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Fall 2007



The dissertation of Manikandan Narayanan is approved.

Chair Date

Date

Date

University of California, Berkeley

Fall 2007



Comparative and Evolutionary Analysis of Cellular Pathways

Copyright c© 2007

by

Manikandan Narayanan



Abstract

Comparative and Evolutionary Analysis of Cellular Pathways

by

Manikandan Narayanan

Doctor of Philosophy in Computer Science

with

Designated Emphasis in Computational and Genomic Biology

University of California, Berkeley

Professor Richard M. Karp, Chair

Various pathways maintain the structure, function and health of a cell, and intricate

molecular mechanisms underlie these cellular pathways. Inquiring how such mechanisms

could have evolved is a basic question in evolutionary biology with wide-ranging implications

for predicting and altering cellular phenotypes. This dissertation presents our work on the

computational analysis of genome-level data (on biomolecular sequences and interactions)

available for many organisms to study the conservation and evolution of cellular pathways.

We study conservation of pathways in the context of comparative analysis of protein in-

teraction networks. We specifically present a method based on a graph-matching algorithm

to detect conserved pathways between two protein networks. Our algorithm is provably effi-

cient unlike the search heuristics used in previous methods, and is novel in the broader field

of graph-matching as well. We apply the method to compare the yeast network with the

human, fruit fly and nematode worm networks, evaluate the detected conserved pathways

using known yeast protein complexes, and demonstrate applications to function prediction.

We study evolution of pathways in the context of phylogenetic analysis of bacterial
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and archaeal pathways. We specifically present a tractable probabilistic model for pathway

evolution that makes the assumptions about pathway evolution explicit, in contrast to the

few past studies that use discrete pathway similarity based models. We then apply the model

to estimate the phylogeny along which a pathway such as citric acid cycle or chemotaxis

evolved from its unknown ancestral forms to extant forms. We interpret the estimated

phylogenies of such pathways involved in essential metabolisms or stress responses using

known species phylogenies and published cellular phenotypes.

Professor Richard M. Karp
Dissertation Committee Chair
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orienting research towards current problems.

The single most influence on my research has of course been my advisor Richard Karp.

I am deeply grateful to him for teaching and encouraging me patiently through the PhD

program. His clear approach to problem-solving, experience in formulating fresh theoretical

problems that are relevant to applied fields, methodical attention to the projects we worked

on, and disciplined manner of teaching theory courses will continue to influence how I

understand and do research.

I am a product of interactions with close members of my family and friends besides

teachers. Any aspect of who I am or what I do is heavily influenced by the time they spend

with me. Doing a PhD has involved combining all that they have provided me: strength,

inspiration, encouragement, comfort, support, fun and distraction. I am truly and deeply

thankful to every one of them. Instead of putting down their names, I hope the unspoken

words here would more powerfully convey my gratitude to them.

Go Bears!

xi



Chapter 1

Introduction

1.1 Subject of Inquiry

A diverse array of processes maintain cellular structure and function: metabolic reac-

tions, DNA repair, protein translation, protein transport and signal transduction are just

a few of them. Intricate and fascinating molecular mechanisms underlie cellular processes

(Figure 1.1), and an inquiry into how such mechanisms could have evolved from some un-

known ancestral forms and how much they are conserved across present-day organisms is

very engaging. This inquiry addresses fundamental questions in evolutionary biology, and

has broad implications for predicting or altering cellular behaviors.

This thesis presents the design and application of new computational methods to study

some basic questions on the conservation and evolution of cellular processes. Our focus is

on questions that are well-suited for study by computational analysis of genome-level data

available for many organisms. Specifically, we present rigorous comparative and phyloge-

netic analysis of biomolecular sequence and interaction data pertaining to various cellular

processes.
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Figure 1.1. Illustration of a living cell by David Goodsell, researcher and artist at the Scripps
Research Institute. The illustration (best viewed in color) magnifies a small cross-section of
a bacterial Escherichia coli cell to show individual molecules involved in cellular processes.
For example, ribosomes (large purple molecules) translating mRNA (white strands) into
proteins with the help of tRNA (small, L-shaped maroon molecules) are shown. Another
example shown in the center of the nucleoid (yellow and orange region) is a DNA poly-
merase (in red-orange) replicating new DNA at a replication fork. Besides polymerase, the
process of replication involves several other proteins acting in a coordinated manner at the
replication fork.

1.2 Genomic Data on Cellular Pathways

A computational inquiry into the evolutionary biology of cellular processes begins by

abstracting the molecular mechanisms underlying these processes as pathways. A cellular

pathway is a network of interacting genes, proteins and other biomolecules that are tem-

porally coordinated to direct a specific cellular process. The interactions could be physical

(DNA-protein, protein-protein, protein-small molecule) or genetic (functional or regulatory

association between genes inferred from genetic experiments) with particular attributes

such as transcriptional activation or repression, binding in a complex, phosphorylation or

de-phosphorylation, methylation or de-methylation, etc. The biomolecules could have at-

tributes such as gene sequences, expression levels, etc.
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Series of detailed genetic and biochemical studies on specific pathways have produced

a wealth of information on the molecular interactions and mechanisms that constitute the

pathways (Alberts et al., 2002). More recently, high-throughput though noisy experiments

have greatly increased the number of observed cell-wide interactions. For instance, yeast

two-hybrid or tandem access purification experiments (Bork et al., 2004) have revealed

roughly 15000 cell-wide interactions among about 4000 yeast proteins. The combination of

these pathway data, i.e., reliable interaction data on well-studied pathways and large-scale

data on cell-wide interactions, is a significant complement to biomolecular sequence data.

The availability of these data enhances the study of interplay among network structure,

function and evolution of cellular processes.

1.3 Evolution of Cellular Pathways

Pathways explain cellular phenotypes (observable behaviors) better than individual

molecules, as most cellular processes result from the combined effort of more than one

gene or protein. Hence a key motivation to study pathway evolution is to better explain

the genetic basis of phenotypic variation, the ultimate challenge in evolutionary biology.

Further, important applications that predict or alter a cellular phenotype (pathway func-

tion) can benefit from knowing the evolutionary diversity of the relevant pathway i.e., the

variation in the components of this pathway across species and its correlation if any with

phenotypic variation.

1.3.1 Specific Case Studies

We sample current knowledge on the evolution of two specific pathways, based on in-

formation in two nice reviews. The intent is to provide a context for works that trace the

evolution of a pathway using concerted changes in the components (molecules and interac-

tions) of the pathway over evolutionary time.
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Protein transport into mitochondria (Dolezal et al., 2006). The origin of or-

ganelles such as mitochondria is an important event in the evolution of eukaryotic cells.

According to the endosymbiotic theory, symbiotic bacteria transformed to mitochondria in

ancestral eukaryotes. A transport pathway also evolved to direct nuclear-encoded proteins

into mitochondria. Some modules in this transport pathway such as molecular chaperones

and signal peptidases appear to have evolved from the symbiotic bacteria’s transport mech-

anisms, whereas certain other modules in this pathway such as the translocase complexes

appear to have originated de novo in the ancestor of all eukaryotes. These hypotheses are

based on the cross-species conservation of the pathway genes detected via sensitive sequence

searches of all sequenced eukaryotic genomes, and in some cases on the phylogeny of the

homologs of a gene (Dolezal et al., 2006).

Innate immune response pathway (Kimbrell and Beutler, 2001). Innate immune

response refers to mechanisms that defend multicellular organisms against microbial in-

fections. The Toll pathway is a prominent example that responds to certain fungal and

bacterial infections using a family of Toll receptors, downstream signaling proteins such as

Tube/Pelle in fruit fly, and target antimicrobial proteins. These components are conserved

between fruit fly and mice, but some receptor mechanisms are very different between in-

sects and mammals, and also involved in development in insects. Studying the diversity in

this pathway across organisms suggests treatments for human infections with antimicrobial

proteins from different sources.

1.3.2 Driving Biological Questions

The above case studies on two different pathways ask some common questions. This

thesis is driven by these questions that revisit broad evolutionary principles in the new light

of cellular pathways. The specific contributions of the thesis are outlined in Section 1.4.

• What similarities and differences (variation) exist in a pathway present in many

species? Heritable variation could exist at the level of pathway gene contents, in-

4



teraction patterns, molecular sequences of pathway components, their biochemical

functions, etc.

• How did variation arise in a pathway? Evolutionary events that resulted in the present-

day variants of the pathway could be recruitment or loss of genes or interactions in the

pathway due to mutations in coding or regulatory sequences, horizontal gene transfer,

etc.

• What is the interplay of evolutionary forces acting on the components of a pathway?

Little is known about how the forces (e.g. random drift, natural selection) on the

different genes in a pathway work in concert to adapt the whole pathway to new

environmental niches.

Seeking a unified approach to answer these questions for any pathway of interest is a

fundamental challenge that could engage researchers for decades. For this purpose, we seek

common methodology and principles to systematically study the evolution of any particular

pathway. Attempts at conceptual unification in biology are provocative as it is not clear

a priori if a unification is possible or even useful to further our understanding of cellular

phenomena compared to specific case studies (Lenski et al., 2006).

However the evolutionary theory we have for sequences (e.g. neutral mutation theory,

which assigns a greater role to random genetic drift than natural selection in explaining

sequence changes across species) and its wide-ranging impact (e.g. neutral theory predicts

that functional regions of a genome evolve slower than other regions, which forms the

central premise of comparative genomics), encourages efforts to explore an evolutionary

theory for pathways. Initial efforts to systematically study pathway evolution are promising

when focused on a class of pathways such as metabolic pathways involved in amino acid

biosynthesis (Forst and Schulten, 2001), or pathways that repair abnormal DNA structures

(e.g. chemically modified bases or base-pairing mismatches) (Eisen and Hanawalt, 1999).

These attempts clarify the challenges in extending and complementing the useful formalisms

on sequence evolution of individual molecules to explain the concerted evolution of molecules

in a pathway.
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1.3.3 Challenges in Computational Methods

Computational methods (e.g. alignment algorithms) and mathematical models (e.g. phy-

logenies) provide a formal language to express and study evolutionary concepts. As an

example, sequence alignment explicitly characterizes the variation in a set of homologous

sequences and phylogeny of the sequences captures the evolutionary events that best ex-

plain this variation. The interrelated problems of alignment and phylogeny fall under the

umbrella of comparative and evolutionary methods respectively.

Research on comparative and evolutionary methods in the context of pathways is only

emerging. The rich network structure of a pathway makes it both interesting and hard to

develop such methods. Let me illustrate with a comparative and an evolutionary example.

(a) Alignment of one-dimensional sequences is efficiently solved by dynamic programming,

but several problem formulations in the alignment of large networks (e.g. cell-wide network

of protein interactions) are intractable (NP-hard (Garey and Johnson, 1979)). (b) Corre-

lated evolution of even two interacting proteins (e.g. a ligand and its receptor) is difficult to

model probabilistically at a fine-grained level due to a large number of associated parame-

ters. Hence to study how all the components of a pathway evolve in a correlated fashion,

we need research on co-evolution models with simplifying abstractions and assumptions.

Rigorous computational methods are preferable over ad-hoc ones to obtain reliable in-

sights on conservation and evolution of cellular pathways. The emphasis is on the design of

methods with provable guarantees on their correctness and running time wherever possible,

and principled approximations or heuristics for intractable problems.

1.4 Thesis Contributions

Comparative and evolutionary analysis of biomolecular pathways involves significantly

extending the concepts, formalisms and methods on the alignment and phylogeny of se-

quences to networks and pathways. This conceptual and computational exercise provides

substantial opportunities and challenges. The primary contribution of this thesis is the
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design of new and rigorous computational methods to study the conservation and evolution

of cellular pathways. In more specific terms, our contributions are:

• An original network comparison method to identify protein modules conserved be-

tween the protein interaction networks of two different species.

– Unlike previous methods, our method is based on a provably efficient algorithm

that we designed to identify matching subgraphs between two graphs. This

algorithm with its quite general framework is novel in the broader field of graph-

matching as well.

– Our network comparison method performs competitively against previous meth-

ods in comparisons of the yeast protein network with the human, fruit fly and

nematode worm networks (evaluated using known yeast protein complexes), and

in prediction of protein functions at the pathway level.

• A novel probabilistic approach to estimate the phylogeny of a pathway present in

closely related species. Numerous studies document the variation in a pathway across

species, and our approach is one of the very few that explain this variation along a

phylogenetic tree.

– Our estimation is based on a probabilistic model that makes its assumptions

about the evolution of a pathway explicit, unlike previous discrete pathway sim-

ilarity based approaches. The model we design captures the correlated fashion

in which the pathway genes are gained or lost over evolutionary time, by using

pathway gene content and interaction data. The model represents this data using

a succinct, probabilistic network to achieve a tractable number of parameters.

– The estimated phylogenetic trees of certain bacterial and archaeal pathways,

when compared with known species phylogenies and data on cellular phenotypes,

lead to interesting hypotheses about the evolution of such pathways as citric acid

cycle or chemotaxis.
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Chapter 2

Research Overview

We take a computational approach to inquire about the conserved nature and evolu-

tionary history of cellular pathways. The approach thus primarily involves the formulation

of a computational problem to address a concrete question about pathway conservation or

evolution, design of a rigorous computational method to solve the problem, and application

of the new method on relevant genomic data to generate biological insights. The thesis

presents two studies that follow this thread of research. The first study is on identify-

ing pathway structures conserved across protein interaction networks of different species,

and the second is on reconstructing the evolution of a pathway present in closely related

species 1. This chapter provides a context, related work and overview for these studies, and

later chapters will provide a detailed description of the computational problems, methods

and results arising in these studies.

2.1 Protein Network Comparison

Biological sequence comparison and alignment is a well-established research area in

computational biology. A very recent and emerging research area stimulated by large-

scale experimental data on cell-wide interactions such as protein-protein interactions (Bork
1The first study is joint work with Richard M. Karp, and the second study is joint work with Amoolya

H. Singh and Richard M. Karp. Please see Acknowledgements.
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et al., 2004) is biological network comparison. Research in this area involves the extension of

concepts and methods from comparison of sequences to comparison of biological networks.

For instance, we can compare the protein interaction networks of two species to detect

conserved pathway structures between them, as we do in our research study. An important

application of detecting such conserved pathways is the identification of functional modules

of proteins from raw protein interaction data. The overview of our study begins with this

application below.

2.1.1 Identification of Functional Modules

A comprehensive map of the pathways in a cell is a useful starting point for studies that

place an unknown gene in the context of its pathways, hypothesize novel components of

and functional links between pathways (even well-studied ones), find the pathways involved

in a complex phenotype such as a disease, or infer the evolution of pathways whose data

is available across species. One promising approach to cataloging and exploring cellular

pathways is to organize the myriad protein interactions observed in a cell into functional

modules of proteins (Hartwell et al., 1999). The need for such organization is readily evident

from a glance at the network of interactions observed in the yeast Saccharomyces cerevisiae

(Figure 2.1).

Large-scale data on protein interactions are publicly available for many model organ-

isms and humans from high-throughput though noisy experiments or extensive literature

scanning (Bork et al., 2004). Examples include large protein interaction datasets for the

yeast Saccharomyces cerevisiae (Uetz et al., 2000; Ito et al., 2001; Ho et al., 2002; Gavin

et al., 2002, 2006; Krogan et al., 2006), the fruit fly Drosophila melanogaster (Giot et al.,

2003), the nematode worm Caenorhabditis elegans (Li et al., 2004), and humans (Peri et al.,

2003; Rual et al., 2005; Stelzl et al., 2005). There are also efforts to consolidate and curate

both large-scale and small-scale molecular interaction data published for different organisms

(for instance, refer the International Molecular Exchange consortium of public interaction

data providers at http://imex.sf.net/).
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Figure 2.1. Global view of the protein interaction network of Saccharomyces cerevisiae (left)
comprising 14, 319 interactions over 4389 proteins, and a zoomed view of some proteins
(right). A dot or circle represents a protein and a line joins two interacting proteins. The
protein networks in this thesis are drawn using the Cytoscape software (Shannon et al.,
2003).

The quality of the above datasets on physical interactions between proteins, in terms of

coverage of cell-wide interactions and accuracy of detected interactions, depends on the scale

and quality of their experimental sources (von Mering et al., 2002; Deng et al., 2003). The

sources of the datasets range from high-throughput experiments based on yeast two-hybrid

methodology (Uetz et al., 2000; Ito et al., 2001; Giot et al., 2003; Li et al., 2004; Rual et al.,

2005; Stelzl et al., 2005) or affinity purification and mass spectrometry methodology (Ho

et al., 2002; Gavin et al., 2002, 2006; Krogan et al., 2006), to extensive literature scanning

for interactions detected in small-scale experiments as well (Peri et al., 2003). In the yeast

two-hybrid method, two proteins are tested for interaction by fusing one protein to the

DNA binding domain and another to the activation domain of a split transcription factor of

some reporter gene. If the proteins physically interact, then expressing the fused proteins

in the nucleus of a yeast cell results in a functional transcription factor of the reporter gene.

The method hence detects stable as well as transient binary interactions in vivo, but it also

results in false positives as the proteins are not tested in their native conditions (e.g. cellular

compartments). Affinity purification and mass spectrometry methodology can detect multi-
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protein complexes in their native conditions. The affinity purification step captures and

purifies a complex of proteins, if any, that a tagged “bait” protein participates in, and

the mass-spectrometry step detects the components of the purified complex. The method,

depending on the specific protocol used, can be accurate in detecting stable complexes

(Deng et al., 2003), but it misses transient interactions that get lost during purification.

Computational methods are valuable to interpret the networks of these raw protein

interactions of different organisms and cope with their scale. Methods that organize protein

networks into functional modules are similar in spirit to ones that organize raw genomic

sequences into functional elements like genes, regulatory sequences, etc. Before giving an

overview of these methods, we clarify certain terms. In this thesis, a protein (interaction)

network refers to a graph whose nodes are the proteins of an organism and edges indicate

physical interactions between proteins inferred from experiments or literature as discussed

above. A protein module refers to a subset of proteins in this network along with the induced

interactions between them, and a functional module is then a protein module known or

supposed to be involved in a common cellular pathway (e.g. a protein complex involved in

import of proteins into mitochondria).

2.1.2 Previous Work

We provide a background on methods that find functional modules in protein networks.

We review single-species methods in brief as they are not our main focus, and cross-species,

network comparison methods in detail. We also discuss concepts in graph-matching and

data-mining that are related to network comparison.

Single-species methods. Several methods analyse a single organism’s protein network

to identify functional modules. A typical single-species method uses connectivity infor-

mation to cluster a protein network into highly connected modules, and known functional

annotations of proteins to interpret or validate the resulting modules (see review (Bork

et al., 2004)). Examples range from early methods applied on various yeast protein network

data (Bader and Hogue, 2003; Rives and Galitski, 2003; Spirin and Mirny, 2003; King et al.,
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2004; Pereira-Leal et al., 2004) to some very recent ones (Hwang et al., 2006; Pu et al., 2007).

These and many other published methods differ in the clustering algorithms they employ,

whether they integrate additional information such as gene expression or functional data

in the clustering, and the species-specific networks they study (see detailed review (Sharan

et al., 2007)).

A single-species clustering method is effective if the modules it outputs align well with

a set of reference or known functional modules, and if the output modules that don’t match

any known functional module suggest plausible and testable biological hypotheses. Despite

active research on single-species methods for the past few years, systematic comparison of

the effectiveness of available methods is lacking. Welcome exceptions are two recent studies

(Brohée and van Helden, 2006; Hwang et al., 2006) that compare a subset of the available

methods.

Cross-species methods. A few recent methods compare protein networks from two or

more species to identify functionally similar (conserved) protein modules between them

(see review (Sharan and Ideker, 2006)). These pairwise or multiple network comparison

methods improve over single-species methods by using information on conservation (cross-

species similarity of protein sequences and interaction patterns) as well as connectivity of

the networks. For instance amidst noisy data, conservation could reinforce evidence that

some connected proteins participate in a common function. These comparative methods

also enable transfer of functional annotations between organisms at the level of conserved

modules, interactions and proteins, a key utility single-species methods cannot provide.

Similarly, conserved modules could provide a basis for studies on the evolution of cellular

structures and networks.

Current network comparison methods include NetworkBLAST (Sharan et al., 2005),

MaWISh (Koyuturk et al., 2005), a Bayesian alignment method (Berg and Lassig, 2006),

and Græmlin (Flannick et al., 2006). At a high level, these methods formulate a biologically-

inspired measure to score when a set of subgraphs from the input networks constitute a

conserved module and use heuristics to search for all high-scoring similar subgraphs between
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the networks. Search heuristics are necessary as the scoring measures are complicated and

lead to intractable (NP-hard (Garey and Johnson, 1979)) search problems. We give a brief

description of each method next to clarify the scoring measures.

NetworkBLAST constructs an alignment graph from the multiple input networks (lim-

ited to two or few networks to constrain the alignment graph size), weighs its nodes and

edges according to a scoring measure that decomposes into node and edge components, and

searches it for high-scoring subgraphs. A node of the alignment graph represents a set of

evolutionarily related (homologous) proteins across the input species, an edge between two

nodes denotes a conserved interaction, and node and edge weights are from a log likelihood

ratio score. The likelihood ratio is under a probabilistic model that favours detection of

dense modules of sequence-similar proteins against a random background. The authors

of NetworkBLAST draw these concepts from their earlier works on finding conserved lin-

ear paths (Kelley et al., 2003) and dense clusters (Sharan et al., 2004) between a yeast

and a bacterial protein network. MaWISh aligns two networks using similar concepts but

their node and edge scores are based on an empirical model of network evolution through

events such as gene duplication and interaction gain/loss. In detail, MaWISh uses a du-

plication/divergence model where a duplicated gene inherits interactions to all neighbors

of the original gene, and these interactions later diverge (are gained/lost) over evolution-

ary time. This model inspires a scoring measure between two aligned subnetworks that is

derived from matched and mismatched interactions between orthologous (or paralogous)

protein pairs. The Bayesian alignment method compares two networks using a probabilistic

model of network evolution that integrates node and edge evolution components in different

proportions. Model parameters and high-scoring alignments are inferred from a Bayesian

analysis. Græmlin progressively aligns multiple networks using node scores based on phy-

logenetic history of proteins and edge scores suited to detect conserved modules of different

topologies.

Probabilistic models of network evolution are becoming popular in the design of network

comparison scoring measures. Very recent pairwise (Hirsh and Sharan, 2007) and multi-

ple (Dutkowski and Tiuryn, 2007) network comparison methods are examples. The first
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method is a close successor of NetworkBLAST and uses a model where a conserved ancestral

complex evolves in a single step to the observed interactions in the input networks. The

second method uses a similar notion of conserved ancestral network, but a more detailed

probabilistic model that traces interaction gain/loss at every speciation or gene duplication

event. These events are inferred from standard phylogenetic analysis of proteins, and used

in the rest of the analysis to obtain a tractable probabilistic model and search procedure for

multiple input networks. To summarize, each method’s scoring measure makes many direct

or indirect assumptions about the underlying network evolution and impacts the computa-

tional complexity of the search procedure. More research is clearly needed on the design

and evaluation of both scoring measures and search problems to reach a consensus on the

appropriate method to use.

Other network comparison methods. Precursors of protein network comparison

methods are studies on cross-species conservation at the level of protein interactions (“in-

terologs” introduced in (Walhout et al., 2000)) rather than modules. An application of in-

terologs is the use of known protein interactions in one species to predict novel interactions

between homologous proteins in another species (e.g. (Matthews et al., 2001)). Concepts

similar to interologs include conserved protein-DNA interactions or “regulogs” (e.g. (Yu

et al., 2004)), and conserved coexpression relationship between gene pairs (e.g. (Stuart

et al., 2003)).

Research in network comparison extends beyond protein networks to other types of bi-

ological networks such as networks of metabolic reactions. A study (Ogata et al., 2000),

which predates protein network comparison, compares the metabolic network of a species

with a linear network that reflects the genome order of enzyme-coding genes in the species.

This study heuristically finds modules of enzymes that catalyze contiguous metabolic re-

actions and cluster along the genome, by single-link clustering a product graph of the two

input graphs. Metabolic networks across multiple species were compared in (Chor and

Tuller, 2006) to find conserved modules and pairwise distances using a notion of relative de-

scription length (length of describing one graph, given the description of another). A recent
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method SAGA (Tian et al., 2007) searches for approximate occurrences of a query pathway

in a large dataset of metabolic and other biological pathways. The method indexes the

dataset pathways to accelerate search of small and sparse query pathways. Index structures

are popular among query-dataset graph searching methods in the pattern-matching and

data-mining fields (see survey (Shasha et al., 2002) and references in (Tian et al., 2007)).

Another idea inspired from data-mining is the mining for frequently occurring modules in

metabolic or protein networks (Koyuturk et al., 2006).

Comparative analysis of protein networks with networks of genetic interactions (func-

tional association between gene pairs whose double mutant forms show reduced fitness or

lethality) (Kelley and Ideker, 2005) or gene regulatory interactions (interactions between

transcription factors and the target genes they regulate) (Tan et al., 2007) is possible too.

Researchers are actively designing and applying comparative methods to extract biological

insights from the deluge of network data.

Graph-matching. The computational problems in these network comparison methods

have close connections to the broader field of graph-matching. Graph-matching refers to a

class of problems that find similar subgraphs between two graphs (see (Schellewald, 2005)

for other related classes). Many graph-matching problems in the literature are NP-hard

(Garey and Johnson, 1979), permitting only heuristic or approximate solutions, due to a

stringent global structural match that they require between the similar subgraphs. For

instance, the maximum common subgraph problem requires an exact isomorphic match

between subgraphs of the two input graphs and is NP-hard (Garey and Johnson, 1979).

Finding the occurrence of an entire pattern graph H in another graph G is well-known to

be NP-hard too under the subgraph isomorphism or homeomorphism formulations (Garey

and Johnson, 1979). Subgraph isomorphism demands a one-to-one mapping of all nodes

in H to some nodes in G such that the edges in H map to the corresponding edges in

G. Subgraph homeomorphism is more general in that the edges in H need only map to

edge/node-disjoint paths between the corresponding endpoints in G. Certain restricted

variants of these problems when H,G are trees permit polynomial-time algorithms (see
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(Pinter et al., 2004) and references therein) and have been used to align tree-like metabolic

pathways (Pinter et al., 2005).

Problems that require inexact match between graphs to deal with error-prone data

are NP-hard too for a family of graph edit cost functions (Bunke, 1999). Some studies

use a scoring function to measure how similar two subgraphs are. They find high-scoring

subgraph pairs by finding heavy-weight subgraphs in a product graph of the input graphs

(e.g. alignment graphs in (Sharan et al., 2005; Koyuturk et al., 2005)), which is also NP-

hard by reduction from the maximum weight induced subgraph (Koyuturk et al., 2005) or

maximum clique problem (Garey and Johnson, 1979). However, if we restrict to finding

heavy-weight simple paths of a fixed length in a graph, then fixed-parameter tractable

algorithms are possible based on the idea of random acyclic orientations or color-coding

(Alon et al., 1995). These algorithms have been applied to protein network comparison in

(Kelley et al., 2003) and extended as well in (Scott et al., 2005). Fixed-parameter tractable

algorithms are efficient only for small values of the parameter though, which in our case

is the length of the heavy-weight paths. Efficient algorithms exist for longer paths if we

further restrict the problem by fixing a given query path and finding its approximate,

possibly repeated, occurrences in a larger graph (Yang and Sze, 2007).

2.1.3 Our Graph-matching Algorithm

We present a pairwise network comparison method based on a graph-matching algorithm

with provable guarantees. Our search formulation is applicable for comparing two general

graphs (representing protein networks of two species) to find conserved protein modules.

Our novel graph-matching algorithm and the guarantees on both its correctness and running

time make this work markedly different from previous methods relying on search heuris-

tics. The search formulation is also biologically meaningful and yields promising results in

detecting functional modules and transferring functional annotations.

In more detail, we formulate a conserved protein module as a pair of connected and

locally matching subsets of proteins, one from each input network. By a locally matching
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subset pair, we mean that every protein in one subset is similar to some protein in the other

subset, at the level of both their sequences and neighborhood or context in the networks.

Search for such conserved modules is simpler than search formulations in previous net-

work comparison methods and hence admits an efficient polynomial-time algorithm. This

polynomial-time search problem is novel in the broader field of graph-matching as well. The

main operation of this algorithm is a recursive match and split of the proteins in the two

input networks. We assess the statistical significance of the conserved modules found by

the algorithm, based on a similarity score of the conserved module and estimates of noise

in the interaction data.

We apply our method to compare the yeast protein network with the human, fruit fly and

nematode worm protein networks. We evaluate the detected conserved modules using known

yeast protein complexes and compare its performance to previous network comparison and

single species clustering methods. We also demonstrate the utility of network comparison for

predicting pathway annotations of human proteins and validate the predicted annotations.

The results suggest that our method is a promising, provably efficient alternative to current

protein network comparison methods. Further, our algorithm framework is quite general

and hence has applications in comparing biological networks beyond protein networks (once

a relevant matching criterion is chosen).

2.2 Pathway Phylogeny Estimation

Numerous studies document the variation in the components (genes, interactions, etc.,)

of a pathway present in multiple species, but very few attempt to explain this variation in

terms of events in the evolutionary history of the pathway. Our study seeks to explain the

evolutionary history of the extant variants of a pathway using the concept of phylogenetic

trees. We present models and methods to build phylogenetic trees of any pathway of interest,

under the premise that the pathway is evolving as a heritable unit across closely related

species.
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Figure 2.2. The phylogeny of a pathway of genes a, b, c, d, e in four species, numbered 1-4
and outlined in gray. The interaction between b, d is lost in Species 3 and gene d is lost in
Species 4, probably because gene d is not very important for the function involved.

2.2.1 Context for the Phylogeny of a Pathway

Evolutionary studies that use sequences to determine common ancestry assume that

the gene is the unit on which selection acts, and that differences in sequence could ex-

plain differences in evolutionary history (Zuckerkandl and Pauling, 1965; Batzoglou, 2005).

Recent work, however, suggests that selection might be acting at higher levels of cellular

organization than individual genes; that is, at the level of biochemical networks or regula-

tory pathways (Boldogkoi, 2004). To examine this hypothesis in a systematic way, we need

formal evolutionary models and estimation methods to reconstruct the phylogenetic history

of a pathway, analogous to those we have for a gene.

Researchers have hence focused on formally building phylogenetic trees of pathways

that predict how a pathway evolved from its ancestral form(s) to its present-day form(s) in

different species (Figure 2.2). One existing approach aggregates pairwise sequence distances

between member genes in a pathway to obtain pathway distances and uses it to obtain the

phylogeny of electron-transfer and amino acid biosynthesis pathways (Forst and Schulten,

2001). Another approach derives an iterative, graph similarity metric between two path-
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ways based on the nodes (enzymes) of the pathways and the graph structural relationship

between the nodes, and uses it with a distance matrix method to build phylogenies for

several respiratory and carbohydrate metabolism pathways (Heymans and Singh, 2003).

A recent distance matrix approach uses a similarity metric based on relative description

length between two graphs, and builds the phylogeny of a species set from the repertoire

of all metabolic pathways observed in these species (Chor and Tuller, 2006). Conceptu-

ally, this method could also build the phylogeny of a particular metabolic pathway whose

variants are present in multiple species.

These approaches compute distances between pathways using graph-theoretic or com-

binatorial similarity measures. However, probabilistic models are often preferred over

similarity-based methods to estimate phylogenetic distances, as they make explicit any

assumptions about pathway evolution and lead to consistent estimates (Felsenstein, 2003;

Durbin et al., 1998). But detailed probabilistic models of pathway evolution that try to

explain low-level mechanisms of evolution may suffer from other problems, the commonest

of which is overparameterization. For example, consider the evolution of a pathway of just

two genes, a ligand and its receptor. A perfectly realistic model should account for how

nucleotide pairs in the two genes are evolving in a correlated fashion (Pollock et al., 1999).

To do so, however, the model would need to consider a number of correlations quadratic

in sequence length, since it is not known which nucleotide pairs are co-evolving. This ul-

timately leads to too many parameters and reduces the ability of the model to predict the

true phylogeny (Sullivan and Joyce, 2005).

2.2.2 Our Unified Phylogenetic Model

In our study, we present a probabilistic model for the evolution of a pathway that

attempts to address the dual requirements of tractability and biological accuracy. The model

represents a pathway by the presence or absence of genes (characters) in different species,

and uses information about interactions between pathway genes to model the dependency

between gene gains and losses. The assumptions behind these choices are consistent with

our premise that the entire pathway is evolving as a heritable unit. The model can be used
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with a maximum likelihood (ML) or distance matrix method to formally build pathway

phylogenies.

More specifically, we propose a phylogenetic model to explain the variation in the gene

content of a pathway present in closely related species, assuming a static dependence struc-

ture of gene gains and losses dictated by canonical pathway interactions. A canonical view of

the pathway interactions is derived from a knowledge of the pathway interactions observed

in model organisms. Our focus on closely related species allows us to take this canonical

view and leads to a tractable model, as we may assume that the pathways haven’t diverged

too much through gene duplication or other radical mutation events. Our model is a special

case of a co-evolution model of k binary characters that we developed by extending a pre-

viously published 2-character co-evolution model (Barker and Pagel, 2005; Pollock et al.,

1999). Whereas a vanilla extension requires a number of parameters exponential in k, our

model has a tractable number of parameters due to the use of a Markov network (Jor-

dan, 1999) formulation derived from the canonical pathway interactions and an assumption

about uniform evolutionary rate for characters. Our model is limited to k ≤ 13 in our

experiments due to computational constraints such as memory size. We note that research

on co-evolution models over larger number of characters is active and open (e.g. (Pedersen

and Jensen, 2001)).

We apply the model to estimate the phylogenies of several pathways present in bacteria

and archaea, for which there is a wealth of genetic, genomic and phenotypic data available.

We study essential pathways such as glycolysis and the citric acid cycle, stress response

pathways such as chemotaxis, and cell-cell communication pathways such as quorum sensing.

We suggest broad hypotheses about the evolution of these pathways across bacterial and

archaeal species, by comparing their estimated phylogenies with known species phylogenies

and correlating any discrepancies found with data on cellular phenotypes. Our results

suggest that a systematic approach to build and interpret pathway phylogenies is a useful

step towards mapping the relationship between phenotype (pathway function) and genotype

(genetic content), a basic task in evolutionary biology.
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Chapter 3

Graph Comparison of Protein

Interaction Networks

We study the problem of comparing the protein interaction networks of two species to

detect functionally similar (conserved) protein modules between them. We motivated this

problem and highlighted our contributions in the context of earlier works in previous chap-

ters. In this chapter, we fully describe our pairwise network comparison method and results

from its application to compare the protein networks of different species. As mentioned,

our method is based on an algorithm we developed to identify matching subgraphs between

two graphs, and unlike previous network comparison methods, our algorithm has provable

guarantees on correctness and efficiency. Our algorithm framework also admits quite general

criteria that define when two subgraphs match and constitute a conserved module. Fur-

ther, the results we obtain pertaining to evaluation of the detected conserved modules, and

their associated functional descriptions and predictions are competitive relative to previous

methods.
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3.1 Methods

Recall that a protein (interaction) network refers to a graph whose nodes are the proteins

of an organism and edges indicate physical interactions between proteins (see also Figure

2.1), and a protein module refers to a subset of proteins in this network along with the

induced interactions between them.

3.1.1 Conserved Module Premise

Our method compares protein networks from two species to find functionally similar or

conserved protein modules between them. A conserved module is intuitively a pair of pro-

tein modules that share cross-species similarity at the node level (homology or evolutionary

relationship of corresponding protein sequences) and graph structure level (pattern of in-

teractions). Our method’s specific premise is that a conserved module is a pair of connected

and locally matching subsets of proteins, one from each input graph. Two proteins locally

match if their sequences and neighborhood in the network are similar, and a collection of

such protein pairs is a locally matching subset pair. We support this premise in this section

and formalize it in the next.

Our premise is biologically motivated. The premise’s connectivity criterion makes it

likely for a subset of proteins to be functionally homogeneous and its local matching criterion

makes it likely for two protein subsets to be functionally similar. Moreover, these criteria

are minimal requirements and hence sensitive in detecting reference functional modules.

To illustrate, a functional module’s counterparts in two different species needn’t match

exactly in their graph structure due to evolutionary divergence or errors in the interaction

data, which makes a local match more sensitive than a stringent structural match like exact

isomorphism. The two criteria yield good specificity too with some additional improvements

detailed in Section 3.1.3. Note that a method’s sensitivity denotes the fraction of reference

modules it detects and specificity the fraction of modules output by it that match some

reference module.

Our premise is also computationally attractive as it results in a search problem that
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Figure 3.1. Pictorial sketch of the main operations of our graph-matching algorithm. We
show the input graphs G, H and their subgraphs as ovals, hiding node and edge details.
The algorithm focuses only on the shaded subgraph pairs at any point in its execution, and
refines them recursively until all solutions (similar subgraph pairs) are found. A refinement
involves doing a match and a split step to compute locally matching and connected node-
sets between two shaded subgraphs (see text for details). The subgraph pair S1, T1 is a
solution, and the algorithm might find more solutions as it recurses on the subgraph pairs
Ei, Fj . The statistically significant solutions are finally output as conserved modules.

admits provably good algorithms for many choices of the connectivity and local matching

criteria. As mentioned in the previous chapter, our method’s tractable search formulation

distinguishes it from previous network comparison methods and graph-matching problems.

3.1.2 Graph-matching Engine

Finding conserved modules under the premise just outlined reduces to a graph-matching

problem of finding similar subgraphs between two input graphs. We present this graph-

matching problem variant and our polynomial-time algorithm for it in this section. We

also discuss the algorithm’s generality, which makes it relevant for application areas beyond

protein networks.
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As a prelude, we sketch our graph-matching engine in Figure 3.1 and informally outline

it now in the context of protein networks. Say we start with the yeast and human pro-

tein networks along with the homologous protein pairs between them. Our algorithm first

computes locally matching proteins (i.e., proteins with similar sequences and local context)

between the two networks, and safely discards the other proteins (i.e., any yeast protein

with no human homolog or with some human homolog but with poor local match, and vice

versa). The algorithm next splits the remaining yeast and human networks into connected

sets of proteins. These connected subgraphs are locally matching with respect to the full

input networks. Our algorithm then repeats the above match and split steps on each pair

of the connected subgraphs recursively, until the final similar subgraph pairs are found (as

in Figure 3.1). The ensuing text provides precise descriptions on matching general graphs.

Problem statement

We are given as input two graphs and a node similarity function sim(·, ·). The function

sim(u, v) is true whenever node u is similar to node v (e.g. based on sequence similarity of

proteins) and false otherwise. This sim(·, ·) is a symmetric function defined over all pairs of

nodes u, v, one from each input graph. The problem now is to list pairs of connected and

locally matching subgraphs between the input graphs. In this work, a subgraph of a graph

usually refers to an induced subgraph, which is a subset of nodes in the graph along with

all edges between them.

We first build a local-matchS,T (u, v) function for any subgraph pair S, T of the input

graphs using the sim(·, ·) function. This new function captures local or contextual match

between the nodes u of S and v of T using similar local structures present around these

nodes in S and T . Two possible choices of similar local structures are: similar length-p

paths for some small p (say 2), and s-similar neighborhoods around nodes for some small

s (see Figure 3.2). In the former case, local-matchS,T (u, v) is true whenever some length-p

path in S containing u is similar to some length-p path in T containing v (two paths are

similar if all their corresponding nodes are similar according to sim(·, ·)). In the latter case,

local-matchS,T (u, v) is true whenever sim(u, v) is true and sim(u′, v′) is true for at least
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Figure 3.2. Illustration of two similar local structures (left) and two solutions (right).
Assume sim(ui, vj) is true whenever ui, vj have the same label shown inside brackets. The
dotted lines (left) show some of the locally matching node pairs. For instance, u3 locally
matches v3 based on 2-similar neighborhoods since they share label d and two of their
neighbor pairs u1, v1 and u6, v4 share labels a and x respectively. The subgraph pair S1, T1

is a solution when the local matching criterion is based on similar length-p paths (p=1 or 2)
or 1-similar neighborhoods (i.e., when the criterion is 1-similar neighborhoods say, every
node in S1 locally matches some node in T1 and vice versa). The subgraph pair S2, T2 is a
solution when the criterion is based also on 2-similar neighborhoods.

s distinct neighbor pairs u′ of u in S and v′ of v in T . The stringency of this criterion

increases with s, with 1-similar neighborhoods being the least stringent. Properties of a

local-matchS,T (·, ·) function such as polynomial-time computability and monotonicity, which

yield tractable problem formulations, are discussed later along with the algorithm.

We are ready to state the problem. Given two input graphs G, H, a node similarity

function sim(·, ·), and a local-matchS,T (·, ·) function computable for any two subgraphs S, T ,

the problem is to find all maximal induced subgraph pairs S ⊆ G, T ⊆ H that satisfy two

criteria:

Connectivity: S, T are each connected, and

Local Matching: Each node u in S locally matches at least one node v in T according to

the local-matchS,T (u, v) function, and vice versa.

Any subgraph pair that satisfy the above two criteria is called a solution (see Figure 3.2),

and maximality requires that of two solutions S, T and S′, T ′ with S′ ⊆ S, T ′ ⊆ T , we only

output the maximal one S, T to avoid redundancy.
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Algorithm and guarantees

We present a simple and efficient algorithm for the above problem for any monotone local

matching criterion. A monotone criterion is one where any two nodes that locally match

remain so even after adding more nodes to the subgraphs under consideration (i.e., if local-

matchS,T (u, v) is true, then local-matchS′,T ′(u, v) is also true for any S′ ⊇ S, T ′ ⊇ T ). The

similar length-p paths or s-similar neighborhoods criterion from last section are monotone.

A useful property of monotonicity is that the maximal solutions are only quadratic in

number, since it lets us merge any two solutions S, T and S′, T ′ with a common node pair

u, v (i.e., u ∈ S ∩ S′, v ∈ T ∩ T ′) into one solution S ∪ S′, T ∪ T ′.

Our algorithm presented below matches and splits the nodes of G and H into smaller

components, and then recurses on each of the component pairs. For induced subgraphs

S ⊆ G, T ⊆ H, we let lm(S, T ) denote all nodes u in S for which local-matchS,T (u, v) is

true for some node v in T .

Match-and-Split(G, H):

[Match] Compute induced subgraph:

G′ of G over the locally matching nodes lm(G, H), and

H ′ of H over the locally matching nodes lm(H,G).

[Split] Find connected components:

G1, . . . , Gc of G′, and

H1, . . . ,Hd of H ′.

[Recurse]

if (c = 1, d = 1 and G′ = G, H ′ = H)

Output the maximal solution G, H. [base case]

else

for i = 1 to c, j = 1 to d

Match-and-Split(Gi,Hj). [recursive case]
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Correctness. Consider any solution S, T . Each recursive call retains all locally matching

nodes and processes all pairs of resulting components. Hence in at least one path of the

recursion call tree, all nodes in S, T remain locally matching due to monotonicity and

connected as part of a bigger subgraph pair. This retained unsplit S, T is finally output

as part of a solution. Further, the output solutions are maximal because no node pair is

common to any two output solutions (as shown below in the proof of Lemma 3).

Running time. Let nF ,mF denote the number of nodes, edges respectively in a graph

F . The algorithm runs in time O(nGnH + (nG + nH)mGmH) on the graphs G, H when the

local matching criterion is similar length-1 paths. The algorithm is efficient in practice too

as the locally matching proteins between two graphs in our experiments reduces drastically

as the recursion depth increases.

Analysis of running time

The running time bound mentioned above follows from bounds proved here, which hold

for more general monotone local matching criteria. Let nF ,mF be as defined above. Let

f(G, H) be a function bounding the process time (of the non-recursive match and split

steps) on the graphs G, H, and f0 be the constant term in f(G, H) (technically f(G, H) .=

f(nG,mG, nH ,mH) and f0
.= f(0, 0, 0, 0)).

Theorem 1 The Match-and-Split(G, H) algorithm’s running time when using a monotone

local matching criterion is bounded by

[general] O(nGnHf(G, H)) for a general f(·, ·), and

[special] O(nGnH + (nG + nH)f(G, H)) for a class of f(·, ·) that satisfies the condition∑c
i=1

∑d
j=1(f(Gi,Hj)− f0) ≤ (f(G, H)− f0) for any G, H.

From the simple bound that holds for a general f(·, ·), we see that the algorithm runs in

polynomial time if f(·, ·) is asymptotically bounded by a polynomial. The better run-

ning time bound applies for a broad class of f(·, ·), since the special condition above

holds for many reasonable functions including any polynomial f(·, ·) whose monomials
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each contain the factors nG or mG, and nH or mH . For such polynomials, the condi-

tion follows readily from the connected components of a graph being node-disjoint and

edge-disjoint. To illustrate, let the local matching criterion be similar length-1 paths. Then

f(G, H) = k mGmH for some constant k as the match step simply considers all edge pairs

in G, H and the split step runs a linear-time connected components procedure. This f(·, ·)

satisfies
∑c

i=1

∑d
j=1 k mGimHj = k

∑
i mGi

∑
j mHj ≤ k mGmH , where the crucial last step

is from the disjointness of the Gi’s and the Hj ’s. Other criteria like similar length-p paths

or s-similar neighborhoods also yield a polynomial f(·, ·) satisfying the condition.

Corollary 2 The Match-and-Split(G, H) algorithm’s running time is O(nGnH + (nG +

nH)mGmH) when the local matching criterion is similar length-1 paths.

Our proof of the two running time bounds rests on some analysis of the algorithm’s

recursion structure, which we present now as a lemma before the proof. To state the

lemma, we need to clarify some terms related to the recursion call tree of the Match-and-

Split(G, H) algorithm. In this tree, a leaf is any algorithm call that terminates recursion

(including any that outputs a maximal solution), an internal node is any call that invokes

other calls (its children) recursively, and a level is a set of calls at the same recursion depth

from the initial call on the input graphs (Figure 3.3 provides some illustrations). Note how

the number of leaves is an upper bound on the number of output solutions.

Lemma 3 The number of leaves in the recursion call tree of the Match-and-Split(G, H)

algorithm (and hence the number of output solutions) is at most nGnH . The number of

internal nodes in this tree is also at most nGnH , and the number of levels is at most nG+nH .

Proof (of Lemma 3): First, we prove the quadratic bound on the number of leaves

by arguing any node pair in G, H is present in at most one leaf of the call tree (and

hence in at most one output solution too). As the Gi’s and the Hj ’s are node-disjoint,

a call on G, H partitions the node pairs in G, H among its children calls on Gi,Hj for

all i = 0 to c, j = 0 to d (where we add dummy leaf children involving G0
.= G − G′ or

H0
.= H − H ′ for analysis, when these graphs are non-empty). If a node pair is in two

leaves, then the least common ancestor of the leaves should have sent this same node pair
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are the same. The subgraph pairs Si, Ti are the solutions found.

along two of its children, a contradiction! Next, observe that the number of internal nodes

is at most the number of leaves as each internal node has at least two children (including

dummy leaves). Finally, the number of levels is at most nG + nH as each child (call on

Gi,Hj) of any internal node (call on G, H) satisfies nGi + nHj ≤ nG + nH − 1. If it were

not true, then nGi + nHj = nG + nH , thereby making G, H a maximal solution and this

internal node on G, H a leaf instead! �

Proof (of Theorem 1): To derive the bound for a general f(·, ·), note simply that the

number of recursion calls made by the algorithm is at most 2nGnH from Lemma 3 and

the process time at each call is bounded by a loose f(G, H) (as we may assume f(·, ·) is a

non-decreasing function).

To derive the special bound, we also use the bound on the number of levels from Lemma

3. The two terms in the special bound are: O(nGnH f0) for the f0 time spent at each of
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the O(nGnH) recursion calls made, and O((nG +nH)(f(G, H)− f0)) for the (f(G, H)− f0)

remaining process time at each of the O(nG + nH) levels (assuming the special condition).

We derive the latter term to complete the proof.

Consider the class of functions f(·, ·) that satisfy the special condition∑c
i=1

∑d
j=1(f(Gi,Hj) − f0) ≤ (f(G, H) − f0) for any G, H. For such f(·, ·), we now

bound the process time (of the match and split steps, excluding the constant f0 terms) at

each level of the recursion call tree. The condition above simply says that the process time

at all children of an internal node in the call tree is at most the process time at the internal

node itself. We partition the calls (nodes) in a level l into sibling groups, and bound the

time of each sibling group by that of their single parent in level l − 1. So the time at all

nodes in a level is at most that in the preceding level. Cascading these relations, the process

time at each level is at most that at the root level call on G, H, which is (f(G, H)− f0). �

Generality of the algorithm

Our algorithm framework admits quite general schemes to search for similar subgraph

pairs and score them, and is hence attractive in a biological setting. The searching scheme

is flexible as our problem variant and algorithm works for different connectivity and local

matching criteria. The scoring scheme is flexible as it is decoupled from the searching

scheme. Besides, the number of maximal solutions is only quadratic, so it is not expensive

to compute a sophisticated, biologically-inspired score for every solution.

We discuss the flexibility of the local matching and connectivity criteria in more detail.

We already saw different monotone local matching criteria. We could also combine such

monotone criteria to get a new monotone criterion. For example, declaring two nodes as

locally matching if they are so with respect to similar length-p paths or s-similar neighbor-

hoods gives a less stringent criterion. Many connectivity criteria are possible too. We could

replace connectedness with biconnectedness (Baase, 1991) for instance, by simply chang-

ing the algorithm’s split step and still obtain a provably efficient algorithm. The number

of output solutions is then at most mGmH and the running time O(mGmHf(G, H)), the

30



proofs of which (omitted) are a simple extension of the connectedness proofs and use the

property that the biconnected components of a graph are edge-disjoint.

3.1.3 Overall Method

Our method of detecting conserved modules between two protein networks involves a

searching scheme to find similar subgraph pairs (candidate conserved modules or candidates)

using our graph-matching algorithm above, and a scoring scheme to rank these candidates

using statistics of similar paths between a subgraph pair. We now describe these schemes

and their place in the overall Match-and-Split method.

Searching scheme (via graph-matching)

To adapt the generic graph-matching algorithm Match-and-Split to the specific task of

comparing protein networks, we make default choices for certain graph-matching parameters

and incorporate a clustering heuristic to handle solutions that are large. In this section,

our algorithm’s maximal solutions are referred to simply as solutions.

Choosing parameters. Our default parameter choices result in a lenient graph-matching

criterion, for we would like to detect as many functional modules as possible from noisy

protein networks of divergent organisms (e.g. yeast and human). The default choices we

made on exploring a limited parameter space follow.

Connectedness defines our connectivity criterion. We choose it over biconnectedness

as some functional modules (e.g. linear signaling pathways) are not biconnected, and even

those over highly interacting proteins (e.g. protein complexes) may not appear biconnected

due to incomplete interaction data.

Similar length-p paths (for p=1, 2) defines our local matching criterion. We choose it

over s-similar neighborhoods (for s=1, 2) again on the basis of sensitivity. For p, s=1, both

options are equivalent as they yield the same lm(S, T ) node-set (defined in Section 3.1.2).
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However for p, s=2, this node-set from similar paths is a superset of the one from similar

neighborhoods, so similar paths is a more lenient criterion.

Sequence similarity defines our node similarity function as in previous network compar-

ison methods. For fair evaluation, we in fact choose the same criteria used in two previous

methods: (A) sim(u, v) is true whenever the BLAST E-value of proteins u, v is at most

10−7 and each protein is among the 10 best BLAST matches of the other (Sharan et al.,

2005), and (B) sim(u, v) is true whenever the BLAST E-value of u, v is less than that of

60% of ortholog pairs in some ortholog database (see (Koyuturk et al., 2006) for details).

Incorporating clustering heuristic. Increased sensitivity from the lenient graph-

matching criterion above comes at a cost. Sometimes, a solution is over a large number of

proteins and hence less specific. For instance, a solution from a preliminary comparison of

yeast and human networks covers more than 500 yeast and human proteins! To split such

large solutions, we incorporate a betweenness clustering heuristic in our Match-and-Split

algorithm. This clustering splits a graph into highly-connected, smaller clusters based on

iterative computations of an edge betweenness centrality measure (Girvan and Newman,

2002) (see Supplemental Text A for details). One could also cluster a graph using other

methods such as the popular spectral clustering methods (Weiss, 1999).

We incorporate the clustering by replacing our algorithm’s ‘[base-case]’ statement with

the code block below. As before nG refers to the number of nodes in G, and we may assume

nG ≥ nH without loss of generality. The parameter nmax (say 25) indicates when a solution

is large.

[base case] code block:

if (nG ≤ nmax and nH ≤ nmax)

Output the maximal solution G, H.

else [large solution]

Split G into clusters G1, . . . , Ge using betweenness clustering.

for i = 1 to e
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Match-and-Split(Gi,H).

A betweenness clustering of G takes O(nGm2
G) running time (Girvan and Newman, 2002).

In practice, incorporating the clustering heuristic is not expensive as our experiments result

in very few large solutions (mostly one), each covering just a few hundred nodes.

Scoring scheme (via similar paths)

We score a candidate conserved module based on the number of similar length-p paths,

and express the statistical significance of the score as a P-value. We use the P-values

both to rank the candidates from the searching scheme and to retain only those with P-

values at 10% significance level after multiple testing. Our scoring scheme is flexible, as

seen in Section 3.1.2, in permitting complicated scoring measures including measures used

in previous network comparison methods. Still we use a simple scoring measure and the

promising results we obtain show the strength of our searching scheme based on the graph-

matching algorithm.

The score of a candidate conserved module S ⊆ G, T ⊆ H, where G, H are the input

protein networks, is simply the number of pairs of similar length-p paths between them

(defined in Section 3.1.2). We evaluate the P-value of this score using a null model that

randomizes the edges and node similarity function of G, H to exclude the mechanism of

interest viz., conservation of protein modules. To provide a stringent control, the random-

ization loosely preserves the degree sequence and node similarity distribution as in previous

methods. The simplicity of our scoring measure and null model allows us to develop an an-

alytical bound on the P-value (see Supplemental Text A). This bound can also incorporate

reliabilities of noisy protein interactions.

Implementation pipeline and dataset

The overall Match-and-Split method proceeds in a pipeline to detect candidate con-

served modules between two protein networks. First our searching scheme uses the graph-

matching algorithm to produce candidates, then a size filter retains only medium-sized
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candidates, and finally our scoring scheme ranks the candidates by their P-values and re-

tains those at 10% significance level (after multiple testing). A fast implementation of the

method is publicly available (see Supplemental Text A for website reference), and it takes

only a few minutes (at most 4) on a 3.4 GHz Pentium Linux machine to compare two

studied networks.

The size filter, similar to one in a previous method (Sharan et al., 2005), retains any

candidate subgraph pair S, T whose number of nodes nS , nT satisfy nmin ≤ nS , nT ≤ nmax

(nmin = 3, nmax = 25 in our experiments, and nmax is same as in the searching scheme’s

clustering heuristic). We focus on such medium-sized candidates for the following reasons.

A large module as a whole is likely to correspond to a less specific function and worse causes

artifactual increase in sensitivity in our evaluation studies. A small module, over say two

proteins, is likely to result from a spurious match occurring simply by chance.

The protein networks for model organisms Saccharomyces cerevisiae, Drosophila

melanogaster and Caenorhabditis elegans (referred hereafter as yeast, fly and worm re-

spectively) are experimentally-derived (e.g. two-hybrid, immunoprecipitation) interactions

collected in the DIP database (Salwinski et al., 2004). The version of the networks used and

the interaction reliabilities based on a logistic regression model are taken from a previous

study (Sharan et al., 2005). Our human protein network is from the HPRD database (Peri

et al., 2003) (binary or direct interactions; Sep 2005 version), and we assume unit reliability

for these interactions as they are literature-based.

3.1.4 Evaluation Measures

We describe some measures that we would need in the Results section to evaluate and

interpret the conserved modules from pairwise network comparisons. The notation yeast-

human comparison denotes the comparison between yeast and human protein networks, and

yeast-human modules denotes the resulting conserved modules. Similar notations apply for

other two-species comparisons too.
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Performance (sensitivity and specificity)

The performance of a pairwise network comparison method depends on the qual-

ity of candidate conserved modules it outputs, which we could measure by how well

the candidate set aligns with a reference set of conserved modules. But such reference

sets, even if available, are not comprehensive or applicable for our purpose (e.g. STKE

(http://stke.sciencemag.org/cm/, Jun 2005) contains only a couple of fly-worm con-

served signaling pathways and no protein complexes; Biocarta (http://www.biocarta.

com/genes/allPathways.asp, Jan 2006) has many human-mouse conserved pathways but

available mouse interaction data is sparse).

A viable alternative is to use known functional modules in a single species as reference

to evaluate part of a candidate set. Our reference modules are the literature-based yeast

protein complexes present in MIPS (Mewes et al., 2004) (May 2006 version), at level at

most 3 in its complex category hierarchy. We consider only complexes with 3 to 25 proteins

due to our study’s focus on medium-sized modules (see Section 3.1.3 for reasons). To test

a method, we compare the yeast network against the human, fly or worm network (dataset

details in Section 3.1.3), collect the yeast subgraphs S from each output candidate S, T , and

measure the overlap of these single-species candidate modules with the reference modules.

Our main measures are module-level sensitivity and specificity, which are the fraction of

reference modules covered by some candidate module and the fraction of candidate modules

covered by some reference module respectively. A module S of proteins from a single species

(yeast) is covered by another module S′ if |S ∩ S′|/|S| ≥ 50%, a stringent criterion given

the noisy interaction data.

We also present measures at the interaction and protein levels to assess the quality

of different components of candidate modules (similar to measures at the gene, exon and

nucleotide levels in gene structure prediction methods (Burset and Guigo, 1996)). Define

the protein interactions spanned by a set of modules as the union of interactions present in

each of these modules. If set A denotes the interactions spanned by all candidate modules
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and B that by all reference modules, then interaction-level sensitivity is |A ∩ B|/|B| and

specificity is |A ∩B|/|A|. Protein-level measures are defined similarly.

GO analysis measures

We use the GO resource (The Gene Ontology Consortium, 2000) for functional an-

notations of genes. Specifically, all our functional descriptions are based on known GO

Biological Process annotations (Aug 2006 version) of proteins to terms at level at least 4 in

the GO hierarchy. Given these annotations, we next define many GO-related concepts that

we would need later.

The best GO term of a protein module is the term the module’s proteins are enriched for

with the least hypergeometric P-value (computed by GO::TermFinder (Boyle et al., 2004) at

10% significance level with Bonferroni correction). Given two GO terms, the match between

them is the overlap min(|A∩B|/|A|, |A∩B|/|B|) between the set A,B of terms they imply,

where a GO term implies itself and its ancestors in the GO ontology. This match is based

on a well-justified measure (Kiritchenko et al., 2005).

We call a protein module functionally homogeneous if at least 50% of its proteins are

annotated with the best GO term the whole module is enriched for. We call a candidate

conserved module S, T (e.g. yeast-human candidate) as functionally similar with respect to

GO if S and T are each functionally homogeneous and the match between their best GO

terms is at least 75%.

When validating a predicted GO term of a protein, we use a well-justified criterion as

for match between terms. This criterion requires the respective sets A,B of terms implied

by the predicted term and some known term annotated to the protein to have a high overlap

|A ∩B|/|A| ≥ 75%.
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3.2 Results

3.2.1 Performance against Previous Methods

We test our Match-and-Split method against two previous methods, NetworkBLAST

and MaWISh. We try two Match-and-Split versions, p=1 and p=2, which specify the local

matching criterion of similar length-p paths. We use the default versions of NetworkBLAST

and MaWISh that detect conserved protein complexes or subnetworks (see Supplemental

Text A for software references). We don’t test the Bayesian alignment (Berg and Lassig,

2006) and Græmlin (Flannick et al., 2006) methods as they are from very recent studies

with results focusing on coexpression or prokaryotic networks, whereas the current study’s

focus is eukaryotic protein networks. Fundamentally though, all these methods work for

the networks of any species.

We evaluate a method by measuring how well the yeast modules it outputs (on pairwise

protein network comparisons of yeast and other species) align with a reference set of yeast

protein complexes in MIPS, as explained in Section 3.1.4. For fair evaluation, we attempt

to use common input, default parameter values, and common output processing for all

methods. For instance, the input networks and node similarity function sim(·, ·) are the

same across methods. The 3, 25 size filter thresholds are the same too, so we evaluate all

methods only on the medium-sized candidates they output (see Section 3.1.3).

Different sim(·, ·) criteria could yield quite varying results, and we try two criteria

used in previous methods as discussed in Section 3.1.3. The main text presents criterion

A results, and the Supplemental Text A presents some criterion B results to show few

changes in the relative performance of the methods between the two criteria (mainly in

yeast-fly comparison where module-level results of NetworkBLAST are better than other

methods with criterion B and not A).

First, we discuss module-level results of Match-and-Split (p = 1) relative to the other

two methods. In yeast-human comparison (Table 3.1), Match-and-Split and MaWISh have

comparable performance with Match-and-Split being somewhat better, and NetworkBLAST
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Method # output mod-
ules

Module Interaction Protein

(interactions,
proteins)

Sens. Spec. Sens. Spec. Sens. Spec.

Match-and-Split

(p=1) 80 (667, 421) 25.0 47.5 20 35 25 48

(p=2) 72 (664, 411) 28.0 41.7 20 34 25 47

NetworkBLAST 421 (1311, 606) 40.9 18.5 34 30 37 48

MaWISh 151 (508, 389) 20.5 43.7 15 33 23 46

Table 3.1. Evaluation of output candidates from yeast-human network comparison using
sensitivity (sens.) and specificity (spec.) measures (expressed as rounded percentages) at
the module, interaction and protein levels. The second column shows the number of yeast
modules (candidates) output, and the number of interactions and proteins spanned by these
yeast modules. The reference set comprises 132 medium-sized (size 3 to 25) yeast complexes
in MIPS that span 1144 interactions and 791 proteins. All relevant definitions are in Section
3.1.4.

Method # output mod-
ules

Module Interaction Protein

(interactions,
proteins)

Sens. Spec. Sens. Spec. Sens. Spec.

Match-and-Split

(p=1) 27 (155, 123) 6.8 51.9 5 35 8 49

(p=2) 25 (131, 110) 7.6 48.0 4 37 7 53

NetworkBLAST 77 (354, 206) 8.3 39.0 9 28 12 46

MaWISh 26 (81, 87) 5.3 50.0 3 40 6 52

Table 3.2. Evaluation of output candidates from yeast-fly network comparison, using the
same format as Table 3.1.

has better sensitivity than other methods at the cost of very low specificity and an output

of too many candidates. A similar though less pronounced trend appears in the yeast-fly

case (Table 3.2). In the yeast-worm case (Table 3.3), NetworkBLAST has much better

specificity than other methods at comparable sensitivity.

Moving from relative to absolute performance, the values of module-level sensitivity and

specificity are low (for example, a mere 25.0% and 47.5% respectively by Match-and-Split

(p=1), a competitive method in yeast-human case). Low sensitivity could be due to factors

like noisy interaction data, poor conservation of complexes across compared organisms,
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Method # output mod-
ules

Module Interaction Protein

(interactions,
proteins)

Sens. Spec. Sens. Spec. Sens. Spec.

Match-and-Split

(p=1) 17 (116, 76) 3.8 58.8 5 53 5 54

(p=2) 12 (126, 67) 4.6 50.0 6 58 5 57

NetworkBLAST 27 (182, 74) 3.8 81.5 8 51 6 64

MaWISh 24 (78, 61) 2.3 70.8 4 54 4 54

Table 3.3. Evaluation of output candidates from yeast-worm network comparison, using the
same format as Table 3.1.

or differing computational and biological definitions of a functional module or complex.

Finding which of these factors is key is a subject of future work. Low specificity is probably

due to incompleteness of the reference set, and it does not indicate the output candidates

are spurious (a claim supported by further analysis in Section 3.2.4).

3.2.2 Single-species vs. Pairwise Network Analysis

Pairwise network comparison methods use cross-species conservation in an attempt to

improve over single-species methods in detection of functional modules. But previous net-

work comparison studies have not evaluated their methods against single-species ones. Here

we undertake this evaluation by testing a popular single-species method MCODE (Bader

and Hogue, 2003) on the yeast network under the same measures and size range (3 to 25

proteins) as before. It is beyond the scope of this study to test all single-species methods.

The performance of the pairwise methods relative to the single-species MCODE is var-

ied. Under proper homolog and species selection, Match-and-Split performs better than

MCODE in detecting reference yeast complexes. Comparing Table 3.1 on yeast-human com-

parison with Table 3.4, Match-and-Split (p=1) is much more sensitive than MCODE at the

same specificity, and MaWISh performs similar to MCODE. The choice of homologs is im-

portant as changing the sim(·, ·) criterion from A here to B in Table A.1 reduces the benefit

of pairwise methods over MCODE. Species selection is also crucial as the pairwise methods

have worse sensitivity than MCODE in the yeast-fly (Table 3.2) and yeast-worm (Table 3.3)
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Method # output mod-
ules

Module Interaction Protein

(interactions,
proteins)

Sens. Spec. Sens. Spec. Sens. Spec.

MCODE 53 (614, 323) 16.7 47.2 19 36 20 48

Table 3.4. Evaluation of output clusters from yeast network analysis by MCODE, a single-
species clustering method, using the same format as Table 3.1. We focus on medium-sized
(size 3 to 25) clusters as in other evaluations.

Method # output mod-
ules

Module Interaction Protein

(interactions,
proteins)

Sens. Spec. Sens. Spec. Sens. Spec.

Match-and-Split 81 (634, 410) 24.2 48.2 20 35 25 49

Split-only 569 (3597, 2776) 50.0 12.3 58 18 76 22

Table 3.5. Evaluation of Match-and-Split (p = 1) on pairwise yeast-human network com-
parison against Split-only on single-species yeast network clustering, again using the same
format as Table 3.1. Similar results from Match-and-Split (p=2) is omitted. As between-
ness clustering of large graphs is compute-intensive, Split-only uses a quicker version of it
(see Supplemental text; Split-only still requires orders of magnitude more time than Match-
and-Split). For fairness, the Match-and-Split version here uses the quicker clustering inside
its searching scheme.

cases. Low sensitivity in the yeast-worm case could be due to the sparse worm interaction

data, but the reason in the yeast-fly case is unclear as the fly network is interaction-rich.

Our Match-and-Split searching scheme includes a betweenness clustering heuristic. The

heuristic is by itself a single-species method (denoted Split-only) for it can cluster the full

yeast network into highly connected modules. Table 3.5 compares Match-and-Split and

Split-only to show the boost in specificity from adding pairwise match criterion to plain

clustering. Split-only detects more reference yeast complexes but at the cost of outputting

too many candidate modules at very low specificity. Adding pairwise match criterion also

drastically reduces running time by restricting the size of graphs that need to be betweenness

clustered.
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Ra- P-value Size Best GO term of module (% annotated proteins)

nk (score) Yeast Human Terms’
match

1 3.33e-13 (8) 5, 3 purine ribonucleoside
salvage (100%)

nucleoside metabolism
(100%)

53%

2 1.05e-12 (3) 3, 4 protein import into
mitochondrial matrix
(100%)

protein targeting to mi-
tochondrion (75%)

89%

3 1.38e-12 (4) 3, 3 postreplication repair
(100%)

DNA repair (100%) 94%

4 1.40e-12 (6) 4, 3 ER to Golgi vesicle-
mediated transport
(100%)

ER to Golgi vesicle-
mediated transport
(100%)

100%

5 1.89e-12 (2) 3, 3 processing of 20S pre-
rRNA (100%)

rRNA processing
(100%)

95%

Table 3.6. Five top-ranked candidates from Match-and-Split (p=1) yeast-human compari-
son. The size of a candidate (third column) is the number of its yeast, human proteins. The
‘% annotated proteins’ is the fraction of proteins in a module annotated with the module’s
best GO term, and the match shown is between the best GO terms of yeast module S and
human module T in a candidate S, T (see Section 3.1.4 for definitions).

3.2.3 Select Conserved Modules

The results above evaluate the candidates from our method on a global scale. Here we

discuss the biology of a select few candidates. We start with a flavour of some top-ranked

candidates from the Match-and-Split (p=1) yeast-human comparison in Tables 3.6 and 3.7.

These tables contain functional descriptions based on some known GO Biological Process

annotations as described in Section 3.1.4. The format of these tables is inspired from a

previous study (Koyuturk et al., 2005).

Consider the candidate ranked 2 in Table 3.6 and shown in Figure 3.4. From literature-

based descriptions in SGD (Hong et al., 2006) and UniProt (Apweiler et al., 2004), the

yeast and human proteins of this candidate are each components of the TIM23 complex, a

mitochondrial inner membrane translocase. This complex mediates translocation of prepro-

teins across the mitochondrial inner membrane. Typical preproteins are nuclear-encoded,

synthesized in the cytosol and contain a targeting sequence (presequence or transit peptide)

to direct transport.
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Ra- P-value Size Best GO term of module (% annotated proteins)

nk (score) Yeast Human Terms’
match

50 7.76e-10 (40) 12, 10 ubiquitin-dependent
protein catabolism
(100%)

ubiquitin-dependent
protein catabolism
(100%)

100%

72 1.02e-08 (16) 12, 12 DNA-dependent DNA
replication (75%)

DNA metabolism
(91.7%)

83%

74 1.48e-08 (95) 16, 17 protein amino acid
phosphorylation
(81.2%)

phosphorus
metabolism (88.2%)

35%

77 6.40e-08 (18) 15, 13 transcription initiation
(86.7%)

transcription initiation
(69.2%)

100%

78 1.28e-07 (79) 20, 23 actin filament organi-
zation (65%)

Rho protein signal
transduction (43.5%)

11%

Table 3.7. Five top-ranked candidates with at least 10 yeast and 10 human proteins from
Match-and-Split (p = 1) yeast-human comparison, presented in the same format as Table
3.6.

We now elaborate on the candidate ranked 72 in Table 3.7 and shown in Figure 3.4.

The candidate may seem too heterogeneous to be conserved but it actually contains many

homologous complexes as inferred from literature-based comments at SGD and UniProt.

This example illustrates how a lenient matching criterion over noisy interactions can detect

known complexes. The origin recognition complex (of the ORC proteins) with counter-

parts in yeast and human binds replication origins, and plays a role in DNA replication

and transcriptional silencing. The RAD1, RAD10 and RAD14 proteins are subunits of

the Nucleotide Excision Repair Factor 1 (NEF1) in yeast and homologous to the ERCC4,

ERCC1 and XPA respectively in human. The RFA1, RFA2 in yeast (homologs RPA1, RPA2

in human) are subunits of heterotrimeric Replication Factor A (RF-A), a single-stranded

DNA-binding protein involved in DNA replication, repair and recombination.

3.2.4 Annotation Transfer from Yeast to Human

The candidates output by pairwise network comparison methods, like the ones sampled

in last section, enable transfer of functional annotations between organisms. The idea

is to annotate a protein module in one organism with a function that a similar module
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Figure 3.4. Select candidates from Match-and-Split (p=1) yeast-human comparison. Each
candidate is a conserved module of yeast (left) and human (right) proteins. Two proteins
similar by the sim(·, ·) function are roughly aligned horizontally.

in another organism is known to be enriched for. Our focus here is annotation transfer

from yeast to human based on candidate conserved modules (i.e., yeast-human candidates)

output by Match-and-Split (p=1), using certain known GO Biological Process annotations

described in Section 3.1.4. The Match-and-Split results in this section are competitive with

the corresponding results of other tested methods (shown in Tables A.2, A.3).

We first present results on functional homogeneity and similarity of yeast-human candi-

dates (as defined with respect to GO in Section 3.1.4). Collect the yeast module S of every

yeast-human candidate S, T . Then all (100%) of these yeast modules are homogeneous for

some function, which could then be transferred. This fraction is 83.8% for the human mod-

ules collected similarly. The fraction of yeast-human candidates functionally similar with

respect to GO is a reasonable 42.5%, which further supports annotation transfer.

The actual transfer on each yeast-human candidate S, T involves assigning all human

proteins in T to the best GO term the yeast module S is enriched for. If this procedure

predicts more than one GO term for a human protein, we retain the term with the least

hypergeometric P-value (described in Section 3.1.4). We predict GO Biological Process

terms for a total of 462 human proteins (predictions available online; see Supplemental
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text). This annotation transfer is reliable as a reasonable 295 of these predictions are valid

by a stringent, well-justified criterion in Section 3.1.4. This transfer covers only 462 proteins

though, a small fraction of the 1882 proteins in the human network sequence-similar to some

protein in the yeast network (by the sim(·, ·) function).

3.3 Discussion

In the context of comparing two protein networks, this work shows it is possible to

design a provably good search algorithm that also translates to promising performance in

practice. The algorithmic guarantees of our Match-and-Split method distinguishes it from

previous methods based on greedy heuristics. Formal guarantees are important as they lend

credibility to the conserved modules found by a bounded-time search procedure.

Our method Match-and-Split performs competitively in tests against two previous pair-

wise network comparison methods. For instance, Match-and-Split performs comparably to

or somewhat better than the MaWISh method. In tests against a single-species method

MCODE, Match-and-Split performs better in yeast-human comparison. This single-species

test, which was not done in previous pairwise studies, also reveals comparisons (yeast-fly

and yeast-worm) where the pairwise methods are poorer than MCODE.

The above evaluations, especially the single-species one, lead to an immediate future

question. Are the poor results of pairwise methods in some comparisons mainly due to

incomplete interaction data or something intrinsic to the choice of the species pair and

homologs between them? The answer could inform the conditions when pairwise methods

exploit cross-species conservation to improve single-species detection of functional modules.

The conserved modules our method detects and their functional descriptions are the

findings of most practical interest to biologists. Also of interest are the reasonably accurate

functional predictions resulting from the transfer of GO annotations between conserved

modules. We make these findings publicly available (at a website mentioned in the Supple-

mental text), along with a fast Match-and-Split implementation to facilitate new network

comparisons.
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Our graph-matching algorithm is flexible in allowing diverse local matching and connec-

tivity criteria. A biologist could for instance design a stringent matching criterion to detect

similar instances of a functional module in a single-species network (duplicated modules).

We could even compare other types of networks like metabolic networks within the same

algorithmic framework. A challenge then is the judicious design of a matching criterion for

the biological comparison of interest.

Our algorithm guarantees are limited to monotone local matching criteria. Many useful

criteria, such as one that declares two nodes locally matching if they are similar and at

least half of their neighbors are similar, are non-monotone. A future direction is to explore

tractable search formulations for non-monotone criteria. Another limitation with the cur-

rent study, but not with our framework, is the use of a simple scoring scheme. The simple

scores yield reasonably good results, however network conservation scores that correlate

better with the biological significance of a conserved module is a subject of future work.
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Chapter 4

Probabilistic Estimation of the

Phylogeny of a Pathway

We design a probabilistic model for pathway evolution under the hypothesis that the

pathway is evolving as a heritable unit across closely related species, and apply it to es-

timate the phylogenetic tree topology along which the pathway evolved from its unknown

ancestral forms to present-day forms in the different species. An overview of our proba-

bilistic approach and its contributions relative to other discrete similarity based approaches

was presented in Chapter 2. This chapter discusses in depth our evolutionary model, a

distance matrix tree estimation method based on the model, and its application to estimate

the phylogeny of several microbial pathways. The design of our model involves extending

a previously published 2-character co-evolution model (Barker and Pagel, 2005; Pollock

et al., 1999) to handle k > 2 characters (genes), and then achieving a tractable number of

parameters via a Markov network (Jordan, 1999) representation of the pathway data, and

an assumption about uniform evolutionary rate for genes. Our results include interesting

hypotheses about the evolution of certain bacterial and archaeal pathways, which are de-

rived from interpreting the estimated pathway trees using sequence-based species trees and

data on cellular phenotypes.
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4.1 Evolutionary Model

We develop our evolutionary model in this section, and show how to use it for phy-

logenetic estimation in later sections. Our model of pathway evolution captures how the

genes (nodes) in a pathway are gained or lost over time in some correlated fashion, by using

cross-species gene content data and canonical interaction (edge) data.

An interaction between two pathway genes is termed canonical if it is observed in some

model organism where the pathway is studied in detail. For example, researchers often

take a canonical view of the interactions in a metabolic pathway based on detailed studies

of the pathway in E. coli. That is, they assume that an interaction between two E. coli

genes (enzymes) also exists between the orthologous counterparts of these genes (if both

are present) in other closely related species. In metabolic pathways, an interaction between

two genes denotes that their enzyme products catalyze contiguous chemical reactions. In

general, the interaction between two pathway genes could also denote a physical interaction

between their protein products, or a direct functional association such as that between a

transcription factor and its target gene.

4.1.1 Pathway Representation

We seek a biologically plausible model for the evolution of a pathway as a single coherent

unit. We also prefer a model with few or constant number of parameters for reasons men-

tioned in Section 2.2. To obtain such a tractable model, we could reduce the representation

of the pathway to include only the presence or absence of its nodes and edges in different

species. But note that for a typical pathway, only node data is available for several species

(e.g. gene content of microbial species with sequenced genomes), and edge data is available

for just a few model organisms where the pathway interactions are studied in detail.

Taking all this into account, our model represents a pathway by the presence or absence

of genes in different species, and uses canonical interactions between pathway genes observed

in model organisms to specify fine-grained dependency among gene gains and losses. So

a pathway of k genes can be in one of the 2k states indicating the presence or absence of
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(orthologs of the) genes in a species, and its state evolves under some static dependence

constraints imposed by the canonical pathway edges. In other words, our pathway evolution

model is really a pathway gene content co-evolution model with static dependence structure

defined by the pathway edges (note that the term canonical is sometimes dropped when the

meaning is clear).

4.1.2 Co-evolution Model of k Characters

In this section, we develop a general model for the correlated evolution of k binary char-

acters along a phylogenetic tree. To obtain the specific pathway evolution model outlined

above, we let the characters indicate the presence or absence of the k pathway genes, and

parameterize the model using a tractable number of free parameters that reflect the biology

of the evolving pathway (as detailed in the next section).

Model parameters and intuition. Our general model assumes that the static depen-

dence constraints on the evolution of the k characters are provided as a joint distribution

π over the characters (defined implicitly by a few parameters), and the character evolution

rates are provided as a parameter set λ = {λi}k
i=1. To clarify, let the state space of size 2k

of the k binary characters be denoted as {u : u ∈ {0, 1}k}. Then in our model, the joint

distribution π = {πu} over the characters dictates the correlated fashion in which these

characters evolve over time, and the parameter λi dictates the rate at which character i

evolves. The ensuing text describes in detail how the model uses these parameters to define

dependent evolution of the characters.

Substitution model along a phylogeny. Evolution of characters along a tree topology

with branch lengths can be modeled along the lines of standard phylogenetic models of

nucleotide sequences (Felsenstein, 2003). The question, then, is how to design a substitution

model for the co-evolution of k characters. A substitution model specifies how characters

change (substitute) from one state into another along a branch of the tree (Figure 4.1).

For example, when the characters are nucleotides, there are four substitution states: A,
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[P(t1)]?u

....

[P(t2)]uv [P(t3)]uw

1111w:1100v:

?

1111u:

Figure 4.1. Binary characters co-evolving along a given tree. The transition probabilities
along a branch of length t are denoted by the matrix P (t). The leaves of the tree correspond
to the state of characters observed in current-day species. The internal nodes correspond
to unobserved ancestral states. The example ancestral state is shown only for illustration.
The last two characters might be co-evolving as they are both lost during a short period of
time.

C, G, and T. In our case, the k characters can be in one of the 2k possible states, and

the substitution model is fully specified by a continuous time Markov chain over these 2k

states. The transition probabilities of the Markov chain along a branch of length t is given

by P (t) = exp(Rt) (Figure 4.1), where R is the 2k × 2k rate matrix associated with the

chain. We define R next using the (π, λ) parameters to complete our model description.

The rate matrix R. Our rate matrix R, which underlies the evolutionary model, is

an extension of the 2-character correlated evolution rate matrix (Barker and Pagel, 2005;

Pollock et al., 1999) to the general k-character case. Being used in a model of dependent

evolution of characters, this rate matrix also shares some aspects of rate matrices of nu-

cleotide substitution models that allow dependence between sites, such as the codon model

of Goldman and Yang (Goldman and Yang, 1994), and the recent site dependence models

of Jensen and Pedersen (Pedersen and Jensen, 2001) and Robinson et al. (Robinson et al.,

2003). As with dependent-sites models, our sparse rate matrix assumes a zero instanta-

neous rate for simultaneous changes in more than one character; note however that there is

non-zero probability for multiple successive changes along a branch of the tree. The design
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of biologically realistic rate matrices that capture dependence between characters or sites

remains an active open area of research.

We are ready to define our 2k × 2k rate matrix R. Recall the state space and model

parameter notations from above, and let h(u, v) denote the number of characters in which

states u, v differ (i.e., their Hamming distance). Then

R(u, v) = 0 if h(u, v) ≥ 2,

R(u, v) = λi
πv

πu + πv
if h(u, v) = 1; u, v differ in character i.

For example, R(1111, 1100) = 0, and

R(1111, 1101) = λ3
π1101

π11∗1
= λ3

π1101

π1111 + π1101
.

As a model of co-evolution, this rate matrix has some desirable properties. It is time-

reversible with π as its stationary distribution, and captures the dependence between evo-

lution of characters as specified in π. That is, the rate R(1111, 1101) is proportional to the

conditional probability under π that the third character is absent when all other characters

are present. In general, this can be different from R(0010, 0000), permitting the rate of

change of the third character to depend on the background state of the other characters.

The conditional probability formulation also lets the Markov chain factorize according to

the dependence structure in π. For example, if the third character were independent of

other characters under π, this forces all rates of loss of the third character to the same

value (e.g. R(1111, 1101) becomes equal to R(0010, 0000)). Thus the overall Markov chain

factorizes into two independently evolving Markov chains: one for the third character and

another for the other three.

4.1.3 Co-evolution Model of Pathway Gene Content

To adapt the general k-character co-evolution model to our case of pathway evolution

outlined in Section 4.1.1, we let the characters correspond to the presence or absence of k

genes in the pathway, and set the parameters (π, λ) suitably to reflect the correlated gains
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or losses of interacting genes. We parameterize π by formulating a Markov network (Jordan,

1999) from the canonical pathway edges, and parameterize λ by assuming a uniform rate

of gain or loss for the genes.

A contribution of this parameterization is the constant number of free parameters it

requires. A tractable parameter set is necessary for the purpose of phylogenetic estimation,

because a full parameterization requires 2k parameters for π and k parameters for λ (in fact,

two less free parameters since π is normalized and R is scaled to result in unit expected

number of changes per unit time at equilibrium).

Parameterizing π. A Markov network (Jordan, 1999) succinctly describes the joint dis-

tribution of a set of random variables, given a graph that encodes the dependence structure

between these variables. To define π succinctly, we use a Markov network that has the same

graph structure as the canonical pathway edges. As shown in Figure 4.2, if Ui is a random

variable indicating the presence of pathway gene i, then the Markov network imposes the

same graph structure among the Uis as the pathway edges. The joint distribution of this

Markov network is calculated as a normalized product of pairwise potentials f(·, ·), one per

edge of the network. That is, given a realization u = {ui} of the random variables U = {Ui},

we have πu = Pr[U = u] ∝
∏

pathway edges e=(i,j) f(ui, uj).

In this model for π, we make the implicit assumption that an edge between two pathway

genes is an indication of their dependent evolution and capture it by the corresponding edge

potential f(·, ·). This assumption is consistent with our premise outlined in Section 4.1.1.

Each edge potential function is a table with three entries or parameters, whose values

across all edges are in fact set (tied) to the same three free parameters, f(0, 0), f(1, 1),

and f(1, 0) .= f(0, 1). These free parameters respectively indicate the relative preference of

having two characters at the endpoints of an edge to be both absent, both present, or one

of them absent and the other present. In a typical scenario of co-evolution, f(0, 0), f(1, 1)

values are larger than f(0, 1). Note that tying all edge potential functions to the same

function f(·, ·) assumes the same strength of co-evolution for all interacting gene pairs, and

is hence an approximation to how interacting gene pairs might actually co-evolve. However,
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Figure 4.2. A pathway of genes and canonical edges between them (left), and its equivalent
Markov network (right). Recall that canonical edges are based on a knowledge of the
pathway in a few model organisms. In the Markov network, the Ui random variable indicates
the presence of gene i, and fij is a shorthand for the edge potential f(Ui, Uj). In the
typical scenario of co-evolution of interacting genes, f(0, 0), f(1, 1) values are larger than
f(0, 1) .= f(1, 0).

this approximation seems necessary to obtain a meaningful number of parameters that does

not increase with the pathway size.

The three free parameters f(0, 0), f(1, 1), and f(0, 1) .= f(1, 0) can be estimated directly

from data without the use of a tree topology, analogous to how equilibrium distribution of

nucleotide substitution models are directly estimated from the nucleotide composition of se-

quences. Thus the parameters of π are considered fixed and constant across tree topologies,

and estimated via maximum likelihood (ML) directly from the presence or absence of the

k pathway genes in the set of species under study. In detail, we calculate empirical counts

of the presence or absence of the endpoints of every edge, use these counts and the above

formula to compute the likelihood function
∏

species gene contents u Pr[U = u], and pick the

three free parameters that maximize this function (via standard numerical optimization).

To obtain non-zero πu for all u, we added extra unit pseudo-counts to the three empirical

counts (Durbin et al., 1998).

We mention a final technical detail about the model. In theory, a pathway could have

isolated genes i.e., genes that do not interact with any other pathway gene and hence evolve

independently. We factor them into the model via another potential function g(0), g(1) .=

1− g(0), which as before are tied to the same two values across all isolated genes and ML

estimated directly from the data (via empirical counts of the presence and absence of all
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isolated genes in the set of species, added with extra unit pseudo-counts). Note that the

free parameter g(0) is simply the probability that an isolated gene is absent in a species. So

to update the above formula for Pr[U = u], we simply multiply the terms in this formula

with the probability of presence or absence of every isolated gene.

Parameterizing λ. We start with the simplest assumption that all genes change (are

gained/lost) at the same rate, and set this uniform rate without loss of generality to 1 in

our experiments (as the rate matrix R is subsequently scaled as mentioned in the beginning

of this section).

In a possible extension of this approach, we could use some external (biological) infor-

mation to partition the genes into a small constant number c > 1 of different rate classes

and assume that each class j has a specific rate of change rj . This leaves the model with

only c parameters r1, . . . , rc, whose numeric values could either be fixed from external in-

formation or ML estimated for any given tree topology. This approach is similar to the

partition-specific or site-specific rates used in sequence evolution models that allow rate

variation among sites (Sullivan and Joyce, 2005). Using discrete Gamma-distributed rates

with c rate categories (Yang, 1994) is another popular approach to model rate variation

among sites in sequences. However, such an approach would overly complicate our model,

as the dependence between character evolutions (gene gains or losses) blows up the time

for transition probability calculations by a factor of kc (as compared to a factor of c for

independent site models).

4.2 Phylogenetic Estimation

Having specified our model of pathway evolution in the last section, we are left with using

this model to estimate the phylogeny of a pathway present in multiple species. Estimating a

phylogeny involves inferring the topology and branch lengths of the tree, which we describe

first. We then describe how to assess the confidence value (resampling support) on each

branch of the tree using a modified jackknife procedure.
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4.2.1 Tree Estimation using the Model

Distance matrix method. Estimating a pathway tree using our model with a maximum

likelihood method is conceptually straightforward but computationally intensive. Hence we

use a standard distance matrix method, whose inputs are distances between the pathway

states in every species pair estimated using our evolutionary model. The output of the

method is a tree topology with branch lengths that best fits the input pairwise distances

according to the statistically justified least-squares criterion (Felsenstein, 2003).

Our formal estimate of the distance between two pathway states u, v is based on the

maximum likelihood (ML) framework. This ML estimate is simply the time t that maximizes

the transition probability [P (t)]uv given by our evolutionary model. To estimate the all-pairs

distances, we also set beforehand the model parameters (π, λ) as discussed in the previous

section. Finally, if multiple species have the same pathway gene content, they are collapsed

into a single leaf node of the estimated tree. Although we do not resolve the tree topology

between such species, it could be achieved by using sequence information, as detailed in the

Discussion.

Implementation pipeline and limitations. The inputs to our phylogenetic estimation

method are the pathway gene content in a given set of species, and the canonical edges in

the pathway based on known interactions in model organisms. We first estimate the free

parameters of π by ML and assume uniform rate for all λs to parameterize our evolutionary

model (as explained in Section 4.1.3). Then as mentioned above, we estimate the distances

between every species pair in which the pathway is present by ML, and the phylogeny

using the least squares distance matrix method Fitch of the Phylip phylogeny inference

package (Felsenstein, 1993) with default options. ML estimation of the free parameters of π

and all-pairs distances are done via standard numerical optimization methods (specifically

quasi-Newton methods in the OPT++ package (Meza, 1994); they are iterative methods

whose search for the local maxima of a function is guided by approximations of the function’s

second-order derivatives (Press et al., 1992)).
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To prepare the pathway gene content, we select genes that are experimentally associ-

ated with the pathway in model organisms, and search for orthologs of these genes in the

genome sequences of a given set of species. These steps are detailed in Supplemental Text

B, and their caveats mentioned here. We find orthologs of a gene based on a three-way

reciprocal BLAST best hits procedure. This procedures makes simplifying assumptions

about orthology to achieve fast running times. But it suffers from some shortcomings in-

cluding false negative errors due to the stringent three-way requirement, or non-orthologous

gene displacements, and false positive errors in the face of events like domain shuffling in

multi-domain proteins, domain fusion/fission, sequencing errors or insufficient masking of

low-complexity regions in the genome, and large sequence divergence within a protein fam-

ily (Galperin and Koonin, 1998; Brown and Sjölander, 2006). To partially alleviate some

of these shortcomings, we use a variant of the reciprocal best hits procedure and manually

inspect the phylogeny of certain protein families (please see Supplemental Text B).

The transition probability calculations require a diagonalization of the rate matrix R,

which is done using CLAPACK (Anderson et al., 1999). Because the dimension of R is

exponential in k, we are limited to working with small values of k (e.g. k ≤ 13). However,

if the pathway is decomposable into smaller independently evolving sub-pathways or mod-

ules based on the graph components of the pathway or other biological information, then

the time and memory requirements are greatly reduced. For example, the diagonalization

requires O(23k) time for a pathway of k genes, and only O(2 · 23k/2) time if the pathway is

decomposable into two independently evolving sub-pathways of k/2 genes each.

4.2.2 Tree Estimation with Resampling Supports

Bootstrap or jackknife resampling methods are routinely used to estimate a sequence

phylogeny with confidence value (resampling support) on each branch of the tree (Felsen-

stein, 2003). Our benchmarking results (Section 4.3.1) underscore the importance of esti-

mating a pathway tree with resampling supports on tree branches. Since our model assumes

dependency between characters, we cannot use standard bootstrap methods available for

independent data. Note that such a method performs random resamplings of the input
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data under the assumption that the data comprises independent samples, estimates a tree

for each resampled dataset, and computes the fraction of trees that contain a topological

feature of interest (e.g. resampling support of a tree branch). We cannot also use existing

resampling methods on dependent data, which are studied mainly in the context of sta-

tionary, time-series processes (Lahiri, 2003). To suit our Markov network based model of

dependent characters, we hence modify the jackknife procedure.

A standard leave-one-out jackknife procedure leaves each character (gene in our case)

out of the original input data to obtain several resampled datasets, estimates a tree topol-

ogy for each such dataset, and obtains a consensus topology of these trees that includes

branches supported in at least 50% of the resampled trees (Felsenstein, 2003). This final

consensus tree with possible multifurcations (internal nodes with more than three neighbors)

is presented along with the resampling supports on each branch (i.e., fraction of resampled

trees in which this branch appears). The procedure is implemented in Phylip consense

(with the Majority rule option, which also heuristically resolves some multifurcations). The

lengths of the consensus tree branches that best fit the original input data could also be es-

timated, for instance under the distance matrix framework (implemented in Phylip Fitch,

with the same options as in the previous section, and an additional user-tree option set to

the consensus tree topology).

In the context of our dependent character model, we need to modify this procedure to

update the Markov network over the remaining (non left-out) characters. To do so, we are

guided by the concept of an independence-map or I-map. A Markov network is an I-map for

a probability distribution over a set of random variables, if every conditional independence

statement implied by the network structure also holds under the distribution (Castillo and

Hadi, 2006). From our definition of the joint distribution π over all the characters (Section

4.1.3), it follows that the Markov network in our model is an I-map for π. To be consistent,

the new Markov network in a jackknife resampling step should similarly be an I-map for

the marginal distribution of π over the remaining characters. This is achieved simply by

removing the left-out node and its incident edges from the original network and adding

some minimal extra edges to obtain the new Markov network. These extra edges couple all

56



neighbors of the left-out node (i.e., they link all pairs of neighbors in the original Markov

network of the left-out node). We use this modified, leave-one-out, jackknife procedure to

obtain our results.

To increase the number of resampled datasets to obtain possibly more reliable resam-

pling supports, we could also leave more than one gene out in every resampling step. In such

a case, the left-out genes in a resampling step are eliminated sequentially in some arbitrary

order, where an elimination involves removing a left-out node with its incident edges and

adding extra edges to couple their neighbors in the current network (the elimination order

of left-out genes won’t affect the extra edges added in the final Markov network).

4.3 Results

4.3.1 Simulation Studies on Tunable Pathways

We first benchmark the performance of our method on artificial pathways with tunable

number of genes and network structure. This allows us to estimate the error inherent in

using gene content or interaction data from a limited number of genes. Given an artificial

pathway and a reference phylogenetic tree, the evolution of pathway gene content is simu-

lated along the reference tree according to our substitution model (after assigning the tree

root to a gene content drawn from π). To recover an estimate of the phylogenetic tree, the

method is then applied to just the data observed at the leaves of the tree (representing the

extant species).

We use a family of artificial pathways whose network structures are representative of the

typical structure of linear signaling pathways and dense protein complexes. The network

structure is tuned via two parameters: number of genes N and edge density K, inspired

by the NK-model of tunable fitness landscapes (Kauffman and Levin, 1987). Specifically,

a NK pathway is over N genes g1, g2, . . . , gN such that every gene gi is connected to

each of its K adjacent neighbors gi+1, gi+2, . . . , gi+K through an edge (ignoring out-of-

boundary edges to gj , j > N ; see Figure 4.3). To enforce co-evolution of interacting genes,
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Figure 4.3. The family of artificial pathways inspired by the NK-model is tuned by the
number of genes N (N = 8 shown) and edge density K (K = 0, 1, 2, 3 shown). The
reference phylogeny is a complete binary tree with unit branch lengths over n species or
leaves (n = 4 shown).

No. species (n) No. genes (N) Edge density (K)
0 1 2 3

4 8 60% 42% 35% 10%
13 65% 52% 44% 10%

8 8 48% 35% 9% 0%
13 65% 45% 26% 0%

Table 4.1. Benchmark of tree estimation method using artificial gene content data generated
by simulating the evolution of artificial pathways over a reference phylogenetic tree (see
Figure 4.3). For each NK pathway, we report here the fraction of 100 simulation trials in
which the tree estimated by our method was similar enough (see text for definition) to the
reference tree. Note that in each trial, the evolution of the pathway is simulated along the
reference tree to generate gene content data at the leaves, and the method is applied to this
generated data to estimate the tree.

we use a pairwise potential function: f(0, 0) = 0.35, f(1, 1) = 0.35 that is greater than

f(0, 1) .= f(1, 0) = 0.15. In the case of K = 0, we use g(0) = g(1) = 0.5 to capture the

evolution of isolated genes.

For evaluation purpose, we declare a tree estimated by our method as similar enough

to the reference tree if the triplets similarity measure between them is at least 0.5. Given

two trees over the same set of n leaves (species), triplets measure quantifies the topological

similarity between them as the number of agreeing triplets (sets of three species), normalized

by the total number
(
n
3

)
of triplets to yield a value between 0 and 1. A triplet is agreeing

between two trees if some ordering of the three species is a legal triad in both the trees,

where a legal triad refers to an ordered set of three species i, j, k such that the distance
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between i, j on the tree is less than or equal to that between i, k and j, k (Hartigan, 1975).

If any of these three distances is zero, the triad is not counted as legal, in order to obtain

a stringent similarity measure that penalizes some partially resolved trees.

Two observations arise from our benchmark (Table 4.1). First, sparser pathways are

better recoverable. The ideal case is when edge density K = 0, i.e. when the pathway has

no edges. Genes are then independently evolving along the reference tree and hence provide

N independent observations (samples) with which to build the tree relationship between

the n species. As K increases, pathway genes become more coupled and result in correlated

gene contents that are less informative than N independent samples. In fact, we observe

that a subset of different species could end up with the same gene content for larger values

of K, making it impossible for any gene-content based method to resolve the structure

between these species. The worst case is K = N , i.e. when all genes are interacting and

all are either gained or lost jointly with high probability as the pathway evolves along the

reference tree. This level of correlation between the genes effectively reduces the number of

samples from N to one. The second observation is that for a given number n of species and

a reasonable edge density K, increasing the number of genes N leads to better recovery of

the reference tree. This is as expected, since larger N provides more samples that inform

the reference tree structure.

4.3.2 Application to Microbial Pathways

These benchmark results suggest that estimated phylogenies of real pathways based on

about 13 sparsely interacting genes in 35 or more species would not be fully resolved, and

would have multifurcations (internal nodes with more than three neighbors) and different

species with the same gene content. The modified jackknife procedure described in Section

4.2.2 can handle this scenario, as it can estimate a partially resolved pathway phylogeny

with possible multifurcations, and also measure the confidence value on each resolved tree

branch.

We applied our tree estimation method to several microbial pathways, which include
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essential metabolic pathways such as glycolysis (Nelson and Cox, 2005, Ch. 14) and the citric

acid cycle (Nelson and Cox, 2005, Ch. 16), stress response pathways such as chemotaxis

(methyl-processing receptors and enzymatic regulators (Rao et al., 2004)), and cell-cell

communication pathways such as quorum sensing (auto-inducers and repressors (Miller and

Bassler, 2001)). We trace the evolution of these pathways in a set of 33 representative

species, with two species chosen from each major bacterial and archaeal clade (excluding

Planctomycetes and Acidobacteria) to broadly sample all species with sequenced genomes.

For other pathways that are not as universally present, species selection is less objective and

based on a preliminary clustering of the pathway gene contents. Please see Supplemental

Text B for more information on pathway function, node and edge data.

Since research on constructing pathway phylogenies is still in its early stages, there are

no “true” pathway phylogenies against which we could compare our estimated pathway

trees. A sequence-based species tree (hereafter referred to as the taxonomic tree) was

therefore used to provide context. The taxonomic tree is an unrooted ML tree derived

from a cleaned and concatenated sequence alignment of 31 universal protein families such

as ribosomal and translation-related proteins (Ciccarelli et al., 2006). In addition, we used

detailed phenotype data (AH. Singh, DM. Wolf, AP. Arkin, manuscript under review) to

evaluate the biological relevance of each phylogenetic branch point.

Discrepancies between phylogenies built for the same set of species but from different

source data have been previously recorded. For instance, single gene trees do not always

recapitulate taxonomic trees built from universal gene sets. This can be due to lateral gene

transfer, gene duplications within a genome, multiple independent gene gains or losses in

different branches of the tree, or niche-specific modifications that are not reflected in tax-

onomic distances (Xie et al., 2003; Bansal and Meyer, 2002; Hooper and Berg, 2003). A

pathway phylogeny could also depart significantly from the taxonomic tree. A simple in-

terpretation of this departure in the context of phenotypic data can however predict events

such as convergent evolution from similar selective pressures and environmental niches,

horizontal gene transfer, and evolution of distinct mechanisms responsible for similar phe-

notypes (as we show in this section). Although there are sophisticated methods to detect
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Figure 4.4. Phylogeny of glycolysis pathway for 33 representative species. 9 enzymes and
their 11 interactions are used to model the evolution of this pathway. Pathway nodes
are enzymes, and edges between nodes indicate that the catalysed reactions between two
enzymes involve a common compound. Edges in these pathways are mostly in the form of
a linear chain from one enzyme to the next. Node and edge input data are obtained from
KEGG (Kanehisa and Goto, 2000). Archaea are well separated from bacteria because of
their lack of pfkA and fbaA.

each of these events exclusively, the pathway phylogeny provides a single, concise depiction

of several such events in the evolutionary history of the pathway.

Lifestyle-specific gene loss in metabolism

The predicted phylogenies for glycolysis and the citric acid cycle over the 33 represen-

tative species are shown in Figures 4.4, 4.5. Although the trees have unresolved multifur-

cations due to the strong conservation of these metabolic pathways (especially glycolysis)

and the small number of query genes, they are nevertheless interpretable if we focus on the

resolved clades that have reasonable resampling support. We hence focus on the citric acid
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Figure 4.5. Phylogeny of citric acid cycle for 33 representative species. 12 enzymes and their
16 interactions were used to model the evolution of this pathway. Strictly anaerobic species
are marked in bold. Pathway nodes are enzymes, and edges between nodes are defined
and obtained the same way as for glycolysis. Obligate intracellular symbionts and parasites
cluster together as expected. The presence or absence of sucA effectively distinguishes the
aerobes from the anaerobes, which run the two halves of the citric acid cycle separately.

tree in this section, which is better resolved than the glycolysis tree. On the glycolysis tree

(Figure 4.4), we simply note that the archaeal species are well separated from bacteria.

There are several interesting discrepancies between our predicted citric acid tree (Figure

4.5) and the reference taxonomic tree (triplets similarity of 35% between the two trees).

The citric acid tree clusters together species that are separated by large distances in the

taxonomic tree. For example, the cluster of four species (Nanoarchaeum equitans, Borrelia

burgdorferi, Treponema pallidum, and Mycoplasma pneumoniae) belong respectively to the

Archaea, Spirochetes (two species), and Firmicutes. They are united, however, in having

few or no genes of the citric acid cycle. Phenotypic annotations confirm that they are all

obligate intracellular symbionts or parasites1: N. equitans is an intracellular symbiont of the
1Obligate refers to an absolute requirement, so obligate symbionts or parasites do not have an alternate

free lifestyle. For survival, an obligate symbiont relies on the organism that it shares a mutually beneficial
relation with. An obligate parasite similarly relies on the host organism for survival, causing some harm to
the host in the process.
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marine archaeon Igniococcus, B. burgdorferi a parasite of ticks and the causative agent of

Lyme disease, T. pallidum a parasite causing syphilis, and M. pneumoniae another human

pathogen causing pneumonia. A parasitic lifestyle in a nutrient-rich host environment has

been suggested to cause the loss of metabolic genes (Lawrence and Hendrickson, 2005); our

phylogeny estimation method detects and illustrates this in an automated way.

Progressing from reduced genomes to metabolically complete genomes on the citric acid

cycle tree reveals a gradual gain/loss of isoenzymes (multiple forms of an enzyme coded

for by different genes), co-evolution of subunits of multi-enzyme complexes, and phenotypic

association of evolutionarily critical enzymes. We first note that the co-evolution between

isoenzyme pairs is much weaker than that between interacting subunits of the same enzyme

complex, thereby supporting the use of canonical pathway edges in building a co-evolution

model. For example, 12 of 33 species have aconitase AcnA but not its isoenzyme AcnB,

4 species have AcnB but not AcnA, and 11 species have neither (Figure 4.5). In contrast,

the E1 and E2 subunits of the 2-oxoglutarate dehydrogenase complex (SucAB) are both

present or both absent in all but 5 of the 33 species.

Moving onto α-ketoglutarate dehydrogenase (SucA), we see a striking phenotypic as-

sociation – of the 19 species lacking SucA, 14 are obligate anaerobes that branch deeply

on the tree (marked in bold on Figure 4.5). Since the citric acid cycle only operates in

aerobic cells, anaerobes run the four-carbon part of the pathway (succinate to oxaloacetate)

in reverse, presumably for reductive biosynthesis (Michal, 1999; Huynen et al., 1999). It is

presumed that before advent of oxygen on the earth’s surface, early hyperthermophilic bac-

teria and archaea had both segments of the citric acid cycle, with each operating separately

as a linear pathway (succinate to oxaloacetate, and oxaloacetate to α-ketoglutarate). In

aerobic species, the appearance of α-ketoglutarate dehydrogenase (SucA) then unified the

two linear pathways into a cycle (LaNoue, 2001). Finally, the clade of species with a com-

plete complement of enzymes (X. campestris, N. meningitidis, E. coli, A. tumefaciens, B.

parapertussis) is both the most metabolically and phenotypically versatile of the species set,

since biochemically equivalent enzymes could be regulated differently according to different

physiological conditions (Serres and Riley, 2006).
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Evolution of chemotaxis modulation

Chemotaxis is a well-studied signal transduction pathway that bacteria use to sense

changes in the chemical composition of their environment and move accordingly. This

is achieved by transducing signals from methyl-accepting receptor complexes (McpABC,

TlpABC, Tar, Tap), located at the poles of the cell, via the CheY messenger protein, to

flagellar-motor complexes evenly distributed around the cell. An intricate signal cascade

(CheABCDRVZ) modulates the phosphorylated form of the messenger protein CheY and

steers the cell in the appropriate direction (Sonenshein et al., 2002, Ch. 31). In E. coli and

B. subtilis, the chemotaxis network comprises approximately 60 genes. Roughly half these

genes code for the flagellar apparatus, and another third for membrane-anchored receptors

that bind specific extracellular ligands. We focus on the receptors and signal transduction

modules of the network, and one flagellar protein, FliM, that is directly regulated by CheY.

There is a significant amount of variation in chemotaxis gene content even among motile

species, and the tree we predict (Figure 4.6) groups this variation into three major classes,

which reflect the knowledge of chemotaxis in model organisms. The main cross-species

differences are in the distribution of regulators that modulate CheW activity: CheC (present

in 24/88 species), CheD (44/88 species), and CheV (37/88 species). CheZ, which deactivates

the master regulator CheY, is also not uniformly conserved (35/88 species). Thus, whereas

the major ligand-binding (Mcp, Tlp) and two-component system (CheAY) of chemotaxis

is conserved in all motile species, the “modulation” proteins are not. This difference has

been documented in detail for E. coli (which lacks CheCDV), and B. subtilis (which lacks

CheZ) (Rao et al., 2004). We confirm that our pathway tree groups 73 of the 88 species

into three broad gene content classes: “E. coli-like” content lacking one of CheCDV but

having CheZ (the clade of 31 species containing E. coli and C. violaceum), “B. subtilis-like”

content lacking CheZ but having CheCD (the clade of 21 species containing B. subtilis and

Borrelia spp., with the latter having only CheD), and a third gene content class lacking

both CheZ and CheCD (the clade of 21 species containing M. loti and D. radiodurans).
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Figure 4.6. Phylogeny of chemotaxis for 88 selected species, built using 13 genes and their
18 interactions. Non-motile species are marked in bold.
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Observe that non-motile species appear in the same clade as motile species from the

same genus due to identical gene content. In some instances where this occurs, a non-motile

obligate pathogen such as Bordetella spp. or S. flexneri clusters with a motile free-living

species such as E. coli. This could be explained by different evolutionary scenarios. The

last common ancestor could have been motile, and the loss of the phenotype occurred after

speciation along one branch, where the genes were retained as pseudogenes or inactive

copies. Alternatively, motility could have been preserved along one branch, while the genes

in the other branch underwent divergent evolution and were recruited to other regulatory

pathways. The former explanation is partly supported by evidence that flagellar orthologs

in Bordetella parapertussis are inactivated pseudogenes (Parkhill et al., 2003).

Combinatorial evolution of quorum sensing systems

Quorum sensing is the ability of individual cells to regulate gene expression in response

to variations in population density. Bacteria achieve this by producing signaling molecules

called autoinducers that are secreted into the extracellular medium. When a threshold

level of autoinducer is detected, it leads to a change in gene expression. In this manner,

bacteria regulate a variety of biological functions such as symbiosis, virulence, antibiotic

production, motility, sporulation, and biofilm formation. There are at least four alternate

mechanisms to secrete and detect autoinducers (Miller and Bassler, 2001): (i) the best-

studied LuxI/LuxR-type quorum sensing system of Gram-negative bacteria, with variations

of this two-component system present in V. fischeri, P. aeruginosa, A. tumefaciens, and

E. carotovora; (ii) the peptide-mediated quorum sensing in Gram-positive bacteria, with

variations among B. subtilis, S. pneumoniae, and S. aureus (Storz and Hengge-Aronis,

2000); (iii) the multi-channel lux circuit of V. harveyi (Waters and Bassler, 2006); and

(iv) the unique amino acid secretion system of M. xanthus (Kuspa et al., 1992). For this

analysis, we used 35 representative genes from three well-studied quorum sensing systems

in V. harveyi, B. subtilis, and A. tumefaciens.

Since the quorum sensing tree was derived from genes in three species with different

quorum sensing mechanisms, we first verified that species with similar mechanisms group
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Figure 4.7. Phylogeny of quorum sensing for 35 selected species built from gene and in-
teraction data on multiple quorum sensing mechanisms. A total of 28 genes and their 28
interactions are used. In the interest of space, the pathway shows luxC, luxD, luxA, luxB
and luxE genes as luxCDABE. Note that our analysis treats these genes as separate nodes
with each having a separate edge to luxR, and no edges amongst themselves. The analysis
similarly treats luxP and luxQ separately, though the pathway shows them as luxPQ.

together. This is indeed the case (Figure 4.7). For instance, the tree clusters together the

Vibrio species, which all use LuxS to produce the autoinducer, LuxPQ to detect threshold

autoinducer levels, and LuxO and Hfq as intermediate relays in the regulation of target

genes. Also clustered together are species sharing the paralogous two-component systems

RhlI/RhlR and LasI/LasR systems, in which RhlI or LasI produce the autoinducer, and

RhlR or LasR detect it (Miller and Bassler, 2001). This clade includes Pseudomonas,

Burkholderia, and Ralstonia species.

Interestingly, B. subtilis also uses a homolog of LuxS for autoinducer secretion as in

Vibrio, and a probable Lsr-like system instead of LuxPQ for signal detection, in addition

to the CSF/ComX systems. This observation made in a recent study is along the lines
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of two similar observations in earlier studies that suggest a LuxS/Lsr-like quorum sensing

mechanism in B. anthracis and B. cereus (Lombardia et al., 2006). Moreover, since the

pathway tree places B. licheniformis close to B. subtilis and B. cereus in the same clade,

we predict that it possesses a LuxS/Lsr-like system as well.

4.4 Discussion

In this work, we propose a probabilistic model of pathway evolution that is tuned

to published genomic and pathway data from almost a hundred lineages of bacteria and

archaea. The model is tractable with gene presence or absence defining the pathway state,

and canonical interactions indicating the static dependence between the co-evolving genes.

We apply this model to estimate the phylogeny of several conserved pathways in metabolism,

stress response, and intercellular communication. Our model is both flexible and applicable

beyond phylogenetic estimation. If the true pathway phylogeny was known, our model

could be used to test evolutionary hypotheses about the dependence constraints on pathway

evolution. Also, the general k-character co-evolution model can be used in an entirely

different setting to make testable predictions. For example, it could be adapted to study

co-evolution of domain content in a protein, and used with an inference procedure to make

function predictions. This would be a refined version of SIFTER (Engelhardt et al., 2005), a

Bayesian phylogenomic model for function prediction. The refinement comes from imposing

strong dependence between the evolving domains throughout evolutionary time, instead of

just during ancestral branching points as done in SIFTER.

Although tree topology is currently not resolved among a group of species with the

same gene content, it could be resolved using sequence information, as follows. A rooted

phylogeny is first estimated for each such group of collapsed species SL at a leaf L by

choosing an outgroup species that contains as many of the genes present in SL as possible.

This can be done by a combined analysis (Yang, 1996, mixed data model) that uses sequence

data of all pathway genes common to SL and the outgroup. The original estimated tree

is then refined by attaching at leaf L the rooted phylogeny between the SL species. This
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technique of reconstructing phylogenies by incorporating events at different spatial and

temporal scales (i.e., “macro”-level events such as gain/loss of genes and “micro”-level events

such as nucleotide sequence mutations) is similar to previously described techniques (Durand

et al., 2005).

One limitation of our model is its exponential dependence on the number of genes k.

Large k are needed to properly resolve the evolutionary relationship between the pathway

in different species. To circumvent this partially, sequence information could be incorpo-

rated as discussed above to resolve collapsed branches caused by identical gene content.

Nevertheless, allowing large k would be preferable. One solution would be to decompose

the pathway into small (k ≤ 13) independent sub-pathways. Another solution would be

to exploit the sparsity of R by using Taylor’s expansion of matrix exponentials, and it

might permit k ≤ 18, for example. To handle even larger k, basic changes in modeling are

required. One approach to pursue would be to use a discrete time approximation of the

continuous time Markov chain in our model, and exploit the dependence structure of the

resultant discrete time model. Another approach would be to compromise and use mod-

els similar to phylo-HMMs (Siepel and Haussler, 2004) that allow only weak dependency

between characters or sites by only allowing correlations between rates. Modeling strong

dependence between large-scale number of characters or sites remains an active open area

of research (Pedersen and Jensen, 2001; Robinson et al., 2003).

We have focused mainly on pathways in closely related bacterial species, which makes

our assumption of a static dependence structure between evolving nodes more justifiable

than in the case of distantly related species. It also simplifies our task of establishing one-to-

one correspondences between pathway nodes in different species; these pathway alignments

are inputs to the model. But we note that our pathway alignment method (described in

Supplemental Text B) is not free of caveats even across closely related species (see Sec-

tion 4.2.1; for example, alignment errors could result from not explicitly handling domain

shuffling and fusion/fission events). For the case of distantly related species, our method

works conceptually. Still, over large evolutionary times, gene duplication and other mu-

tation events might lead to radical changes in pathway structure. This makes pathway
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alignment difficult, and also prevents the evolutionary model from being faithful to the

structural changes. Although the problem of simultaneously studying pathway alignment

and evolution has been tackled by combinatorial graph-based algorithms (Heymans and

Singh, 2003), it has not been handled by tractable probabilistic models.

We present results on microbial pathways, for which there is a wealth of genetic and

genomic data. Our results show that a pathway phylogeny can provide a concise depiction

of disparate events in the evolution of a pathway, and that studying discrepancies between

gene sequence data, pathway phylogeny, and phenotype data is an effective way to infer

pathway-wide evolutionary hypotheses. Traditionally, gene sequences are used to study

phylogeny, and ecological methods are used to study how selection (adaptation) acts on

phenotype. Building and analysing pathway phylogenies provides a bridge between these

two methods, because pathways are associated with specific cellular phenotypes but can

also be viewed as coherently evolving unit of genes and interactions.
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Chapter 5

Future Work

We presented new computational methods for the interrelated problems of alignment

and phylogeny of biological networks. We applied the methods to study cross-species con-

servation of protein interaction networks, and evolution of bacterial and archaeal pathways

involved in cellular metabolism and signaling. As highlighted in Section 1.4, this thesis sig-

nificantly advances existing methodologies: the Match-and-Split graph-matching algorithm

has provable guarantees unlike earlier heuristic approaches, and our probabilistic model with

explicit assumptions about pathway evolution is in contrast to discrete similarity based ap-

proaches to estimate pathway phylogenies. The previous chapters described at length the

design of our methods, their application on cross-species sequence and interaction data, and

interpretation of the results. This chapter concludes with the research problems and future

areas that the thesis opens up.

The computational problems to compare graphs in Chapter 3 could be extended in

several directions. The extensions would increase the applicability of graph matching not

just in the field of biological network comparison, but also in other fields such as computer

vision.

• The Match-and-Split algorithm is provably efficient for a family of local matching and

connectivity criteria, and expanding this family to obtain a more versatile algorithm

results in many interesting open questions. For example, extending the problem from
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monotone local matching criterion to a non-monotone criterion makes it NP-hard, and

the existence of approximation algorithms remains open. Another problem which is

similarly NP-hard and whose approximability is unknown concerns the search for the

largest connected and matched subgraph pair between two input graphs. A subgraph

pair is matched if there exists a bipartite matching between the nodes in the two

subgraphs over the node similarity edges. Note that similar subgraph pairs returned

by Match-and-Split could exhibit many-many node similarity relations, and need not

be matched in general.

• Most of graph matching focuses on finding similar subgraphs between input graphs.

Searching instead for dissimilar subgraphs between graphs is informative too and

opens up new directions in comparison of cross-tissue or cross-condition (disease vs.

healthy) interaction networks. If we assume some similarity relationship between

nodes in the input graphs, then we can define dissimilar subgraphs, one from each

input graph, as subgraphs over related set of nodes but exhibiting different edge

densities or dissimilar interaction patterns between the input graphs.

• Another direction is to search for algorithms with better running time guarantees than

the Match-and-Split algorithm for some commonly used local matching criterion. For

instance, it is open if the recursive Match-and-Split algorithm could be made recursion-

less and more efficient for the 1-similar paths criterion.

Modeling pathway evolution along a phylogeny is a nascent research area with many

open questions too. We mention here a few future directions of our pathway phylogeny

work of Chapter 4 (see also Section 4.4).

• Modeling strong dependence (co-evolution) between large-scale number of characters

or sites remains active and open (Pedersen and Jensen, 2001; Robinson et al., 2003).

This would address a limitation of our model viz., its exponential dependence on the

number of genes k.

• Our results indicate discrepancies between pathway trees and accepted sequence-based

species trees. Statistical significance of such discrepancies could be measured against
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a null model of discrepancies that arise purely from noise in the input data (e.g. due to

small sample size) or in the tree reconstruction procedure. Development of statistical

tests that measure this significance could reliably inform us about environmental

niches that adapt certain pathways faster than sequences of universal protein families

over evolutionary time.

• Testable predictions of cellular phenotypes could benefit from pathway evolution mod-

els. As an example, we could model the presence or absence of a pathway-related

phenotype along with the pathway gene content using our co-evolution model, and

use it with a pathway phylogeny and phenotypic data available for some species to

predict the phenotype in other species.

• Obtaining accurate gene content of a pathway is a problem orthologonal to but im-

portant for the accurate reconstruction of the pathway phylogeny. In future, we would

explore more systematic alternatives such as phylogenomic analysis (Eisen, 1998) to

our current orthology finding method based on a reciprocal best hits criterion (Section

4.2.1).

The computational framework in this thesis could be extended to study a largely un-

charted research area concerning the evolution of transcriptional regulation. Regulation of

a set of genes is as important as the biochemical functions the genes code for, and increas-

ing evidence suggests that variation in regulatory sequences in the genome, besides coding

sequences, are major contributors of phenotypic evolution (Wray et al., 2003). This thesis

presented cross-species analysis of biological networks that mostly capture the function of a

set of genes (i.e., protein interaction, metabolic or signaling networks), however our flexible

algorithm framework could potentially be extended to compare networks of gene regulatory

interactions inferred from expression data. Gene regulatory networks are useful platforms to

examine the evolution of transcriptional regulation (Hinman et al., 2003), since they provide

a causal, mechanistic representation of the regulatory programs encoded in the genome.
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Appendix A

Supplemental Text for Protein

Network Comparison

We support the main text in Chapter 3 here by providing additional results and analyses.

A Supplemental website (http://www.cs.berkeley.edu/~nmani/M-and-S/) has a freely

available implementation of our Match-and-Split method. The Supplemental website also

collects some conserved modules detected in our experiments, and associated functional

descriptions and predictions.

Software for the previous methods we tested are from (http://www.cs.tau.ac.

il/~roded/networkblast.htm) for NetworkBLAST and (http://www.cs.purdue.edu/

homes/koyuturk/mawish/) for MaWISh.

A.1 Supplemental Tables
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Method Yeast-Human Yeast-Fly Yeast-Worm

# Sens. Spec. # Sens. Spec. # Sens. Spec.

Match-and-Split

(p=1) 75 18.2 48.0 25 6.8 28.0 7 2.3 71.4

(p=2) 71 20.5 43.7 23 6.8 21.7 6 2.3 83.3

NetworkBLAST 923 28.0 18.9 158 7.6 46.8 9 1.5 88.9

MaWISh 169 17.4 46.8 48 6.1 35.4 8 2.3 75.0

Table A.1. Evaluation of output candidates from two-species comparisons using sim(·, ·)
function based on criterion B. The results in other tables are based on criterion A. We
use similar format as Table 3.1, but showing only module-level sensitivity and specificity
expressed as rounded percentages. The “#” column shows the number of output modules.

Method # candidates % homogeneous % similar

Yeast Human

Match-and-Split

(p=1) 80 100 83.8 42.5

(p=2) 72 98.6 80.6 40.3

NetworkBLAST 421 88.6 66.5 30.2

MaWISh 151 95.4 86.1 39.7

Table A.2. Percentage of output candidates from yeast-human comparison that are func-
tionally homogeneous and similar (with respect to GO, as defined in Section 3.1.4). A
higher percent (especially “% similar”) suggests more candidates are likely to be conserved
functional modules than spurious matches. The table thus provides informal specificity
measures of the candidates using known GO annotations.

Method # valid predictions # total predictions

Match-and-Split

(p=1) 295 462

(p=2) 297 459

NetworkBLAST 400 718

MaWISh 249 419

Table A.3. Validation of functional prediction of human proteins. The predictions result
from annotation transfer on the output candidates from yeast-human comparison (see Sec-
tion 3.2.4). The maximum number of predictions possible is 1882, as only 1882 of the 7355
proteins in the human network are sequence-similar to some protein in the yeast network
(by the sim(·, ·) function).
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A.2 Betweenness Clustering Heuristic

Our network comparison method incorporates a betweenness clustering heuristic to

split large solutions (as seen in Section 3.1.3). We briefly describe this clustering procedure

here. The procedure, taken from (Girvan and Newman, 2002), partitions a graph into

highly-connected, smaller clusters based on iterative computations of an edge betweenness

measure.

Consider all shortest paths between all node pairs in a graph, and assign the possi-

bly multiple shortest paths between each node pair to equal weights summing to 1. The

betweenness measure of an edge is then the sum of weights of these shortest paths that

pass through the edge (see (Girvan and Newman, 2002) for other similar measures). The

betweenness of all edges in a graph can be computed in O(nm) time (Girvan and Newman,

2002), where n, m are the number of nodes, edges respectively in the graph.

The clustering procedure computes the betweenness measure of all edges in the graph,

removes the edge with the maximum betweenness, and repeats these two steps iteratively on

the reduced graph. We stop the procedure when the size of the largest connected component

in the reduced graph becomes at most nmax (the same threshold as in Section 3.1.3). Each

connected component of the final reduced graph defines a cluster of the input graph. We

use the Boost Graph Library’s (Siek et al., 2002) implementation of this procedure.

The above procedure recomputes the edge betweenness measures after every edge re-

moval, so it performs m iterations in the worst case with each taking O(nm) time. A

quicker version could recompute only when the number of connected components in the

reduced graph increases by one. This version is a work-around to cluster large graphs over

thousands of nodes, and is used in one of our experiments (see Table 3.5).

A.3 Statistical Significance - Analytical Bound

We discuss the statistical significance of our simple scoring measure here. Specifically,

we upper bound the P-value of the score of a candidate under a null model that randomizes
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the input data. Recall from Section 3.1.3 that the score of a candidate conserved module

S ⊆ G, T ⊆ H, where G, H are the input protein networks, is the number of pairs of similar

length-p paths between them.

We first specify how the null model randomizes the edges of G to obtain a random graph

G̃ over the same set of nodes (the case of H, H̃ is similar). Independently assign an edge

between every node pair u, v in G̃ with probability d(u)d(v)
2mG

, where d(x) refers to the degree

of node x and mG the number of edges in G (see (Berg and Lassig, 2004)). The null model

also randomizes the node similarity function by independently setting sim(u, v) for every

node pair u, v in G̃, H̃ to true with probability pr. Here pr is the fraction of node pairs in

G, H that are similar by the sim(·, ·) function.

Consider the candidate S ⊆ G, T ⊆ H, and let S̃ ⊆ G̃ be the induced subgraph of G̃

over the same set of nodes as S (similarly define T̃ ⊆ H̃). The P-value of this candidate S, T

is then obtained by comparing its score a to the score X of the random counterpart S̃, T̃ .

To simplify calculations, we bound the P-value of score a by E[X]/a, where E[.] stands

for expectation. We compute it as E[X] = E[Q1]E[Q2]Ps. The term Ps ≤ 2pp+1
r is the

probability for a pair of length-p paths from S̃, T̃ to be similar, with the factor 2 accounting

for both orientations of a path. The term E[Q1] is the expected number of length-p paths

in S̃ and we upper bound it next (the bound for E[Q2], the expected number of paths in

T̃ , is similar). Let the nodes in S̃ be numbered 1, 2, . . . , n and let d(x),mG of G be defined

as above. Then,

E[Q1] =
1
2

∑
1≤i1 6=i2... 6=ip+1≤n

P [(i1, i2) is edge]P [(i2, i3) is edge] . . . P [(ip, ip+1) is edge]

=
1
2

∑
1≤i1 6=i2... 6=ip+1≤n

d(i1)d(i2)
2mG

d(i2)d(i3)
2mG

. . .
d(ip)d(ip+1)

2mG

≤ (p + 1)!
2 (2mG)p

∑
1≤i1<i2...<ip+1≤n

d(i1)2d(i2)2d(i3)2 . . . d(ip+1)2

We compute the summation above, denoted S[p + 1, n], in O(np) time using the recurrence

S[l, k] = S[l, k−1]+d(k)2 S[l−1, k−1] (similar to the recurrence in (Stitson et al., 1999)).

To incorporate the edge reliabilities of noisy protein interactions, we use the expected
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score E[a] instead of the score a in the P-value bound above. We can readily compute

E[a] because each pair of similar paths between S, T , which contributes one to the score a,

contributes the product of their edge reliabilities to E[a].
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Appendix B

Supplemental Text for Pathway

Phylogeny Estimation

We support the main text in Chapter 4 by providing details on the input data and

related analyses.

B.1 Input Data for Microbial Pathways

To build phylogenetic profiles of genes in pathways, we use 9 genes (11 interactions) in

glycolysis, 12 genes (16 interactions) in the citric acid cycle, 13 genes (18 interactions) in

chemotaxis, and 28 genes (28 interactions) in quorum sensing. The genes and interactions

in a pathway are shown alongside the pathway phylogeny in the figures of Chapter 4.

The exact sequence identifiers of these pathway genes are available too (M. Narayanan,

AH. Singh, RM. Karp, manuscript under preparation). The genes in a pathway are chosen

after extensive literature search for experimental evidence (genetic, biochemical, or high-

throughput expression data) linking each gene to the pathway in model organisms. We use

the model organisms E. coli for glycolysis and citric acid cycle, B. subtilis and E. coli for

chemotaxis, and V. harveyi, B. subtilis, and A. tumefaciens for quorum sensing.

DNA and amino acid sequences for all genes were retrieved from the MicrobesOn-
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line database (Alm et al., 2005) on 3 Aug 2006 and their orthologs identified by a 3-way

bi-directional best hit algorithm as previously described (Tatusov et al., 1997), with the

additional constraint that the sequence alignment coverage had to be at least 75% of the

length of both genes. For phylogenetic profiles, a species was marked as having a gene if it

had at least one ortholog, but possibly also multiple paralogs, of the gene. Ortholog sets

for transcriptional regulators and histidine kinases, which are known to have highly con-

served domains (Aravind et al., 1999; Grebe and Stock, 1999), were manually curated to

remove spurious hits by examining the phylogenetic tree for each ortholog set. Nucleotide

and amino acid alignments were performed using Muscle (Edgar, 2004) with maxiters=3

and diags=1 (paralogs were discarded before the alignment step). Phylogenetic trees were

built from aligned amino acid sequences using PHYML (Guindon and Gascuel, 2003) with

default optimization parameters and 100 bootstrap replicates.
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