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Abstract

Modeling and Software Tools for Freeway Operational Planning

by

Alexandr A. Kurzhanskiy

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Pravin Varaiya, Chair

This dissertation grew out of the author’s participation in the Tools for Operational Plan-
ning (TOPI1) project. TOPI project started at Berkeley in April 2006. Its purpose is to
provide tools for quantative assessment of operational strategies designed to improve traffic
conditions on congested freeways and surrounding arterials. The elements of such strategies
are:

demand management, which focuses on reducing excessive demand,;

incident management, which targets resources to alleviate accident hot spots;

traveler information, which potentially reduces traveler buffer time; and

traffic control, which implements aggressive ramp metering at locations where significant



reductions in congestion are likely to occur.

TOPI models traffic flows on road networks in realistic conditions relying on freeway data
provided by the California freeway Performance Measurement System (PeMS). PeMS of-
fers an accounting framework for tracking freeway performance, and a suite of diagnostic
tools that pinpoint the weaknesses in freeway operations. For arterial data, TOPI uses vari-
ous alternative sources, such as regional planning agencies MTC (Bay Area) and SANDAG
(San Diego) for GIS description of road networks, and census information and demographics

surveys for origin-destination travel patterns and demand.

Macroscopic traffic models represent traffic as a compressible fluid in terms of flow, density
and speed, as opposed to microscopic models which seek to reproduce the behavior of in-
dividual vehicle as its driver responds to its environment by changing its speed and lane.
TOPI uses the macroscopic approach, as it is based on sound theory, is easy to implement in
software, and the implementations are fast to run, allowing the user to simulate many dif-
ferent traffic situations in relatively short time. Our model of choice is the cell transmission
model (CTM) a special case of Godunov discretization of the Lighthill-Whitham-Richards
first order model, with triangular fundamental diagram. While simple, CTM adequately
describes traffic flow on freeways, and the simulation results match well the measurement
data provided by PeMS. Exploring the CTM model from the point of view of nonlinear
dynamical systems we describe the structure of its equilibrium points and the behavior of
its trajectories under different demand patterns. Then we discuss the implications of our

findings for ramp metering.

CTMSIM is the interactive MATLAB based freeway traffic simulator of the CTM model.



It allows plugging in user-defined ramp flow and ramp queue controllers, its output results
can be directly compared with PeMS data, and it can operate in both graphical (interac-
tive) mode and command line (batch) mode. Simple and robust, CTMSIM has proved to
be a handy tool for transportation researchers who can use it for evaluating ramp metering
algorithms and for estimating the impact of different response times in the incident manage-
ment. CTMSIM can only deal with a single freeway. It does not support arterials, freeway

networks, or even HOV lanes.

The Aurora object-oriented framework overcomes the limitations of the CTMSIM. Its basic
objects, nodes and links, allow the user to construct heterogeneous road networks. Various
event classes make it possible to generate simulation scenarios. The monitor objects can
keep track of the state at selected nodes and links, coordinate control actions at nodes,
or generate events at nodes or links when the monitored states reach certain thesholds.
Monitors and events enable the modeling of the impact of traveler information as well
as incident management and the coordination of signal control on arterials with the ramp
metering at freeway entries. The analysis module of Aurora, which is still under development,
will address the issue of demand management: the goal is to solve the user equilibrium

dynamic traffic assignment problem and evaluate various toll mechanisms.

There are other benefits of Aurora.

It is scalable: the nodes of Aurora network can be networks themselves allowing the user to
build the network configurations incrementally.

It is designed to be multi-purpose: the basic infrastructure and algorithms are generic and

not specific to transportation; link dynamics is implemented as interface allowing to plug



in different models (currently only CTM is implemented). Thus, it can be used not just for
modeling traffic on road networks but also for other applications, such as irrigation canals,
oil or gas pipelines, etc.

Finally, the Aurora simulator is a standalone Java application, and as such it does not

require MATLAB.

Professor Pravin Varaiya
Dissertation Committee Chair
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Chapter 1

Introduction

The Highway Safety, Traffic Reduction, Air Quality, and Port Security Bond Act of 2006,
approved by the voters of California as Proposition 1B on November 7, 2006, includes a
program of funding from $4.5 billion to be deposited in the Corridor Mobility Improve-
ment Account (CMIA). The basic objective of CMIA is to improve performance on highly

congested travel corridors'.

Improvements that relieve congestion by expanding capacity, enhancing operations, or oth-
erwise improving travel times or reducing the number of daily vehicle-hours of delay within
high-congestion travel corridors, may be on the state freeway system or on major access

routes to the state freeway system.

These improvements are addressed by the Transportation Management System (TMS) Mas-

ter Plan [99] whose system management philosophy is summarized in Figure 1.1. The pyra-

'Road networks comprised of freeways and urban arterials



Maintenance and Preservation
System Monitoring and Evaluation

Figure 1.1: System management philosophy. Source: [99]

mid rests on the foundation of “System Monitoring and Evaluation”, which in considerable

part is provided by the freeway Performance Measurement System (PeMS) [1]%.

Above this base is the “Maintenance and Preservation” layer, emphasizing timely intervention
to economically maintain the capital assets of the State’s freeway system. The middle
layers of the pyramid concern freeway operations strategies—demand management, incident
management, traveler information and traffic control—that offer large productivity gains
at low cost. The two layers at the top concern capital expenditures: small investments in

operational improvements, such as increased ramp capacity or an extended auxiliary lane;

2PeMS provides an accounting framework for tracking California freeway performance, and a suite of
diagnostic tools that pinpoint the weaknesses in freeway operations. PeMS was initially to be a simple
system to calculate the most basic performance measures using available sensor measurements and processing
algorithms; incur low cost; and permit incremental implementation [106]. Over several years PeMS has
evolved into a unique database of freeway data, going back to 1998, together with a suite of tools that
help analyze these data at different scales of aggregation and for variety of performance measures. At the
scale of freeway, district or the entire state, PeMS estimates freeway productivity and congestion; travel
time reliability; and the location, severity and frequency of bottlenecks and collision “hot spots”. At the
micro-level, PeMS applications reveal the impact of an individual collision, lane closure or special event.



and major investments in long-term system expansion.

The Tools for Operational Planning (TOPI) project started at Berkeley in April 20063,

Its research is guided by the TMS Master Plan, so its analysis tools match the Action Plans

that the Master Plan envisages for the middle layers of the pyramid. Accordingly,

the “demand management” layer focuses on reducing “excess demand”;

the “incident management” layer targets resources to alleviate accident hot spots;

the “traveler information” layer seeks to reduce traveler buffer time; and

the “traffic control” layer implements aggressive ramp metering at locations where the

maximum reductions in congestion are likely to occur.

The objective of TOPI is to provide a quick quantative assessment of the benefits that can

be gained from these TMS Action Plans.

The quick quantative assessment provided by TOPI, can help rank a large set of Action
Plans in terms of the benefits they will yield. Combined with a separate estimate of the
cost of these plans, TOPI can serve as the first step in selecting the most promising of them.

This initial selection may be based on benefit /cost ratios or the magnitude of benefits.

The focus of TOPI is on operations in freeway corridors (road network comprised of freeway

and surrounding arterials). A corridor is the smallest spatial unit that can be consistently

3TOPI is supported by the California Department of Transportation through the California PATH
program.



analyzed as a self-contained system. Suppose, for example, that we wish to consider the
impact of a promising new metering algorithm on some ramps on a given freeway. Evidently,
this impact will depend on how other ramps on this freeway are metered. Furthermore, the
impact of metering will affect (and be affected by) the signaling strategies on adjacent
arterials. Thus, a good design of the metering algorithms and its proper assessment must

take the entire freeway corridor into account.

On the other hand, a major capacity expansion of a given freeway, such as the addition of
a lane or the extension of the HOV facility, will significantly alter trip patterns. That is,
the capacity expansion will have network-wide impact, which cannot be reliably assessed by

studying the freeway alone.

Thus, for the Action Plans of traffic control, incident management, traveler information
systems and demand management that TOPI seeks to assess, a corridor is the appropriate

unit of analysis. It may be useful to view TOPI as tools for planning corridor management.

Figure 1.2 summarizes the expected result of the TMS Master Plan implementation with

respect to congestion relief and indicates the niche for TOPL.

The rest of the dissertation is organized as follows.

Chapter 2.

We start by explaining the difference between micro and macro approaches to traffic model-
ing and giving basic definitions relevant for macro modeling. In the literature review we go
over continuous traffic flow models, their discretizations (we show how the Godunov scheme

is applied to the LWR model) and discuss the related control problem. Then we describe



Large ¢80 expansion

1,200,000 - Where TOPI fits

| Cperational Improvements
Erharced Rail/ Transit
=
m -
E 1,000,000 = Irt Tramsportation Systerms
s
5 E
g 800,000 4 2 Demand Management
= e
£ E Prevertive Malntenance
& 600,000
=
U
=
E" 400,000 1
200,000
Q-
Curent 2005 Irnproverment Dua o 2023
Congestion  Congestion Imphamentation Cangastion

Figure 1.2: Impact of the TMS Master Plan on congestion relief.

the work on macro modeling of arterials. Finally, we discuss available software packages

that could be used for the purposes of the TOPI project.

Chapter 3.
In TOPI, our traffic flow model of choice is the cell transmission model (CTM). While simple,
it adequatly describes the traffic flow on freeways, as the simulation results match well the

measurement data provided by PeMS.

In this chapter we first describe the CTM model. Then, studying it as a nonlinear dynamical
system, we characterize its equilibrium points. It turns out that the structure of the CTM

equilibria can be formalized. Moreover, if the demand is strictly below capacity, there is a



unique, globally asymptotically stable equilibrium point. Once the equilibrium structure is
established, we study the dynamics of the CTM system showing that this system is monotone
and that all trajectories converge. Finally we discuss the implications of these findings for

ramp metering.

Chapter 4.

Having found no appropriate software implementation of a first order traffic low model
whose input could be automatically generated and whose output could be seamlessly com-
pared with PeMS data, the TOPI group developed CTMSIM, its own interactive freeway
traffic simulator for MATLAB. CTMSIM employs the CTM model, allows plugging in user-
defined ramp flow and ramp queue controllers. Its output results can be directly compared

with PeMS data, and it can operate in both graphical (interactive) mode and command line

(batch) mode.

In this chapter, we provide a thorough description of CTMSIM. We explain its computational
model, present its user interface, show how to plug in a user-defined ramp controller, how
to build a freeway configuration and how to display the simulation results. Here we also

present a case study of the 1210-West freeway. This chapter can be viewed as a manual for

CTMSIM.

Chapter 5.

The ultimate goal of TOPI is to create an instrument for corridor management. Although
CTMSIM is a simple and convenient tool for freeway modeling, it lacks capabilities for
corridor traffic simulation and analysis. Hence, the TOPI group started developing Aurora,

a framework for simulation and analysis of infrastructure networks, whose implementation



is done in Java.

In this chapter, we provide a description of Aurora. We list the design goals, introduce
basic objects used to construct road networks and event objects needed to create and run
scenarios, explain the computation algorithm, and describe the organization of configuration
files. Then we present the current version of the user interface. Finally, we discuss the goals
of Aurora development and their priorities. This chapter can be viewed as an Aurora

technical report.

Chapter 6.
In this chapter we state the problems to be solved and tasks to be accomplished within

TOPI project or as a side product of TOPI activities.



Chapter 2

Review of Previous Work

2.1 Preliminaries

There exist two fundamentally different approaches to traffic modeling. The microscopic
approach seeks to reproduce the behavior of an individual vehicle, as its driver responds
to its environment by adjusting its speed and lane. Microscopic models typically involve
variables such as vehicle position, speed and headway. The macroscopic approach ignores the
dynamics of the individual vehicle and instead attempts to replicate the aggregate response
of a large number of cars. These models represent traffic as a compressible fluid in terms
of flow, density and speed. Traffic engineering has benefitted immensely from macroscopic
models. They are widely used in the design of freeway facilities and they are present in nearly
all model-based ramp metering designs. Because of its emphasis on quick and quantative

assessment, TOPI’s tools and procedures are based on macroscopic models that are easier



to assemble, calibrate, and automate, as compared with their microscopic counterparts’.

The Highway Capacity Manual 2000 [101] provides the following definitions of the basic
quantities. Symbols x and ¢ represent position (measured in the direction of traffic flow)

and time.

Speed v(z,t) is a rate of motion expressed as distance per unit of time. Depending on how
it is measured, it is referred to as either space mean speed or time mean speed. Space mean
speed is computed by dividing the length of a road by the average time it takes for vehicles to
traverse it. Time mean speed is the average speed of vehicles observed passing a given point.
The latter is easier to measure in the field, as it can be obtained directly from conventional

sensing devices.

Free flow speed is the average speed of traffic measured under conditions of low volume,

when vehicles can move freely at their desired speed.

Flow f(z,t) is the total number of vehicles that pass by the point z during a given time
interval containing ¢, divided by the length of the time interval. It is usually expressed as

an hourly rate, and is easily measured with road sensors.

Density p(x,t) is the number of vehicles occupying a length of road about point x at time
instant t. Its measurement is difficult because it requires the observation of a stretch of

road. Instead, it is often approximated from measurements of flow and speed as

f(z,1)
v(w,t)’

pl,t) = (2.1)

!Carrying out micro simulations for all plausible Action Plans is not practical. For example, a study
uncovered more than 500 bottlenecks [71], the congestion caused by which could be mitigated by ramp
metering. It is not possible to study all these opportunities by micro simulations.
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Demand is the number of vehicles that desire to use a given facility during a specified time

period.

Capacity is the maximal hourly rate at which vehicles reasonably can be expected to traverse
a point or a uniform section of a lane or roadway during given time period under prevailing

roadway, traffic and control conditions.

Bottleneck is defined as any road element where demand exceeds capacity. Freeway bot-
tlenecks sometimes appear near heavy on-ramps, where a localized increase in demand is

combined with a decrease in capacity due to lane changing.

One of the early attempts to correlate freeway speed, density and flow was by Greenshields in
1934 [53]. He used photographic images to estimate aggregate vehicular speeds and densities
on a straight two-lane roadway, and found that they could be reasonably well approximated
by a straight line. Using (2.1) he derived parabolic relationship between flow and density

as shown in Figure 2.1. Function f = ®(p) is known as the fundamental diagram. Later

Speed v(p) Flow @(p)

Free-flow

speed Capacity

Density P : ity P
> y Free flow | Congeste D:nsny

Py P. Py

Figure 2.1: Greenshields’ speed and flow relations.

researchers have suggested alternative shapes that provide a better fit to the measured data

(see Figure 2.2). All of them share the following characteristics:
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3
Triangular Trapezoidal Discontinuous

Figure 2.2: Alternative shapes for the ®(p) function.

1. ®(0) = ®(ps) =0, where py is called jam density.
2. Continuous portions of ®(p) are concave.

3. Critical density p. can be defined where the maximum flow is attained. Then, ®'(p) >

0 for p < p. and ®'(p) < 0 for p > p,

Critical density p. splits the fundamental diagram into two regimes: free flow (p < p.)
and congestion (p > p.) (see Figure 2.1). Measurements on the free flow side are usually
well represented by a straight line, whereas measurements in congestion tend to be more

scattered.

2.2 Theoretical Background

2.2.1 Continuous Time Models

First order LWR model.
The simplest continuous macroscopic model is the scalar one proposed by Lighthill and

Whitham [77], and by Richards [93]. Hence, this model is called LWR. Lighthill and
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Whitham in 1955 were the first to pose a macroscopic dynamic model of traffic using Green-
shields’ hypothesis of a static flow/density relationship. LWR is based on conservation of
cars and is described by a single nonlinear hyperbolic equation, also known as conservation

law:
pu+ (D(p))a = 0, (2:2)

where function @ is the flow. In this model, the average speed v is a function that depends
only on density. The relation ®(p) = pv(p) is a fundamental diagram and is classically
assumed to be concave (does not need to be parabola, see Figure 2.3). It is defined for
p € [0,ps], where py is the jam density and corresponds to the density at which traffic
stops. The density p. for which the flow reaches maximum (the road operates at capacity),
is the critical density. Traffic speed v > ®(p.)/p. is called free flow speed. When the

density exceeds critical, the road becomes congested: the traffic speed falls below free flow,

v < ®(pc)/pe:

AP

#)

pc pJ

Figure 2.3: Fundamental diagram.

To include on- and off-ramps into the LWR model (Figure 2.4), we rewrite (2.2) in integral
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Ppx,. 1) > > 9ol 1)
//'/ \\‘< ;
ol S
| |

Figure 2.4: Freeway section with on- and off-ramp.

form and account for the on-ramp flow r; and off-ramp flow s;:

d [*n

7 p(z,t)dx = ®(p(xr,t)) — ®(p(zR, 1)) + 10 — Si,

which can be once again rewritten as

/wR oo, V) = /IR (D(p(2,0))e + 8(z — &)ra(t) — 8(z — F)ss(t)) du,  (2.3)

xr TL
where 0(z) is a Dirac delta function.

For multiple on-ramps (No, > 1) and off-ramps (Nofr > 1) equation (2.3) generalizes to

Non Nogy

plet) + (@l 0)e =0 — ()~ 3 ol — 2)s(t). (24
i=1 i=1
Clearly, in the absence of ramps, equation (2.4) becomes (2.2).

Second order Payne-Whitham model.

The assumption of the LWR model about the average speed v depending only on density
is not valid for certain traffic situations, such as capacity drop, an empirical feature of
freeway traffic, which is the difference of the maximum observed flow and the flow exiting

the bottleneck when there is a congestion upstream of the bottleneck. Hence, Payne [91]
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introduced an additional equation for v, producing the following system of equations:

pi+ (pv)s =0, (2.5)

-+ 0, 4 2 (Ap))s = (welp) =), (2:6)

where ve(p) is the equilibrium value for the speed, %(Ae (p))s is called anticipation term, and
1 (ve(p) —v) is called relaxation term of v within a certain time 7 > 0 towards its equilibrium

value ve(p). Equation (2.5) is the continuum equation and (2.6) is the acceleration equation.

Whitham himself proposed a generalization of the LWR model [108] adding the following
acceleration equation:
D 1
vt + vUg + ;px = ;(ve(p) —v)
with some constant D > 0. Clearly, this last equation is a special case of (2.6) with A.(p) =

Dp. Therefore, a model with system (2.5)-(2.6) is called Payne-Whitham model.

Payne-Whitham model develops analogy with gas dynamics. As in the gas dynamic case,
the term vv, is called the conwvection term and describes a motion of the speed profile. The
anticipation term reflects the reaction of identical drivers to the surrounding traffic situation.

The relaxation term describes the adaptation of the average speed v to the equilibrium speed

ve(p).

Severe drawbacks of the Payne-Whitham model were pointed out by Daganzo in [41|. In
particular, he showed that unlike in fluids where a particle’s behavior depends on the parti-
cles in front as well as on the particles behind, a car particle is only affected by the particles
in front; and that in Payne-Whitham model cars are allowed to travel with negative speeds,

which is unrealistic.



15

Second order ARZ model.
In an effort to rehabilitate the second order models and address the issues pointed out by
Daganzo, Aw and Rascle in [18] and independently Zhang in [110] came up with the following

second order, now known as Aw-Rascle-Zhang (ARZ), model:

(v+p(P)t +v(v+p(p))e =0, (2.8)

where p = p(p) is a “pressure” term, an increasing function of density. Aw and Rascle

considered

and Zhang used

Third order model.
The first third order model was proposed by Helbing in [54]. He considers not only equations
for density p and velocity v, but also for the velocity variance 6. The exact model proposed

by Helbing is

pi + (pv)e =0, (2.9)
vy + Vv —i—l( 0) —l(v()—v)—i—ﬁv (2.10)
t T D PU)x T elp p TT> .

H 2 K 2
et + 'Uem + 20’[);5 = 2;('[)55) + ;Hm + ;(GG(p) — 0), (211)

where 0. and v, are given smooth functions of density p, and u, k,7 are nonnegative con-

stants. The term —%HM results from the finite reaction and braking time that causes a
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delayed adaption of velocity to the respective traffic situation. The term %(6’e — 0) results
on one hand from the drivers’ attempt to drive with desired speed v., and on the other
hand - from the drivers’ interactions, i.e. from deceleration maneuvers in cases when a fast
vehicle cannot overtake a slow one. The desired velocity v, varies from one driver to another.
Therefore, even for small values of density p a finite velocity variance 0.(p) of the vehicles is
expected. By analogy with gas dynamics, it is said that model (2.9)-(2.11) is of Euler type,
if coefficients p and k both equal 0. Otherwise, this model is said to be of Navier-Stokes
type. Stability analysis and numerical simulations for the model (2.9)-(2.11) can be found
in [55]. As shown in [54|, this model is adequate to describe the stop-and-go traffic and the
velocity variance 6 can be used to predict traffic jams as its value grows immediately before

the congestion starts developing.

Hyperbolic phase transition model.

A hyperbolic phase transition model for traffic was introduced by Colombo in [35]. He
considers two phases corresponding to free and congested flows. In free flow phase the LWR
equation (2.2) holds. However, when the density goes beyond critical, the assumption that
the speed v is a function only of p is no longer valid, and the density-flow points are scattered
in a two-dimensional region (see Figure 2.5). Thus, the model is described by its free flow

phase

(p,a) € Q, (2.12)
pt + (pv)e =0, (2.13)
v=(1- ﬁ)vmax (2.14)
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and by its congested phase

(p,q) € o, (2.15)

pt + (pv)z =0, (2.16)

g+ ((¢ — Q)v)z =0, (2.17)
_(1_ P4

v=(1 pJ)p (2.18)

Here Qf and €2, denote free flow and congested domains, the weighted flow ¢ is a variable

AP

#)

pc pJ

Figure 2.5: Fundamental diagram for the hyperbolic phase transition model.

originally motivated by the linear momentum in gas dynamics, the treshold parameter )
distinguishes between possible behaviors of the flow (see [36]), and vpay is the maximum

Y

speed.

2.2.2 Discretization

As conservation laws can have discontinuous solutions, they cannot be integreated numeri-
cally by standard methods such as finite differences or finite elements that create instabilities
and wrong shock speeds [75]. Among the numerical schemes for scalar and systems of con-

servation laws |75, 49| the Godunov scheme [50] is widely used. It is first order, correctly
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predicts shock propagations, is free of oscillating behavior and has physical interpretation.
In this approach the time is discretized into intervals [kAt, (k + 1)At]. The computational
domain is divided into cells?, and at time kAt, the solution p of (2.2) is approximated by a

piecewise constant function p (see Figure 2.6) defined as
plz, KAL) = pF, Vi, Vo € [z, zy].

The computation of the approximation p(-, (k + 1)At) using the approximation p(-, kAt)

AP

Local Riemann Problem

VR

Figure 2.6: Piecewise constant approximation of the state.

requires two steps.

1. Compute exact solution of (2.2) given the initial condition

p(x, kAL) = p(x, kKAL) = pf, Vi, Vo € [z;_1, ;). (2.19)

'R
2. Take the average of p(-, (k + 1)At) over every cell [z;_1,z]:

1 [
k41
Tl k+ 1)At)dy.
Pi Awi/x“p(y’( JAt)dy

2Here and throughout the dissertation cell numbers increase in the direction of traffic flow: cell i is
upstream of cell 7 + 1.
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These two steps can be simplified as follows:

At
Lk ko gk
Pi —pZ+A$i(fz_1 fi) (2.20)
with
1 (k-‘rl)At
fi=ai [ Blolaiois (2.21)
At Jrae

being the average flow crossing x; from cell i to cell i + 1 during the time interval [kAt, (k+

1)At]. Finally, since function @ is concave, expression (2.21) can be replaced by

mine o, p ®(p), if pf < pyy,
fE= PSP t (2.22)

ek k
maxp§+1gp§p§ q)(p), if P > Pit1-
In summary, the Godunov scheme leads to a piecewise approximation of the state (density)

p at each time step, whose evolution can be computed for small time intervals if we know

the solutions of initial value problems with Heaviside initial conditions
plx) = . (2.23)

Such initial value problem is an abstraction of the problem (2.2), (2.19), and is called a
Riemann problem. It can be solved analytically for scalar conservation laws [75], and in
the system case, when there is no closed form solution, an approximate solver such as the
Roe average method [75, 49| can be used. The Godunov scheme, consisting in solving a
succession of local Riemann problems, is an effective method for simulating macroscopic

traffic models.

An example of Godunov scheme in action is the STRADA model [27], which is based on two

extensions of the basic LWR: a simple first in, first out model for the density dynamics in
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cells and a macroscopic model for the dynamics of traffic through intersections, consistent

with the boundary conditions resulting from the LWR.

Details of the LWR discretization via Godunov scheme can be found in [74].

The cell transmission model (CTM) proposed in [39] is another special case of the Godunov
difference scheme where the fundamental diagram has triangular form with maximal flow
F, slope v > 0 for the free flow speed and slope —w < 0 for the congestion wave speed (see

figure 2.7). In this framework, the Godunov scheme becomes

slope =v slope = —w

! )P
>
p. Py

Figure 2.7: The fundamental diagram for CTM is characterized by the maximum flow F
and speeds v, w.

pi(t+1) = pi(t) + A%i(fi_l(t) — fi(t)),

where At is the sampling period, Az; is the length of the ith cell, and f;, the flow from cell

i to cell ¢+ 1, is given by

fi(t) = min{vp;(t), w(ps — pi(t)), F'}.

Consequently, cell i can operate in one of two modes: free flow mode if f;_1 = min{vp;_1, F'},

or congested mode if fi_1 = w(ps — pi).
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Variations on the CTM theme can be found in literature. In [51| the asymmetric cell
transmission model (ACTM) is presented. This work also describes a convex optimization

problem whose solution is an optimal ramp metering strategy.

The linear hybrid system approach called switching mode model (SMM) based on CTM is

introduced in [86].

The Godunov method can be effectively applied to the second order ARZ models. The

details of discretization for various types of fundamental diagrams are described in [59].

By spatial discretization of the Payne-Whitham model (2.5)-(2.6), Smulders [97] defined
a macroscopic flow model that is continuous in time and discrete in space. Furthermore,
using the theory of martingales, he introduced a stochastic component based on a counting
process. The flow f is determined by a convex sum approximation of the average density p
and the speed v of the adjacent cells ¢ and ¢ + 1: The density dynamics is given by

dt  d&§—q1 —d§;

— 2.24
Az + Ax ’ ( )

dpi = (fi—1 — fi)

where &; reflects the stochastic departure process of vehicles from segment ¢, and the outflow
of cell 7 is determined by a convex approximation of the average density p and the speed v

of the adjacent cells ¢ and ¢ + 1:

fi=(api + (1 — a)pir1)(av; + (1 — @)viy1), (2.25)

with 0 <o < 1.

The speed dynamics is given by

1 1 D p;r1— p;
d’UZ' = —vi_l(vi_l — Ui)dt + ;(Ue(pi) — Ui)dt — A_ZE%

A , (2.26)



22

with ¢ > 0 being a constant.

With respect to the conservation equation (2.24) this approximation yields the conservation
of vehicles. However, unless a = 1, vehicles may flow out of an empty downstream cell
possibly generating negative density values. Moreover, if the downstream cell is congested
(pi+1 = ps and v; 41 = 0), vehicles will still flow out of the upstream cell into the saturated

downstream cell.

Examples of discrete Payne-Whitham type models can be found in [92, 102, 89, 66, 84, 80].

2.2.3 Control of Conservation Laws

In the context of traffic flow applications, the goal of control is to improve the system
efficiency by regulating the number of vehicles allowed to enter the freeway. Two fundamental
performance measures are used to assess the system efficiency: the total travel distance
(TTD) and the total travel time (TTT). TTD is defined as the sum of distances traveled
by all vehicles of the system over a given time period. Equivalently, it is a product of the
average trip length and the total number of vehicles, which can be computed as the integral

of flow over time and space:
TTD = / / f(x, t)dtde. (2.27)
X JT

TTT is the sum of all trip times incurred by vehicles during a given time period, or the
number of vehicles multiplied by the average trip time, which is computed as the integral of

density over time and space:

TTT:/X/Tp(a:,t)dtdx. (2.28)
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The goal of control is regulating the number of vehicles entering the freeway either to

maximize TTD or minimize TTT.

The optimal control theory of partial differential equations was initiated in the early 70’s
by Lions [79]. The proposed approach consists in computing the necessary conditions of
optimality in the form of the system equation, an adjoint equation of the same kind and a
vanishing first variation condition. This analytic approach that was successfully applied to
linear elliptic, parabolic and second order hyperbolic equations can be extended to nonlinear
systems using gradient-based recursive algorithms. This method is widely used: in airfoil
design [60, 62, 61]; fluid steering [23, 56, 34, 47|; gas steering [48]; control of water wave

[94, 32]; air traffic control [20].

Very few attempts have been made to stabilize conservation laws using feedback control.
In |43, 37|, the authors propose a feedback controller for open channels but consider only
smooth solutions and no shock waves. Krstic [67] proposed a feedback design for the Burgers
equation with small viscosity parameter. Unfortunately, as the control law is inversely
proportional to this parameter, the controller blows up in the nonviscous case. Successful
control design using a finite dimensional discretization has been reported in [19] for parabolic
partial differential equations. The main difficulty in applying this method to hyperbolic
conservation laws is that the classical finite difference scheme cannot be used for this class

of equations due to possible presence of shock waves.

The problem of control of a system of conservation laws although addressed in the literature,
remains difficult. A way around the problem, is to discretize the system first, then solve

the control problem for the resulting dynamical system. An example of such approach is
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the multirate linear quadratic control with integral action (LQI) [98]. Jacquet [59] shows
how Godunov discretization can be put in the form of a piecewise affine system if the
fundamental diagram is approximated by a piecewise affine function, and suggests that
constructive controller design methods proposed in [64, 38, 24| can be used to compute a

set of static feedback gains for a switched controller.

2.2.4 Arterial Models

Ziliaskopoulos and Lee adapt CTM [40] for arterial modeling [113]. The cell length is
generally much shorter for arterials than for freeways, hence the sampling period At must
be small enough to ensure

vAt < I,

where v is the free flow speed (Figure 2.7) and [ is the cell length.

Signalized intersections are modeled using diverging and merging cells®, and the signal phas-
ing (red and green). The flow of the diverging cells is computed according to the CTM during
the green phase and is set to zero during the red phase. In [112] CTM is used to formulate
the system optimum dynamic traffic assignment problem* as a linear programming (LP)

problem.

In |81], Lo transforms CTM into a set of mixed-integer constraints and casts the dynamic

signal-control problem® to a mixed-integer linear program. As a dynamic platform, this

3Diverging are the cells with one predecessor and two or more successors. Merging are the cells with two
or more predecessors and one successor.

4See Section 5.4 for definition of the system optimum dynamic traffic assignment problem.

®The problem of red/green signal phase assignment so as to minimize total travel time, number of slowed
down vehicles (vehicles with speed below free flow speed), or maximize total out-flow of the system.
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formulation is flexible in dealing with dynamic timing plans and traffic patterns. It derives
dynamic as well as fixed timing plans and addresses preexisting traffic conditions and time
dependent demand patterns. Dynamic intersection signal control optimization (DISCO)
that works with time-variant traffic patterns and derives signal timing plans is introduced
in [82]. The authors compare DISCO with the platoon based TRANSYT model |2] and
conclude that timing plans generated by DISCO outperform those generated by TRANSYT

by as much as 33% in delay reduction under a variety of demand patterns.

Feldman and Maher [45] investigate CTM applicability to the network of signalized arterials
and compare it with the TRANSYT model [2]. Modeling the arterial with a pair of traffic
signals with both CTM and TRANSYT, the authors conclude that CTM yields similar or

better results than TRANSYT does.

Amasri and Friedrich [14] also apply CTM to urban arterials and compare it with queueing
models. They use genetic algorithm (GA) to find optimal signal timing plan having CTM

as an underlying traffic flow model.

Alecsandru in [13] suggests modifications to CTM that include some microscopic features
such as disaggregating the traffic flow by lanes and explicitely modeling the effects of indi-
vidual lane-changing maneuvers; replacing some of the original parameters in the analyzed
network with stochastic variables to capture the effect of the random driving behavior; and
changes to the model equations that allow to keep track of different vehicle types. He also
compares this modified CTM with CORSIM [58] microsimulation, and shows that the sim-
ulation outputs (traffic density and total network travel time) of these two models match

well.
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Nie [88] presents a polymorphic dynamic network loading (PDNL) framework for modeling
road networks and solving the dynamic network loading problems®. PDNL employs notions
of links and nodes allowing different macroscopic traffic flow models to run on links while

treating nodes as points of merge, diverge or general intersections, signalized or not.

Skabardonis and Geroliminis [95| propose an analytical model for travel time estimation on
arterials. Their model is based on CTM, describes the spatial and temporal queuing at
traffic signals and explicitely considers the signal coordination in estimating traffic arrivals
at intersections. It estimates the travel time over an arterial link as the sum of free flow

time and the delay at traffic signal.

In these works authors do not discuss computational complexity of the proposed models.
The question how the size of a road network affects the efficiency of the proposed algorithms

remains open.

2.3 Software Tools

FREQ.

We start the description of macrosimulation software with FREQ |3]. It was developed in
the University of California, Berkeley, since 1968. FREQ employs a first order, LWR, model
and implements the recommendations of the HCM [101]. Current version of the software

is 12. It includes interactive graphical user interface with input checking and pre-selected

SProblems that aim at obtaining the link cumulative arrival/departure curves (hence time-dependent
link /path travel times) corresponding to a given set of temporal path flow rates on a congested network and
over a fixed time period.
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default values, graphical representation of simulation results, user-defined output options
including traffic performance contour maps. The two models contained within FREQ12
are: FREQI12PE, an entry control macroscopic model for analyzing ramp metering; and

FREQ12PL, a freeway macroscopic model for analyzing HOV facilities”.

The FREQ system of models enables the user to analyze geometric design improvements,
an on-freeway HOV facility, normal and priority entry control, or time-varying capacity
reduction situations such as reconstruction activities or freeway incidents. The analysis

emphasizes traffic simulation, traveler responses, and measures of effectiveness.

All this said about FREQ12, we must acknowledge that this tool is not user-friendly and
can hardly be used for practical purposes. The main drawback is the lack of documentation.
Only feature changes from version to version are documented, leaving the core of the simula-
tor to be treated as black box. Despite some context help provided by the application, only a
person thoroughly familiar with HCM [101] may feel comfortable adjusting parameters and
fully using features of FREQ. The second major hindrance to using FREQ is the fact that
configuration files for the simulator must be created from within the application itself. The
format of the binary configuration file is proprietary, and thus, the configuration file cannot
be automatically generated making it necessary for the user to manually fill in the parameter
values for every cell and ramp. The same is true for demand and off-ramp flow profiles—they
have to be manually typed in from within the FREQ application. Another serious limitation
of FREQ is its inability to model ramp control. No built-in ramp controllers are provided

and it is impossible to plug in user-defined controllers. This makes FREQ unsuitable for

"We could not find any documentation describing these models.
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modeling traffic responsive ramp metering strategies. Finally, the graphical output can be

printed but not saved making report generation using FREQ simulation results inconvenient.

The popularity of FREQ can be explained by historical reason. It was used by transportation
engineers for many years for lack of any better macroscopic simulation tool. The developers
of FREQ, however, never addressed issues of proper software design adding features incre-
mentally from version to version and not looking at the application as a whole. The result

is poor user interface and lack of documentation.

NETCELL.

NETCELL |30] is another macrosimulator developed at UC Berkeley. It implements the
CTM for networks [40]. The package consists of two applications: the simulator and the
plotter. The simulator produces text output, which can then be parsed by the plotter which
displays the simulation results along with the network configuration. NETCELL is free and
can be downloaded from [4]. As far as we know, NETCELL is currently not supported and

is hardly used by anyone because of the lack of proper user interface.

METACOR.

METACOR [44] is the first macroscopic simulation tool for corridor traffic, i.e. when free-
ways and arterials are modeled together in one network. It emerged as a fusion of METANET
[85] (for freeways) and SSMT |73], a macroscopic model for urban networks. METACOR
uses a discrete version of the Payne-Whitham second order model. It also includes control
and dynamic traffic assignment modules to simulate ramp metering strategies and route
information/guidance via changeable message signs. Currently, METACOR is being devel-

oped independently by the Technical University of Crete (TUC) and the Institut National
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de Recherche sur les Transports et leur Sécurité (INRETS). Individual copies of the former
version can be obtained from M. Papageorgiou. He warns, though, that the user interface
is rather primitive and there is no documentation in English. The latter version, known
as PX-Metacor [5] is supposed to be commercially available. The advertisement says that
additionally to Payne-Whitham, it supports LWR and ARZ models as well as micro- and
hybrid (macro + micro) simulation, and has quality graphical user interface. We were un-
able to get hold of PX-Metacor. It is still under development and has not been released at

the time of this writing.

SATURN.

SATURN [103, 104| was developed at the University of Leeds to evaluate traffic management
schemes on arterial networks. It contains an equilibrium traffic assignment algorithm based
on macroscopic flow relationships, where the travel time is an increasing function of flow. It
has been widely used to evaluate changes in circulation (one-way streets, pedestrianization
schemes) and other traffic management schemes. It has also been used to evaluate the
effectiveness of route guidance systems and road pricing studies. The major limitation of
SATURN is that it was developed specifically for arterials and is unsuitable for freeway

modeling. SATURN has developed into a commercial application [6].

CORFLO.

CORFLO |76] contains the FREFLO |92] model for freeways and the NETFLO1, NETFLO2
models for arterials. The interface of adjoining subnetworks is accomplished by defining in-
terface nodes representing points at which vehicles leave one subnetwork and enter another.

Associated with each subnetwork is a vehicle holding area where exiting vehicles are held
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until the next subnetwork can receive them. Traffic may be assigned to the different subnet-
works using the TRAFFIC assignment model (a static equilibrium assignment algorithm).
FREFLO is based on the Payne-Whitham model. Unfortunately, it had serious errors in
implementation, which caused unrealistic simulation results and were never fixed. It can
handle different vehicle classes (busses, carpools), HOV facilities, and incidents on the free-
way, but it cannot model ramp operations. NETFLO1 is a microscopic event scanning
simulator. NETFLO2 models traffic using flow profiles similar to the TRANSYT model [2].
Unlike TRANSYT, however, it can simulate signals with different cycle lengths and queue
spillbacks. There is little information published on the development and application of the
NETFLO models. CORFLO has been designed to evaluate freeway and arterial design
and control modifications, impacts of incidents and diversion policies. As far as we know,

CORFLO is currently obsolete.

DYNASMART.

DYNASMART [63] was developed at the University of Texas at Austin as both simulation
and assignment tool. Traffic flow is simulated using the Payne-Whitham model. It can sim-
ulate traffic signals, ramp meters and incidents. It calculates optimal travel paths based on
the simulated travel times, and simulates the movements and routing decisions by individ-
ual drivers equipped with in-vehicle information systems (update of information and desire
to switch based on thresholds). DYNASMART is available as a research tool and is now
supported by the University of Maryland [7]. Two versions of DYNASMART are available:

DYNASMART-X for real-time analysis, and DYNASMART-P for planning.
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Chapter 3

CTM: Qualitative Theory

This chapter largely reproduces [52]. It studies the cell transmission model (CTM) [39, 40|
as a dynamical system. The freeway is divided into N cells, indexed 1,--- ,N. Cell ¢ is
characterized by a single state variable, its density n;, so the state of the freeway is the
N-dimensional vector n = (ng,---,ny). Vehicle movement in a cell is governed by the
familiar triangular fundamental diagram. If the density is below critical, vehicles move at
free flow speed; if it is above critical, the cell is congested, speed is lower, and flow from the
immediately upstream cell is constrained. Thus the state of a freeway obeys a N-dimensional
nonlinear difference equation. When the exogenous demand pattern of on-ramp and off-ramp

flows is constant, the difference equation is time-invariant.

CTM is popular for its flexible use in macroscopic simulation. Compared with microscopic
simulators, it requires negligible computational effort. It can be extended to road networks

(|27]) and urban roads with signalized intersections (|81, 14|). It appears well-suited for
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calibration with point measurements of aggregate traffic variables that are routinely available
(|78, 87]). It is straightforward to formulate questions of ramp metering (|42, 111, 51|) and

dynamic traffic assignment ([28, 112]|) by posing optimization problems within CTM.

Proofs for lemmas can be found in Section 3.5.

3.1 The Model

Following [51], figure 3.1 shows the freeway divided into N cells, each with one on- and one
off-ramp. Vehicles move from left to right. Cell ¢ is upstream of cell ¢ + 1. There are two
boundary conditions. Free flow prevails downstream of cell N; upstream of the freeway is
an “on-ramp” with an inflow of rg. The flow accepted by cells 1 is fo(k) vehicles per period

or time step k. The cumulative difference leads to a queue of size ng(k) in period k.

Jy S L Iy
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Figure 3.1: The freeway has N cells. Each cell has one on- and one off-ramp.
Table 3.1 lists the model variables and parameters with plausible values. The length of
all cells is normalized to 1 by absorbing differences in length in the speeds v;,w;. To be

physically meaningful one must have 0 < v;,w; < 1. The parameter values in the table

correspond to the fundamental diagram of Figure 3.2. Its triangular form incorporates the
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Symbol Name Value Unit

cell length 1  miles

period (time step) 0.5 minutes
F; capacity 20 veh/period
v; free flow speed 0.5 cell/period
wj congestion wave speed 0.5/3 cell/period
i jam density 160  veh/cell
ng critical density 40 veh/cell
B; split ratio €[0,1) dimensionless
Bi complementary split ratio =1 — 3; € (0,1] dimensionless
Vi on-ramp blending factor €1[0,1] dimensionless
k period number integer dimensionless
fi(k) flow from cell 7 to ¢ + 1 in period k variable  veh/period
si(k),r;(k) off-ramp, on-ramp flow in cell i in period k& variable veh/period
n;(k) number of vehicles in cell 4 in period k variable  veh/cell

Table 3.1: Model parameters and variables.

assumption that is frequently used in our analysis:

F, = Bivin{ = w; (7 —n). (3.1)

(3

slope =v slope = —w,

F=Bvni=w,(7,—n)

v

Figure 3.2: The fundamental diagram is characterized by the maximum flow F; and speeds
Vi, W;j.

Off-ramp flows are modeled as a portion [3;(k) of the total flow leaving the cell:

si(k) = Bi(k)(si(k) + fi(k)), or si(k) = [Bi(k)/(1 — Bi(k))] fi (k).



34

We assume constant split ratios 3; (By = 0). With 3; = 1 — 3;, the CTM model for k > 0 is

nl(k + 1) = nl(k) — fz(k‘)/BZ + fz_l(k‘) + rz(k‘) 1<i<N, (3.2)

fi(k) = min{3; vi[ni(k) + ~iri(k)], wis1[Rig1 — nig1 (k) — vigariqa (k)] B}, 0<i < N,

(3.3)
fn(k) = min{By vy [nn (k) +ynr(k)], Fi ), (3.4)
no(k +1) = no(k) — fo(k) +ro(k). (3.5)

Flow conservation in cell ¢ > 0 is expressed by

ni(k +1) = ni(k) — fi(k) + fi—1(k) + ri(k) — si(k),

which is equivalent to (3.2), using s;(k) =

D@

fi(k). Flow conservation at 0 is expressed by
(3.5). The flow f;(k) from cell ¢ to i + 1 is governed by the fundamental diagram (3.3) with
this interpretation: 3; v;[n;(k) +7:7;(k)] is the number of vehicles that can move from cell i
to ¢+ 1 in period k; wit1[fi+1 — nit1(k) — Yir17i+1(k)] is the number that i 4+ 1 can accept;
and Fj is the capacity or maximum flow from cell i to ¢ + 1. Equation (3.4) indicates there
is no congestion downstream of cell N. Lastly, it is implied that the flows s;(k) are not

constrained by off-ramp capacity.

The state of the system is the N-dimensional vector n(k) = (n1(k),--- ,nn(k)). The queue
size ng(k) is mot included in the state. Cell i is said to be uncongested in period k if

ni(k) < nf, and congested - otherwise.
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3.2 Structure of Equilibria

The parameters 7; € [0,1] in (3.3), (3.4) reflect the relative position of the on-ramp in cell
i ([51]). For simplicity we assume 7; = 0, indicating that the on-ramp is at the beginning

of each cell as in Figure 3.1. (However, the results below hold for a different choice of ~;.)

With v; = 0, equations (3.2)-(3.5) simplify:

ni(k +1) = ni(k) — fi(k)/Bi + fi1(k) +ri(k), 1<i<N, (3.6)
filk) = fi(n(k)) = min{B; vini(k), wi1[Rit1 — nipa (k)] Fi}, 0<i<N, (3.7)
fn(k) = fn(n(k)) = min{By vnny(k), Fn}, (3.8)
no(k +1) = no(k) — fo(k) + ro(k). (3.9)

In view of (3.1) a useful alternative to (3.7) is

fi(k) = min{B; vini(k), F; — wiy1[nig1(k) — nfq], Fi}, (3.10)

Y

and if cell i 41 is uncongested (n;11(k) < nf ), (3.10) simplifies to

fi(k) = min{3; vin;(k), F;}. (3.11)

Split ratios 3y -+ - , By are fixed. Assume stationary demands r;(k) = r;. Each on-ramp de-

mand vector r = (rg,- -+ ,ry) induces a unique equilibrium flow vector f(r) = (fo, -, fN)
calculated as

fo = o, (3.12)

fi = Bi(fica+ri), 1<i<N. (3.13)
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The function r +— f(r) defined by (3.12), (3.13) is bijective. We say that demand r is feasible
if0< f; < F;, 0<14<N;itis strictly feasible if 0 < f; < F;, 0 <4 < N. A strictly feasible

demand induces an equilibrium flow with excess capacity in every cell.

State n = (n1,--- ,ny) is an equilibrium for a feasible demand r with induced flow f = f(r)

if the constant trajectory n(k) = n is a solution of (3.6)-(3.8):
fi = min{B; v; ni, F; — wiy1(niy1 —nfyq), Fi}, 1<i<N-—1, (3.14)

fn =min{By vy ny, Fy}. (3.15)

At equilibrium n, cell 7 is said to be uncongested if 0 < n; < nf and congested if n; > nf.

The equilibrium n is uncongested if all cells are uncongested, otherwise it is congested.

Let E = E(r) be the set of equilibria, i.e., all solutions of the system of equations (3.14)-
(3.15), corresponding to a demand r. This section is devoted to characterizing E(r) and
the pattern of congested cells for each n € E(r). If r is not feasible, there is no solution to

(3.14)-(3.15), so E(r) = 0. Lemma 3.2.1 implies that E(r) # 0 if r is feasible.

Lemma 3.2.1 With feasible demand r, system (3.6)-(3.9) has a unique uncongested equi-

librium n*(r).

Proposition 3.2.1 Suppose at equilibrium n, cell 1 + 1 is uncongested and cells i — j,- -+ ,1

are congested. Then

fi=F, B'F—ri=fii1<F_1, -, fi-j-1<Fi_j_1. (3.16)
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Corollary 3.2.1 The same system with strictly feasible demand v has a unique equilibrium,

so E(r) = {n"}.

The next result is a partial converse to Proposition 3.2.1.

Proposition 3.2.2 Suppose f; = F;, fi_1 < F;_1,---, fi—j < F;_j. Suppose at equilibrium

n, cell 1 — j 1s congested. Then cells i — j,--- ;i — 1,4 are all congested at n.

We say that i is a bottleneck cell for demand r (or induced flow f) if f; = F;. Suppose there
are K > 0 bottleneck cellsat 1 < I} < Iy--- < Ix < N. Partition the freeway into 1 + K

segments S, -, SK*! comprising contiguous cells as follows:
Sl — {17... 7[1}7 . SE — {IK—1+17”’ 7IK}, SR+ {IK—i—l,-” ,N}. (3.17)

If there are no bottleneck cells, K = 0, and S* = {1,---, N} is the entire freeway. On
the other hand, if the most downstream cell is congested, I = N, and SE*! is the empty

segment.

Proposition 3.2.3 The cells immediately downstream of the segments S',--.  SK+1 qgre

uncongested. Consequently, for k=1,--- | K,

f]k = min{BIkvfank,FIk}. (3.18)
Partition the N-dimensional state n = (ny,--- ,ny) into sub-vectors n = (n',--- ,n+1) in
conformity with the segments S, --- , S5+ 5o n* has components {n;,i € S¥}. Since the

equilibrium flow immediately upstream of segment S* is known (it is equal to capacity) and
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the cell immediately downstream of S* is uncongested, the equilibrium conditions (3.14)-
(3.15) partition into 1 + K decoupled conditions, one for each segment. Thus,

n¥ satisfies for k=1,--- , K,

fr, = min{Brvr,nr,, Fr, }, (3.19)

fi = min{Bving, F; — wig1(niyr —nf ), B}, Iy <i < Iy (3.20)
nf+1 satisfies

fn =min{3y vy ny, Fy}, (3.21)

fi = min{B; vi ni, F; — wiz1(nigq1 —nfy), Fiy, Ix <i<N. (3.22)

These decoupled conditions decompose the equilibrium set.

Proposition 3.2.4 The set of equilibria E(r) factors into the product set,
E(r) = EYr) x --- x EX(r) x EEFL(r), (3.23)

in which EX¥1(r) is the set of solutions n®T1 of (3.21)-(3.22) and E*(r) is the set of

solutions n* of (3.19)-(3.20) for 1 < k < K.

We now fully characterize the components E'(r),--- , EXT1(r). Recall that the flow in all

non-bottleneck cells is strictly below capacity:

fi<by, ig{h, - Ik} (3.24)

Lemma 3.2.2 EX+1(r) = {n®E+1Y consists of a single point, the component of the uncon-

gested equilibrium n™ corresponding to segment ST+ Hence n“E+1 is given by

ny,K-I—l = (Bﬂ)i)_lfi, Ig <1< N. (3.25)

(3
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The next result gives an explicit expression for the equilibrium set E¥(r), 1 <k < N.

Lemma 3.2.3 n* € E¥(r) if and only if either (i) there is no congested segment at n* and

n* =n®F or (i) there evists j € {Iy_1+1,--- , I} such that at n* cells I,_y +1,--- ,j—1

are uncongested, cells j,--- , I, are congested and n* is given by (see figure 3.3)
nf o= nl=Bu) i, ei<i<j+l (3.26)
nf = nf+w; (Fio1— fis1), j<i<Iy (3.27)
nir € [(Bjmvj-0) " fjmnn§o] and nf = 0§ +wy (Fjoy = fim1), or (3.28)
nf_y = nfy=Bj-1vj-1) " fim1 and nf € (n§,n§ + wi N (Fjo1 — f-1)] (3.29)

Jj=2 j-1 Jj j+1
Sl -
= - Sio - e A -
Jj=1 J
S R Nl B/ N

»

Figure 3.3: Equilibrium satisfying (3.26),(3.27) and (3.28) (top) or (3.29) (bottom).

Three densities appear in the expression of E*(r), namely n¥ = (B;v;) ! fi, the uncongested

equilibrium density; n{, the critical density; and the congested equilibrium density

n" = né +w; H(Fi—1 — fio1). (3.30)

By Lemma 3.2.3

E*(r) = {n"*} | Ef(r), (3.31)

jeSk
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in which Ef(r) is the set of n* satisfying (3.26)-(3.29):

Eir) = A} 1 onfonmndy, i) | ng € (nf,n$)
U {(n?k71+1, T 7n3‘t—27nj—17n§(m7' e ’n?]zn) | nj-1€ [n?—lvn§—1]}' (332)

_ U _ (R -1 _ ,cC :
Observe that fr, ;41 = Fp,_,+1, n},_ 1 = (Br,_,+1v1,_,+1) " Fi = ng, 41+ So it follows

from (3.32) that n"* ¢ Ei (r). Hence (3.31) simplifies to

E*r)= | Ef(r). (3.33)
jeSk

Observe next that the first set on the right hand side in (3.32) forms a straight line segment

Ef_ connecting the points

nk(j—) = (n¥_ 1y ondnSnSYy, - g (3.34)
and
nk(j) = (n?k,l—i-l? e 7n;'L—17 n;on7 e 777‘?:”)' (335)

Denote this line segment in terms of its endpoints as

Ef_(r) = (n*(j=),n"(j)]- (3.36)

Similarly, the second set on the right hand side in (3.32) forms a straight line segment

connecting the points n*(j) and
nk(j+) = (MY, 41> sMfg,nG_q,n" - "), (3.37)

and denoted as

EF (r) = [n*(5), n" (4. (3.38)
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The two line segments have exactly one point, n*(j), in common. Thus

Ef(r) = BY_(r) U ES, (1), (3.39)

and, by comparing (3.34) and (3.37) one sees that
n*(j+) =nt(j - 1-), (3.40)

so that E]k(r) and EF.

(J_l)(r) have exactly this point in common. Lastly, since the densities

ny < ng < ni°" are ordered, so are the endpoints:

<nf(jo) <nfG) <af ) =af (G- D) et D < (341)
(For vectors z and y, x < y means x; < y; for all components i.)
Figure 3.4 depicts the projection of Ef(r) = E;“_(r) U E;%r(r) on the two dimensional space
spanned by n?_l,ng? and the projection of Ef_l = EF )_(7") U Er )+(r) on the space

(4-1 (3-1

k

spanned by n J

_z,n;?_l. According to (3.40) the two highlighted points in the figure are the

Same.

k

Figure 3.4: Projection of Ef_l(r) on coordinates ni o,
on coordinates n?_l,ng? (right).

"?—1 (left) and projection of Ef(r)

Observe lastly that the straight line segments E(;_1)_ and Ej are aligned.

Theorem 3.2.1 follows from Proposition 3.2.4, and Lemmas 3.2.2 and 3.2.3.
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Theorem 3.2.1 Let r be a feasible demand, f the induced equilibrium flow, and E(r) the
equilibrium set. If r is strictly feasible, E(r) consists of the unique uncongested equilib-
rium n*. Otherwise, partition the freeway into segments S, ---  SK¥L corresponding to the
bottleneck cells 1 < Iy < --- < Ix < N. Then E(r) is the direct product (3.23):
E(r) = EY(r) x --- x EETL(r).
Each E*(r) decomposes as the union (3.33):
E'ry=J Ef(r), 1<k<K EXTY(r) = {n»FT1Y,

jesk

Each Ef(r) 1s the union of two connected line segments, given by the ‘closed form’ expression

(3.36), (3.38), (3.39). E*(r) is the union of |S*

connected straight line segments. (|Sk| =

|Iji1 — Ix| is the number of cells in S*.)

Consecutive sets Ef(r) and Efﬂ(r) have exactly one point in common, and they are ordered:

if nk e Ef(r) and n'* € E;‘?_H, then n* > n'*. In particular, the most congested equilibrium

in E¥(r) is n®™* with components n°™,i € S*, given by (3.80). Every n¥ € E*(r) lies

between the uncongested equilibrium n™* and n°™* i.e. n“F <nF < nemk  Hence for all

n € E(r),
nu é n é nCOTL

)

con,ly . con,K7 nu,K—l—l)'

in which the most congested equilibrium is n“" = (n ,n

Lastly, E(r) forms a connected, topologically closed surface of dimension K in the N-

dimensional state space.

Proof. Only the last assertion needs proof, which follows from the observation that E(r)

is the product of K + 1 sets, E*(r),--- , Ef*1(r), the last of which being a single point has
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dimension 0, and each of the rest being a union of connected line segments has dimension

1. O
f=F, [=F, S<Fy
—> —> —>
1 I o 1, o N
C T T T = LT T 7]
-« e e
s s? s’

Figure 3.5: The demand induces two bottleneck cells and three segments. S® is uncongested.
In the depicted equilibrium S? has one congested cell and S has three congested cells.

Figure 3.5 illustrates the use of Theorem 3.2.1. The demand induces a flow that gives
rise to bottlenecks at I, I which partition the freeway into three segments S, 52,83, S3 is
uncongested. An equilibrium determines the number of congested cells in the other segments.
The figure illustrates an equilibrium in which one cell in S? and three cells in S* are congested
(depicted by shaded rectangles); the others are uncongested. The congested cells must lie

immediately upstream of the corresponding bottleneck.

3.3 Dynamic Behavior

Theorem 3.2.1 fully characterizes the equilibrium behavior of any CTM model. This section
is devoted to the complete description of the qualitative behavior of all trajectories of the V-
dimensional difference equation system (3.6)-(3.8). We assume a constant feasible demand

r and write (3.6)-(3.8) as
ni(k+1) =gi(n(k)), 1<i<N. (3.42)
Let g = (g1, -+ ,g9n). We will consider initial conditions

neX={n|0<n; <n;,1<i<N} (3.43)
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Each initial condition n(0) € 3 generates a trajectory {n(k),k > 0} according to n(k+1) =

g(n(k)).

For two vectors z,y in RY, write

r<y & zyx#y,

rLy & 1<y

Following [57] say that g is strictly monotone if, for x,y € ¥,

r<y=g(r) <gy)

g is strongly monotone if

r<y=g(r) < gy).

Lemma 3.3.1 The map g is strictly monotone, but it is not strongly monotone.

[57] surveys the theory of monotone maps. The most powerful results, however, require

strong monotonicity, and do not apply to CTM.

Let the equilibrium flow induced by the demand r result in bottlenecks at 1 < I < --- <
Ix < N, and let S',---, SE+1 be the corresponding freeway partition. By Theorem 3.2.1
every equilbrium lies between the uncongested equilibrium n* and the most congested equi-

librium n®",

n' <n <n“" neE(r). (3.44)
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Let nn(k), k > 0 be the trajectory starting with the empty freeway, 7(0) = 0, and let n(k), k >
0 be the trajectory starting with the completely jammed freeway, 7;(0) = 74,1 < i < N.
Let n(k) be a trajectory starting in any state n(0) € ¥. The next result shows how much

monotonicity of g constrains the trajectories of the CTM model.

Lemma 3.3.2 (i) Every trajectory lies between {n(k)} and {n(k)}:

a(k) < n(k) <n(k), k> 0. (3.45)

(ii) The trajectory starting with the empty freeway converges to the uncongested equilibrium
u

n-.

lim n(k) = n". (3.46)

k—o0
(i5i) The trajectory starting with the completely jammed freeway converges to the most con-

gested equilibrium nm™:

lim n(k) = n“". (3.47)

k—o0

Lemma 3.3.2 leads to Theorem 3.3.1: If the demand is strictly feasible, then n" is a globally,

asymptotically stable equilibrium.

Theorem 3.3.1 Suppose r is strictly feasible. Then every trajectory converges to n".

Proof. By Lemma 3.2.1 E(r) = {n"}, so n®" = n*. Hence both n(k) and n(k) converge

to n*. By (3.45), every trajectory n(k) converges to n" as well. O

If r is not strictly feasible, the equilibrium set E(r) is infinite and there is no easy way to

analyze how trajectories behave. The main result of this section, Theorem 3.3.3, is that
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every trajectory converges to some equilibrium. Before getting into the complexities of the

proof, we study three examples.

Examples

Example 1 is a freeway with two identical cells, each one mile long. The fundamental
diagram, equilibrium flow, and equilibrium set £ are shown in Figure 3.6. The critical
density n§ = 100 veh/mile; the jam density n; = 400 veh/mile; free flow speed v = 60 mph

and the congestion wave speed w = 20 mph. The demand vector r = (rg = 4800, =

4800 4800 6000
—»
1200
I

—_
L E  n“"=(160,160)

°
‘ 7n"=(80,100)

|
100 160

»
»
n

v

>
160 400 7,

1

Figure 3.6: Freeway, equilibrium flows, fundamental diagram, and equilibrium set E of
Example 1.

0,72 = 1200), all in vehicles per hour (vph). The upstream flow o = fy = 4800 vph, and
fo = F» = 6000 vph. Thus cell 2 is the only bottleneck. The uncongested equilibrium
n* = (80,100) and the most congested equilibrium n®" = (160, 160). By Theorem 3.2.1,
the equilibrium set E consists of two straight line segments shown in the figure (also see

Figure 3.4).

The phase portrait of Figure 3.7 displays the orbits of the two-dimensional state with initial

conditions on the boundary of the square ¥ = [0,400] x [0,400]. (An orbit is the set of
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states {n(k) | k > 0} traversed by a trajectory k — n(k).) We analyze the orbit structure

displayed in Figure 3.7. The observations made below hold in general.

a00f NN AN LT

N NSRANIE

350

300

§
N
N
§
§
2501} § i
N
= 200} § i
\\ .
150 F DY .
NN
100 §& \S
LS ITIIN \ S
of 7 VLT \\\\\\\\\\\\\\\\\\\\ ]

N

Figure 3.7: Equilibrium set and orbits of Example 1.

1. Every trajectory converges to an equilibrium point in £. As a consequence, the state

space 2 is partitioned as
s = =),
nek

in which ¥(n) is the set of all initial states whose trajectories converge to the equilib-

€om) includes

rium n. By monotonicity X(n*) includes all initial states n < n*, and X(n

mn

all initial states n > n®". By contrast, for all other equilibrium states X (n) is sim-

ply a one-dimensional manifold. (In the general case, ¥(n) is a (N — K)-dimensional
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manifold, Corollary 3.3.1.)

2. The figure shows four equi-time contour plots, labeled k = 12s,--- ,600s. For example,
the contour plot & = 60s is the set of points reached by all trajectories at k& = 60
seconds. As k increases, the contour plots converge towards the equilibrium set E. As
might be expected, the contours initially converge rapidly and the convergence slows
down as FE is approached. More interestingly, consider the orbit going through the
state n = (50, 340) on the k£ = 60 contour. In this state cell 2 is congested but cell 1
is not. However, by time 200 (whose contour plot is not shown) the state has moved
to approximately (150, 250), indicating both cell are congested. The time difference of
200 — 60 = 140 seconds is roughly predictable: because the congestion wave speed is
20 mph it takes about 3 minutes for the congestion wave to travel the one mile-long

cell.

3. According to Theorem 3.2.1 the equilibrium set is ordered: if n,n’ are two equilibria,
either n < n/ or n’ < n. Consequently, downstream cells must get congested before
an upstream cell. As seen in the figure, every trajectory in which cell 1 is getting

congested also congests cell 2.

4. All equilibria support the same equilibrium flows. However at equilibrium n* the speed
is v = 60 mph throughout, whereas in n°" the speed is 4800/160 (flow/density) or
30 mph. Thus, although both n* and n“"™ achieve the same throughput, the freeway

travel time in n% is one-half of that in n™.

In Example 2 the flow rg is slightly reduced from 4800 to 4750 vph, so the demand becomes
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strictly feasible and the equilibrium set collapses to the single uncongested equilibrium n".
The resulting phase portrait in Figure 3.8 can be compared with Figure 3.7. The trajectories
are nearly identical, except that when they approach the equilibrium set of Example 1 they

turn and converge to n" =~ (80, 100).
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Figure 3.8: Equilibrium set and orbits of Example 2.

Example 3 shown in Figure 3.9 is a modification of Example 1 in that there are three
identical cells. The fundamental diagram is the same as in Example 1. The demand ry =
4800,71 = r9 = 0,73 = 1200. Again the most downstream cell, cell 3, is the only bottleneck.
The equilibrium set now comprises three straight line segments, connecting the uncongested
equilibrium n* = (80,80,100) and the most congested equilibrium n®" = (160, 160, 160).
The orbit structure supports the observations made earlier: although it is less apparent in

the figure, ¥(n) is a 2-dimensional manifold if n # n*, n®".
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Figure 3.9: Freeway, equilibrium set and orbits of Example 3.

We resume the general discussion. As before let r be a demand vector and ¢ the resulting

equilibrium flow vector, i.e.; (see (3.12), (3.13))
¢o =70, i =Pi(pi-1+7i), 1<i<N. (3.48)

Let 1 <I; < --- < Ig < N be the bottlenecks, and S!,--- , SK*! the corresponding freeway

partition. By Theorem 3.2.1 the equilibrium set decomposes as
E(r) = E'(r) x - x EX(r) x {n®5+11, (3.49)

Let n(k),k > 0, be the trajectory starting at 0 and converging to n". Let n(k) be the

trajectory starting at 7 and converging to n®".
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Fix an initial condition n € ¥ and let n(k),k > 0, be the trajectory starting at n.

We recall some facts from the general theory of dynamical systems. The w-limit set of n is

the set of all limit points of the trajectory {n(k)}:

w(n) = {p € ¥ | there is a subsequence ky, with lim n(k,,) = p}.

m—0o0
w(n) is non-empty, compact, and invariant, i.e., if p € w(n) the trajectory starting at p stays
within w(n). Furthermore the trajectory converges to w(n), i.e., limg d(n(k),w(n)) = 0, with
d(z,w(n)) = min{lz —p| | p € w(n)}.
Our objective is to prove that the trajectory {n(k)} converges to an equilibrium, which is

achieved in two steps. The first step shows that w(n) always contain an equilibrium (Lemma

3.3.4). The second step shows that every equilibrium is stable (Theorem 3.3.2).

We adopt the following notation. For any p € 3,
min{B;vipi, wit1[Ris1 — piv1), i}, 1<i< N

min{Byvnpn, Fn}, i =N

and

filk) = fi(n(k)).
Lemma 3.3.3 (i) Suppose n* < p < n". Then

(11) If p € w(n), n* < p < nn.

(113) Along the trajectory {n(k)}

lim inf f;(k) > ¢i, all i, and klim filk)=F;,, ie{li, - ,Ix}. (3.51)

k—o0
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To simplify the discussion we assume that ng, the upstream ramp queue, is always so large
as to maintain

fo(k) =ro=¢o, k=>0. (3.52)

Lemma 3.3.4 w(n)N E(r) # 0.

Recall the definition of (Lyapunov) stability: An equilibrium n® is stable if for every € > 0
there is § > 0 such that |n —n°| < ¢ implies |n(k) —n¢| < € for all k, in which {n(k)} is the

trajectory starting at n.

Fix an equilibrium n®. By Theorem 3.2.1 n® has the form

nt — (ne,l7 . 7ne,K7 ne7K+l)

)

with n& K+l = pwK+l pem ¢ E7(r) for some j € S™, 1 <m < K + 1.

Lemmas 3.3.5-3.3.6 will prove that if |n —n¢| < 6, and n(k) = (nt(k),--- ,nf(k),nfT1(k)),
k > 0 is the trajectory starting at n, then there exists an equilibrium n°, possibly different

from n®, such that

|n®™ —n®M <€ lim n™(k)=n%", 1<m<K+1, (3.53)

— 00

Lemma 3.3.5 (3.53) holds for m = K + 1. In fact

lim n® (k) = pwEFl = pek+l (3.54)

k—oo

Lemma 3.3.6 Suppose (3.53) holds for m — 1 > 0. Then it holds for m.
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Theorem 3.3.2 Ewvery equilibrium n® € E(r) is stable. In fact for € > 0 there is § > 0 such
that if In — n®| < ¢, the trajectory {n(k)} starting at n converges to an equilibrium n° with

|n® —n°l <.

Proof Lemmas 3.3.5-3.3.6 prove the second part of the assertion which implies stability. O

Figure 3.7 illustrates Theorem 3.3.1. Trajectories starting close to an equilibrium all converge

to some nearby equilibrium.

Theorem 3.3.3 The CT'M model is a convergent system, i.e. every trajectory converges to

some equilibrium in E(r).

Proof Consider any trajectory {n(k)}. By Lemma 3.3.4 there is an equilibrium n® and a
subsequence {kp,} along which n(k,;,) — n° as m — oo. By Theorem 3.3.2 the trajectory

must converge to this equilibrium. O

Recall that the stable manifold ¥(n¢) of an equilibrium n® € E(r) comprises all n € ¥ whose

trajectories converge to n®. The next result characterizes the orbit structure.

Corollary 3.3.1 If r is strictly feasible, E(r) = {n“} and X(n") = X. If r is not strictly
feasible, E(r) is a K-dimensional manifold and 3(n¢) is a (N — K)-dimensional manifold

for n® # n* ne" whereas X(n"), X (n") are N-dimensional manifolds with boundary.
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3.4 Implications for Ramp Metering

We explore two implications for ramp metering. The first considers the case when the
demand vector r is infeasible, i.e., the associated equilibrium flow ¢ given by (3.48) is such
that it exceeds the capacity in some cell. Peak hour demand may be infeasible in this sense.

We begin with an example to illustrate the issues.

£/ =2000 ach,=1200 r,=2700 xp,=1500 ;=0  ch,=1200 r,;=1200

r,=20000p,=1160.97,=2700 xp, = 1468.7,=0  acp;=1175 r,=1300

Figure 3.10: Freeway, on-ramp and off-ramp flows of Example: feasible demand (top); excess
demand (bottom).

Example. The upper part of Figure 3.10 displays a freeway with four identical cells, each
with capacity 6000 vph. The demand vector r = (rqg = 4000,7; = 2000,ry = 2700,73 =
0,74 = 1200). All split ratios are the same: 3; = 3 = 0.2, so § = 0.8 and o = B[F]~! =
0.25. The demand r is feasible and the equilibrium flow ¢ = (¢9 = 4000, p1 = 4800, Py =
6000, ¢3 = 4800, ¢4 = 6000). The off-ramp flow in cell i is ap;. Cells 2 and 4 are bottleneck

cells, with equilibirum flows equal to capacity.

Now consider the demand 7 in which 74 = 1300 > r4 and 7; = 7;,0 < ¢ < 3. This demand
is not feasible because it would increase ¢4 to ¢3 + 74 = 6100, which exceeds capacity.
Evidently, the increased on-ramp flow in cell 4 will create congestion in cell 4 and force a

reduction in the flow out of cell 3 from ¢3 = 4800 to ¢3 = 4700. This reduction from ¢3 to
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<;~53 is achieved by a reduction in the flow from cell 2 from ¢, = 6000 to <z~52 = 5875, which in
turn reduces the flow from cell 1 from ¢; = 4800 to ¢, = 4673.75, and ultimately the flow
from cell 0 from ¢y = 4000 to ¢y = 3804.7. As a result the on-ramp queue ng will grow at

the rate of 4000 — 3804.6875 = 195.3125 vph. All cells will become congested.

The reductions in the equilibrium flow from ¢ to ¢ will proportionately reduce the discharge
at the off-ramps from ag¢; to a@;. The new equilibrium flows are displayed in the lower part

of the figure.

The example suggests some observations.

1. The infeasible demand 7 leads to a unique equilibrium flow gz~5 This is the flow corre-
sponding to the feasible demand 7/, which is the same as 7, except that the upstream flow
is reduced from ¢y = 4000 to <;~50 ~ 3804.7. The system converges to the (unique) most

congested equilibrium corresponding to 7/ .

2. The reduction in the flow at the upstream ramp of about 196 = 4000 — 3804 vph is more
than the ‘excess’ demand of 1300 — 1200 = 100 vph at the ramp in cell 4. Suppose that
we meter the on-ramp in cell 4 and admit only 1200 vph. The queue at this ramp will now
grow at 100 vph, but the resulting equilibrium flow and the off-ramp discharges will be the
same as in the top of the figure; hence the total discharge will be higher by 196 — 100 = 96

vph.

3. Figure 3.11 shows the phase portrait of the freeway considered in Figure 3.6. The figure

also displays the equilibrium set E(7/). All of the trajectories converge to the most congested
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equilibrium in E(7#/). There is a pleasing symmetry with the case of strictly feasible demand,

in which every trajectory converges to the uncongested equilibrium as in Figure 3.8.

400 -
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300} § i
§
§
250 § i
§
~ 200 § i
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100 § § \
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of 7 VLVTLELA ThIhny |
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Figure 3.11: Orbits of the infeasible demand example.

The next result places the example above in a general setting. The freeway structure is the
same as in sections 3.1-3.3. Let r = (g, -+ ,rn) be a demand vector. Let ¢ be the solution
of (3.48):

o =70, ¢ = Bi(di—1+1;), 1<i<N.

Suppose that r is infeasible, so that ¢; > F; for some 3.

To simplify the notation we make two assumptions. First ¢ > Fu, and if ry = 0 the

demand becomes feasible. Second, if g = 0 (zero inflow from the upstream ramp) the
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demand again becomes feasible.

Since ¢ > Fiv, under demand r the entire freeway will become congested as in the example.

Since with g = 0 the demand is feasible,
7o = max{p > 0 | the demand (p,r1,--- ,rn) is feasible} (3.55)
is well-defined, i.e., 79 > 0. Since with ry = 0 the demand is feasible,
7ny = max{p > 0 | the demand (rg,--- ,rn_1,p) is feasible} (3.56)

is similarly well-defined.

Theorem 3.4.1 (i) 79 < rg is the largest upstream flow for which the demand

7= (7o, -+ ,rN-1,7N) 1$ feasible. The corresponding equilibrium flow q~5 18
¢ =170, ¢i=PFi(pi-1+1), 1<i<N.

(i) With demand r, under the no-metering strategy every trajectory converges to the (unique)
most congested equilibrium n" € E(7) corresponding to demand 7. Moreover, the queue
no(k) at the upstream ramp grows indefinitely at the rate of (ro — 7o) vehicles per period.

(11i) *n < ry is the largest flow for which the demand 7 = (rg,r1,-+- ,7nN) is feasible. The

corresponding equilibrium flow ngb 18
o =10, ¢i = Bi(di—1 + i), 1<i <N =1, dn = By(dy-1+7n).

Under the ramp metering strateqy that reduces the on-ramp flow in cell N from ryn to Ty,

every trajectory converges to some equilibrium in E(7). The queue at the on-ramp in cell N
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grows indefinitely at the rate of (ry — 7n) vehicles per period.

(iv) Flows under the ramp-metering strategy are larger throughout the freeway:
i < §i, 1<i <N and oy = é = Fy.

Suppose B; > 0 for some 1 < i < N, so that there is non-zero off-ramp flow in at least one
cell. Then the total discharge under the ramp-metering strategy is strictly larger than under

the no-metering strateqy. Moreover,

To — T = = _
p=——"= (B Byo1) "t > L (3.57)
N —TN

Proof. (i) follows from (3.55) and (3.48). Since the entire freeway becomes congested under
r, every trajectory converges to n®"(7) by (3.47) and, by (i), vehicles accumulate at the

upstream ramp at the rate of (rqg — 79) per period. This proves (ii).

To prove (iii) we solve (3.48) recursively for # and 7, setting Gy = 1, to get

i

i = > (BirBiri+ (BoBi)io, L<i< N, (3.58)
j=1

. Z;Zl(@”'ﬁj)w+(50"'5i)7‘0, I1<i<N-1

i = : (3.59)

Bnin + 0 By B+ (Bo -+ Bn)ro, i =N
Since 79 < 79 it follows from (3.58)-(3.59) that <;~5, < (51-, 0 < i < N. Also, since 7y is
the largest flow that keeps <;3N < Fl, it must be that (ﬁN = Fy. Similarly &N = Fy.

Hence if G; > 0 for some 1 < ¢ < N, then ﬂiéi > B;¢i, i.e., the off-ramp discharge under
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ramp-metering is strictly larger in at least one cell. Lastly, from (3.58) and (3.59),
~ N p— — p— —
Fy=d¢y = Y (B Bn)rj+ (Bo-- Bn)7o,
j=1
Fy=dy = Bnin+ Y (B Bn)rj+ (Bo--Bn)ro,

which, upon subtraction, gives

Bn(ry —#n) = (Bo- - Bn)(ro — 7o),

and so
ry —fn = (81 Bn-1)(ro — To),

which implies (3.57) because 3; < 1 for at least one i. O
Theorem 3.4.1 prompts some observations.

1. The discussion of infeasible demand above assumes that the on-ramp flow in a cell takes
priority over the flow from the upstream cell: the latter cannot block an on-ramp flow, even

if the cell is congested. This priority is implicit in the treatment of r;(k) in (3.2).

2. The unserved demand under the ramp metering strategy is (rny —7x) vehicles per period;
the unserved demand under the no-metering strategy is (ro —79). By (3.57), the no-metering
strategy magnifies the unserved demand under the ramp strategy by pu = (B ---Bv_1)" .
The larger are the split ratios, the larger is the ‘multiplier’ x, and worse is the no-metering

strategy. (In the example of Figure 3.10 = (0.8 x 0.8 x 0.8)7! ~ 2.)

3. The ramp metering strategy increases speed in every cell ¢ (hence reduces travel time).

Because gzgz > gz~52 and the freeway is congested under the no-metering strategy, the funda-
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mental diagram implies that the density n; < n; which, in turn, implies that the speed (=

flow /density) under ramp metering is higher: ¢;/f; > ¢; /.

4. Because of (3.57) the total travel time under the no-metering strategy grows arbitrarily

larger than under the no-metering strategy.

5. An intuitive explanation of the increased off-ramp discharge under the ramp metering
strategy might be that the no-metering strategy creates a congestion “queue” that blocks the
off-ramps. This explanation is too crude. Note that under the ramp-metering strategy, the
system can converge to any equilibrium in E(7), including the most congested equilibrium
n"(7), and under the no-metering strategy it converges to the most congested equilibrium
n®"(7). Thus the entire freeway may be congested under both strategies. Nevertheless,
the flows in every cell, and hence the off-ramp flows, are larger under the ramp metering
strategy. Thus a more accurate (but less intuitive) explanation is that the congestion queue

under ramp metering “moves faster” than the queue under the no-metering strategy.

While Theorem 3.4.1 is intuitively evident, the second implication of the theory is surprising;:
Theorem 3.4.2 says that ramp metering can reduce total travel time even when the demand

is feasible.

Fix a feasible (but not strictly feasible demand) r; let ¢ be its equilibrium flow given by

(3.48) and E(r) its equilibrium set. Recall that f(n®) = ¢ for all n® € E(r).

To simplify the notation we assume that under r the only bottleneck is cell N; hence ¢ =
Fy,0; < F;, 1 <1< N, ¢9g =19 < Fy. Suppose the freeway is initially in a congested

equilibrium n(0) = n° in which cells j,--- ;N are congested for some 1 < j < N, with
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e
n;

(0) =n§o™, j <i< N,andcells 1,--- ,j—1 are uncongested with n{ =n¥,1 <i < j. For

any p € X write n% < p < n€ if

nd <pi<ni, j<i<N,andnj =p;,=ni, 1 <i<j. (3.60)

Lemma 3.4.1 refines Lemma 3.3.3(i).

Lemma 3.4.1 Ifn" < p < n®,

In(p) = on = Fn, filp) > ¢i, j <i<j, and fi(p) = ¢4, i > j. (3.61)

We assume strictly positive demand in the congested cells, so

p=min{r;, j <i< N} >0.

We construct a ramp metering strategy that selects the on-ramp flow values as follows:

ri—pi(k), j<i<N
ri(k) = . (3.62)
T4, 1<i<y
(The {u;} are specified below in (3.87).) Denote by p(k),k > 0, the trajectory starting at

p(0) = n® under the metering strategy (3.62).

Lemma 3.4.2 There is a finite time horizon K and a metering strategy {p;(k), k =

0,--+, K} such that the resulting (controlled) trajectory p(k), k =0,--- , K, satisfies

n' <plk)<n° k=1,--- |/K—1, (3.63)

and

p(K) =n" (3.64)
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In particular, the ramp metering strateqy steers the state from the initial congested equilib-

rium n® to the uncongested equilibrium n".

Theorem 3.4.2 Suppose the freeway begins in a congested equilibrium n€ in which cells
1,---,5 — 1 are uncongested and cells j,--- ,N are congested. Then there exists a ramp
metering strategy over a finite horizon K at the end of which the freeway is in the uncongested
equilibrium n®. Furthermore, the flows during k = 0,--- , K are larger than the equilibrium
flows. Finally, if the split ratio B; > 0 for some j < i < N, then the total discharge flow is

strictly larger and the total travel time is strictly smaller than in the no-metering strategy.

Proof. By Lemma 3.4.2 in each cell ¢ the flow f;(p(k)) > ¢; for at least one k. Hence the

difference in the total discharge

K

> BB filp) — 6i] > 0,

k=0
from which the assertion follows. O
Two observations are worth making.

1. If the split-ratios in the congested cells are all zero, 5; = 0, ¢ = j,--- , N, the ramp
metering strategy does not increase the total discharge, but it moves the system to the

uncongested equilibrium n* by ‘moving’ the ‘excess’ vehicles Zf\i il

n$ — n¥] from the con-
gested cells to their on-ramps. The resulting total travel time is unchanged but traffic in
the freeway moves at free flow speeds. If some of the traffic in the queues is diverted to

alternative routes, perhaps along arterials, there will be a decline in total travel time just

as with non-zero split-ratios.
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2. There is another compelling reason for maintaining the freeway in free low. The example
of Figure 3.6 illustrates a common situation in which the congestion density of 160 vehi-
cles/mile (and speed of 30 mph) compares with the uncongested density of 80 vehicles/mile
(and speed of 60 mph) for a three-lane freeway. Storing the 80 additional vehicles would
require a 3/4 mile-long one-lane on-ramp (at 50 feet vehicle spacing). Clearly congestion
causes the freeway to be used as a very expensive parking place.

s, decongestion

trajectory
n

g ~"congestion

a7 trajectory

Ny pt s pcon

Figure 3.12: By creating the cycle from n®
increase off-ramp discharge.

a ramp metering strategy can

3. A ‘free lunch’ result lurks behind Theorem 3.4.2. The result can be understood with
the help of Figure 3.12 of a two-cell freeway whose equilibrium set F is shown on the
right. By Lemma 3.4.2 the flow in cell 1 is larger than the equilibrium flow in the rectangle
{n* < p < n®"}. The ‘decongestion’ trajectory constructed in Lemma 3.4.2 moves the
system from n"™ to n* and causes some additional vehicles to leave the freeway from the
off-ramp in cell 1. The remainder of the [(n{°" — n}) + (n§°™ — nY)] vehicles causing the
initial congestion are ‘stored’ on the on-ramps in cells 1 and 2. Once the cells become
uncongested, the ramp metering strategy can now be changed to release the stored vehicles
onto the freeway, thereby creating the congestion and moving the state from n" to n®"
as indicated by the ‘congestion’ trajectory in the figure. Since this trajectory is inside
{n" < p < n®"} there will again be an additional off-ramp flow. Repeating the two-phase

decongestion-congestion cycle provides a free lunch.
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3.5 Proofs

Proof of Lemma 3.2.1.
Ezistence: Let f = f(r) be the equilibrium flow. Define
nt = (Bivi) ' fi, 1<i<N. (3.65)

Then n;(k) = n} satisfies (3.6), because (3.6) is equivalent to (3.13). Next, because 0 < f; <
F; and F; = (; v; n§ (see (3.1)), n¥ = (Biv;) " f; < (B; vi) ' F; = ng. So n* is uncongested.
It remains to prove that n* is an equilibrium, i.e., satisfies (3.14), which simplifies to (3.11)
because n" is uncongested. From (3.65), f; = Bi v; ny, and since r is feasible, f; < Fj. So

(3.11) holds.

Uniqueness: Suppose {0 < n; <nf;1 <i < N}is an equilibrium, i.e., satisfies (3.14)-(3.15).

Since n; < nf, Bi vi ni < B v n§ = F;, therefore (3.14) reduces to

fi = min{Biving, wit1(Rig1 — nip1) }-

If f; # Bivny, it must be that Bivin; > wip1(Rip1 — Nigr1) > wigr(Rig1 — ng, 1) = F;. This

: 2 2 N 7)
contradicts (; v; n; < Fj, hence f; must equal Bv;n;, so n; = nj'. O

Proof of Proposition 3.2.1

Since n;11 < ng, 4, from (3.11),

fi = min{B;vin;, F}}.
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Since n; > ng, one has B;v;n; > F; from (3.1); and since r is feasible, F; > f;. Hence f; = F;
and, by (3.13),
fia=08"fi—ri=BFi—ri.
Again, as n; > n§, (3.14) implies
fier = min{Bi1vi—1ni—1, Fm1 — wi(n; — nf), F_1} < Fi_1.

Lastly, if cell i — k is congested, n;_; > n{_,, hence

fick—1 = min{Bi_p—10i—g—1Mi—k—1, Fj——1 + wi—g[n§_ — ni—g, Fi—p-1} < Fi—g1,

and the remainder of the assertion follows. O
Proof of Corollary 3.2.1

If the equilibrium n = (ny,--- ,ny) is uncongested, then n = n® by Lemma 3.2.1. So
suppose there is at least one congested cell. There are two cases to consider. In the first
case, cell N is congested. Since fny = min{BNanN,FN} < Fn by strict feasibility, so
ny < nf, which means cell NV is not congested. In the remaining case, there must exist a
pair of adjacent cells ¢,i+ 1 with ¢ congested and 741 uncongested. But then by Proposition

3.2.1, f; = F;, which contradicts strict feasibility of r. O
Proof of Proposition 3.2.2

Because cell i — j is congested, i.e., n;—; >nj_;, and fi—j < Fi—j,

fiej = min{Bi_jvi_jni_j, Fi_j — wi—jp1(ni—jr1 — ni_j41), Fij}

J— C
= Fioj —wi—jr(ni—j+1 —ni_j) < Fij,
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so that n;—j41 > nj_; 4, i.e., cell i — j + 1 is congested. The result follows by induction. O
Proof of Proposition 3.2.3

The assertion is true of segment SE+! because downstream of cell N is free flow by assump-

tion. Consider segment S*. Since
fIk = min{/BIkaank7 FIk - wfk-i-l(nfk-f—l - n§k+l)7 ka} = FIka
we must have ny, 41 <nj 4, ie., cell Iy +1 is uncongested, and (3.18) holds. O

Proof of Lemma 3.2.2

Because of (3.24) the equilibrium flows fr, 41, -, fi are strictly below capacity and so, by

Corollary 3.2.1, EX+1(r) = {n®E+11 and (3.25) follows from (3.65). O
Proof of Lemma 3.2.3

Let n* € E*(r) be an equilibrium. Then (i) follows from Lemma 3.2.1. Next, according
to Proposition 3.2.2 there exists j such that cells I_1 +1,--- ,7 — 1 are uncongested and

4, , I are congested. Hence for ¢ < 5 — 1,
fi = min{Bioin}, F; — wis1(nfy) —n§py), Fi} = Binf,
because n¥ < ng,niﬁrl < nf, 4, which proves (3.26).
Fori > j+1,
fi = min{Bvinf, F; —wipi(nfy —nyq), B} = F —win (nfiy —nipy),

k k :
because ny > nf,n{ ; > ng, ;, which proves (3.27).
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Lastly, because fj_1 < Fj_1,
< (7 k k (73 k k
fj—l = mln{ﬁj—lvj—lnj—la Fj_l—wj(nj —nj), F’j—l} = mln{ﬁj—lvj—lnj—lv Fj—l_wj(nj —’I’L;)}

Hence either f;_1 = F;_1 — wj(né‘? — nj) and then (3.28) holds, or f;_1 = Bj_lvj_lnf_l and

then (3.29) holds. O
Proof of Lemma 3.3.1
Suppose x < y. We must show

Gi(Ti—1, i, Tiv1) < Gi(Yi-1, Yi, Yit1)- (3.66)

We verify the inequality one coordinate at a time. Suppose first that z;11 < y;41 but

Ti—1 = Yi—1,%; = y;. Then from (3.6)-(3.7)

Gi(Zi—1, i, Tit1) — 9i(Yi=1, Yi> Yit+1)

= —@_1 min{3;v;x;, wit1 [fip1 — Tig1], Fi} + 5{1 min{3;viyi, Wit1[Rit1 — zip1), F;} < 0.
Suppose next that z;_1 < y;—1 but z; = y;, 2,41 = y;+1. Then from (3.6)-(3.7)

Gi(Ti—1, ®i, Tit1) — Gi(Yi-1, Vi, Yit1)

= B min{Bi_1vi—12i—1, wilRi — @], Fiy1} — B min{Bi_1vi—1yi—1, wi[; — 23], Fi—1} < 0.

Lastly suppose x; < y; but ;-1 = y;—1,Zi+1 = yi+1. Lo show (3.66) consider three separate

cases.
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Case 1: x; < y; <n§. Then from (3.6)-(3.7) and (3.11)

9i(Ti1, i Tiv1) — 9i(Yi-1, Yi Yiv1)

= z; — B min{Bvizs, wip1 M1 — wip1], Fi} — ys + B min{ Biviyi, wis [Rig1 — zisa], Fi}
=T —Yi if Bviw; > min{Bv;x;, wis1[Aip1 — ig), B}
< (I —wi)z — (L—w)y  if vy = min{ Bivizs, wip1[Riv1 — zi], Fi}

< 0, because 0 < v; < 1.

Case 2: x; < n§ < y;. Then from (3.6)-(3.7) and (3.11)

9i(Tiz1, i, Tit1) — 9i(Yi—1, Vi, Yit1)
= 2; — B  min{ Bvizi, wis1 [Riv1 — i1, Fy} + min{ B o121, wi[; — o], Fi}

— yi + B min{Biviys, wisa [Ris1 — i), B} — min{B_vimyzi-1, wilng — yil, Fi}
If Bviz; > min{Bivix;, wit1[Riy1 — Tita], B,

Gi(Ti—1, i, Tig1) — Gi(Yi—1, Vi, Yit1)
= x; — yi + min{Bi_1vi—12i—1, wi[i; — 2], F} — min{ Bi—1vi—12i—1, wi[7i; — yi], Fi}
<@ —y; <0, if wi; — 2] < min{Bi_q1vi_17_1, F;}

= (1 —w;)(x; —yi) <0, if wi[A; — ;] = min{B;_1v;_12;_1, F;}, because 0 < v; < 1,

and if Biviz; < min{Bviz;, wit1[fit1 — i), Fi},

9i(Ti—1, %i, Tit1) — Gi(Yi-1, Vi, Yit1)
< x; — yi + min{Bi_1vi—1@i—1, wi[A; — ], F} — min{ Bi—1vi—1zi—1, wi[fi; — yi), Fi}

<0, as before.
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Case 3: n§ < z; <y; < nf. Then from (3.6)-(3.7) and (3.11)

9i(Tim1, T4, Tiv1) — 9i(Yi-1,Yi, Yi+1)

= z; — yi + min{Bi_1vi_1@i_1, wiln; — @]} — min{ Bi_1vim1 @i, w7 — yil}
=2 —y; <0, if wiln; —yi] > Bim1vic1mio
< (1 —wy)(x; —y;) <0, if wylfi; — y5] < Bi_1vi_174-1, because 0 < v; < 1.

Thus g is strictly monotone, because if x < y,

Gi(zi—1, zi, ig1) < gi(Yi1, Ti, Tiv1) < Gi(Yim1, Vi, Tiv1) < Gi(Yiz1,Yi, Yit1);

moreover, it is trivial to check that if « # y then g(x) # g(y).

Lastly g is not strongly monotone, because if x < y but x;—1 = yi—1,%; = Yi, Tit1 = Yit1,

then g;(z) = gi(y). O
Proof of Lemma 3.3.2

(i) Since n(0) < n(0) < n(0), monotonicity implies n(1) < n(1l) < (1), and then (3.45)
follows by induction.

(ii) Since n(1) > n(0) = 0, monotonicity implies n(2) = g(n(1)) > ¢g(n(0)) = A(1). By
induction, the trajectory is increasing: n(k + 1) > n(k). Since the trajectory is bounded
above by the jam density, it must converge to some equilibrium point, say n°. Furthermore,
since n(k) = n" is also a trajectory, by (3.45) one must have n¢ < n", and so (3.44) implies
ne =n"

(iii) Since n = n(0) > n(1), monotonicity implies that the trajectory is decreasing: n(k+1) <

ni(k). Since the trajectory is bounded below by 0, it must converge to an equilibrium, say
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n°. As n(k) = n®" is also a trajectory, by (3.45) one must have n¢ > n®", and so (3.44)

implies n® = n". O
Proof of Lemma 3.3.3
Evaluate the three alternatives in f;(p) = min{B;v;p;, wir1[Rir1 — pisv1], Fi }:

filp) = Bivipi > Bivini' = ¢, by (3.65), or
= wit1[it1 — Piy1] > wiy1[Rip1 — ngY] = ¢4, by (3.30), or

= F; > ¢;, always.

Hence fi(p) > ¢; and assertion (i) follows since for bottleneck cells ¢; = F;. (ii) follows

from the observations that n(k) < n(k) < n(k) and n(k) — n* (k) — n®" by Lemma

mn

3.3.2; hence every limit point p of {n(k)} satisfies n* < p < n®". To prove (iii) consider

a subsequence {k,,} along which f;(k,) — liminf f;(k) and n(k,) — p € w(n). Then

liminf f;(k) = fi(p) = ¢:, by (i) and (ii). O
Proof of Lemma 3.3.4

Let p° € w(n) and p(k),k > 0, the trajectory starting at p?. Rewrite (3.6) in terms of this

trajectory, and (3.48) as

pilk+1) = pi(k) =B fi(p(k)) + fima(p(k)) + 7

ri = B e — i1
Adding these together gives

pi(k+1) = p;(k) + B; ' [¢i — fi(p(k))] — [pi—1 — fim1(p(K))]-
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Summing this equation for ¢ = 2,--- | j and using (3.52) leads to

Zpi(k+1) = Z Z Z¢z 1_fz ())]

=2 =2
= D pilk) + g5 — FiE)]+ D BB o — filp(R)))-
=2 1=2

By Lemma 3.3.3, and taking j = N, shows that Zévpl(k:) is decreasing, and since it is

positive, it converges. Hence fi(p(k)) — ¢; for each i. So if p € w(p),

f(h) = ¢, e, p' € E(r),

from which the assertion follows since p! € w(p®) C w(n), because w(n) is invariant. O
Proof of Lemma 3.3.5

By Lemma 3.3.2, n(k) < n(k) < n(k), n(k) — n*, n(k) — n®". Then (3.54) follows

because, by (3.49), ncom K+l = pu.K+1 o
Proof of Lemma 3.3.6

Consider (3.53) for m > 1. By Theorem 3.2.1 n®™ € E’f:’n_j(r) for some j > 0, so that cells
L,—3,---,1I,, are congested and I,,,_1 +1,--- ,I,, — 7 — 1 are uncongested as indicated in

Figure 3.13.

Figure 3.13: In equilibrium n®™ cells I, — j,--- , I, of S™ are congested.

We will prove (3.53) for m, separately analyzing the three cases: j = I,,_1 + 1, j = I,,, and

I 1 +1<j<Iy.
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Case (i): j = I;,—1 + 1. In this case at n®™ the entire segment S™ is congested. The

induction hypothesis is not used for this case.

By Theorem 3.2.1 n®™ = n®™"™ and, by (3.30),

n&™
i

= nf + wi_l(Fi_l - (252'_1) > nf, 1€ 8™
By (3.51) for n > 0 we can select § > 0 so that
In™ —n®" <0 =0<Fy, — fr,(k)=n(k) <n.

Assume for now that

ni'(k) >ni, k>0,ieS™,
so that
filk) = min{@vmg’"‘(ls), Fi — wi+1["?}r1(1f) - ”f+1]7Fi}
= E - wi—i—l[nﬁ-l(k) - nzq—l-l]v = Im—h tee 7Im'

Substituting (3.67), (3.68), (3.70), and (3.48) in
n*(k+1) = n"(k) =B fi(k) + fic1(k) + i

= n*(k) = B 'Lfi(k) — ¢ + fica(k) — din,

gives, for i = I,

n'(k+1) = n*(k) — 5 [Fr,, —n(k) = ¢i] + Fi1 — wiln (k) — nf] = ¢i1

(3.67)

(3.68)

(3.69)

(3.70)

= n*(k) — wiln" (k) — nf —w;  (Fo1 — ¢i1)] + B 'n(k), as Fy,, = ¢,

= n"(k) = wilnf (k) = n{™ + B n(k);

)

(3.71)
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and, fori =1, 1+1,--- , L, —1,

n'(k+1) = (k) = B [F — wipa(nfty (k) = nf) — 6] + Fiox — wiln (k) = nf] — ¢

— (k) + B w0 (k) — n6 — win (k) — nS ™) (3.72)

(2 K3

Define the vectors 2™ (k) with components 1" (k) = n*(k)—n;"™,i € S™. In terms of 2™ (k)

the difference equations (3.71)-(3.72) can be written as

L= wh, 41 B1) o Whea42 : 0 0
2™ (k+1) = ™ (k)+
0 cee 0 1-— wr,,—1 B;"}_lem 0
0 0 0 1—wp, | Bran(k) |
(3.73)

The difference equation (3.73) is of the form
2™k +1) = Az (k) + u(k), x™(0)=n"—n"m,
and has the solution
k—1
2™ (k) = AF(n™ —no™) + ) AR (),
=0

The eigenvalues of A are (1 —wy,, ,4+1), -+ ,(1 —wy,,), all of which lie in (0,1), since
0 < w; < 1. Hence || A* ||< MM for some M < oo and 0 < A < 1. Also |u(l)| < (B,,)"'n.
It follows that if [n™ — n®™| < ¢, sufficiently small, then (3.69) holds and |z™ (k)| < € for

all k£ > 0.
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Case (ii): j = IL,. In this case cells j — 1 = I,,_1 + 1,--- ,I,, — 1 are not congested; so

¢j:Fj;¢i<Fia 1< j,ie 8™

By the induction hypothesis, for € > 0 there is § > 0 such that for |n — n€| < ¢, there is an

equilibrium n¢ such that
™ (k) — o™ <€, k> 0.

~e;m—1

By Proposition 3.2.3, niy o < njyq; hence, for € > 0 small

m—1 ~e,m—1 c
niy (k) <ngly T +He<njyg.

Next, by (3.51) we can select § > 0 so that

In—n°l<d=0<Fr, _1— fr,-1(k) =n(k) — 0.

By Lemma 3.2.3, n®™ has the form (see bottom part of Figure 3.3)
ng+ (1 - 21/))10]-_1(Fj_1 — ¢j—1), i=j, for some 0 <9 <1/2
ny = (Bivi)_lqﬁi < ng, 1< j,ieS™

We now examine the trajectory {n(k)} starting at n. Assume for now that

nf(k) < 0§ 4wy (Fio = dj1) = 0§ + (1= 9wy (Fjo1 = dj-1),

(k) < 0™ 4 (B TG —nd™), i < §,i € S™.
From (3.74) and (3.76)

fitk) = min{Gu;n} (k), Fj — w1 (nf5' (k) = nf ), B}

_ F;, if n"(k) > n$
= min{Fuonl(k), Fj} =4 ’ ’

Byunm(k),  if (k) < n¢

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)
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Next,
fi—1(k) = min{B; 1v;_1nf" (k), Fj—1 — wj(n] (k) = n), Fj1}. (3.79)
From (3.77),
Bj1vj-1nfy (k) < Bjvj-1[n" + 9 (Bj-1vj-0) 7 (0§ g = nfD)] = dj-1 + (Fjo1 — ¢j-1),
and from (3.76)
Fj_1 —wj(nj' (k) —nj) > Fj—1 —w;[(1 - ¢)wj_1(Fj—1 —¢j1)] =VFj 1+ (1 —9)pj1.
Substituting the preceding two inequalities into (3.79) gives
fim1(k) = Bj—1vj_1nj (k). (3.80)
Lastly, for i < j—2, i € S™, from (3.77)

fi(m) = min{Boin]" (k), F; — wiy1(nit, (k) — n§q, Fi} = Bioin" (k). (3.81)

Substituting (3.78), (3.80), (3.81), and (3.48) in
nf(k+1) = nP(k) =B filk) + fiai(k) + 74
= nf"(k) = B [fi(k) — &) + [fima (K) = iz,
gives the difference equation system for {n™(k)}:
Wb+ 1) = n(k) — B L min{ Gy (k), B} — Byoimt™)
+Bj-1vj-1[nfLy (k) — " (k)]
ni(k+1) = ni"(k) —vin" (k) — ™ (k)] + Bicrviea iy — i),

i=In-1+2,---,5—1

n?zwﬁ—l(k + 1) = n?jnq-i-l(k) - vfm71+1(k)[n?;71+1(k) - n§ﬁ1+1(k‘)] - ﬂ(k)
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In terms of the variables z7*(k) = n*(k) — n{"™, i < j,i € S™, this system can be rewritten

as
2 (k+1) = 2 (k) = B; ' [min{Bju;n]"(k), F;} = BjoinS™] + Bjrivjzfi (k) (3.82)
and
':Ulmfl‘i‘l(k‘) + 1) 1 - ,Ulmfl‘i‘l 0 : : 0 ':Ulmfl‘f‘l(k‘))

zj—2(k +1) 0 o Bimsvjoz 1—vjo 0 zj2(k)
| ik +1) 0 0 Bjovje 1—vji] | zm(k) |
—n(k)
0
+ : (3.83)
0

The difference equation (3.83) is of the form

z(k+1) = Az(k) — bn(k),

and has the solution

k—1
2(k) = AFz(0) = >~ AF ().
=0
The eigenvalues of A are (1 — vy, ,41), - ,(1 —wvj_1), all of which lie in (0,1), since

0 <wv < 1. By (3.75), n(l) — 0, n(l) > 0. Hence z(k) — z* <0, and (3.77) is assured by

induction. Furthermore, because n(l) > 0,

a1 (k) < MAF, (3.84)
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for some M <ocoand 0 < \ < 1.

Lastly, rewrite (3.82) as

(1 —v))z™ + Bi_1vj_12™ ((k), if 2™
2 (k4 1) = SO g , (3.85)

(k) + A+ Bjvjaafty (k) if

IN
|
B>

Y
|
B>

in which A = (1 = 2¢)w; ' (Fj_1 — ¢;-1).

Because A > 0 and 23", — 0, the second alternative in (3.85) cannot hold for £ > K, for

some finite K, and so

e

-1

2 (k) = (1 — o))" a2l (K) + ) (1= ) 1312, (1),

T
=

can be made arbitrarily small, proving (3.76).

Case (iii): Iy—1 +1 < j < I,,. In this case at n®" cells j,--- , I, are congested and cells
Lyp—1+1,---,5 — 1 are uncongested. The proof for this case combines the argument in
Case (i) for the congested cells and the argument in Case (ii) for the uncongested cells. The

details are omitted. O
Proof of Corollary 3.3.1

By Theorem 3.2.1 E(r) is a K-dimensional manifold. By Theorem 3.3.3

o= |J =M.
)

neeE(r
By Lemma 3.3.2 every trajectory starting at n < n" converges to n* and every trajectory

mn

starting at m > n" converges to n®". Because E(r) is ordered, it is not very difficult
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to show, using monotonicity, that the stable manifolds of all equilibria n® # n%, n®“" are

diffeomorphic. The assertion then follows. O

Proof of Lemma 3.4.1

First,
fn(p) = min{Byunpy, Fn} > min{Byoyny, Fn} = ¢n = Fy.

Next, for j < < N evaluate the three terms in f;(p) = min{B;vip;, Fi —w;y1[Rir1—Dpit1), Fi}

gives
filp) = Bivipi > Bini' = ¢4, or
= Fi —wip1[fiy1 — pit1] > F — wigp1[nip1 — ngli] = ¢4, or
= FZ > ¢i7
so fi(p) > ¢i. The last clause in (3.61) follows from n}* = p;, i > j. O

Proof of Lemma 3.4.2

Set pi(k) =0, ¢ < j. Following (3.6), the controlled trajectory is given by
pilk + 1) = pi(k) — B, filp(k) + fici(p(k)) + 7 — wi(k), 1<i< N, k>0. (3.86)

Observe that for i < j, p;(0) = n§ = n} and r;(k) = r;. Hence under any metering strategy
of the form (3.62), p;(k) = n§, i < j. Thus the metering strategy affects the densities only

in cells j,--- , N.
Rewrite (3.86) as

pi(k+1) = gi(p(k)) — pi(k), 1<i <N, k>0,
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and define the metering strategy by

5 if i k _’I’L;f
() = p 9i(p(k)) = ni +p | (387)

gi(p(k)) —nit, if ni < gi(p(k)) <nif +p
Since 1; — pi(k) > ri(k) — p > 0, the metering strategy is feasible (on-ramp flows are
non-negative). By construction of u, n* < p(k). By monotonicity, if p(k) < n® then

p(k+1) = g(p(k)) — u(k) < g(n®) — p(k), so (3.63) holds by induction.
We now prove (3.64). Recall that
ri =B i — dic,
and substitute for r; in (3.86) to get
pilk+1) = pi(k) + B[ — filp(k)] — [$i-1 — firr(p(k))] — pa(k), j <i<N.

Adding these equations gives

N N N N N
Dovilk+1) = Y pik)+ DB b~ filp(R)] = D (b1 — fima(p(R))] = Y k)
i=j0 i=j i=j i=j i=j

N N ~ N

= Y opilk) + 3B = Dl — L) = D (k)
i=j i=j =
+05 o8 — In((R)] = (851 — fi-1(p(k))]

N

N N N
= Zpi(k’) + Z(Bi_l —1)[¢s — fi(p(k)] — Zﬂi(k’) <= Z'ui(k)’

because fn(p(k)) = én = Fn, fi—1(p(k)) = ¢;j—1 and ¢; — fi(p(k)) < 0 by (3.61). Moreover,
from (3.87), Zf\ij wi(k) > p for each k for which g;(p(k) > n¥ + p for some i. It follows that

p(K) = n" for some K < [} .(n{ —ni)]/p. O
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Chapter 4

CTMSIM: Interactive CTM

Simulator for MATLAB

4.1 Motivation

Freeway traffic measurement data are collected by PeMS [1]. In addition to flow, speed and

occupancy time contours, PeMS provides the following performance measures:

e VHT - Vehicle Hours Traveled, for a given unit of time and a given section of freeway,

the amount of time spent by all of the vehicles on the freeway.

e VMT - Vehicle Miles Traveled, for a given unit of time and a given section of the

freeway, the sum of the miles of freeway driven by each vehicle.
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e Delay (vehicle-hours) - difference between the actual VHT and the VHT that would
be incurred if vehicles traveled at free flow speed. The value is positive when the road

is congested, otherwise it is zero.

e Productivity Loss (lane-mile-hours) - the number of lane-mile-hours on the freeway lost
due to reduced flow, while operating under congested instead of free-flow conditions.

The value is positive only in congestion, otherwise it is zero.

Our first requirement for a macroscopic freeway traffic simulator is the ability to compute
these quantities and export the computed data for the purpose of report generation and

comparison with the values provided by PeMS.

PeMS is a starting point for any freeway study in TOPI. It allows to extract freeway geom-
etry, estimate fundamental diagrams, split ratios for the off-ramps, and generate a demand
profile for the on-ramps. All these data belong to a configuration file of a macroscopic sim-
ulator. Thus, for the user to be able to generate his/her own configuration files using PeMS
data, the format of such files should be transparent and well documented. This is our second

requirement.

Ideally, assuming PeMS data were consistent and came from healthy detectors, plugging
PeMS on-ramp flow values into the simulator should produce flow, speed density time con-
tours as well as VHT and VMT that match those reported by PeMS. This would validate

the traffic flow model used by a simulator.

Another important requirement was for the user to be able to plug in his/her own ramp

controllers, develop and test his/her own ramp metering strategies and compare them with
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the known ones or with each other.

Finally, we wanted the simulation to be interactive, so the user could see the evolution
of the freeway state, pause the simulation and change some parameters like fundamen-
tal diagram to simulate an incident, or switching certain controllers on or off, and then
continue. Interactivity also helps to calibrate the model—adjust fundamental diagrams,
on-ramp demands and off-ramp split ratios where necessary. On the other hand, it should
be able to execute in a batch mode in case the user wanted to run simulations for many

configurations automatically.

Having looked at available macroscopic tools (see Section 2.3), the TOPI group made a
decision to develop its own simulator based on the CTM model that would satisfy the listed
requirements and have an intuitive user interface. CTMSIM [8] is implemented in MATLAB
making it useful and easy to handle for transportation researchers who can quickly and

seemlessly develop plug-ins and extensions for it in a familiar environment.

4.2 CTMSIM

4.2.1 Computational Model

CTMSIM is based on CTM model described in Chapter 3. Only now the model parameters
and variables are more general. They are summarized in Table 4.1. Compare with Table

3.1.



Symbol Name Unit

N number of cells dimensionless

At sampling period (time step) hours

Az; cell length miles

F; total cell capacity vehicles per hour (vph)
R; on-ramp capacity vehicles per hour (vph)
Si off-ramp capacity vehicles per hour (vph)
v; free flow speed miles per hour (mph)
w; congestion wave speed miles per hour (mph)
Di jam density vehicles per mile (vpm)
ps critical density vehicles per mile (vpm)
0i split ratio € [0, 1], dimensionless
Bi complementary split ratio =1 — 3; € (0, 1], dimensionless
~i on-ramp flow blending factor € [0,1], dimensionless
& on-ramp flow allocation factor € [0, 1], dimensionless
k period number dimensionless
si(k),ri(k) off-ramp, on-ramp flow in cell ¢ in period k  vehicles per hour (vph)
d;(k) on-ramp demand in cell 4 in period k vehicles per hour (vph)
qi(k) on-ramp queue size in cell ¢ in period k vehicles

fi(k) flow from cell ¢ to 7 4+ 1 in period & vehicles per hour (vph)
pi(k) density in cell ¢ in period k vehicles per mile (vpm)
Vi(k) actual speed in cell ¢ in period k miles per hour (mph)
TT(k) travel time in period k hours

VHT (k) vehicle hours traveled in period k vehicle hours

VMT(k)  vehicle miles traveled in period k vehicle miles

D(k) delay in period k vehicle hours

PL(k) productivity loss in period k lane mile hours (lmh)

Table 4.1: Model parameters and variables used in CTMSIM.
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The parameter ~; determines the influence of the on-ramp flow on the mainline flow that

enters ith cell. It reflects the position of the on-ramp within the cell, with larger values of

~; corresponding to on-ramps that are closer to the upstream edge.

The parameter &; determines the allotment of available space to vehicles entering from the

on-ramp. It reflects the geometrical layout of the cell. For example, if the on-ramp is located

at the midpoint, incoming vehicles will only have access to the downstream half of the cell.
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The on-ramp demand d;(k) is the number of vehicles per unit of time intending to enter
freeway at the ith cell, as opposed to on-ramp flow r;(k) the number of vehicles per unit

of time actually entering freeway at this cell.

The initial condition for the system is the N-dimensional vector of densities p(0) at time
step 0. Given the initial condition, on-ramp demands and off-ramp split ratios, CTMSIM

computes the system evolution in time using the following steps.

1. Check if the user-set value of At is valid. It must satisfy

Az;
At < min i (4.1)
7 (%

2. Set time step k = 0.

3. Initialize on-ramp queue size ¢;(0) =0, ¢ = 1..N.

4. Initialize on-ramp flow 7;(0) = R;, i = 1..N. In cells without on-ramps, R; is assumed

to be 0.

5. Compute on-ramp flows

Qz‘(k‘)
At

rilk+1) = min{di(k~|—1)+
_ Ax;
&i(pi — Pi(k))ﬂa

Ria

max{C(r;(k)), Q(ri(k))}}, i=1.N, (4.2)

where C(r;(k)) denotes flow value suggested by on-ramp mainline controller, and

Q(r;(k)) denotes the flow value coming from on-ramp queue controller.
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6. Update queue sizes

gi(k +1) = max {qi(k) + (di(k + 1) — ri(k + 1)) At,0}, i=1.N.  (4.3)

7. Compute cell-to-cell flows

filk+1) = min {Bﬂ), <pz(k‘) + viri(k + 1)AA£> )

At
Wit 1 (ﬁm - <pz‘+1(k‘) +Yitirit1(k + 1) >> ;

Azxiiq
Bi
_Si7
Bi
F} i=1.(N—1), (4.4)
5 At 3
fN(k‘ + 1) = min {ﬁNUN <pN(k’) + ’VNT‘N(]C + 1)—> R B—NSN,FN} . (4.5)
Azy ) By
8. Compute off-ramp flows
2 ik + 1), if g <1
si(k+1) = ’ , i=1.N. (4.6)

min {u; (pi(k) +7irsk + 1AL ), Si}, if 6 =1

9. Compute densities

At
pi(k+1) = pi(k) + N (ficr(k+ 1) +ri(k+1) = fi(k+1) —si(k+1)), i=1.N.
(4.7)
10. Compute actual speeds
: o ik D) 4 si(k+ 1) -
Vi(k 4+ 1) = min {vl, pREY , 1=1.N. (4.8)
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11. Compute travel time!

Ax;
TT(k+1) = - 4.9
12. Compute VHT. VHT in cell i:
VHT;(k+1) = (pi(k + 1)Az; + ¢i(k + 1)) At. (4.10)
Total VHT:
N
VHT(k+1) =Y VHT(k+1) (4.11)
i=1
13. Compute VMT. VMT in cell 7:
Total VMT:
N
VMT(k+1)=> VMT,(k+1). (4.13)
i=1
14. Compute delay. Delay in cell i:
0, if pi(k+1) < p§
Di(k+1) = , t=1.N. (4.14)
VHT; — VMT; /v, if pi(k+1) > p§
Total delay:
N
D(k+1)=> Di(k+1). (4.15)
i=1

Note: Total delay is the sum of freeway delay and queuing delay, because of (4.10).

1Unless specified otherwise, by travel time we understand instantaneous travel time as opposed to actual
travel time. Instantaneous travel time is the travel time that would occur, if the traffic speed in each cell
stayed constant assuming values at the current time step. It does not include time spent in queues. Actual
travel time is the travel time computed using actual time-varying traffic speed values and includes time spent
in a queue.
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15. Compute productivity loss. Productivity loss in cell i:

0, if pi(k+1) < pf
PLi(k+1)= , ©t=1.N. (4.16)
(1 - M) AtAz;, if pi(k +1) > p
Total productivity loss:
N
PL(k+1) =) PLi(k+1). (4.17)
i=1

16. Set k =k + 1.

17. Go to step 5.

4.2.2 User Interface

The core application of the CTMSIM package is ctmsim. It can operate in both graphical

and batch mode. To start ctmsim in graphical mode, type

>> ctmsim myconfig

Here it is assumed that myconfig.mat is a configuration file with freeway cell specification,
and optional simulation and display parameters, whose format is described in Appendix A.
As a result of this command, the main application window pops up. Figure 4.1a presents
the look and feel of the ctmsim GUI. All the quantities computed in (4.2)-(4.17) can be
displayed in the main window as simulation runs. The default display mode is as shown in
Figure 4.1a. Plotted in the main area (black and blue) are flows (4.4)-(4.5) and densities
(4.7) in each cell at the current time step. The red line represents cell capacities on the flow

plot, and critical densities on the density plot. Instead of densities, the actual speeds (4.8)
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can be plotted (View — Display Speeds, see Figure 4.1b). The red line on the speed plot

marks free flow speeds.

) CTH Simulation

File Edt “iew Auto Help
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15000

Flow (wph)
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Figure 4.1: (a) Main window of the ctmsim application.
(b) Instead of densities, the user may choose to display speeds.

Instead of flows and densities/speeds, the main area of the application window can be used

to plot:

e On-ramp demands, flows (4.2) and queue sizes (4.3) (View — On-Ramp Demands and

Queues, Figure 4.2a). Demand values are shown as yellow bars, and flows as blue bars
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in each cell. If a user sees only a blue bar in some cell, it means that on-ramp flow
equals the demand. If, on the other hand, only the yellow bar is visible, it means
that on-ramp flow is zero. Otherwise, the user should see both yellow and blue bars.
If the yellow bar is higher than the blue, this indicates that either some control is
turned on at this on-ramp, or that the demand exceeds ramp capacity, in which case
the queue starts to grow. The situation when the blue bar is higher than the yellow
is only possible if there exists a queue at the on-ramp, and the ramp can let through

more vehicles than the demand, resulting in decreasing queue size.

e Off-ramp flows (4.6) and split ratios (View — Off-Ramp Flows and Split Ratios,
Figure 4.2b). Split ratios are either constant (user may change them manually as simu-

lation runs), or taken from the split ratio profile (configuration variable betaProfile?).

e VHT (4.10) and VMT (4.12) (View — VHT and VMT, Figure 4.2c). At the VHT plot,
the delay portion (4.14) is shown in dark red. At the VMT plot, maximum VMT
values are marked as empty bars. They are computed by substituting p;(k + 1) with
p$ in (4.12) and visualize how well the cell capacities are utilized. The ultimate goal
of any ramp metering strategy is to keep the VMT bars at maximum in congestion

periods.

Instead of plotting selected quantities only at the current simulation step, the user may
choose to see the history of how the system evolved in time by looking at time contours
(View — Timeseries Contours). Figure 4.3 shows an example of flow and speed time

contours. It is not recommended to display time contours while running the simulation

2All configuration variables are described in Appendix A.
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Figure 4.2: Display (a) On-ramp demands, flows and queues.

(b) Off-ramp flows and split ratios.
(¢) VHT, delay and VMT per cell.

because drawing the display significantly slows down program execution.

Below the main plotting area (Figure 4.1a) there is a display of the freeway broken up into
cells. The arrow specifies the direction of traffic flow: left-to-right when post miles are
increasing in the same direction as traffic flows (corresponds to directions north or east on
California freeways), or right-to-left when post miles are decreasing in the direction of traffic

flow (south or west on California freeways).
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Figure 4.3: Flow and speed time contours.

Color coding is used to display the status of each cell: green means free flow, red means
congested. There are two auxiliary colors: yellow indicates free flow at 97% of capacity,
orange indicates congested flow at 97% of capacity. The theshold 97% is a configurable

parameter (configuration variable yoColorRatio).

The blue triangular marker (Figure 4.1) shows which on-ramp is currently selected from the
list of on-ramps. The cyan triangular marker shows which off-ramp is currently selected

from the list of off-ramps.

Ramp lists are at the bottom of the ctmsim window. They may be used to manually change
on-ramp flows or off-ramp split ratios, or just to see where a particular ramp is located on

the freeway.

The area at the bottom left corner of the ctmsim window (Figure 4.1a) is dedicated to
plotting aggregate quantities: travel time (4.9), VHT (4.11) (Figure 4.4a), VMT (4.13)

(Figure 4.4b), delay (4.15) (Figure 4.4c), and productivity loss (4.17) (Figure 4.4d).

As the simulation runs, all plotted data are updated. The frequency of such updates (once
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Figure 4.4: Display aggregate data. (a) VHT. (b) VMT. (¢) Delay (d) Productivity loss.

per 5 simulation minutes, or once per simulation hour) is defined by the user (configuration

variable plotTS).

If the demand profile is specified by the user (configuration variable demandProfile), the
on-ramp demand values can be updated automatically (Auto — On-Ramp Demand). If auto
demand is turned on, the user can toggle the on-ramp control switch by going to Auto —
On-Ramp Control. Once on-ramp control is turned on, the queue control switch can be

toggled (Auto — On-Ramp Queue Control).

Similarly to the demand profile for on-ramps, the user may choose to specify the profile of
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split ratios for off-ramps (configuration variable betaProfile). To update split ratios by
values from the profile, go to Auto — 0ff-Ramp Split Ratio. If instead of split ratios, the
user wants to specify off-ramp flows, he/she can create a profile of off-ramp flows (configura-
tion variable frflowProfile) and run the simulation with automatically updated off-ramp
flows instead (Auto — 0ff-Ramp Flow). Not more than one of the two profiles, split ratio

or off-ramp flow, can be turned on at the same time.

At the bottom of the ctmsim window (Figure 4.1) there are RUN, CLEAR and STOP buttons.
To start the simulation, press RUN. STOP button pauses the simulation. At this point the
entire simulation run can be saved (File — Save Simulation). Pressing RUN again will
resume the simulation from the point it has been stopped. To start from the beginning,
before RUN press the CLEAR button. When pressed while the simulation is running, CLEAR
button only clears the existing data history without resetting the state to initial conditions
and time step to zero. One may choose to stop simulation any time, save it, load it again

at a later moment (File — Load Simulation) and run it from the point it was left off.

A user cannot exit ctmsim while the simulation is running. It has to be stopped first. If
the simulation was not saved, the user is asked if he/she wishes to save it upon exiting or

loading other simulation.

To modify simulation and model parameters (Table 4.1 entries that do not depend on time

step k), several editor windows can be called directly from ctmsim.

e Settings editor (Edit — Settings, Figure 4.5). It is used to modify general simulation

parameters.
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Figure 4.5: Editor for simulation parameters.

Sampling period At (configuration variable TS) user value must satisfy 4.1.

Plotting period (configuration variable plotTS) time period for the simulated data
to be displayed. It must be not smaller than the sampling period.

Timeout (variable timeout)—duration of a pause between plot updates. This param-

eter makes a difference only in graphical mode.

e Fundamental diagram editor (Edit — Fundamental Diagram, Figure 4.6). The trian-
gular fundamental diagram in cell ¢ is determined by either of two triplets: capacity
(maximum flow) Fj, critical density p{ and jam density p;; or capacity Fj, free flow

speed v; and congestion wave speed w;.

e Ramp data editor (Edit — Ramp Data) allows a user to modify on-ramp flows (Figure



95

) Fundamental Diagram Editor -0l ]

1210-East fundamental diagram

taximal flows (v ph)

40 45
1500 " :
—+— critical
E £, —&— jam
5 1000
: 5066675
2 s 4
5
[=]
o004
0 L | ; a4 W’*‘%@'@’ 5
25 30 3 40 45
Fost mile FD for cell 26 4 lanes)
q
[Cel 22 (5 S000008+000 Iar = ] 10000

[Cell 23 (5 lanes)
[Cell 24 (5 lanes)
[Cell 25 (4 lanes)

Maximum flow {vph) =| 5320

ICell 26 (4 lanes) = Critical density (vpm) =| 128 v{mph)= /4 5000
[Cell 27 (4.3000002+000 lar
R
Fwﬁm I_'_l Jam density Gmm) = | 720 w (mph) = 4.0541 g
1} 200 400 GO0 800

Density fvpm)

SAVE CANCEL | 0K

Figure 4.6: Fundamental diagram editor.

4.7a), or off-ramp split ratios (Figure 4.7b). All changes the user makes in the ramp

data editor are overriden by demand or split ratio/off-ramp flow profiles if these are

turned on.

On-ramp parameters editor (Edit — On-Ramp — Parameters, Figure 4.8a).
Mazimum flow on-ramp capacity R;.

Mazimum queue size number of vehicles the on-ramp can hold. This parameter is
used only by queue controllers.

Flow coefficient—serves to modify on-ramp demands coming from the profile without
modifying profile itself.

~v;—on-ramp flow blending coefficient.
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(b)

Figure 4.7: (a) Editor for on-ramp flows. (b) Editor for off-ramp split ratios.

& on-ramp flow allocation coefficient.

e Off-ramp parameters editor (Edit — 0ff-Ramp — Parameters, Figure 4.8b).
Mazimum flow—off-ramp capacity S;.
Flow coefficient—serves to modify split ratios or off-ramp flows coming from the cor-

responding profile without modifying profile itself.
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Figure 4.8: (a) Editor for on-ramp parameters. (b) Editor for off-ramp parameters.

Every on-ramp can have different mainline and queue controllers. Assigning particular
controllers to on-ramps is done through the controller editor (Figure 4.9). This editor
is also used to modify specific controller parameters. To call it, go to Edit — On-Ramp

— Controllers. Section 4.2.3 explains how user can plug his/her own controllers into

CTMSIM.

Each editor has SAVE button pressing which user can save his/her modifications in the current
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configuration file.

Remark. If SAVE was pressed and the updates were saved, pressing CANCEL will not undo
the changes to the configuration file, it only discards the changes for the current simulation.
To undo the changes in the configuration file, press CANCEL, then call a particular editor

again, then press SAVE.

To run ctmsim in batch mode, type

>> ctmsim myconfig ’b’

In this case, ctmsim saves the resulting simulation data in .mat file specified by the dataFile

configuration variable.

4.2.3 Ramp Controllers

CTMSIM package contains file ormlclist.mat that carries the information about on-ramp
mainline controllers. Currently implemented are ALINEA [90], LQI [98], SWARM |33] and

the so-called ideal ramp metering (IRM) strategy.

The idea of IRM is simple. In given cell ¢ with on-ramp, it selects the input flow r; as

r; = max {min {(«ap; — p;)Ax;, d; + q;/(At), R;},0}, (4.18)

where coefficient « determines the desired portion of critical density below which we would
like to keep the actual density. Default value is a = 0.97. It means, the objective of the

IRM controller is to keep the density in the current cell not higher than 97% of critical.
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IRM strategy may not be so “ideal” in case there is an off-ramp in the current cell, or the
capacity of the downstream cell is larger than that of the current one. In this situation,
keeping the density in the current cell below critical may result in the underutilization of
freeway capacity in the downstream cell. To avoid the underutilization, we implemented the
modified version of IRM (MIRM) which, in addition to (4.18), considers the downstream

capacity and adjusts input flow r; accordingly: pf in expression (4.18) is replaced by

max {pf, gi/vi} ,

with

B min {58, Fin }, i B <1,
g =
Si, otherwise.

Adding new controllers to CTMSIM is fairly simple. Suppose, the user wants to implement
his/her own controller Xyz and plug it into the CTMSIM. The following steps should be

taken.

1. Perform clean up: delete all variables in the workspace.

>> clear all

2. Load the list of on-ramp mainline controllers.

>> load ormlclist

Now, variable m1clist contains the list of already installed controllers. Other variables

are specific controller structures.

3. Add Xyz controller to the list.
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>> strvcat(mlclist, ’Xyz’);

4. Define Xyz controller structure. Mandatory fields are listed in Appendix A.
>> xyz.id = size(mlclist, 1);
>> xyz.name = ’Xyz’;
>> xyz.TS = 1/120; % can be any other nonnegative value
>> xyz.Cmin = O; % can be any other nonnegative value
>> xyz.Cmax = 5000; % can be any other value >= Cmin
>>
>> % other fields are user specific.

5. Save updated information in ormlclist.mat file.

>> save ormlclist

6. It remains to implement controller function for Xyz. It must satisfy the following
format.
function new_orflows =
controller_xyz(densities, orflows, celldata, ts, idx)
where densities is a vector of densities, orflows is a vector of on-ramp flows,
celldata is an array of cell data structures (see Appendix A for details), ts is a
sampling period, and idx - cell index. The function should return the updated vector

of on-ramp flows. See controller_alinea.m for an example of the ALINEA imple-

mentation.

After performing these steps, the Xyz controller is ready to use. In the ctmsim application,
go to Edit — On-Ramp — Controllers. The controller editor window will pop up. Xyz

controller is now in the list and it is possible to assign it to on-ramps (see Figure 4.9). All
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Figure 4.9: On-ramp controller editor window. Xyz mainline controller appears in the list.
7ZYx appears in the list of queue controllers.

controller parameters contained in the xyz structure can be adjusted in this window except

id and name.

Similarly to ormlclist.mat, file orqclist.mat has information about queue controllers.

Currently implemented queue control schemes are “queue-override” and proportional [98].

Adding user-designed ZYz queue controller to CTMSIM follows similar steps to those for

mainline controller.

1. Perform clean up: delete all variables in the workspace.

>> clear all

2. Load the list of on-ramp queue controllers.
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>> load orqclist

Now, variable qclist contains the list of already installed queue controllers. Other

variables are specific queue controller structures.

. Add ZYx controller to the list.

>> strvcat(qclist, ’Z¥x’);

. Define ZYx controller structure. Mandatory fields for queue controllers are also listed
in Appendix A.

>> zyx.id = size(qclist, 1);

>> zyx.name = ’ZYx’;

>>

>> % other fields are user specific.

. Save updated information in orqclist.mat file.

>> save orqclist

. It remains to implement the queue controller function for ZYx. It must satisfy the
following format.
function new_orflows =
controller_zyx(demands, orflows, orqueues, celldata, ts, idx)

where demands is a vector of on-ramp demands, orflows is a vector of on-ramp flows,
orqueues is a vector of on-ramp queues, celldata is an array of cell data structures
(see Appendix A for details), ts is a sampling period, and idx - cell index. The function
should return the updated vector of on-ramp flows. See controller_q_override.m

for an example of “queue override” implementation.
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After these steps are performed, ZYx can be assigned to on-ramps through the controller

editor (Figure 4.9).
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Figure 4.10: Freeway configuration editor fwconfig.

4.2.4 Auxiliary Utilities

Additionally to ctmsim, three other useful utilities are part of CTMSIM package. These are

fwconfig, plotsim and plotsim3.

fwconfig is a graphical freeway configuration utility (see Figure 4.10). It allows users to

build a freeway from scratch:

>> fwconfig



104

and save the result as CTMSIM configuration file; or edit an existing configuration:

>> fwconfig myconfig

where myconfig.mat is an existing CTMSIM configuration file.

More details about the format of configuration file can be found in Appendix A.

210West

Speed (moh)
VHT per .00 minutes.
g

(@) (b)

Fowtan

. 8 E B BEEE

. § 8 E B BEEEE
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Figure 4.11: Using plotsim to plot (a) speed time contour; and (b) VHT evolution in time;
(c) flow evolution in time in cells 31 through 33 in black color.

plotsim is a utility that plots requested simulation data in 2D:

>> plotsim mysim quantity

where mysim.mat is a file where CTMSIM simulation is saved, and the quantity parameter

may assume one of the values listed in Table 4.2.

See Figure 4.11a,b for examples of plotsim command:
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Density (vpm)

Figure 4.12: Using plotsim3 to plot density in 3D. The axes are Post mile, Time (min) and
Density (vpm,).

>> plotsim mysim ’speed’
>> plotsim mysim ’vht’

Additional parameters of command

>> plotsim(’mysim’, quantity, cells, color)

are cells - array of cell numbers for which the specified quantity should be plotted, and

color - color for the plots. The result of the call

>> plotsim(’mysim’, ’flow’, 31:33, ’k’)

is shown in Figure 4.11c.

plotsim3 plots simulated quantities listed in Table 4.2 except for travel time (*ttime?’) in

3D. For example, the result of the call
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Description

’density’
’flow’
’speed’
’ttime’
’demand’
’orflow’
’queue’
*frflow’
’beta’
’vht’
’vmt’
’delay’
’ploss’

Mainline density
Mainline flow

Traffic speed

Travel time

On-ramp demands
On-ramp flows
On-ramp queues
Off-ramp flows
Off-ramp split ratios
Vehicle Hours Traveled
Vehicle Miles Traveled
Delay in vehicle hours
Productivity loss in lane mile hours

Table 4.2: Admissible values of quantity parameter.

>> plotsim3 mysim ’density’

is shown in Figure 4.12.

4.3 1210 Case Study

The first task undertaken by TOPI was a study of both directions of 1210 freeway in Southern

California. The segment of interest is beween junction with SR-134, postmile 25 (West

bound) and Baseline Road, postmile 52 (East bound), see Figure 4.13.

To study each of the 1210 directions, East and West, we went through the following steps.

1. We start by extracting the freeway geometry from PeMS: vehicle detector station

(VDS) locations (post miles), number of lanes on each VDS-to-VDS segment, on-

Y
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Figure 4.13: Google map of 1210.

and off-ramp locations (post miles), number of lanes at ramps. Currently, PeMS’
information about freeway geometry is not complete. It only knows about ramps and
lanes that have VDS. Therefore, after the freeway geometry is extracted from PeMS,

we manually compare it with Google map and fill in missing lanes and ramps.

2. We divide the extracted freeway into cells in such a way that

(a) any cell contains not more than one on-ramp, and if there is one, it is located at

the beginning of the cell;

(b) any cell contains not more than one off-ramp, and if there is one, it is located at

the end of the cell;
(c) any cell contains not more than one VDS;

(d) cells are not too long ideally, not longer than 1 mile - to make traffic dynamics

more realistic;

(e) cells are not too short—ideally, not shorter than .15 to .2 mile—to ensure that

the sampling period At that has to satisfy (4.1) is not too small and, at the same
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time, the number of cells not too large, thus making the simulation execute faster.

As Figure 4.14 shows, condition (c) is usually taken care of by the nature of VDS
placements, which are rarely too close to each other. More often it is the case that
some cells have no VDS at all. If two on-ramps are too close to each other, one may
choose to treat them as one with demand equal to the sum of the two demands, to
Similarly, collapsing two close off-ramps into one with double

ensure (a) and (e).

capacity, will ensure (b) and (e). If an on-ramp is closely followed by a off-ramp, the

way to fulfill (a), (b) and (e) would be to place them in two separate neighboring cells:

Y

the off-ramp into the upstream and the on-ramp into the downstream cell.

Huntington Dr. Santa Anita 2 Santa Anita 1 Baldwin 2
ML 761342 ML 764146 ML 717669 ML 717664
HV 761339 HV 764144 HV 717670 HV 717665
PM 33.049 PM 32.199 PM 32.019 PM 30.999
~ 1~ ~ & Ya 1~ ~ in
k75 2762 { 1606 962 3025 : 2181
15 16 [ 17 18 19 [ 20
& N & & N 74
o u [
ington Santa Anita Baldw

Figure 4.14: Segment of 1210-West between Huntington Drive and Baldwin Avenue divided

into cells, and correspondig VDSs.

Abbreviations: ML - mainline VDS, HV - HOV VDS, PM - post mile.

The cell length is in feet: cell 16 is 2762 feet long.

3. Once the freeway layout is in place, it is time to estimate the fundamental diagrams

for each cell ¢, ¢ = 1..N. This process is usually called calibration and is described in
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[87, 100, 70|. In TOPI, we use none of these calibration methods in pure form. Rather,

ours is a hybrid of several techniques and it is yet to be documented.

To summarize, calibration is performed by the following steps

(i) For each VDS in the freeway study segment extract density and flow values from
PeMS for those days when this particular detector was in good working condition

(PeMS also contains detector health status history).

Remark. The distance between neighboring VDSs is often larger than the cell
size in CTM. Hence, the retrieved VDS data may apply (and usually does) to

more than one cell (e.g. VDS 717669 covers cells 18 and 19 in Figure 4.14).
(ii) Find maximum flow value. Usually, this will be the capacity Fj.

(iii) Use least squares method to estimate free flow speed v;. Practice shows that free
flow density-flow pairs give a good fit.

b

CH

(iv) Critical density p§ =

(v) Use constrained least squares method to determine congestion wave speed w;.

When VDS data are good, steps (i-v) produce a decent result (Figure 4.15a). If, on
the other hand, VDS data are poor due to malfunctioning detector or just because the
capacity is never reached at this point of freeway as in Figure 4.15b, then we can either
use fundamental diagrams from the neighboring cells, or impute the missing data [31]

and repeat Step 3.

. Determine “good days” for our freeway segment with respect to data collected by

PeMS. “Good day” means a day when all or almost all vehicle detectors were healthy
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Figure 4.15: Estimating fundamental diagram.  (a) Good data.  (b) Poor data.

and collected data. In practice, it is never the case that all detectors are intact. Most
off-ramp VDSs on 1210 do not work. Thus, we relax the definition of a “good days” to

those when mainline and on-ramp detectors were functional.

Create demand profiles for “good days” using PeMS flow data from on-ramp VDSs.

Data for ramps without VDSs have to be imputed.

Compute off-ramp split ratio profiles with

Bi(t) = % (4.19)

This is easier to say than to do. If VDS at an off-ramp doesn’t work, we do not
know s;(t). A rather rough but simple way around it, is by taking the flow data from
upstream mainline and on-ramp VDSs (if these data are reliable, of course), estimate
the sum f;(t) + s;(t). Then, f;(t) can be obtained from the downstream VDS, and

thus, we get s;(t).
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7. Run the simulation with ramp control turned off for some of the “good day” demand
and split ratio profiles and compare the results with PeMS data for those days. Because
of the imputation of the missing on-ramp data and errors in estimating split ratios,
adjustments to demand and split ratio profiles may be necessary. The interactive
nature of ctmsim allows to tweak demand coefficients at particular on-ramps or modify
split ratios as simulation executes. Figure 4.16 compares speed time contour from
PeMS to one generated by ctmsim, and Figure 4.17 compares aggregate quantities:
travel time, VHT, VMT and delay for a 14-mile segment of 1210-West on a particular

day, April 12, 2006.

As simulation data matches well the actual freeway measurements from PeMS (Figures
4.16-4.17), we may conclude that CTM is adequate for traffic modeling, and demands

and split ratios are adjusted well enough for given “good days”.

8. It is time to start experimenting with on-ramp control strategies to see if they help
improve, and how much, the freeway system performance. For example, Figure 4.18
shows how travel time and VHT under the no control strategy compares with those
in the presence of ALINEA at on-ramps. In this example, although travel time along
the freeway has reduced significantly by applying ALINEA, the overall performance
has not improved much judging by the VHT chart. It means that while the freeway

is in free flow almost all the time, large queues are formed at on-ramps.

Note: VHT computed by PeMS does not include ramp delay, whereas they are in-

cluded in VHT computed by CTMSIM.

9. While it may seem that certain control strategies offer little improvement (Figure
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4.18b) under current conditions, it makes sense to check what will happen under

different scenarios.

Scenario 1: 5% demand increase.

We can expect that two years from now the number of vehicles on the road will increase
by 5%. In terms of our simulation settings, it means that the on-ramp demand values
will increase by 5%. In the editor for on-ramp parameters, we set the value of demand
coefficient to 1.05 for every on-ramp, and run the simulation with on-ramp control off

and on.

Figure 4.19 shows that under increased demand, the impact of ALINEA is very signif-
icant. Ramp metering keeps the freeway in free flow, while delays imposed by queues
at on-ramps are small compared to those resulting from congestion. Uncontrolled and

ALINEA speed contours are presented in Figure 4.20.

Scenario 2: 2% demand decrease.
Now we check what happens if the number of vehicles on the road decreases. Such

situation may be a result of a proper demand management (traveler information, tolls).

Say we want to decrease the demand by 2%. For that, we set the value of the demand
coefficient to 0.98 in the editor for on-ramp parameters, and again run the simulation

with on-ramp control off and on.

Figure 4.21 shows the travel time and VHT for the uncontrolled and ALINEA con-
trolled cases, and Figure 4.22 shows the corresponding speed contour plots. As we can

see, ramp metering does not improve the VHT performance. The delays are shifted
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from the freeway to on-ramp queues. Ramp metering may still be beneficial, how-
ever, since it keeps the freeway in free flow maintaining a level of service that may be

required by a tolling authority.

Scenario 3: accident.

Suppose, an accident occurred at 3.40 pm (minute 940 on the plot) at post mile 30, near
Michllinda Avenue, leaving two of the four lanes blocked, and it took 20 minutes to clear
the freeway. To simulate this accident, the user has to stop the running simulation
at 940 minutes, open the fundamental diagram editor and modify the fundamental
diagram of the cell where the accident took place (in our case, it is cell 25). Critical
density, jam density and maximum flow for the selected cell should be reduced by
50%. Then the user has to resume the simulation, stop it at 960 minutes, change the
fundamental diagram for that cell back to the original, resume the simulation again

and run it to the end. This simulation has to be run with on-ramp control off and on.

Figure 4.23 shows the travel time and VHT for the uncontrolled and ALINEA con-
trolled cases, and Figure 4.24 shows the corresponding speed contour plots. Clearly,
ramp metering significantly improves both travel time and VHT at the time of accident

and after and keeps the freeway mostly in free flow.

The user may choose to simulate other variations of this scenario, such as increasing

or reducing the time interval between the accident occurrence and clearance.
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Figure 4.16: 1210-West 14-mile segment beween Vernon Avenue and junction with SR-134,
April 12, 2006. Speed time contours (traffic flows from left to right).

(a) PeMS data.

(b) CTMSIM simulation.
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Figure 4.17: 1210-West 14-mile segment beween Vernon Avenue and junction with 134, April
12, 2006. Aggregate data comparison between PeMS (blue) and CTMSIM (red).
(a) Travel time. (b) VHT. (¢) VMT. (d) Delay.
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Figure 4.18: Freeway performance without control (blue) vs. with ALINEA control (red).
(a) Mainline travel time. (b) VHT.
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Figure 4.19: Scenario 1: 5% demand increase. Freeway performance without control (blue)
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Figure 4.20: Scenario 1: 5% demand increase. Comparison of two speed time contours
(traffic flows from right to left). (a) No control. (b) ALINEA control.
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Figure 4.21: Scenario 2: 2% demand decrease. Freeway performance without control (blue)
vs. with ALINEA control (red). (a) Travel time. (b) VHT.
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Figure 4.22: Scenario 2: 2% demand decrease. Comparison of two speed time contours
(traffic flows from right to left). (a) No control. (b) ALINEA control.
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Figure 4.23: Scenario 3: accident at post mile 30 (near Michillinda Avenue). Freeway
performance without control (blue) vs. with ALINEA control (red). (a) Travel time. (b)
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Figure 4.24: Scenario 3: accident at post mile 30 (near Michillinda Avenue). Comparison
of two speed time contours (traffic flows from right to left). (a) No control. (b) ALINEA

control.
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Chapter 5

Aurora: Simulation and Analysis
Framework for Infrastructure

Networks

5.1 Motivation

Although it is a neat software package, useful for transportation researchers in their stud-
ies of freeway traffic, CTMSIM falls short of providing an appropriate toolset for corridor
management. It handles only one freeway and no arterial networks, cannot deal with HOV,
has no notion of event that triggers certain configuration or input changes at given time or
under given conditions allowing to program scenarios, and requires MATLARB which makes

it unusable for the operations staff in organizations such as Caltrans.
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The TOPI group had an option: to find a third party macro-simulation package able to
handle mixed freeway-arterial road network and adapt it to its needs, or develop its own
software solution. Of the third party packages, METACOR [44] suited best the needs of
TOPI, but its commercial version [5] was unavailable to us at the time (December 2006), and
it was decided to proceed with development of our own simulation and analysis framework

for traffic flows in freeway corridors. Aurora! [9] is the working name given to this project.

Listed below are the foundation principles of the Aurora framework.

1. Multi-purpose—basic structures and algorithms must be generic and not road traf-
fic specific, making the framework reusable for other applications, such as irrigation
canals, oil or gas pipelines, etc. Application specific classes inherit from these basic
structures. This affects basic data structure definitions and general purpose algorithm

development.

2. Usability—Aurora tools must be easy to handle: creating configuration files, run-
ning simulations, and calling analysis routines, must be intuitively clear. It is better
to have several different lightweight applications for different tasks rather than one

heavyweight application for multiple purposes.

3. Interactivity simulation and analysis applications must provide clear and simple GUI
with good data visualization. This and previous items affect the user interface and

visualization: what data should be displayed and in what way.

! Aurora (short for polar aurora) - glow in the sky, seen often in a ring-shaped region around the magnetic
poles ("auroral zone") and occasionally further toward the equator. The name comes from an older one,
“aurora borealis”, Latin for “northern dawn”, given because an aurora near the northern horizon (its usual
location when seen in most of Europe) looks like the glow of the sky preceding sunrise. Also known as
“northern lights”, although it occurs both north and south of the equator.
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4. Scenario oriented—user should be able to write scenarios: lists of events that change
configuration or inputs, with times or conditions of their occurrence, and feed them

to the simulator. This affects the way events are described and handled.

5. Scalability—user should be able to seemlessly add new roads (canals, power lines, etc.)
to already existing network configurations, or connect two or more networks with each
other. This affects basic data structure definitions and the way configuration files are

organized.

Aurora is implemented in Java. It uses external libraries: JUNG [10] for drawing the

network, and JFreeChart [11] for plotting simulation data.

Java packaging of Aurora is organized as follows:

e qurora generic classes and interfaces;

e aurora.hwc classes and interfaces specific to road network application (HWC stands

for highway control);

e qurora.hwc.gui—user interface classes for the road network application;

e qurora.util—collection of useful routines, not application specific.



122

5.2 Architecture

5.2.1 Basic Objects

The basic building block of the Aurora system is a network element with a unique integer
ID. A network element can be a link representing a stretch of road (water canal, pipeline,
etc.), simple node point where links merge and/or diverge, complex node network built
out of network elements, or monitor an object that monitors the state of specified links

and nodes in a network.

A link has direction and length. It must have either of the two nodes, begin node or end
node, or both of them, attached to it. Links with no begin nodes are source links. Source
links provide input to a system. In the case of a road network (Aurora HWC?), associated
with source links are demand values and queues. Links with no end nodes are destination
links. In Aurora HWC, we assume that anything downstream of a destination link is in free

fow.

Table 5.1 summarizes link types implemented in Aurora HWC together with begin and
end nodes that each link type allows. Each of these link objects has associated with it a
fundamental diagram and dynamics. Dynamics is an interface, i.e., any macroscopic traffic
model can be used to compute the link state, namely, traffic density. Currently, only the
CTM model is implemented. Density is implemented not as a simple numeric type, but as

generic object, allowing us to modify or extend the traffic model so it could deal with density

2 Aurora for highway control
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Link type Admissible begin nodes Admissible end nodes
freeway freeway freeway

highway highway highway

HOV freeway, highway freeway, highway
interconnect freeway, highway freeway, highway
on-ramp signal and stop junctions freeway, highway
off-ramp freeway, highway signal and stop junctions
street signal and stop junctions signal and stop junctions
dummy any any

Table 5.1: Aurora HWC link types with corresponding admissible begin and end nodes.

as a vector of values (say, when traffic flows carry additional origin-destination information,

or we want to distinguish vehicles by types, e.g. SOV, HOV, trucks), or more complex data

structure. For each link, Aurora computes travel time, VHT, VMT, delay and productivity

loss.
Node type Admissible input links  Admissible output links
freeway freeway, HOV, freeway, HOV,
interconnect, off-ramp on-ramp, interconnect
highway highway, HOV, highway, HOV,

signal junction

stop junction

interconnect, off-ramp

street, off-ramp
street, off-ramp

on-ramp, interconnect
street, on-ramp
street, on-ramp

Table 5.2: Aurora HWC node types with corresponding admissible input and output links.

A simple node?® must have one or more input and one or more output links. Aurora HWC

nodes are listed in Table 5.2 together with types of input and output links they admit.

Local controllers (such as ALINEA [90]), if any, reside on nodes and are assigned to given

input links, potentially restricting flows coming from these links. When there are multiple

output links, nodes also carry information about what portions of which input flows must

3We refer to it as node from now on, while referring to a complex node as a network.
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be directed to which output. Currently, for m inputs and n outputs in the node, it is
implemented as an m X n split ratio matrix, where elements are nonnegative and sum up to

1 in each row.

Remark. Currently, we do not distinguish between freeways and highways. Highway spe-
cific objects are present in Aurora following the road classification provided by HCM [101]

and are reserved for future use.

While links and nodes physically form a network, a monitor is a special object whose purpose
is to monitor the state of specified links and nodes, and based on these data, issue instructions
to system wide controllers (such as SWARM |[33]). Monitors are ad-hoc objects designed by
the user together with network wide control strategies. They can be also used to generate
certain events (such as split matrix change—to simulate traveler information affecting traffic
flow directions) based on observed conditions (more about events in the next Section). At

this point, no monitors are implemented.

All described network elements links, nodes and monitors are always part of a complex
node, a network. There is at least one network in any Aurora system the top level complex
node, to which all other links, nodes and monitors belong. Network objects are nodes, hence,
networks can contain networks just as they contain simple nodes. It makes the Aurora
structure hierarchical, allowing to create configurations out of building blocks that are more
complex than links and simple nodes, which is faster and more convenient, and opens a door
to parallel computation when simulation steps for different subnetworks can be computed
concurrently by different processors. Another benefit of using a hierarchical structure is

that different subnetworks may have different sampling periods, that is, simulation steps
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of different duration. It can save time if, for example, network consists of roads with long
enough links that do not require a small sampling period, and roads with rather short links
that do (recall (4.1)). Separating them into subnetworks with different sampling periods

reduces computation time.

Remark. Sampling periods of subnetworks cannot be greater than sampling period of top

level network.

There are two other basic objects. Object path describes route from a node to node as a
sequence of adjacent links. For each path, Aurora computes travel time, VHT, VMT, delay
and productivity loss based on corresponding data from links forming the path. Object OD
describes a pair of origin and destination nodes together with list of paths connecting the
two. A complex node may contain a list of origin-destination pairs. For consistency, it is
required that every link in every path of every origin-destination pair belongs to the same

complex node as ODs in the list*.

5.2.2 Events

Aurora HWC-specific events, summarized in Table 5.3, are derived from the generic Aurora
event object and are handled by the Aurora event manager. Events that change fundamental
diagrams can be used to simulate traffic incidents by reducing capacity. Changing demand

coefficients and split ratio matrices help imitate special events, road closures, or effects of

4Tt may happen that both, origin and destination nodes, belong to the same subnetwork, while some links
at certain paths connecting them are part of a different subnetwork. This is not a problem because top level
network contains all the links present.
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displaying traveler information. Controller and queue size changes may be part of complex

ramp control strategies.

Event: change in Where occurs
controller nodes

split ratio matrix nodes
demand coefficient source links
queue size source links

fundamental diagram links

Table 5.3: Aurora HWC events.

The event object carries the following information: activation time (in terms of simulation
hours), ID of a network element where it must occur, new parameter values for this network
element, and an activate() method that changes those parameter values at a network
element while storing the old values coming from the network element in their place. An
event list is an optional part of the configuration file, but the user can generate new events

before or during the simulation run as well as disable those already in the list.

When the simulator reads a configuration file, it places all events listed there into a queue
sorted by event activation time (this queue may be empty, if no events are specified). User
generated events are added to this queue, their location in the queue being determined
by their activation time also. Events are triggered by the event manager. Before each
simulation step, it selects those events in the queue that are due (those whose activation
time is smaller than the next simulation time step), and activates them by invoking their
activate () methods. Then, it moves these activated events from the event queue to the end
of the event history list in the order they occured. Thus, events never get deleted. Later,

when the user resets the simulation, events are rolled back, or activated in reverse sequence
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with reverse action, returning to network element parameters their original values. Such
maintenance of event queue and history list potentially allowes us to “rewind” simulation to

any given point of its execution.

5.2.3 Simulation Algorithm

An object representing a network element contains the dataUpdate () method. It performs
simulation step computations specific to the particular type of network element. The recur-

sive algorithm of dataUpdate() in a network is described next.

1. Check if at this time step any action is needed:

(k — ko)AtO < At, (5.1)

where At is sampling period for this network, Atg is the sampling period for the top
level network, k is the current time step, kg is the time step at which the last action
was performed.

If £ > 1 and inequality (5.1) holds, then return without doing anything. Else, proceed

to step 2.

2. For every monitor in the monitor list, call dataUpdate(). If present, each monitor
has its own specific task—it may assign controller parameters, or generate events to

be activated before the next simulation step or later, at prescribed time.

3. For every node in the node list, call dataUpdate (). If the node is complex, start the

algoritm from step 1 with respect to this node. Else (the node is simple), compute
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input and output flows based on demand from upstream and available capacity of

downstream links. This can be done in many ways.

Daganzo in [40] introduces the concept of priorities for multiple input flows and the

FIFO® rule for multiple output flows.

In the Aurora framework priorities are the fractions of the input flows accepted by the
node, in case the upstream demand exceeds the downstream capacity (if the upstream
demand is below the downstream capacity, priorities do not matter since all the vehicles
from the upstream links can be accommodated by the downstream links). Different
priority choices result in different flow values for the next simulation step. In the
current Aurora implementation we assume that the input priorities are proportionate

to the input demands.

The FIFO rule means that if one of the output links cannot accommodate its allocation
of flow, the total output flow is restricted®. In the Aurora framework the FIFO rule
implies that the input-output flow relations defined by the split ratio matrix must be

preserved.

To summarize, we compute the input and output flows based on the input demands,
satisfying the downstream capacity restrictions by assuming the input priorities to be
proportionate to the demands, while preserving the input-output flow relations defined

by the split ratio matrix.

Given m > 0 input and n > 0 output links, computation proceeds as follows:

SFirst in, first out.
5Vehicles unable to exit from the upstream link prevent all those behind, regardless of their destination,
to continue.
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Compute input demands

dz(k‘) = min (Uipi(k‘o),C(pi(k‘o)),Fi), 1= 1..171,, (5.2)

where v; is free flow speed, p;(ko) is the density at the input link i; C(p;(ko))
denotes flow value suggested by a controller, if a controller is assigned to the
input link ¢; and Fj is the capacity of the input link 3.

From the m x n split ratio matrix B, and the m-dimensional demand vector J(k‘)

we get the input-output m x n demand matrix D(k)

Y

and output demands

Compute available output capacities
cj(k) = min (w;(p; — pj(ko)), F), j=1.n, (5.5)
where w; is congestion wave speed, p; is the jam density, and Fj is the capacity

of the output link j.

Compute input-output demand matrix adjusted by the output link capacity re-

strictions, assuming the input priorities to be proportionate to the demands,

R i . (e
Dij(k) = min(d; (), ¢ ))Dij(k), i=1.m, j=1.n, (5.6)
d; (k)
and adjusted input demands
di(k) =Y Dyj(k), i=1.m (5.7)
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This step ensures that the adjusted input demand does not exceed the down-

stream capacity. More precisely,

> Diglk) < ¢(k),
i=1
with equality being achieved if and only if d;(k) > ¢;(k).

Remark. Expression (5.6) makes sense only if d;(k) # 0. So, in case d;(k) = 0,

we set Dy (k) = 0.

(e) Compute input flows

o Di;
fi=dimin{ —2 %  i=1.m, j=1.n. (5.8)
J dszy

In case d; = 0 or B;j = 0 for all j = 1..n, we set f; =o0.

(f) Compute output flows

f](k‘) = ZBZJ]EZ’ j =1..n. (5.9)
=1

Steps (e) and (f) implement the FIFO rule: input and output flow values are

assigned so as to maintain input-output relationship defined by matrix B.
4. For every link in the link list, call dataUpdate ().
(a) Compute density and speed using model specific equations. For CTM, these are
(k) = plko) + o (Fulk) — Fulk), and V(K) = fu(B)/p(R), (510

where Az is the link length, f, is the upstream flow (flow entering the link), f;

is the downstream flow (flow exiting the link), and V' is the speed. If the link is
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a source link, f, (k) equals current demand, otherwise f, (k) is computed in the

begin node of the link as one of its output flows. If the link is a destination link,

fa(k) = min (vp(ko), F') ,
where v is the free flow speed, and F' is the capacity; otherwise fy(k) is computed
in the end node of the link as one of its input flows.
(b) Compute travel time
TT(k) = Ax/V (k). (5.11)
(¢) Compute VHT, VMT, delay and productivity loss as described in Section 4.2, by

formulas (4.10), (4.12), (4.14), (4.16).

5. Set kg = k and return.

5.2.4 Configuration

From TOPI we learned that once the process of a freeway corridor study is established, the
most tedious and time consuming task is putting together a configuration file with road
network description. Being the least rewarding, this task requires attention to details and
patience. Therefore, efficient configuration management was made one of the priorities of

TOPL

General configuration file contains

e information about network layout: positions and types of nodes, shapes and types of

links connecting them, numbers of lanes;
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e description of monitors (if any are present);

e gsplit ratio matrices and controller information at nodes and fundamental diagrams at

links;

e list of origin-destination pairs, each with list of feasible paths;

e demand profile for source links;

e event scenario - list of events describing what occurs, where and when.

The first item is the most difficult, because there is no single source from which these data
could be extracted. Eventually, PeMS intends to provide this information for arterials as
well as for freeways. To date, however, PeMS only deals with freeways and it knows only
about ramps and lanes where detectors are installed. Thus, we have to work with GIS
data from regional planning agencies such as MTC (Bay Area) and SANDAG (San Diego),
configuration files for different simulators used by other research groups, and ultimatly
consult Google maps. The procedure of network layout extraction is not well defined yet

and requires a “human touch”; i.e., a lot of manual checks and adjustments.

Calibration, i.e., computation of fundamental diagrams and split ratio matrices, and demand
generation, with the lack of sufficient measurement data (especially, for arterials), is the

second great challenge.

All this put together makes us realize that complete configuration files have significant value,

so that establishing a repository of configurations makes sense.
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Aurora configuration files use XML format whose syntax, data sets and validation rules,
are defined by a schema presented in Appendix B. Types of links, nodes, monitors, con-
trollers and dynamics are defined in class attribute, which specifies what classes Aurora
must instantiate upon reading the configuration. Configuration is modular. That is, origin-
destination lists, demand profiles and event scenarios, are separate blocks that can be op-
tionally added to a configuration file or stored on their own. This, plus the hierarchical
structure of Aurora in which a network is just another complex node, make the manipula-

tion of configuration building blocks relatively easy and efficient.

Another benefit of XML configuration is that it can be read by anyone (the technology is
known and proven) and translated into other formats. That makes it a good candidate for

an interchange format for road network descriptions.
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5.3 User Interface

Figure 5.1 presents the face of the Aurora HWC simulator. The application window is

divided into four frames.
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Figure 5.1: Aurora HWC simulator window.

1 - network tree frame: lists networks, nodes, links, monitors, ODs, paths.

2 - main frame: home to application subwindows.

3 - scenario frame: lists events and logs.

4 - status frame: displays simulation status, and/or instructions to the user.
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1. Network tree frame. It displays network components - nodes, links, monitors, origin-
destination pairs and paths in a hierarchical tree structure a la Windows Explorer.
Special icons specify their types. Double clicking on a component brings up a subwin-

dow in the main frame with details of that particular network element or path.

2. Main frame. It is used to host subwindows for selected network elements or paths.

e Network subwindow (Figure 5.2). It is divided into two tabs. Ome displays
network layout that can be zoomed in and out and allows to view details of links
and nodes composing the network. As simulation runs, links are colored using
either their density or speed values (user choice). The other tab describes the
network together with general settings: sampling period, mainline and queue

control on or off.

e Node subwindow (Figure 5.3). It is divided into two tabs. One displays simulation
data: input and output flows. The other displays node configuration: input links
with controllers, output links and split ratios. From the configuration tab the

user can generate node events (controller and split ratio matrix changes).

e Link subwindow (Figure 5.4). It is divided into three tabs. Simulation tab
displays flow, density, speed and travel time. Performance tab shows VMT,
VHT, delay and productivity loss at the link. Configuration tab has information
about link length, number of lanes and fundamental diagram. From here the user
can generate link events (fundamental diagram changes, and demand and queue

limit changes for source links).

e Path subwindow (Figure 5.5). It is divided into three tabs. Layout tab shows
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Figure 5.2: Network subwindow. (a) Layout tab. (b) Configuration tab.

part of network that constitutes a path. It can be zoomed in and out and allows
to view details of participating links and nodes. As the simulation runs, links are
colored using either their density or speed values (user choice). Performance tab
shows travel time, VM'T, VHT, delay and productivity loss along the path. The
time granularity of the plotted VMT, VHT, delay and productivity loss values is
determined by the display update period, which is part of the general settings.

Contour tab displays flow, density and speed time contours for the path.

3. Scenario frame (Figure 5.1). This frame is divided into two tabs. One lists the events
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Figure 5.3: Node subwindow. (a) Simulation tab. (b) Configuration tab.

of the current simulation scenario: their type, description, activation time. The user
cannot delete an event from the list, only edit it, or disable it. The event editor
window pops up when the user double clicks on an event. Figure 5.6 shows an editor
for the fundamental diagram change event. Each event type has its own editor window.
The other tab is a console for dumping the application output: logs and debugging

information.

4. Status frame (Figure 5.1). It displays the status of simulation—running, paused or

stopped, and issues short instructions to a user.
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Figure 5.4: Link subwindow. (a) Simulation tab. (b) Performance tab. (¢) Configuration
tab.

The menu on top of the main window (Figure 5.1) currently provides the following options:

e to run simulation (Simulation — Run);

to stop simulation (Simulation — Stop);

to save simulation (File — Save Simulation);

to reset simulation (File — New Simulation);

to load previously saved simulation (File — Open);

to toggle mainline and queue control switches (Control — Mainline and Control —

Queue); to turn mainline control on and off;

e and to edit general settings (Edit — Settings, Figure 5.7).

General settings comprise such parameters as display update period, maximum simu-

lation time and timeout between screen refreshes.
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Figure 5.5: Path subwindow. (a) Layout tab. (b) Performance tab. (c¢) Contour tab.

It is also possible to save the current configuration (File — Save Configuration). Al-
though a user has no direct way of changing configuration parameters of network elements
in the simulator, they may change nevertheless, due to activated events. Also, a user can
generate new, edit or disable old events, thus modifying event scenario. These are the

reasons why it may be desirable to save current configuration in a file.

5.4 Goals

Aurora is not a finished product as of the moment this dissertation is written. As was

mentioned above, it consists of three major modules: configuration, simulation and analysis.

Simulation module.

Simulation module is a centerpiece of the framework. Significant progress has been made in
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the simulator development, but several items remain unfinished.

140

e Modeling of arterial traffic requires implementation of signal control for nodes rep-

resenting signal junctions. Until it is implemented, we make trivial assumption that

arterial traffic always moves with free flow speed (25— 30 mph) and there are no delays

at signal junctions.

e Currently, we use demand values at source links as inputs to the system, while split

ratio matrices at MIMO7 nodes determine how traffic flow is divided between different

links.

Alternative form of input data can be used: origin-destination flow matrices. That is,

instead of demand profile and split ratios at junctions, there are OD matrices generated

with given period (say, every 5 or 15 minutes) that specify how many vehicles started

"Multiple input, multiple output.
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Figure 5.7: Editor window for the simulation settings.

from given source to given destination during that period. Input data in the OD form
is useful if we solve dynamic traffic assignment (DTA) problem. Our goal is to make
Aurora capable of processing input in OD form. This involves adjustments to the

current configuration XML schema (Appendix B).

So far, “travel time” through a link or path refers to the instantaneous travel time
as opposed to actual travel time. Instantaneous travel time is the travel time that
would be experienced if the traffic speed in each link of the path were to stay constant
assuming values at current time step. It can be computed every time step as simulation
runs. Actual travel time can be only computed after the whole simulation data becomes

available. Suppose, we start at a source link 0 at time step kg and this link has a queue
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q(ko). The time step at which we arrive at link 1 is

k1 = ko + Ny, (5.12)
with
k—1
Ny = argmax;, {Z fa(ko + KAt < q(k‘o)} ) (5.13)
k'=0

where At is a sampling period, and fy(ko + k') is the flow leaving link 0 at time step

ko + K.

If we arrive at link ¢ (¢ > 0) of our path at time step k;, the actual travel time through

this link will be

Tz(k‘o) = N;At, (5.14)
with
k—1
N; = argmax;, {Z Vi(ki + KAt < Amz} , (5.15)
k’=0

where Az; is the length of i-th link, and V;(k; + k) is the average traffic speed on i-th

link at time step k; + &'

Given (5.12)-(5.15), arrival time at link (i+1) is k;+1 = k; + N;. Then the total travel

time over the path through links ¢ =0,1,--- M is

M
T(ko) = At > N, (5.16)
=0

with N; determined from (5.13) and (5.15).

Last, but not least is how to store the simulation data.
In a file? But then this file will be too big, and the simulator will require a lot of

memory while running. It is an obstacle to making the system truly scalable.
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In a database? Makes it easy to export selected data, but raises a question about
database maintenance and sharing simulation data.
To tackle this problem some experiments measuring the system performance have to

be made, and the TOPI group should decide on the approach to be chosen.

Configuration module.

The configuration module is a cornerstone of the framework, without which Aurora remains
handicapped. At this point, it is impossible to make the construction of configuration files
completely automatic. The main reason is the large variety of confiuration sources, each
with data in its own format: PeMS with its configuration and measurement data; regional
planning agencies with their GIS databases; census and demographic data that determines
origin-destination travel patterns; and configuration files for other (microsimulation) pack-

ages used by different research groups.

Despite the necessary manual intervention in the process of configuration building, the TOP1
group decided to automate it where possible. The focus is on GIS databases from regional
planning agencies (SANDAG, MTC) as the most consistent and comprehensive sources of
information about road geometry. Once the road network is in place, the system must be
calibrated. Fundamental diagrams for freeway links can be estimated from PeMS data. For
arterials, some best guess default values have to be used. Finally, demand profiles and split
ratios, or origin-destination matrices, must be generated using PeMS, census and survey

data.
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Eventually, PeMS will be collecting data from arterials as well as from freeways, with road
configurations coming directly from GIS databases. For California, it will then become a
unique source of road geometry together with density-flow data needed for fundamental
diagram estimation, and demand profiles and split ratios everything needed for Aurora
configuration files, making the automatic creation of such files possible. Until then, the
configuration module is intended for TOPI internal use only, while selected files from our

configuration library are provided as part of the Aurora product release.

Analysis module.

Analysis module, currently nonexistent, can be thought of as a collection of special purpose
traffic applications relying on simulation data. These could include performance comparison
between two or more simulations; shortest path calculation based on actual travel time;

demand management; fee computation for tolled lanes or roads, etc.

One of TOPIs first goals is to implement the dynamic trip assignment (DTA) application.
We have a model of corridor comprising freeways and arterials. The corridor is modeled as
a dynamical system (CTM). Underlying the dynamical system is a road network consisting
of nodes and links. A subset of node-pairs is identified as a set of origin-destination (OD)

pairs. Associated with each OD pair are two entities:

1. demand profile function of time that gives for each t the flow of vehicles that start

at the origin at ¢ and wish to travel to the destination;

2. set of paths or routes through the network that start at the origin and end at the

destination that a vehicle is likely to take.
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A trip assignment is an assignment of all OD demand profiles to paths. In other words, for
each OD pair and time ¢, the assignment specifies how many of the vehicles will travel over

each path associated with the OD pair.

Two types of trip assignments are important.

e User equilibrium (UE)—if no individual vehicle can reduce its travel time given that

everyone else follows the trip assignment (Wardrop’s first principle).

o System optimal (SO) if it minimizes the total travel time summed over all demand

profiles (Wardrop’s second principle).

In general, UE and SO are different, and

Tve > Tso,

where Ty g denotes total travel time under UE, and Tso denotes total travel time under SO.

Currently, in the literature we can find description of the standard trip assignment problem
[22], in which the demand is stationary (does not depend on time) and there are no dynamics:
the delay on a link is simply a function of flow on that link. For such problems, both, UE
and SO trip assignments are computed. Trip assignment problems using dynamical system
(CTM) as a model are presented in [112, 81], but they focus solely on SO, because computing

UE is much more difficult.

We would like to be able to dynamically compute both, UE and SO trip assignments,

obtaining “cost of anarchy” as (Tyg/Tso).
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Chapter 6

Research Plan

The main short term research and development goal is to make Aurora a “product” that can
be made available to the users outside the TOPI group. This requires finishing the simulator
and implementing configuration module. In the initial version, the simulator is missing signal
controllers for arterial junctions, calculation of the actual travel time for user specified paths,
and proper simulation data storage facility. The configuration module must be developed
as a GIS application using layer databases provided by regional planning agencies as input
files, with additional focus on a convenient road network editor that allows bulk provisioning
of node and link parameters. Enabling the simulator to handle origin-destination matrices
instead of demand and split ratio profiles as alternative input data, and developing dynamic
traffic assignment application as a first part of the analysis module, can be considered the

next step. This summarizes the short term TODO list for Aurora development.
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Following the discussion in Chapter 3, we can pose a problem of finding a control strategy
that keeps freeway traffic density at desired levels when demands are not known exactly, but
only the bounds on demand values are given. CTM can be treated as piecewise affine system
whose reachable set' can be computed using available techniques. The overview of existing
methods and tools for reachability analysis is provided in [68]. Depending on the system
dimension, it makes sense to use either polytope library of the Multi Parametric Toolbox
(MPT) [69] or Ellipsoidal Toolbox (ET) [68]? to compute reachable sets and devise control
strategies under uncertain demands. Another problem to be investigated, is the extension

of Chapter 3 results to a network model [40].

In November, 2006, Caltrans launched an ambitious program to design congestion-reducing
operational improvements focusing on demand and incident management, besides ramp

metering and traveler information.

One way to manage demand is through tolls. The traditional theory of tolls [21, 25| offers
little practical guidance. First, it models congestion by static flow-delay curve that does
not reflect queues formed on freeways. Second, the theorem that efficiency requires every
link in a freeway to be tolled so as to equate private and social marginal cost is not useful
in the practical situation in which only some lanes on a freeway link are tolled. As Kelly
observes in [65], “if values of time are heterogeneous or if not all links can be tolled, then
the mathematical problem |of finding optimum tolls| becomes non-convex and harder: there

may be several radically different candidates for the system optimum, with slight changes

1Set of states to which the system can be steered using all admissible inputs from a given initial condition
in given number of time steps.

2Currently, ET is distributed as part of MPT, which has evolved into a repository of hybrid systems
control tools.
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in the network specification causing one or another to be preferred.”

Queues, missing in the traditional model, were introduced as point queues at bottlenecks and
analyzed in [107, 96, 17]. The main theorem is that the dead-weight loss from queuing delay
can be eliminated by a time-varying toll. But, as noted in [107], point queues do not model
the spillover situation in which “the queue backed up from the bottleneck interferes with the
flow of traffic not itself intending to use the bottleneck facility.” The spillover situation is
studied in [16, 72, 109] for a simple network of two origins, one destination and three links,
using kinematic waves to model congestion propagation. The analysis exhibits situations in
which ramp-metering and tolls both reduce total travel time. It seems worthwhile to study

different toll strategies and their impact on freeway performance within Aurora framework

[105].

Incident management comprises four steps as identified by the Federal Highway Adminis-
tration: ncident detection, incident response, incident clearance, traffic management and
traveler information. Studies have shown that approximately 80% of reported incidents are
vehicle disablements, with minor accidents accounting for only 10% of these incidents. The
rapid clearance of these incidents, therefore, not only reduces motorist delays, but also re-
duces the probability of secondary incidents which are often more serious than the primary

ones.

Aurora is a suitable framework for developing and testing time saving incident detection
algorithms as well as investigating the impact of certain incident response strategies on the

overall freeway performance.
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Since Aurora is designed as multi-purpose framework, road network is only one of its possible
applications. The goal is to try it for a different problem. For example, modeling irrigation
networks of open-water channels, that are used throughout the world to support agricultural
activity. Traditionally, open-water channel dynamics are described by the so-called Saint-
Venant equations [26], nonlinear hyperbolic PDE, which represent a mass and momentum
balance along the length of each canal. Computational scheme for such equations is discussed
in [15], while important aspects of automating large-scale irrigation networks, including

channel modeling and control, are considered in [29].

Once it is established in practice that Aurora is a true multi-purpose framework, i.e., it can
support infrastructure networks of different types, it would be interesting to learn how these
different type networks can interact and influence each other. Such interaction can be used
to model the emergency response and evacuation planning for potential disaster areas as in

the Minnesota Evacuation Project [12].

Another application of heterogeneous infrastructure would be simultaneous modeling of road
network traffic and public transit. It will help to study the influence of public transit on

traffic flow patterns and identify areas where the largest impact can be made.
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Appendix A

Configuration File Format for

CTMSIM

Configuration file for CTMSIM is a .mat MATLARB file that contains the following variables.

e celldata (struct, 1 X N) - Array of freeway cell data structures. N is the number

of cells.

e freeway (char) - String with freeway name or description.

cell length >

e TS (double, > 0) - Sampling period. Must be no greater than min (free TTow speed )

e plotTS (double, >TS) - Time period for plotting simulated data.
e timeout (double, > 0) - Time interval between plot refreshing.

e initialDensities (double, N x 1, > 0) - Vector of initial densities.
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inflow (double, > 0) - Flow entering the first cell through mainline.

outflow (double, > 0) - Flow that is allowed to leave the last cell through mainline.

taxislim (double, > 0) - Upper limit for time axis in time series plots measured in

plotted time steps.

densityCMF (double, 1024 x 3) - Color map for time series density contour.

flowCMF (double, 1024 x 3) - Color map for time series flow contour.

orflowCMF (double, 1024 x 3) - Color map for time series on-ramp flow contour.

orqueueCMF (double, 1024 x 3) - Color map for time series on-ramp queue contour.

frflowCMF (double, 1024 x 3) - Color map for time series off-ramp flow contour.

frbetaCMF (double, 1024 x 3) - Color map for time series off-ramp split ratio contour.

speedCMF (double, 1024 x 3) - Color map for time series speed contour.

vhtCMF (double, 1024 x 3) - Color map for time series VHT contour.

vmtCMF (double, 1024 x 3) - Color map for time series VMT contour.

yoColorRatio (double, [0,1]) - Array of two numbers that indicate fractions of ca-
pacity the flow must achieve in free flow or congested mode to make cell color yellow

or orange.

demandProfile (double, K X (N +2), > 0) - Array of on-ramp demand values for K

samples.
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e demandTS (double, >TS) - Sampling time for the on-ramp demands in demandProfile.

e betaProfile (double, K X (N+2), > 0) - Array of off-ramp split ratios for K samples.

e betaTS (double, >TS) - Sampling time for the split ratios in betaProfile.

e frflowProfile (double, K X (N +2), > 0) - Array of off-ramp flows for K samples.

e frflowTS (double, >TS) - Sampling time for the off-ramp flows in frflowProfile.

e maxSimStep (double, > 0) - Maximum simulation step.

e maxSimTime (double, > 0) - Maximum simulation time.

e dataFile (char) - Name of the file where simulation data is to be saved.

The only mandatory variable that must be present in a configuration file is celldata -
array of freeway cell data structures. Other configuration variables are optional. Variables
maxSimStep, maxSimTime and dataFile make difference only when CTMSIM runs in batch

mode.

Description of the cell data structure follows.

e cell.PMstart (double, > 0) - Post mile at cell start.

e cell.PMend (double, > 0) - Post mile at cell end. Condition cell.PMstart >

cell.PMend implies that traffic moves from right to left.

e cell.lanes (double, > 0) - Number of lanes. Auxiliary lanes are represented as

fractions.
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cell.FDfmax (double, > 0) - Maximum capacity.

cell.FDrhocrit (double, > 0) - Critical density.

cell.FDrhojam (double, >cell.FDrhojam) - Jam density. All three fundamental dia-
gram parameters, cell.FDfmax, cell.FDrhocrit and cell.FDrhojam are considered

to be total, not per lane.

cell.ORname (char) - Name of the on-ramp. Empty, if the cell has no on-ramp.

cell.ORlanes (double, > 0) - Number of on-ramp lanes.

cell.ORflow (double, > 0) - On-ramp flow.

cell.ORfmax (double, > 0) - On-ramp capacity.

cell.ORgsize (double, > 0) - On-ramp queue size.

cell.ORgamma (double, > 0) - On-ramp flow blending coefficient (default: 1).

cell.ORxi (double, > 0) - On-ramp flow allocation parameter (default: 1).

cell.ORknob (double, > 0) - Coefficient that adjusts on-ramp demand.

cell.ORmlcontroller (struct) - On-ramp mainline controller structure (default:

null).

cell.ORgcontroller (struct) - On-ramp queue controller structure (default: null).

cell.FRname (char) - Name of the off-ramp. Empty, if the cell has no off-ramp.

cell.FRlanes (double, > 0) - Number of off-ramp lanes.
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e cell.FRbeta (double, > 0) - Off-ramp split ratio.

e cell.FRfmax (double, > 0) - Off-ramp capacity.

e cell.FRknob (double, > 0) - Coefficient that adjusts off-ramp flow.

On-ramp mainline controller structures are expected to have five mandatory fields, which

are

e mlcontroller.id (int) - Controller identifier. Must correspond to the number in the

mainline controller list (see Section 4.2.3).

e mlcontroller.name (char) - String with controller name. Must be nonempty.

e mlcontroller.TS (double, > 0) - Time period at which controller must be invoked.

e mlcontroller.Cmin (double, > 0) - Minimum flow recommended by the controller

(default: 0).

e mlcontroller.Cmax (double, > 0) - Maximum flow allowed by the controller.

Other structure fields can be optionally defined by the user.

On-ramp queue controller structures are expected to have two mandatory fields, which are

e gcontroller.id (int) - Controller identifier. Must correspond to the number in the

queue controller list (see Section 4.2.3).

e gcontroller.name (char) - String with controller name. Must be nonempty.

Other structure fields can be optionally defined by the user.
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XML Schema for Aurora

Configuration

<?xml version="1.0" encoding="UTF-8" 7>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="AuroraHWC">
<xs:complexType>
<xs:sequence>
<xs:element ref="network" />
<xs:element ref="settings" />
<xs:element ref="DemandProfile" />
<xs:element ref="EventList" />
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="network">
<xs:complexType>
<xs:sequence>
<xs:element ref="description" />
<xs:element ref="MonitorList" />
<xs:element ref="NodelList" />
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<xs:element ref="LinkList" />
<xs:element ref="0DList" />
</xs:sequence>
<xs:attribute name='"name" type="xs:string" use="required" />
<xs:attribute name="controlled" type="xs:boolean" use="required" />
<xs:attribute name='"class" type='"xs:string" use="
<xs:attribute name="top" type='"xs:boolean" use='"required"
default="false" />
<xs:attribute name="tp" type="xs:decimal" use="required" />
<xs:attribute name="id" type="xs:integer" use="required" />
</xs:complexType>
</xs:element>

required" />

<xs:element name="settings">
<xs:complexType>
<xs:sequence>
<xs:element ref="display" />
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="DemandProfile" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:sequence>
<xs:element ref="demand" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="EventList" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:sequence>
<xs:element ref="event" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="description" type="xs:string" />

<xs:element name="MonitorList" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:sequence>
<xs:element ref="monitor" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
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</xs:complexType>
</xs:element>

<xs:element name="NodeList'">
<xs:complexType>
<xs:sequence>
<xs:choice>
<xs:element ref="node" maxOccurs="unbounded" />
<xs:element ref="network" maxOccurs="unbounded" />
</xs:choice>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="LinkList">
<xs:complexType>
<xs:sequence>
<xs:element ref="link" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="0DList" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:sequence>
<xs:element ref="od" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="monitor">
<xs:complexType mixed="true">
<xs:attribute name="name" type="xs:string" use="required" />

<xs:attribute name='"class" type="xs:string" use="required" />
<xs:attribute name="id" type="xs:integer" use="required" />
</xs:complexType>

</xs8:element>

<xs:element name='node">
<xs:complexType>
<xs:sequence>
<xs:element ref="description" />
<xs:element ref="outputs" />
<xs:element ref="inputs" />
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<xs:element ref="position" />
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required" />
<xs:attribute name='"class" type="xs:string" use="required" />
<xs:attribute name="id" type="xs:integer" use="required" />
</xs:complexType>
</xs:element>

<xs:element name="link">
<xs:complexType>

<xs:sequence>
<xs:element ref="begin" minOccurs="0" maxOccurs="1" />
<xs:element ref="end" minOccurs="0" maxOccurs="1" />
<xs:element ref="fq4" />
<xs:element ref="density" />
<xs:element ref="dynamics" />
<xs:element ref="position" />
<xs:element ref="demand" />
<xs:element ref="gmax" />

</xs:sequence>

<xs:attribute name="lanes" type="xs:decimal" use="required" />

<xs:attribute name="length" type="xs:decimal" use="required" />

<xs:attribute name='"class" type="xs:string" use="required" />
<xs:attribute name="id" type="xs:integer" use="required" />
</xs:complexType>

</xs:element>

<xs:element name="od">
<xs:complexType>
<xs:sequence>
<xs:element ref="PathList" />
</xs:sequence>
<xs:attribute name="begin" type="xs:integer" use="required" />

<xs:attribute name="end" type="xs:integer" use="required" />
<xs:attribute name='"class" type="xs:string" use="required" />
</xs:complexType>

</xs8:element>

<xs:element name="outputs">
<xs:complexType>
<xs:sequence>
<xs:element ref="output" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
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</xs:element>

<xs:element name="inputs">
<xs:complexType>
<xs:sequence>
<xs:element ref="input" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="position">
<xs:complexType>
<xs:sequence>
<xs:element ref="point" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="begin'>
<xs:complexType>
<xs:attribute name="id" type="xs:integer" use="required" />
</xs:complexType>
</xs:element>

<xs:element name="end">
<xs:complexType>
<xs:attribute name="id" type="xs:integer" use="required" />
</xs:complexType>
</xs:element>

<xs:element name="£fd4">
<xs:complexType>
<xs:attribute name="densityCritical" type="xs:decimal"

use="required" />
<xs:attribute name="flowMax" type="xs:decimal" use="required" />
<xs:attribute name="densityJam" type="xs:decimal" use="required" />
</xs:complexType>

</xs:element>
<xs:element name="density" type="xs:decimal" />
<xs:element name="dynamics'">

<xs:complexType>
<xs:attribute name="class" type="xs:string" use="required" />



</xs:complexType>
</xs:element>

<xs:element name="demand">
<xs:complexType mixed='"true'">
<xs:attribute name="knob" type="xs:decimal" use="required" />
<xs:attribute name="tp" type="xs:decimal" use="optional" />
<xs:attribute name="id" type="xs:integer" use="optional" />
</xs:complexType>
</xs:element>

<xs:element name="gmax" type="xs:decimal" />

<xs:element name="PathList">
<xs:complexType>
<xs:sequence>
<xs:element ref="path" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="output">
<xs:complexType>
<xs:attribute name="id" type="xs:integer" use="required" />
</xs:complexType>
</xs:element>

<xs:element name="input'">
<xs:complexType>
<xs:sequence>
<xs:element ref="splitratios" />
<xs:element ref="controller" />
</xs:sequence>
<xs:attribute name="id" type="xs:integer" use="required" />
</xs:complexType>
</xs:element>

<xs:element name="path">
<xs:complexType mixed="true">
<xs:attribute name="name" type="xs:string" use="required" />
<xs:attribute name='"class" type="xs:string" use="required" />
</xs:complexType>
</xs:element>
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<xs:element name="display">
<xs:complexType>
<xs:attribute name="timeMax" type="xs:decimal" use="required" />
<xs:attribute name="tsMax" type="xs:integer" use="required" />
<xs:attribute name="timeout" type="xs:integer" use="required" />
<xs:attribute name="tp" type="xs:decimal" use="
</xs:complexType>

</xs8:element>

required" />

<xs:element name="event'>
<xs:complexType>
<xs:choice>
<xs:element ref="demand" />
<xs:element ref="description" />
<xs:element ref="fd" />
<xs:element ref="srm" />
</xs:choice>
<xs:attribute name="tstamp" type="xs:decimal" use="required" />
<xs:attribute name="neid" type="xs:integer" use="required" />
<xs:attribute name="enabled" type="xs:boolean" use="required"
default="true" />
<xs:attribute name="class" type="xs:string" use="required" />
</xs:complexType>
</xs:element>

<xs:element name='"point">
<xs:complexType>
<xs:attribute name="x" type="xs:decimal" use="
<xs:attribute name="y" type="xs:decimal" use="required" />
<xs:attribute name="z" type="xs:decimal" use="required" />
</xs:complexType>
</xs:element>

required" />

<xs:element name="splitratios">
<xs:complexType mixed="true" />
</xs:element>

<xs:element name="controller">
<xs:complexType>
<xs:sequence>
<xs:element ref="parameter" minOccurs="0" maxOccurs="unbounded" />
<xs:element ref="limits" />
<xs:element ref="qcontroller" />
</xs:sequence>



<xs:attribute name='"class" type="xs:string" use="required" />
<xs:attribute name="tp" type='"xs:decimal" use="required" />
</xs:complexType>

</xs:element>

<xs:element name='"parameter'>
<xs:complexType>
<xs:attribute name='"name" type="xs:string" use="required" />
<xs:attribute name="value" type="xs:string" use="required" />
</xs:complexType>
</xs:element>

<xs:element name="limits">
<xs:complexType>
<xs:attribute name="cmin" type="xs:decimal" use="required" />
<xs:attribute name="cmax" type="xs:decimal" use="required" />
</xs:complexType>
</xs:element>

<xs:element name="qcontroller">
<xs:complexType>
<xs:sequence>
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<xs:element ref="parameter" minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>
<xs:attribute name="class" type="xs:string" use="required" />
</xs:complexType>
</xs:element>

<xs:element name="srm">
<xs:complexType>
<xs:sequence>
<xs:element ref="splitratios" />
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>
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