
Generic Programming and Proving for Programming
Language Metatheory

Adam Chlipala

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-147

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-147.html

December 11, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Generic Programming and Proving for Programming Language
Metatheory ∗

Adam Chlipala
University of California, Berkeley

adamc@cs.berkeley.edu

Abstract
We present a system for both the generic programming of opera-
tions that work over classes of tree-structured data types and the
automatic generation of formal type-theoretical proofs about such
operations. The system is implemented in the Coq proof assistant,
using dependent types to validate code and proof generation stat-
ically, quantified over all possible input data types. We focus on
generic programming of variable-manipulating operations, such as
substitution and free variable set calculation, over abstract syntax
tree types implemented as GADTs that combine syntax and typ-
ing rules. By accompanying these operations with generic lemmas
about their interactions, we significantly ease the burden of for-
malizing programming language metatheory. Our implementation
strategy, based on proof by reflection, requires users to trust none
of its associated code to be able to trust in the validity of theorems
derived with it.

1. Introduction
Idiomatic functional programs use a variety of different types of
tree-structured data. For instance, we commonly encounter the type
of lists, where each list is either the empty list [] or a new element
concatenated onto the beginning of a list with the binary :: operator.
Tree-structured data is easy to analyze with recursively-defined
functions, as in this definition of a function sizeL to calculate the
number of “operations” required to construct a list:

sizeL [] = 1

sizeL (:: t) = 1 + sizeL t

We can define a similar function for binary trees, built using the
two constructors Leaf and Node.

sizeT (Leaf) = 1

sizeT (Node t1 t2) = 1 + sizeT t1 + sizeT t2

The pattern extends to the abstract syntax trees of a small lan-
guage of arithmetic expressions:

sizeE (Const) = 1

sizeE (Neg e) = 1 + sizeE e

sizeE (Plus e1 e2) = 1 + sizeE e1 + sizeE e2

While the definitions of these functions are necessarily partic-
ular to the data types on which they operate, we see a common
pattern among these examples. The types we are working with are
all algebraic datatypes as supported in the popular functional pro-
gramming languages Haskell and ML. There is a generic recipe for

∗ This research was supported in part by a National Defense Science and Engineering
Graduate Fellowship, as well as National Science Foundation grants CCF-0524784
and CCR-0326577.

reading off one of these function definitions from the description
of any algebraic datatype: for each constructor of the datatype, we
include a case that adds one to the sum of the function’s recursive
values on the immediate arguments of that constructor.

Now imagine that we want to extend our last code example to
deal with the abstract syntax of a full, industrial-strength program-
ming language. We find ourselves stuck with the mindless work of
applying the size recipe manually for every construct of the lan-
guage we are implementing. Even worse, there are at least sev-
eral other such generic functions that often appear in compilers and
other language-manipulating tools.

Even outside of functional programming and programming lan-
guage implementation, we find similar problems in the manipula-
tion of structured XML data. Must we really accept the software en-
gineering nightmare that comes from continual manual effort keep-
ing generic functions in sync with the data types that they manipu-
late? Luckily, the answer is no, as the field of generic programming
suggests many usable approaches to writing code that is polymor-
phic in the structure of data types.

One of the most popular of these approaches today is the scrap
your boilerplate (SYB) family of techniques [LP03, LP04], which
has the advantage of being usable in popular Haskell compilers
with no new language extensions. SYB achieves genericity through
a combination of ad-hoc code generation at compile time and “un-
safe” type coercions at run time. The result integrates spectacularly
well with existing practical programming environments. The ne-
cessity for type coercions remains as a skeleton in the family closet
whose face we never expect to see in practice.

Unfortunately, there is one sort of activity guaranteed to shine
the light of day upon the dark secrets inherent in any programming
technique, and that is formal verification. In mechanized program-
ming language metatheory of the kind highlighted recently by the
POPLmark Challenge [ABF+05], we set out to write proofs about
programs and programming languages that are rigorous enough to
convince a mechanical proof checker. What happens when we want
to prove the correctness of the compiler we implement with one of
today’s popular generic programming approaches? Unchecked type
coercions and formal mathematical modeling tend not to mix very
well.

We also find ourselves looking for a new category of function-
ality: generic proofs about our generic programs. A study of the so-
lutions submitted for the POPLmark Challenge’s first benchmark
problem [ACPW08] provides some statistics on the composition
of formal developments. Examining the solutions to just the first
step of the challenge problem, the authors find that none of the 7
submissions that use the Coq proof assistant achieves the task with-
out proving at least 22 auxiliary lemmas. In contrast, the reference
“pencil and paper” solution included with the problem description
introduces only 2 such lemmas. The remaining facts are taken to be
so obvious that all practicing programming language researchers

1

will accept them without proof or even explicit statement as theo-
rems.

While the benefits of computer formalization of proofs about
programming languages are widely accepted, most people writing
proofs find that today’s computer theorem proving tools make it
more trouble than it is worth to take this extra step. One manifesta-
tion of the difficulties is the need to prove the generic and “obvious”
lemmas that we alluded to above. In this paper, we present a tool
for building some of these proofs automatically, freeing the human
prover to focus on “the interesting parts.”

We introduced this system in a previous paper [Chl07] about a
compiler from lambda calculus to assembly language, implemented
in Coq with a proof of total correctness. There, we devoted less
than a page to it, summarizing how a user of the tool sees it. In this
paper, we present the implementation of this tool, which we call the
AutoSyntax component of the Lambda Tamer system for language
formalization. We also generalize some aspects of its design to the
broader problem of generic programming.

1.1 Outline
In the next section, we present related work in generic program-
ming and situate our new contribution within it. Following that, we
introduce the relevant aspects of Coq’s underlying programming
language. Next, we present our technique for the case of simply-
typed algebraic datatypes. With the foundation laid, we summarize
our approach to formalizing programming languages using depen-
dent types, demonstrate the difficulties with constructing support
code and proofs manually, and show how to adapt our generic pro-
gramming and proving approach to lifting that burden.

The final implementation sketched in this paper is available in
full on the Web at:

http://ltamer.sourceforge.net/

We have changed some details in this paper for clarity, but the basic
structure is the same.

2. Related Work
In dynamically-typed languages like those in the Lisp family, sim-
ple reflective capabilities make it clear how to write generic func-
tions, but the lack of static validation can make it difficult to get
their implementations right. Approaches exist [LV02] for statically-
typed languages that convert to untyped form and back around
generic function invocations, but they retain most of the same defi-
ciency.

Several language designs exist that embody polytypic program-
ming [JJ97, Hin00], where functions can be defined over the struc-
ture of types. Derivable type classes [HP00] is a polytypic program-
ming extension to Haskell, designed to tackle the practical issues of
extending a production language. These systems are not designed to
support theorem proving. The Generic and Indexed Programming
project [GWdSO07] is engaged in bridging some of that gap.

Recent tools designed to work with out-of-the-box Haskell
(with GHC extensions) include Scrap Your Boilerplate [LP03,
LP04] and RepLib [Wei06]. RepLib in particular uses reflected
type representations very similar to ours. Both approaches benefit
from easy integration with a standard programming language, but,
because of Haskell’s relatively weak type system, they must resort
to unsafe type casts in their implementations. Both support mixing
generic function implementations that are read off directly from
type structure with custom implementations for particular types.
Again, neither handles generic proving.

There is a significant body of work on implementing generic
programming and proving in type theory using universe types.
Here, the idea is to define reflected representations of type structure
that can be manipulated programmatically. The popular dependent

Variables x
Naturals n ∈ N

Terms E ::= x | E E | λx : E. E | ∀x : E. E | Typen

Figure 1. Syntax of CoC

type theories are expressive enough to allow us to use type check-
ing to validate operations over the values of well-chosen universe
types. A nice consequence of this is that we do not need to trust
in the correct implementation of our generic programs and proofs.
Some out-of-band mechanism is used to translate “real” types into
their reflected representations, but the result of this process is only
a hint, so it need not be trusted, either.

Work in this vein includes that by Altenkirch and McBride [AM03],
which considers an approach reminiscent of what we present in
Section 4 (minus the generic proving) for the OLEG proof assistant.
Pfeifer and Rueß [PR99] and Benke et al. [BDJ03] go further and
add (in different ways) rudimentary generic proving to the same
general program for LEGO and Agda, respectively. Recent work
on inductive-recursive definitions [DS06] facilitates more natural
definitions of universe types, using an encoding in the spirit of
higher-order abstract syntax. Morris et al. [MAG07] provide a very
general universe type for the strictly positive inductive families and
use it to implement generic programming support in Epigram.

This body of work deals with classes of datatypes in general,
limited only by the demands of encoding them in type theory. We
build on this work and specialize it to the domain of program-
ming language metatheory, where we have interesting generic op-
erations that do not make sense over datatypes in general. Our
system AutoSyntax is specialized to our language representation
approach, which fixes the de Bruijn convention for variables. It
could be adapted to alternate first-order choices, including those
based on nominal logic [UT05]. Higher-order abstract syntax
(HOAS) [PE88] is a completely different variable representation
technique that uses the variables of the meta language to stand for
the variables of the object language. Thus, notions like substitution
and weakening are inherited “for free” from the meta language.
HOAS is incompatible with CIC, but some generalization of our
approach may still be possible to facilitate different kinds of generic
programming and proving. We note that it may be worth the pain of
explicit variable management to retain Coq’s support for statically-
validated manipulation of first-class meta-proofs.

We introduced AutoSyntax in one page of previous work [Chl07].
In the current paper, we present the implementation details for the
first time, including type theoretic encoding techniques and generic
proof sketches.

3. Background: The Calculus of Inductive
Constructions

The Coq proof assistant [BC04] is a type-theoretical theorem
proving and certified programming tool based on an underlying
logic/programming language, the Calculus of Inductive Construc-
tions (CIC). CIC is a logic because it can be used to state approxi-
mately all theorems and express approximately all proofs that show
up in mathematics. CIC is a programming language because it is a
typed lambda calculus that can be used to write certified programs,
using the language’s mathematical capabilities to express strong
specifications through typing. As Coq is a mature tool for theorem
proving and certified program construction, we chose to use it to
implement AutoSyntax.

In this section, we give an overview of CIC, starting with its
simpler subset, the Calculus of Constructions (CoC). Figure 1
presents the abstract syntax of CoC. We can recognize the elements

2

Γ(x) = E

Γ ` x : E

Γ ` E1 : (∀x : Edom. Eran) Γ ` E2 : Edom

Γ ` E1 E2 : Eran[x 7→ E2]

Γ ` Edom : Typen Γ, x : Edom ` E : Eran

Γ ` (λx : Edom. E) : (∀x : Edom. Eran)

Γ ` Edom : Typen Γ, x : Edom ` Eran : Typen

Γ ` (∀x : Edom. Eran) : Typen

Γ ` Typen : Typen+1

Γ ` E : Typen

Γ ` E : Typen+1

Γ ` E1 : E′2 E′2 ≡ E2

Γ ` E1 : E2

Figure 2. Typing rules for CoC

(λx : Edom. E1) E2 ≡ E1[x 7→ E2]

E1 ≡ E′1 E2 ≡ E′2
E1 E2 ≡ E′1 E′2

E1 ≡ E′1 E2 ≡ E′2
λx : E1. E2 ≡ λx : E′1. E

′
2

E1 ≡ E′1 E2 ≡ E′2
∀x : E1. E2 ≡ ∀x : E′1. E

′
2

E ≡ E
E′ ≡ E
E ≡ E′

E ≡ E′ E′ ≡ E′′

E ≡ E′′

Figure 3. Definitional equality rules for CoC

of the simply-typed lambda calculus and System F, but CoC has
an important difference from these systems. “Terms” and “types”
are collapsed into a single syntactic class. Thus, alongside vari-
ables and function abstraction and application, we find the function
type form ∀x : E1. E2, denoting a function with domain E1 and
range E2. This is a dependent function type because the variable
x is bound in E2 to the value of the function argument. We write
E1 → E2 as a shorthand for ∀x : E1. E2 when x is not free in E2.

Figure 2 gives the complete set of typing rules for CoC. The
most interesting part of Figure 2 is the last rule, which says that
if two terms are definitionally equal, then, when considered as
types, they describe the same set of terms. Figure 3 presents the
definitional equality relation≡, an equivalence relation that models
usual computational reduction rules. A crucial property of this
definition of ≡ is that it is decidable when restricted to well-
typed terms. Here we see a standard property of dependently-typed
languages like CoC: each of the static and dynamic semantics
depends on the other in a key way.

We also have terms Typen denoting different levels in an infi-
nite type hierarchy. Figure 2 shows that any Typen has type Typem

for anym > n. That is, types themselves are first-class entities that
are classified by other types. Because of this, we do not need sepa-
rate constructs for normal functions and parametric polymorphism,
as in System F. Rather, we can write System F-style terms using
CoC restricted to using only type level 0 in our definitions. For in-

stance, λτ : Type0. λx : τ. x is the polymorphic identity function
and has type ∀τ : Type0. τ → τ .

Readers accustomed to System F may be growing irritated at the
necessity to calculate the right Type indices to include in various
places. System F supports impredicative type quantification, where
quantified types may be instantiated with themselves. Type indices
in CoC as presented here forbid such circularities. There is an
impredicative variant of CIC that may be turned on in Coq by way
of a command-line flag, and, in fact, even the standard language
supports a special impredicative sort for logical propositions. We
stick to the completely predicative version here for simplicity of
exposition.

3.1 Inductive Types
If we are just concerned with “programming” of the traditional
kind, then CoC is quite sufficient for encoding a wide variety of
features, following the standard trick of “encoding types with their
polymorphic elimination forms.” However, we run into trouble
when we attempt to use the same system to encode formal proofs
about these programs, let alone proof-manipulating, dependently-
typed programs of the kinds that will appear later. Basic properties
of data structures turn out unprovable, and we encounter algorith-
mic inefficiencies with encoding schemes that try to fit so many
features into so simple a base language. Additionally, it sometimes
turns out that the natural encodings of data types are inhabited by
more terms than we expected them to be. For these reasons, Coq
was enriched with special support for what are called inductive
types [PM93], a very general type definition mechanism that can
be used to define all of the standard data types and logical con-
nectives. The enhanced logic is called the Calculus of Inductive
Constructions (CIC).

Rather than provide an exhaustive formalization, we will demon-
strate inductive types by example, relating the examples to the for-
malization of CoC.

Inductive types subsume the algebraic datatypes found in sub-
sets of Haskell and ML that disallow infinite data structures and
non-terminating programs, as demonstrated by this definition of the
natural numbers:

Inductive nat : Type0 :=
| O : nat
| S : nat→ nat

We define a type named nat at type level 0 by describing how its
values may be built. Its two constructors are O, the natural number
0; and S, the function from a natural number to its successor. Thus,
the natural numbers are denoted O, S O, S (S O), etc..

We can perform pattern matching on nats:

pred = λx : nat. match x with

| O⇒ O

| S n⇒ n

...and we can write recursive functions over them:

plus = fix f (n : nat) : nat→ nat. match n with

| O⇒ λn′ : nat. n′

| S n⇒ λn′ : nat. S (f n n′)

Coq enforces that every recursive call in one of these fix expres-
sions passes a recursive argument that is a syntactic subterm of the
current argument. This retains the important property of CoC that
every program “terminates” in a suitable sense, allowing us to keep
the relation ≡ decidable and preclude such tricks as presenting an
infinite loop as a “proof” of any proposition.

3

We can also define parameterized inductive types, such as lists:

Inductive list (T : Type0) : Type0 :=
| nil : list T
| cons : T → list T → list T

...and write recursive functions over them:

length = fix f (T : Type0) (` : list T) : nat. match ` with

| nil⇒ O

| cons `′ ⇒ S (f T `′)

Inductive types also generalize the generalized algebraic datatypes
(GADTs) [She04] that have recently crept into reasonably wide use
through a popular extension to Haskell. For example, consider this
definition of a list-like type family indexed by natural numbers
providing strict bounds on list lengths.

Inductive listN (T : Type0) : nat→ Type0 :=
| nilN : listN T O
| consN : ∀n : nat. T → listN T n→ listN T (S n)

The only value of listN T O is the nil list, every value of
listN T (S O) is a one-element list, etc.. In contrast to the case
of GADTs, where all parameters of the type being defined must be
types, inductive types allow arbitrary “term-level” data to appear
in type indices. This lets us use the types of functions to be much
more specific about their behavior than in traditional programming:

countdown = fix f (n : nat) : listN nat n. match n with

| O⇒ nilN nat

| S n′ ⇒ consN nat n′ n (f n′)

Actual Coq code must be a bit more verbose about this, with
extra type annotations to make type inference tractable. However,
we will omit those details in this paper in the interest of clarity.

We can also take advantage of the possibility to create data
structures that contain types. Here is an example of defining the
type of lists of types, followed by the type family of tuples whose
component types are read off from particular type lists.

Inductive listT : Type1 :=
| nilT : listT
| consT : Type0 → listT→ listT

Inductive tuple : listT→ Type2 :=
| Nil : tuple nilT
| Cons : ∀T : Type0. ∀` : listT.
T → tuple `→ tuple (consT T `)

As an example, one value with type tuple (consT nat (consT (nat→
nat) nilT)) is Cons nat (consT (nat→ nat) nilT) O (Cons (nat→
nat) nilT (λx : nat. x) Nil). Coq supports an implicit argu-
ment facility that lets us write this term as Cons O (Cons (λx :
nat. x) Nil). Though we will not explain the details of implicit
arguments here, we will trust in the reader’s intuition as we freely
omit inferable arguments in the following discussion.

Note that both inductive type families that we define here exist
at type levels above 0. The rule in effect here is that an inductive
type must live at at least type level n+ 1 if one of its constructors’
types itself has type Typen+1 but not type Typen. The intuition
is that inductive definitions end up at higher type levels as they
employ more sophisticated uses of “types as data.” In actual Coq
code, Type indices are inferred automatically, and the user only
needs to worry about them when the Coq system determines that
no feasible solution exists to an induced set of constraints on index
variables. Following that discipline, we will use Type unadorned in
the remainder of this paper.

3.2 Proof by Reflection
The definitional equality≡ has no counterpart in the type-checking
of mainstream programming languages. With the addition of induc-
tive types in CIC, ≡ grows to include rules for simplifying pattern
matching and recursive function application. The CIC type-checker
will now interpret quite complex programs in the course of validat-
ing larger programs that use them as types. Why is it worth design-
ing a language with this variety of “busy types”?

One compelling answer comes from the technique of proof by
reflection [Bou97], which is related to the idea of universes intro-
duced by Martin-Löf [ML84]. It is a subtle approach to efficient
encoding of proofs, best introduced by example. Let us consider
families of proofs for this (tautological) class of formulas:

F ::= True | F ∧ F

The Coq proof terms for this class are natural deduction-style
proof trees that mirror the structure of the formulas themselves.
Since any general sort of type inference is undecidable for CIC, the
forms in which these proof trees are stored contain many “redun-
dant” type annotations, leading to representation sizes superlinear
in the sizes of the original formulas. This seems a harsh price when
we could just write down an algorithm for generating a formula’s
proof from its structure. When asked to prove a formula in F , why
not just say “run this algorithm and see for yourself”? In fact, proof
by reflection allows us to do more or less that.

We want to build a trivial “decision procedure” for F . In this
case, it should always answer “the formula is true,” but the in-
teresting catch is that the procedure must be proof-producing. To
make the proof by reflection idiom work, the procedure must be
implemented in CIC. When we use the right dependent typing, this
amounts to proving the correctness of the procedure.

Following this path, we run into a block early on. In Coq, gen-
eral logical formulas are represented in Type. Type is open, be-
cause new inductive definitions (modeling new logical connectives,
etc.) may add new ways of building Types. Thus, CIC provides
no way of pattern matching on Types. We cannot write a function
that deconstructs formulas programmatically, so how can our im-
plementation possibly know which proof to build?

The trick that we use instead is the source of the description
“reflection.” It is related to “reflection” in popular managed object-
oriented languages like Java and C#, where it is possible to obtain
a runtime “data level” view of type information. In our case, we
define a data structure for describing precisely the subset of Types
that interests us.

Inductive F : Type :=
| F True : F
| F And : F→ F→ F

Along with an injection into the original domain of interest:

interp = fix f (x : F) : Type. match x with

| F True⇒ True

| F And x1 x2 ⇒ f(x1) ∧ f(x2)

Now we can write a prover for this class of formulas:

prove : ∀x : F. interp x

Now, for example, with

x = F And F True (F And F True F True)

we have ` prove x : True ∧ (True ∧ True).
In type-checking this expression, Coq uses the definitional

equality ≡ to simplify interp x to True ∧ (True ∧ True). We
could never use the same technique to prove, for instance, false-
hood, because that formula is not in the range of interp. Using the

4

definitional equality further to simplify prove x, we arrive at ex-
actly the large proof that we would have constructed manually. The
point is that the proof checker need not perform this simplification.
It can content itself with verifying that this term has the proper
type, not venturing into its innards.

4. Generic Programming and Proving for
Simply-Typed Data Structures

Recall the family of examples from the introduction. We listed a
number of instantiations of a hypothetical generic “size” function.
For instance, for a type of trees of natural numbers, we have:

sizeT (Leaf) = 1

sizeT (Node t1 t2) = 1 + sizeT t1 + sizeT t2

With the additional language constructs introduced since then,
we can give an inductive definition of this data type.

Inductive tree : Type :=
| Leaf : nat→ tree
| Node : tree→ tree→ tree

We want to write a truly generic size function that can be used
with any simply-typed algebraic datatype. We imagine that the
signature of the generic function should look something like:

size : ∀T : inductiveType. T → nat

Unfortunately, Coq provides no special type that categorizes
inductively-defined types, and, even if it did, we would be left with
the challenges of programmatic manipulation of arbitrary datatype
definitions. Not surprisingly, the solution that we propose is based
on the last section’s subject, reflection.

4.1 Reflecting Constructors
What is the essence of an inductive type definition? What reflective
representation should we craft for these definitions? Looking at the
textual form of an inductive definition, it seems a reasonable start
to say that an inductive type is a list of constructors. We can define
a reflected representation of constructors like this:

con = nat× Type

The idea is that each constructor’s list of arguments contains some
number that are recursive, referring to the type that’s being defined.
The nat component of con tells how many recursive arguments the
constructor has, and the Type component describes the remaining
arguments. It will be a tuple type combining them into one package,
or unit (the inductive type whose only value is tt) if all arguments
are recursive. For the tree example, Leaf is reflected as (0, nat),
and Node as (2, unit).

We need to make the interpretation of constructor descriptions
explicit, like we did for our formula type F in the last section.
The definition of the interpretation function interpCon relies on
an auxiliary recursive function repeat that builds a tuple type by
repeating a base type a specified number of times.

repeat = λT : Type. fix f (n : nat) : Type. match n with

| O⇒ unit

| S n′ ⇒ T × f n′

interpCon = λT : Type. λc : con.

repeat T (π1 c)→ π2 c→ T

Now we are almost ready to state our initial reflective represen-
tation of entire inductive definitions. We first need to define two
common inductive types. The first type, sig, is the standard “sigma
type,” or “existential package,” of type theory, taken from the Coq

standard library. The second is a generalization to existential pack-
ages whose first components are lists and whose second compo-
nents are heterogeneous lists, where the type of each component
is determined by applying a fixed function to the element in the
corresponding position of the first list.

Inductive sig (T1 : Type) (T2 : T1 → Type) : Type :=
| ex : ∀x : T1. T2 x→ sig T1 T2

Inductive tupleF (T1 : Type) (T2 : T1 → Type)
: list T1 → Type :=
| NilF : tupleF T1 T2 nil
| ConsF : ∀x : T1. ∀` : list T1.
T2 x→ tupleF T1 T2 `→ tupleF T1 T2 (cons x `)

We abbreviate sig T1 (λx : T1. T2) as Σx : T1. T2, or Σx. T2 in
contexts where T1 is clear. We write 〈x, y〉 as an abbreviation for
ex T1 T2 x y when T1 and T2 are clear from context. We also treat
T1 as an implicit argument of tupleF, abbreviating tupleF T1 T2 `
as tupleF T2 `.

We now define ind : Type→ Type, such that ind T is the type
of a reflected representation of inductively-defined T .

ind = λT : Type. Σ` : list con. tupleF (interpCon T) `

Here is the reflected representation rtree of tree.

clist = [(0, nat), (2, unit)]

cLeaf = λ : unit. λn : nat. Leaf n

cNode = λr : tree× tree× unit. λ : unit. Node (π1 r) (π2 r)

rtree = 〈clist,ConsF cLeaf (ConsF cNode NilF)〉

4.2 Reflecting Recursion Principles
With the definition of ind, we can express the desired type of size
formally.

size : ∀T : Type. ind T → T → nat

We are off to a good start, having replaced the informal quan-
tification over an inductively defined type with a quantification over
any type, plus a piece of “evidence” that it really behaves like an
inductive type. Unfortunately, the evidence contained in an ind is
not yet sufficient to let us write size. The type we have listed for
size is good, but we will have to expand the definition of ind.

With an ind T in hand, we know how to construct values of T ,
but we do not yet know how to deconstruct values of T ; that is, we
are not able to write recursive, pattern-matching functions over T .
We must expand the definition of ind to require the inclusion of a
recursion principle.

First, we define a representation for each arm of the pattern
matching in a recursive definition. conIH T c gives the type of
arms for constructor c of type T , where each is polymorphic in the
range R of the function being defined.

conIH = λT : Type. λc : con. ∀R : Type.

repeat (T ×R) (π1 c)→ π2 c→ R

Say we are defining some recursive function f of type T → R.
The arm of type conIH T c applied to R is given two arguments:
first, the recursive arguments to this particular use of constructor
c, where each argument comes packaged with the result of calling
f on it recursively; and second, the remaining, non-recursive argu-
ments. Such an arm returns something in f ’s range.

Now we can define the representation of recursion principles,
whose job it is to define a recursive function given an arm definition
for each constructor of an inductive type:

rec = λT : Type. λ` : list con.

∀R : Type. tupleF (λc. conIH T c R) `→ (T → R)

5

size tree rtree ≡ (recOf rtree) nat (mapF

(λc : con. λr. λ . foldRepeat

(λv : tree× nat. λn : nat. π2 v + n)

1 r)

(consOf rtree)

≡ (recOf rtree) nat

(ConsF (λ . λ . 1)

(ConsF (λr. λ . π2 (π1 r)

+ π2 (π2 r) + 1) NilF))

≡ fix f (x : tree) : nat. match x with

| Leaf n⇒ 1

| Node t1 t2 ⇒ f t1 + f t2 + 1

Figure 4. Simplifying one application of the generic size function

We can define the recursion principle for tree, overloading the
πi notation to denote the ith projections of tupleFs, not just normal
tuples.

rTree = λR : Type. λA : tupleF (λc. conIH tree c R) clist.

fix f (x : tree) : R. match x with

| Leaf n⇒ (π1 A) R tt n

| Node t1 t2 ⇒ (π2 A) R

((t1, f t1), (t2, f t2), tt) tt

Now we are ready to expand the definition of ind by adding a
rec component.

ind = λT : Type. Σ` : list con.

tupleF (interpCon T) `× rec T `

Define consOf, buildersOf, and recOf as shortcut functions for
extracting the three different pieces of an ind.

We can finally define size. In this and later complicated defini-
tions, we will play a little fast and loose with typing, leaving out
annotations that Coq really is not able to infer. For instance, we use
a function mapF for constructing a tupleF by providing a function
to be applied to every element of a list; it will usually be neces-
sary to specify the relevant dependent typing relationship (parame-
ter T2 of tupleF) explicitly in real code. We also rely on a function
foldRepeat to duplicate the behavior of the traditional list right fold
operator over tuples built with repeat, which can be thought of as
lists of known length. It will also, in practice, require more explicit
arguments than we will give here.

size = λT : Type. λι : ind T.

(recOf ι) nat (mapF

(λc : con. λr. λ . foldRepeat

(λv : T× nat. λn : nat. π2 v + n)

1 r)

(consOf ι))

Now we can examine in Figure 4 the simplification behavior of
size applied to a revised version of the reflected representation rtree
that contains the recursion principle rTree. Modulo some commuta-
tivity of addition, we arrive at exactly the definition that we started
out with! The definitional equality ≡ is sufficient to simplify in-
stantiations of the generic size function into their natural forms.
Thus, we can use the generic and specific versions interchangeably
for type-checking (and proof-checking) purposes.

4.3 Generic Proofs
We could stop at this point were we only interested in solving the
traditional problems of generic programming. However, the express
motivation of this work is to allow the use of generic programs in
concert with formal verification. It is high time that we take a look
at how we may construct proofs about generic functions.

Obviously we can prove facts about specific instantiations of
generic functions in the usual way, as the definitional equality
allows us to reduce these instantiations to standard forms. However,
the real promise of generic techniques in a formal theorem-proving
setting is in automating families of proofs. We want to be able to
prove that certain theorems hold for any instantiations of generic
functions.

Unfortunately, our definition of the ind evidence packages is
not yet sufficient to allow us to prove interesting theorems. We now
know how to construct values, and we know how to deconstruct
them via recursive function definitions, but we do not know any-
thing about the behavior of functions that we build in this way. The
missing ingredient is a standard fixed-point equation decomposing
applications of rec-built functions recursively.

eqn = λT : Type. λ` : list con.

λconstructors : tupleF (interpCon T) `.

λf : rec T `.

∀R : Type. ∀arms : tupleF (λc. conIH T c R) `.

∀c : con. ∀n : nat. πn ` = c →
∀r : repeat T (π1 c). ∀v : π2 c.

f R arms ((πn constructors) r v)

= (πn arms) R
(mapRepeat (λx : T. (x, f R arms x)) r) v

eqn is quite a mouthful. It is defined in terms of T , the type we
are manipulating; `, its list of reflected constructors; constructors,
its actual constructors; and f , its recursion principle. We assert an
equation for any range type R and any recursive function defined
from T toR with pattern-matching arms arms. Give the name F to
the recursive function f R arms. For any constructor c appearing
in position n of `, and any appropriate arguments r and v to the
“real” version of c, we have (informally) that F (c r v) is equal to
the expected expansion based on the proper arm from arms, which
must be described in terms of recursive calls to F with the elements
of r.

Now we have all we need to provide each case of an inductive
proof. However, we lack the final ingredient to tie the cases to-
gether. For the sake of a concrete example, consider the silly mod-
ification of size to size2 by changing every occurrence of 1 to 2, so
that instances of size2 are equivalent to doubling the results of size
instances.

Like for size, for a piece of ind evidence ι, we define size2 by
applying recOf ι with R = nat. Remembering the “propositions
as types” and “proofs as programs” principle, we try to construct
an inductive proof that, for all x, size2 ι x is even. Inductive proofs
are isomorphic to recursive functions, so we expect to be able to
use recOf ι to build the proof.

Which value of R will let us accomplish this? Informally, we
want something like R = isEven (size2 ι x). Of course, this is
invalid, since it contains a free variable x. What we really want is
R = λx : T. isEven (size2 ι x). That is,R is now a predicate over
T ’s, not simply a proposition; alternatively, R is an indexed family
of dependent types. We must modify our definition of rec to support
such families. The original formulation with non-dependent types
will be derivable from this richer version.

6

We start by redefining conIH, the type of a single arm in a re-
cursive definition. We add a new parameter, b, the function for ap-
plying the constructor in question.R’s type is changed as described
above; the type of the argument that includes recursive call results
is changed to use a Σ type to reflect dependence on actual values;
and the final result type uses b to build the actual value that we are
talking about, so that we can apply R to it.

conIH = λT : Type. λc : con. λb : interpCon T c.

∀R : T → Type.

∀r : repeat (Σx : T. R x) (π1 c).

∀v : π2 c. R (b (mapRepeat

(λy : (Σx : T. R x). π1 y) r) v)

Now a simple modification to rec finishes the job. We use a
type family tupleFF which is like tupleF, but is parameterized on
an existing tupleF whose elements may influence the types of the
corresponding elements of the new tuple.

rec = λT : Type. λ` : list con. λb : tupleF (interpCon T) `.

∀R : T → Type. tupleFF

(λc. λb : interpCon T c. conIH T c b R) b

→ (∀x : T. R x)

We also change eqn’s type to take into account rec’s new type.
Though the details are tedious, it is now possible to push

through a generic proof of ∀x, isEven (size2 ι x). We build the
proof using recOf ι with R = λx : T. isEven (size2 ι x). In
each arm of the proof, corresponding to some constructor c, we
start out by using eqn to rewrite the goal, revealing it (after some
simplification with ≡) to be a fold over the number of recursive
arguments that c has. An inner induction on that number of argu-
ments allows us to establish that the sum is even, relying crucially
on the inductive hypotheses coming to us by way of the parameter
r in conIH.

Though the subject of this paper is formal theorem proving, the
above barely deserves to be called a “proof sketch.” However, we
will stick to that level of detail for the next few portions of this pa-
per. Section 6 discusses the real engineering issues of constructing
this kind of proof in Coq.

4.4 A Word on Trusted Code Bases
Writing programs that build programs is a tricky business. It is
very easy to introduce bugs that remain hidden even after very
careful testing. By implementing generic programs in Coq with
rich dependent types, we get the type checker to validate their
basic sanity properties. Modulo bugs in Coq, there is no chance
for an unexpected input to cause a generic program to produce an
ill-typed output. This is already very useful on the examples we
have considered, and it will get even more useful when we move to
generic programs with fancier dependent types that capture more
domain-specific invariants.

Yet the reader may have noticed an obstacle in the way of
achieving completely formal generic programming with our tech-
niques. We presented no formal procedure for constructing ind ev-
idence packages. Indeed, as for reflective proofs in general, these
packages are constructed in an ad-hoc way; in our case, by OCaml
code in a plug-in for Coq. This mirrors the situation for SYB and
similar generic programming techniques, where some basic combi-
nators must be constructed for each type outside of any nice static
type system. We are slightly better off in that regard, because, once
a piece of evidence is created, the code that uses it is free of the
unsafe type casts that appear in the corresponding parts of SYB.

It is worth mentioning another consequence of this split for
formal theorem-proving. It often happens that one wants a certified

program whose specification can be given quite simply without any
nasty boilerplate, but whose implementation calls out for judicious
use of generic programming. Our certified compiler [Chl07] is
one such example. Though the ad-hoc generation of evidence has
no proofs associated with it, it is still not trusted in this kind
of scenario. Any evidence that pleases the type checker leads to
correct code generation, and the type checker will catch faulty
evidence before it can precipitate any invalid proof.

5. A Lightning-Speed Tour of Language
Metatheory using Dependent Types

The basic approach that we present in this paper has applications
to a wide variety of interesting domains that use types to enforce
detailed specifications. As we argued in the introduction, formal-
ization of programming languages and transformations over them
leads to particularly many opportunities to put generic program-
ming and proving to good use. Considering the range of program-
manipulating tools, we see a vast array of tree-structured data types
that can be fit into just a few patterns.

One of these patterns is based on the variable usage conven-
tions found in the descendants of lambda calculus. There are a
wide variety of generic operations associated with such programs,
including variable substitution and calculating free variable sets.
In many cases, a nameless representation of variable usage, oth-
erwise known as the de Bruijn convention [dB72], makes devel-
opment easier. By representing variable uses as natural numbers
counting how many binders outward in lexical scoping order to
search to find their matching binders, we do away with the prob-
lem of alpha equivalence. That is, our default notion of equality
matches up with our notion of syntactic equivalence of programs.
However, many bookkeeping tasks become trickier, as transplant-
ing a de Bruijn term into a new context often requires running over
it adjusting numeric indices. The many clean-up operations of this
kind form another class of useful applications of generic program-
ming.

In the remainder of this paper, we will focus on a particu-
lar framework for doing formal language metatheory in this vein.
The following subsections give an overview of our system Lambda
Tamer [Chl07] and its conventions by example, to provide a refer-
ence point for the presentation to follow. Its distinguishing charac-
teristics are use of dependently-typed abstract syntax (to ensure that
only well-typed terms are representable) and denotational seman-
tics. It draws on ideas developed in past work on syntax representa-
tion in type theory, including that of Altenkirch and Reus [AR99].

5.1 Syntax and Typing Rules
We use the example of simply-typed lambda calculus with unit as
the base type. The starting point for a Lambda Tamer formalization
is a definition of the type system. In this case, we want a standard
algebraic datatype describing the nullary type constructor Unit and
the binary Arrow.

Inductive ty : Type :=
| Unit : ty
| Arrow : ty→ ty→ ty

To move on to the syntax of terms, we first need to fix a
representation of variables. We will be using de Bruijn terms, so
we could simply use natural numbers as variables. However, we
want to use dependent typing to guarantee lack of dangling variable
references. In fact, we will go even further and have variables track,
in their meta-level types, the object-level types of the terms they
represent. Here is a generic definition of variables, taken from the

7

Lambda Tamer Coq library:

Inductive var (ty : Type) : list ty → ty → Type :=
| First : ∀τ : ty. ∀Γ : list ty. var (τ :: Γ) τ
| Next : ∀τ, τ ′ : ty. ∀Γ : list ty. var Γ τ → var (τ ′ :: Γ) τ

The family var is polymorphic in the type language ty. Addi-
tionally, it takes two indices corresponding to the first and last po-
sitions of a three-place variable-typing judgment Γ ` x : τ . We can
think of vars as derivations of such judgments, built up from two
rules. Alternatively, we can think of vars as the natural numbers we
would have used anyway, just annotated with extra typing informa-
tion to combine selection of a type from a list with the construction
of indices. With either interpretation, we are able to use variables
easily without maintaining ad-hoc bookkeeping information about
them.

Now we can give a natural definition of the syntax of terms.
As with variables, we use (meta-level) dependent types to combine
typing derivations with abstract syntax. The typing rules so embod-
ied are the standard rules for simply-typed lambda calculus.

Inductive term : list ty→ ty→ Type :=
| Var : ∀Γ : list ty. ∀τ : ty. var Γ τ → term Γ τ
| UnitIntro : ∀Γ : list ty. term Γ Unit
| App : ∀Γ : list ty. ∀τ1, τ2 : ty. term Γ (Arrow τ1 τ2)
→ term Γ τ1 → term Γ τ2
| Lam : ∀Γ : list ty. ∀τ1, τ2 : ty. term (τ1 :: Γ) τ2
→ term Γ (Arrow τ1 τ2)

Part of the attraction of this representation technique is that,
when we write compilers and other code transformations, the Coq
type system ensures that our transformations produce well-typed
terms when passed well-typed terms. For a simple example, con-
sider this function, which implements η-expansion.

eta = λΓ, τ1, τ2. λe : term Γ (Arrow τ1 τ2).

Lam (App e (Var First))

There is a problem here. The definition of eta does not type-
check! Where the Coq variable e is used, a term of type term (τ1 ::
Γ) (Arrow τ1 τ2) is expected, while e has type term Γ (Arrow τ1 τ2).
We know informally that it is of course acceptable to bring an ex-
tra, unused variable (in this case, the variable bound by the new
lambda) into scope, and it is exactly this fact that would convince
the type-checker to accept this definition.

What we need is an auxiliary function typed like this:

lift : ∀Γ : list ty. ∀τ, τ ′ : ty. term Γ τ → term (τ ′ :: Γ) τ

This is the lifting operation of de Bruijn indices. As generally
happens with this kind of dependently-typed representation, lift can
also be thought of as a lemma about typing derivations. In this case,
it is a standard weakening lemma: “If Γ ` e : τ , then, for x not free
in e, Γ, x : τ ′ ` e : τ .”

Now we can revise the definition of eta, such that it type-checks
without incident.

eta = λΓ, τ1, τ2. λe : term Γ (Arrow τ1 τ2).

Lam (App (lift τ1 e) (Var First))

5.2 Dynamic Semantics
When an object language is purely functional and permits no recur-
sion beyond primitive recursion, it is often most convenient to give
its dynamic semantics by compilation into CIC. CIC is rich enough
that such compilations can be written in the same calculus, taking
the dependently-typed abstract syntax trees of the last subsection
as inputs. This strategy is “denotational” rather than “operational,”
and it brings with it some serious benefits. As demonstrated in the
earlier discussion of proof by reflection, the embedding of term

simplification in the Coq typing judgment often allows us to get
the type checker/proof checker to “do our work for us.” By giving
programs meanings by compilation into CIC, we essentially end up
with a logic that has “axioms” about program behavior built into it
and applied automatically for us by the Coq theorem proving tools.

The first step for our example is to define a simple recursive
function mapping object language types into meta language types:

tyDenote = fix d (τ : ty) : Type := match τ with

| Unit⇒ unit

| Arrow τ1 τ2 ⇒ d τ1 → d τ2

Now we are almost ready to give a denotational semantics to
terms. We will map each term to a function from a substitution
for its free variables to its denotation as a “native” CIC term.
To represent substitutions, we introduce subst as an illustrative
synonym for tupleF. Now, using a library function varDenote that
interprets variables following the same scheme, we have:

termDenote = fix d (Γ : list ty) (τ : ty) (e : term Γ τ)

: subst tyDenote Γ→ tyDenote τ :=

| Var v ⇒ λσ. varDenote v σ

| UnitIntro⇒ λ . tt

| App e1 e2 ⇒ λσ. (d e1 σ) (d e2 σ)

| Lam e′ ⇒ λσ. (λx. d e′ (SCons x σ))

We can use termDenote to state the correctness property of eta-
expansion:

∀Γ, τ1, τ2. ∀e : term Γ (Arrow τ1 τ2). ∀σ : subst tyDenote Γ.
termDenote (eta e) σ = termDenote e σ

The dynamic semantics of CIC matches closely enough our in-
tended dynamic semantics of the object language that we can com-
pare term denotations with equality, rather than with some more
customized congruence. However, what seems certain to be a triv-
ial proof has a wrinkle in it. We need to reason about the behav-
ior of lift to prove this theorem, which requires an induction over
the structure of terms and some painful reasoning about dependent
types. What we really want is a lemma like this:

liftSound : ∀Γ, τ, τ ′. ∀e : term Γ τ.

∀σ : subst tyDenote Γ. ∀v : tyDenote τ ′.

termDenote (lift τ ′ e) (SCons v σ)

= termDenote e σ

With a tool to prove this lemma for us, the correctness of eta is
established easily, with no explicit induction.

6. A Taste of Manual Implementation
A natural first reaction to discovering the utility of lift and liftSound
is to implement them manually, specialized to this language. How
hard could it be, after all? In our experience, while implement-
ing a helper function like lift without rich types in a language like
ML or Haskell can be painful, implementing it and its correctness
lemma in Coq can be tantamount to an existential crisis. It certainly
does not help us get to the interesting parts of a development very
quickly, and such manual derivations will in fact tend to monopo-
lize a total body of code.

To portray the difficulties therein, we will present in this section
snippets of manual derivation of lift and liftSound. As a side bene-
fit, our examples will draw in aspects of programming with general
inductive types and first-class equality proofs that have rarely been
included in formal publications.

8

6.1 Implementing lift

First, it quickly becomes apparent that we will need to define an
auxiliary function lift′. When lifting a term, recursing inside a
lambda binder adds a new type to the context, and so our workhorse
function must support some additional prefix of types before the
position in a context where we will insert a new type. More for-
mally, we want the following, where ⊕ is list concatenation and
both ⊕ and :: are right associative:

lift′ : ∀Γ1,Γ2 : list ty. ∀τ, τ ′ : ty. term (Γ1 ⊕ Γ2) τ

→ term (Γ1 ⊕ τ ′ :: Γ2) τ

Armed with our knowledge of fix expressions, we make a first
attempt at coding lift′. We give ourselves a break by assuming we
have an appropriately-typed library function liftVar′ that makes the
corresponding adjustment to variables. We also take good advan-
tage of opportunities for Coq to infer some omitted arguments from
the values of others.

lift′ = fix f Γ1 Γ2 τ (e : term (Γ1 ⊕ Γ2) τ)

: ∀τ ′. term (Γ1 ⊕ τ ′ :: Γ2) τ :=

match e with

| Var v ⇒ λτ ′. Var (liftVar′ v τ ′)

| UnitIntro⇒ λτ ′. UnitIntro

| App e1 e2 ⇒ λτ ′. App (lift′ e1 τ
′) (lift′ e2 τ

′)

| Lam e′ ⇒ λτ ′. Lam (lift′ e′ τ ′)

Here we introduce one aspect of Coq programming that we
have been eliding so far. To enable decidable type-checking, Coq
requires certain annotations on match expressions that deal with
dependent types. In this case, we should rewrite the first line of the
function body as:

match e in (term (T1 ⊕ T2) T3)
return (∀τ ′. term (T1 ⊕ τ ′ :: T2) T3) with

An in clause describes the type of the expression being analyzed,
providing a place to bind variables like the Ti above. A return
clause describes the type of the match expression in terms of the
variables bound by the in clause. In each branch arm, the Ti vari-
ables are replaced by the forms implied by the constructor being
matched. For instance, in the UnitIntro branch, we have the in-
stantiation T3 = Unit. This general regime should be familiar to
readers accustomed to working with GADTs. In Coq, the program-
mer writes explicitly some of what standard GADT inference algo-
rithms infer. In return, the Coq programmer is able to type-check
more complex programs by providing explicit coercions.

Unfortunately, there is still a problem with our amended def-
inition! Coq only allows in clauses that are inductive type names
applied to lists of variables. Our code has T1 ⊕ T2 where it must
have a single variable. Why does Coq place this restriction? The
answer is that, without the restriction, the type checker would have
to solve higher-order unification problems, making type checking
undecidable [Hue73]. In other words, there can exist no algorithm
that matches up variables between arbitrary in clauses and arbitrary
parameter choices in the range types of constructors. This does not
mean that there can be no useful restrictions that lead to decidablity,
or that we cannot optimistically apply heuristics until some time-
out is reached, but the designers of Coq chose to follow a simpler
path.

A standard trick gets us out of this mess. We convert to equality-
passing style, taking advantage of CIC’s expressiveness to work
with first-class equality proofs and their associated coercions. In the
Coq standard library, equality is an inductive type like any other.

Inductive eq (T : Type) (x : T) : T → Type :=
| refl equal : eq T x x

lift′′ = fix f Γ τ (e : term Γ τ)

: ∀Γ1,Γ2. Γ = Γ1 ⊕ Γ2

→ ∀τ ′. term (Γ1 ⊕ τ ′ :: Γ2) τ :=

match e in (term T1 T2)

return (∀Γ1,Γ2. T1 = Γ1 ⊕ Γ2

→ ∀τ ′. term (Γ1 ⊕ τ ′ :: Γ2) T2) with

| Var v ⇒ λΓ1,Γ2, pf, τ
′. Var (liftVar′′pf v τ ′)

| UnitIntro⇒ λΓ1,Γ2, pf, τ
′. UnitIntro

| App e1 e2 ⇒ λΓ1,Γ2, pf, τ
′.

App (lift′′ e1 pf τ
′) (lift′′ e2 pf τ

′)

| Lam e′ ⇒ λΓ1,Γ2, pf, τ
′.

Lam (lift′′ e′ (liftPf pf) τ ′)

Figure 5. Correct definition of lift′′

We define equality (usually abbreviated with the binary = oper-
ator) as “the least reflexive relation,” bootstrapping off of the defi-
nitional equality≡ built into CIC. Whereas≡ is applied implicitly,
we can name equality “facts” that may or may not hold, by reifying
≡ into this “propositional equality.” Based on CIC’s rules govern-
ing inductive types, the following operation is derivable:

cast : ∀T : Type. ∀f : (T → Type). ∀x, y : T.

x = y → f x→ f y

It says that, for any “type with a hole in it” (represented by a
function f), if we present a proof that x = y, and if x and y are of
the right type to fill the hole, then we may cast type f x to type f y.
This is a computational interpretation of what it means for equality
to be a congruence.

We can use equality to write the main helper function lift′′ as
shown in Figure 5. We give the function a new (but equivalent)
type to the type we gave lift′: it takes as input a term e that can be
associated with any context Γ. However, as additional arguments,
we are required to provide contexts Γ1 and Γ2 and a proof that
Γ = Γ1 ⊕ Γ2. Though we do not show it here, cast is used in the
definition of liftVar′′. We leave underscores as “jokers” in some
places where their values are inferable.

To build the proof for the recursive call in the Lam case, we
rely on some implementation of this type, corresponding to an
“obvious” theorem about lists and equality:

liftPf : ∀Γ1,Γ2. Γ1 = Γ2 → ∀τ. τ :: Γ1 = τ :: Γ2

Now lift′ is definable as

λΓ1,Γ2, τ, τ
′, e. lift′′ e (refl equal (Γ1 ⊕ Γ2)) τ ′

6.2 Proving liftSound

The heart of the proof of liftSound is, probably unsurprisingly, in a
lemma about lift′′. We overload :: and ⊕ to denote one- and multi-
element concatenation of substitutions.

liftSound′′ : ∀Γ, τ. ∀e : term Γ τ. ∀Γ1,Γ2.

∀pf : (Γ = Γ1 ⊕ Γ2). ∀τ ′, σ1, v, σ2.

termDenote (lift′′ e pf τ ′) (σ1 ⊕ v :: σ2)

= termDenote (cast (λX. term X)

pf e) (σ1 ⊕ σ2)

The most interesting part is the use of cast. Without it, we
would have an argument type incompatibility for the second use
of termDenote, since e is in context Γ and σ1 ⊕ σ2 is in context

9

· · ·
pf : Γ = Γ1 ⊕ Γ2

· · ·

termDenote (lift′′ UnitIntro pf τ ′) (σ1 ⊕ v :: σ2)

= termDenote (cast (λX. term X)

pf UnitIntro) (σ1 ⊕ σ2)

Figure 6. Partial initial proof state for UnitIntro case of
liftSound′′

Γ1 ⊕ Γ2. By presenting an explicit equality proof between those
two types, we bridge the gap.

The skeleton of the proof is an induction on the structure of e.
Following the “proofs as programs” principle, this can be written
as a fix expression over e. In this case, it is more convenient to use
Coq’s tactic-based theorem proving mode to construct the proof
term interactively, with help from decision procedures. We will
show only the simplest case of the proof, that for UnitIntro, as it
already demonstrates how slippery this kind of proof is.

The initial proof state appears in Figure 6. We have a set of
hypotheses/free variables appearing above the horizontal line with
their types. Below the line appears the proposition we are trying to
prove (the “conclusion”); alternatively, what we see there is a type,
and we are trying to code a program with that type. We can simplify
the lefthand side of the conclusion to tt using only the definitional
equality ≡. The tricky part is simplifying the righthand side to the
same value.

We might think we ought to be able to replace the cast term
with UnitIntro. However, here UnitIntro has an elided parameter
specifying which typing context it lives in, Γ. So, erasing the
cast, we are left with the argument type incompatibility that we
added the cast to avoid. A somewhat counterintuitive trick helps
us make the next step. We use pf to replace Γ with Γ1 ⊕ Γ2

everywhere that Γ appears, even in pf ’s own type! Now pf has
type Γ1 ⊕ Γ2 = Γ1 ⊕ Γ2, and we have made some good progress.
Now we would be left with a well-typed righthand side if we made
the simplification we want to make; what remains is to figure out
how to justify the rewrite.

Surprisingly enough, working from just the simple inductive
definition of eq that we gave earlier, we cannot make further
progress. CIC just is not a strong enough type theory to model the
computational behavior of casting without the addition of further
rules. To fix this, it is common to add some axiom characteriz-
ing this behavior. Axioms are propositions asserted without proof.
They are convenient ways to make global changes to the logic one
is working in, though it is always critical to check that your set of
axioms introduces no inconsistency. The axiom that we chose to
depend on [Str93] is included in the Coq standard library:

castEq : ∀T : Type. ∀f : (T → Type). ∀x : T.

∀pf : x = x. ∀v : f x. cast f pf v = v

One rewrite with castEq, followed by simplification using≡ alone,
reduces the conclusion to tt = tt, which is proved directly by
refl equal.

6.3 The Prognosis
It is possible, with enough patience, to craft these programs and
proofs manually, but it remains an intellectually challenging prob-
lem in each iteration. Researchers who do not specialize in type
theory but want to formalize their programming languages would
be justified in recoiling at the thought of needing to learn the type
theory arcana we have employed.

We would rather have all of this done automatically. The more
of code and proof generation we can have validated statically,
the better. Though this will require even more wizardry in the
implementation of the generic programming system, it will be
worth the effort, because users will be able to employ the system
without understanding those internals, while retaining the benefits
of their rigorous verification.

7. The Lambda Tamer AutoSyntax System
The AutoSyntax piece of the Lambda Tamer system uses the tech-
niques we have presented to provide generic implementations of
functions like lift and lemmas like liftSound. To do so, it uses re-
flected representations of inductive definitions of term languages,
much as we did for simply-typed datatypes in Section 4. However,
our situation is now more complicated, as inductive definitions like
term’s from the last section use universal quantification and ma-
nipulate typing contexts.

Luckily, a very regular structure suffices for the types of AST
constructors. Each type begins with a ∀ quantification over a typing
context Γ. We then have some quantifications over types and other
data (such as an integer as an argument to an integer constant
constructor). In the scope of these quantifiers are some variable and
term arguments. Each variable has context Γ, and each has a type
expressed as a function of the quantified variables. Recursive term
instances are a bit more complicated. Each has a type expressed
in the same way, but we also need to allow for new types to be
“pushed onto the front of” Γ. Thus, we allow the context argument
of a subterm to be any number of types consed onto the beginning
of Γ. Finally, the result type of any constructor is the term type
itself at context Γ and some type (written, like before, as a function
of the quantified variables).

With this pattern in mind, we can redo the definition of con from
Section 4:

con = λty : Type. ΣT : Type. list (T → ty)

× list (T → list ty × ty)

× (T → ty)

con is parameterized by the type ty of object language types. Each
con contains a type T that combines the domains of all the “real”
constructor’s quantified variables, using tupling if necessary; a list
of the types of variables; a list of the types of subterms; and the
result type. For later convenience, we define projection functions
for the four components of cons: quantsOf, varsOf, termsOf, and
resultOf.

A few examples should serve to explain the pattern. A good
con ty for the constructor UnitIntro of our running example is:

〈unit, (nil, nil, λ . Unit)〉

The case of Var illustrates variable typing:

〈ty, ([λτ. τ], nil, λτ. τ)〉

Finally, the case of Lam illustrates binder typing:

〈ty × ty, (nil, [λt. ([π1 t], π2 t)], λt. Arrow (π1 t) (π2 t))〉

From this starting point, we can redefine interpCon, conIH,
rec, eqn, and ind in the (more or less) obvious ways. Since the
new definitions are messier but unsurprising, we will not include
them here. (The interested reader can, of course, obtain them in
our source distribution.) The AutoSyntax plug-in for Coq generates
all of the corresponding pieces automatically by inspecting type
definitions.

10

7.1 Restricting Denotations
AutoSyntax also contains generic proofs of lemmas like liftSound.
Looking back at that theorem’s statement, we see that it depends in
no way on the details of the language under analysis. Its statement
follows a pattern that recurs in our setting, where we give programs
“denotational semantics” via definitional compilers. We want to
know that a particular “commutative diagram” holds, in a sense
specific to the generic function in question. We want to know
that we get the same result by “compiling” expression e directly
with substitution σ as we get by applying the generic function
to e, applying some compensating transformation to σ, and then
compiling.

How can we write a proof of this theorem that works for any
definitional compiler? Actually, it is clear that we cannot make it
work for just any dynamic semantics, since it is easy to come up
with perverse semantics that perform intensional analysis on terms.
For instance, we could write a denotation function that checks if
its input equals a particular term and then returns some arbitrary
result; otherwise, it uses a sane recursive definition. The liftSound
specification might not hold on the term that’s been singled out.
Now the question is what conditions we can impose on denotations
to facilitate use of a generic proof technique without compromising
flexibility in language definition.

We find our criterion in the standard sanity check of denota-
tional semantics, compositionality. Roughly speaking, we want the
meaning of a term to be a function of nothing but the constructor
used to build it, the values given to its quantified variables, and the
denotations of its variables and subterms. In particular, it should
not be valid to examine the syntax of a subterm in a denotation
function.

For our specific example language, this means that we want
there to exist functions

fVar : ∀τ. tyDenote τ → tyDenote τ

fUnitIntro : tyDenote Unit

fApp : ∀τ1, τ2. tyDenote (Arrow τ1 τ2)

→ tyDenote τ1 → tyDenote τ2

fLam : ∀τ1, τ2. (tyDenote τ1 → tyDenote τ2)

→ tyDenote (Arrow τ1 τ2)

Notice that no detail of the implementation of tyDenote comes into
play; we hope that it is initially plausible that function signatures
like these can be read off from the definition of a term type. It is
just a “coincidence” of the closeness of our object language to CIC
that fVar, fApp, and fLam ending up having the types of particular
identity functions.

A denotational semantics for our object language is composi-
tional when there exist functions of these types that satisfy the fol-
lowing equations. We overload juxtaposition as notation for look-
ing up a variable in a substitution.

termDenote (Var v) σ = fVar (σv)

termDenote UnitIntro σ = fUnitIntro

termDenote (App e1 e2) σ = fApp (termDenote e1 σ)

(termDenote e2 σ)

termDenote (Lam e′) σ = fLam (λx. termDenote e′

(SCons x σ))

7.2 Reflecting Denotations
We need to formalize the requirements of compositionality, so
that we can write generic proofs about arbitrary compositional
denotation functions. To start with, here is a function that calculates
the proper type for one of the f ’s above, given a constructor and a

type denotation function:

schema = λty : Type. λc : con ty. λd : (ty → Type).

∀q : quantsOf c. tupleF (λv. d (v q)) (varsOf c)

→ tupleF (λt. tupleF d (π1 (t q))

→ d (π2 (t q))) (termsOf c)

→ d ((resultOf c) q)

Now we can define what it means for a denotation function to
be compositional with respect to a single constructor. We appeal to
the reader’s intuition for the new types associated with functions
like interpCon.

isComp = λty : Type. λT : list ty → ty → Type.

λc : con ty. λb : interpCon T c.

λdt : (ty → Type).

λdT : (∀Γ, τ. T Γ τ → subst dt Γ→ dt τ).

Σf : schema ty c dt. ∀qs, vs, es, σ.
dT (b qs vs es) σ

= f qs (mapF (λv. σv) vs)

(mapF (λe. λvs. dT (π2 e) (vs⊕ σ)) es)

With this definition, it is easy to define full compositionality by
asserting that isComp must hold for each constructor of a type.

7.3 Sketch of a Generic liftSound′′ Proof
We wrap up our discussion of implementation techniques with a
quick sketch of the proof of liftSound′′ for an AST type T reflected
into evidence package ι, with respect to denotation function dT
that has been shown compositional. We have not space to provide
a detailed definition of the generic lift′′ itself, but the basic idea
should be straightforward: recurse through all term structure using
recOf ι, applying liftVar′′ to all variables encountered.

1. The proof is by induction on the structure of the term e. Con-
cretely, we apply the “induction principle” found in recOf ι.
Perform the following steps for each inductive case, where each
corresponds to some constructor c that was used to build e.

2. Just as in Section 6.2, use the proof pf : Γ = Γ1⊕ Γ2 to rewrite
Γ to Γ1 ⊕ Γ2 everywhere, and then use castEq to remove the
use of cast.

3. Simplify each side of the equality by rewriting with eqnOf ι.
That is, we unfold the definition of lift′′ one level, as we know
the top level structure of its arguments.

4. Use the compositionality of dT to rewrite the dT (c · · ·) on
each side of the equation with fc. Now each side is fc applied to
the same quantified variable values, followed by different lists
of denotations of object-language variables and subterms.

5. Rewrite each lefthand side variable denotation to match its
righthand side counterpart using liftVar′′ sound, a lemma from
the Lambda Tamer library. (This is an inner induction on the
number of variables.)

6. Rewrite each lefthand side subterm denotation to match its
righthand side counterpart using the inductive hypothesis sup-
plied by recOf ι. (This is an inner induction on the number of
subterms.)

7. The conclusion is reduced to a trivial equality, which we prove
by reflexivity.

7.4 Mutually-Inductive AST Types
Mutually-recursive type definitions are common in programming
languages. It turns out that Coq is expressive enough to let us

11

build support for mutually-inductive types on top of what we have
already described. We illustrate this by the simple example of two
mutually inductive term types term1 and term2 associated with a
type language ty. First, we define a type-carrying enumeration of
the different term sorts:

Inductive which : Type :=
| Term1 : ty→ which
| Term2 : ty→ which

The actual AutoSyntax implementation allows the choice of
distinct type languages for typing contexts versus term types. We
can take advantage of this by using which as our new term type
language. Now we can define a new, combined term type:

term = λΓ : list ty. λx : which. match x with

| Term1 τ ⇒ term1 Γ τ

| Term2 τ ⇒ term2 Γ τ

It is a straightforward exercise in type-level computation to
build an ind package that treats term1 and term2 like two parts of a
single inductive type term. The AutoSyntax Coq plug-in does this
work for arbitrary mutual definitions, and it translates the results
back to the mutual setting.

7.5 Evaluation
Our most extensive case study for AutoSyntax to date is on our cer-
tified type-preserving compiler from simply-typed lambda calculus
to an idealized assembly language [Chl07]. There, AutoSyntax is
applied to the statically-typed target languages of CPS conversion,
closure conversion, and conversion to closed first-order programs
with explicit allocation. The portion of the source code responsi-
ble for these pieces weighs in at under 3000 lines. This includes
the definitions of the syntax, static semantics, and dynamic seman-
tics of all languages; the definitions of the transformations, which
are dependently-typed in a way that brings type preservation theo-
rems “for free”; and the semantics preservation proofs, which use
Coq’s tactic-based proof search facility. Among the generic func-
tions provided by AutoSyntax are lifting, permutation, free variable
set calculation, and strengthening (removing unused variables from
a typing context, critical to efficient closure construction), along
with derived versions of these operations, such as lifting multiple
unused variables into a context at once. Following standard idioms
for writing the generic pieces manually, the amount of code would
have more than doubled.

We also put together a stand-alone case study of certified CPS
conversion for simply-typed lambda calculus, found in examples/CPS.v
in the source distribution. It contains about 250 lines of code. No-
tably, its proofs achieve almost the level of conciseness of their
usual pencil-and-paper equivalents. Hypotheses in specific proof
contexts are never mentioned by name. Rather, the lemmas gener-
ated by AutoSyntax are sufficient to guide relatively simple proof
automation, augmented by a few “hints” about domain-specific ap-
proaches to getting out of tricky situations. We think this makes
our implementation unique among all that we are aware of, with all
competitors relying on considerable manual proving effort.

8. Comparison with Other Approaches
There have been past investigations into formalizing lambda calculi
in type theory. For instance, McKinna and Pollack [MP99] worked
with a formalization that avoids dependently-typed syntax. Their
proofs are free of the obscurities from the manual proof sketched
in Section 6.2. However, they must thread assumptions of term
validity through proofs. This is the standard sort of trade-off that
arises in choosing how expressive a formalization’s types should

be, and it is also illustrated in the many recent solutions to the
POPLmark Challenge [ABF+05].

Another partial cure for the complexity of the underlying proofs
comes from designing more convenient surface languages for type
theory. The Agda and Epigram projects have made progress along
these lines, providing more convenient notions of dependent pattern
matching and equality. Often these extensions can be mapped into
simpler type theories by mechanical translations [GMM06]. We
consider it quite possible that much of the complexity of AutoSyn-
tax is a result of shortcomings of Coq that these newer systems
address. Generally speaking, it seems that Coq today supports com-
plex theorem proving better than Agda and Epigram, while Agda
and Epigram have better support for dependently-typed program-
ming. While the need for management of complex proofs motivated
us to choose Coq for this project, we can hope for a future system
that combines the advantages of all three. However, our main idea
of generic programming with a domain-specific universe for pro-
gramming language syntax can also be applied usefully to any of
these systems today.

We only demonstrate the technique on a very simple lan-
guage in this article. One common misconception is that our
use of denotational semantics prevents us from handling lan-
guages with general recursive functions. In fact, formalizations
of several such languages were involved in our certified compiler
project [Chl07]. CIC is expressive enough to let us represent de-
notations as possibly-infinite computation streams or trees, using
co-inductive types [Gim95]. Many other common programming
languages features that we do not treat here are also very natu-
ral to encode in CIC, such as universal and existential types, lists,
and inductive types in general, so we do not see any fundamental
difficulties in extending Lambda Tamer and AutoSyntax to handle
them.

At the same time, our main point in this paper is that generic
programming with universes is useful for automating proofs about
programming languages. We believe that this general idea will
translate well to any popular approach to semantics, including
operational semantics on non-dependently-typed terms, with fairly
straightforward modifications to the universe types. We have no
evidence to present for this now, but we see no essential barriers,
so the question remains for future work to decide. It seems unlikely
that a technique like this can prove type soundness theorems, but
most proofs of properties of variable-shuffling operations seem like
obvious extensions.

AutoSyntax lacks many useful features that have appeared in
generic programming systems for conventional programming lan-
guages, where the lack of formality both allows more design free-
dom and makes new functionality easier to implement. For in-
stance, among the leaves of ASTs, AutoSyntax gives special treat-
ment only to variables; there is no way to distinguish between, e.g.,
integers and booleans. More generally, many operations on our uni-
verse types, such as equality testing, are unimplementable in CIC,
because we allow injection of arbitrary “real” terms as AST leaves.
Many less formal approaches to reflection represent types in ways
that admit these operations easily.

Haskell supports general recursive types, which are a broader
class of types than CIC’s inductive types. Not all recursive types
have reasonable inductive principles, but many recursive types that
are not inductive types still support useful generic programming,
and several toolkits for Haskell facilitate this.

Several generic programming systems for Haskell allow generic
programs defined by a combination of recursion on type structure
and special cases for particular named types. AutoSyntax supports
nothing like this.

12

These features are absent from AutoSyntax because we found
no need for them in our case studies. It is unclear how one could
hope to achieve this level of automation for proofs about language
semantics in general, and proofs about variable reshufflings just do
not seem to reap any benefit from these extra features. However,
we see no fundamental obstacle to adding them.

9. Conclusion
We have presented a new approach to statically-validated generic
programming and proving for classes of inductive types. The ap-
proach is compatible with small-trusted-code-base formal theorem
proving, and our particular AutoSyntax system eases significantly
the development of formal programming language metatheory and
certified code transformations. As Section 7 demonstrates, the
technique must be instantiated manually to suit different domain-
specific uses of dependent typing. We believe it likely that a broad
range of domains stand to benefit from the construction of such
instantiations.

Acknowledgments
Thanks to the anonymous POPL’08 referees, Jesper Louis Ander-
sen, Robin Green, Vesa Karvonen, Edward Kmett, Yitzhak Man-
delbaum, Matthieu Sozeau, and Eelis van der Weegen for helpful
feedback on earlier versions of this article.

References
[ABF+05] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn,

J. Nathan Foster, Benjamin C. Pierce, Peter Sewell, Dim-
itrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich,
and Steve Zdancewic. Mechanized metatheory for the
masses: The POPLMARK challenge. In Proc. TPHOLs,
pages 50–65, 2005.

[ACPW08] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce,
and Stephanie Weirich. Engineering formal metatheory. In
Proc. POPL, January 2008.

[AM03] Thorsten Altenkirch and Conor McBride. Generic pro-
gramming within dependently typed programming. In
Proc. Working Conference on Generic Programming, 2003.

[AR99] Thorsten Altenkirch and Bernhard Reus. Monadic
presentations of lambda terms using generalized inductive
types. In Computer Science Logic, 13th International
Workshop, CSL ’99, pages 453–468, 1999.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem
Proving and Program Development. Coq’Art: The Calculus
of Inductive Constructions. Texts in Theoretical Computer
Science. Springer Verlag, 2004.

[BDJ03] Marcin Benke, Peter Dybjer, and Patrik Jansson. Universes
for generic programs and proofs in dependent type theory.
Nordic Journal of Computing, 10(4):265–289, 2003.

[Bou97] Samuel Boutin. Using reflection to build efficient and
certified decision procedures. In Proc. STACS, pages 515–
529, 1997.

[Chl07] Adam Chlipala. A certified type-preserving compiler from
lambda calculus to assembly language. In Proc. PLDI, June
2007.

[dB72] Nicolas G. de Bruijn. Lambda-calculus notation with name-
less dummies: a tool for automatic formal manipulation with
application to the Church-Rosser theorem. Indag. Math.,
34(5):381–392, 1972.

[DS06] Peter Dybjer and Anton Setzer. Indexed induction-
recursion. Journal of Logic and Algebraic Programming,
66(1):1–49, January 2006.

[Gim95] Eduardo Giménez. Codifying guarded definitions with
recursive schemes. In Proc. TYPES, pages 39–59. Springer-
Verlag, 1995.

[GMM06] Healfdene Goguen, Conor McBride, and James McKinna.
Eliminating dependent pattern matching. In Algebra,
Meaning and Computation, pages 521–540. 2006.

[GWdSO07] Jeremy Gibbons, Meng Wang, and Bruno C. d. S. Oliveira.
Generic and indexed programming. In Marco Morazan,
editor, Trends in Functional Programming, 2007.

[Hin00] Ralf Hinze. A new approach to generic functional
programming. In Proc. POPL, pages 119–132, 2000.

[HP00] Ralf Hinze and Simon Peyton Jones. Derivable type classes.
In Proc. Haskell workshop, 2000.

[Hue73] G. Huet. The undecidability of unification in third order
logic. Information and Control, 22:257–267, 1973.

[JJ97] Patrik Jansson and Johan Jeuring. PolyP – a polytypic
programming language extension. In Proc. POPL, pages
470–482, 1997.

[LP03] Ralf Lämmel and Simon Peyton Jones. Scrap your
boilerplate: a practical approach to generic programming.
In Proc. TLDI, January 2003.

[LP04] Ralf Lämmel and Simon Peyton Jones. Scrap more
boilerplate: reflection, zips, and generalised casts. In Proc.
ICFP, September 2004.

[LV02] Ralf Lämmel and Joost Visser. Typed combinators for
generic traversal. In Proc. PADL, pages 137–154, 2002.

[MAG07] Peter Morris, Thorsten Altenkirch, and Neil Ghani.
Constructing strictly positive families. In The Australasian
Theory Symposium (CATS2007), January 2007.

[ML84] P. Martin-Löf. Intuitionistic type theory, 1984. Bibliopolis-
Napoli.

[MP99] James McKinna and Robert Pollack. Some lambda
calculus and type theory formalized. Journal of Automated
Reasoning, 23(3-4):373–409, 1999.

[PE88] F. Pfenning and C. Elliot. Higher-order abstract syntax. In
Proc. PLDI, pages 199–208, 1988.

[PM93] Christine Paulin-Mohring. Inductive definitions in the
system Coq: Rules and properties. In Proc. TLCA, pages
328–345. 1993.

[PR99] Holger Pfeifer and Harald Rueß. Polytypic proof construc-
tion. In Proc. TPHOLs, 1999.

[She04] Tim Sheard. Languages of the future. In Proc. OOPSLA,
pages 116–119, 2004.

[Str93] T. Streicher. Semantical investigations into intensional type
theory. Habilitationsschrift, LMU München, 1993.

[UT05] C. Urban and C. Tasson. Nominal Techniques in Is-
abelle/HOL. In Proc. CADE, pages 38–53, 2005.

[Wei06] Stephanie Weirich. RepLib: a library for derivable type
classes. In Proc. Haskell workshop, pages 1–12, 2006.

13

