other parties holding the session that have solicited interest in

receiving such granules; this arrangement allows user interface code to be

delivered asynchronously over the network, at the time it is needed, and for

presentation by whichever client is managing user interaction.

A key advantage of this approach is that controllers can be added by any party

that holds the session, in the same way that any party that holds the session can

also update its state. This means that sinks, sources, and typehandlers can all add

controllers. For example, in our Powerpoint case, when a connection is established

to the projector, the projector (sink) component may add controls for adjusting

brightness and other projector parameters. The typehandler—which is the only

party in this scenario that would understand Powerpoint data—would add the

slideshow controls. Both would be transmitted over the network to the application

that initiated the connection.

Figure 3-7 shows a set of simple controllers from the Powerpoint-to-projector

example, running on a PDA. Note that the controller delivered to the PDA can

3.2 · The Obje Framework 89

provide potentially arbitrary functionality, based on the code that is delivered to it.

In this case, the Powerpoint controller displays miniature versions of the current

slide on the PDA screen, even though the PDA does not know about Powerpoint,

and does not even have the application installed. This controller also allows the

user to draw on the slide using a stylus; the strokes are communicated back to the

Powerpoint typehandler executing on the projector, where they are rendered over

the slide. Meanwhile, the Projector controller allows the user to control aspects of

the projector’s operation, such as the brightness, contrast, and input port. Because

this particular PDA client is running on a device with limited screen space, it

displays each received controller in a separate tab that can be toggled between by

the user. If the client were on a larger device, it might instead decide to lay out

both controllers on a single screen, providing users with the ability to easily

control all parameters of the current session in one place.

Figure 3-7: Projector and Slide Show controllers running on an iPaq PDA. The client application solicits to
receive controllers from any session in which it is involved. Received controllers for a given session are
presented in tabbed panels.

3.3 · Experiences with the Obje Framework 90

3.2.3.3 Other Applications of “Push” UIs

While “push” UIs are only supported within the context of data transfers in Obje,

the concept could be extended to other situations. For example, an Aggregate

component may wish to provide an alternative UI for browsing its contents, or

even portions of its contents, rather than allow the client to use the generic

Aggregate service interface to retrieve and organize its contents. This could be

desirable especially if the Aggregate contains a specialized type of data (e.g.,

music or movies) for which an optimized browsing experience might be of great

benefit to the user. Such a user interface could be “pushed” to the user after the

client has established the connection with the Aggregate via the ResultSet

mechanism. Since many Aggregates will likely be content with the default

browsing experience, and some will be content only under some circumstances, it

would be beneficial to allow the Aggregate to communicate the availability of (or

“push”) a customized UI only when necessary, rather than expect the client to

“pull” a specialized Aggregate UI in all cases.

3.3 Experiences with the Obje Framework

Over the course of six years (2000-2006), a number of applications were built

atop the Obje Framework. I will describe several of them briefly in this subsection

and also introduce the two applications that will be the subject of the next two

chapters: the Obje Display Mirror and OSCAR. Each of these applications was

3.3 · Experiences with the Obje Framework 91

designed to work with Obje services that they discovered on the local network.

Thus, in addition to developing applications, I and my collaborators developed

approximately two dozen Obje components including components for projectors,

displays, speakers, microphones, webcams, “file spaces” (shared directories),

screen mirroring (a VNC DataSource), printers, “removable drives” (e.g., digital

cameras and portable music players), RSS feeds, and Internet radio stations.

Additionally, we created discovery Aggregates for Bluetooth, Jini Discovery, UPnP,

Infrared, and HP’s eSquirt.

The applications described in this section are split into two coarse categories:

specialized applications and general-purpose composition tools. The former

category represents applications that were designed to present a “traditional” user

experience in the sense that they allow users to perform a (somewhat) constrained

set of tasks, and they have certain pre-defined sets of functionality built in. Even

these specialized applications take advantage of Obje to provide a high degree of

flexibility and adaptability, especially with regard to the easy incorporation of new

devices and services that become available. The general-purpose tools all share the

characteristic that they allow users to discover, browse, control, and connect any

Obje components that are available for discovery, and they do not provide any

particular functionality above and beyond what is provided by the components

with which they interact.

3.3 · Experiences with the Obje Framework 92

3.3.1 Specialized Applications

Obje applications for two domains are presented in this section: home media

consumption and workplace collaboration. In the former category, I describe the

Obje Set-Top Box, which is an application that allows users to discover and

playback various media through a connected TV or through other networked

devices throughout the home. I will also describe three applications that were

developed to support collaboration. Casca and the Sharing Palette provide

generalized sharing of files and devices among groups of collaborators. The Obje

Display Mirror supports the easy sharing of information through the use of shared

public displays.

3.3.1.1 The Obje Set-Top Box

The Obje set-top box is a specialized application for media-oriented applications

[43]. This system allows users to interconnect audio-and video-related services

hosted on the “box” (in our prototype implementation represented by a dedicated

computer running the Obje set-top box software), as well as Obje devices and

legacy devices elsewhere on the home network. By making assumptions about the

context of use (storing and playback of media files), the interface can be

streamlined somewhat: the system discovers and groups all devices and content

available on the home network into either “audio” or “video” classes (depending on

the MIME types they support), and organizes these into menus. Selecting a

3.3 · Experiences with the Obje Framework 93

media source brings up a dialog to either play the content “here” (meaning to one

of the sink devices connected directly to the set-top), or to a list of compatible

sinks discovered elsewhere on the network. Figure 3-8 shows two screens from the

system.

Figure 3-8: Two main screens from the Obje set-top application. The image on the lower left shows some of
the main menu items in the user interface. Each selection represents a built in template of functionality
related to a particular media or device type. The image on the upper right shows a specific user interface for
tuning channels on a television tuner component.

3.3.1.2 Obje Collaboration Tools: Casca and the Sharing Palette

One area I and my collaborators explored in some depth is the potential of

interoperability frameworks such as Obje to support easier collaboration among

users, including not only information sharing, but also device sharing. One such

tool we created to support ongoing, small-group sharing is called Casca [41]. This

tool was designed to allow users to publish access to files and devices from their

3.3 · Experiences with the Obje Framework 94

laptops into a shared space, thus making them available to others who are

“members” of that space. Another application that uses Obje to support

collaboration is the Sharing Palette [157], which provides the ability to push

content to collaborators using a lightweight icon bar, as well as to establish sharing

groups and publicly-accessible files and devices. Both of these tools leverage Obje

to allow collaborators to share not only files, but also access to devices and services.

For example, these tools can allow a user to provide access to his or her webcam, a

restricted filespace, or home printer to a collaborator: essentially, whatever Obje

devices or services are available can be shared using these tools. Figure 3-9 shows

both of these.

3.3 · Experiences with the Obje Framework 95

(a) (b)

Figure 3-9: Casca and the Sharing Palette are two collaborative applications built atop the Obje Framework.
The Casca main window ((a), in the back) is divided into three panes, with the leftmost pane showing all
devices and services being shared by the current user, the center pane showing all discoverable devices and
services, and the rightmost pane showing the contents of a single “Converspace.” The Converspace is
represented by an initially blank canvas into which files, services, and devices can be dragged and dropped,
sharing them with the other members of that shared space, who are shown along the bottom right. The
Sharing Palette (b), a lightweight interface for small group sharing. It, too, is divided into three regions, with
the top left showing all resources that are shared with particular individuals or groups, the bottom left
showing all resources that are publicly available to all users, and the right showing all other users and groups
with whom sharing is possible.

3.3.1.3 The Obje Display Mirror

The Obje Display Mirror (ODM) [110], shown in Figure 3-10, allows easy

networked discovery and control of displays including projectors and plasma

screens from users’ laptops. This application only discovers devices that can accept

viewable media types; in our environment, this typically includes devices such as

projectors and plasma displays. Users can select a discovered display to mirror

their laptop screens onto it. The user interface limits the complexity seen by the

3.3 · Experiences with the Obje Framework 96

user by restricting the user’s view onto the network of only appropriate peers. The

ODM was in daily use around PARC, in three meeting rooms, for approximately

one year, and was intensively observed in one of those meeting rooms for a period

of six months. The Obje Display Mirror, along with the study of its use and

adoption, is described in greater detail in Chapter 4.

Figure 3-10: The Obje Display Mirror before and after a connection is made. On the left, the user sees a list
of available screens. After connection, a control UI is presented to all connected users of the selected screen,
allowing control of the display to be shared.

3.3.2 Generic Tools for Service Composition

Providing powerful, end user-oriented tools for service composition will become

even more essential as we move to a world in which device connectivity is not

limited by what the developers of those devices foresaw, but by users’ desires and

needs. In addition to the special-purpose applications described above, a number

of general-purpose tools have been built on top of the Obje Framework.

3.3 · Experiences with the Obje Framework 97

3.3.2.1 Generic Browsers: Nexus, Wander, and the Orbital Browser

Some of the earliest applications our team built were generic browser applications,

which provide direct access to the Obje devices on the network. One of these

applications, the Nexus, is shown in Figure 3-11. The Nexus and its successor

Wander (not shown, but visually and operationally very similar to the Nexus)

present simple lists of discovered devices, and map user operations in the UI onto

Obje device operations: for example, dragging and dropping a source device onto a

sink initiates a data transfer; double clicking an aggregate device “opens” it,

revealing the components to which it provides access. The Orbital Browser

[37](Figure 3-12) provides a lightweight interface that uses only a knob as an

input device to select and compose services. Rotating the knob navigates a cursor

through the available set of components, while depressing the knob selects the

currently highlighted component. Holding the knob down for a longer period of

time expands or contracts aggregate components. Through combinations of these

actions, users can get information about each component, and can make and break

connections between them. This tool was intended to demonstrate a minimalist

interface for providing open-ended service composition in the sense that it can be

operated with limited input capabilities (two operations—move and select—are

required, a third operator allows the user to move in two directions for more

efficient navigation), and used well with a range of displays from very small to very

large.

3.3 · Experiences with the Obje Framework 98

Figure 3-11:The Nexus is an example of generic service browsers that allow a user to discover, connect, and
control Obje components available on the network.

Figure 3-12: The Orbital Browser’s interface, and its input device. Spinning and pressing the knob allows
users to navigate to any discoverable device, initiate and terminate connections, and so forth.

3.3 · Experiences with the Obje Framework 99

Though these UIs were not tested with end-users, experiences with these

applications reinforced our belief that such generic applications, which allow users

to discover and interact with arbitrary devices in an ad hoc fashion, will play an

important role in any ubiquitous computing future. In the absence of specialized

applications for every conceivable task, a more generic tool—one without

specialized domain knowledge —will necessarily play a part. However, it

remained unclear how to present these functions to end users who may have

difficulty understanding the rich functionality of which their networks of devices

are capable.

3.3.2.2 The Speakeasy Handheld Browser

We have built and studied a number of these applications. The first (reported in

[40, 112] and shown in Figure 13), was a web-based application designed for

access on a PDA. Our early experiences with this tool informed a number of our

architectural design choices, particularly in our data transfer design. For example,

early versions of Obje relied on external filter services, which could be chained

when performing a data transfer. The UI designs that were implied by this

mechanism required the user to “hand assemble” chains of data transformations to

connect two devices in situations where their data types would have otherwise

been incompatible. While other sorts of user interfaces could have been created—

for example, by automatically finding paths of filters—such arrangements remove

3.3 · Experiences with the Obje Framework 100

the user from the process of determining which filter services to use, which is

important in the situation where filters execute on the network, on hosts with

different speeds, or different levels of trustworthiness. The user, not the system, is

better equipped to consider these factors.

(a) (b)

Figure 3-13: The Obje Handheld Browser running in a PDA web browser. Basic facilities are shown for
sorting and selecting components by location (a) and by owner (b).

We believe that one approach to resolving this dilemma is to create facilities

for moving from device-oriented interactions to task-oriented ones. That is, rather

than specifying the various data flows among individual devices, the user would

simply select a desired task and the system would instantiate the necessary

device-to-device interactions. Of course, actionable representations of such tasks

must exist for this option to be available. There are a number of ways such

representations could come into being. They could be created by experienced

users, for example, much in the way that Excel macros for a given site are often

3.3 · Experiences with the Obje Framework 101

created by local “gurus,” and then shared throughout that site [94]. We have

explored this approach, which we call “task-oriented templates.” These templates

contain slots that describe the devices that are needed for a given task, in terms of

input and output types, metadata properties, and so forth. When a template is

instantiated, the template engine attempts to match available devices to slot

descriptions (perhaps with help from the user), and then creates the necessary

connections among them. For example, a “give a presentation” template would

specify slots for projectors, speakers, and source slides file; instantiating this

template would create the connections among Obje devices to allow easy setup of

a conference room.

3.3.2.3 OSCAR

OSCAR is a direct manipulation touchscreen-based interface for end-user service

composition in a home media network. Drawing on the experiences of the

Handheld Browser, OSCAR (for Obje Service Composer and Recomposer) uses

templates as the foremost feature in its interface, and allows users to create new

setups as well as use and adapt existing ones. As I shall discuss in detail in

Chapters 5 and 6, OSCAR presents templates as “setups” that they can

instantiate to control and interact with networked media appliances around their

homes. In some sense, OSCAR represents the culmination of all of the previous

experiences with applications in Obje, providing the ability to perform ad hoc

3.4 · Discussion 102

integration of arbitrary components while providing a mechanism for delivering

specialized application semantics in a way that does not compromise future

interoperability or the ability of users to create a customized, integrated user

experience of their environments.

3.4 Discussion

Before concluding this chapter I will present a summary of Obje’s key

contributions, followed by a discussion of the tension between specialized

applications and generic tools in ubiquitous computing, given the foregoing

discussion of the need for ad-hoc interoperability in evolving, dynamic

environments of networked devices and services. This latter discussion will lay the

groundwork for the following chapters that discuss two representative Obje

applications in greater detail: the Obje Display Mirror—a specialized application

supporting the use of public displays in a workplace environment—, and

OSCAR—a generic tool for end-user composition in home media networks.

3.4.1 Contributions of the Obje Framework

The Obje Framework provides a novel approach to interoperability that is based

on establishing a minimal set of agreements up front (at development time) and

allowing new interoperation functionality to be distributed via mobile code among

cooperating entities at runtime (after deployment). This approach, called the

3.4 · Discussion 103

Recombinant Computing approach [42], is designed to support robust

interoperability among devices and services that do not have to be specifically

designed to work together. In addition to allowing decoupled development of

reusable services, such an approach is more robust than conventional approaches

to evolution of standards for data transfer protocols, media encodings, discovery

protocols, and so forth. In addition to presenting arguments for why such an

approach offers improvements over alternatives, I described a number of services

and applications that had been built atop Obje [41, 43, 110]. These examples

showed not only the range of functionality that can be delivered via Obje’s

mechanisms, but also the reusability and recombinability of services among each

other to support multiple end-user applications. The interoperability provided by

Obje is what enables such range and reusability.

Another novel feature of Obje is the ability of services to push user interfaces to

clients at various points during an active data transfer session. Many distributed

service frameworks (e.g., Jini [158], UPnP [153]) allow clients to explicitly

request, or pull, user interfaces from services. These user interfaces are important

and useful, and indeed they are also supported by Obje. The patterns and

mechanics that support this “push” functionality are a novel feature of Obje and

they allow clients to be written in a general way without requiring that they know

the particular details of any particular service’s data transfer semantics.

3.4 · Discussion 104

Obje is designed to support end-user composition. This means that Obje

specifies particular service interfaces that define the roles that services can play in

certain interactions. Many ubicomp and distributed service frameworks stop short

of specifying particular service interfaces (e.g., Jini [158], iROS [76], Gaia [131],

one.world [54]), preferring to provide basic mechanisms that can be adapted to a

variety of different styles of functional decomposition into services. The notable

exception to this trend is the UPnP [153] standardization effort led by the Digital

Living Network Alliance (DLNA) [35], which shares with Obje a complete

specification of service interfaces. Specification of service interfaces is required for

end-user composition, because end-user composition tools must be programmed to

address the set of service types that they expect to encounter. Unlike

DLNA/UPnP, Obje provides support for extensible structured metadata attached

to its services, which is intended to help users to make sense of a service by

viewing its attributes such as location, access policies, ownership, functional

capabilities, and other arbitrary information. DLNA is primarily aimed at

supporting application and device developers, and as such has not prioritized

features that would support end-user sensemaking and composition.

3.4.2 Discussion of Specialized and Generic Application Types

There is an inherent tension with creating usable interfaces for a world of ad hoc

interoperability. Generic tools—meaning, tools that can work with arbitrary

3.4 · Discussion 105

devices—are necessary to take full advantage of the infrastructure. And yet, such

generic tools by their nature do not have the tight semantic integration — the

“understanding” of what certain devices or content types “mean,” built into their

programming—that support good ease of use. Further, it requires that the

underlying mechanisms provided by the infrastructure be understandable and

usable by users if they are to take advantage of this power.

Interfaces that directly expose low-level operations are difficult for users to

work with. The experiences with the Speakeasy Handheld Browser showed that

the basic concept of exposing data flows between devices as a first class operation

in the interface was confusing to many users. During user testing for the

Handheld Browser, for example, some users wanted to simply “open” a

Powerpoint file once it had been located, expecting it to appear on the display in

the room. These desires seem to betray expectations based on PC use, in which

the tight coupling (both semantically and physically) between the PC and its

display device allow actions such as opening a file to have a relatively

unambiguous meaning. In a more loosely coupled world, potential ambiguities

exist, which must be resolved by the user.

On the other hand, specialized applications built atop Obje and leveraging its

support for ad hoc discovery, robust interoperability, and dynamically

distributable user interfaces, point to the power of allowing flexible yet tailored

device access through traditional applications. Such applications may fit particular

3.5 · Summary 106

users’ needs better, and may help constrain the set of available options, thus

making the particular operations they support easier to use for many users. The

drawback, clearly, is that specialized applications need to be written for each

anticipated usage scenario, and this becomes increasingly challenging as the

environments, devices, and desired tasks with which users are engaged continue to

multiply.

Ultimately, the sorts of open-ended device use available under systems that

support ad hoc interoperability point to the importance of service composition

techniques. Service composition is the process of combining multiple, discrete

services or devices together to achieve some higher-level goal. In Obje, I and my

colleagues have explored a number of different approaches to service composition,

incorporating different user interfaces styles (e.g., the Orbital Browser, the

Handheld Browser, and OSCAR) and temporal framings of service composition,

ranging from ephemeral, one-off browsing and connection to persistent, reusable

“templates” for compositions that are created, adapted, used and perhaps

ultimately shared by end-users.

3.5 Summary

The goal of the Obje Framework, as laid out at the beginning of this chapter, is

threefold: to enable seamless, robust, evolution-proof interoperability; provide

ubiquitous and integrated user control of multiple networked devices; and to lay

3.5 · Summary 107

the groundwork for end-user composition. I have described how the Obje

Framework implements the notion of recombinant computing, especially with

regard to robust and extensible interoperability along the dimensions of data

transfer protocols, data types, discovery protocols, physical networks, and user

interfaces. I have also described how Obje allows services to provide two kinds of

important user interfaces to clients without requiring that the clients have any

advance knowledge of the services’ capabilities, interfaces, functions, etc. I have

also showed how Obje can be used to support both speciablized applications and

generalized tools that support end-user composition.

In the next chapters, I will describe experiences with two applications built

atop Obje. The first is the Obje Display Mirror (Chapter 4), which is a narrow,

simple (from the user’s perspective) application that provides wireless access from

a user’s laptop to any shared display (e.g., projector, plasma screen, computer

monitor) in a workplace with a minimum of interaction overhead. This experience

reveals some of the challenges of deploying, maintaining, and evaluating even a

“simple” networked service over an extended period of time. The second

application I will describe is OSCAR (Chapter 5), which is a direct manipulation

touchscreen-based interface for end-user service composition in a home media

network. The OSCAR experience, along with its user study (presented in

Chapter 6) shows first of all that ad-hoc interoperability and end-user composition

can be presented to non-technical users in a way that is palatable, engaging, easy-

3.5 · Summary 108

to-learn, easy-to-use, and regarded as useful; and second of all that such benefits

can be gained only when details about the usability and conceptual framing are

carefully considered.

 109

4 The Obje Display Mirror

As described in the latter part of Chapter 3, a number of applications have been

built atop the Obje Framework in order to understand and gain experience with

its various capabilities and aspects. One such application, the Obje Display

Mirror, was significant in that it was the only Obje application that received

sustained, daily use by individuals outside the project team. In this chapter, I will

present the initial goals and motivation for the Display Mirror project4; the initial

study of workplace device usage that led to the design of the Display Mirror; the

implementation and deployment of the Display Mirror; and the continued study

of workplace device usage after the deployment and adoption of the Display

Mirror that showed that small but important shifts in workplace practice and user

experience had taken place as a result of the new technology.

4 The work presented in this chapter was principally conducted by me, but benefited by
contributions from Nicolas Duchenaut, Keith Edwards, Trevor Smith, and Jana Sedivy. Portions
of the work presented in this chapter have been previously described in [110].

1.1 · Initial Goals and Context 110

Figure 4-1: The Obje Display Mirror was used in meetings on a regular basis over a period of approximately
six months. This figure shows the type of meeting for which the Obje Display Mirror was useful.

In some ways, the scope of the project and the results were not what was

expected at the outset, and so I will first present a bit of background and context

regarding the initial project goals and how those shifted during the project’s course.

1.1 Initial Goals and Context

The goal of the work presented in this chapter was to create an Obje-based

environment for a group of people to use for an extended period of time in order to

see if and how the capabilities afforded by Obje’s interoperability and flexibility

would affect everyday practice. Towards this goal, I, along with my colleagues

1.1 · Initial Goals and Context 111

undertook to instrument the work environment of the PARC Computer Science

Lab (CSL) with Obje services and devices, and to provide client programs that

would allow any of the members of CSL to access and control those services. This

work followed on the Handheld Browser (HHB) work discussed in the previous

chapter, which initially had shared the same goals of creating a persistent, usable

environment of services with which users could interact on a daily basis. As

became clear during the development of the HHB, however, the Obje software

was not yet robust enough to support a sustained deployment with dozens of users.

Due in large part to the HHB experience, I and one other team member

undertook to rebuild the Obje infrastructure from scratch during 2003-2004, and

our efforts resulted in a platform that was significantly more robust in terms of

development of services and clients, deployment, maintenance, and use. As I shall

discuss later, we still encountered significant challenges along these lines as the

Display Mirror progressed, but we were able to get much farther than had been

possible with previous versions of Obje.

The accomplishments of the Display Mirror project were somewhat more

modest than the original goals. Where we had set out to deploy dozens of

installations of perhaps 5-10 different types of services, we ended up deploying 4-

6 installations of two services, the Obje Display Mirror and the Obje Whiteboard

Capture. Of these, only the Display Mirror was deployed over a long period of

time and received regular use by users outside the project team.

1.1 · Initial Goals and Context 112

The reasons for this scaling back were several: the resources and effort

required to sustain the various service installations and, more significantly, the

client software, were more substantial than anticipated; the burdens of promotion

and social pressure required to sustain interest in and adoption of the technology,

especially in the face of periodic technical failures, were also great; and, finally,

these realizations of greater resource requirements combined with shifts in

organizational priorities and funding sources for the project resulted in pressure on

the project team to seek other outlets for Obje technology outside the workplace

before the grander goals of the project could be realized.

Nevertheless, the accomplishments that were realized on the project were

significant, and in some areas were greater than we might have hoped during the

initial formulation of the project. In particular, we made an early decision to build

tools for assessment and evaluation before deploying any new technology, so that

we could compare users’ behavior before and after the introduction of the

technology. The focus of the project then became as much about the design and

evaluation of ubicomp technologies as it was about studying the effects of

introducing Obje technology into an environment.

An initial meta-goal of the project was to introduce new technologies and

capabilities into existing practice in as non-disruptive a manner as possible. By

doing so, I believed that we could interleave the new capabilities into existing

practice more easily, and that we could more accurately assess the effects of

4.1 · Supporting Unremarkable Computing 113

introducing each new technical component on practice. For reasons that I will

return to in the discussion, I now believe this approach of non-disruption was

misguided. Even small technical interventions are disruptive by their very nature,

and confronting this fact directly may be more productive than attempting to

minimize it.

The starting point of the project, therefore, was the goal of introducing

technology for long-term use, and attempting to do so in a gentle, “unremarkable”

way. Thus I will begin the discussion of the project with a discussion of Tolmie, et

al.’s “Unremarkable Computing” [148] and show how the agenda presented in

that work informed our thinking about our own project.

4.1 Supporting Unremarkable Computing

In their paper “Unremarkable Computing,” Tolmie, et al. encouraged designers of

ubiquitous computing technology to investigate the use of computing to support

the mundane, everyday routines of life [148]. This agenda lines up with the

original vision of ubiquitous and calm computing as expressed by Mark Weiser

[160] and refined via ideas like “everyday” [107] and “ambient” [163] computing

that have driven much research over the past several years.

The work presented in this chapter is informed by a broader methodological

and theoretical framework from the social sciences. Ethnomethodology [49] alerts

us to the importance of studying the “detailed and observable practices that make

4.1 · Supporting Unremarkable Computing 114

up the incarnate production of ordinary social facts” [92]. These “ethnomethods”

are, by definition, mundane and invisible (which is why they require such detailed

observation to be uncovered or, alternatively, some form of “breaching experiment”

to foreground them). Yet they are the foundations of the orderly functioning of

society. Along the same lines, Suchman’s influential book Plans And Situated Actions

[141] emphasized the situated nature of human activity, and the importance of

the context surrounding any instance of technology use. This context is, at first

sight, also mundane and invisible. Thorough studies of, for instance, a person’s

work environment, are meant to reveal its effects.

In this chapter I describe the attempts made by me and my collaborators at

studying, designing, and deploying ubiquitous computing technology specifically

meant to support mundane practices. There are two sides to the mundane that

are important for systems designers. On the one hand, achieving mundanity is a

goal we have for much of the technology we design—we hope that our systems will

eventually integrate so well into our users’ lives that they will become ordinary

and commonplace. At the same time, mundanity can be seen as a topic for

investigation in the design of ubicomp technologies. In this latter case, we set out

to understand, support, and improve activities that have already become mundane.

In this paper, we hope to shed light on this latter, less studied aspect of the

relationship between technology and the mundane.

4.1 · Supporting Unremarkable Computing 115

To illustrate our focus on the application of ubicomp technologies to the

mundane, we report on the design and deployment of a lightweight service to

support and enhance the commonplace activity of connecting a portable computer

to a shared display (e.g., VGA projector). Our experiences with this service

provide insight into the strategies and methods that are required to tackle this

peculiar design domain. However, our investigations into the unremarkable were

not without difficulties. We encountered important challenges before, during, and

after the deployment of our mundane technology. These challenges either differ

entirely from those traditionally encountered during application design, or are

amplified versions of more traditional problems. I discuss these difficulties, with

the hope of informing and facilitating future work in this domain.

In the coming pages, I first describe our initial, six-month study into device-

oriented behaviors in a meeting room at our facility. Based on this study, we

designed and deployed a service, the “Display Mirror,” that was deployed in the

same meeting room, and describe our observations regarding the adoption and use

of the service after six months of (mostly) continuous availability. I then discuss

what we learned from our experiences in the design, deployment, and evaluation

of technology to support mundane activity. Finally, I provide recommendations for

other researchers interested in supporting unremarkable, everyday behavior.

4.2 · Observing Device-Oriented Practices in the Workplace 116

4.2 Observing Device-Oriented Practices in the Workplace

The intent of our work was to advance the agenda of unremarkable computing by

not only describing people’s interactions with technology but by introducing

technology that intervenes in those interactions, and by understanding the results

of doing so. Thus we found it necessary to augment the ethnographic methods

employed by Tolmie, et al. with quantitative data collection via longitudinal

sampling in an effort to provide concrete information about the nature and

quantity of various interactions that were taking place, and to provide a before-

and-after comparison of behavior among our study population.

4.2.1 Studying Meeting Rooms

We focused our observations on one meeting room 5 in our facility that is used

regularly by a variety of individuals from different parts of the organization

including researchers, managers, and support staff. It is also commonly used to

meet with external visitors. The room is equipped with a large oval conference

5 More precisely, we deployed the Display Mirror in three meeting rooms and two public
areas dedicated to informal congregation, and we initially tracked before-and-after device usage in
two meeting of the rooms. We stopped tracking usage in the second meeting room once we
realized that its usage was dominated by members of our own project team. Thereafter we came to
regard the second meeting room as a pilot testing area and focused our observations on the first
room. All data reported in this chapter was collected from the first (non-pilot) meeting room. The
third meeting room was added late in the deployment, and was an executive conference room used
exclusively by PARC’s senior staff. Instrumenting and observing in this room was not permitted.
The Display Mirror installations in the informal public congregation areas received little or no use,
in large part because people were not accustomed to using laptops in these areas.

4.2 · Observing Device-Oriented Practices in the Workplace 117

table (14 seats), two whiteboards, a whiteboard capture camera, wireless and

wired network connections, and a ceiling-mounted XGA projector.

Meeting rooms have been extensively studied in the CSCW literature [118,

151]. They have also been privileged experimental sites for ubicomp researchers

[75, 140]. The reasons that CSCW and Ubicomp researchers have paid so much

attention to meeting rooms is clear: they are sites that are rich in human, device,

and computer interaction. Moreover, a less frequently acknowledged property of

meeting rooms is that they are “boring”—that is, they are the locus of many

activities that are now considered mundane, such as presenting information to a

group or collectively reviewing documents. Our interest in meeting rooms stems in

part from this combination of technological richness and mundane activity.

Setting out, a particular goal in undertaking this project was to determine how

the presence of physically situated, continuously available networked services such

as screens, speakers, printers, audio and video capture devices, and so forth might

influence the expectations and practices of users who were exposed to them over a

long enough period to allow them to adopt them into everyday practice. Before

designing any specific technology however, we had to understand current

practices. We therefore designed a study of existing device-oriented behaviors in

meeting rooms with three goals in mind: (1) to determine what types of activities

were taking place during meetings that could be helped or improved by the

addition of continuously available services; (2) to determine which devices and

4.2 · Observing Device-Oriented Practices in the Workplace 118

resources available in the meeting rooms would be most useful if made available as

networked services; and (3) to learn what types of portable personal devices were

being brought into the room that we could leverage as client devices as well as a

source of additional services that could be combined with the ones embedded in

the room.

We describe our study and the methods we used below. We then look at how

the results of this study informed the design of one of our services: the Display

Mirror, which allows users to connect to shared meeting room displays (e.g.,

projectors and plasma screens) without using cables.

4.2.2 Observation Methods

Our goals for this project made traditional ethnographic observations alone

insufficient. Indeed, we needed to capture and analyze longitudinal data: the

sporadic, interleaved and fine-grained nature of the activities we wanted to

observe (e.g., connecting a laptop to a screen) made it impossible for us to

dedicate the number of person-hours needed to have researchers present in

meeting rooms continuously. These constraints led us to consider techniques that

sample behavior or activity, rather than ones that demand constant attention. The

classic sampling technique, the Experience Sampling Method (ESM) [28] has

been used for a variety of purposes related to ubicomp [26, 48, 68, 73]. This

technique did not seem to be appropriate for us to use, because it depends on the

4.2 · Observing Device-Oriented Practices in the Workplace 119

subjects being able to articulate the relevant aspects of their experience at the

time they are sampled. Since a portion of the activity we wished to study is often

not the conscious aspects, this would not work.

Another related technique is Lag Sequential Analysis (LSA), which was

applied to the design and evaluation of LabScape [25] in a way that closely

resembled our approach. In LSA, a set of temporal interactions are captured and

analyzed, either using video or in-person observations. The interactions are coded

at the granularity of the lag, a short time duration (in the LabScape study, the lag

was one minute). A set of interesting event types are chosen, and for each lag the

presence or absence of the event is noted. This provides a record of all significant

events at the granularity of the lag. Most importantly, it provides a record of

temporal relationships among events (e.g., precedence, co-occurrence, etc.)

However, since we were seeking to capture and analyze a greater volume of data—

spanning months rather than the hours or perhaps days that are conventionally

covered by LSA—we had to find a way to meet our needs with a considerably

smaller investment in terms of capture and coding effort.

Therefore, we elected instead to take snapshots of meeting rooms and their

visitors once a minute from three angles. It turned out that this low sample rate of

data (as compared to, say, streaming video), along with the assurance that we

were capturing using low-resolution consumer webcams (640x480 resolution) and

were not capturing any audio, was helpful in assuaging our users’ concerns about

4.2 · Observing Device-Oriented Practices in the Workplace 120

loss of privacy. Data representing times when people were in the room was later

coded using a tool that we built especially for this purpose (see Figure 4-2). We

supplemented these automated and coded observations with interviews and direct

observations of meetings.

4.2 · Observing Device-Oriented Practices in the Workplace 121

Figure 4-2: We developed a custom tool for reviewing and coding our observational data. Each column
represents a time sample, and each row represents one of the cameras installed in the room.

4.2.3 Initial Study Results and Observations

The results of our study are divided into two phases, which are distinguished by

the technology that was available in the meeting room at the time. The first phase

(Phase 1a) lasted two months (February and March, 2004) and represents the

technology that was available before we began our study, as was described earlier.

The second phase (Phase 1b) lasted almost five months (April through August,

2004) though the data analyzed in this chapter covers only two of those months

(mid-May through mid-July, 2004) .Phase 1b represents the period after we

added a 50” plasma display and a public PC with wireless mouse and keyboard.

The PC was connected to the internal network but left logged in using a local

4.2 · Observing Device-Oriented Practices in the Workplace 122

account so that anyone in the room could gain access to the Internet and those

with access privileges on the corporate network could use the PC to log into their

own account, access their home directories, check their email, etc. The PC,

projector, plasma screen, and one additional VGA input cable were all connected

together with a 2x2 VGA matrix switch that allowed either source (PC or VGA

input) to be directed to either or both of the displays (plasma or projector). Our

goal with the introduction of these additional devices was to add additional

display options and client capabilities using the best off-the-shelf technology we

could find.

We analyzed 47 meetings from Phase 1 in detail: 27 in Phase 1a and 20 in

Phase 1b. For each of these meetings, we tabulated the number of attendees, the

number of personal computing devices (e.g., laptops and PDAs), the frequency of

display and whiteboard use, and the use of non-electronic resources such as

printouts and paper notebooks. We supplemented these detailed observations

with five interviews with meeting room users, unstructured in-person observations

of meetings, and numerous informal conversations with users.

The statistics we collected are presented in

 Phase 1a Phase 1b

Number of meetings observed 27 20

Average attendees per meeting 5.8 6.3

Median attendees per meeting 6 5.5

4.2 · Observing Device-Oriented Practices in the Workplace 123

Average # of personal devices per meeting 1.48 1.85

% of attendees with at least one personal device 26% 29%

% of meetings with at least one personal device 70% 75%

Table 4-1 andTable 4-2. As stated earlier, we were especially interested in:

• What client devices would be available to room users that would allow

them to configure and control other aspects of the environment?

• What existing room resources were the most commonly used and what

were they used for?

• What problems and frustrations did users encounter?

• What types of activities are carried out in meetings, and how are different

technologies employed to support those activities?

 Phase 1a Phase 1b

Number of meetings observed 27 20

Average attendees per meeting 5.8 6.3

Median attendees per meeting 6 5.5

Average # of personal devices per meeting 1.48 1.85

% of attendees with at least one personal device 26% 29%

% of meetings with at least one personal device 70% 75%

Table 4-1: Frequency of personal device usage in meetings during Phase 1 of the study. This data shows that
while a minority of meeting participants had access to a personal device, at least one participant had access to
one in a majority of meetings.

4.2 · Observing Device-Oriented Practices in the Workplace 124

 Phase 1a Phase 1b

% of meetings where projector was used 41% 45%

% of meetings where printouts were used 41% 55%

% of meetings where whiteboard was used 11% 20%

% of meetings where public PC and Plasma was used n/a 5%

Table 4-2: Frequency of room device usage in meetings during Phase 1 of the study. In both phases printout
and projector use dominated the means of data sharing support preferred by attendees. Interestingly, the
addition of a publicly available PC and 50” Plasma screen in Phase 1b did not affect attendees choice of data
sharing mechanisms with the exception of one meeting.

4.2 · Observing Device-Oriented Practices in the Workplace 125

The only client devices that were seen with any regularity were laptops. One

PDA was seen, and it was used for less than five minutes by someone who was

also using a laptop at the same time. If cellphones were present, they were hidden

and did not emerge during the meetings. Our interviews and informal

conversations with participants revealed that most cellphone users at our

institution leave their phones in their offices, in large part because their

collaborators are mostly co-located with them at PARC and so they do not use

cellphones for work-related communication during the workday. A minority (26-

29%) of attendees were observed to use a personal device during meetings, though

a majority of meetings (70-75%) had at least one attendee that was using a laptop.

When we inquired about people’s practices around carrying laptops, we found

that the decision to carry or not to carry is based on a number of factors as well as

personal preference. If someone was planning to present some information at a

meeting in the form of a set of slides or a document, then they would certainly

bring their laptop in order to do so. However, some individuals would bring a

laptop if they thought there was a chance that they could use it to help the group

discussion by retrieving and displaying relevant information (e.g., web sites or

documents from a shared group repository). One user, “J,” was well-known to play

this role in a variety of groups, to the extent that other users said that they would

leave their laptop behind if J was going to be there because they knew that he

would be available to facilitate any information retrieval task. Still others would

4.2 · Observing Device-Oriented Practices in the Workplace 126

bring laptops if they thought that their full attention would not be required for

the duration of the meeting, in order to get other things done such as responding

to email or working on other projects.

We had hoped that the introduction of the public PC and plasma screen

would (a) allow some users to leave their laptops behind and/or (b) increase the

incidence of serendipitous retrieval and display of information relevant to a

discussion. It appears to have had neither effect for most users as it was only used

once over the course of observations, and this instance was most likely due to the

novelty of the installation. Other users expressed reservations or even distaste at

the notion of using a public PC. One user even said that, for him, a computer was

“kind of like a toothbrush”—i.e., not something that you would share with other

people. While this probably represents an extreme view, it was clear that among

our target users the notion of a public client would not be likely to catch on in the

near term. We concluded that users’ laptops would be our best choice for any

client software that would be used for configuring and controlling the room

resources.

In addition to portable computing devices, a large portion of users used paper-

based resources such as notebooks and printouts. A common pattern was that all

meeting participants would show up with a printout of the same document, which

had been emailed out to the group by one of the members a few minutes or hours

beforehand. On some occasions, the document author would instead show up with

4.2 · Observing Device-Oriented Practices in the Workplace 127

a stack of copies of the document to hand out to other participants at the meeting.

Printouts were used slightly more often than shared displays, and occasionally

both modes of information sharing would be used in the same meeting. The

prevalence of printouts can be attributed to a variety of factors, ranging from the

simplicity and ubiquity of email as a document sharing medium to the fact that a

personal printout is easy to peruse at one’s own pace and annotate at will. We did

not pursue the use of printed materials in meetings, though others have [31], and

this continues to be an interesting area for future research.

The most commonly used room resource, by far, was the projector.

Whiteboards were used on occasion and the whiteboard capture facility was used

even less commonly. Clearly, printers were used in advance of the meeting, as

evidenced by the prevalence of printouts. On a couple of occasions a meeting

attendee would leave for a few minutes and return with fresh printouts, indicating

that a remote printer had probably been accessed by someone in the meeting.

Other room resources such as a speakerphone and an overhead transparency

projector were not used at all.

When asked to articulate problems and frustrations with this meeting room, a

common complaint was that the meeting room equipment does not “work right” or

is hard to get working. Everyone could tell a story of woe about getting their or a

visitor’s laptop to work with the projector because of some obscure incompatibility

or setting on one or both of the devices. Another frustration was the difficulty of

4.2 · Observing Device-Oriented Practices in the Workplace 128

accessing information that one had not specifically prepared for sharing at the

meeting. This frustration was most acute among attendees who had neglected to

bring laptops, but could happen even when a laptop was available—for example,

having a document on one’s desktop computer and not being able to easily access

it from the room. It should be noted that neither of these problems were seen as

particularly severe, and in fact some users were hard pressed to think of any

problems at all. By and large, people were reasonably satisfied with the room as it

was currently configured but were open to trying new things if they didn’t get in

the way of what was already working.

4.2.4 Preparing to Intervene

When we set out to design a set of services to deploy in and around our

institution’s meeting rooms, we took seriously the fact that the user population

was largely satisfied with things as they were. Since our goal was not necessarily to

make meetings more effective or efficient, but rather to explore how to design and

deploy ubiquitous services that would be adopted and incorporated into the daily

life of a work community, we were less concerned about the lack of a clear “pain

point” and more concerned with ensuring that whatever technology we introduced

formed a snug fit with existing practice. Therefore we made three decisions

regarding the design of our service deployment:

4.3 · The Display Mirror 129

1) Since laptops were fairly prevalent in meetings, and our users were

reluctant to adopt shared computing devices, we would leverage users’

existing laptops as client devices.

2) To facilitate adoption of our technology, we would begin with a small

deployment of a single simple but high utility service. Since the most

popular installed resource in the observed meeting room was the projector,

we determined that the first service to deploy would be a service that

supported the use of shared displays.

3) The fact that similar meeting activities can be accomplished with varying

technologies confirmed our intuition that it would be more fruitful to

provide low level tools like display mirroring or document sharing that

could be incorporated into a variety of activities rather than, say, a set of

high-level integrated applications that would support specific activities

such as brainstorming or group editing. Thus we reaffirmed our initial goal

of deploying a set of loosely-coupled, flexible services that could be

composed into a variety of applications by end-users.

4.3 The Display Mirror

The initial service offering that we created was called the Display Mirror. This

service allows any meeting participant with a networked laptop to mirror their

laptop’s screen to any public display that is running the service. To carry out the

4.3 · The Display Mirror 130

mirroring, the user visits a web site on our Intranet and clicks a link, which

downloads and runs a client application using Java Web Start. The link address

was advertised in various ways throughout the lab, as shown in Figure 4-3. In

most cases, this is a very simple operation and takes less than a minute the first

time it runs and can take just a few seconds each successive time. The client

application is shown in Figure 4-4. Figure 4-4(a) shows the application as the

user would first see it. After the user selects one of the screens and clicks

“Connect,” her laptop screen is mirrored to the selected screen and an additional

control UI appears on her screen, as shown in Figure 4-4(b). When multiple users

are connected, the control UI shows each connected user and allows the user to

choose which user’s screen to display on the projector. All connected users see the

same control UI and are given the same ability to choose themselves or anyone else

to take control of the shared display.

4.3 · The Display Mirror 131

 (a) (b)

Figure 4-3: Two forms of advertisement used to promote the Obje Display Mirror. A screen saver advertises
the existence of the Display Mirror (a) as does a tag attached to the VGA cable dangling from the wall jack
(b).

�

� (a) � (b)

Figure 4-4: The Display Mirror client before and after a connection is made. First, (a) the user sees a list of
available screens. After connection, a control UI (b) is presented to all connected users of the selected screen,
allowing control of the display to be shared.

In terms of implementation, the Display Mirror application consisted of two

parts: the Screen component and the Display Mirror client. The Screen

component was an Obje DataSink that was designed for general use with a variety

4.3 · The Display Mirror 132

of applications and in fact earlier versions of it had been used with other Obje

applications such as the Handheld Browser, Casca, the Orbital Browser, etc. For

the Display Mirror installations, the Screen was further subclassed into two

additional components: the Plasma component, which added a screensaver

advertising the Display Mirror capabilities and instructing the user about how to

access the Display Mirror client, and the Projector component, which added the

ability to turn the projector on and off and switch to the appropriate video input.

Each Screen component that was deployed was hosted by a dedicated computer

running either Windows XP or Mac OS X. The Display Mirror client was a small

application that included an embedded VNC server [125], which acted as an

Obje DataSource. When a user would connect his or her laptop to one of the

Screen installations, the Display Mirror client would initiate a connection by

starting up a local VNC server, then delivering to the selected Screen a granule

that contained a Java-based VNC-viewer along with information about how to

connect the viewer back to the just-started server. Upon receipt of this granule,

the Screen component would instantiate the viewer, which would internally

configure itself to connect back to the VNC server embedded in the initiating

Display Mirror client and render the user’s laptop’s desktop onto the publicly

shared Screen.

Viewed from a distance, the capabilities provided by this service are similar to

those available through other means. There are projectors [24] and network-to-

4.3 · The Display Mirror 133

VGA adapters [93] available for general sale that support some versions of direct

screen mirroring. Well-known systems such as X11 [135], VNC [125], and

Windows Remote Desktop [105] allow some or all of one computer’s screen to be

mirrored to another computer’s screen. The novel features of the Display Mirror

are that (a) the conventional direction of screen mirroring is reversed—the user

“pushes” their screen to a public, shared screen rather than “pulling” a remote

computer’s display to their local machine; (b) multiple users can mirror their

computers to a single shared display simultaneously and easily control which one

of them has the ability to control the shared screen; and (c) it is a stand-alone,

platform independent application with a very narrow range of functionality and

minimal user cost—a genre of technology we call micro-applications (this concept is

discussed in more detail later in this chapter). No screen mirroring capability was

in widespread use among our target users at the time we were planning our

deployment, and no such technology was deployed for public use in any meeting

rooms.

4.3.1 Looking Into the Display Mirror

Six months after the initial deployment, the service had achieved some success in

terms of adoption. It had attracted a stable core of regular users and had gained a

stable position in the toolbox of meeting room technologies that are employed by

users. As I will report in this section, other successes were also observed: in

4.3 · The Display Mirror 134

particular, feedback we received indicated that the experience of using the service

held unexpected benefits for both the direct users and the audience with which

he or she was sharing data. Long-term usage data also revealed that a subtle but

significant shift in meeting room data practices had taken place as a result of the

Display Mirror deployment—namely that the instances and types of multiple user

screen sharing increased.

4.3.1.1 Initial Experiences with the Display Mirror

In the first few weeks of the deployment, we sat in on three meetings in which we

asked one or more participants to use the Display Mirror to present any

information they were planning to share. Afterwards, we asked each participant to

fill out a short questionnaire and we conducted a focus group to collect initial

reactions to using the technology. Since not all participants directly experienced

using the Display Mirror client, we refer to those who did as the “primary” and

those who did not as “auxiliary” users. All of the “primary” users felt that the

process of connecting with the Display Mirror was as fast or faster than the

conventional way of connecting. In addition, the experience of using the Display

Mirror was felt to be more “natural” in certain ways. All said that they very much

liked being able to connect wirelessly to the projector. First, the awkwardness of

dealing with the physical cabling was eliminated (for instance, participants did

not have to crawl under the table to retrieve the VGA cable). Second, this

4.3 · The Display Mirror 135

newfound flexibility allowed them to sit in parts of the room that had previously

been unusable for them because they were too far away from the cable.

The largest subset of “auxiliary” users was essentially unaware that a different

technology was being used. Others remarked that the setup seemed faster and

easier. One participant remarked upon the absence of “physical thrashing about,”

which suggests, in this participant’s words, that the new technology seemed

“calmer” than the previous way of doing things.

However, we also became aware of the Display Mirror’s downsides. The

increased latency of the connection is an issue for certain tasks, such as group

editing of a text document. The lag between when the primary users update the

document and when it is reflected to the rest of the group is irritating to some

users, though some find this to be unproblematic even though they are aware of

the lag. For other tasks, such as showing a slide presentation and scribing notes

the performance was felt to be adequate.

4.3.1.2 Sustained Usage and Experience

Two time periods after the deployment of the Display Mirror were analyzed.

Phase 2a spans the four weeks immediately after initial deployment, and Phase 2b

represents six weeks spanning the fifth and sixth months of the deployment.

Phase 2b represents a stable adoption state, in which novelty effects have

worn off and users have had a chance to determine whether or not the service fits

4.3 · The Display Mirror 136

in with their work practices or not. The usage figures for Phase 2b shown in Table

4-3 and Table 4-4 reflect that the service was somewhat successful at integrating

into users’ work practices. Of the 29 display connections observed during Phase

2b, 16 (55%) were made using the ODM. This included 41% of the connections

made between laptops and the projector and 100% of the connections made

between laptops and the plasma screen.

To be sure, the fact that we are ourselves users of the meeting room (though

our own usage data has been expunged from all statistics reported in this paper),

and the fact that our colleagues are at least somewhat aware of our project’s goals

and that we are observing their behavior has some effect on their motivation to

adopt or abandon the technology. A significant portion of the rooms’ users were

people with whom none of our team members have any regular contact and in

several cases whom none of us had ever met. Also, our assessment is that our

population of users is, by and large, eager to try new technology (thus representing

an “early adopter” mentality) but is also quite picky about what they actually

adopt on a long-term basis (cf. the earlier quote about a computing environment

being “like a toothbrush”). Thus we feel confident that any users who were

continuing to use the Display Mirror after six months had decided that it was a

good fit for their practices, and in fact conversations with several of the core users

confirmed this belief.

4.3 · The Display Mirror 137

 Phase 2a Phase 2b

Number of meetings observed 14 33

Average attendees per meeting 5.9 6.67

Median attendees per meeting 6.5 6

Average # of personal devices per meeting 2.00 2.67

% of attendees with at least one personal device 34% 40%

% of meetings with at least one personal device 71% 82%

% of meetings where projector was used 43% 42%

% of meetings where plasma was used 14% 12%

% of meetings where any display was used 57% 42%

% of meetings where the Obje Display Mirror was used 7% 24%

Table 4-3: Personal device and display usage statistics for Phase 2a and 2b. Phase 2a spanned the four weeks
immediately after the deployment of the Display Mirror. Phase 2b represents six weeks of observations after
the service had been available for six months.

 Phase 2a Phase 2b

Total # of projector connections made 8 2

Total # of plasma connections made 2 7

% of projector connections carried out using ODM 13% 41%

% of plasma connections carried out using ODM 0% 100%

% of all display connections carried out using ODM 10% 55%

Table 4-4: Adoption figures for the Display Mirror (ODM). In Phase 2b, the ODM was used for 55% of all
display connections. Note that in contrast to Table 4-3 this table references the total number of display
connection events rather than the number of meetings in which displays were used.

4.3 · The Display Mirror 138

Table 4-3 and Table 4-4 tell the story of the Display Mirror’s effect on

practice. In Phase 2a, almost no usage was recorded. This is interesting because it

appears to demonstrate an anti-novelty effect—rather a reluctance to try an

unproven technology. Therefore we used the new service on a regular basis in

order to gradually introduce other meeting attendees to its capabilities and

demonstrating its use. Eventually it appears to have caught on: by Phase 2b, the

Display Mirror is used in over half of the meetings in which shared displays are

used, and in nearly a quarter of the meetings overall. Notably, the number of

meetings in which one or more shared displays are used has not changed much

from Phases 1a and 1b—a shared display is used in 40-50% of meetings regardless

of phase—, it is simply the case that the Display Mirror has replaced the VGA

cable as the means of connecting to shared displays in a portion of the meetings.

The most interesting result of our deployment, however, is depicted in Table

4-5. We observed an increase in the number and type of multiple user display

events in Phase 2b when compared to all previous phases. We define a “multiple

user display event” as occurring whenever more than one individual connects his

or her personal device to a shared display during the course of a single meeting.

Examples of such events include serial display events (Alice shows her slides on

the projector, then Bob takes over and does the same), overlapping events (while

Alice is showing her slides on the projector, Bob shows a web page on the plasma

screen), and interleaved events (Alice shows something on a display, then Bob

4.3 · The Display Mirror 139

takes over the same display, then Alice resumes control). Before the introduction

of the Display Mirror, the only type of events that were observed were serial

display events, and they were observed in approximately 10% of meetings. After

the introduction of the Display Mirror, all three types of multiple display events

were observed, and at least one type of multiple display event was observed in

24% of all meetings. Overlapping events require at least two screens, so they could

not have been observed in Phase 1a, but could have been observed after that. In

fact, they were not observed at all until Phase 2b, when they appeared in 4

meetings (12% of all meetings). Interleaved events could have been observed at

any time, but the awkwardness of unplugging and replugging VGA cables

between laptops could account for the fact that such events were not in fact

observed until Phase 2b, when they appeared in 2 meetings (6% of all meetings).

Phase 1a 1b 2a 2b

Total # of meetings 27 20 14 33

% of meetings with any display use (either
projector or plasma)

41% 50% 57% 42%

% of meetings with multiple display events

(includes serial, interleaved and overlap
events)

11% 10% 7% 24%

% of meetings with serial display events 11% 10% 14% 6%

% of meetings with interleaved display

events

0% 0% 0% 6%

% of meetings with overlapped display
events

n/a 0% 0% 12%

Table 4-5: Types of multiple display events with and without the Display Mirror. Multiple-user display
events (including serial, interleaved, and overlapped events) increased overall, and two new types of multiple
user display events were observed.

4.3 · The Display Mirror 140

While we did not seek to explicitly characterize the situations in which the

new display capabilities were used, it became clear through informal observations

and conversations with users that people were appreciative of the new practices

that had been made possible. For example, one pattern that was observed after

the Display Mirror deployment was the quick display by a meeting participant of

a web page to the rest of the participants that was relevant to the current

discussion. This type of thing was possible before the Display Mirror but was

almost never observed until after it was available. Display Mirror users who

experienced this new capability reported that it was a useful aid to meeting

discussions, and that the low overhead involved in displaying information to other

meeting participants was the key to enabling the new practice. Another new

practice that emerged after the Display Mirror deployment was for meeting

participants to display different types of information on the two displays, for

example displaying an agenda on the plasma display while displaying a series of

slide presentations on the projector. This practice was also possible before the

Display Mirror was deployed (though only after the second display was available)

but was not observed until after the Display Mirror deployment.

We view the emergence of these new use patterns as the most promising

outcome of our deployment thus far, as we believe it underscores the potential of

small, subtle changes in mundane aspects of interactions with technology to effect

4.3 · The Display Mirror 141

subtle but significant impacts in the execution of higher-level human tasks and

activities.

4.3.1.3 Challenges Faced

By and large, we were able to achieve our goals with the Display Mirror. We

introduced a technological intervention in the form of a lightweight, continuously

available networked service, and this service was adopted by our target users,

incorporated by them into everyday practice, and used to improve and extend

existing practices in new ways. However, these gains were achieved at some cost.

The effort required to collect, manage, code, and analyze a year’s worth of data,

even given our efforts to streamline the amount of data that was collected and the

analysis process, was greater than expected. Much of this effort was expended in

automating the data collection, migration, and backups, as well as in building and

improving the analysis tool shown in Figure 1. The coding itself was not

overwhelming—a one-hour meeting would take approximately 30 minutes to code.

We coded in pairs so that we could more easily notice and discuss patterns and

interpretations of the data. Since a typical week would contain 5-10 meetings, the

coding amounted to 6-12 person-hours per week of data (3-6 pair-hours, which

includes time for loading data into the tool and searching for meeting start and

end times). This is considerably less than reported by Consolvo, et al. in their use

of LSA [5], though our data requirements differ in that we were fairly familiar

4.3 · The Display Mirror 142

with the activities being studied and we were able to articulate in advance what

types of events we were looking for.

The effort required to produce and maintain a deployment was also quite

substantial. Even a fairly modest deployment involving 10-15 client devices and 4

display mirror services in two meeting rooms required approximately 50% of one

engineer’s time and 10-25% of another’s over the course of the six months of

deployment reported in this chapter. Part of this was due to the fact that even a

small deployment encounters many of the problems that a larger one would

encounter: client platform compatibility problems, problems with the corporate

network configuration, and issues with the stability of the service nodes (which

were running Windows XP) to name a few.

In essence, the high degree of effort to create and maintain the data collection

infrastructure as well as the deployment itself, represent poorly amortized costs.

We anticipate that these costs would not be incurred to such a large degree for

the deployment of the 2nd, 3rd and nth service. However, for a single service with

such limited utility, we regard the costs as having been unreasonably high. The

observation that longitudinal studies and robust, sustained, networked

deployments are expensive should not be news to anybody. What is worth noting,

however, is that such techniques appear to be essential for the design and

evaluation of ubicomp technologies. This indicates that the search for improved

4.3 · The Display Mirror 143

data collection and analysis techniques and better deployment platforms

continues to be critical to the success of ubicomp research.

Another challenge that we faced appears to be more fundamental to the goal

of our research. It was somewhat difficult to achieve and sustain adoption of the

Display Mirror over a long period of time. We do not believe that this was as

much due to limitations of the technology as it was due to its invisibility.

Connecting one’s laptop to a shared display, while a common activity in aggregate,

is but a sporadic, occasional activity for any one individual. It was rare for anyone

in our study to connect to the projector more than once per week. Thus it is easy

to forget that a service such as the Display Mirror even exists between

opportunities to use it. It is more likely that a user will default to the ingrained

habit of reaching for the VGA cable than that she will consider the various

options for connecting and select the one that provides the greatest utility. The

very nature of mundane tasks is such that they are not foregrounded in the user’s

conscious mind, thus making it difficult to replace the old habit with a new one.

We found it necessary to temporarily increase the visibility of the display

connection activity through advertisements in the meeting room, and public and

personal reminders in order to gain any traction whatsoever with our intended

users.

4.4 · Discussion 144

4.4 Discussion

I will conclude this chapter by dwelling on a few key aspects of the experiences

with the Obje Display Mirror that are worthy of further discussion. These aspects

include implications for

• the design and evaluation of “mundane” ubicomp technology,

• the challenges of delivering and sustaining a robust, long-lived installation

of ubicomp technology,

• the ways that low-level capabilities like display mirroring are packaged and

presented to users of ubicomp environments,

• and the value that was provided by Obje and the broader notions of

“Recombinant Computing” to the Display Mirror project.

4.4.1 Studying Boring Things

In her article on the ethnography of infrastructure, Star called on researchers to

“study boring things” [139]. She proposed that computers are frequently less of an

“information highway” and closer to “symbolic sewers.” As such, she argues that

we need to pay more attention to “the plugs, settings, sizes, and other profoundly

mundane aspects of cyberspace.”

Our experience in deploying and evaluating the Display Mirror resonates with

many of Star’s comments. A service that allows users to bypass the VGA cable

4.4 · Discussion 145

when connecting to shared displays is probably not ubicomp’s “killer app”. The

most widespread activities we observed in meeting rooms (e.g., connecting a

laptop to a screen using a VGA cable) are indeed profoundly mundane; the

patterns of interconnection between devices we coded could easily be categorized

as boring. Yet it is exactly these mundane activities, prevalent yet ignored, that

many ubiquitous computing systems could be best suited to support. This, in turn,

requires alternative methodological and design approaches.

1) Longitudinal observations highlight background activities. Mundane practices

pose several methodological difficulties. As they are diffuse and often

pushed to the background, they require long and repeated observation to

be uncovered. Traditional interview techniques and laboratory studies, for

instance, cannot foreground these activities that, for the most part, are not

attended to by their participants. Instead, longitudinal observations are

required. But these cannot be entirely automated, as only careful

qualitative analysis of the data will progressively reveal these widespread

tasks unconsciously carried out by the users. While we have described an

approach to mitigate the problem by blending automatic data collection,

interviews, and qualitative data coding, it remains that longitudinal

studies are inherently costly in terms of manpower. The

observe/design/evaluate cycle that is foundational to HCI research might

4.4 · Discussion 146

be significantly longer when designing for the support of mundane

activities.

2) Alternative means of assessing “improvement” are needed. By definition,

mundane practices have reached a point where they are simple or

integrated enough that they disappear from consciousness. While they can

sometimes come to the foreground in the case of novice users or outliers

[95], the main user population simply forgets about their cost and

implications. As such, it is extremely difficult to justify alternative ways of

carrying out mundane tasks using traditional success metrics. The time

required to complete a task, for instance, may very well not be significantly

lower in ubicomp-supported scenarios such as ours than in the standard

case, since the user cost for the latter is already extremely low. However

other, less obvious, benefits may accrue to the users and other members of

the users’ environment. For instance, the beneficiaries of these ubicomp systems

might not be their direct users. In the case of the Display Mirror, displaying

information on a projector is not only useful to the laptop’s user: the other

meeting participants are also affected. As we learned, the audience was

able to articulate benefits of the Display Mirror that we had not

anticipated: now that public displays’ users were unwired, meeting

participants described a less “chaotic”, more “fluid” meeting experience

4.4 · Discussion 147

[161]. Furthermore, benefits to the direct users may go beyond human-computer

interaction. Users of the Display Mirror identified increased mobility within

the room as a benefit. By being untethered and therefore able to use the

space in the meeting rooms more flexibly (e.g., not to be forced to sit in the

“presenter’s spot”), their experience of the meeting was improved. Space is

a very important social resource and symbol, used to signify status and

roles [60]. “Untethered” computing gives control of the space back to the

users. While this has nothing to do directly with human-computer

interaction per se, it is certainly a benefit. Ubicomp researchers need to

consider the global benefits of their system, beyond the confines of a single

user interacting with a machine, or even a whole network of machines.

3) Sustained adoption of mundane technology is especially challenging. It has often

been proposed that a mark of success for ubicomp systems is when they

“blend in” their environment. However, when activities are already

“blended in,” it creates a significant challenge with regards to driving

adoption of a new technology.

While we initially tried as best we could not to be disruptive when deploying

our infrastructure, it quickly became clear that this was not likely to bear fruit in a

reasonable time frame. Mundane activities are deeply entrenched. If new

technology to support them remains invisible, it simply won’t be adopted.

4.4 · Discussion 148

Therefore, to drive the adoption of our system, “infrastructural inversion” [14] was

necessary: we had to temporarily foreground the backstage elements of our users’

work practices, for instance by attending meetings ourselves and repeatedly

pointing to our use of the new technology. Without such insistence and somewhat

“heavy handed” behavior, nobody would have known that a new technology was in

use—after all, the end result was no different from earlier meetings (some

information appeared on a public display). While this shows that the Display

Mirror was truly transparent, it obviously did not favor its ultimate adoption.

Therefore, unlike naturalistic ethnographies of systems’ deployments, ubicomp

researchers may need to be forceful and directly intervene in order to show people

the new possibilities when dealing with mundane activities. Systems such as the

Display Mirror deal with the “taken for granted” part of computing systems, and

human practices in this area are extremely inertial. This is unlike entirely new

devices and/or applications that support new (foreground) tasks, whose novelty or

strangeness makes them inherently visible. A paradox of mundane ubicomp

systems design and evaluation, in our experience, is that one needs to be

simultaneously forceful and gentle, that is, to highlight new ways (intervention) of

interacting that will end up being as mundane as what they are meant to replace.

An application or system designed to support mundane tasks may face

additional challenges when compared with systems that are designed to be used in

a focused way to accomplish a set of conscious tasks. This is especially true when

4.4 · Discussion 149

the application is a replacement for an existing system that is still available for use.

In the case of the Obje Display Mirror, the demands for ease-of-use and

robustness were especially high, since the users could easily abandon our system in

favor of the previous, familiar, and still available VGA cable. If any difficulties

were encountered during use, users would simply abandon the Display Mirror and

revert to earlier practices. Once this reversion had taken place, they were

reluctant to re-try the Display Mirror without another explicit intervention. In

systems such as the Display Mirror, the tasks being supported are, by their nature,

in the background and not the focus of conscious attention, and as a result users

are extremely intolerant of any glitch that forces them to pay attention to an

otherwise unconscious activity.

4.4.2 Challenges for Sustained Deployment, Usage, and Evaluation of

Ubicomp Technology

Some of the lessons we learned in this project would apply equally well to other

types of information technology, but some appear to be if not unique to, at least

more pronounced in, ubiquitous computing environments.

Longitudinal studies of users’ practices before and after the adoption of a new

technology are almost always considered desirable, but generally viewed to be

expensive and difficult. A common practice in user-centered design is to conduct

small, iterative evaluations with progressively refined prototypes. This allows

4.4 · Discussion 150

designers to identify critical shortcomings in functionality that will prevent users

from accomplishing tasks that the system is being designed to support. However,

given the background nature of the tasks we sought to support in the Obje Display

Mirror, which we believe are of a similar type to tasks supported by other

ubicomp systems, such design and evaluation methods are not likely to yield useful

results. Much more so than in conventional desktop or client-server applications,

ubicomp applications are explicitly designed to be absorbed into everyday practice,

and so the design and evaluation methods need to be more closely interwoven into

the background of the practices and environments being supported. In other

words, longitudinal methods that are desirable in desktop systems become

essential in ubicomp.

Following on the above point, the inadequacy of standard usability metrics

such as task performance time and error rate for characterizing the acceptability of

a software system has been acknowledged in both the HCI community (e.g., [8])

and ubicomp community (e.g., [2, 25]). However, this point is worth making

again, as in cases where the tasks being supported are not the explicit focus of

attention, traditional usability metrics and methods are even less adequate as they

provide little information about how the system being designed will affect the

larger context in which it will be used. Another way to say this is that in ubicomp,

the larger context of use may be even more important than in other domains, and

4.4 · Discussion 151

so the design and evaluation methods used must be selected or modified to take

larger context into account.

The difficulty of getting users to adopt a new technology, especially when a

viable and established alternative exists, is well known in multiple domains (e.g.,

[56]). The issues in ubicomp are probably not much different. One slight but

important difference, however, comes back to the issue that the tasks being

supported may not be conscious or explicit. In this case, the necessity to

foreground the task in order to force the user to become aware of a new technology,

and to choose between the existing and new methods of accomplishing the task,

may cause an unwelcome interruption in the flow of some other activity. This

implies that the methods used to foster adoption need to be as unobtrusive as

possible and need to fit in well with existing practice. In our project, we

attempted to do this by attaching advertisements to the devices whose

functionality we were attempting to replace or enhance. Even this proved to be

too subtle, however, and we had to use more forceful methods—namely social

pressure. On the other hand, the fact that our system was designed for public use

was helpful from the perspective of disseminating information about its availability,

usefulness, and usage instructions. Another approach that has been taken to

increasing adoption of ubicomp technologies is reported in [96], in which the

authors introduced a number of different applications aimed at increasing the

adoption of an enabling technology—in this case, wireless location tracking badges.

4.4 · Discussion 152

However, we did not wish to introduce a number of different applications that

used the Display Mirror, because this likely would have caused Display Mirror

usage to become more of an explicit goal rather than a means to an existing work-

oriented goal.

Creating and maintaining robust, available, easy-to-use services is always

challenging, but certain factors in ubicomp may make this even more challenging.

For one thing, the expectation of reliability may be higher, since in at least some

cases the practices being replaced are ones being carried out with more reliable

tools (e.g., analog or physical). For another thing, ubicomp systems often stress

standard assumptions about device, system, and application configurations. They

may, for example, rely on the coordination of multiple distributed processes, and

may depend on assumptions about network topologies and security policies that

are sufficiently different from existing application models (e.g., client-server or

peer-to-peer) that standard configurations will not support them. In our case, we

had two such considerations that interfered with the functioning of our

application—one was the fact that we relied on multicast (mDNS) for the Display

Mirror clients to discover available display services and the other was that we

depended on being able to open sockets on otherwise unused ports to stream the

video data from the laptop to the display service. In the case of multicast, we

discovered that our application employed a pattern that had not been

encountered by PARC’s Networking Support department—namely the ability to

4.4 · Discussion 153

pass multicast traffic back and forth between our wired and wireless networks—

and we had to raise the issue through several levels of management to get the

wireless bridges configured properly to support our application. Regarding the

need to open unused ports, it is PARC’s policy to install and configure a personal

firewall on all laptops. Some of these firewalls silently block traffic on all ports

unless the user explicitly enables it using an advanced control panel. Other

firewalls would allow traffic on these ports but only after the user had agreed to a

series of rather cryptic dialog boxes. In the common case where the firewall was

configured incorrectly to allow our application to run, the application would fail

silently and the user would assume that our service was down.

There are certainly other classes of applications where mysterious and

seemingly unrelated system settings can impede proper functioning of the

application, but it seems that for the time being ubicomp applications may run up

against these problems more frequently than most—at least until the coordination

patterns and configurations required to support them become commonly

understood.

4.4.3 Supporting Micro-tasks: Micro-applications or General Tools?

We believe that our experiences can inform a range of existing and forthcoming

ubicomp applications that focus on support for infrequent, mundane tasks,

especially those that form constituent parts of a variety of foreground tasks. In our

4.4 · Discussion 154

observations, for example, connecting a laptop to a projector was a subtask of a

variety of larger activities, such as “giving a presentation,” “scribing notes,” and

“sharing information” (e.g., by showing a web page to a group).

It has been previously noted that task-oriented application design and

evaluation may not be appropriate for many ubicomp scenarios, because

ubiquitous computing is at its best when it fades into the routines of life—that is,

when it supports ongoing activities through continuously available, yet

sporadically accessed services [2]. Many of the mundane activities we observed do

not fit well into the standard HCI notion of a “task” (as characterized, for example,

by Lewis and Reiman [87]). Still, they are activities that users perform, and

perform quite often, and which—despite the fact that they are not foreground

activities—still to some degree determine the experience that users have in a

space. It is perhaps more appropriate to regard these activities as micro-tasks,

because they’re rarely explicitly attended to by those who perform them, are

generally short-lived, and are typically merely a step in the process of

accomplishing some larger tasks (such as giving a practice talk for colleagues).

With the Display Mirror, we have taken a look at the micro-task of appropriating

a public display to share information with others in a meeting room, and we have

designed a single, small, limited-functionality service to improve the experience of

carrying out that micro-task. Correspondingly, we propose that a service like the

Display Mirror should be thought of as a micro-application.

4.4 · Discussion 155

While the term “application” can take on many meanings at many

granularities, it has frequently been used by technologists and researchers to mean

a substantial, user-visible collection of functionality, along with some user

interface, designed to allow the user to accomplish some set of related tasks during

a focused interaction. Such a meaning does not seem to be applicable to a tool

designed to support a single, simple function that is not a part of a consciously

attended action on the part of the user. Shifting from applications to micro-

applications, particularly when we imagine environments in which myriad micro-

applications co-exist, converge, and even compete for the users’ attention, causes

us to rethink much of what we know about application design, deployment, and

evaluation.

While the “micro-application” terminology may be new, similar

conceptualizations exist throughout the research literature. Abowd and Mynatt

[1], for instance, describe the “informal and unstructured activities typical of

much of our everyday lives,” and distinguish these from the dialog styles that are

normally a focus of HCI research. Others [39] have argued that small, lightweight

applications are an appropriate unit of analysis in ubicomp settings. From purely

an evaluative standpoint, separating functionality into such micro-apps may make

it easier to tease apart the effects of the application and the role of the

infrastructure, by limiting confounding factors.

4.4 · Discussion 156

Our experiences with the Obje Display Mirror provide some insight into the

methods and approaches that will be effective for the design and evaluation of

micro-applications in ubicomp environments, but I believe that there is a good

deal of further investigation that can be done in this area.

A larger question, however, is how best to provide micro-applications to users.

In the Display Mirror example, a discrete client application was provided

explicitly for the task of connecting one’s laptop to a shared projector. One can

imagine other ways that such functionality could be delivered to users. It could be

integrated into a standard operating system such as Windows XP in the form of a

new control panel or even an extension of the existing Display control panel. It

could be provided as part of a larger application that allow a user to perform

various tasks related to workplace collaboration or data sharing (e.g., Casca or the

Sharing Palette). Alternatively, this functionality could be provided as but one of

the capabilities of a general service discovery and composition tool that allows

users to access various networked services and compose them in ways that are

appropriate to the task of any given moment. While this latter approach will give

users the greatest control and flexibility, it runs the risk of failing to communicate

effectively with users about what capabilities are available in the environment and

to provide them with a clear means of effecting any particular “micro-application”

that they may need to access at any particular time.

4.4 · Discussion 157

Resolving this tension between providing users with the access to the

maximum flexibility and power available in an environment of networked devices

and services and providing clear and efficient access to any given capability at any

particular time is the primary objective of the OSCAR project described in the

next two chapters. Though we will be shifting domains from the workplace to the

home, I believe that the issues addressed and the techniques proposed in OSCAR

are highly applicable to these questions about how to best deliver a range of

functionality that have been raised in the context of the Display Mirror project.

4.4.4 The Obje Advantage

As mentioned previously, the Display Mirror is a specialized application built

atop Obje that does not expose notions of service composition to end-users in any

significant way. While, technically speaking, a service composition is being

effected each time a connection is made between a Display Mirror client and a

Screen component, this fact is probably not clear to most users. Rather, the user’s

experience of the Display Mirror is one of discovering a set of available screens,

selecting one for use, and invoking a single, fixed operation: “mirror to screen.”

Nevertheless, building the Display Mirror atop Obje provided several

advantages, both from a technical and a user experience standpoint. From a

technical standpoint, the prior existence of the Screen component, and the ability

to incorporate it with very few modifications into the Display Mirror application

4.4 · Discussion 158

was a great success in terms of code re-use. The Screen did not have to be

rewritten to understand the VNC protocol, data format, or anything about VNC

at all. This was all handled by the implementation of the Display Mirror client.

Meanwhile, the unmodified Screen was still available for other uses, and in fact it

was again re-used with little modification for the OSCAR project described in the

next two chapters. Similarly, the aforementioned work that had gone into re-

implementing Obje for the purpose of making it easier to deploy and maintain

installations of Obje services and clients made it possible to carry out the Display

Mirror project. Even though we experienced significant challenges with regards to

deployment and maintenance anyway, I sincerely doubt it would have even been

possible given the resources available to the project to develop the Display Mirror

to the point of being able to support users, let alone support them for half a year,

without the leverage provided by the previous work on the Obje Framework.

Finally, derived in large part from the technical advantages listed above, the

user experience of using the Display Mirror greatly benefited by the existence of

Obje. The fact that new Screen installations could be easily added or subtracted

from the environment without affecting clients, and that new clients could

similarly be added or subtracted without affecting the installations, resulted in a

user experience of seamless discovery and use of available networked resources.

This experience is still somewhat rare in commercial and commonly used systems,

and is precisely the kind of experience that Obje and similarly styled ubicomp

4.4 · Discussion 159

frameworks are designed to provide. As we shall see in the next chapters, however,

I believe that this experience can be improved even further by also providing users

with the ability to compose and control discovered resources in flexible,

customized ways.

4.4.5 Contributions and Limitations

The Obje Display Mirror project focused on designing and evaluating an

application that delivers an integrated user experience of interacting with

distributed resources. Moreover, the project was concerned with redesigning the

experience of an existing practice: sharing the display of one’s laptop with

collaborators in a meeting room. The original goal was to examine existing

practices among the members of PARC’s Computer Science Lab and introduce

new technology in order to improve and facilitate those members’ interactions

with embedded technology.

In order to understand existing practice as well as to evaluate the effects of

introducing new technology, a novel observation method was created that allowed

meeting room device usage to be monitored across several months. The

experiences with longitudinal video sampling in the development of the ODM are

important because they highlight the difficulty of monitoring sparse, distributed

behavior over a long period of time. Yet understanding such behaviors is critical to

4.4 · Discussion 160

the enterprise of understanding, developing, and evaluating an “integrated” user

experience of interacting with multiple devices to carry out everyday tasks.

The Obje Display Mirror was an appropriate case study for examining the

effects of providing an integrated user experience. The ODM replaced a

disruptive mechanism for connecting one’s laptop (connecting to a VGA cable)

with a mechanism (manipulating a software client) that was better integrated into

users’ simultaneous activities (locating and preparing data to share). The results of

the study of ODM adoption and use showed that redesigning the display

connection experience provided benefits for both the primary users of ODM

(individuals wishing to display information to others) and for their collaborators

(the individuals to whom information was to be displayed). It also showed that

substantive changes in practice could be achieved over a period of months due to

the provision of subtle but important changes in the functional capabilities of the

service being provided—namely in this case, the ability to support multiple

simultaneous connections with distributed control over the connection being

displayed on the screen.

The limitations of the study were also instructive for future researchers. The

end result of the study—a service that allows users to connect wirelessly to

projectors and other public displays—was perceived by users as a marginal

improvement over the system that it had replaced. This is due in large part to the

fact that the previous system for accomplishing the same task was not particularly

4.5 · Summary 161

cumbersome or difficult for most users who had already learned how to carry it out.

Given the low perceived incremental value of the service that was deployed, the

effort required for design and evaluation was somewhat labor-intensive, as it

required human review of each meeting to code for device usage events. While it

was considerably less intensive than similar methods that had been used for

similar studies (e.g., LabScape [6]), the perceived value of the end result would

probably not justify the investment for widespread use. In addition, the amount of

effort required to deploy and maintain the ODM service and, especially, the

multi-platform client, was substantial. The primary instructive lesson from these

experiences is that designing and evaluating distributed technologies for extended

deployment and use is challenging and expensive, and that designers should take

care to ensure that the value of the deployed technology to end-users outweighs

the costs.

4.5 Summary

The experiences with the Obje Display Mirror reported in this chapter

demonstrate that a focused service deployment aimed at supporting mundane

microtasks such as connecting one’s laptop to a shared display can have concrete,

positive impacts on users’ work practices and on the user experience of interacting

with their environments. The introduction of the Display Mirror impacted the

frequency and types of multiple-user access to shared displays, and affected the

4.5 · Summary 162

experience of integrating display use into meetings for both the “primary” and

“auxiliary” users of the displays.

In terms of the grander themes of this dissertation, however, the ODM

experience does not tell us very much about the feasibility of end-user composition

or the benefits of having integrated composition and control of multiple

heterogeneous devices and services on a single network. I will take on these

challenges in the next two chapters take on these challenges, as I describe the

design, implementation, and user study of OSCAR.

 163

5 Designing and Building
OSCAR

While specialized applications like the Obje Display Mirror can provide

significant value to end-users, they suffer from the key limitation that they can

only do what they were programmed to do. As argued in earlier chapters, in a

world with ever-expanding devices, whose combinations entail ever-increasing

capabilities, the approach of delivering specialized applications to satisfy every

user need under every circumstance will be unmanageable. Application

development is slow and expensive and leads to a fragmentation of user experience

(the problem of piecemeal interaction discussed in Chapter 1) relative to an

approach that gives users the tools to compose and control their own applications

from re-usable components. The primary problem with giving users control over

application composition is that the complexity and additional work of composition

may limit such approaches’ acceptability for large numbers of intended users.

5.1 · Motivation for OSCAR 164

In this chapter, I will describe the motivation for, and design and

implementation of, OSCAR—a system that allows end-users to compose devices

and media in the home6.

5.1 Motivation for OSCAR

The primary motivation for OSCAR was to build a tool that would allow me to

explore tradeoffs between flexibility and complexity in an end-user composition

system designed for non-technical users. OSCAR was also designed to satisfy two

additional goals: to provide insight into the user experience goals of Obje as a

whole, and to serve as an effective tool for home media consumption and control.

5.1.1 Stuck in the Middle

As I and my co-authors discussed in [39], it is a significant challenge to evaluate

the user experience goals of infrastructure technologies. And yet, it is not

infrequently the case that such technologies are motivated by the desire to provide

or enable particular styles of user experience. The two examples discussed in [39],

the Context Toolkit [134] and Placeless Documents [36], were primarily

intended to provide infrastructure support for compelling user experiences of one

kind or another. In the case of the Context Toolkit, the goal was to provide

6 The work in this chapter and Chapter 6 was primarily conducted by me, with some
assistance from Trevor Smith and Ame Elliott. This work has not been previously published.

5.1 · Motivation for OSCAR 165

support for applications that would react seamlessly to users’ situations (location,

time, identity, etc.), and in the case of Placeless Documents it was to

fundamentally change users’ relationship with document storage from a

file/directory based scheme to a scheme based on document properties.

Both of these systems found it challenging to evaluate their effectiveness in

terms of their core objectives to the extent that those objectives reflect user

experience concerns. Traditional metrics used for infrastructure evaluation such as

system performance or work reduction for application development (as measured

for example, by comparing the lines of code required to create particular

applications with and without the infrastructure), while perhaps important in a

wider sense, do not address the key goals or claims of these systems, or of similar

systems such as Obje. Rather, it is important to find ways to evaluate the user

experience claims of infrastructures that make such claims. In the aforementioned

paper, we provide a set of lessons regarding how to evaluate such claims.

• Lesson 1—Prioritize core infrastructure features.

• Lesson 2—First, build prototypes that express the core objectives of the

infrastructure.

• Lesson 3—Any test-application built to demonstrate the infrastructure

must also satisfy the usual criteria of usability and usefulness.

• Lesson 4—Initial proof-of-concept applications should be lightweight.

5.1 · Motivation for OSCAR 166

• Lesson 5—Be clear about what your test-application prototypes will tell

you about your infrastructure.

• Lesson 6—Do not confuse the design and testing of experimental

infrastructure with the provision (i.e., creation, delivery, support, etc.) of

an infrastructure for experimental application developers.

• Lesson 7—Be sure to define a limited scope for test applications and

permissible uses of the infrastructure.

• Lesson 8—There is no point in faking components and data if you want to

test for user experience benefits.

Throughout the development of the Obje Framework, efforts were made to

take account of these lessons. Several of these lessons (1, 4, 6, and 7) are about

maintaining focus on the goals of the infrastructure, and not getting distracted by

secondary or tangential features. One of them (8) is about the fidelity of data and

prototypes that should be used to assess user experience issues7. Most importantly

to the subject of this chapter, several (2, 3, 4, and 5) are about how to use

prototypes to gain insight into the infrastructure’s user experience goals.

7 In hindsight, I no longer agree with the wording of Lesson #8, as I believe that judiciously
faking data and components is often necessary to facilitate iterative development, especially during
early phases of development. Perhaps Lesson #8 should be reworded to state something like:
“Simulated data and components should be used with care, and efforts to use the most realistic
elements possible at all phases of development should be pursued.”

5.1 · Motivation for OSCAR 167

In the latter part of Chapter 3, I described a number of lightweight proof-of-

concept applications that were developed as part of the iterative process of

developing the Obje Framework. Prototypes such as Casca, the Settop Box, and

Nexus/Wander were developed with the primary goal of giving the research team

insight into how the different parts of the Obje Framework would be put together

for different types of applications. In each case, improvements to the Obje

architecture and API were made as a result of the prototyping effort. Also in each

case, a conscious effort was made not to expend the effort to develop these

applications to the point where they would be robust enough to support users for

any extended duration. Development was intentionally constrained to provide

insight only into the infrastructure issues that were of pressing concern at the time

and to demonstrate key concepts of Obje to others, and to go no further.

In other cases, such as the Obje Display Mirror and the subject of this chapter,

OSCAR, a conscious decision was made to develop user-focused prototype

applications with the goal of evaluating one or more of Obje’s user experience

claims. Thus, in the design and development of OSCAR, I was consciously

attempting to apply Lessons 2 (build prototypes that express—i.e., whose

objectives match—the infrastructure’s core objectives) and 5 (be clear about what

your test applications will tell you about your infrastructure). In addition, as I

shall discuss shortly, I applied Lesson 3 (any test application must also be usable

and useful).

5.1 · Motivation for OSCAR 168

Specifically, the user experience goals (or “core objectives”) of Obje that

OSCAR is designed to examine include:

User expectation of interoperability: Obje endeavors, ultimately, to set users’

expectation when encountering new, unfamiliar devices, or when adding them to

a network with other devices, that these devices will work seamlessly with devices

the user is already using [42].

Integrated connection and control: Client devices or applications can discover and

connect compatible services on the network. Clients are then able to provide an

integrated experience of interacting with multiple devices by allowing the user to

monitor and control multiple ongoing connections as well as receive and display

user interfaces for all of the services involved [111].

Flexible, intuitive composition of devices, services, and content: Thanks to the

reduced requirements for up front agreements among interoperating services,

Obje is able to present a highly simplified view of networked services based on the

roles they are able to play in data transfer connections. This should allow users

great flexibility in the connections they can make, while also presenting an easy-

to-understand model of what things can be composed together in what ways [112].

In keeping with Lesson 2 (prototypes should express core objectives), therefore,

the goals of OSCAR are essentially identical to the goals of Obje as a whole. That

is to say, that OSCAR was designed to provide an experience of seamless

interoperability, integrated connection and control, and flexible, intuitive

5.1 · Motivation for OSCAR 169

composition. However, while Obje is focused broadly on providing these features

in a variety of domains, OSCAR has focused more particularly on the domestic

environment. In the next subsection, I focus on the aspects of current and near-

future home networking environments and discuss why the home domain is a

particularly fruitful domain for exploring issues of interoperability, integrated

control, and end-user composition.

5.1.2 Focusing on Home Networking

Home media networking is an ideal domain for examining issues such as delivering

an integrated user experience of interacting with multiple devices and providing

support for end-user composition.

In-home media consumption practices are undergoing a massive change driven

by a confluence of factors. On the one hand, data networks in the home are

becoming more powerful and are growing to include not only traditional

computing devices like desktop and laptop computers, but also media-oriented

consumer electronics devices such as personal video recorders [147], MP3 players

[10], and speakers [46]. At the same time, media itself is being transformed into a

digital commodity that can be accessed on demand in a variety of ways from a

variety of sources, both inside and outside the home network.

Increased ease of access is enabling new forms of media consumption and

sharing, but these new capabilities come at the expense of increased complexity in

5.1 · Motivation for OSCAR 170

creating and managing the connections among these devices and media services.

As we move from dealing with our media networks as nests of wires and piles of

remote controls to dealing with them as abstract services on a generic network, we

may be trading the physical entanglement of contending with wires and plugs for

the logical entanglement of dealing with numerous connection options and huge

collections of easily accessible digital media.

5.1.2.1 Requirements Derived from Studies of Home Technology Use

Some of the key design criteria for OSCAR were derived from previous studies of

home technology use. Specifically, OSCAR is designed to support flexible and

generic composition and control, and reusable compositions to encapsulate common activities.

Flexible and generic composition and control: Rode, et al. [129] reported that

collections of devices vary significantly from home to home, a finding that was

echoed by a study published by myself and my co-authors [55]. In addition, the

latter study shows that householders’ goals and desires with respect to their

networks span a wide range. This requirement echoes Obje’s user experience goal

of providing flexible and intuitive composition of devices.

Reusable compositions to encapsulate common activities: Often the responsibilities

for setting up, configuring, and maintaining home networks and devices are

distributed among different household members [55, 128]. The primary reasons

that users program domestic appliances are to reduce configuration time later and

5.1 · Motivation for OSCAR 171

to automate repetitive tasks [129]. Also, it has been reported that users tend to

describe activities in terms of functions rather than devices [150]. Reusable

configurations are a promising mechanism for supporting the temporal and social

divisions of labor that are important to households. Supporting users in

constructing activities with meaningful labels should allow them to interact

without having to think explicitly about devices. This requirement represents an

additional requirement for OSCAR, above and beyond the Obje goals that were

discussed previously.

5.1.2.2 Form Factor

OSCAR was designed to be used as a portable, hand-operated, “remote control”

device. The goal behind this design decision was to reinforce the association with

the notion of remote control for OSCAR’s users, while expanding this notion to

include the additional concepts of automatic discovery, ad-hoc connections, and

re-usable compositions.

There are two approaches to managing media devices and experiences that are

converging in home media networking. From the software industry, we see media-

specific applications (e.g., iTunes, iPhoto [5], and Windows Media Player [104])

that allow users to manage and experience a particular type of media but have

limited mechanisms for connecting with various devices in the home. From the

consumer electronics industry, remote controls (including both device-specific

5.1 · Motivation for OSCAR 172

remotes and universal remotes such as the Harmony [18]) allow users to

manipulate device functions from a distance, but are not well suited for managing

and redirecting media streams, especially from sources like digital media libraries.

In a sense, OSCAR seeks to capture the primary advantage of remote controls:

ability to access and control your media and devices from a distance while also

capturing the new capabilities and requirements of media networks—the ability

to control the interactions between devices and services, not just a single device.

As I write these words in 2007, my target for this work is the “early majority”

home of 2010-2012. Thus I assume a fairly high penetration of home networking

technology and connected media devices, but do not assume the existence of

facilities such as sensing frameworks or context-awareness that I feel are somewhat

farther away from market readiness. As a consequence, I assume very little

automatic behavior on the part of devices in the network, and instead assume that

user interaction will invoke operations and control devices.

I elected to design for a touchscreen-based Tablet such as the TabletKiosk

Sahara tablet shown in Figure 5-1 [145]. This decision was based on its ability to

be operated untethered (via an 802.11b network), with a finger rather than a

stylus, its ability to run a full-featured commodity operating system (Windows

XP), and it’s generous display size. In all respects other than the size, the platform

is meant to resemble a next-generation remote control that can be used

comfortably on a couch or carried about the house from room to room. Even in

5.1 · Motivation for OSCAR 173

terms of its size, it is not greatly more bulky than many high-end universal remote

controls such as the Phillips Pronto [133] or the Sony Remote Commander [165],

which both share with the Sahara the requirement that they be held with one

hand or set on a stable surface while operated with the other hand. The larger

screen size was selected in our case because it gave us the maximum flexibility to

explore prototyping options with complete software reconfigurability (no hardware

buttons were used as part of any of the prototype UIs).

5.1 · Motivation for OSCAR 174

Figure 5-1: OSCAR is a handheld, touchscreen based application that allows users to discover, connect, and
control multiple devices and services on a home network, as well as create re-usable compositions for quick
access to commonly-used functions.

5.2 · Designing OSCAR 175

5.2 Designing OSCAR

OSCAR was designed using an iterative process consisting of four prototypes

punctuated by evaluations. The first two iterations were followed by expert

evaluations, and the second two were followed by user evaluations 8 . In the

remainder of this chapter, I will describe the first three versions of the

prototype—including the initial paper prototype, a medium-fidelity mock-up

prototype, and the first interactive prototype. In addition, I will describe the

results of the two expert evaluations. The results of the first user study, the design

changes that were made for the second interactive prototype, and the results of

the second user study are the subjects of Chapter 6.

Based on the overarching goals for the OSCAR project, including the desire to

gain insight into the user experience goals of Obje, the desire to provide effective

support for composition and control of home media networks, and the desire to

study an embodiment of an end-user composition system, several of the basic

design criteria for OSCAR were outlined before any of the design work began. In

addition to the form factor decision described above, all versions also supported

the same basic functions:

8 While it would have been preferable to employ user evaluations during the early iterations as
well, this turned out to be impossible due to issues with one of the funding agency’s Human
Subjects Review Board.

5.2 · Designing OSCAR 176

1) Browse, select, and control devices and services that have been

automatically discovered on the network.

2) Connect compatible devices, services, and media sources, and then

monitor, edit, and control the active connections.

3) Invoke, edit, and create reusable custom configurations of devices and

media, which are labeled with user-provided names.

Given the particulars of the Obje service profiles (e.g., DataSource, DataSink,

and Aggregate) and connection mechanisms described in Chapter 3, a

“configuration” is intended to mean a description of a set of devices along with

information about how particular DataSources should be connected to DataSinks

via TransferSessions.

5.2.1 Issues with “Custom Configurations”

The fundamental challenge of the early phase of the design process was how to best

present the concept of custom configurations to users. Two elements of the challenge,

language choice and world view, were particularly difficult.

5.2.1.1 Language Choice

As I have already argued, custom configurations would be valuable to non-

technical home users, but from the initiation of the design process, it was clear

that the concept would be difficult to convey in understandable language. As we

5.2 · Designing OSCAR 177

shall see, language to describe these configurations passed through several

iterations, beginning with “Template,” through “Recipe,” and finally to “Setup.”

5.2.1.2 World Views: Activities Versus Devices

Another question that became a focal point of the design process is how to

organize the functions of the user interface to maximize ease of use as well as to

communicate the range of capabilities of the application. The design focused on

two approaches:

1) Activities are primary. The first screen that greets users upon encountering

OSCAR is a list of pre-loaded compositions, representing different

activities in which they can engage, along with a button allowing them to

make a new composition. Users can by default interact with the list of

compositions and if they discover that they needed functionality not

currently represented in their list, they create a new composition to do

what was needed. This approach is activity-centered in that users would see

a list of compositions corresponding to activities that could be easily

accessed and invoked. If the desired activity is not available, it would need

to be configured before it could be invoked. However, it would remain

available ever after. The advantage of the activity-oriented approach is

that users are not forced to deal explicitly with devices in the normal case,

rather they deal with a list of favorite compositions that are already pre-

5.2 · Designing OSCAR 178

defined to smoothly configure the network to carry out the activity

described by their name.

2) Devices and media sources are primary. The first screen that greets users is the

list of devices and media that are available. From this screen, the user can

select a device or service and from there view and select from lists of

compositions and active connections that included this device, and/or

choose to use the device in a new composition. The advantage of the

device/media-orientation is that it is easier to configure unscripted

activities that are being carried out for the first time and gives the user a

view of all of the devices currently available for use.

In both cases the primary goal of the interface is to allow users to make

connections among devices and media. Also, in both cases, all three main

functions (browsing devices, managing connections, and managing/invoking

compositions) would be available. The difference between these two approaches

would lie largely in the initial “home” screen that greets the user when first

encountering or re-encountering OSCAR.

5.2.2 Personas and Scenarios

In order to guide the design process, I developed four Persona Households that

captured a range of household characteristics. As with the traditional Persona-

based design method [27, 57], the purpose of the Personas was to guide and

5.2 · Designing OSCAR 179

provide coherence to the design process and give me a reference point outside of

the designers’ (i.e., my) own desires and experiences against which to gauge the

likely effectiveness of design decisions. In terms of this particular process, the

Personas also provided a richer picture for the expert review panel of OSCAR’s

intended users.

Based on the studies of home technology use discussed earlier in this chapter

that suggest the household rather than the individual as the appropriate unit of

analysis for domestic technology design, I modified the traditional notion of

Personas in design [27] to include entire households. Since the home study in

which I had participated represented only a narrow range of demographic types

(relatively high-income, childless couples aged 30-45 in the Bay Area), I invented

a set of households to guide OSCAR’s design that was based more on personal

experience and acquaintance. The four households were intended to span a range

of ages, genders, living situations, house sizes, geographic regions, local

environments, etc. One key finding of the home networking study [55] that was

carefully reflected in the set of OSCAR personas was the uneven distribution of

technical prowess and technology adoption preferences that was revealed to be the

norm, even among the “early adopter” households that we studied. Therefore, I

was sure to populate each household with different mixtures of inhabitants along

each of these dimensions, including individuals fitting the different technology

adoption profiles identified by Rogers [130].

5.2 · Designing OSCAR 180

Each Household Persona consists of a house photo or drawing, floor plan,

house location, description of the occupants, and narrative about how the

occupants typically interact with devices and media inside and outside the house.

Table 5-1 presents the basic information about each household, and Figure

5-2 gives an example of the type of information that was produced for one of the

households. The full descriptions of the personas are included in Appendix B.

5.2 · Designing OSCAR 181

Name Location Occupants Typical Media Use
Dan Engstrom, 52, small

business owner (auto parts

distributor)

• Watch football games

with friends

• Show home movies &

photos

Michelle Engstrom, 50,

schoolteacher

• Listen to radio

• Watch cooking shows

Audrey Engstrom, 17, high

school junior

• SMS, email, phone

with friends

Bridgette Engstrom, 14, 8
th

grader

• Listen to music on

headphones

Duncan Engstrom, 11, 5
th

grader

• Play video games

• Watch TV

The Engstroms, Maple Grove,

MN

(newly built

suburban

development)

Butch, 3, golden lab • None

Haley Merriweather, 37,

massage therapist

• Play new age music in

home massage studio

Angie Alvarez, 43, web

project manager

• Organize & publish

digital photos

The

Merriweather-

Alvarez

household

Sedona, AZ

(older house on

2 acres outside

town)

Mario, 13 and Luigi, 11: cats • None

Kari Weissbrun, 26, magazine

editor

• Play World of

Warcraft

• SMS and email

Jesse Amman, 26, waiter • Download MP3s

• Make mix CDs

Kari, Jesse, and

Ruth’s house

Durham, NC

(3-bedroom

rented house

near Duke

University)

Ruth Sloan, 28, video

artist/educator

• Video art projects

• Maintain website

Eugene An, 29,

musician/administrative

assistant

• Create music

• Produce podcast

Eugene An’s

apartment

Seattle, WA

(1-bedroom

apartment in

Capitol Hill) (Frequent guest: Sabrina Lin,

27, social worker—his

girlfriend)

• Watch DVDs

• Listen to iPod while

jogging

Table 5-1: An overview of the Household Personas used to help design OSCAR.

5.2 · Designing OSCAR 182

Figure 5-2: An example of the information produced for one of the OSCAR Household Personas.

5.2 · Designing OSCAR 183

5.2.3 First OSCAR Prototype: Paper Prototype

The first OSCAR prototype was the paper prototype shown in Figure 5-3. The

initial goal of the paper prototype was to quickly design a user interface and test it

with users. The idea behind a paper prototype is to prototype, as completely as

possible, the entire behavior of an application before writing a single line of code

[124, 137]. The advantages of using a paper prototype over code are numerous:

the investment in any particular design decision is much less, so the costs of

abandoning a design are very low; users and reviewers feel more comfortable

expressing negative opinions about the prototype because they perceive it as being

less finished and therefore more amenable to modification; exploration of new

ideas and functionality can be carried out instantaneously, even during the course

of a usability test or expert review—users and reviewer can see examples of their

suggestions within seconds in order to see if their feedback has been interpreted

correctly; and the list goes on.

A paper prototype can be used for usability tests and/or expert walkthroughs

by having one of the test administrators act as the “computer.” Whenever the

user/expert carries out some action the “computer” reconfigures the paper

prototype to show the results of the user’s action. Such a prototype is effective at

catching coarse usability problems, such as architecture and navigation errors,

that are important to capture early in the design process. Clearly there are other

5.2 · Designing OSCAR 184

classes of error, such as software bugs, screen layout problems, and responsiveness

issues that are not turned up by such early prototypes. Paper prototypes are one

tool in a suite of tools available to UI designers and the experience of many

usability professionals has shown that they are an extremely effective tool in the

early design phases.

The OSCAR Paper Prototype consists of two main UI screens whose contents

adapt to allow users to accomplish various tasks related to service composition and

execution. As can be seen in Figure 5-4 through Figure 5-8, the prototype was

designed as a pair of background screens and a set of overlaid content components

that could be added and removed to show different states of the UI.

The first screen a user sees is the “Template Selection” screen (shown in

Figure 5-4)—which allows the user to browse and select a template (i.e., a

configuration description) that she can then activate or edit. The second screen is

the “Template Interaction” screen, which allows a user to actuate, modify, or

control a single template. Figure 5-5 shows a simple template that is currently

inactive. If the user wishes to interact further with this template, there are a

number of options. As shown in Figure 5-6, the user can replace the source or

destination component by browsing for a replacement. For the source in particular,

the user can choose either a particular source component or a collection of them.

When satisfied with both endpoints of the connection, the user can tap the center

arrow to change its state. If it is currently idle, as indicated by the dotted arrow,

5.2 · Designing OSCAR 185

the connection will be started and OSCAR will provide control options relevant

to the current connection, as shown in Figure 5-7. To further configure the

template’s behavior when it is activated in the future, the user can tap the gear

icon underneath either the source or destination slot, or underneath the arrow.

Figure 5-8 shows an example of what happens when the user taps the gear

underneath the destination slot. There are other options available, as well, and

some will become clear as I describe the walkthrough version of the paper

prototype that was produced in preparation for the first expert evaluation.

5.2 · Designing OSCAR 186

Figure 5-3: The entire Paper Prototype, including the major screens and many “widgets” representing
contents of the screens that a user is expected to encounter during the course of carrying out the usability test
tasks.

5.2 · Designing OSCAR 187

Figure 5-4: The main screen that greets a user of the initial OSCAR paper prototype. A list of templates is
presented, from which the user can select one to “activate,” “duplicate,” “remove,” or “edit.” Also the user can
choose to create a new Template from scratch.

5.2 · Designing OSCAR 188

.

Figure 5-5: The “Template Interaction” screen showing a currently inactive Template (as evidenced by the
dotted arrow). The template depicted consists of one connection, whose source is the “Entire Library” of
photos and whose destination is the “Living Room Picture Frame.” If the user tapped the arrow, the
connection between the Photo Library and the Picture Frame would be established, and specific photos
would be chosen for display based on the advanced settings that could be accessed via the gear icon to the
lower right of the arrow.

5.2 · Designing OSCAR 189

Figure 5-6: The “Template Interaction” screen while the user is selecting a particular source for a connection
from an Aggregate containing multiple possible sources.

5.2 · Designing OSCAR 190

Figure 5-7: The connection is active and the user has access to controls specific to controlling this
connection—in this case the controls allow a user to play, pause, rewind, etc. a video stream that is playing
on a TV.

5.2 · Designing OSCAR 191

Figure 5-8: The “Template Interaction” screen after the user has elected to configure the rules for selecting a
destination.

5.2 · Designing OSCAR 192

5.2.3.1 Preparing for the Expert Evaluation: Walkthroughs and “Screenshots”

As mentioned previously, although the OSCAR paper prototype was initially

designed to be used for early user studies, circumstances were such that I was

unable to conduct those studies and instead adapted the design plan to include an

early expert evaluation.

In preparation for the first expert evaluation, the elements of the paper

prototype were all scanned in and re-assembled digitally to create a set of

walkthrough screenshots. Fifty-two screenshots were created, corresponding to the

steps a user would take in order to accomplish four tasks:

Task 1) Play the “Welcome” file on the living room speakers (4 steps).

Task 2) Locate the documentary “Runaway Trains” on the MovieMonster

service and begin watching it on the living room TV. (8 steps)

Task 3a) Create a template that causes the picture frame by the front door to

display a new image from your photo library every time you activate

the template. (12 steps)

Task 3b) Now modify the template so that a new photo is displayed every 10

minutes (7 steps).

Task 4a) You read in a review of the MediaMonster that it was possible to

create a template that causes your music to follow you around the

house. Create that template. (12 steps)

5.2 · Designing OSCAR 193

Task 4b) Now modify the template so that your pictures also follow you

around the house. (9 steps)

In addition to the walkthrough screenshots, some additional information about

the design, its intended audience, and its envisioned use were included in a set of

instructions provided to the reviewers. The (digitized) paper prototype

walkthrough created for the first expert evaluation was derived directly from the

paper prototype itself, and many of the screens were created by hand from the

components of the paper prototype and scanned for sharing digitally. In addition,

a number of the screenshots were manipulated after scanning, or contained

elements that had been copied and pasted from other screens that had been

previously scanned. The resulting walkthrough did not differ in significant ways

from the initial paper prototype, but some details were fleshed out in the

walkthrough that had been left unaddressed in the paper prototype. The following

paragraph describes part of the interaction sequence for Task 3 as it was

represented in the paper prototype walkthrough.

In Figure 5-9, the user has selected the template “View Picture on Frame”

from the list of pre-installed Templates because it appears to be the closest in

functionality to what they ultimately want to achieve. They then press “Activate”

to view the template details (in this case, “Edit” would have been the more

appropriate choice, but this walkthrough demonstrates that the design is

5.2 · Designing OSCAR 194

somewhat robust to minor errors). After pressing “Activate,” the user is presented

with Figure 5-10, which is prompting the user to select a photo for display. Since

the goal is not, in fact, to display a photo right this instant, but to create a

template that automatically selects a photo when the template is activated, the

user ignores the browse dialog and elects to configure the template by tapping the

gear icon underneath the source slot. Next, the screen shown in Figure 5-11 is

displayed, which presents a set of configuration options for the source slot. The

user chooses the “automatically select” radio button and chooses “image” from the

list box next to the label “media type is,” and finally taps “Browse…” to the right

of the label “in Collection.” This results in the pair of dialogs shown in Figure

5-12. After making further choices in this dialog and saving them by tapping

“Select,” the user is presented with the screen shown in Figure 5-13, on which

(s)he taps “Choose” under the “Picture Frame” icon. This results in a second

browse dialog that shows components that are compatible with the “media type is:

image” selection made when configuring the source slot. After choosing “Front

Door Picture Frame” on the screen shown in Figure 5-14 and tapping the “Select”

button, the user then taps the center arrow to activate the template. The

resulting screen, shown in Figure 5-15, provides the user with controllers that are

specific to the picture frame and the image renderer, along with status

information and stop/start/change controls related to the connection as a whole.

5.2 · Designing OSCAR 195

The walkthrough just presented covers most of the functionality available in

the OSCAR paper prototype. We have seen how a user can

• View and select from the list of templates

• Browse the list of devices and media that are available on the network

• Incorporate those devices and media into templates and connections

• Edit a template to define rules regarding how selected devices and media

are connected at template activation time

• Activate a template and view the resulting connection(s)

• Gain access to controls for stopping and starting connections

• Gain access to device- and media-specific controls for an active connection

The OSCAR paper prototype was designed to afford a handful of additional

capabilities that were not highlighted by the foregoing walkthrough. Additional

options include:

• Configuring a template to prompt the user to select from a set of options

when the template is activated

• Configuring a template to automatically select a new item from the list of

sources at a particular time interval (slideshow mode)

• Configuring a template to automatically select a new item from the list of

sources upon completion of the current source’s connection (playlist mode)

5.2 · Designing OSCAR 196

• Defining custom criteria to generate the list of source or destination

components

• Creating a template that includes multiple connections

All of these additional functions were included in the full set of walkthroughs

that were delivered to the expert review panel.

5.2 · Designing OSCAR 197

Figure 5-9: The screen from the initial OSCAR paper prototype viewed by a user as they attempt to carry
out Step 3 of Task 3 (“Create a template that causes the picture frame by the front door to display a new
image from your photo library every time you activate the template”). In the previous step, the user selected
the template “View Picture on Frame.” In Step 3, the user will tap the “Activate” button at the bottom of the
screen.

5.2 · Designing OSCAR 198

Figure 5-10: After pressing “Activate” on the screen shown in Figure 5-9, the user is prompted to select a
photo.

5.2 · Designing OSCAR 199

Figure 5-11: After selecting a photo, the user taps the “gear” icon below the source slot, which results in this
screen being shown.

5.2 · Designing OSCAR 200

Figure 5-12: The user wishes to choose a collection from which photos will be selected for display when this
template is activated. After pressing “Browse…” to the right of the label “In collection” on the screen shown
in Figure 5-11, this screen is shown.

5.2 · Designing OSCAR 201

Figure 5-13: Once configuration of the source slot is complete, the current state of the connection is shown.

5.2 · Designing OSCAR 202

Figure 5-14: In order to choose a destination for this template’s connection, the user taps the button
“Choose” under the destination icon in Figure 5-13. This screen is the result.

5.2 · Designing OSCAR 203

Figure 5-15: Finally, after completing the configuration, the user activates the template. This screen shows
the active template with one connection that can be stopped and started using the arrow in the center. Also
device-specific controls are shown along the bottom.

5.2 · Designing OSCAR 204

5.2.4 First Expert Evaluation

For the two expert reviews of OSCAR prototypes, I recruited a panel of four

usability experts from within PARC who were not affiliated with the OSCAR

project. In addition to being well versed in usability and user interface design,

they were all reasonably avid consumers of both analog and digital media, which

qualifies them as domain experts as well for the purposes of this application.

In preparation for each expert evaluation, I prepared a detailed walkthrough of

the OSCAR design and delivered the walkthrough along with instructions and

other supporting materials (e.g., the Persona descriptions) to the panel of experts.

Each expert spent a number of hours over several days reviewing the prototype

and applying their expertise to assess the usability of the application being

designed. Each reviewer produced a report of the usability issues identified during

their evaluation, and each usability issue was given a severity rating of high,

medium, or low. In addition, they were asked to comment on positive aspects of

the design that they felt should not be changed, and they were also asked to

provide high-level comments about the proposed tasks, personas, usage scenarios,

form factor, etc. After receiving all four reports, I combined the feedback into a

single, non-redundant, prioritized list of issues and suggested improvements.

The feedback from the expert evaluations was overall positive in terms of the

utility, general direction, envisioned tasks, and intended users of OSCAR, but

5.2 · Designing OSCAR 205

there were numerous issues both large and small that were identified by the

experts.

First there were a handful of areas where the evaluators felt the UI was

effective. Three were pointed out by multiple evaluators: the visual representation

of connections between devices, the linking of connection/template slots to the

dialogs that allow users to browse for the slots’ contents, and the visibility of the

range of configuration options when editing or creating a template. These

elements are highlighted in Figure 5-16.

5.2 · Designing OSCAR 206

Visual representation of

connections

Linking of browse

dialog to “slots”

Communication of

range of configuration

options

Figure 5-16: A few elements of the initial OSCAR paper/walkthrough prototype were called out by the
panel of experts as being valuable design elements. Three of those design are represented here in the left
column, with the aspect of the depicted design that was called out by the panel listed in the corresponding
right column.

5.2 · Designing OSCAR 207

In all, the evaluators identified 151 discrete usability issues, 31 identified as

“highly severe.” Several of the severe issues addressed aspects of the system as a

whole rather than the OSCAR UI in particular, while others were fairly specific

about elements of the UI.

Some of the issues that were identified were determined to be beyond the

scope of the OSCAR project. For example, some of the panelists wondered how

OSCAR would deal with resource contention, i.e., two members of the household

wishing to use a particular device (say, the living room speakers) at once. Others

were concerned about the boundaries between public and private devices in

multi-person homes, and worried about how users would manage their sharing

policies. One panelist in particular was both concerned and excited by the

possibility that a system like OSCAR could allow one user to gain awareness of

the presence and activities of other users, whether in the same or in different

households. While each of these concerns and/or opportunities are interesting and

present opportunities for future research, it did not seem wise to expand the scope

of OSCAR to address these issues directly, but rather to keep the focus on how

and end-user will configure and control sets of devices for themselves and for their

housemates. Other issues deemed out-of-scope included support for

controlling/monitoring devices currently not visible (e.g., in another room or

another household), and the scalability of the template and device lists to handle

large numbers (100s or more) of items.

5.2 · Designing OSCAR 208

In terms of usability issues that directly affected the established goals for

OSCAR, there were two areas around which the panelists identified multiple

high-priority issues. These were clearly the areas most in need of improvement:

the terminology and models surrounding Templates, Connections, and their

relationship to each other; and the amount of information and context provided

while browsing for components (especially when trying to fill a source or

destination slot for a template/connection).

The second prototype was designed to address the critical issues as well as

many smaller issues. In particular, it was clear from the expert evaluation that the

conceptual model of the interface and the terminology that is used to reflect that

conceptual model needed a significant overhaul. The second prototype focused on

improving these issues, and in so doing also addressed many of the smaller issues—

for example several troublesome elements of the UI were removed and replaced

with new options that better reflected the revised conceptual model.

5.2.5 Second OSCAR Prototype: Medium Fidelity Mockups

I created a second prototype based on the feedback from the expert panel. This

prototype was rendered in a “medium-fidelity” fashion, i.e. it is a set of computer-

drawn screen shots that are not interactive. The second prototype was

dramatically redesigned to address the primary concerns of the reviewers. Five

major modifications were made:

5.2 · Designing OSCAR 209

1) Tab-based global navigation was introduced, with each major function of

the UI (“Connections,” “Recipes,” “Ingredients,” and “Events &

Schedules”) separated into its own tab. In addition a customizable “Home”

tab was provided9.

2) “Templates” were renamed to “recipes,” and accompanying language was

used as well (e.g., devices and media were dubbed “ingredients” in order to

reinforce their relationship and use as components of recipes).

3) Templates/recipes were separated from connections, and each placed in a

separate section of the UI, delineated by separate top-level tabs.

4) Devices and media (a.k.a. “Ingredients”) were now also given their own

top-level tab, so that users could view and interact directly with all of the

resources available on their networks.

5) The UI for browsing and selecting devices from within the template/recipe

and connection editing pages was improved to provide greater detail about

each device and component, such as the component’s icon and location.

The re-casting of templates as recipes represented a particularly important

shift in the design, and so I will briefly describe the thinking behind the new

language choice.

9 The functionality of the “Home” and “Events & Schedules” tabs were never fully resolved,
and they were eventually dropped from OSCAR.

5.2 · Designing OSCAR 210

5.2.5.1 The Recipe Metaphor

In the first low-fidelity prototype we used the term “template” for custom

configurations, and presented them as shown in Figure 5-4 through Figure 5-8.

Our expert review panel gave us feedback that the term “template” was

intimidating, confusing, and ambiguous. They especially thought that users of

Microsoft Office would have prior, perhaps negative, associations about the

meaning, capabilities, and usability of “templates.” I agreed with their assessment

and sought a new term.

After considering many alternatives, I settled on the term “recipe” to express

the notion of custom configurations. The recipe concept appears to fit quite nicely

with the concept of custom configurations. A recipe is generally understood to be

a kind of template: it can be doubled or halved, and substitutions are allowed.

Like OSCAR’s configurations, recipes consist of ingredients that are combined at

some point in time to create something that is qualitatively different than the sum

of the parts. There may be many different recipes that produce the same dish, just

as there may be many different configurations that support the same basic activity,

such as “listen to music.” In addition, the term “recipe” evokes images of

domesticity that hint at the historical dichotomy of the home as a place of both

leisure and work. Recipes can be shared among friends and family members, and

can be created, modified, and prepared by experts and novices alike.

5.2 · Designing OSCAR 211

OSCAR’s customizable, re-usable compositions were therefore renamed

“recipes.”

5.2.5.2 Preparing for the second evaluation: Walkthroughs

The format of the walkthroughs for the second evaluation was the same as that

used for the first evaluation: a set of screenshots corresponding to the steps that a

user would take to carry out a set of tasks. The tasks were modified somewhat

from the tasks used in the first iteration to reflect a clearer understanding of the

emerging functionality of OSCAR and a greater emphasis on the Personas.

Task 1) Play Welcome to MonsterPad (8 steps).

 Dan Engstrom has just purchased the MonsterPad.

 He plays the “Welcome to MonsterPad!” recipe to test his setup.

 When he’s done he deletes the recipe from his list of recipes.

Task 2) Watch a Netflix movie (10 steps).

 Haley uses the “Watch a Netflix Movie” recipe to start watching the

documentary Runaway Trains.

Task 3) Show off Photos (15 steps).

 Dan creates a new recipe to help him show off photos (on the living room

TV) when guests come over.

Task 4) View recent photos on desk frame. (17 steps).

5.2 · Designing OSCAR 212

 Angie creates a recipe that shows photos (from anywhere on the network)

that were added in the past two days on her desktop photo frame.

 When she’s done, she activates the recipe.

 Then she stops Runaway Trains, which is playing on the Living Room TV.

Figure 5-17 through Figure 5-23 shows a subset of the screens for the Task 3

walkthrough.

In Figure 5-17, Dan sees the list of current recipes, decides to create a new

one by tapping “Create New Recipe.” He sees a screen shown in Figure 5-18,

inviting him to configure the new recipe. He first configures the source slot by

choosing “Search for ingredients when this recipe is activated,” and then

proceeding to make selections in each of the sub-dialogs for “scope,” “filter,” “sort,”

and “select.” Four steps later, the screen in Figure 5-19 is presented. He chooses

to select a specific component, the Living Room TV, for this recipe’s destination,

so he taps “Choose” and is presented with the browse dialog in Figure 5-20. After

choosing the Living Room TV and viewing the results of his actions in Figure

5-21, he taps in the “Recipe Name” text box near the top of the screen and is

presented with the soft keyboard shown in Figure 5-22. Finally, after giving the

recipe a name and saving his work, he returns to the list of recipes in Figure 5-23

and sees his new recipe in the list. At this point he can activate, edit, delete, or

duplicate his new recipe.

5.2 · Designing OSCAR 213

Figure 5-24 through Figure 5-27 show additional functionality not

demonstrated in the foregoing walkthrough. The OSCAR medium fidelity

prototype also provides users with the ability to monitor and control multiple

connections (Figure 5-24), view details and additional controls on a specific

connection (Figure 5-25), browse and select from the list of all available devices

and media (Figure 5-26), and view details and controls for a specific device or

media source (Figure 5-27).

5.2 · Designing OSCAR 214

Figure 5-17: The list of recipes as they appeared in the OSCAR medium-fidelity prototype. From this
screen the user can activate, edit, delete, or duplicate any existing recipes, or can create a new one.

5.2 · Designing OSCAR 215

Figure 5-18: The screen shown after a user has elected to “create new recipe.” Both source and destination
slots are undefined as indicated by the dotted outlines and the fact that the “Activate” button is disabled.

5.2 · Designing OSCAR 216

Figure 5-19: If the user elects to “Search for ingredients when the recipe is activated,” they are presented
with a set of options that allow them to define the search criteria for the selected slot. In this example, the
user is defining criteria for source components.

5.2 · Designing OSCAR 217

Figure 5-20: The user can also elect to specify one or more specific components for the source or destination
slot. In this example, the user is browsing for a component to use as the destination of this template’s
connection.

5.2 · Designing OSCAR 218

Figure 5-21: After choosing a destination component, the recipe is shown as ready to activate, as evidenced
by the now-enabled “Activate” button and the arrow with a solid border.

5.2 · Designing OSCAR 219

Figure 5-22: The user can give the recipe a name by tapping in the “Recipe Name” textbox and using the
soft keyboard to enter a name.

5.2 · Designing OSCAR 220

Figure 5-23: After completing configuration of the new recipe, the user returns to the list of recipes and sees
the newly created recipe at the top.

5.2 · Designing OSCAR 221

Figure 5-24: At any point, the user can tap the “Connections” tab in order to view the list of current
connections. This list allows the user to monitor, control, and view details on any connection that OSCAR
has created.

5.2 · Designing OSCAR 222

Figure 5-25: When viewing details on a connection, the user sees the currently connected components and
the current status of the connection (Active, Ready, Stopped, Failed, Unavailable). In addition this screen
provides controls to stop and start the connection and control the components involved in the connection.

5.2 · Designing OSCAR 223

Figure 5-26: The “Ingredients” tab provides access to an always-available list of the components (devices and
media) that have been discovered by OSCAR. The icons in the “role” column express the device/media
source’s role(s) in Obje data transfer and aggregation, and the graphics in the rightmost column are intended
to show the number of connections in which the ingredient is involved.

5.2 · Designing OSCAR 224

Figure 5-27: The Ingredient Details screen provides access to the controls for the selected device, as well as
information about which connections and recipes the devices is a part of.

5.2 · Designing OSCAR 225

5.2.5.3 Second Expert Evaluation

The medium fidelity walkthrough prototype was presented to three of the four

experts that reviewed the first prototype (the fourth expert was unable to commit

the time). I received feedback from the expert panel on a variety of issues. The

overall feedback was positive, and the panel felt that the most significant issues

identified in the first iteration had been addressed. There was universal praise for

the new “recipe” metaphor and for the separation of recipes and connections into

separate sections of the UI, though there were still some specific problems with

clarifying the different information and capabilities associated with each of the

two distinct concepts: a recipe (a data structure that describes how a connection

or set of connections should be made) and a connection (an active session

involving the transfer of data between components).

Support for browsing was considered to be greatly improved, though still

amenable to further improvements, especially when browsing within media

collections.

By and large the feedback was of a detailed nature—offering suggestions to

improve the navigation options or language used in the UI. These improvements

were incorporated into the next version of the prototype: the OSCAR1 Interactive

Prototype.

5.3 · OSCAR 1: The First Interactive Prototype 226

5.3 OSCAR 1: The First Interactive Prototype

After the second, medium-fidelity prototype and expert evaluation, work began on

the first interactive version of the OSCAR prototype. OSCAR1 was developed to

run on the TabletKiosk Sahara Tablet PC shown in Figure 5-1. This device has a

12.1" LCD screen that is operated via touch input and runs Windows XP Tablet

PC Edition. OSCAR1 was designed to use the entire screen and to hide all of the

OS widgets and controls so that users were largely unaware that they were

interacting with a computer application running on a conventional PC. Our goal

was to simulate a new, unfamiliar device with new, unfamiliar capabilities.

5.3.1 The OSCAR Testbed

A dedicated room at PARC served as a site for development, experimentation,

and ultimately user evaluations. The room featured a large comfortable couch

positioned in the “living room” area, a refrigerator in a corner designated as the

“kitchen” area, and another area near the entryway designated as the “front door.”

We deployed a set of media services and devices in and around this room, each of

which were implemented as Obje components. In all there were sixteen Obje

components of nine different types (3 speakers, 2 TVs, 2 picture frames, 2 generic

screens, 3 microphones, a webcam, a music library, a photo library, and a TV

tuner) hosted on 5 networked computers in the room and throughout our lab.

Figure 5-28 shows a schematic of the testbed room.

5.3 · OSCAR 1: The First Interactive Prototype 227

Figure 5-28: A schematic of the room that was used as a testbed for the OSCAR development and user
studies.

5.3 · OSCAR 1: The First Interactive Prototype 228

5.3.2 The OSCAR1 User Interface

OSCAR1 did not differ much from the OSCAR medium-fidelity prototype in its

functionality or its basic user interface. The key differences between OSCAR1

and its predecessor include:

• Three global tabs instead of five and the replacement of the never-developed “home”

screen with starting the user at the “Recipes” screen

• A significantly redesigned recipe details screen that includes:

o Abandonment of the explicit query building UI shown in Figure 5-19

and its replacement with the option-based UI shown in Figure 5-30.

o Closer integration of static ingredient and dynamic ingredient (criteria-

based) slot definitions.

o Refactoring of playlist/slideshow rules into the source slot (see Figure

5-30) as opposed to presenting them as connection-level attributes

(Figure 5-19).

• A unified color scheme to reinforce the different sections of the interface represented

by the global tabs.

In the OSCAR1 prototype pictured in Figure 5-29 through Figure 5-35, the

user starts with the Recipes screen shown in Figure 5-29. From the Recipes screen,

users browse a list of available recipes and “prepare” them to activate connections

among media and devices. From this screen, they can also create a new recipe (by

tapping “New Recipe”) or edit an existing recipe (by tapping “Details”). In either

case, they would be directed to the Recipe Details screen for the selected/created

5.3 · OSCAR 1: The First Interactive Prototype 229

recipe. (Figure 5-30). The choices the user makes in the details screen for any

given recipe will affect what happens when the recipe is “prepared.” The recipe

details will define candidate components for both the source and destination slots

as well as selection options dictating how the candidate list would be used to

populate the slot when the recipe was prepared. In the example shown in Figure

5-30, for example, the user is editing a recipe whose name is “Who’s at the door?”

It is configured to always use the “Front Door Webcam” as the source component,

as indicated by the fact that the “Single Ingredient” tab is selected in the source

slot panel, the “Front Door Webcam” component is selected as the single

ingredient, and the option “Use them all” is chosen (though this last option is

redundant since only one, non-Aggregate component has been chosen). This

recipe is further configured to prompt the recipe’s user to select among the

“Picture Frame in Front Door” and “TV in Living Room” when the recipe is

prepared. This is indicated by the fact that the “Ingredient List” tab is chosen,

the two aforementioned components are in the list, and the option “Show them to

me and I will choose” is selected below the list.

After preparing a recipe, which can be done from either the Recipes or Recipe

Details screens, an active connection is created and the user is directed to the

Connection Detail screen. In the example shown in Figure 5-31, an active

connection between a playlist consisting of Led Zeppelin songs and the Living

Room speakers is being depicted. The playlist contents, currently playing song,

5.3 · OSCAR 1: The First Interactive Prototype 230

connection status, and controllers for both the audio renderer and speakers are all

visible on this screen. Recall that controller user interfaces such as these are

provided by the components themselves through the Obje Framework’s mobile

code delivery mechanism, and they are rendered by OSCAR with no advance

knowledge of their capabilities [111].

If the user wishes to select a different source (in this case, select different

music to play), they would simply tap the button labeled “Change” underneath

the source component’s icon. Doing so results in the screen shown in Figure 5-32,

in which a browse dialog is displayed to allow the user to select an alternative

source. Note that if the user had prepared a recipe that was set to “Show me and I

will choose,” a browse dialog such as the one shown in Figure 5-32 would have

been shown immediately after the recipe was prepared, and before any connection

was made active. Multiple connections can be monitored and controlled

simultaneously using the Connections screen (Figure 5-33).

An alternative way to control devices and create new recipes is to start with

the Ingredients screen shown in Figure 5-34. From here, the user can view all of

the components that have been discovered on the network and tap on their icons

to view their details (Figure 5-35). The details include the control (or “admin”)

user interface that is downloaded automatically and displayed to the user. The

details also show any connections or recipes that involve this component. In

5.3 · OSCAR 1: The First Interactive Prototype 231

addition to allowing the user to manipulate the control UI, the user can choose to

create a new recipe by tapping “Use in New Recipe.”

5.3 · OSCAR 1: The First Interactive Prototype 232

Figure 5-29: The OSCAR1 list of recipes. This is the first screen that a user sees when interacting with
OSCAR1. From this screen, the user can “prepare,” delete, or view details/edit a recipe. In addition, from
this or any screen the user can tap the globally available tabs at the top of the screen to jump to a different
part of the UI.

5.3 · OSCAR 1: The First Interactive Prototype 233

Figure 5-30: The user can edit a recipe by defining specific components to be used in a connection, as shown
here, or by defining “Dynamic List” criteria. In addition, for situations where more than one component can
populate a source or destination slot, the user can define selection rules (shown under the heading “2. Select
the ingredient” that will determine how the component will be selected when the recipe is prepared.

5.3 · OSCAR 1: The First Interactive Prototype 234

Figure 5-31: After preparing a recipe, a connection is created. In some cases, depending on the selection
rules defined by the user and the available components at the time of preparation, the result is an active
connection like the one shown here. In this case, a playlist of Led Zeppelin songs is being streamed to the
living room speakers.

5.3 · OSCAR 1: The First Interactive Prototype 235

Figure 5-32: At any point during the life of a connection, the user can elect to change the source or
destination component being used. By tapping the “Change” button on the screen shown in Figure 5-31, the
user is presented with a dialog that allows them to browse for a replacement component.

5.3 · OSCAR 1: The First Interactive Prototype 236

Figure 5-33: The user can monitor and control multiple connections at the same time via the Connections
List screen. This screen is always accessible via the “Connections” tab.

5.3 · OSCAR 1: The First Interactive Prototype 237

Figure 5-34: The list of available devices and media is also always available via the “Ingredients” tab. From
here, the user can view details on any component that OSCAR has discovered on the network.

5.3 · OSCAR 1: The First Interactive Prototype 238

Figure 5-35: Via the Ingredient Detail screen, the user can access controls specific to the selected device,
view and access any connections or recipes in which the device is involved, and create a new recipe that uses
this device.

5.3 · OSCAR 1: The First Interactive Prototype 239

The walkthrough just presented demonstrates most of the key functionality

available in OSCAR1. We have seen how a user can

• View and select from the list of recipes

• Browse the list of devices and media that are available on the network

• Incorporate those devices and media into templates and connections

• Edit a template to define rules regarding how selected devices and media are

connected at template activation time

• Activate a template and view the resulting connection(s)

• Gain access to controls for stopping and starting connections

• Gain access to device- and media-specific controls for an active connection

The OSCAR paper prototype was designed to afford a handful of additional

capabilities that were not highlighted by the foregoing walkthrough. Additional

options include:

• Configuring a template to automatically select a new item from the list of sources at a

particular time interval (slideshow mode)

• Configuring a template to automatically select a new item from the list of sources

upon completion of the current source’s connection (playlist mode)

• Defining custom criteria to generate the list of source or destination components

Note that while these latter functions are still present in OSCAR1, as they

were in earlier versions of the prototype, through the development of the usage

scenarios, user study plans, and personas, they had come to be seen as less

important than the core functionality shown in the foregoing walkthrough. That is

5.4 · Summary: Towards OSCAR2 240

to say, it had become apparent that these functions would be of only marginal

utility to many users, and that it would be most productive to focus the bulk of

development and user testing on the core functions of discovering and controlling

devices, making and controlling connections, and creating reusable compositions of

specific, known devices.

5.4 Summary: Towards OSCAR2

OSCAR1 was the culmination of many months’ design, evaluation, and

implementation. Once OSCAR1 had reached an acceptable level of completeness

and stability, I designed and conducted a user study to evaluate its effectiveness

against the goals outlined at the beginning of this chapter and to contribute to

OSCAR’s continued improvement. The next chapter covers the OSCAR1 user

study and results, the changes and improvements suggested by those results that

resulted in OSCAR2, the second user study that examined OSCAR2, and the

results of that second study.

 241

6 The OSCAR User Study

As described in Chapter 5, OSCAR was designed to explore the feasibility of end-

user composition and the design issues with delivering composition tools to end-

users. As such, it also provides a window into the user experience goals of the

Obje Framework, upon which OSCAR is based. In addition, a major goal in the

design of OSCAR was to provide a high-quality application to support users in the

discovery, control, and composition of media-related resources in the home.

To assess OSCAR’s success along each of these dimensions, I designed and

conducted a user study. The user study was conducted in two phases using two

versions of the OSCAR prototype. The second phase of the study followed the

first phase by approximately eight weeks, during which time we made numerous

changes to OSCAR based on the results of the first phase. None of the changes

were planned in advance save one: as discussed earlier, there were significant

questions about the most efficacious “world view” to present to users: should

OSCAR be presented as a device/media-oriented application that also supports

re-usable configurations, or should it be presented as an activity-oriented

application that provides access to devices and media through the construct of

“recipes” or some other framing of activity-oriented custom configurations? To

6.1 · User Study Design 242

explore this question, it was determined in advance that OSCAR1 would adopt

the “Activity-oriented” world view, and that OSCAR2 would adopt the “Devices

and Media-oriented” world view. No other differences between the two versions

were decided in advance of the first study phase, though as will become apparent

later in this chapter, it was necessary to make several other changes to improve

the overall usability of the system.

In all, the study included 18 participants recruited from the surrounding

community, none of whom were professional programmers or system

administrators. Nine participants were assigned to the first phase and the other

nine were assigned to the second. No users participated in both phases.

In this chapter I will describe the user study design, the results of the first

phase of the study, the changes that were made to the prototype before the second

study phase, and the results of the second phase. In addition I will discuss the

results of the in-depth interview that was conducted with all eighteen

participants and the implications of these results for future design.

6.1 User Study Design

As described in Chapter 5, a room at PARC was dedicated to the design and

evaluation of OSCAR as a testbed and study site (see Figure 6-1). The space

simulated a home with a large comfortable couch positioned in the “living room”

area, a refrigerator in a corner designated as the “kitchen” area, and another area

6.1 · User Study Design 243

near the entryway designated as the “front door.” We deployed a set of media

services and devices in and around this room, each of which were implemented as

Obje components. In all there were 16 components of 9 different types (3

speakers, 2 TVs, 2 picture frames, 2 generic display screens, 3 microphones, a

webcam, a music library, a photo library, and a TV tuner) hosted on 5 networked

computers throughout our lab.

All user study sessions were held in the OSCAR room and lasted

approximately 90 minutes (see Figure 6-2). The study participants were screened

such that they were not professional system administrators or programmers. We

had fairly even distributions of gender (10 male, 8 female), age (20-55,

average=36.5), and education level (“some college” through “graduate degree”).

The complete demographics are included in Appendix F. I was present for every

session along with my colleague Ame Elliott, who assisted by acting as “host” for

each session (i.e., handling most of the interactions with the participant) and

contributing to the observations of participants’ performance and reactions. In

addition to extensive notes, each session was videotaped with two cameras (see

Figure 6-3) and screen capture software [146] recorded user actions. After each

session, the two research team members (Ame and myself) independently scored

each participant on a number of variables, including the amount of help required

to perform each task, the correctness of the solution to each task, overall

comprehension of the system, and the participant’s experience with computer

6.1 · User Study Design 244

technology and home networking (based on responses to interview questions). In a

post-session debriefing meeting, the two team members discussed their

independent scores and reached a consensus. Since the scoring criteria for factors

such as amount of help required and for solution correctness were being developed

as the study progressed, we also went back after all the participants had finished

and reviewed the video to ensure that all participants’ task performance had been

graded consistently. A handful of scores were corrected during this process, but

most were left intact.

6.1 · User Study Design 245

Figure 6-1: The study setup used for the OSCAR user study. These images show the testbed room from two
angles, showing the “living room” (left) and “kitchen”/ “front door” (right).

Figure 6-2: The test setup used for the OSCAR user tests. One of the research team members (on the couch,
to the right) handled all the communication with the participant (on the couch, to the left), except for the
interview, which was conducted by both research team members. The second team member (behind the
couch) was responsible for running the video cameras and setting up and maintaining OSCAR and all of the
Obje components before and during the sessions.

6.1 · User Study Design 246

Figure 6-3: An example of one of the OSCAR1 participants interacting with OSCAR during the session.
This shot represents the view captured by the “over-the-shoulder” camera.

6.2 · User Study Sessions 247

6.2 User Study Sessions

Each user study session consisted of a number of different activities, including

introduction and scene setting, tasks, questionnaire, screen-by-screen usability

assessment, and follow-up interview. I will describe each activity in the following

subsections.

6.2.1 Introduction and scene setting

We asked each participant to imagine that they were sitting in their own homes of

the near future. We gave them a brief orientation to “their” house, pointing out

the various rooms as well as the wirelessly connected devices, and media libraries.

As we handed them the tablet running OSCAR, we asked them to imagine that

they had just purchased a new device from a consumer electronics store, and that

what they knew about this device was that it would allow them to connect and

control the other devices in their homes. We simulated an “out-of-the-box”

experience, in which a consumer acquires a new device and sets it up with no

help or instructions. Participants received no training at all, and were not given

any information about any of the functions or concepts in the interface, such the

meaning of the term “recipe.”

6.2 · User Study Sessions 248

6.2.2 Tasks

We then presented the participant with a set of four tasks, presented one at a

time. As they carried out the task, participants were encouraged to think aloud as

they worked. The tasks were as follows:

Task 1) Play the welcome message on the Living Room Speakers.

Task 2) Show a picture from your recent trip to Australia on the Living Room

TV. Then show a different photo from the same trip.

Task 3a) Someone has just rung the doorbell. See who it is by displaying the

image from the webcam outside the front door on the picture frame

just inside the front door.

Task 3b) Now make it so that you or someone you live with can easily do this

again, without having to redo it from scratch. Give it a name so that

you will remember what this does.

Task 3c) Now make it so that when the doorbell rings, you can decide to either

show the image from the webcam on the picture frame OR the living

room TV.

Task 4a) Someone you live with is more motivated to clean when they are

listening to music. Make a recipe that will allow them to play all of the

songs by the Beatles on the Kitchen speakers.

6.2 · User Study Sessions 249

Task 4b) The person you made this for asks you to change this so that they can

listen to other music, too, and do it any room of the house. Change the

recipe so that they can pick the artist and the speakers when they

activate the recipe.

Tasks 1 and 2 could be accomplished using recipes that were pre-loaded into

OSCAR. In the course of Task 3 users needed to discover how to create a new

recipe, and in Task 4 they created a different recipe, again from scratch.

6.2.3 Questionnaire

After completion of the four tasks, we administered a questionnaire to each

participant to capture their reaction to OSCAR. The first part of the

questionnaire comprised the System Usability Scale (SUS) [16], and the second

part consisted of statements intended to assess the participant’s projected

subjective preference for using OSCAR in their own home. The first ten questions

in the questionnaire shown in Figure 6-4 are directly adapted from the SUS. The

next seven, excepting question 1410, are the subjective preference questions.

10 Question 14 was an additional usability question that was later deemed redundant with the
SUS questions, and its results are not reported in this document.

6.2 · User Study Sessions 250

Figure 6-4: The subjective usability and preference questionnaire that was administered to OSCAR user

study participants. Questions 1-10 were derived from Brooke’s System Usability Scale instrument [16], and

the latter questions were designed to measure participants’ preference for OSCAR as compared to existing
alternatives.

6.2 · User Study Sessions 251

6.2.4 Screen-by-screen usability assessment

We then presented each user with a printout of each screen in the UI and asked

them to indicate with stickers parts of the UI that they found particularly helpful

or appealing and parts that they found particularly confusing or distasteful. They

used smiley-face stickers to indicate positive aspects and “!” stickers to indicate

problem areas. Examples are shown in Figure 6-9 through Figure 6-11, Figure

6-18, and Figure 6-19. We discussed each judgment with them to ensure that we

understood the reasons for their assessment.

6.2.5 Interview

The final part of each session consisted of a 30-45 minute interview in which we

asked them a number of questions aimed at understanding their current and

envisioned uses of home media networking technology, and how they could

incorporate OSCAR’s capabilities in their homes. We also asked questions relating

to the desirability of a possible future development path: the sharing of devices

and media across homes and the sharing of compositions among users in different

locations. The interview was structured around a number of set topics, though the

discussions were allowed to range freely in order to allow participants to express

their interests and reactions as naturally as possible. The interview script

(included in Appendix E) included questions to cover the user’s comprehension

and impression of the system as well as the desirability of incorporating a system

6.2 · User Study Sessions 252

like OSCAR into their own homes and what they would use it for if it were

available to them.

6.2.5.1 Comprehension and impression

The first set of questions was intended to calibrate the participant’s

understanding of the functionality made available in OSCAR and the terminology

used to describe it. Also, I attempted to calibrate the participants’ perception of

OSCAR’s usefulness by asking them to describe what kind of person they believed

would get the greatest use from OSCAR. The following questions were asked:

• What is a recipe?

• What is a connection?

• What is an ingredient?

• How would you describe this to someone else?

• What is your opinion of the language used in this application, especially

“Recipe”?

• Who is a system like this for?

6.2.5.2 Recipe/Setup usefulness and preference

The next set of questions were intended to get a more complete picture of what

the participants believed they would use OSCAR for. A number of different

approaches were taken to try to get this information, including asking open-ended

questions and using constrained instruments to gain comparable data across

6.2 · User Study Sessions 253

participants. In terms of the latter, I first asked participants to rank the relative

usefulness of a set of recipes that would be used entirely within their own homes

using the form shown in Figure 6-5. These were reflective of the types of recipes

that were created and used during the task portion of the study.

Following this, I asked participants to rank a set of recipes that included

communication among devices both within and without the household using the

form shown in Figure 6-6. Though these were not reflective of the functionality

demonstrated in OSCAR1 or its successor, OSCAR2, it did reflect functionality

that OSCAR was designed to ultimately support, and whose desirability was

being assessed for possible future development. In addition, I asked to what extent

the addition of the ability to share devices and media across homes added value to

OSCAR. Finally, I asked if they believed that the ability to share recipes would

add value to OSCAR and what role, if any they believed that they would play in

recipe sharing (i.e., would they be likely to produce or consume shared recipes?).

6.2.5.3 Form factor and ownership of OSCAR

As mentioned in Chapter 5, the tablet form factor was selected because of its

similar properties to existing remote controls but also because of its generous

display size. Each participant was asked to react to OSCAR’s form factor, and also

to comment on what role they could see a device like OSCAR playing in their

household.

6.2 · User Study Sessions 254

6.2.5.4 Computer and system adminstration experience

Finally, a set of questions were asked to help characterize each participant’s

computer expertise and the role they play in home system administration both for

themselves and for friends and family. These questions were intended to augment

the demographic information we had already collected from each participant

during the initial screening phase, which included age, education level, media

consumption habits, and type of employment. The information received about

each participant from this portion of the interview is reported along with the

demographic data in Appendix F.

6.2 · User Study Sessions 255

Figure 6-5: The list of recipes presented to users for ranking and discussion. Participants ranked the recipes
by assigning each recipe a number from 1-9 in the “Use” column, with 1 being the most useful recipe and 9
being the least. In addition, participants could place an “X” in the “Excite” column next to any recipe that
they would be excited to try but that they were not sure would necessarily be immediately useful. The
purpose of this study instrument was to present all participants with the same set of recipes to determine
whether different users would be likely to use OSCAR in different ways.

6.2 · User Study Sessions 256

Figure 6-6: Another list of recipes that were presented to study participants for ranking. In contrast to the
list shown in Figure 6-5, the recipes in this second set involved communications with devices or services
outside the home network. Again, participants ranked the recipes from 1-8 in the “Use” column according to
their perceived usefulness to them, and could place an “X” in the “Excite” column next to any recipe that they
would be excited to try. While this functionality was not present in the versions of OSCAR used in the user
tests, its addition had been designed for future iterations.

6.3 · Results of the OSCAR1 Study 257

6.3 Results of the OSCAR1 Study

Users’ task performance revealed significant deficiencies in the usability of

OSCAR1. None of the users were able to accomplish all of the tasks without at

least some help. The results are shown in Table 6-1 and Table 6-2. A serious

intervention or “bailout” was required for 4 of the 9 users at least one time during

their session, and 3 of those required multiple bailouts. Moreover, many of the

solutions arrived at by the participants were, in the research team’s assessment, at

least somewhat incorrect.

6.3 · Results of the OSCAR1 Study 258

 participant

 1 2 3 4 5 6 7 8 9 * ! !!

1 !! * !! 1 0 2

2 * 1 0 0

3a * * * 3 0 0

3b ! * * * 3 1 0

3c * * !! 2 0 1

4a ! * !! 1 1 1

ta
s
k

4b ! !! * !! * 2 1 2

h
e
lp

re
q
u
ir

e
d

7 9 1 1 2 2 0 9 6 13 3 6

* = reveal system state or call attention to UI element

! = told to take action, !! = told to take sequence of actions

Table 6-1: The amount of help required by each user to complete each task in OSCAR1. The individual
“help required” score for each user is computed as the sum of the amount of help required for each task,

where * = 1, ! = 2, and !!= 3.

 participant

 1 2 3 4 5 6 7 8 9

1 1

2

3a 5

3b 2

3c 2 1

4a 3 2

ta
s
k

4b 4 3

d
e
g
re

e

w
ro

n
g

5 8 1 0 2 3 2 7 2 16 8

 = partially incorrect, = completely incorrect

Table 6-2: The correctness of each OSCAR1 user’s solutions to each task. Individual users’ “degree wrong”
is computed by assigning 1 point to partially incorrect solutions and 2 points to completely incorrect ones.

6.3 · Results of the OSCAR1 Study 259

These results indicated that we needed to make improvements to the OSCAR

user interface. After analyzing the task sessions, we were able to identify 174

incidents that indicated at least some degree of user confusion or dissatisfaction.

We boiled these down to 52 usability issues of which we deemed 14 to be high

priority. Most of these were fixed in the development of OSCAR2. Examples of a

few of these usability problems are shown in Figure 6-7 and Figure 6-8.

Figure 6-7(a) shows one of the most significant usability problems, which was

the label “Preparing (Ready Soon)” in the Connection Detail screen when a new

connection was in the process of being configured from a recipe. Several users

interpreted this label as indicating the system was busy with something and that,

therefore, they should wait until it was finished before proceeding. This was an

unfortunate choice of language that was based on the desire to reinforce the

“recipe” metaphor but conflicted sharply with users’ interpretation.

Figure 6-7(b) shows a frustration that was experienced by several users: it was

not possible to select a component for inclusion in a connection when the recipe

from which it was being prepared did not have criteria that matched the desired

component. Most commonly this was experienced because of an error in setting

up the recipe that was realized during the “prepare” phase. OSCAR1 did not

provide adequate means of recovering from such errors.

Several users did not recognize that they were being asked to press “choose”

after making a selection using the component browser, as shown in Figure 6-7(c).

6.3 · Results of the OSCAR1 Study 260

In this case, a more clear design along with improved instructions was required to

inform people that and explicit “choose” was required after making a selection.

This step could not be eliminated without significant redesign because the

browser was designed to allow users to select aggregate components as well as

individual components. When an aggregate component is selected, it also expands

to the right to reveal its contents, which can also be chosen. This ambiguity allows

for more fluid browsing but requires that the user explicitly press “choose” to

select an item.

Finally, one usability issue arose from the combination of the form factor with

the fact that the user study participants were seated on a couch during the

sessions. While such an arrangement simulated a realistic usage scenario for a

device intended for configuration and control of home media devices, it had the

unintended side effect of preventing certain users from being able to see the lower

portion of the screen. In particular, users’ stomachs that protruded above their

waistbands obscured up to a quarter of the screen, and it did not occur to these

users that they might be missing important information that was being occluded.

As a result, certain tasks were very difficult for such users to complete. As shown

in Figure 6-8, buttons such as the “New Recipe” button were frequently hidden,

and certain tasks, such as Task 3, were nearly impossible to complete without

using this button. We came to refer to this problem as the “belly issue” and strove

to fix the problem in OSCAR2.

6.3 · Results of the OSCAR1 Study 261

Figure 6-7: Three of the most significant usability problems with OSCAR1 were located on the Connection
Details screen. The language used in (A) when a new connection is being prepared from an existing recipe
was confusing to many users. The label “Preparing (Ready soon…)” was interpreted to mean that the system
was busy, rather than that the user was expected to browse and select a component in the browse dialog
below. The list in (B) would only show components that had been predetermined in the originating recipe,
whether by explicit inclusion or by defining abstract criteria. There was no way for users to override this list
and select some other component, which led to difficulties. Additionally, several users failed to notice that
the “Choose” button became enabled once a component had been selected, and that they were expected to
tap “Choose” in order to complete the configuration of the connection.

A

B

C

6.3 · Results of the OSCAR1 Study 262

Figure 6-8: The “Belly Issue” experienced by some of the OSCAR1 participants. Because the OSCAR tablet
was used on a couch, some users held the tablet in such a way that they were unable to view the entire screen.
In particular, the lower portion of the screen was occluded by some users’ stomachs and clothing that
protruded over the edge of the device when it was resting against their waists.

6.3 · Results of the OSCAR1 Study 263

6.3.1 Screen-by-screen assessment results

Participants’ assessment of the individual screens was also helpful for prioritizing

the usability issues at a higher level. The screen-by-screen exercise gave fairly

clear pointers to which screens caused the most trouble and some of the reasons

for that. It also indicated which screens were more clear and useful for

accomplishing the tasks. For example, the OSCAR1 Recipe Details screen

received negative feedback from 6 of the 8 participants who participated in this

exercise (one skipped this part due to time), and positive feedback from only one.

Much of the negative feedback focused on the “selection rules” portion of the

screen, as shown in Figure 6-9, and several of the comments indicated that these

options were confusing or unclear. Other comments complained that it wasn’t

clear where it was possible to tap to make selections in this screen, a problem that

applied to other screens as well but appeared to be particularly acute here.

Additionally, users highlighted difficulties with the process of selecting

components after “preparing” a recipe (Figure 6-10, left), and criticism of the

Ingredient Detail (Figure 6-10, right) screen, which was seen as being so devoid

of information in typical usage that its purpose was doubtful. On the other hand,

several users had praise for the three list screens (Recipes, Connections, and

Ingredients, see Figure 6-11) because they felt that these screens gave them

6.3 · Results of the OSCAR1 Study 264

perspective about what was going on in the system and helped them understand

what the system could do.

Figure 6-9: The “Recipe Details” screen, and in particular the “Selection Rules” section of the screen, was
flagged by several users as a difficult part of the OSCAR1 user interface.

6.3 · Results of the OSCAR1 Study 265

Figure 6-10: Both the “Connection Details” and “Ingredient Details” screens were also flagged by
participants as troublesome parts of the OSCAR1 user interface.

Figure 6-11: Each of the “List” screens (“Recipes,” “Connections,” and “Ingredients”) were identified by
multiple users as particularly helpful portions of the OSCAR1 user interface.

6.3.2 Reactions to the Recipe Metaphor

One reason for poor performance may have been confusion about the language

used in the user interface. All 9 participants expressed at least some degree of

6.3 · Results of the OSCAR1 Study 266

dislike for the term “recipe,” and more than half expressed strong disdain. One

participant expressed a common sentiment: “[I would] prefer to use technical

terms. Let’s just call it what it is.” This statement and others conveyed a sense

that we were trying to mislead users into believing that our application was easier

to use than it really was, and this attempted deception was met with hostility.

Furthermore, one particular aspect of our selected terminology created extreme

confusion: our choice of the term “prepare” to denote the action of invoking a

recipe. This term did not match user’s expectations about how to achieve the

effects they desired, and in several instances they would say aloud that they were

looking for a Play or Start button while they overlooked the Prepare button

repeatedly.

6.3.3 Subjective Impressions and Interview Results

The results of the other aspects of the OSCAR1 user study, including the

subjective assessments of usability, recipe and activity preferences, and general

interview results are presented after the description of OSCAR2 and the second

user study. Where the results are expected to differ across the two phases, for

example in the subjective assessments of usability and preference, the data is

presented as a comparison to highlight the differences between the two versions.

Where the results are not dependent on the version of the prototype used, for

6.4 · The OSCAR2 Prototype 267

example the interview results regarding activity/recipe preference and attitudes

towards sharing, the results from both phases will be presented together.

6.4 The OSCAR2 Prototype

The feedback from the OSCAR1 study was used to make changes to the interface

for OSCAR2. As described earlier, the only pre-determined difference between

the prototypes was a decision to explore the activity-oriented worldview in

OSCAR1 and the device/media-oriented worldview in OSCAR 2. This was

expressed in the interface by changing the entry point into the system. In

OSCAR1 the first screen showed a list of recipes, and in OSCAR2 that was

changed so the first screen showed a list of devices and media services (Figure

6-12). We expected that the first screen that was seen would be immediately

regarded as the “home” screen and would be the starting point for each set of

interactions with OSCAR, a distinction reinforced by reordering the navigation

tabs so that the point of entry (Recipes or Devices & Media) was always the left-

most tab.

The second significant change was in language. Based on the negative

reactions to the term “recipe” and the related usability problem, the term “recipe”

was changed in favor of “setup” to describe pre-defined connections, and the

operation of invoking a recipe/setup changed from “prepare” to “run” (Figure

6-13). Based on the numerous problems experienced with the Connection Details

6.4 · The OSCAR2 Prototype 268

screen (see again Figure 6-7 and Figure 6-10), a number of improvements were

made to make the flow of instantiating a new connection from a predefined Setup

more clear, and interacting with it afterwards more flexible (see Figure 6-14). A

number of lesser user interface improvements were also made, including changes

to the graphic design to clarify which regions of the screen were clickable and

which weren’t, and changes to the browser dialog to make it appear more clearly

modal. A number of bugs were also fixed that affected the system’s performance

and reliability.

6.4 · The OSCAR2 Prototype 269

Figure 6-12: The Devices & Media screen offers a list of Obje services and devices that have been discovered
by OSCAR.

6.4 · The OSCAR2 Prototype 270

Figure 6-13: This view of the Setup Detail screen shows an edited setup that will allow the user to play all
songs by the Beatles on either of two speaker sets, which will be selected by the user when the setup is run.

6.4 · The OSCAR2 Prototype 271

Figure 6-14: This view of the Connection Detail screen shows a connection in the process of being set up.
This screen underwent significant improvements between OSCAR1 and OSCAR2.

6.5 · Results of the OSCAR2 Study 272

6.5 Results of the OSCAR2 Study

The usability of OSCAR2 was much improved over OSCAR1. The amount of

help required, shown in Table 6-3, decreased from 22 incidents (including 9

bailouts of which 6 were severe) to 13 (including 1 bailout that was not severe).

All users but one were able to complete all tasks without any serious help. We

attribute this improvement to the changes in to the language (i.e., the

replacement of “recipe” with the “setup” terminology) and to the superior usability

of the device-oriented interface model, though we are unable to say how much

each improvement contributed to the overall improvement in users’ performance.

On the other hand, the number of errors (shown in Table 6-5) with OSCAR2

was only one fewer than those made by OSCAR1 users (23 vs. 24). A higher

fraction of these were minor errors (20/23 vs. 16/24), most of which were users

accepting the default options when they should have changed them. For example,

in Task 3b where users made a setup that allowed the webcam image to display

on either the picture frame or TV, users needed to change the default option from

pick one item at random to show items and let me choose. Another common error was to

define only half of the setup—specifying either source or destination—before

running it, and then completing the connection when prompted in the connection

initialization process. Even when these errors were made, users seemed to be

unaware that they had made a mistake. Often they were able to make the desired

6.5 · Results of the OSCAR2 Study 273

connection and thus experience the desired effect (e.g., viewing the webcam

image on the TV) with little or no additional effort, so it seemed to them that

they had correctly completed the task.

6.5 · Results of the OSCAR2 Study 274

 participant

 10 11 12 13 14 15 16 17 18 * ! !!

1 0 0 0

2 0 0 0

3a ! 0 1 0

3b * * 2 0 0

3c * 1 0 0

4a * * 2 0 0

ta
s
k

4b * * * * * * * 7 0 0

h
e
lp

re
q
u
ir

e
d

2 1 3 1 3 1 1 2 0 12 1 0

* = reveal system state or call attention to UI element

! = told to take action, !! = told to take sequence of actions

Table 6-3: The amount of help required by each user to complete each task in OSCAR2. The individual
“help required” score for each user is computed as the sum of the amount of help required for each task,
where * = 1, ! = 2, and !!= 3. The amount of help required for users of OSCAR1 is shown again in Table 6-4
for comparison.

 * ! !!

1 1 0 2

2 1 0 0

3a 3 0 0

3b 3 1 0

3c 2 0 1

4a 1 1 1

ta
s
k

4b 2 1 2

 13 3 6

Table 6-4: A summary of the amount of help required to complete each task in OSCAR1. This data is
copied from Table 6-1 and presented here for comparison with the OSCAR2 help data presented in Table

6-3. The comparison shows that quite a bit less help was required by users of OSCAR2.

6.5 · Results of the OSCAR2 Study 275

 participant

 10 11 12 13 14 15 16 17 18

1 1

2

3a

3b 2

3c 7

4a 5 3

ta
s
k

4b 5

d
e
g
re

e

w
ro

n
g

0 1 3 4 3 3 3 6 3 20 3

 = partially incorrect, = completely incorrect

Table 6-5: The correctness of each OSCAR2 user’s solutions to each task. Individual users’ “degree wrong”
is computed by assigning 1 point to partially incorrect solutions and 2 points to completely incorrect ones.

1 1

2

3a 5

3b 2

3c 2 1

4a 3 2

ta
s
k

4b 4 3

 16 8

 = partially incorrect, = completely incorrect

Table 6-6: A summary of the correctness of users’ solutions to each task in OSCAR1. This data is copied
from Table 6-2 and presented here for comparison with the OSCAR2 correctness data presented in Table
6-5. The comparison shows that users’ solutions did not improve much between OSCAR1 and OSCAR2,

though the severity of the errors did decrease somewhat.

6.5 · Results of the OSCAR2 Study 276

6.5.1 Analysis of breakdowns

The most remarkable shortcomings of OSCAR2 were the amount of help required

for Task 4b and the number of incorrect solutions for tasks 3b, 4a, and 4b.

6.5.1.1 Help required for Task 4b

Analyzing the help required for Task 4b reveals that several of the difficulties

were quite minor and may have been overcome by the user if help had not been

readily available in the form of the study hosts. Our protocol was such that we

encouraged participants to complete the tasks as if we weren’t there, but that we

would help them get unstuck if requested. Recall that Task 4b asks the user to

modify the Setup they had just created in Task 4a. Task 4a requested the user to

“Make a setup that will allow [their roommate] to play all of the songs by the

Beatles in the kitchen,” and 4b asks them to refine this so that “[their roommate]

can pick the artist and speakers when they activate the setup.” Despite our

intention that participants would modify the Setup they had just created, many of

them started over from scratch and made a new Setup to satisfy Task 4b.

Of the seven participants who required help on Task 4b, four (participants 10,

11, 12, and 13) ended up with correct solutions. In each of these cases, the user

either had the right solution or was on the path to the right solution, but became

apprehensive at some point and asked for help.

6.5 · Results of the OSCAR2 Study 277

Two users who ultimately came up with correct solutions (participants 10 and

12) got stuck on the Setup Details screen when they were trying to decide

between the options “Show items and let me choose,” “Add all items to playlist,”

and “Pick one item at random” (see Figure 6-15). In both cases, the user had

guessed correctly that “Show items and let me choose” would produce the correct

functionality, however they were sufficiently apprehensive about their choice that

they would not proceed without help. In each case, the user was simply

encouraged to try it out to see if works. Again, without a ready source of help,

these users may have eventually overcome their apprehension and run the Setup

to see what happened. In that case, they would have realized that their selection

had been correct.

6.5 · Results of the OSCAR2 Study 278

Figure 6-15: The “Setup Details” screen caused a number of difficulties for users. One user did not
understand the function of the “Run” button and was unable to complete Task 4b without help despite
having created a correct Setup. Two users required help to choose among the “Selection Options” for one or
both of the Setup slots. Additionally, numerous minor errors were attributable to this screen. Many users
failed to choose the correct Selection Option(s) or even notice that they were available. Other users failed to
select items for either or both of the “Source Candidate” and “Destination Candidate” lists and ended up
running a partially defined Setup.

Two other users with ultimately correct solutions (participants 11 and 13)

required help after creating a correct Setup and hitting “Run.” During the

subsequent step of choosing the components to use in the Setup (in the case of

Task 4b, this meant choosing the artist from the Music Library and then choosing

6.5 · Results of the OSCAR2 Study 279

a specific set of speakers), they got stuck because they didn’t realize they were

being presented with a modal dialog box that forced them to select a component

and then hit Choose (see Figure 6-16). Instead they believed OSCAR had

stopped responding to them and that we needed to restart the prototype or

otherwise intervene. In each case, the user study host (Ame Elliott) gave them a

hint that got them back on track (“You need to complete the selection first,” and

“What would happen if you hit ‘Choose?’”). In each case, it is not clear whether

the user would have been able to solve the problem themselves.

The remaining three users who required help (participants 14, 15, and 17)

did not generate correct solutions even with help.

One such user (participant 14) struggled with selecting multiple artists from

the Music Library to include in the Setup (which could be accomplished by

selecting the entire Music Library or by selecting multiple individual artists). She

knew that this was her goal but was unable to figure out how to do it because of

the way that Aggregate components are treated in the OSCAR browser: the same

operation is used to expand Aggregates as is used to select them. When the cursor

is on an Aggregate, selecting “Choose” will select all of the contents. If the cursor

is on one of the Aggregate contents, selecting “Choose” will select only the

highlighted item (again, see Figure 6-16). Since tapping an Aggregate such as the

Music Library would always expand the contents, this user was unable to prevent

6.5 · Results of the OSCAR2 Study 280

herself from selecting one of the expanded items. Eventually, despite

encouragement and hints, she created a setup that played one song.

Figure 6-16: Users struggled with the Connection Details screen, especially when “running” a Setup with a
slot whose Selection Options were set to “Show items to me and let me choose.” Two users required help
because they did not realize that they were required to tap “Choose” after making a selection in the Browser
overlay. This figure also highlights another difficulty that users encountered. A number of users did not
realize that, with the screen in the state shown here, they could tap “Choose” to select all of the contents of
the “Music Library. “Rather, they believed that because the contents had been expanded to the right when
the Music Library had been initially chosen, they were obligated to select among one of the expanded items.
These users struggled with tasks like 4a and 4b that required them to select a collection of music to be the
source of a Setup or Connection.

6.5 · Results of the OSCAR2 Study 281

Another user (participant 15) managed to create the correct Setup but did

not know what to do next. She was blind to the “Run” button on the Setup

Details screen (refer again to Figure 6-15), and returned to the Device & Media

screen several times to start over from scratch. She created several versions of the

Setup and eventually ran a Setup that had only one song as the source even

though she had correctly populated the source slot with the Music Library in a

previous version.

Yet another user (participant 17) believed that he had accomplished the task

when he created a connection between a song by the artist Beck and the living

room speakers, which is what the Task instructions had suggested as a means of

testing the correctness of the Setup. However, this user had not actually created a

Setup, but only a one-off connection. When it was pointed out to him that his

connection would not be able to be used by his roommate, as was stipulated in the

task, he seemed confused by the instructions and proceeded to make a Setup with

the Music Library plus one (stray) song in the source slot and nothing in the

destination slot. He then ran the Setup and made the rest of the selections

(choosing the artist and set of speakers) in the Connection Details screen. As

shown in Figure 6-17, it is possible to choose other devices and media from within

the Connection Details screen, so even if the initial connection is partially

specified or even wrong.

6.5 · Results of the OSCAR2 Study 282

Figure 6-17:The Connection Details screen allows the user to select a different source or destination for the
displayed connection at any time by tapping on the “Change” button below the currently selected item. This
means that users can make effective use of even partially or incorrectly defined Setups by adjusting their
parameters after they have been “Run.”

6.5.1.2 Incorrect Solutions to Tasks 3c, 4a, and 4b

In analyzing the various incorrect solutions to Tasks 3c, 4a, and 4b, there are only

a handful of reasons why the solutions were deemed incorrect. Of the catastrophic

failures, all occurred on Task 4a. One of them (by participant 17) was discussed

above, and another user (participant 13) shared the same problem: these users

6.5 · Results of the OSCAR2 Study 283

never created a Setup, but rather made a connection between a song and the

speakers and was satisfied with the results. These failures occurred at least in part

because users believed they had achieved success when they were able to hear the

music they had selected playing from the speakers they had selected. It is not

entirely clear whether they misunderstood the task instructions, the Setup

construct, or both. In any case, they did not distinguish between making a one-off

connection to be executed immediately and creating a reusable Setup that they or

a household member could access later (refer again to Figure 6-17).

The remaining catastrophic failure occurred because the user (participant 12)

created a Setup consisting of one song as the source and nothing as the destination.

After running the Setup, she was able to select speakers and play the song, but

never figured out how to play a second song as required by the task instructions.

This failure was connected to the aforementioned confusion about selecting an

Aggregate versus selecting an item contained within the Aggregate (refer again to

Figure 6-16).

In addition to the three catastrophic failures on Task 4a, there were 17 minor

failures on 3c, 4a, and 4b. These are significant because these are all of the tasks

that require the user to create and then edit a Setup, and indeed all of the errors

were related to properly constructing Setups and were tied directly to the Setup

Details screen (refer again to Figure 6-15). Eleven of the errors resulted from

leaving the default selection criteria for the destination slot as “Pick an item at

6.5 · Results of the OSCAR2 Study 284

random” rather than changing the criteria to “Show items to me and let me

choose.” While the latter would perhaps have been a reasonable default choice for

all new Setups, it had been left as “random” for the express purpose of seeing

whether users could understand these selection criteria and override the defaults.

The number of errors observed indicates that, indeed, these options were difficult

to understand. The remaining six errors all were related to selecting an incorrect

value for one or both of the Setup candidate lists. One user created an empty

setup and ran it, two users left the destination slot empty, and three users

selected a single song for the source rather than a collection of songs. In all of these

cases the user was able to adapt the resulting connection after running the Setup

to do what he or she expected, and in most cases did not even realize that a

mistake had been made. I believe that if users were creating and using Setups for

regular use in their homes, they would overcome many of these minor errors after

a few days. Given the short time span of the user test, however, there was not

much opportunity to experience the disadvantages of creating an incorrect Setup,

and so the motivation to learn the correct techniques was not very high.

These various difficulties, unfortunately, do not point to a single flaw with

OSCAR, but rather a host of relatively small interaction and usability errors that

would need to be fixed before OSCAR could be deployed to a wide variety of

users. The fact that these errors emerged in OSCAR2 may be indicative of the

severe usability issues that existed with OSCAR1 that masked these lesser issues.

6.5 · Results of the OSCAR2 Study 285

On the other hand, these problems do point to the conceptual difficulty that users

have contending with the notion of Setups and in particular navigating the

tradeoff between work done in advance and work done at the time of use. A longer

term study of OSCAR would need to be conducted to see if users become

motivated to learn how to make more effective Setups after spending some time

using OSCAR. It may well be that novice users would be content manually

connecting devices and media together for quite some time before they decide to

invest effort in mastering Setups. The fact that OSCAR2 makes is fairly easy to

create one-off connections may actually reduce users’ inclination to create

accurate Setups, and this fact presents an interesting tension between immediate

and future-looking configuration that is inherent in end-user composition and

merits further investigation.

6.5.2 Additional usability issues

Another class of usability issues that did not have a measurable effect on

performance but was apparent in the context of the individual study sessions has

to do with the generic nature of the operations and abstractions supported by

OSCAR. An apparently minor subtask that gave many users problems was being

asked to remove the Front Door Webcam image from the Front Door Picture

Frame. The expected solution to this was to click the arrow in the Connection

Details screen that was labeled (albeit in small letters) Click to Stop. However, this

6.5 · Results of the OSCAR2 Study 286

was not apparent to users as it was not clear that “stopping” a still image would

remove it from the frame. Not surprisingly, users were more successful when we

asked them to “kill” the song that was playing—the term “stop” is seen as a close

enough synonym to “kill” in this context, whereas “stop” does not mean “remove”

to most people.

Some users solved the problem of removing the webcam image by selecting a

different image from the Photo Library and putting this on the picture frame

instead. Most users were eventually able, often through trial and error, to

understand that the picture could be removed from the picture frame by stopping

the connection. The fact that OSCAR was controlling live devices was helpful in

this regard, as it was easy for users to try different approaches and see the results

of their actions in the environment. Thus, despite some initial awkwardness

resulting from the generic language used in OSCAR, most users were able to form

an appropriate mental model and perform successfully.

Other user difficulties were common to many applications; for example, some

users encountered difficulties because of a lack of “undo” functionality and the

inability to select multiple items at once when choosing components for a setup or

connection. Several users expected a “back button.” All users were affected to at

least some extent by the occasionally poor performance of the application

combined with inadequate feedback about its current state, causing confusion

such as believing the device was sluggish when the interface was waiting for input.

6.5 · Results of the OSCAR2 Study 287

The touchscreen itself was often difficult to use and OSCAR did not provide

adequate feedback to acknowledge receipt of an input event.

6.5.3 Screen-by-screen Assessment of OSCAR2

Users’ responses to the screen-by-screen assessment again reinforced the usability

issues we saw. They also showed that the prototype had made limited progress in

certain areas. Not surprisingly, given the foregoing discussion of user difficulties,

the Setup Details screen (which had replaced the Recipe Details screen from

OSCAR1) continued to meet with negative comments (see Figure 6-18), though

the comments were more specific and detailed, and more varied across users,

indicating that there was less general confusion and frustration but that certain

design details needed to be worked out. There were, again largely positive

responses to the list screens, most notably to the Devices & Media List screen

(see Figure 6-19), which had replaced the Recipe List as the initial, or “home,”

screen that greets first-time users. It was notable from users’ comments about this

screen that they were comforted by the “obviousness” of this screen and that it

appeared to make them more comfortable using OSCAR overall.

6.5 · Results of the OSCAR2 Study 288

Figure 6-18: Participants’ assessments indicated that significant problems continued to exist with the
usability of the “Setup Details” (formerly “Recipe Details”) screen. However, the comments regarding
OSCAR2’s Setup Details screen were considerably more detailed and suggested a greater overall
understanding of the intent of the screen and the function of each of its controls.

6.5 · Results of the OSCAR2 Study 289

Figure 6-19: As with OSCAR1, each of the List screens received positive comments from users. In
particular, the new “Devices & Media” list screen was well received.

6.5 · Results of the OSCAR2 Study 290

6.5.4 Subjective Perceptions of OSCAR1 and OSCAR2

The users’ perception of the system’s usability improved from OSCAR1 to

OSCAR2 as shown in Figure 6-20 and Figure 6-21. The perceptions of OSCAR1

were more widely varied, with some extremely low scores and a couple of

extremely high scores. As described above, the System Usability Scale (SUS) [16]

was used to assess participants’ opinions regarding the usability of OSCAR. The

SUS consists of ten statements that yield responses between 1-5 indicating the

respondents agreement with each statement. The responses are used to compute

an overall usability score between 0-100, with 100 being the highest possible

usability rating. The ten SUS questions made up the first ten questions of the

post-task questionnaire given to all user study participants (refer again to Figure

6-4). The last seven questions were devised by myself, and were intended to

assess various aspects of OSCAR’s usefulness and desirability.

On average, users’ perception of OSCAR1’s usability according to responses to

the SUS portion of the questionnaire was lower (55/100 vs. 63/100), though with

a much higher variance (26 vs. 12). The difference was not statistically significant

based on a one-tailed t-test assuming equal variances. Interestingly, the difference

between OSCAR1 and OSCAR2 participants’ response to question #3 from the

SUS, “I think that I would like to use this system frequently,” was statistically

significant in favor of OSCAR2 (3.3/5 avg, 0.7 stdev) as compared to OSCAR1

(2.3/5 avg, 1.3 stdev) based on a one-tailed t-test assuming equal variances (p

6.5 · Results of the OSCAR2 Study 291

<0.05). This question resembles the subjective preference questions that we asked

at the end of the questionnaire (questions 11-17, omitting 14), and the responses

to those questions were again significantly in favor of OSCAR 2. OSCAR2 users

responded more positively (4.43/5 avg, 0.47 stdev) to these questions than

OSCAR1 users (3.59/5 avg, 1.19 stdev). This difference was statistically

significant based on a one-tailed t-test assuming equal variances (p<0.05). A

summary of the responses to the subjective desirability questions is shown in

Table 6-7, and the full set of responses to all questionnaire questions, including

the SUS and subjective preference questions, are shown in Appendix F.

Question OSCAR1 OSCAR2 Significant?

11. I would rather use this system than what I use now
for interacting with my devices.

3.7 4.3 No

12. I would like to have this system if it were available. 3.7 4.4
Yes
(p<0.05)

13. I would recommend this system to a friend. 3.4 4.3
Yes
(p<0.05)

15. I think I would enjoy using this system at home. 3.6 4.4
Yes
(p<0.03)

16. I think it would be fun to use this system. 3.4 4.4 No

17. I would find this system very useful in my own home. 3.8 4.6
Yes
(p<0.05)

Overall Average 3.6 4.4
Yes
(p<0.05)

Table 6-7: Average responses to questions regarding subjective preference given by participants in the
OSCAR1 and OSCAR2 user studies. In each case, the average reflects responses given on a scale of 1-5,
where 5 meant that the user “Strongly Agreed” with the statement. This data shows that OSCAR2 was more
acceptable to users than OSCAR1 by a significant margin.

6.5 · Results of the OSCAR2 Study 292

6.5.5 Correlations with Computer and Networking Experience

For both OSCAR1 and OSCAR2, the most experienced users (as indicated by

their computer experience and system administration experience) required the

least help in order to complete the tasks. In general, the more experienced

computer users made fewer errors but there were a few dramatic deviations from

this trend in both directions: highly experienced people who made a lot of errors

and less experienced people who made few errors. In these cases, the skilled users

who made errors were quick and impatient in their approach, and the less skilled

users were slower and more deliberate.

A surprising result was that among OSCAR2 users, the three most

experienced users (which, given the correlation just discussed, also means the

three users who required the least help) gave the lowest SUS scores (see Figure

6-21), whereas for OSCAR1 the relationship was exactly inverted: the most

experienced (and least helped) users gave the highest SUS scores (see Figure

6-20). Since in both cases the users had completed the tasks with little or no help,

it did not appear to be the case that any of them had struggled with OSCAR to

complete the tasks. We are not sure what interpretation to make, but perhaps the

more experienced users perceived OSCAR1 as more powerful and/or challenging

and actually preferred it even though for most people it was more difficult to use.

The most important result of the study is that the usability of OSCAR2 was

acceptable because, in general, users were able to create and control connections

6.5 · Results of the OSCAR2 Study 293

as well as invoke, create, and edit reusable configurations that made the creation

of those connections easier. Nevertheless, the interface is still in need of

improvements before it can provide a wide variety of people with the full range of

functions of which OSCAR is capable.

6.5 · Results of the OSCAR2 Study 294

Figure 6-20: The SUS scores given by OSCAR1 participants (shown on the Y-axis) plotted against the
amount of help required by each participant (shown on the X-axis). As expected, users that required more
help gave OSCAR a lower score in terms of perceived usability.

Figure 6-21: The SUS scores given by OSCAR2 participants (shown on the Y-axis) plotted against the
amount of help required by each participant (shown on the X-axis). Unlike the relationship observed in
OSCAR1 (Figure 6-20), users that required less help gave OSCAR a lower score in terms of perceived
usability, indicating that users who required less help had a lower opinion of OSCAR’s usability.

6.5 · Results of the OSCAR2 Study 295

Perhaps the best indication of users’ reactions to OSCAR, however, came in

their responses to the post-test question “Who do you think is this system for?”

These representative quotes, shown in Table 6-8, show the improvement from

OSCAR 1 to OSCAR 2, as well as the ultimate degree of satisfaction indicated by

users to OSCAR 2.

OSCAR 1 OSCAR 2

“I know several high-tech types who’d

like it.”

“Not for everyone. A normal person

might have a problem.”

“Tech savvy person. Sharper Image

types”

“People like me, who like gadgets and

like to fiddle with things.”

“Average person. The vast majority.

More than 50% of the Bay Area.”

“I’m not tech savvy but I would

totally use this. It’s for the average

person.”

“Anyone. Nowadays we all have lots
of devices and it should be easy to

connect them.”

Table 6-8: Responses to the question “Who is this system for?” indicated a significant improvement between
OSCAR 1 and OSCAR 2, and indicated that OSCAR 2 was well received by users.

6.6 · Interview Results 296

6.6 Interview Results

6.6.1 Projected Activities

Users revealed a good deal of variety in the activities they would like to carry out

with a system like OSCAR. We asked people to indicate the activities they could

imagine using OSCAR for in two different ways. First we asked them to simply

name the activities they would imagine themselves using OSCAR for. Later we

asked each participant to read two lists of possible recipes/setups and rank them

according to the usefulness that they, personally, would attribute to each item.

6.6.1.1 Self-described activities

We coded the responses according to the language used by each participant and

attempted to collapse similarly described activities into single categories (see

Figure 6-22). Some categories ended up being quite broad, such as “Listen to

music,” and this included responses such as “I’d use it to listen to music,” and

“music in every room of the house,” and “listening to music in the kitchen and the

living room,” while others were quite narrow, such as “drunk dialing video call.”

Note that three of the top 5 activities shown in Figure 6-22 closely resembled

activities that the users had just performed as part of our task assessment, so it is

natural that these would be over-represented in the responses. Thus, while most

users mentioned “listen to music” as one of the things they’d like to do with

6.6 · Interview Results 297

OSCAR, what is most interesting to us is the wide diversity of creative,

unscripted responses that users gave us. This indicates to us that users have

diverse and even unique desires in how they would like to assemble, set up, and

experience their home networks, and this, in turn, points to the need for

frameworks and end-user tools that support end-user composition.

Figure 6-22: When asked to respond to an open-ended question about what they would use OSCAR for in
their own households, users gave a range of different responses. Many participants mentioned some variant
of the activities represented in the tasks they had just performed (e.g., listen to music, view security cameras,
and view photos), but participants went beyond the capabilities that had been demonstrated and came up
with several creative uses that had not been anticipated such as “drunk driving video call.” Three of the top 5
most-mentioned were activities that the users had just performed: “Listen to music,” View security camera,”
and “View Photos / Slideshows.” This graph shows the number of participants (along the Y axis) who
mentioned each type of activity (along the X axis).

6.6.1.2 Activity Rankings

The results of the two sets of recipe/setup rankings reinforce the results of the self-

described activities to paint a picture of highly diverse needs and desires among

6.6 · Interview Results 298

potential users of a system like OSCAR and by extension, among users of

networked home media in general (Figure 6-23 and Figure 6-24). While there are

a couple of notable favorites, the responses are fairly evenly distributed for both

the in-home setups (i.e., setups that define compositions of devices entirely within

one home) and for setups that involve devices that are shared publicly or between

homes.

6.6 · Interview Results 299

Figure 6-23: OSCAR study participants ranked several potential recipes highly, with six of the nine
candidates ranked in the top 3 by at least 1/3 of the participants. Even the relatively unpopular “Room
monitor” setup was given a #1 ranking by 3 of the 18 participants, indicating that users’ interests in terms of
how they would use a system like OSCAR are quite varied. Users’ explanations about their choices
reinforced the diversity of their interests and also the strength of their interest in performing the activities
that OSCAR would make available to them.

Figure 6-24: Just as different users had expressed a preference for a range of different in-home setups,
different users responded differently to the ranking of Setups involving devices and services that were shared
across homes. These responses, and the explanations given, again showed the diversity of users’ interests.

6.6 · Interview Results 300

The reasons that people gave for their responses regarding the activities they

could see themselves carrying out with OSCAR helps to shed some light on the

heterogeneous needs and desires of home network users.

For example, one respondent explained that she lives with her mother who has

dementia. She is very concerned with keeping tabs on her mother’s activities and

ensuring that she is out of danger, and would welcome any solution that would

make it easier for her to maintain awareness of the activities going on in a different

room without having to physically relocate. She has no such solution at the

present time. Also, she would like to be able to listen to music in different rooms

while cleaning without having to carry around a portable stereo as she does now.

Another respondent was interested in the “audio letters” setup because her

husband is a long-haul truck driver and she would like to be able to record longer

messages for him to listen to while on the road. Currently they communicate by

phone and by email (he picks up wifi on his laptop sporadically from roadside cafes

and hotels). She also would be able to record TV shows on one central location in

the house and be able to watch them from different rooms.

Several of the younger participants immediately responded that they would

love to use a system like OSCAR for controlling music, video, and photos in

different rooms when hosting a party. One slightly older participant said that she

would use it for playing background music when hosting a dinner party.

6.6 · Interview Results 301

A few users said that they watch a lot of TV and are frustrated by the

limitations of their current setups. They would be willing to put a second display

in their living rooms if there were a good integrated way to control both TVs so

that, for example, the primary show appears on the larger screen and has its audio

routed to the main speakers while simultaneously they are monitoring another

show on the smaller screen to watch for important events or simply to wait for the

end of a commercial break.

6.6.2 Sharing Attitudes

We asked participants to share their attitudes about the value of a system like

OSCAR that allows you to share media and devices not just within your own

house but also among the houses of friends and family. We were expecting that

the responses would be emphatically positive—that our participants would light

up with excitement and say that being able to share devices and media across

homes would make this a must-have item. This was not the case. As shown in

Figure 6-25, while the responses tilted somewhat towards the positive end of the

scale, the overall response was quite varied. Some users felt that this was simply

not useful—they couldn’t think of anything they particularly wanted to share with

others, while others were concerned that this would increase the complexity of the

system too much and make it less appealing. Still others were concerned that such

a capability might introduce security and privacy risks, reasoning that if I can get

6.6 · Interview Results 302

out that means someone else can get in. For these people, the potential risks

outweighed the potential benefits.

Similarly, we thought that the ability to share recipes/setups with friends,

family, and the public at large, as well as the ability to receive such setups, would

be clearly beneficial to our users. This capability was even less enthusiastically

received than the previous ones, as shown in Figure 6-26. The reasons for negative

ratings here were interesting—several of the naysayers rejected the proposition on

the basis that it was so easy to create the recipes/setups that it would just be

easier to have everyone do it themselves. If they needed help, a more

knowledgeable person could talk them through it on the phone. Some other people

were suspicious of sharing and running downloaded setups because it might

introduce the risk of viruses or something similar.

Note that for both questions, there were quite a few respondents who were

positive about the ideas. Especially with regards to the device & media sharing

concept, some of the participants were quite enthusiastic. This further reinforces

the point that different people will want different things out of a system like

OSCAR.

6.6 · Interview Results 303

Figure 6-25: Users’ attitudes towards the value of a system that facilitates the sharing of devices and media
across homes was fairly evenly spread across the spectrum. Even more interestingly, some users were
passionately arguing for the importance of adding sharing capabilities to OSCAR while others were just as
passionate in denouncing the potential for security and privacy risks and the fact that such a capability would
cause them to reject the system outright.

Figure 6-26: Users’ attitudes about the value of sharing setups/recipes across households was similarly varied,
but somewhat more neutral than attitudes towards shared devices and media. Additionally, there was a larger
contingent of people who were strongly negative. One reason for this lack of enthusiasm may have been the
sentiment expressed by several users that setups were so simple and easy to understand that sharing them was
unnecessary. More complex recipes may have made the motivation for sharing more clear.

6.6 · Interview Results 304

6.6.3 Form Factor

Responses to questions about the desired form factor for OSCAR devices and

their distribution among locations and occupants of participants’ home varied as

well, as shown in Figure 6-27. Four respondents said the device was exactly the

right size. Another four said the dimensions were right, but it needed to be

thinner and lighter. The remaining ten wanted it to be smaller, but how much

smaller varied: four said ½ the size, three said ¼ the size (or the size of a PDA or

phone), and two said it should be the size and dimensions of a “big remote.”

Another simply said it needed to be smaller but didn’t suggest a particular size.

Eight of the respondents thought that one per household should be enough.

Another eight would like to have one per room, or at least one in each of several

key rooms (e.g., living room, kitchen, bedroom), and that these would be owned

equally by each member of the household. Two of these respondents insisted that

the devices needed to have personalized logins, though, so that each family

member could get access to their own favorite lists of devices and setups. Two

respondents went further down this track and said they would have one device per

person instead, and each person would carry theirs around with them.

One person said that the remote would stay in one place—probably by the

living room couch. Three others suggested that it should be able to be hung on the

wall when not in use—one of these three further suggested that when not in use it

could double as a picture frame or other display screen. One person suggested that

6.7 · Discussion 305

the functionality be embedded in his phone so he would only have to carry one

device. Another suggested that the functionality be embedded in other appliances

she already has, like the refrigerator, TV, or thermostat control.

(a) (b)

Figure 6-27: Attitudes about the desired form factor (a) and the number and distribution of OSCAR devices
(b) were varied, indicating that different users would prefer to integrate OSCAR’s functionality into their
homes in different ways.

6.7 Discussion

As stated before, the goals in building and evaluating OSCAR were twofold: to

gain insight into the user experience claims of Obje and to design a superior

interface for composition and control in home media networks. I believe that

OSCAR was able to meet both goals.

The OSCAR interface was designed to elevate connections between devices

and media to be primary user interface constructs. Participants understood this

concept and were able to make, break, and control connections with no training

and very little learning time. Respondents’ comments about the devices showed

they understood the importance of connections, with one person describing

6.7 · Discussion 306

devices as “what you have available to hook up,” and another explaining OSCAR

as “a way to have devices interact with each other in a simple and easy to use

way.”

Most participants in the study succeeded in using OSCAR to make reusable

configurations, but they usually made errors along the way. Even though the

reusable configuration might not have been completely correct in meeting a task

goal, the users were able to recover from their mistakes and achieve the results the

expected. As we will discuss shortly, there remains an open question regarding the

extent to which the OSCAR user interface is to blame for the observed errors, as

we believe the study design did not properly motivate users to make accurate

configurations.

Two key lessons can be gleaned from the improvements in usability and user

acceptance from OSCAR1 to OSCAR2 regarding the presentation of reusable

configurations to users in this domain: (1) users expect “technical” language to

describe challenging concepts regarding technology and (2) designers should

prioritize device discovery and control, along with the ability to make one-off,

immediate connections over the ability to make reusable compositions. In the

OSCAR context, these lessons were learned by observing the improvement that

was achieved by switching from the “recipe” metaphor to the “setup” language,

and by switching from the activity-oriented interface model to the device/media-

oriented model.

6.7 · Discussion 307

The results of the interview indicate the need for an end-user composition

system such as OSCAR that provides users integrated, customizable access to

their devices’ functionality through a highly interoperable, flexible platform such

as Obje. The variety of responses to such questions as the activities they would

use OSCAR to conduct, the desirability of sharing devices, media, and

configurations across households, and the number, ownership, and form factor of

client devices indicate the desire of users to configure and interact with their

environments differently. As discussed in earlier chapters, support for such varied

applications that provide access to the heterogeneous and growing collections of

devices that are already present in homes will require that users be given the

means to effect their own compositions, rather than relying on software developers

to create all of the appropriate applications.

6.7.1 Contributions of OSCAR

OSCAR serves as an embodiment of the ultimate overarching goal of this

dissertation’s research: to provide an integrated user experience of interacting with

multiple networked devices and services. Firstly, OSCAR serves as a reification of

the capabilities of Obje, in that it provides users with the ability to browse and

discover devices that have been located via ad hoc discovery, control those devices

individually, and create, monitor, and control connections among those devices.

Additionally, OSCAR supports reusable compositions (called “recipes” or

6.7 · Discussion 308

“setups”) that encapsulate common activities. These compositions are created,

edited, and invoked by end-users. This collection of functionality is unique to

OSCAR, and represents a central contribution of this dissertation.

The ability to browse and select arbitrary devices is important because it

reduces or eliminates the amount of up-front configuration that is required for

devices to interact with each other and to be controlled by OSCAR. While it

remains true that devices will have to be provisioned and configured to be made

available on the network (or, more generally, on one of the networks that is

accessible to OSCAR whether via its primary network interface or via an

intermediate Aggregate/proxy service), in most cases such configuration will be

required for such devices to satisfy their core functionality as networked devices.

No special or additional configuration will be required in order to work with

Obje/OSCAR. Most importantly, once a baseline configuration of OSCAR and a

set of Obje services has been established, the addition of new devices can be

accomplished with no additional effort on the part of OSCAR or any of the

existing devices. The ability to browse discovered devices is not unique to

Obje/OSCAR, as a client written against any platform that supports ad hoc

discovery (e.g., Jini [158] or UPnP [153]) would provide some version of this

ability. Obje’s ability to easily bridge alternative discovery protocols via the

Aggregate mechanism means that it may be more adaptable than alternative

6.7 · Discussion 309

approaches to the addition of a wider variety of devices, though this aspect was

not tested in the OSCAR testbed or user study.

OSCAR’s ability to control arbitrary devices without explicit foreknowledge of

them is another important component of its ability to provide an integrated user

experience. Obje services provide their own, customized user interfaces via mobile

code to OSCAR, and OSCAR is able to display such UIs on the screen without

needing to understand the semantics of their contents or the means by which the

UI code communicates with its backend services. Thus, again, new types of

devices can be added to the network monitored by OSCAR and these new devices

can be used alongside others with no additional configuration. The ability to

provide opaque access to arbitrary device control user interfaces is, again, not

entirely unique to OSCAR, as the Jini ServiceUI project [156] endeavored to

provide similar functionality. Platforms that allow devices to provide web page

URLs (e.g., Cooltown [83] and UPnP [153]) could be used to deliver control UIs

to clients, though additional specification of the contents and functionality of the

content provided at the other end of the provided URL would be required to

adapt such a platform for this use. In all cases, the functionality of alternative

platforms (Jini, UPnP, and Cooltown) does not include OSCAR’s ability to

receive and display user interfaces that have been “pushed” by the services.

OSCAR’s most significant contributions become clear when we begin to focus

on the ability to connect devices, monitor and control multiple ongoing

6.7 · Discussion 310

connections, and display control user interfaces for each of the devices involved in

the transfer. Being able to create and control connections allows users to gain the

benefits of the high degree of interoperability provided by Obje.

OSCAR presents a generic user interface that gives users access to a wide

range of devices and, through the interaction sequences, allows users to discover

what devices can be connected with which other devices. In addition to delivering

a user experience of rich interoperability, OSCAR provides an integrated user

interface for interacting with all of one’s devices and services within a home

network. Users do not need to learn different techniques for establishing,

monitoring, or controlling connections.

Since each Obje component can provide its own custom control user interface,

there is no guarantee that, in an open system where different components are

produced by different sources, each user interface will operate in a similar way.

This means that the integrated user experience may be compromised somewhat

by the lack of control user interface similarity. However, since OSCAR does

provide the ability to collect and display multiple user interfaces in an integrated

control panel, at least all controls can be accessed in one convenient place.

Additionally, it was not the goal of either the Obje or OSCAR projects to dictate

the specifics of how components are controlled or how they should construct their

user interfaces. As these concerns are orthogonal to the research in the

dissertation, it would be possible to incorporate the results of a research project

6.7 · Discussion 311

like Nichols, et al.’s Uniform [115] to ensure that users could have consistent

control user interfaces across multiple devices. All that would be required is to

dictate that components provide their control specifications in a standard format

(e.g., the Pebbles Universal Control specification [114] supported by Uniform)

rather than leaving the format of the user interface unspecified as Obje and

OSCAR do.

Finally, OSCAR provides users the ability to create reusable and sharable

(within a single household) compositions that encapsulate commonly-executed

media-oriented activities that are tagged with user-generated names for later

recall and access. This ability is again built atop Obje, but is not a direct mapping

of one of Obje’s features. The need for reusable compositions was demonstrated by

earlier studies of home technology use by myself and others [55, 128, 129], which

showed that such compositions will help support both the temporal and social

division of labor that are essential to the smooth functioning of households.

OSCAR’s compositions, ultimately called “Setups,” allow users to specify

connections among source and destination devices both concretely (by specifying

the exact devices to connect) or abstractly (by describing the criteria for selecting

devices), and the rules for how the source(s) and destination(s) should be

connected when the setup is invoked. This design allows for a variety of types of

connections to be specified, giving users flexible and customizable control over

their networks of devices.

6.7 · Discussion 312

6.7.2 Significance of the OSCAR User Study

During its design, OSCAR was iteratively prototyped using multiple methods,

and was subjected to two rounds of expert evaluation. The primary contribution of

these studies is to show that the contributions claimed by OSCAR can be realized

by end-users of varying technical background. That is to say, even non-technical

users were able to use OSCAR to browse, select, connect, and control devices,

and they were able to create, edit, and invoke reusable compositions of devices.

In addition, potential users reacted positively to the idea of using a system like

OSCAR in their own homes. Based on the interviews, it was clear that these

reactions were based on a number of factors, each of which were weighted

differently by different users. In particular, users appeared to react positively to

the following features of OSCAR and Obje:

• the notion of easy connections among devices in different rooms—

especially routing audio and video anywhere (e.g., listening to the same

music collections in the living room and kitchen)

• reusing devices for multiple purposes (e.g., using the living room TV to

view photos and the front door security camera)

• accessing multiple disparate functions from a single control point (e.g.,

using OSCAR to play music, select photos, and see who’s at the front

door)

6.7 · Discussion 313

• the ability to create presets for easy activation of media activities (e.g.,

create a Setup to easily play specific music in the kitchen)

The study also highlighted some design issues for designing an end-user

composition system for home media. Firstly, based on the different reactions and

task success rates between OSCAR1 and OSCAR2, it is clear that the use of

neutral, technical-sounding terminology for describing reusable compositions

(such as “Setup”) is more desirable, easier to learn, and easier to use than

terminology that is apparently friendlier but perhaps loaded with alternative

associations (such as “Recipe”). While it is clear on the one hand that the

particular term “Recipe” and it’s attendant terminology such as “Ingredient” and

“Prepare” were seen as especially poor fits for OSCAR’s particular domain, it is

also clear from users’ reactions that a more technical set of terminology would be

more communicative and less dissonant than any terminology derived from less

technical aspects of, for example, domestic life.

Secondly, for the domain of home media control in particular, presenting users

first with a user interface for browsing and selecting among their various devices

and media is preferable to and less confusing than presenting them first with a list

of pre-defined configurations. In part, this reaction may have been based on the

fact that all users received their first exposure not only to OSCAR, but to all of

the devices in their “house” during the study, and were not given the opportunity

6.7 · Discussion 314

to have a repeat experience after becoming familiar with either aspect of the

simulated environment. Nevertheless, it makes sense that upon a first experience

with an application like OSCAR, it would be beneficial from the perspective of

building users’ understanding and trust for the application to first communicate

its basic capabilities—i.e., that it can discover and provide information about a

particular set of devices in the home—before revealing more advanced features

such as the ability to create and invoke reusable compositions.

The interview component of the OSCAR study also highlighted the varied

needs and preferences of users with respect to a home media control environment,

and this variety supports the need for composable services, delivered through a

framework that supports robust interoperability, that can be flexibly customized

by end-users to meet their particular needs. In particular, users indicated a wide

range of different media-related activities for which they would use a system like

OSCAR/Obje, and they also indicated a range of different attitudes towards the

sharing of devices and media across households, the sharing of compositions

(Recipes/Setups), and the form factor and ownership of control devices. These

responses indicate that it would be considerably costly and inefficient to support

the variety of user needs via specific, developer-built applications and devices.

6.8 · Summary 315

6.8 Summary

In this chapter, I described a two-phase user study (including an inter-phase

redesign) of OSCAR—and end-user composition tool for home media networks

that builds upon Obje’s user experience goals and extends them by allowing the

construction of reusable compositions for common tasks. In so doing, I also

described the final phase of OSCAR’s design and development, allowing us to see

this project’s final embodiment of a system that supports an integrated user

experience of interacting with multiple networked devices and services.

A user study with 18 users with varied backgrounds showed that people could

use OSCAR to configure and control a realistic and fully operational home media

network, but that they made a number of errors constructing reusable

configurations that would prevent them from having an optimal experience of

their networks over a longer period of time. Users gave OSCAR positive subjective

assessments in terms of perceived usability and desire to use such an application

in their homes.

The study presented in this chapter shows that users can perform composition

using a tool like OSCAR, and that they wish to be given the means to do so. This

a key result of this dissertation, and represents a positive evaluation of OSCAR

itself, but also of the basic user experience goals of Obje and the possibility of end-

user composition more broadly. From this vantage point, it is now possible to look

6.8 · Summary 316

forward and ask what can be done to further improve the capabilities and usability

of end-user composition systems, and what lessons have been learned from my

work that can be applied to the wider class of systems that will allow end-users to

take control of their emerging networks of devices. In the next chapter, I will

discuss a number of directions for further research on these topics.

 317

7 Future Work

The OSCAR user study showed that users of varying technical background could

make effective use of OSCAR to browse, control, and connect devices and services

in a home media network. Returning now to the higher level goal of delivering an

integrated user experience of interacting with device-rich environments, I will

devote this chapter to a discussion of what remains to be done to further improve

the degree of integration experienced by users. I will first discuss changes to

OSCAR to improve the usability of the functions it currently supports. I will then

discuss changes to OSCAR to enhance the range of compositions that can be

created by users, such as support for connections involving multiple sources and

destinations simultaneously and context-aware Setups. In order to support sharing

of devices and services across local network boundaries, additional mechanisms

will need to be built atop Obje, and I will discuss possible mechanisms. Similarly,

additional work will need to be done to support sharing of Setups among different

households. Finally, I will discuss the great potential benefits of creating and

supporting wide area communities of practice via shared Setups, and I will discuss

the challenges of constructing and studying those types of communities.

7.1 · Improvements to OSCAR 318

7.1 Improvements to OSCAR

As discussed in the latter part of Chapter 6, even though OSCAR2 represented a

vast improvement over its predecessor, there remain areas for further

improvement.

7.1.1 Usability Improvements

A number of “garden-variety” usability issues continued to afflict OSCAR2. The

touchscreen was occasionally slow to respond to user input, which caused

considerable usability problems as some users believed they had made an incorrect

selection and went on to take other actions while in fact the system was still busy

processing their original correct input. Users had difficulty determining how to

select all of the contents of an Aggregate (e.g., all of the songs by the Beatles

within the Music Library) as opposed to expanding the Aggregate to select

individual contents (see Figure 7-1 for a proposed redesign that addresses this

particular issue). These types of usability issues are typical of a wide variety of

different applications and, while they can cause serious problems for users, it is

not particularly worthwhile to discuss their individual solutions in this document.

7.1 · Improvements to OSCAR 319

(a)

(b)

Figure 7-1: A possible redesign for the OSCAR browser that would allow users to clearly distinguish
between selecting an Aggregate component and showing the contents of the Aggregate to select among its
contents. In the original design, the user could select an Aggregate by tapping “Choose” when the Aggregate
was highlighted (e.g. the “Music Library” as shown in (a)), or could tap on one of the sub-Aggregates (e.g,
“The Smiths” or “Moby”) that is shown to the right of the selection. In the proposed redesign (shown in (b)),
the operations for expanding an Aggregate (“Show Contents”) and selecting it are clearly delineated.

7.1 · Improvements to OSCAR 320

More interesting is the discussion of a pair of issues that are fundamental to

the approach taken by Obje and OSCAR, and that will require further research

to resolve effectively: the tradeoff between generic and domain-specific operations

(and the terms used to describe them), and the difficulty of expressing rules and

criteria for service selection when creating or editing Setups.

7.1.1.1 Trading off generic and specific operations

As discussed in Chapter 6, one subtask that gave many users problems was

removing an image from the Front Door Picture Frame. The expected solution to

this was to click the arrow in the Connection Details screen that was labeled (albeit

in small letters) Click to Stop (see Figure 7-2). However, this was not apparent to

users as it was not clear that “stopping” a still image would remove it from the

frame. Not surprisingly, users were more successful when we asked them to “kill”

the song that was playing—the term “stop” is seen as a close enough synonym to

“kill” in this context, whereas “stop” does not mean “remove” to most people.

7.1 · Improvements to OSCAR 321

(a)

(b)

Figure 7-2: The language for controlling active connections in OSCAR remains generic, regardless of the
types of media and devices being connected and controlled. In the two examples shown in (a) and (b), the
label describing how to stop the connection is the same for both a webcam and streaming audio connection.
As this caused difficulty for some users, an area of possible future work is to look at how to support more
finely tuned language choices for controlling different types of connections without requiring clients such as
OSCAR to have extensive advance knowledge of the semantics of different media and device types.

7.1 · Improvements to OSCAR 322

In general, one of the strengths of OSCAR—its lack of detailed knowledge

about any particular type of device or media—is also one of its deficits. While

OSCAR achieves significant flexibility and adaptability by allowing users to

simply “connect” a wide variety of “sources” and “destinations” without regard to

whether the connection is between a song and a set of speakers, a webcam and a

picture frame, a photo album and a hard drive used for data backup, or, for that

matter, a scanner and a printer. Users are more likely, however, to think in device

or media specific terms like “playing” a song, “viewing” a web cam, “storing” an

album, or “printing” a scanned image. This tension is inherent: as an application

becomes more tightly adapted to carrying out specific tasks, it becomes less

capable of taking on new or unanticipated tasks.

One compromise solution that may be appropriate for OSCAR in particular is

to use media-specific terms for known types (audio, video, image, etc.) and default

to generic terms when the specific language cannot readily be determined. In

most cases, the correct term for the operation can be determined by the

destination device. The appropriate term could either be supplied by the

destination services via an expanded service API (e.g., the Obje DataSink

interface could be expanded to include a method like String

getConnectionOperationTerm()), or could be determined by a mapping

within OSCAR itself that uses heuristics (e.g., if destination data type is “audio/*”

then use term “play,” if destination data type is “image/*” use term “view”) to

7.1 · Improvements to OSCAR 323

select the appropriate term. This latter approach may be difficult to implement in

practice, however, as it is hard to imagine a set of heuristics that could reliably

determine the appropriate use of the term “print” (as opposed to “view”) for a

connection involving an image and a printer without requiring OSCAR to know in

advance which devices are, in fact, printers.

7.1.1.2 Setups, and Setup Details

OSCAR2’s users continued to struggle with various aspects of creating and editing

Setups. Identifying the devices to use was not particularly difficult, but selecting

among the options for rules that would be applied at a later time, when the Setup

was run, appeared to present difficulties for users. Several users reported that they

simply did not read the options, or that they read them once, failed to understand

them, and decided not to use them. A common strategy among these users was to

simply add all of the devices to the Setup, and then “run” the result to see what

happens. Any undesired effects were corrected using the controls available for

manipulating live connections, which had the end result of leaving an incorrect, or

at least non-optimal, Setup in the list of Setups. On the other hand, some other

users were able to use the rule-setting options quite adeptly.

The UI for editing Setups underwent significant changes among the various

versions of the OSCAR prototype (see Figure 7-3), and while the final OSCAR2

version appeared to be the most successful from a usability perspective, it still

7.1 · Improvements to OSCAR 324

leaves something to be desired. It therefore begs the question: would further

iterative changes improve this user interface to the point where a majority of users

would be able to quickly master the available options, or is a substantially

different approach required? Further research is required to answer this question.

7.1 · Improvements to OSCAR 325

(a) (b)

(c) (d)

Figure 7-3: The “Setup Details” screen received more attention during design and was subjected to more
changes than any other screen in OSCAR. Here the versions produced for the OSCAR Paper Prototype (a),
the OSCAR Medium Fidelity Prototype (b), OSCAR1 (c), and OSCAR2 (d) are shown for comparison.
Despite the intensive effort, the final version was still difficult for some users to use.

7.1 · Improvements to OSCAR 326

Simple improvements could go a long way. Several users indicated at various

points during the study that they would have consulted a manual or help section.

Such a function would certainly need to be included in any widely distributed

version of OSCAR, though the details of how it is incorporated (e.g., as a separate

global tab, as a function available from each individual screen or even each section

of each screen, or as a separate printed or online manual) would need to be

worked out. Similarly, a simple improvement to the process of constructing Setups

such as incorporating “wizard” functionality to guide users through the process in

a more structured way could have a substantial impact on usability.

A more ambitious concept would be to downplay or even eliminate the notion

of Setups as things that are explicitly and intentionally created by users. If instead,

OSCAR simply kept track of all connections made by users, it could potentially

learn the common patterns of interaction and automatically generate Setups to

facilitate easier re-invocation of those patterns in the future. Alternatively, the

history of connections could be presented to the user along with tools to allow

them to extract, encapsulate, and selectively generalize useful patterns for later

reuse. Such approaches would benefit from techniques that have been developed

to support programming by demonstration (e.g., [29] and [86]).

A particularly intriguing direction for such further research would be to

empirically compare the option-setting approach taken in OSCAR with other UI

approaches that have been developed for similar types of scenarios, such as the

7.1 · Improvements to OSCAR 327

purely iconic approach taken in the Jigsaw Editor [70, 127], and the constrained

natural language approach taken in CAMP [150]. These two would be

particularly apt for comparison, because the Jigsaw Editor represents a visually

compelling interface that presents a limited expressive range in that users are

limited to creating linear chains of operators whose relationship to each other

cannot be parameterized or otherwise controlled (see Figure 7-4), whereas

CAMP potentially allows a greater range of expression for users, but is based

entirely on textual representations of objects and operations (see Figure 7-5) and

may introduce complexity beyond that presented by OSCAR. In other words,

OSCAR may be seen as a midpoint between CAMP and the Jigsaw Editor, and a

comparison of these approaches as applied to a consistent set of tasks and

evaluated by a consistent set of users may provide significant insight. Of course,

other user interface approaches could, and perhaps should, be created and

evaluated as well.

7.1 · Improvements to OSCAR 328

Figure 7-4: The Jigsaw Editor [70, 127] represents an end-user programming user interface that is based
entirely on visual representations of objects and linear combinations of them to form processing rules. This
user interface may be more immediately compelling for users than OSCAR’s option-setting dialogs, but the
lack of control over configuration options could lead to eventual frustration.

Figure 7-5: The CAMP user interface [150] is based on a “magnetic poetry” metaphor. The textual
programming interface provides users with more fine grained control than OSCAR, but the range of options
may also lead to a reduced ease-of-use and steeper learning curve. Further studies are required to discover
the relative strengths and weaknesses of Jigsaw, CAMP, and OSCAR.

7.1 · Improvements to OSCAR 329

Yet another direction for

7.1.2 Increasing OSCAR’s range of functionality

An additional area for improvement would be to enhance OSCAR and Obje to

support a greater range of functionality. The ability to compose and control data

transfer connections among devices and services in a home media network

provides a solid foundation upon which to explore further compositional

capabilities.

7.1.2.1 Context-Aware Setups

The Obje metadata mechanisms allow clients and services to provide information

about their contextual properties such as location, usage history, and ownership.

Service properties can be updated dynamically, and the updates are propagated to

clients that have registered to be notified of such updates. Similarly, client

properties can be updated as contexts change, and clients can react to changes in

their own context. In addition, the OSCAR Setup data structure is designed to

allow Setups to be designed to make use of contextual data. The smart list feature

plays this role. It allows a user to define Setups by defining criteria to select the

source or destination devices, rather than defining the specific devices. Thus, for

example, a smart list could be used to define a Setup that would select all

destinations that are located in the Living Room and accept audio connections.

This list could then be presented to the user to select among, or one of the choices

7.1 · Improvements to OSCAR 330

could be selected automatically or according to some other ranking criteria. Such a

setup would be able to take advantage not only of relatively static devices in the

living room, such as the hardwired speakers, but also mobile devices that happen

to be in the room at the time, such as laptop speakers or portable music players.

In essence, such a Setup can take advantage of the context of whatever devices it

has available at the time of its instantiation.

Such an ability to adapt to the current context is only the beginning of what

would be useful. A critical addition to these facilities would be to enable relative

criteria to be defined in terms of the context of other parties in the Setup. For

example, rather than defining the above Setup in terms of all destinations in the

Living Room, it would be even more powerful to define a Setup that will use

whatever devices are in the same location as the client when the Setup is invoked.

While defining a criterion as “Location = ‘Living Room’” enables a class of useful

Setups, defining a criterion as “Location = Client.Location” or something similar

would enable an even more appropriate set of possibilities. Along these lines, it

would be useful to define a set of criteria such as “most recently used,” “most

frequently used,” “nearest to me,” or “owned by one of my friends,” which would

have to be computed dynamically based on the current contexts of the client and

potentially multiple components.

The ability to create and use context-sensitive Setups was not explored as part

of the research described in this dissertation, in large part because there does not

7.1 · Improvements to OSCAR 331

yet exist an implementation of Obje that includes reliable contextual data such as

location. Such an effort has been begun [154], but had not come to fruition at the

time of OSCAR testbed development. Rather than attempt to create a reliable

system or an effective simulation of such, I focused the OSCAR experiment on

connection and control of near-future networked home media devices without

assuming the additional benefits of dynamically updated context. Adding

additional support for dynamic context, especially support for relative criteria,

would increase the functionality of the Setups users could create, but would also

doubtless increase the complexity of the options available to users, and so

additional design and user evaluations would need to be conducted.

7.1.2.2 Event-triggered Setups

In addition to supporting Setups that dynamically adapt themselves to their

surrounding context, it would be of value in many cases to allow Setups to be

triggered by changes in context or other events. For example, a user could create a

Setup to play the morning radio news in their kitchen that is automatically

triggered by their entering the kitchen between 6am and 7am. A variety of

parameters could be used to define Setup triggers, including time and day (daily

at 7:00am, at 5:00pm Monday through Friday, etc.), change in availability of a

device or person (when my iPod becomes available, when Angie enters the house,

etc.), and more complex compound criteria (when I arrive home and it’s dark

7.1 · Improvements to OSCAR 332

outside, when any of the children leave the house, when my iPod becomes

available and it has not been connected to the library in more than 24 hours, etc.).

Again, adding such capabilities will expand the range of expressive possibilities

available to users, but accessing such possibilities will introduce new complexities.

Defining complex criteria and triggers is a major focus of the iCAP system

[33], which uses a sketch-based graphical layout to allow users to create IF-

THEN rules where the satisfaction of the criteria specified by the “IF” clause will

cause the actions specified by the “THEN” clause to fire (see Figure 7-6).

Whereas OSCAR has focused largely on allowing users to define complex actions

to take (e.g., connect all of the songs by the Beatles to a set of speakers that I will

select when I invoke the Setup), and has done little to support fine-grained

control over the conditions that would cause such actions to fire (OSCAR

essentially defines a single immutable “IF” clause: If I invoke the Setup manually),

iCAP has focused largely on allowing users to exercise great control over the

conditions under which actions should occur, and does not claim to allow detailed

control over the actions themselves. Combining the strengths of iCAP and

OSCAR, therefore, would be a promising direction for further research.

Both OSCAR and iCAP have been shown through user studies to be capable

of effective use by non-technical end users, yet the combination of both

approaches would lead to an increase in complexity that would require further

studies with end-users.

7.2 · Studying OSCAR in daily use 333

Figure 7-6: iCAP’s sketch-based user interface [33] provides users with a great deal of control over the
conditions under which context-triggered actions should fire. However, the control over the actions
themselves is less of a focus of the work. Combining iCAP’s strengths for rule-setting and OSCAR’s
strengths in defining complex actions could provide users with a high degree of expressiveness and control.
Further research is required to determine whether such increased power can be provided without sacrificing
usability.

7.2 Studying OSCAR in daily use

A number of issues relating to OSCAR’s usefulness and usability would be likely

to emerge in a long-term deployment. As discussed in Chapter 6, it may be that

users will eventually correct errors in the Setups they create after they see the

effects of running those Setups repeatedly.

Another issue that may arise in daily use is the level of complexity that could

arise from running multiple Setups at the same time that attempt to make use of

the same devices. Given the relatively small size of users’ current and near-future

home environments (perhaps O(10) different devices being connected together),

7.3 · Sharing Devices and Media 334

such situations may be easy to identify and resolve—whether automatically or

with the assistance of the user. However, as networks grow in size and

functionality, resource contention issues are likely to become more and more

severe. In addition, they will become more challenging to resolve when multiple

household members are permitted to create and run Setups independently, and

the ability to monitor and control such Setups is distributed across different client

devices.

A third issue that would likely be illuminated by regular use is the need for

support for error recovery and troubleshooting. These issues are especially

challenging because errors can arise at a variety of levels, some of which may not

be detectable by Obje or OSCAR. For example, while Obje/OSCAR can detect

and report issues arising from data type mismatches, single-device failures, or

software bugs that cause premature termination of a connection, it cannot easily

diagnose failures of the entire network (e.g., home router failure) or hardware

problems such as power failures. Providing support for such general

troubleshooting presents a significant research challenge in itself.

7.3 Sharing Devices and Media

As part of the OSCAR user study, I interviewed users about their interest in the

ability to share devices and media across households. I also asked them about their

interest in sharing Setups with others outside their homes. In both cases, the

7.3 · Sharing Devices and Media 335

reaction was mixed, with reactions ranging from strongly positive to strongly

negative. Thus, while such functionality is not necessarily appealing to all users, it

is extremely appealing to some of them, and it would be a valuable area for future

investigation to understand how to support such features.

Sharing certain types of media across homes is already possible to some extent

using web-based services such as Flickr [167], YouTube [169], and SHOUTCast

[117]. These systems allow one, respectively, to share personal photos, personal

videos, and create a streaming radio station from one’s own music library. These

shared media can be made available to anyone on the web, or can be made

available to only a subset of friends, family, or other authorized users. Note that

these technologies support somewhat limited usage scenarios, and require some

degree of technical sophistication to create, configure, and access the collections.

Due to licensing restrictions, they do not easily permit, for example, one user to

share a commercial video or recorded TV show with a distant family member,

even though such limited sharing may be legally permissible under some

circumstances. They do not allow a remote friend to peruse my private music

collection to see what new artists I have been listening to in order to get ideas for

their own future purchases.

Sharing devices across households is even more challenging and rare, though

not unheard of. CEIVA digital picture frames can connect to a proprietary service

that allows friends and family to post photos to a web collection that in turn feeds

7.3 · Sharing Devices and Media 336

images to a user’s home picture frame [20], effectively allowing users to “post”

images to a remote picture frame. Effecting similar control over devices in others’

households, or over one’s own devices from points outside the home, would allow

for more seamless communication and sharing over a distance. For example,

ambient video and audio could be used between selected rooms in two households

to allow members of the two households to feel connected to one another despite

the distance. Remote access to security cameras may increase the peace of mind of

a traveling homeowner or parent. The ability to invoke brief and spontaneous

audio or video connections with distant loved ones allows a greater range of

communication options to help maintain and strengthen relationships.

While most of the mechanisms provided by Obje and OSCAR for device and

media composition are not restricted to local communication, there are additional

issues that emerge when considering non-local communication that have not been

a focus of OSCAR’s or Obje’s development. As discussed earlier, Obje uses

Zeroconf [72] for its bootstrap discovery. This means that an Obje client will be,

by default, restricted to discovering services on the same subnet. Such restrictions

provide convenient constraints in terms of security and access control that need to

be reexamined when designing for wide-area sharing.

Sharing across networks in Obje/OSCAR is not difficult. Obje employs

Zeroconf’s local-link multicast discovery to distribute component URIs to clients.

Supporting alternative methods for providing such addresses is all that is needed

7.3 · Sharing Devices and Media 337

to expand sharing beyond the local subnet. URIs could be transmitted using an

out-of-band mechanism such as email, or could be registered and discovered using

fixed directory-based services resembling UDDI [152].

There will, of course, still be issues about access control and security—if a

URI is all that is needed to access someone’s device, there is a danger that such

URIs can be obtained by eavesdropping or even guessing. To prevent the

unauthorized use of a URI to access a service, secure credentials such as

certificates must be used in conjunction with service access. Certificate

distribution and management can be challenging in highly distributed systems

such as the networks supported by OSCAR and Obje. One solution to credential

distribution is to employ the approach taken in Casca [41], which is an

application of the more general location-limited channel approach described in [7,

136]. In these approaches, two parties exchange initial credential information over

a privileged channel that is relatively immune to eavesdropping such as infrared or

physical coupling. The primary drawback to these approaches is that they require

that devices are in proximity at some point, which presents a problem for

connecting devices that are in distant locations. Alternatively, a centralized server

can be used to ensure that initial credentials are exchanged securely. After initial

credentials are exchanged, the Casca experience shows how secure sharing can be

extended to other devices under the control of either party, thus allowing sharing

7.4 · Sharing Setups Across Households 338

permissions to be established at the user- or local network-level rather than the

individual device level.

Even after the basic mechanism for enforcing security and access control are in

place, however, there will still be the need to allow users to describe enforceable

policies to control how, when, and by whom their devices can be accessed. Such

considerations require work at both the infrastructure level and the end-user level.

Temporal role-based access control frameworks have been investigated [77] and

may provide a fruitful avenue for exploration in the present domain. Supporting

end-users’ ability to reason about and express coherent policies remains an open

area of research although some recent work has made progress (e.g., [157]).

7.4 Sharing Setups Across Households

Being able to share setups across households is important primarily because it

supports the division of labor across a wider unit of analysis. In the study reported

in [55], some householders reported that they occasionally provide system

configuration assistance for friends and family outside the home. Others in the

same study stated they had on occasion received such help from others. These

results were corroborated by the interview responses received during the OSCAR

user studies.

However, enabling such functionality comes with challenges. For a Setup

created in one household (Household A) to be of use in another household

7.4 · Sharing Setups Across Households 339

(Household B), all of the information about the devices addressed by the

Household A Setup needs to be mapped as closely as possible onto the devices in

Household B. As an example, imagine that Alice has created a Setup that allows

her to see the image from the front door security camera on any of several display

devices in her house. She will select the desired display device from the list when

the Setup is run. Bob is Alice’s brother, and he has just installed a security camera

outside his back door, and would like to be able to view the output of his security

camera on either the Living Room TV or the Bedroom TV, depending on his

current location. As shown in Table 7-1 andTable 7-2, almost none of the devices

in the two households are the same.

7.4 · Sharing Setups Across Households 340

Source Component(s) Destination Component(s)

ID: Webcam-ABCDEF123456

Name: Webcam

Mfgr: Sony

Model: DCX2010

Location: Front Porch

Owner: Alice

Obje Interfaces: Component, DataSource

Source data types: video/mpeg,
video/quicktime, application/x-obje-
codebundle

ID: LCDTV-ABCDEF123456

Name: LCD TV

Mfgr: Pioneer

Model: TCZ420012

Location: Living Room

Owner: Alice

Obje Interfaces: Component, DataSink

Sink data types: image/jpeg, image/png,
video/avi, video/quicktime, application/x-
obje-codebundle

ID: TV-ABCDEF123456

Name: TV

Mfgr: Sharp

Model: Aquos 23.1156

Location: Office

Owner: Alice

Obje Interfaces: Component, DataSink

Sink data types: image/jpeg, image/png,
video/avi, video/quicktime, application/x-
obje-codebundle

 ID: PictureFrame-ABCDEF123456

Name: Picture Frame

Mfgr: CEIVA

Model: 8.1

Location: Living Room

Owner: Alice

Obje Interfaces: Component, DataSink

Sink data types: image/jpeg, image/png,
application/x-obje-codebundle

Table 7-1: The devices in Alice’s house that are used in a Setup that she wishes to share with Bob.

7.4 · Sharing Setups Across Households 341

Source Component(s) Destination Component(s)

ID: SecurityCamera-123456FEDCBA

Name: Security Camera

Mfgr: JVC

Model: SC73BX01

Location: Back Door

Owner: Administrator

Obje Interfaces: Component, DataSource

Source data types: application/flash-video,
application/x-obje-codebundle

ID: PlasmaTV-123456FEDCBA

Name: Plasma TV

Mfgr: NEC

Model: Vision 6134

Location: Family Room

Owner: Administrator

Obje Interfaces: Component, DataSink

Sink data types: video/avi, video/quicktime,
application/x-obje-codebundle

ID: TV-123456FEDCBA

Name: TV

Mfgr: Sharp

Model: Aquos 23.1156

Location: Master Bedroom

Owner: Bob

Obje Interfaces: Component, DataSink

Sink data types: image/jpeg, image/png,
video/avi, video/quicktime, application/x-
obje-codebundle

Table 7-2: The devices in Bob’s house that he would like to use in his version of Alice’s Setup for viewing a
security camera in multiple locations.

7.4 · Sharing Setups Across Households 342

Because of the different devices used in each household, it is clear that a direct

mapping of Alice’s Setup will not work in Bob’s house. If the Setup is only to be

used within Alice’s environment, the Setup would need only to keep track of the

various device IDs in order to recreate the Setup every time Alice wishes to use it,

as shown in Table 7-3. However, for it to be useful to Bob, Alice’s Setup must be

re-represented using an appropriate level of abstraction in order to be mapped

onto Bob’s network, as shown in Table 7-4 and Table 7-5. One possible solution is

for Alice to perform an explicit “Export” operation to render the Setup sharable.

This operation would rewrite the Setup to include as much information as

possible about each of Alice’s devices, such as the data types supported, the

location, and the usage history, to increase the likelihood of matching each of the

Setup’s devices against devices in Bob’s environment. With adequate information,

it should be possible to find matches for each of the devices mentioned in Alice’s

Setup.

Setup: Show Security Camera on Nearby Display

Source Component(s)

Selection rule: Use all

Destination Component(s)

Selection rule: Show me and I will choose

ID: LCDTV-ABCDEF123456

ID: TV-ABCDEF123456

ID: Webcam-ABCDEF123456

ID: PictureFrame-ABCDEF123456

Table 7-3: A simplified Setup to create the configuration shown in Table 7-1. This level of detail would be
sufficient to support repeated use in Alice’s house, but would not work in any other environment because the
Setup only stores the IDs of Alice’s devices.

7.4 · Sharing Setups Across Households 343

Setup Name: Show Security Camera on Nearby Display

Source Component(s)

Selection rule: Use all

Destination Component(s)

Selection rule: Show me and I will choose

ID: LCDTV-ABCDEF123456

Name: LCD TV

Mfgr: Pioneer

Model: TCZ420012

Location: Living Room

Owner: Alice

Obje Interfaces: Component, DataSink

Sink data types: image/jpeg, image/png,
video/avi, video/quicktime, application/x-
obje-codebundle

ID: TV-ABCDEF123456

Name: TV

Mfgr: Sharp

Model: Aquos 23.1156

Location: Office

Owner: Alice

Obje Interfaces: Component, DataSink

Sink data types: image/jpeg, image/png,
video/avi, video/quicktime, application/x-
obje-codebundle

ID: Webcam-ABCDEF123456

Name: Webcam

Mfgr: Sony

Model: DCX2010

Location: Front Porch

Owner: Alice

Obje Interfaces: Component, DataSource

Source data types: video/mpeg,
video/quicktime, application/x-obje-
codebundle

ID: Webcam-ABCDEF123456

Name: Webcam

Mfgr: Sony

Model: DCX2010

Location: Front Porch

Owner: Alice

Obje Interfaces: Component, DataSource

Source data types: video/mpeg,
video/quicktime, application/x-obje-
codebundle

Table 7-4: In order to share her Setup with Bob, the representation would need to be generalized to capture
the characteristics of each device used and to eliminate the environment-specific information such as device
IDs and owners.

7.4 · Sharing Setups Across Households 344

Setup Name: Show Security Camera on Nearby Display

Source Component(s)

Selection rule: Use all

Destination Component(s)

Selection rule: Show me and I will choose

ID: Webcam-ABCDEF123456

Name: Webcam

Mfgr: Sony

Model: DCX2010

Location: Front Porch

Owner: Alice

Obje Interfaces: Component, DataSource

Source data types: video/mpeg,
video/quicktime, application/x-obje-
codebundle

ID: LCDTV-ABCDEF123456

Name: LCD TV

Mfgr: Pioneer

Model: TCZ420012

Location: Living Room

Owner: Alice

Obje Interfaces: Component, DataSink

Sink data types: image/jpeg, image/png,
video/avi, video/quicktime, application/x-
obje-codebundle

Table 7-5: An even more generalized version of Alice’s Setup could be created by representing only the
characteristics shared by all of the devices in both source and destination slots. When this Setup is invoked in
Bob’s environment, it will show all destination devices that support the Component and DataSink
interfaces, and that support the video/quicktime and x-obje-codebundle Sink data types.

Even with rich information about Alice’s devices, challenges still remain.

What is needed for this scenario is not an exact match but the most relevant

substitute. The appropriateness of a substitution candidate will be based on the

degree of match among only a subset of each device’s fields—for example the “ID”

field should not be considered as relevant to the matching algorithm, whereas the

“Source data types” and “Sink data types” fields are highly relevant. The locations

of devices may be somewhat important in this particular case, but much less

important than the data types supported. It is likely that the relative importance

7.4 · Sharing Setups Across Households 345

of each field will differ from one Setup to another. It may not be possible to

identify the most relevant fields for each Setup automatically, and some user

guidance may be required for Export, Import, or both. Investigating exactly how

much of Setup sharing can be performed automatically, and how to best integrate

user input into the process, will be necessary in order to enable Setup sharing

across households.

7.4.1 Support for Wide-Area Sharing: Communities of Composition

Allowing users to share across homes is helpful in supporting friends and family,

but enabling large-scale sharing across the wide area could prove even more

valuable.

7.4.1.1 End-User Programming Communities of Practice

Bonnie Nardi’s seminal studies of end-user programming practice demonstrated

the importance of cooperative work in communities that employ end-user

programming [109]. In her studies of office spreadsheet users and users of CAD

software, she documents the emergence of local developers who are not

(necessarily) professional programmers that provide expertise, assistance, and most

importantly, template programs that can be adapted and modified by other end-

users to suit their personal needs. This finding is echoed in work conducted by

Wendy Mackay, also in the early 1990’s who looked at the sharing and adaptation

of mail sorting rules and UNIX configuration files [94].

7.4 · Sharing Setups Across Households 346

The proposed work described in the previous section regarding Setups shared

among friends and family is, in essence, aimed at supporting these types of

communal practices. However, a more ambitious degree of sharing may be

possible and has yet to be explored thoroughly in previous research. Might it be

possible to support wide area communities of programming or compositional

practice without the need for face-to-face collaboration? If such communities

could be created and fostered, it could have enormous benefits to end-users, who

may be able to benefit from the efforts of large numbers of peers who may have

already generated a solution to whatever configuration problem they are facing.

Large scale contributions to and use of a shared repository of Setups, filtered by

the degree to which contributed Setups would match well with a user’s own

environments and ranked by means of Collaborative Filtering systems [123] have

the potential to match users interests and their local network’s capabilities with

other users in similar situations who may have already created particularly useful

Setups. At the same time, creating and supporting such large scale communities

will present significant challenges, such as soliciting contributions from members,

mapping such contributions to other users’ networks, filtering out redundant

contributions, and tracking and identifying community members’ interests and

usage patterns. Though these problems are substantial, the potential benefits are

quite substantial as well, and I believe that further research should chart a course

in this direction.

7.5 · Summary 347

7.5 Summary

In previous chapters, I presented the results of my research into delivering an

integrated user experience of ubiquitous computing. In this chapter, I discussed a

set of areas that have not been addressed by my work, but that may prove to be

important in further solidifying or extending the integrated user experience

provided by the current versions of Obje and OSCAR. For these areas of future

work, I have described why they are important and the initial steps one might

take to address them. In the final chapter, I will return to the contributions of my

work and discuss how they combine together to address the critical barriers to

delivering an integrated user experience of ubicomp.

 348

8 Conclusion

In the Introduction of this dissertation I described the emerging world of

ubiquitous computing and discussed the challenges that this world poses for users.

In particular I discussed the difficulty of presenting an integrated user experience

of interacting with multiple devices and services in a highly networked and

dynamic world. I described three problems with existing approaches to delivering

end-user functionality in ubiquitous computing environments: piecemeal

interoperability, piecemeal interaction, and sluggish adaptation. In this

concluding chapter, I will review this dissertation’s contributions in order to show

how they address the three core user experience problems.

8.1 Thesis Statement

I will begin by returning to the thesis statement of this dissertation:

An integrated, yet flexible and customizable user experience of interacting with

multiple heterogeneous devices and services is achievable through a combination of

• a middleware framework that supports robust interoperability;

8.1 · Thesis Statement 349

• mechanisms and end-user tools that allow ad hoc connections among

distributed devices and services;

• framework- and application-level support for dynamically distributable

control that allows users to monitor and control both individual devices and

ongoing connections; and

• • end-user tools that support the discovery, connection, and control of

individual devices as well as the creation, modification, and invocation of

both temporary and reusable service compositions.

The testbed system employed for the OSCAR user study, comprising as it did

a number of Obje components running on a network with the Obje-enabled

OSCAR client application to browse, select, connect, and control them,

represents the achievement of an “integrated, yet flexible and customizable user

experience.” That the OSCAR user experience is integrated is evidenced by the

fact that users were able to use a single, consistent, control client to accomplish a

range of different tasks. That the experience is flexible is shown by the range of

tasks represented, and the fact that users were able to create compositions to

accomplish tasks using a user interface that would allow them to also create an

even wider range of different compositions by simply re-applying the same

techniques that were used in the study to a different set of services. The

customizability of the experience derives from its flexibility. Each user can create a

8.2 · Contributions 350

different set of compositions to encapsulate his or her preferred set of activities

and means of carrying them out, and the end result will be a highly personal set of

easy-to-invoke compositions that, in effect, represents a uniquely personal user

interface to the full set of functionality available from his or her network of devices.

It should be clear by now that all of the constituent components of our sought-

after user experience that are described in the thesis are represented in Obje and

OSCAR, and it is precisely that combination of features that produce an

integrated user experience. In the next section, I will recap the key contributions

of the thesis and tie them back to both the thesis statement criteria and the

original problems of piecemeal interoperability, piecemeal interaction, and

sluggish adaptation that formed the launching point for this dissertation.

8.2 Contributions

1) A service framework that supports robust interoperability and end-user composition.

The Obje Framework provides robust interoperability by dictating a minimal set

of a priori agreements among cooperating services and employing mobile code to

allow one service to extend another’s behavior at runtime. In addition to serving

as a framework with interoperability guarantees that go beyond those offered by

competing approaches, Obje defines simple, standard service interfaces that

describe the roles that services can play in compositions, thus laying the

8.2 · Contributions 351

groundwork for both ad hoc connections and end-user composition. Finally, Obje

provides multiple mechanisms for services to deploy control user interfaces to

clients, thus providing support for dynamically distributable control.

Obje plays a key role on addressing all three of the key user experience

problems (piecemeal interoperability, piecemeal interaction, and sluggish adaptation),

but without end-user applications to bring its benefits to users, it is powerless

to affect the user experience. The Obje Display Mirror and OSCAR each

provide a bridge by which Obje can extend its reach into the hands of the user.

2) A case study of a shared display service that demonstrates how a persistent, networked,

user-accessible service can provide advantages over the hardwired legacy system it

replaced.

While the Obje Display Mirror (ODM) experience provides benefits and

contributions in its own right, with respect to the overarching goals of this

dissertation, the primary contribution of the ODM is to provide an experience

of ad hoc connections and distributed control. ODM users can connect to never

before seen displays without any special configuration other than the one-time

web-based client installation. Once the connection is established, the display

service provides a control user interface that allows the user to not only control

their own connection, but also receive the ability to monitor and control the

connections of any simultaneous users. Through these features, the ODM is

8.2 · Contributions 352

able to provide a partial solution to piecemeal interaction, primarily through

providing users with an application client for controlling the destination and

appearance of the information they are sharing within the same device (their

laptop) as the information itself. However, as a specialized application that only

allows users to accomplish a narrow range of tasks, it may actually contribute as

much to the problem of piecemeal interaction as it does to its solution.

3) A novel application and user interface for end-user composition in home media networks

that can be used effectively by people with a range of technical skill to accomplish a

variety of tasks.

As an embodiment of an end-user composition system built atop a middleware

framework that supports robust interoperability, ad hoc connections,

dynamically distributable control, and support for both temporary and reusable

compositions of devices and services, OSCAR provides a complete

demonstration of this dissertation’s thesis. It provides a working, testable

example of the “integrated, yet flexible and customizable user experience”

described in the thesis statement, and, indeed, a two-phase user study with 18

predominantly non-technical users showed that OSCAR was effective at

achieving the overarching goal of an integrated, flexible, and customizable user

experience that has been the aim of all of the research reported in this

dissertation.

8.3 · An Integrated User Experience of Ubiquitous Computing 353

8.3 An Integrated User Experience of Ubiquitous Computing

The goal of this dissertation research has been to understand how to provide an

integrated user experience of ubiquitous computing. I have reported my

experiences designing and evaluating a framework, set of services, and end-user

application to support such an integrated experience with a focus on the domain

of home media. The experiences reported with respect to the Obje Display Mirror

further suggest that such experiences can be delivered in the workplace

environment, though a thorough exploration of integrated composition and control

in such a domain has not yet been carried out. My work provides a solid

foundation upon which further explorations of end-user service composition and

seamless, integrated control of various types of heterogeneous environments can be

carried out. In my own continuing research, I plan to address additional aspects of

this problem, and I believe that there are substantial opportunities for additional

perspectives to be applied and research to be conducted by a variety of designers

and researchers. It is important that such research continues, as the difference

between an enormous and ever-renewed bounty of new capabilities and a user

experience of persistent frustration hangs in the balance.

 354

Bibliography

1 Abowd, Gregory D. and Elizabeth D. Mynatt. Charting Past, Present, and Future

Research in Ubiquitous Computing. ACM Transactions on Computer-Human

Interaction. 7(1). pp. 29-58, 2000.

2 Abowd, Gregory D., Elizabeth D. Mynatt, and Tom Rodden. The Human Experience,

IEEE Pervasive Computing: Mobile and Ubiquitous Systems, vol. 1(1): pp. 48-57, January,

2002.

3 Abrams, Marc, Constantinos Phanouriou, Alan L. Batongbacal, Stephen M.

Williams, and Jonathan E. Shuster. UIML: An Appliance-Independent XML

User Interface Language. In Proceedings of the 8th International World Wide Web

Conference (WWW '99). Toronto, Canada. pp. 1695-708, May 11-14, 1999.

4 Apple Computer, Inc., Bonjour, 2007. Apple Computer.

http://www.apple.com/macosx/features/bonjour

5 Apple Computer, Inc., iLife, 2007. http://www.apple.com/ilife

6 Arnstein, Larry, Chia-Yang Hung, Robert Franza, Qing Hong Zhou, Gaetano

Borriello, Sunny Consolvo, and Jing Su. Labscape: A Smart Environment for the

Cell Biology Laboratory. IEEE Pervasive Computing. 1(3). pp. 13-21, 2002.

7 Balfanz, Dirk, Diana K. Smetters, Paul Stewart, and H. Chi Wong. Talking To

Strangers: Authentication in Ad-Hoc Wireless Networks. In Proceedings of Network and

Distributed System Security Symposium (NDSS '02). San Diego, CA, USA, February, 2002.

8 Beyer, Hugh and Karen Holtzblatt, Contextual Design: Defining Customer-Centered

Systems. San Francisco, CA, USA: Morgan Kaufmann. 1998.

9 Blackwell, Alan F. and Rob Hague. AutoHAN: An Architecture for Programming

the Home. In Proceedings of the IEEE 2001 Symposium on Human-Centric Languages

and Environments (HCC '01). Stresa, Italy. pp. 150-57, Sept. 5-7, 2001.

10 Block, Ryan, Zune review, 2006. http://www.engadget.com/2006/11/15/zune-

review/

Bibliography 355

11 Bluetooth Consortium, Specification of the Bluetooth System, Version 1.1 Core,

February 22 2001. http://www.bluetooth.com

12 Bolin, Michael, Matthew Webber, Philip Rha, Tom Wilson, and Robert C. Miller.

Automation and Customization of Rendered Web Pages. In Proceedings of the 18th

Annual ACM Symposium on User Interface Software and Technology (UIST 2005). Seattle,

WA. pp. 163-72, 2005.

13 Borenstein, N. and N. Freed, MIME (Multipurpose Internet Mail Extensions): Mechanisms

for Specifying and Describing the Format of Internet Messages. Internet RFC 1341, June

1992.

14 Bowker, Geof, Information Mythology and Infrastructure, in Information Acumen: The

Understanding and Use of Knowledge in Modern Business, L. Bud-Frierman, Editor.

Routledge: London. pp. 231-47, 1994.

15 Broll, Gregor, Enrico Rukzio, and Björn Wedi, Authoring support for mobile interaction

with the real world, in the 5th Annual Conference on Pervasive Computing (Pervasive 2007).

2007: Toronto, Canada.

16 Brooke, John, SUS: A quick and dirty usability scale, in Usability Evaluation in Industry,

P.W. Jordan, B. Thomas, B.A. Weerdmeester, and I.L. McClelland, Editors. Taylor and

Francis: London. pp. 189-94, 1996.

17 Campbell, Andrew, Geoff Coulson, and David Hutchison. A Quality of Service

Architecture. ACM SIGCOMM Computer Communication Review. 24(2). pp. 6-27,

1994.

18 Carnoy, David, CNET editors' review: Logitech Harmony 880, 2005. CNET.

http://reviews.cnet.com/Logitech_Harmony_880/4505-7900_7-31337419.html

19 Carriero, Nicholas and David Gelernter. Linda in Context. Communications of the ACM.

32(4). pp. 444-58, 1989.

20 CEIVA Logic Inc., CEIVA Official Site, Learn More About the CEIVA Digital Photo

Frame, 2007. http://www.ceiva.com/lmore/dpr/dpr.jsp

21 Cheshire, Stuart and Marc Krochmal, DNS-Based Service Discovery, 2006. IETF.

http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt

Bibliography 356

22 Cheshire, Stuart and Marc Krochmal, Multicast DNS, IETF 2004.

http://files.multicastdns.org/draft-cheshire-dnsext-multicastdns.txt

23 Christensen, Erik, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana, Web

Services Description Language (WSDL) 1.1, 2001. W3C. http://www.w3.org/TR/wsdl

24 Colin, David, NEC's Wireless MT1065, 2003. ProjectorCentral.com.

http://www.projectorcentral.com/wireless_nec_mt1065.htm

25 Consolvo, Sunny, Larry Arnstein, and B. Robert Franza. User Study Techniques in the

Design and Evaluation of a Ubicomp Environment. In Proceedings of the 4th

International Conference on Ubiquitous Computing. Goteborg, Sweden. pp. 73-90,

September 29 - October 1, 2002.

26 Consolvo, Sunny and Miriam Walker. Using the Experience Sampling Method to

Evaluate Ubicomp Applications, IEEE Pervasive Computing: Mobile and Ubiquitous

Systems, vol. 2(2): pp. 24-31, April - June, 2003.

27 Cooper, Alan, The Inmates are Running the Asylum. Indiannapolis, IN, USA:

Macmillan Publishing Co. 1999.

28 Csikszentmihalyi, Mihaly and R. Larson. Validity and Reliability of the Experience-

Sampling Method. Journal of nervous and mental disease. 175(9). pp. 526-36, 1987.

29 Cypher, Allen. Eager: Programming Repetitive Tasks by Example. In Proceedings

of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI '91).

New Orleans, LA. pp. 33-39, April 28-May 2, 1991.

30 Czerwinski, Steven E., Ben Y. Zhao, Todd D. Hodes, Anthony D. Joseph, and Randy H.

Katz. An Architecture for a Secure Discovery Service. In Proceedings of the 5th Annual

ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom '99).

Seattle, WA. pp. 24-35, August 15-19, 1999.

31 Davis, Richard C., James A. Landay, Victor Chen, Jonathan Huang, Rebecca B. Lee,

Francis C. Li, James Lin, Charles B. III Morrey, Ben Schleimer, Morgan N. Price, and

Bill N. Schilit. NotePals: Lightweight Note Sharing by the Group, for the Group. In

Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI '99).

Pittsburgh, PA. pp. 338-45, May 15-20, 1999.

Bibliography 357

32 Dey, Anind K., Daniel Salber, and Gregory D. Abowd. A Conceptual Framework and a

Toolkit for Supporting Rapid Prototyping of Context-Aware Applications. Human

Computer Interaction Journal. 16(2-4). pp. 97-166, 2001.

33 Dey, Anind K., Timothy Sohn, Sara Streng, and Justin Kodama. iCAP: Interactive

Prototyping of Context-Aware Applications. In Proceedings of the 4th International

Conference on Pervasive Computing (Pervasive '06). Dublin, Ireland, May, 2006.

34 Digital Living Network Alliance, DLNA Technology, 2007.

http://www.dlna.org/en/consumer/learn/technology/

35 Digital Living Network Alliance, Overview and Vision White Paper, 2004.

http://www.dlna.org/about/DLNA_Overview.pdf

36 Dourish, Paul, W. Keith Edwards, Anthony LaMarca, John Lamping, Karin Petersen,

Michael Salisbury, Douglas B. Terry, and James Thornton. Extending Document

Management Systems with Active Properties. ACM Transactions on Information Systems,

2000.

37 Ducheneaut, Nicolas, Trevor F Smith, James "Bo" Begole, Mark W. Newman, and Chris

Beckman. The Orbital Browser: Composing Services Using only Rotation and Selection.

In Proceedings of Extended Abstracts of the ACM Conference on Human Factors in

Computing Systems (CHI 2006). Montreal, Quebec. pp. 321-26, April 22-27, 2006.

38 Edwards, W. Keith. Discovery Systems in Ubiquitous Computing. IEEE Pervasive

Computing. 5(2). pp. 70-77, 2006.

39 Edwards, W. Keith, Victoria Bellotti, Anind K. Dey, and Mark W. Newman. Stuck in

the Middle: The Challenges of User-Centered Design and Evaluation for Infrastructure.

In Proceedings of the 2003 Conference on Human Factors in Computing Systems (CHI 2003).

Fort Lauderdale, FL USA. pp. 297-304, April 5-10, 2003.

40 Edwards, W. Keith, Mark Newman, Jana Z Sedivy, and Trevor F Smith. Supporting

Serendipitous Integration in Mobile Computing Environments. International Journal of

Human-Computer Studies. 60(5-6). pp. pp. 666-700, 2004.

41 Edwards, W. Keith, Mark W. Newman, Jana Z. Sedivy, Trevor F Smith, Dirk Balfanz,

D. K. Smetters, H. Chi Wong, and Shahram Izadi. Using Speakeasy for Ad Hoc Peer-

Bibliography 358

to-Peer Collaboration. In Proceedings of the ACM Conference on Computer Supported

Cooperative Work (CSCW '02). New Orleans, LA USA, November 16-20, 2002.

42 Edwards, W. Keith, Mark W. Newman, Jana Z. Sedivy, Trevor F Smith, and Shahram

Izadi. Challenge: Recombinant Computing and the Speakeasy Approach. In Proceedings

of the 8th ACM International Conference on Mobile Computing and Networking (MobiCom

2002). Atlanta, GA USA. pp. 279-86, September 23-28, 2002.

43 Edwards, W. Keith, Mark W. Newman, Trevor F Smith, Jana Z. Sedivy, and Shahram

Izadi. An Extensible Set-top Box Platform for Home Media Applications. IEEE

Transactions on Consumer Electronics. 51(4). pp. 1175-81, 2005.

44 eHomeUpgrade, Archive: Streaming Media Devices, 2007.

http://www.ehomeupgrade.com/archive/streaming_media_devices

45 Escobar, Julio, Debra Deutsch, and Craig Partridge, A Multi-Service Flow

Synchronization Protocol, BBN Systems and Technologies Division, March 1991.

46 Falcone, John P., Editors' top network media players, 2006. CNET.

http://reviews.cnet.com/4323-6531_7-6509113.html

47 Fox, Armando, Brad Johanson, Pat Hanrahan, and Terry Winograd. Integrating

Information Appliances into an Interactive Workspace. IEEE Computer Graphics &

Applications. 20(3). pp. 54-65, 2000.

48 Froehlich, Jon, Mike Y. Chen, Sunny Consolvo, Beverly Harrison, and James A. Landay.

MyExperience: a System for in situ Tracing and Capturing of User Feedback on Mobile

Phones. In Proceedings of the 5th International Conference on Mobile Systems, Applications

and Services (Mobisys '07). San Juan, Puerto Rico. pp. 57-70, 2007.

49 Garfinkel, Harold, Studies in Ethnomethodology. Englewood Cliffs, NJ: Prentice- Hall.

1967.

50 Goland, Y. Y., T. Cai, P. Leach, Y. Gu, and S. Albright, Simple Service Discovery

Protocol/1.0: Operating Without an Arbiter, Internet Engineering Task Force Internet

Draft 1999. http://www.upnp.org/draft_cai_ssdp_v1_03.txt

51 Gottman, John Mordechai and Anup Kumar Roy, Sequential Analysis: A Guide for

Behavioral Researchers: Cambridge University Press. 1990.

Bibliography 359

52 Gribble, Steven D., Matt Welsh, J. Robert von Behren, Eric A. Brewer, David Culler, N.

Borisov, S. Czerwinski, R. Gummadi, J. Hill, Anthony Joseph, Randy H. Katz, Z. M.

Mao, S. Ross, and B. Zhao. The Ninja Architecture for Robust Internet-Scale Systems

and Services. Computer Networks. 35(4). pp. 473-97, 2001.

53 Grimes, Richard, Professional DCOM Programming: Wrox Press. 1997.

54 Grimm, Robert, Janet Davis, Eric Lemar, Adam MacBeth, Steven Swanson, Thomas

Anderson, Brian Bershad, Gaetano Borriello, Steven Gribble, and David Wetherall.

System Support for Pervasive Applications. ACM Transactions on Computer Systems. 22(4).

pp. 421-86, 2004.

55 Grinter, Rebecca E., W. Keith Edwards, Mark W. Newman, and Nicolas

Ducheneaut. The Work to Make a Home Network Work. In Proceedings of The

European Conference on Computer-Supported Cooperative Work (ECSCW '05). Paris,

France, 2005.

56 Grudin, Jonathan. Why Groupware Applications Fail: Problems in Design and

Evaluation. Office: Technology and People. 4(3). pp. 245-64, 1989.

57 Grudin, Jonathan and John Pruitt. Personas, Participatory Design and Product

Development: An Infrastructure for Engagement. In Proceedings of the Participatory

Design Conference (PDC 2002). Malmo, Sweeden, June, 2002.

58 Gudgin, Martin, Marc Hadley, Noah Mendelsohn, Jean-Jaques Moreau, Henrik Frystyk

Nielsen, Anish Karmarkar, and Yves Lafon, SOAP Version 1.2 Part 1: Messaging

Framework (Second Edition), 2007. http://www.w3.org/TR/soap12-part1/

59 Hague, Rob and Peter Robinson. Multi-lingual End-user Programming with XML. In

Proceedings of the 3rd Program Visualization Workshop (PVW '04). Warwick, UK. pp. 34-

40, 2004.

60 Hall, Edward T., The Hidden Dimension. New York: Anchor Books. 1966.

61 Harmonia Inc., User Interface Modelling Language 2.0 Draft Specification, 2000.

http://www.uiml.org/specs/uiml2/index.htm

62 Hartmann, Björn, Leslie Wu, Kevin Collins, and Scott R. Klemmer. Programming by a

Sample: Rapidly Prototyping Web Applications with d.mix. In Proceedings of the 20th

Bibliography 360

Annual ACM Symposium on User Interface Software and Technology (UIST 2007). Newport,

RI USA. pp. 241-50, 2007.

63 Hodes, Todd and Randy H. Katz. A Document-based Framework for Internet

Application Control. In Proceedings of the 2nd USENIX Symposium on Internet

Technologies and Systems (USITS '99). Boulder, CO USA. pp. 59-70, October, 1999.

64 Hof, Robert D. Mix, Match, and Mutate, BusinessWeek, July 25, 2005.

65 Hong, Jason I., An Architecture for Privacy-Sensitive Ubiquitous Computing, Unpublished

Dissertation, University of California, Berkeley, Electrical Engineering and Computer

Sciences Department, Berkeley, CA, 2005.

66 Hong, Jason I. and James A. Landay. An Architecture for Privacy-sensitive Ubiquitous

Computing. In Proceedings of The 2nd International Conference on Mobile Systems,

Applications, and Services (Mobisys 2004). Boston, MA, USA. pp. 177-89, June 6-9, 2004.

67 Huang, Andrew C., Benjamin C. Ling, John Barton, and Armando Fox. Making

Computers Disappear: Appliance Data Services. In Proceedings of the 7th ACM/IEEE

Internation Conference on Mobile Computing and Networking (MobiCom 2001). Rome,

Italy. pp. 108-21, July, 2001.

68 Hudson, Scott E., James Fogarty, Christopher G. Atkeson, Daniel Avrahami, Jodi

Forlizzi, Sara Kiesler, Johnny C. Lee, and Jie Yang. Predicting Human Interruptibility

with Sensors: A Wizard of Oz Feasibility Study. In Proceedings of the 2003 Conference on

Human Factors in Computing Systems (CHI 2003). Fort Lauderdale, FL USA. pp. 257-64,

April 5-10, 2003.

69 Hull, Richard, Ben Clayton, and Tom Melamed. Rapid Authoring of Mediascapes. In

Proceedings of the 6th Annual Conference on Ubiquitous Computing (Ubicomp 2004).

Nottingham, UK. pp. 125-42, 2004.

70 Humble, Jan, Andy Crabtree, Terry Hemmings, Karl-Petter Åkesson, Boriana Koleva,

Tom Rodden, and Pär Hansson. "Playing with the Bits": User-configuration of

Ubiquitous Domestic Environments. In Proceedings of UbiComp: The Fifth International

Conference on Ubiquitous Computing (Ubicomp 2003). Seattle, Washington. pp. 256-63,

October 12-15, 2003.

Bibliography 361

71 IBM Services Architecture Team, Web Services Architecture Overview: the Next Stage of

Evolution for e-business, 2000. IBM. http://www.ibm.com/developerworks/library/w-ovr/

72 Internet Engineering Task Force (IETF) Zeroconf Working Group, Zero

Configuration Networking (Zeroconf), 2005. http://www.zeroconf.org

73 Intille, Stephen S., John Rondoni, Charles Kukla, Isabel Anacona, and Ling Bao. A

Context-aware Experience Sampling Tool. In Proceedings of Extended Abstracts of the

Conference on Human Factors and Computing Systems (CHI 2003). Fort Lauderdale, FL

USA. pp. 972-73, April 5-10, 2003.

74 Jeronimo, Michael and Jack Weast, UPnP Design by Example: Intel Press. 2003.

75 Johanson, Brad, Armando Fox, and Terry Winograd. The Interactive Workspaces

Project: Experiences with Ubiquitous Computing Rooms, IEEE Pervasive Computing:

Mobile and Ubiquitous Systems, vol. 1(2), April - June, 2002.

76 Johanson, Brad, Emre Kiciman, and Armando Fox, Moving Data and Interfaces in an

Interactive Workspace, in the Workshop on Infrastructure for Smart Devicdes at Handheld

and Ubiqitous Computing (HUC 2000). 2000: Bristol, UK.

77 Joshi, James, Elisa Bertino, and Arif Ghafoor. Temporal Hierarchies and Interitance

Semantics for GTRBAC. In Proceedings of the 7th ACM Symposium on Access Control

Models and Technologies (SACMAT '02). Monterey, CA. pp. 74-83, June 3-4, 2002.

78 Kay, Alan C. The Early History of Smalltalk. In Proceedings of the 2nd SIGPLAN

Conference on the History of Programming Languages Cambridge, MA. pp. 69-95, April

20-23, 1993.

79 Kelleher, Caitlin and Randy Pausch. Lowering the Barriers to Programming: A

Taxonomy of Programming Environments and Languages for Novice Programmers.

ACM Computing Surveys. 37(2). pp. 83-137, 2005.

80 Kiciman, Emre and Armando Fox. Using Dynamic Mediation to Integrate COTS

Entities in a Ubiquitous Computing Environment. In Proceedings of the 2nd

International Symposium on Handheld and Ubiquitous Computing (HUC 2000). Bristol, UK.

pp. 211-26, Sept. 25-27, 2000.

Bibliography 362

81 Kiciman, Emre, Laurence Melloul, and Armando Fox, Position Summary: Towards

Zero-code Service Composition, in the 8th Workshop in Hot Topics in Operating Systems

(HotOS VIII). 2001: Elmau/Oberbayern, Germany.

82 Kiczales, Gregor, Jim des Rivieres, and Daniel G. Bobrow, The Art of the Metaobject

Protocol. Cambridge, Massachusetts: MIT Press. 1991.

83 Kindberg, Tim and John Barton. A Web-based Nomadic Computing System. Computer

Networks. 35. pp. 443-56, 2001.

84 Kindberg, Tim and Armando Fox. System Software for Ubiquitous Computing. IEEE

Pervasive Computing. 1(1). pp. 70-81, 2002.

85 LaMonica, Martin, Teqlo: Not a programmer? Not a problem, 2006. cnet News.com.

http://news.com.com/8301-10784_3-6125190-7.html

86 Lau, Tessa and Daniel S. Weld. Programming by Demonstration: An Inductive

Learning Formulation. In Proceedings of the International Conference on Intelligent

User Interfaces (IUI '99). Redondo Beach, CA. pp. 145-52, 1999.

87 Lewis, Clayton and John Reiman, Task-Centered User Interface Design: A Practical

Introduction, 1993. Shareware Book. http://hcibib.org/tcuid

88 Li, Yang, Jason I. Hong, and James A. Landay. Topiary: a Tool for Prototyping

Location-enhanced Applications. In Proceedings of the 17th Annual ACM Symposium on

User Interface Software and Technology (UIST 2004). Santa Fe, NM USA. pp. 217-26,

October 24-27, 2004.

89 Lieberman, Henry and José Espinosa. A Goal-oriented Interface to Consumer

Electronics Using Planning and Commonsense Reasoning In Proceedings of the ACM

Conference on Intelligent User Interfaces (IUI 2006). Sydney, Australia. pp. 226-33, Jan. 20-

Feb. 1, 2006.

90 Logo Computer Systems, Inc., The Logo Programming Language, 1995. available at

http://microworlds.com

91 Lohse, Marco and Philipp Slusallek. Towards Automatic Setup of Distributed

Multimedia Applications. In Proceedings of International Conference on Internet and

Multmedia Systems and Applications. Innsbruck, Austria. pp. 359-64, 2005.

Bibliography 363

92 Lynch, Michael, E. Livingstone, and E. Garfield, Temporal Order in Laboratory Work,

in Science Observed: Perspectives on the Social Study of Science, K.D. Knoll-Centina and M.

Mulkay, Editors. Sage: London, 1983.

93 Mac News Network, WiJET.Video: 802.11g wireless display adapter, 2004.

http://www.macnn.com/articles/04/01/08/wijet.video.802.11g/

94 Mackay, Wendy E. Patterns of Sharing Customizable Software. In Proceedings of the

1990 ACM Conference on Computer-supported Cooperative Work (CSCW '90). Los Angeles,

CA USA. pp. 209-21, 1990.

95 Mainwaring, Scott, Michelle F. Chang, and Ken Anderson. Infrastructures and their

Discontents: Implications for Ubicomp. In Proceedings of the 6th International Conference

on Ubiquitous Computing. Nottingham, UK. pp. 418-32, September 7-10, 2004.

96 Mansley, Kieran, Alastair Beresford, and David Scott. The Carrot Approach:

Encouraging Use of Location Systems. In Proceedings of Ubicomp 2004. Nottingham,

UK. pp. 366-83, 2004.

97 Mao, Zhuoqing Morley and Randy H. Katz. Achieving Service Portability Using Self-

Adaptive Data Paths. IEEE Communications. 40(1). pp. 108-14, 2002.

98 Masuoka, Ryusuke, Bijan Parsia, and Yannis Labrou. Task Computing - the Semantic

Web Meets Pervasive Computing. In Proceedings of 2nd International Semantic Web

Conference (ISWC2003). Sanibel Island, Florida, USA, 20-23 October, 2003.

99 Mernik, Marjan, Jan Heering, and Anthony M. Sloane. When and How to Develop

Domain-specific Languages. ACM Computing Surveys. 37(4). pp. 316-44, 2005.

100 Messer, Alan, Henry Song, Praveen Kumar, Phuong Nguyen, Anugeetha

Kunjithapatham, and Mithun Sheshagiri. InterPlay: A Middleware for Integration of

Devices, Services and Contents in the Home Networking Environment. In Proceedings

of 3rd IEEE Consumer Communications and Networking Conference (CCNC 2006). Las

Vegas, NV, USA. pp. 1083-87, 8-10 Jan, 2006.

101 Microsoft Corp., Express - Visual Basic - Easy to Use, 2007.

http://msdn2.microsoft.com/en-us/express/aa718406.aspx

102 Microsoft Corp., Microsoft Popfly, 2007. http://www.popfly.com/Overview/

Bibliography 364

103 Microsoft Corp., What Is .NET?, 2005.

http://www.microsoft.com/net/basics.mspx

104 Microsoft Corp., Windows Media Player, 2007.

http://www.microsoft.com/windows/windowsmedia

105 Microsoft Corp., Working Remotely with Windows XP, 2005.

http://www.microsoft.com/windowsxp/using/mobility/default.mspx

106 Monson-Haefel, Richard, Enterprise Java Beans. 3 ed: O'Reilly. 2001.

107 Mynatt, Elizabeth D., everyday computing lab, 2004. Georgia Institute of Technology.

http://www.cc.gatech.edu/fce/ecl/

108 Nakao, Akihiro, Larry Peterson, and Andy Bavier. Constructing end-to-end paths for

playing media objects. Computer Networks. 38(2002). pp. 373-89, 2002.

109 Nardi, Bonnie, A Small Matter of Programming: Perspectives on End User Computing.

Cambridge, MA: MIT Press. 1993.

110 Newman, Mark W., Nicolas Ducheneaut, W. Keith Edwards, Jana Z. Sedivy, and

Trevor F Smith. Supporting the unremarkable: experiences with the Obje Display Mirror.

Personal and Ubiquitous Computing. Published

Online(http://www.springerlink.com/content/t0p5l7l3p5r400gw/), 2006.

111 Newman, Mark W., Shahram Izadi, W. Keith Edwards, Jana Z. Sedivy, and Trevor F.

Smith. User interfaces when and where they are needed: an infrastructure for

recombinant computing. In Proceedings of the 15th annual ACM symposium on User

interface software and technology. pp. 171-80, 2002.

112 Newman, Mark W., Jana Z. Sedivy, Christine M. Neuwirth, W. Keith Edwards, Jason I.

Hong, Shahram Izadi, Karen Marcelo, and Trevor F Smith. Designing for Serendipity:

Supporting End-user Configuration of Ubiquitous Computing Environments. In

Proceedings of the International Conference on Designing interactive Systems (DIS 2002).

London, UK. pp. 147-56, 2002.

113 Nichols, Jeffrey, Duen Horng Chau, and Brad A. Myers. Demonstrating the Viability of

Automatically Generated User Interfaces. In Proceedings of the ACM Conference on

Human Factors in Computing Systems (CHI '07). San Jose, CA. pp. 1283-92, 2007.

Bibliography 365

114 Nichols, Jeffrey, Brad A. Myers, MIchael Higgins, Thomas K. Hughes, Roni

Rosenfeld, and Mathilde Pignol. Generating Remote Control Interfaces for

Complex Appliances. CHI Letters: Proceedings of the 15th Annual ACM Symposium on

User Interface Software and Technology (UIST 2002). 4(2). pp. 161-70, 2002.

115 Nichols, Jeffrey, Brad A. Myers, and Brandon Rothrock. UNIFORM: Automatically

Generating Consistent Remote Control User Interfaces. In Proceedings of the 24th

Annual ACM Conference on Human Factors in Computing Systems (CHI 2006). Montreal,

Canada. pp. 611-20, April 22-26, 2006.

116 Nichols, Jeffrey, Brandon Rothrock, Duen Horng Chau, and Brad A. Myers. Huddle:

Automatically Generating Interfaces for Systems of Multiple Connecting Appliances. In

Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology

(UIST '06). Montreux, Switzerland, October 15-18, 2006.

117 Nullsoft, SHOUTcast - Documentation, 2007.

http://www.shoutcast.com/support/docs/

118 Nunamaker, Jay F., A. R. Dennis, and J. S. Valencich. Electronic Meeting Systems to

Support Group Work. Communications of the ACM. 34(7). pp. 40-61, 1991.

119 Object Management Group, CORBA: The Common Object Request Broker Architecture,

Rev. 2.0, July, 1995 1995.

120 Ockerbloom, John, Mediating Among Diverse Data Formats, Carnegie Mellon

University Technical Report CMU-CS-98-102, Computer Science, Pittsburgh,

PA, 1998.

121 Ponnekanti, Shankar R., Brian Lee, Armando Fox, Pat Hanrahan, and Terry Winograd.

ICrafter: A Service Framework for Ubiquitous Computing Environments. In

Proceedings of the 3rd International Conference on Ubiquitous Computing (Ubicomp 2001).

Atlanta, GA USA. pp. 56-75, September, 2001.

122 Rangan, P. Venkat, Srinivas Ramanathan, and Thomas Kaeppner. Performance of

Inter-Media Sychronization in Distributed and Heterogeneous Multimedia

Systems. Computer Networks and ISDN Systems. 27(4). pp. 549-65, 1995.

123 Resnick, Paul, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl.

GroupLens: an Open Architecture for Collaborative Filtering of netnews. In Proceedings

Bibliography 366

of the ACM Conference on Computer-supported Cooperative Work (CSCW '94). Chapel Hill,

NC. pp. 175-86, October 22-26, 1994.

124 Rettig, Marc. Prototyping for Tiny Fingers, Communications of the ACM, 1994.

125 Richardson, T., Q. Stafford-Fraser, K. Wood, and A. Hopper. Virtual Network

Computing. IEEE Internet Computing. 2(1), 1998.

126 Ritchie, John and Thomas Kuchnel, UPnP AV Architecture 0.83, 2002. UPnP Forum.

http://www.upnp.org/standardizeddcps/documents/UPnPAvArchtiecture0.83.pdf

127 Rodden, Tom, Andy Crabtree, Terry Hemmings, Boriana Koleva, Jan Humble, Karl-

Petter Akesson, and Par Hansson. Between the dazzle of a new building and its eventual

corpse: assembling the ubiquitous home. In Proceedings of the International Conference on

Designing Interactive Systems (DIS 2004). Cambridge, MA, USA. pp. 71-80, 2004.

128 Rode, Jennifer A., Eleanor F. Toye, and Alan F. Blackwell. The Domestic Economy: a

Broader Unit of Analysis for End User Programming. In Proceedings of Extended

Abstracts of the ACM Conference on Human Factors in Computing Systems (CHI 2005).

Portland, OR USA. pp. 1757-60, 2005.

129 Rode, Jennifer A., Eleanor F. Toye, and Alan F. Blackwell. The Fuzzy Felt

Ethnography--Understanding the Programming Patterns of Domestic Appliances.

Personal and Ubiquitous Computing. 8. pp. 161-76, 2004.

130 Rogers, Everett, Diffusion of Innovations. 1962.

131 Román, Manuel, Christopher Hess, Renato Cerqueira, Anand Ranganat, Roy H.

Campbell, and Klara Nahrstedt. Gaia: a Middleware Infrastructure to Enable Active

Spaces, IEEE Pervasive Computing, vol. 1(4): pp. 74-83, Oct.-Dec., 2002.

132 Rose, M., Internet Engineering Task Force, RFC 3080: The Blocks Extensible

Exchange Protocol Core, I.E.T.F. (IETF), Editor. 2001.

133 Royal Philips Electronics, Pronto 2007. http://www.pronto.philips.com/

134 Salber, Daniel, Anind K. Dey, and Gregory D. Abowd. The Context Toolkit: Aiding the

Development of Context-enabled Applications. In Proceedings of the ACM Conference on

Human Factors in Computing Systems (CHI 1999). Pittsburgh, PA USA. pp. 434-41, May

15-20, 1999.

Bibliography 367

135 Scheifler, Robert W. and Jim Gettys. X Window System. ACM Transactions on

Graphics. 5(2). pp. 79-109, 1986.

136 Smetters, D. K., Dirk Balfanz, Glenn Durfee, Trevor F Smith, and Kyung-Hee

Lee. Instant Matchmaking: Simple Secure Virtual Extensions to Ubiquitous

Computing Environments. In Proceedings of the 8th International Conference on

Ubiquitous Computing (Ubicomp 2006). Orange County, CA. pp. 477-94, September

17-21, 2006.

137 Snyder, Carolyn, Paper Prototyping: The Fast and Easy Way to Design and Refine User

Interfaces: Morgan Kaufmann. 2003.

138 Sousa, João Pedro and David Garlan. Aura: an Architectural Framework for User

Mobility in Ubiquitous Computing Environments. In Proceedings of the 3rd

Working IEEE/IFIP Conference on Software Architecture. pp. 29-43, August 25-31,

2002.

139 Star, S.L. The Ethnography of Infrastructure. American Behavioral Scientist. 43(3). pp.

377-91, 1999.

140 Streitz, Norbert A., Jörg Geißler, Torsten Holmer, Shin'ichi Konomi, Christian Müller-

Tomfelde, Wolfgang Reischl, Petra Rexroth, Peter Seitz, and Ralf Steinmetz. i-LAND:

an Interactive Landscape for Creativity and Innovation. In Proceedings of the SIGCHI

Conference on Human factors in computing systems (CHI '99). Pittsburgh, Pennslyvania,

USA. pp. 120-27, 1999.

141 Suchman, Lucy A., Plans and Situated Actions: The Problem of Human-Computer

Communication. New York: Cambridge University Press. 1987.

142 Sun Microsystems, Java EE at a Glance, 2007. Sun Microsystems.

http://java.sun.com/javaee/

143 Sun Microsystems, Jini Discovery and Join Specification, January 1999.

144 Sun Microsystems, The Java Programming Language, 1997. http://java.sun.com/javase/

145 TabletKiosk, Sahara Slate PC i215 Touch-iT Tablet PC, 2006.

http://www.tabletkiosk.com/tkstore/pc/viewPrd.asp?idcategory=17&idproduct=68

146 TechSmith, Camtasia Studio, 2007. http://www.techsmith.com/camtasia.asp

Bibliography 368

147 TiVo, Inc., TiVo, 2007. http://www.tivo.com

148 Tolmie, Peter, James Pycock, Tim Diggins, Allan MacLean, and Alain Karsteny.

Unremarkable Computing. In Proceedings of the ACM Conference on Human Factors in

Computing Systems (CHI '02). Minneapolis, MN USA. pp. 399-406, 2002.

149 Truong, Khai N. and Gregory D. Abowd. INCA: Architectural Support for Building

Automated Capture & Access Applications. In Proceedings of The 2nd International

Conference on Pervasive Computing (Pervasive 2004). Vienna, Austria. pp. 140-57, April

21-23, 2004.

150 Truong, Khai N., Elaine M. Huang, and Gregory D. Abowd. CAMP: A Magnetic

Poetry Interface for End-User Programming of Capture Applications for the Home. In

Proceedings of the 6th International Conference on Ubiquitous Computing (Ubicomp 2004).

Nottingham, UK. pp. 143-60, 2004.

151 Turoff, M. Computer-Mediated Communication Requirements for Group Support.

Journal of Organizational Computing. 1(1). pp. 85-113, 1991.

152 Universal Description Discovery and Integration Consortium, UDDI Technical

Whitepaper, September 6 2000.

http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

153 UPnP Forum, UPnP Device Architecture, UPnP Forum, June 2000.

http://www.upnp.org/download/UPnPDA10_20000613.htm

154 Van Kleek, Max, Kai Kunze, Kurt Partridge, and James "Bo" Begole. OPF: A

Distributed Context-Sensing Framework for Ubiquitous Computing Environments. In

Proceedings of the 3rd International Symposium on Ubiqutous Computing Systems (UCS

2006). Seoul, Korea. pp. 82-97, October 11-13, 2006.

155 Vanderheiden, Gregg C. and Gottfried Zimmermann. Use of User Interface Sockets to

Create Naturally Evolving Intelligent Environments. In Proceedings of the 11th

International Conference on Human-Computer Interaction (HCI International 2005). Las

Vegas, NV, USA, July 22-27, 2005.

156 Venners, Bill, The ServiceUI API Specification, Version 1.1beta3, 2002.

http://www.artima.com/jini/serviceui/Spec.html

Bibliography 369

157 Voida, Stephen, W. Keith Edwards, Mark W. Newman, Rebecca E. Grinter, and

Nicolas Ducheneaut. Share and Share Alike: Exploring the User Interface Affordances of

File Sharing. In Proceedings of the ACM Conference on Human Factors in Computing

Systems (CHI 2006). Montreal, Quebec. pp. 221-30, 2006.

158 Waldo, Jim. The Jini Architecture for Network-centric Computing, Communications of

the ACM, vol. 42(7): pp. 76-82, July, 1999.

159 Walkenbach, John, Excel 2007 Formulas. Indiannapolis, IN: Wiley Publishing, Inc. 2007.

160 Weiser, Mark. The Computer for the Twenty-First Century, Scientific American pp. 94-

100, 1991.

161 Weiser, Mark and John Seely Brown. Designing Calm Technology. PowerGrid Journal.

1.01(1), 1996.

162 White, James E. A High-level Framework for Network-based Resource Sharing. In

Proceedings of the National Computer Conference. pp. 561-70, June 6-7, 1975.

163 Wisneski, C., Hiroshi Ishii, A. Dahley, M. Gorbett, S. Brave, B. Ullmer, and P. Yarin.

Ambient Displays: Turning Architectural Space into an Interface between People and

Digital Information. In Proceedings of the 1st International Workshop on Cooperative

Buildings (CoBuild '98). Darmstadt, Germany. pp. 22-32, 1998.

164 Wollrath, A., R. Riggs, and J. Waldo. A Distributed Object Model for the Java System.

USENIX Computing Systems. 9, 1996.

165 Wolpin, Steward, Sony RM-AV3000 Integrated Remote Commander, 2003.

http://reviews.cnet.com/remote-controls/sony-rm-av3000-integrated/4505-

7900_7-20605050.html

166 Wong, Jeffrey and Jason I. Hong. Making Mashups with Marmite: Re-purposing Web

Content through End-User Programming. In Proceedings of the ACM Conference on

Human Factors in Computing Systems (CHI 2007). pp. 1435-44, 2007.

167 Yahoo! Inc., Welcome to Flickr, 2007. http://flickr.com

168 Yahoo! Inc., Yahoo! Pipes, 2007. http://pipes.yahoo.com/

169 YouTube, LLC, YouTube - Broadcast Yourself, 2007. http://youtube.com

Appendix A · Obje Display Mirror Data 370

A Obje Display Mirror Data

A.1 Phase 1a Meeting Data

Appendix A · Obje Display Mirror Data 371

A.2 Phase 1b Meeting Data

Appendix A · Obje Display Mirror Data 372

A.3 Phase 2a Meeting Data

Appendix A · Obje Display Mirror Data 373

A.4 Phase 2b Meeting Data

Appendix B · OSCAR Household Personas 374

B OSCAR Household Personas

Here are four households that we believe could benefit from the MonsterPad.

Each is characterized by significant media consumption and at least one

household member with the interest in and capability to customize their media

environment to some extent.

Appendix B · OSCAR Household Personas 375

B.1 The Engstroms, Maple Grove, MN

House: 2-story, 6 bedroom house in a recently-built suburban community

Appendix B · OSCAR Household Personas 376

B.1.1 Household Members:

• Dan, 52, small business owner (auto parts distributor)

• Michelle, 50, schoolteacher

• Audrey, 17, high school junior

• Bridgette, 14, 8th grader

• Duncan, 11, 5th grader

• Butch, 3, golden lab

Dan is an enthusiastic consumer of A/V equipment, which he primarily uses

to watch sports and movies. He also makes home movies and shares them with his

many nearby family members (mother, father, and 3 siblings).

Michelle teaches 10th grade English at Maple Grove High. She considers

herself to be a “low-tech person.” She enjoys watching TV and movies, and

listening to the radio. Her favorite TV shows are cooking shows and things like

“Trading Spaces” or “What Not To Wear.”

Audrey is a popular teenager and spends a lot of time cultivating her

friendships via phone, SMS, IM, email, and in person. She has her own car.

Bridgette is sullen and spends a lot of time listening to music in her room or on

her headphones. She also spends a lot of time in online chat rooms with other

sullen teens.

Duncan likes to play video games and watch TV.

Appendix B · OSCAR Household Personas 377

B.1.2 How they use media:

Dan:

• Family movie night

• Packers/Vikings games

• Sports in garage, living room, bedroom

• Movies in livingroom, bedroom

• Music and radio in garage, car

• Showing home movies & photos to visitors

Michelle:

• Calling mom, family members while cooking (hands free)

• Leave reminders for kids, Dan

• Watch TV in kitchen, living room, bedroom

• Listen to radio in kitchen, living room, bedroom

• Occasionally recorded music in kitchen, car

• Updates the pictures in the picture frames all over the house

Audrey:

• Mostly uses her cellphone for calls, SMS; laptop for IM

• Watches TV and movies in her bedroom, sometimes in livingroom

• Listens to music in bedroom, headphones, car

Appendix B · OSCAR Household Personas 378

Bridgette:

• Uses computer in her room for chat, web surfing

• Listens to music in headphones, room (never in living room!)

• Sometimes Audrey and Bridgette share their music collections with each

other

• Watches TV and movies in her bedroom

Duncan:

• Plays video games in living room, game room

• Watches TV, movies in living room, game room, bedroom

• Listens to radio and music in living room, bedroom

Misc:

• Dan and Michelle have dinner parties, play music at them

• At Christmas and other special occasions, they set up a video link with

Michelle’s mother and father, who live in Florida

• Dan takes lots of videos and photos of family vacations, and also the kids

sporting and other events (Audrey: volleyball and softball, Bridgette: cross

country, school plays and band, Duncan: soccer and tae kwon do). He

maintains a library of these media to show off later.

Appendix B · OSCAR Household Personas 379

B.2 The Merriweather-Alvarez household, Sedona, AZ

House: 1-story, 3-bedroom house on 2 acres outside of town

Appendix B · OSCAR Household Personas 380

B.2.1 Household Members:

• Haley Merriweather, 37, massage therapist

• Angie Alvarez, 43, web project manager

• Mario, 13 and Luigi, 11: cats

Haley is a 37-year old massage therapist, her partner is Angie who is a web

project management contractor.

They both work at home, though Angie’s job takes her outside the house and

even out of town on a regular basis.

Haley's aging mother lives in Dayton, Ohio and Haley makes a great deal of

effort to stay in touch.

Angie is fascinated with new gear and is often bringing home new gear and

changing stuff around in the household. Haley leaves most of the system

configuration and buying decisions to Angie but is very annoyed when things don't

work for her. Primarily, Haley watches movies and listens to music--including the

New Age music that she plays in the massage studio. They take a lot of digital

photographs in their travels around the desert and maintain a website to showcase

their photos.

Appendix B · OSCAR Household Personas 381

B.2.2 How they use media

• Angie maintains the family website, to which she posts lots of photos of

their travels and blog entries which tend to focus around the activities of

the cats.

• Haley and Angie watch lots of movies together in the livingroom and

bedroom.

• Angie likes to listen to music while working in the kitchen or around the

house.

• Haley likes to watch TV while in the kitchen or around the house.

• They both like to listen to music and drink wine on the back deck in the

evenings.

• They have friends over for dinner somewhat regularly, for which they often

play background music.

• Haley uses one of the spare bedrooms as her massage studio. She has a

special collection of relaxing music that she plays when giving clients

massages. She also dims the lights and projects slowly moving clouds on

the ceiling.

• Angie likes to show Haley funny or bizarre stuff that she’s come across on

the Web.

• They both take lots of pictures with their digital cameras.

Appendix B · OSCAR Household Personas 382

• Angie listens to music while working in her home office.

• Haley tries to call her mother every day or two, but sometimes just sends a

message to her mom with some news of the day. She often likes to call

while busy with housework or while doing some menial task in her massage

studio.

• The leave notes and reminders for each other. This is usually paper, but

sometimes includes a message on the answering machine.

B.3 Kari, Jesse, and Ruth, Durham, NC

3-bedroom house near Duke University

Appendix B · OSCAR Household Personas 383

B.3.1 Household member:

• Kari Weissbrun, 26, magazine editor

• Jesse Amman, 26, waiter

• Ruth Sloan, 28, video artist/educator

Kari spends a significant amount of her free time playing World of Warcraft

and other online games. She also makes frequent use of electronic communication

technologies (email, IM, blogging, chat) to maintain contact with her college

friends who have scattered to various cities throughout the US. She and her

roommates download a lot of music and video from the Internet. They watch lots

Appendix B · OSCAR Household Personas 384

of movies and listen to music pretty much constantly. Kari is a heavy computer

and Internet user but does not know how to program or write scripts at all.

Jesse also plays a lot of MMORPG, often connecting online with Holly while

they are each sitting in their separate bedrooms. He is an aspiring laptop DJ and

spends a lot of time researching, collecting, and organizing music.

Ruth is a video artist and has a somewhat sophisticated digital video editing

setup in her bedroom. She doesn’t hang out with Holly and Jesse all that much,

though occasionally they will all eat dinner and watch a movie together. She tends

to hang out in her bedroom when she’s home, where she works on video and other

projects, listens to music, and watches movies. Her boyfriend Rafael is over a lot,

and they mainly watch movies in Ruth’s bedroom.

B.3.2 How they use media

• All of them listen to music in their rooms, the living room, the kitchen, the

bathroom—everywhere. Each has their own music collection but they are

all shared with each other.

• They all watch movies and TV, together and alone, all over the house.

• Kari and Jesse share stuff they come across on the web.

• Notes and reminders: chore wheel and bill reminders.

Appendix B · OSCAR Household Personas 385

• Kari and Jesse are all into the blogosphere—they each have blogs and

spend a lot of effort keeping up with what’s going on with several of their

friends’ and some minor celebrities’ blogs.

• Ruth maintains a website for her video art projects.

• She has a server for

• They have parties every few months at which they (mainly Jesse) play

music and show videos.

B.4 Eugene An, Seattle, WA

1-bedroom apartment in Capitol Hill

Appendix B · OSCAR Household Personas 386

B.4.1 Household members

• Eugene An, 29, musician/administrative assistant

• (Frequent guest: Sabrina Lin, 27, social worker—his girlfriend)

Eugene is a 29 year old part time administrative assistant in the University of

Washington Biology Department. He is also a musician who uses computers to

create and record his music. He authors a podcast in which he plays

uncopyrighted music that he has downloaded from the Internet. While not a

system administrator by profession or training, he is the person in his office that

colleagues tend to turn to when they have problems with their computers,

applications, or peripherals. He lives alone but ends up acting as the "sys admin"

for many of his friends and family members, e.g. his father and mother who live in

Ashland, OR and who he visits at least once every other month or so.

Appendix B · OSCAR Household Personas 387

His girlfriend, Sabrina, spends a good deal of time at his apartment, typically

spending 1 or 2 nights a week. When she is over, they often watch movies or TV.

B.4.2 How they use media

• Eugene has a very large music collection and listens to music nearly

constantly when he is home. He listens to music in all rooms of the house,

and when he goes out he listens to music on his portable MP3 player.

• Eugene makes mixes for Sabrina and for his friends.

• He records snippets of various kinds of media (broadcast radio, internet

radio, TV, movies) for use in podcasts and electronic music projects.

• He downloads a lot of music from the Internet. He has a very elaborate

system for categorizing music that he has downloaded and making notes

about what he has listened to, what he likes and what he doesn’t.

• He also listens to audio from a variety of sources on the net, especially

podcasts, and Internet radio stations.

• He manages Sabrina’s portable MP3 player for her, putting music on it

that he thinks she will like.

• He and Sabrina watch movies together a few times a week.

• Sabrina watches TV when she is over, sometimes while Eugene is working

music projects with his headphones on.

Appendix B · OSCAR Household Personas 388

• As part of making music, Eugene listens to versions of his music in each

room of his house, through his “good” headphones, and on his MP3 player

to hear how it sounds through various kinds of speakers.

Appendix C · OSCAR Expert Review #1 Materials 389

C OSCAR Expert Review #1
Materials

C.1 Instructions to reviewers

C.1.1 Overview

The Obje Interoperability Framework is intended to make it much easier for

devices to work together than is currently possible. The application we are asking

you to evaluate (“MonsterPad”) is intended to allow end-users to interact with,

control, configure, and compose a wide variety of media-oriented devices and

services.

The materials being presented to you for review include sketches for a

proposed service composition user interface, along with descriptive materials

describing the usage setting for which the UI is targeted.

C.1.2 Materials

User Profiles

The users we are targeting with the MonsterPad application are moderate to

heavy consumers of media and early adopter to early majority consumers of media

technology. They are individuals who have some interest in configuring and

Appendix C · OSCAR Expert Review #1 Materials 390

improving their media consumption environment, and are somewhat willing to try

out new types of devices and technology. They do not necessarily have a high

degree of technical skill or knowledge of technical topics such as computer

programming, system administration, electrical wiring, or electronics design. They

are likely to be comfortable using computers and the Internet but are not

necessarily “experts.”

Prologue Script

The following script describes the setting in which the MonsterPad is to be

used:

You have just purchased a new “MediaMonster” device and brought it home. You

bought the device because it promises an “all-in-one solution to all your home media needs,

including video-on-demand, Internet music, games, applications, as well as personal audio,

video, and photo collections.” Since the device is advertised as “Monster-enabled”, you know

that it will work with your existing home network and media devices (such as speakers and

TVs in several rooms, fixed and portable cameras, mobile media devices, and a few others),

which are also Monster-enabled.

The MediaMonster comes with a remote control device called the “MonsterPad” that

you will use to configure and control your home media network.

You know from your previous experience with Monster-enabled devices that not only

can you connect devices within your own home network, but that it is possible to connect to

other people’s home networks as well (e.g., friends and family members). For some of the

Appendix C · OSCAR Expert Review #1 Materials 391

ensuing activities we will assume that you have already established connections between

your home network and the networks of certain family members.

Tasks

#1: Play the “Welcome” audio file on the living room speakers. When finished

return to the main screen.

#2: Locate the documentary “Runaway Trains” on the MovieMonster service and

begin watching it on the living room TV. When you are done, please return to the

main screen.

#3: Create a template that causes the picture frame by the front door to display a

new image from your photo library every time you activate the template.

#3a: Now modify the template so that a new photo is displayed every 10

minutes. When you are finished, return to the main screen.

#4: You read in a review for the MediaMonster that it is possible to create a template

that causes your music to follow you around the house. Create that template.

 #4a: Now modify the template so that your pictures also follow you around the house.

When you are done, return to the main screen.

C.1.3 Technical Overview

Here are a few details about how the MonsterPad application and underlying

“Monster” environment are architected. Keep in mind, however, that potential

end-users may not have access to information about the system architecture.

Appendix C · OSCAR Expert Review #1 Materials 392

Assume they will not have any explicit information other than what is revealed

through the interface.

Even though the prologue states that the user has had some prior experience

with Monster-enabled devices, we are assuming that such prior experience did

not include service discovery or composition. The existing Monster-devices were

used in more or less conventional ways and only using functionality that was built

directly into each device.

Networked Services

In an Obje (a.k.a. “Monster”) environment, different types of devices appear

on the network as services and they can be easily discovered by client applications

such as the MonsterPad. These services are always running and available. The

home network on which they are running has sufficient bandwidth to play audio

and video without difficulty. Firewall issues having to do with access to the

outside world (e.g. “Mom’s house”) have all been magically solved.

Services and devices can be connected together in flexible, but not completely

arbitrary ways. There are three main types of “components” (i.e. devices and

services) in the Obje framework: DataSources, DataSinks, and Aggregates.

DataSources can be connected to DataSinks as long as there is a compatible data

type that they can agree upon (one of the primary advantages of Obje is that it is

much easier to find agreeable data types than it is in existing networks).

Appendix C · OSCAR Expert Review #1 Materials 393

Aggregates are collections of other components—that is they can contain

collections of DataSources, DataSinks, and other Aggregates. A typical Aggregate

would be a media library such as a Music Library or Photo Library. Such a

component would itself be an Aggregate and a DataSink (because you could add

media to the Library by connecting a compatible DataSource to it). It would

contain Folders or Albums, which would also be DataSinks and Aggregates.

Folders would contain Files/Songs/Photos which would be DataSources. Below is

a complete list of all of the components we assumed to exist for the purposes of

this prototype.

Templates

A central concept in the MonsterPad application is the “template”—

essentially a record that contains information about service compositions.

Templates consist of one or more “connections,” each of which contains exactly

one source slot and exactly one destination slot.

When the template becomes active, each connection slot is filled based on a

set of rules that govern that slot. The slot can be filled by user selection or it can

be filled automatically. In both cases, there is a query governing the possible

contents of the slot. In case of user selection, the query results are presented to

the user for selection. In case of automatic selection, one of the query results is

selected at random to fill the slot.

Appendix C · OSCAR Expert Review #1 Materials 394

The connection itself is also governed by rules. Connections can be made on

template activation, on user command, at a particular time, or on a recurring

schedule. They can also be made based on external events such as the satisfaction

of a query or a change in the state of a device or service. For example, a

connection could be triggered by the movement of a device from one room to

another, or by the appearance of a particular device on the network.

Status and Control

Connections can be in three states (actually there are more, but only three are

visible in the UI):

• unavailable: the connection cannot be made without further configuration

• ready: the connection can be made at the user’s request

• active: the connection is currently in progress

When a connection is active, there may be control UIs available for one or

more of the slot components.

Templates can also assume a variety of states, which are basically the same as

the connection states: unavailable, selectable, and active.

Available Components

The following is the complete set of components we assumed were available

when designing the prototype. All components are available on the local network

Appendix C · OSCAR Expert Review #1 Materials 395

except the MusicMonster and MovieMonster components, which are Internet-

based services, and the components listed as belonging to “Mom,” which are

located at Mom’s house in a different city.

Appendix C · OSCAR Expert Review #1 Materials 396

Component Type(s)

Cellphone Microphone DataSource

Dining Room Microphone DataSource

Dining Room Speakers DataSink

Dining Room Web Cam DataSource

Fridge Display DataSink

Front Door Camera DataSource

Front Door Picture Frame DataSink

Headphones DataSink

Kitchen Speakers DataSink

Laptop Speakers DataSink

Living Room Picture Frame DataSink

Living Room Speakers DataSink

Living Room TV DataSink

Mom's Dining Room Picture Frame DataSink

Mom's Dining Room Speakers DataSink

Mom's Dining Room Webcam DataSource

Mom's Phone [Speaker & Microphone] DataSource, DataSink

Office PC Screen DataSink

Office Speakers DataSink

Laptop Files Aggregate, DataSink

MovieMonster (Internet VoD Service) Aggregate

MusicMonster (Internet Music Streaming Service) Aggregate

My Music Library Aggregate, DataSink

My Photo Library Aggregate, DataSink

My Video Library Aggregate, DataSink

Office PC Files Aggregate, DataSink

Portable Music Player Aggregate, DataSink

Appendix C · OSCAR Expert Review #1 Materials 397

C.1.4 Assessment and Reporting

We would like you produce a written report giving us feedback in each of the

following areas. The depth of feedback in each area is up to you and will depend

on where you feel the greatest need for improvement lies. The last section is the

most important—a prioritized list of the most serious issues overall.

In addition, if appropriate, it would be helpful if you would write a brief

overview of the approach(es) and/or techniques (whether formal or informal) you

used in reviewing the materials.

Assumptions and Background

Please comment on any weaknesses you find in the assumptions we have made

about our target users or the supporting technical infrastructure (e.g. device

capabilities, network capabilities, etc.). Also try to highlight any implicit or

ambiguous assumptions that you were forced to clarify or make explicit in order to

make sense of the interface or experiment.

Profiles and Tasks

Please comment on any weaknesses you find in our characterization of the

target users—unrealistic expectations or types of users that have been left out in

appropriately.

Appendix C · OSCAR Expert Review #1 Materials 398

Also comment on the tasks we have chosen—whether they seem realistic and

representative of things that our target users would want to do. If you think of

alternative ways of framing these tasks, or of alternative tasks altogether, let us

know about them.

User Interface

Of course, we hope the bulk of your feedback will be about the user interface

itself.

Process Feedback

Any reactions to you have to the process of carrying out this assessment will be

most welcome, including the materials provided, the form of these documents, etc.

Summary: Prioritized List of Serious Issues

Please provide a summarized list of the most serious issues and give some sense

of their relative severity.

Appendix C · OSCAR Expert Review #1 Materials 399

C.2 Example Walkthrough: Task 3

Task 3

Create a template that causes the picture frame by the
front door to display a new image from your photo
library every time you activate the template.

Appendix C · OSCAR Expert Review #1 Materials 400

Task 3, Step 1

User scrolls down

Appendix C · OSCAR Expert Review #1 Materials 401

Task 3, Step 2

User selects “View Picture on Frame”

Appendix C · OSCAR Expert Review #1 Materials 402

Task 3, Step 3

User clicks “Activate”

Appendix C · OSCAR Expert Review #1 Materials 403

Task 3, Step 4

User selects the gear icon to the lower right of the Photo/Source slot

Appendix C · OSCAR Expert Review #1 Materials 404

Task 3, Step 5

User chooses “Automatically Select”

Appendix C · OSCAR Expert Review #1 Materials 405

Task 3, Step 6

User chooses “Browse”

Appendix C · OSCAR Expert Review #1 Materials 406

Task 3, Step 7

User hits triangle to expand, then selects “Entire Library”, then clicks “Select”

Appendix C · OSCAR Expert Review #1 Materials 407

Task 3, Step 8

User clicks “OK”

Appendix C · OSCAR Expert Review #1 Materials 408

Task3, Step 9

User clicks “Choose” under the sink slot

Appendix C · OSCAR Expert Review #1 Materials 409

Task 3, Step 10

User selects “Front Door Picture Frame”, then clicks “Select”

Appendix C · OSCAR Expert Review #1 Materials 410

Task 3, Step 11

User clicks “Play” button

Side Effect: A random image from the photo library appears on the picture frame

Appendix C · OSCAR Expert Review #1 Materials 411

Task 3, Step 12

Task is Complete

Appendix D · OSCAR Expert Review #2 Materials 412

D OSCAR Expert Review #2
Materials

D.1 Instructions to Reviewers

We are primarily seeking feedback on:

• Profiles

• Walkthrough

• Recipes

…

As before, the format for your analysis and feedback is up to you. All we

specifically ask is for a prioritized list of the most serious issues be included in the

report.

D.1.1 Overview

The MonsterPad (name change pending) is intended to be a portable device

that is used for configuring and controlling a wide variety of media and

communication devices and services in the home. We imagine the MonsterPad as

a Tablet-sized touch screen device with wireless connectivity. There can be

Appendix D · OSCAR Expert Review #2 Materials 413

multiple MonsterPads in a single home. There can also be other co-existing client

devices and/or software (e.g. software that runs on a Desktop PC or on a

smartphone) that performs some or all of the functions of the MonsterPad, and

that can share configuration information (e.g. recipes, lists of active connections)

with the MonsterPad(s).

The MonsterPad depends on the existence of a bunch of devices and services

that are “Monster-enabled,” which basically means that they (a) are available on

the home network or Internet and (b) expose the appropriate interfaces (a.k.a.

“service descriptions” or “profiles” in other interoperability frameworks like .NET

and UPnP) to allow them to interoperate with other “Monster-enabled” devices

and services. For the purposes of this design, we are assuming a fairly large

number of Monster-enabled devices per home. We have generously placed

speakers, display devices (TVs, Picture Frames), web cams, and microphones in

almost every room in the house and assumed that they are all equipped with the

ability to participate in the Monster network, whether because they have that

capability built-in or because they have been “Monster-enabled” via some kind of

proxy device.

It is not the purpose of this exercise to assess the likelihood that “Monster” or

its close cousin “Obje” will achieve such remarkable (and unprecedented) market

dominance, it is rather to explore the desirability of having a highly composable

and configurable network of devices and services, and to determine what facilities

Appendix D · OSCAR Expert Review #2 Materials 414

would be necessary for a framework and for a configuration tool that supported

that level of composability and configuration. Figuring out how to make a version

of the “Monster” environment and MonsterPad application that meets the

constraints of the current or near-term future technical environment that can be

expected in realistic homes is a task for a later Phase.

D.1.2 Target Platform

The device that we are using to prototype the MonsterPad, and that we

intend to use in future usability studies, is the Fujitsu Stylistic Tablet PC. This is

a stylus-based pen computer, not a touch screen, but we are designing all of the

interaction with the MonsterPad to work with a finger as well as a stylus as the

input device.

The MonsterPad application is being designed for a portrait-mode full color

display, 768x1024 pixels.

Appendix D · OSCAR Expert Review #2 Materials 415

D.2 Example Walkthrough: Task 3

Task 3: Show off Pictures

Dan creates a new recipe to help him show off family photos (on the living

room TV) when guests come over

Appendix D · OSCAR Expert Review #2 Materials 416

Appendix D · OSCAR Expert Review #2 Materials 417

Appendix D · OSCAR Expert Review #2 Materials 418

Appendix D · OSCAR Expert Review #2 Materials 419

Appendix D · OSCAR Expert Review #2 Materials 420

Appendix D · OSCAR Expert Review #2 Materials 421

Appendix D · OSCAR Expert Review #2 Materials 422

Appendix D · OSCAR Expert Review #2 Materials 423

Appendix D · OSCAR Expert Review #2 Materials 424

Appendix D · OSCAR Expert Review #2 Materials 425

Appendix D · OSCAR Expert Review #2 Materials 426

Appendix D · OSCAR Expert Review #2 Materials 427

Appendix D · OSCAR Expert Review #2 Materials 428

Appendix D · OSCAR Expert Review #2 Materials 429

Appendix D · OSCAR Expert Review #2 Materials 430

Appendix E · OSCAR User Study Materials 431

E OSCAR User Study Materials

E.1 Screening questionnaire

Text to be read to respondent is in normal type.

Instructions to the interviewer are in italics.

Fields that are to be specified at the time of the interview are in <ANGLE

BRACKETS>.

Number of study participants sought: 10

Eligibility requirements:

• All participants must be 18 years of age or greater.

• No participants should be currently employed as programmers or system

administrators

• No participants should be working in a high-tech industry

We are seeking a sample that is as balanced as possible (need not be exact, except

where “0%” is specified) along the following criteria:

• Gender: ~50% male, ~50% female

• Education Level:

o 0% High school or less

o ~25% Some college

o ~50% College graduate OR Some post-graduate

o ~25% Post-graduate degree

• Media consumption habits

o 0% low

o 50% moderate

o 50% high

• Technology adoption habits

o 0% conservative or very conservative

o 25% late majority

o 50% early majority

o 25% early adopter

Appendix E · OSCAR User Study Materials 432

Record responses to all questions for delivery to the research team. If respondent is

deemed ineligible or declines to participate in the study, delete all records of that

respondent’s responses.

Hi my name is <INTERVIEWER NAME> from <RECRUITING FIRM> and we are

seeking people to participate in a study regarding the usability of new software that

provides new ways for consumers to interact with media devices in their homes. The

study lasts 60-90 minutes and takes place at a location in Palo Alto. You will be given a

choice of times in between <START DATE> and <END DATE> in which to schedule

your participation. You will receive a stipend of $100 for participating, which will be

delivered by check within 3 weeks after completing your participation in the study. This

project is for research only and no sales or solicitation efforts will be made at any time.

If you are interested in participating, I need to ask you a few questions to determine your

eligibility.

If not already known

1. What is your gender?

Consult desired breakdown. If category is full, terminate interview. Not eligible.

1. What is your age?

If less than 18, terminate interview. Not eligible

2. What is your profession?

If computer programmer or system/network administrator, terminate interview. Not

eligible.

3. What industry do you currently work in?

If CONSUMER ELECTRONICS, SOFTWARE, or other high-technology, terminate

interview. Not eligible.

4. What is your educational background? Please choose from the following

• S ome high school

• H igh school diploma

• S ome colle g e

• C ollege degree

• S ome post-graduate school

• Graduate or professional degree

Consult desired breakdown. If category is already full, terminate interview. Not eligible.

5. How many DVDs or videocassettes do you watch in an average month?

 0-2: low

 3-10: moderate

 10+: high

Appendix E · OSCAR User Study Materials 433

6. How many CDs do you purchase in an average month?

 0-2: low

 3-10: moderate

 10+: high

7. How many hours do you spend watching TV in an average week?

 0-5: low

 5-15: moderate

 15+: high

How to rank respondent:

2-3 Highs = high

1 High + 2 moderates = high

1 High + 1 moderate = moderate

2-3 moderates = moderate

0-1 moderates or less = low

If respondent is “low” terminate interview.

Else consult breakdown. If category is full, terminate interview. Not eligible.

8. Which of the following statements best describes you?

A. I am always the first person I know to try out new gadgets and technology.

B. I will usually try out a new gadget or technology after I’ve heard a couple of

other people say good things about it.

C. I am willing to try out new technology but I usually wait until I know a lot of

people are using it.

D. I am reluctant to try out new technology until a lot of people I know are

already using it without any troubles.

E. I almost never try out new technology, even when it seems that everyone else

it using it.

How to rank

A: Early adopter

B: Early majority

C: Late majority

D: Conservative

E: Very conservative

If D or E, terminate interview.

Else consult breakdown. If category is full, respondent is ineligible.

End of Interview

Appendix E · OSCAR User Study Materials 434

E.2 Interview script for OSCAR2 user study11

Comprehension

1. What is a setup?

2. What is a connection?

3. What are devices and media?

4. How would you describe this to someone else?

5. What is your opinion of the language used in this application, especially

“Setup”?

System Feedback

6. (Give them 3 Happy Stickers, 3 Frowny Stickers & screenshot printouts)

What did you particularly like about the system? What did you particularly

dislike?

7. What types of activities would you use this for?

1: ___

2: ___

3: ___

11 The version used for OSCAR1 was nearly the same, with some of the language changed
(e.g. “Setup” was “Recipe” in the OSCAR1 interview). Also note that several of the user study
materials, such as the questionnaire, screen-by-screen feedback screens, and recipe ranking
instruments were presented in Chapter 6 and therefore not presented again here.

Appendix E · OSCAR User Study Materials 435

8. Can you think of other uses for a system like this? What else do you think it

should do?

9. What type of person do you think this system is for? Would you use it

personally? Who else do you know that would use this?

Setup/Activity Ranking

10. (Give them Setup ranking questionnaire)

For each ranked in the top 3, ask:

Why did you think this setup would be useful?

How do you do this kind of thing now?

How would the setup allow you to do this better?

Would someone else in your household have a different ranking?

Setup Ranking #2 (Device/Media Sharing)

11. (Give them setup ranking #2 questionnaire)

For each ranked in the top 3, ask:

Why did you think this setup would be useful?

How do you do this kind of thing now?

How would the setup allow you to do this better?

Would someone else in your household have a different ranking?

12. Would the ability to share devices and media like this make the system

more useful?

Appendix E · OSCAR User Study Materials 436

Setups Sharing

13. One possible area of future development for our system is to add the

ability to share setups. For example, you might give setups to your friends or

family members, and they might give them to you. Also, you might be able to find

setups on the Internet and download them to your house. Do you think you might

find such a capability useful?

14. What role do you imagine that you would play in setup sharing? Would

you create them, download them, use them?

Form Factor

15. What do you think of this tablet device for this application? Are there

other form factors you think would be good?

16. Would this [OSCAR] be yours or the households? Ignoring cost, how

many of these would you want to have?

Computer & Sysadmin Expertise

17. How would you characterize your computer expertise? How many hours

per week would you say you use a computer at work? At home? What applications

do you use the most frequently?

18. At home, what role do you play in selecting, installing, and maintaining

computer and home a/v/ gear? Do you ever help other people with these

activities?

Appendix E · OSCAR User Study Materials 437

for office use only

COMPUTER EXPERTISE

1 Novice; 0-5 hrs/month

2 Infrequent user; 1-5 hrs/wk

3 Casual user; 5-10 hrs/wk

4 Regular user; 10-15 hrs/wk

5 Professional user; 20-40

6 Power user; 20-40

7 Expert/programmer; 40+

SYADMIN RATING:

1 Does nothing

2 Selects gear, doesn't setup

3 DIY setup, asks for help

4 DIY setup, self only

5 DIY setup, self and household

6 DIY setup for self and multiple

people

7 Professional admin/installer

Appendix F · OSCAR User Study Results 438

F OSCAR User Study Results

F.1 Demographics

Appendix F · OSCAR User Study Results 439

F.2 Questionnaire responses

Appendix F · OSCAR User Study Results 440

F.3 Recipe/Setup ranking results

Appendix F · OSCAR User Study Results 441

F.4 Interview response notes

How would you describe this to someone else?

1 touch screen, little pictures to other things

2 you can view your photos, play music, and watch TV

3

All–in-one remote, but better because its more advanced like

a computer.

4

way to have devices interact with eachother in a simple and

easy to use way

5 Enables wireless functionality …

6

All in one media center. Everthing purchased as individual

comonments, miles of connectors coming in

7

Using multimedia consumer electronics devices, multifunction

remote. It’s a bigger version of a Treo (has one). But Treo

would make sense for this, safer to stay in house, don't loose

it.

8

It's neat but should be better…. You're able to sit on couch

and do everything.

9

gadget that allows things that are technical to be used to

simplify one's home, to... gather one's home entertainment,

... to manipulated it in one console

10

Home theater universal remote control

Like back to the future movie

Something people expected we'd have by now

Intended to simplify electronic devices in the home

11

everything at the touch of a button

integrates all the devices in the home (does a good job)

12

remote control on steroids

being able to control different rooms at once

like a "menu"--a host of choices

13 remote control for the whole house

14

newer technology, initially intimidating

better than the remote control (we have 5 TVs)

don't have to lift a finger

lazy

15 way to integrate all your av assets

16 home automated system

17 remote control

18

interactive home theater

home control

Appendix F · OSCAR User Study Results 442

What types of activities would you use something like this

for? (open-ended version)

1

she likes surveillance applications (keeping track of mom, see

who's at the door). Lives with mom who has dementia--Mom

gets into trouble in the kitchen. Kitchen video camera would

be good.

Don't want a lot of TVs in the house (don't keep TVs in

bedroom).

Music, currently brings radio from room to room ("music is

nice").

2

would use music, photos, DVDs. Web cam too. Other uses

could be telephone caller ID, see if it’s a solictor, TV

programs, just punch in your favorites.

owns an HP iPhoto (probably "Photo Smart") device for

showing pictures on TV

thinking about getting one of "those Bose things"

likes it as an "all-in-one" remote, no clutter

3

TV, music, security (who are the dogs barking at). good for a

party, control what's going on in different rooms. Its hard to

find all your remotes. TV remote, comcast remote, ipod

remote, other radio remote, TV in kitchen remote.

4

Has a Nintendo DS, this is familiar

Would set up a slide show on a screen or TV for trip to Hawaii

See who's at the door is "very cool", Mom would like that a

lot, too.

Like to "connect to all parts of the house."

5

Music is crucial. Would use to access PC via TV, to do email in

a different room.

6

Share cable tuner across multiple rooms (later says that wife

won't let him watch TV at home)

Check front door while away (mentioned this before sharing

was introduced)

Has an X10 camera at the front door and some kind of wacky

2.5GHz ham radio video apparatus for viewing the image

Have music automatically follow me from room to room.

Digital photos on laptop and carry it around now, DVD, but

display on DVD or laptop when friends come.

Appendix F · OSCAR User Study Results 443

7

when describing activities, lists the devices she already has,

including karaoke machine and DVD-R

other uses = security and car, but...

"too much integration is scary" (what happens when it all

malfunctions?) "Almost like taking over the universe."

potential for evil in normal home use.

"I do believe in hidden cameras"

insinuation that too much technology is bad and makes you

lazy

"I worry a lot about security" (I'm not sure if this is a

reference to cameras or to viruses/hackers)

8

"I'd buy one today if it had the option" to play music in

multiple rooms simultaneously. (Music includes streaming

radio stations.)

Video from the Internet

VOIP anywhere in the house.

Online Radio, Local Radio & TV stations

Might encourage kids to be lazy ("get up and see who's at the

door")

9

Has to be really quick; everybody wants everything really

quick

slight concern that this type of thing encourages laziness

Novel ideas--parent-teacher conference, long distance call,

long distance who's at the door

DVD , transfer to the car.

Go to the computer to see security camera, see if you should

let them in (look up person in internet databaase).

10

1. laptop for internet, music, & movies (DVD) (connect with

other devices)

2. switch from tv to door camera (see who's at the door from

the TV)

3. Use with downloaded music

11

1. Parties, would make it more social, have different things

going on in different areas

2. multitasking: take stuff off iPod while other stuff going on

3. Picture in picture: TV & movie at the same time

4. Favorite radio stations at the push of a button

12

1. music in different rooms

2. security cameras on front and back doors

3. for real estate agents: staging and virtual tours--info about

different rooms, different parts of the house

4. security, remote house sitting

Appendix F · OSCAR User Study Results 444

13

1. control different TVs in different rooms

2. music

3. photos in picture frames

4. parties, different music in different rooms;

5. superbowl party

6. would be very convenient for hotels to use to distribute

movies & music to rooms

14

side yard wireless camera (currently hooked up to one TV)

speakers in the kitchen & living room

when I have company, play music

timer: turning off TV, to regulate how much is watched

day care: remote web cams to give sense of security

remotely turn on TV/music for kids that don't nap

15

multiple activities: big house and everyone wants to do

different things

music in the kitchen

see who's at the door

kids watching TV

access security cameras from office, maybe offer remote

access to house

music and different things in different rooms

news

16

music library in any room

films/dvds, move to any room

camera outside (security)

check on the kids

speakers outside for a party

17

connecting laptop: videos & movies

sound control (5.1, 7.1)

lighting control

office: presentations (show different things on different

screens)

"favorites"/playlists on living room speaksrs

18

stream music off computer

pic from computer to living room

videos from computer into bedroom

big house- serious security monitoring

have cable connected to computer, distribute throughout

house

open gate/door from within house

family photos as screensaver on TV

Appendix F · OSCAR User Study Results 445

What type of person is this for?

1

tech people or gadget people, once its been tested and the

bugs are out, I buy it. Hooking up wires to TV , new radio can

take time to learn. When upgrgaded to DSL, she did it. Maybe

her brother who likes gadgets, friend's children, or friends'

husband. Sems like its very expensive. technology is time

consuming, it takes time to figure something like this out,

need to read instructions, etc.

2

Normal people... she knows several high-tech types who'd like

it. Key is NO monthly subscription, like slingbox, no

subscription. During bowl season used PIP. All-in-ones good

b/c no clutter

3

tech-savvy people. Sharper Image type stuff. People who are

familiar with computers (enter, add, remove, click, copy,

paste)

"seems expensive" Mom, Dad, older peopple who have

houses.

4

people who like gadgets, like to fiddle with things. Like me

and all my friends. I have a friend with a bunch of TVs

5

Early adopters, someone wealthy, need to have a lot of

rooms. Need to be a homeowner. Expensive to set up, doesn't

work with roommates. No point in small apartment. He's in

the second batch of adopters.

6

Not for everyone. A normal person might have a problem.

Withn an hour or 2 I could do everything. Not for my father.

The recipe stuff is a great idea, flexible. Lots of my friends,

people who have larger houses.

7

Geeks and engineers, people into technology, people who

work with semi-conductors. it's not user friendly--complicated

& cumbersome

people who work at home; people who don't go out too much

(i.e., not me)

8

someone who likes to have cutting edge technologies (like

me)

people with kids who want to keep them entertained

someone who shops at Frys or Best Buy, not walmart

9 (didn't ask)

10

average person, vast majority, more than 50% of the Bay

Area. (includes me)

not for cash-strapped people

Appendix F · OSCAR User Study Results 446

11

those who are up on the technology and want to take full

advantage (people like me)

more affluent

technology buffs

12

anybody (includes me)

someone who lives in a large house

someone who is handicapped, has limited mobility

13

if you're into cool gadgets

like me, if you have redundant gadgets (>1 TV, etc.)

lazy in a good way--people who watch TV, listen to music, use

computers

good for families--allow restrictions, monitors, controls

14

I'm not tech savvy but I would totally use this

average person (middle class or high class)

not my parents, they're not into computers, they would be

intimidated

25+ years old

15

just about anybody

older people would be intimidated

kids & teens would love it

parents

personally-yes! (emphatic), also nearly all friends & family

16

people that have a lot of the latest electronics

personally? Possibly (means no)

people with bigger house, electronics in every room

17

anyone

nowadays, we all have lots of devices and it should be easy to

connect them

18

"ideally" 3 on a tech savvy scale of 1-5, (I'm a 4-5)

personally? Possibly--60-70% of the time

maybe not housewives

Recipe/Setup ranking discussion (after ranking first set of

Recipes/Setups

1

Brother hooked up video camera for kitchen to watch mom,

but if we had an intecom it wold be better for "helping out"

from far away (giving instructions to mom and seeing what

she's doing). Music to clean by, volume not too loud. Mom

can't reason about machines, doesn't realize you have to

press play every time. I could appear on the screen in her

room. In her picture-in-picture and sat "press play."

Appendix F · OSCAR User Study Results 447

2

husband would like double couch potato. Kids and pets, show

'em pictures. Get everything backed up on CD;s, tha way

digital photos aren't all over the house. Lazy man's way to

answer the door. Husband uses wireless laptop on the road

(trucker) from coffeechops, communicates with cell phone and

email. (he's a trucker). seems to do a fair amount with digital

media (photos, especially)

knows about DVR, SlingBox (but doesn't own them)

3

room monitor: I'd use it to snoop on my boyfriend

very into music--currently has iPod, iPod speakers, iPod

remote. Turns music on in several rooms (radio, presumably)

to make it louder

interested in several of the recipes

tried video calls on PC before but too blurry and slow.

Boyfriend would put weather #1. He likes news. Move music

between car and house.

4

Better than PIP. Bought an LCD TV and old one not doing

anything. Front door camera for mom.Shows off movies.

Better than cell (for message at beep). Use it for Battlefield 2

(a squad game with VOIP communications)

Upload videos of game play (captured using FRAPS) to a

service like putfile.com

Story about friend who accidentally posted embarrassing

video of self on putflie.com

5

Has small place, more relevant for people with big houses. It

feeds the "lazy factor"; "it would be cool" (by implication,

perhaps, not essential)

6

Wife would want to see who's at the door. He hooked up X10

camera to a aham radio for this. Dobbler radar feeds? Cool! It

would be one click weather. Rathe rhave music integrated into

infra-red light sensors to detect presence. This would be faster

for who's at the door.

7

Don't watch much YV, lots os DVD's. Its not necessarily better

than how I do it now. 3 level house so intercome hndy.

8

Now checks traffic before going home. Radio and web for

traffic. Wife likes music, photos.

9

Room monitor useful cuz has a 2 year old child

Intercom--I hate screaming

Appendix F · OSCAR User Study Results 448

Recipe ranking discussion for Recipes/Setups involving

shared devices (after ranking second set of Recipes/Setups)

1

Doubts she'd use any, too "Big Brother." I don't think I'd use

anything on the list now. Need some kind of firewall. Wouldn't

want links into my house. So much invasion of privacy, if

someone wants to hack in from office and see what you're

doing. Isntant walkie-talkie maybe for mom, otherwise no.

2

Ausio letters cool, video phone call something she'd thought

about but too expensive. Computer baseball.

3

Gas costs too much. Video phone for far away friends, keep

you connected. Spy on boyfriend.

4 Neat feature

5

Sharing "my radio station" would be cool. Video phone call at

party, a la drunk dialing.

6

parents older, always alone. Mom uses cordless phoe as medic

alert. Put a camera in the garage so I can see if their car is

gone. Father carries cell phone but won't turn it on unless he

wants to make a call. Sis or brother tak to parents everyday.

Push to talk would by-pass phone. Parents would rank the

same. "videophones are long overdue"

7

There should be more face to face. Email is bad. Watching TV

should be done in person, eat junk food together. Otherwise

impersonal.

8 Wouldn't want to share. "I don't like them"

9

Reminds me of big brother, It's great, you get more involved

video call makes the call more personal

Would the ability to share devices make this more useful?

1

No! Friends would have to have it to, and they wouldn't (too

expensive)

Seems that this would invite invasions of privacy (the

suggestion of sharing seemed to raise this specter for her)

2 Broader consumer audience, more people to audio letter.

3

Some excitement about spy camera, but no so much into

making. it comes down to cost (?) Sharing means friends and

family would have to invest, too. Not likely to happen.

4 Neat feature

5

Not crucial, maybe for special occasions (friend moved to

Malaysia.

Appendix F · OSCAR User Study Results 449

6

Yes, its valuable. "Now these are more interesting," (the

second group of recipes.)

7 No. Doesn't make it more useful.

8

Not useful wouldn't do it. "unless you lived over seas or

something." Wouldn't want to share.

9 Yeah, a lot more useful

Would recipe sharing be useful and what role would you play?

1 (didn't ask)

2 Share photos, music, play both roles/

3 Not so much of this.

4

concerned about viruses, malicious attacks downloading stuff

from strangers. Firmware upgrade PSP attack

5

Recipes are easy to create, no need to share. More excited

about sharing content than recipes.

6

Wouldn't use others, but would make them for people.

Sharing would aleviate headaches with parents, easier for

them to say "I want this." likely to be a producer, but wary

that it's too hard

7 Not interesting.

8 Set up music or TV for wife.

9 Didn't ask.

What do you think of the form factor?

1

childproof, dropable, seams resaonable size. "You need to be

able to read it."

2 smaller is better, cut it in half. Touch is OK

3

Like size of it. Too heavy to carry around (it would have to

stay in one room). Won't lose it. Don't have to type on small

keys. Easy to read.

4

Slightly too big for me, but my mom would need this size.

could imagine using the Nintendo DS or similar device

.

Had big problems with how hot the tablet got "burning my

legs." Maybe too big, want to fall asleep watching TV with it

on chest. Should be bigger than a Treo, bigger than a remote.

Heavy too.

6

Heavy to hold. Has to have touch (like using a finger). Nice to

have big screen.

7

Should be smaller, compact. Better yet, integrate it into

certain appliances, attach it to a plasma TV, or wall.

8

Etch-a-sketch, too heavy and big. Should be a big remote.

Better to have it in phone.

9 Palm pilot + etch-a-sketch

10

too large, heavy, bulky; phone is too small; maybe 1/2 the

current size (easy to carry and not in the way)

Appendix F · OSCAR User Study Results 450

11

too hot & heavy, fells like it would break if I dropped it

could be 1/2 the size (lose some of the whitespace)

Like to hang it on the wall, have it double as something else

(like another display)--then it's the right size

have one per room

12

hot & heavy, size is big but I like it, about the size of a

magazine (should be lighter though)

touchscreen was not responsive and didn't give adequate

feedback

13

just how it is--no bigger

would say it should be smaller but you already have to scroll

14

initially thought too big, but liked it in the end; lists & icons

were the right size

smaller than a laptop

15

dimensions are good, should be thinner

hang them on wall in key locations

16

little big, little warm

better: size of a playstation portable

1/2 or 1/4 the size

maybe even size of PDA or phone

17 too big, should be more like a remote control

18 too thick, should be only the size of the LCD

Would the tablet be yours or the households, and how many

would you have?

1

Concern about conflicts--what if something is already

connected to the thing I want to use?

I would only have this because of my mom

2 Start out with one and see/

3 1 should do it

4 Just 1, in the living room

5 Household's. 2, I for living room, 1 for bedroom.

6

I'd have 1, wife would have 1. Want to be able to customize

it, like a dashboard. I'd like to have a lot of control. Go back

and get favorite things.Wife limits him to 1 TV in house, but

he has his own remote. 2 remotes, so not missing.

7

Unclear. See if there's a benefit, if it saves time. (start with

one per household, if any.)

8 Share with wife. Programs multiple things on the All For 1.

9

At least 2, one's the master so adult can supervise child. Need

child lock.

10 Maybe 1 per person, or just one with logins

11 1 per room; belongs to household

Appendix F · OSCAR User Study Results 451

12

1 in bedroom, 1 in living room; belongs to household

maybe one in the wall in kitchen

13 1 for the house

14

(at first) 1 is sufficient

(after) well, maybe another one for the bedroom

15

want to have several, hang by the door

ones in different rooms

16 no need for more than one

17 1 in every room, owned by everyone

18 3 or 4 in the household with logins to control preferences

What do you think about the terms "recipe," ingredients, etc.?

1 Didn't record.

2 Didn't record.

3

Don't like it (offered this without being asked). Sounds like a

food thing. Should be "tasks" or something. "I mean, I get

it..."

4

It's OK, I mean, you have to name them something. Doesn't

add anything, though. Don't need the ingredients list, just see

it from the recipes

5

Seems hokey, maybe for a homemaker in the 50's or

something

6

Recipe didn't hit me right off the bat. Once I think about it, I

don't have a problem with it. For normal everyday people, its

comofrtable for non-tech people.

7

Recipe sounds like menu. Call it something more technical.

Call it devices. Maybe configuration or template would be right

for teachers (I.e., laypeople).

8

Weird name. Doesn't correlate with technology. Hate it.

(Spontaneously offered that he didn't like it, before we asked)

9

Too feminine. "Excuse me Bob, what's the recipe." (said

sarcastically) Egg and spatula. Really doesn't like it.

Particularly didn't like "prepare" ("Prepare doesn't mean

play"). Awkward and artificial.

