
SNSP: a Distributed Operating System for Sensor
Networks

Jana Van Greunen

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-158

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-158.html

December 18, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Distributed OS for Sensor Networks

by

Jana van Greunen

B.S. (University of California, Berkeley) 2002
M.S. (University of California, Berkeley) 2004

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Jan Rabaey, Chair
Professor Dave Auslander
Professor John Wawrzynek

Fall 2007

The dissertation of Jana van Greunen is approved:

 Chair Date

 Date

 Date

University of California, Berkley

Fall 2007

Copyright © 2007, by the author.

1

Abstract

A Distributed Operating System for Sensor Networks

by

Jana van Greunen

Doctor of Philosophy in Engineering – Electrical Engineering and Computer

Sciences

University of California, Berkeley

Professor Jan Rabaey, Chair

Sensor networks are an exciting new technology that promise to revolutionize

the environment we live in by creating ambient intelligent spaces. In the current

software model, applications are statically loaded onto the network at compile

time. This means applications cannot react to changes in the underlying network

and code reuse is rare because applications are so tightly coupled with hardware.

Sensor network deployments suffer from a lack of standard software APIs that

allows applications to interact with the network.

This dissertation presents SNSP, a distributed service-based operating system for

sensor networks. SNSP presents an integrated interface to applications, which

abstracts the distributed nature of the underlying network. It enables dynamic

application and content management in the sensor network. SNSP’s core consists

2

of seven OS-level services that manage content, discover network resources,

monitor resource utilization, dynamically map network applications, provide

fault detection and recovery, migrate applications and implement security for the

sensor network. Programmers can write services that become a reusable library

of SNSP code. The dissertation outlines a programming language and integrated

development environment for programmers.

Further, the mechanisms for content management and replication and task

allocation (mapping) are studied in more detail. Three replication schemes are

compared via simulation. Results indicate that the probabilistic scheme has the

best performance in terms of cost per data access and increased data availability.

Moreover, three task allocation schemes are also compared. The third algorithm,

a hybrid genetic search and market bidding protocol, outperforms the other two

algorithms. However, due to its twelve times higher computation and 51%

higher communication cost the greedy algorithm is preferred.

As a proof-of-concept, SNSP is demonstrated on a TelosB and Mica2 (with

TinyOS) testbed implementation. The testbed allows applications on different

hardware platforms (Mica2 and TelosB) to coexist. Measurements from the

testbed indicate that the content management algorithm lowers data access cost

and also the time to map a process onto the network.

Jan Rabaey, Dissertation Committee Chair

 i

To my mother and Sterling

ii

Contents

LIST OF FIGURES ... V
LIST OF TABLES...VII
1 INTRODUCTION .. 1

1.1 SNSP GOALS..6
1.2 ASSUMPTIONS...6
1.3 RESEARCH CONTRIBUTIONS ...8

2 RELATED WORK .. 10

2.1 SINGLE-NODE OPERATING SYSTEMS ..10
2.2 SENSOR NETWORK MIDDLEWARE ..12
2.3 SENSOR NETWORK OPERATING SYSTEMS ...14

3 DISTRIBUTED OS ARCHITECTURE ... 18

3.1 ABSTRACTIONS...21
3.2 OS-LEVEL SERVICES..25

3.2.1 Content Management & Replication..26
3.2.2 Task Allocation ..26
3.2.3 Resource Discovery & Repository Service ..27
3.2.4 Resource Utilization Monitor...27
3.2.5 Application Migration ...28
3.2.6 Fault Detection and Recovery ..30
3.2.7 Security Engine ...32

3.3 USER DEFINED SERVICES ...32
3.3.1 Initialization ..33
3.3.2 Execution...34

iii

3.3.3 Termination ...34
3.3.4 Composition...34
3.3.5 Performance Metrics ..37
3.3.6 Usage Measures ...38

4 PROGRAMMING LANGUAGE AND USER INTERFACE .. 40

PROGRAMMING MODEL...40
4.1 PROGRAMMING LANGUAGE: SENSC ...41
4.2 .SERV REQUIREMENT SPECIFICATION..46
4.3 PROGRAMMING UI ...48

4.3.1 Creating an SNSP Application ..49
4.4 CODING EFFICIENCY GAIN ...54

5 FILE ALLOCATION.. 55

5.1 PROBLEM FORMULATION ...56
5.2 RELATED WORK ...59
5.3 LOCATING FILES ...61
5.4 ALGORITHMS TO EVALUATE...62

5.4.1 Deterministic, Central Replication Algorithm..62
5.4.2 Distributed Algorithm ...62
5.4.3 Adaptive Observation-Based Algorithm...63

5.5 SIMULATION SETUP ..64
5.6 RESULTS..66
5.7 DISCUSSION ..70

6 TASK ALLOCATION ... 72

6.1 PROBLEM FORMULATION ...73
6.1.1 Assumptions ..73

6.2 RELATED WORK ..78
6.3 ALLOCATION ALGORITHMS..80

6.3.1 Greedy Spanning Tree ...80
6.3.2 TASK Algorithm: Local Search for Graph Assignment83
6.3.3 Genetic Search Algorithm Combined with a Bidding Market Protocol86

6.4 SIMULATION SETUP ..90
6.5 RESULTS..94
6.6 DISCUSSION ..104

7 SNSP TINYOS IMPLEMENTATION... 106

7.1 CREATING THE IMPLEMENTATION SCENARIO...106
7.2 TESTBED SETUP...108

7.2.1 Hardware ...108
7.2.2 Location and Connectivity ...112
7.2.3 Sensors and actuators ..112

iv

7.2.4 Content Replication & Capacity...113
7.2.5 Task Allocation ..114

7.3 APPLICATIONS..114
7.3.1 Demand Response and HVAC Control ..115
7.3.2 Motetrack Localization...116

7.4 PERSONA ..118
7.5 TESTBED USER INTERFACE..119
7.6 EXPERIMENT ...120

7.6.1 Setup..120
7.6.2 Results ...122

7.7 DISCUSSION ..126
8 CONCLUSION.. 127

8.1 SUMMARY...127
8.2 FUTURE PERSPECTIVES..129

BIBLIOGRAPHY ... 131
APPENDIX I.. 138

HVAC_CONTROL APPLICATION ..138
HVAC_CONTROL.serv ...138
HVAC_CONTROL.h..139
HVAC_CONTROL.c..140

RESULTING TINYOS CODE..143
Module ..143
Configuration ..154

APPENDIX II .. 156

ECLIPSE PLUGIN ..156

v

List of Figures

Figure 1: SNSP architecture layers. ...20
Figure 2: SNSP OS-Level Services. ..25
Figure 3: Components of a user-defined service..39
Figure 4: Light control service application structure...41
Figure 6: Comparison of data access cost and replication overhead.67
Figure 7: Comparison of data access cost vs topology and data read/write ratio.

..68
Figure 8: Comparison of control message overhead. ..69
Figure 9: Percentage of unavailable data for different schemes and topologies...70
Figure 10: Two task descriptions...93
Figure 11: Mapped costs for 3 processes vs. different algorithms including

optimal exhaustive search..96
Figure 12: Average mapped cost for tasks vs algorithm type.97
Figure 13: Tasks' choice obtained in they genetic search + Bidding algorithm.....98
Figure 14: Average mapped cost for application sizes vs algorithm type.............99
Figure 15: 3 Histograms of the number of times tasks were mapped n to a

processor..100
Figure 16: Mapping complexity vs algorithm type. ..101
Figure 17: Mapping complexity for different task sizes vs algorithm type.........102
Figure 18: Annotated Mica2 mote (taken from [66]) ...108
Figure 19: TelosB mote (taken from [67]) ...110
Figure 20: Testbed with HVAC control and DR that bridges Mica2 and TelosB

nodes. ...111
Figure 21: 31-Node testbed, powered via USB & batteries.112
Figure 22: GUI showing the house, repository services, and applications that are

mapped on the network. ..120

vi

Figure 23: Cost per content access and the proportion of content found replicated
on the actual node...123

Figure 24: Time to map a process in milliseconds. ..124
Figure 25: Time to map with rf interference...125
Figure 26: Histograms of the number of times tasks were mapped n to a node for

the two network configurations. ...126
Figure 27: Importing an SNSP project into Eclipse..157
Figure 28: Choosing a target to compile. ..158
Figure 29: An open SNSP project, with an open file and a C compilation error.159
Figure 30: Compiling SNSP code with Eclipse. ...160

vii

List of Tables

Table 1: Persona Example. ...23
Table 2: Two resource examples...24
Table 3: RemoveProcess and Checkpoint objects for application migration.........29
Table 4: Example code for a temperature control application.45
Table 5: Example of a .serv specification file..48
Table 6: .h file specifying the relevant services, scopes, and persona....................50
Table 7: Blank template C file that the programmer needs to fill in.54
Table 8: FAP Classification ..60
Table 9: Number of cluster heads vs number of hops, D.66
Table 10: Pseudo code for the greedy algorithm. ..83
Table 11: Pseudo-code for the TASK algorithm...85
Table 12: Results of mapping two processes onto the regular grid network.95
Table 13: Additional communication costs incurred during simulation.............103
Table 14: Number of replicas as a function of time ...122

Chapter 1 Introduction

1

1 Introduction

Widespread sensor network deployment has been hampered by lack of a

standard hardware abstraction and matching API for software development. For

current sensor network deployments, each deployment is a one-off development

effort. The software and hardware are developed together and the sensor

network is then deployed in the field. When the application changes or new

applications need to be deployed, the nodes are typically retrieved from the field

and then new nodes are deployed1. If sensor networks are to become a

ubiquitous part of infrastructure in smart spaces, the sensor network platform

needs to be more extensible and flexible. Usage scenarios include hospital health

monitoring, and energy monitoring (heating, ventilation and air conditioning

HVAC) in buildings. In the first scenario, health monitoring, patients and

diseases may change every day. The application in a particular room may change

1 For small changes it is possible to reprogram nodes over the air. However, this reprograms the entire image and
requires nodes to reboot

Chapter 1 Introduction

2

as a new patient enters the room and sensors and actuators may leave and enter

the room with a patient. Further, there are some concerns for patient privacy and

securing information retained on the sensor nodes. In the second example,

applications and requirements may change with regulations or as new

companies rent out the buildings. Health and indoor energy monitoring will be

used as examples throughout this dissertation to provide illustrative examples of

the flexible sensor network abstraction benefits.

While there have been successful abstractions for the individual sensor node

hardware, for example, IEEE’s sensor interface standard [1] and the instruction

set abstraction defined in [2], abstractions for the distributed network are only

now starting to emerge. This research presents the Sensor Network Services

Platform (SNSP), a distributed operating system abstraction for the sensor

network.

SNSP’s goal is to allow an application developer to create modular portable code

for sensor networks and to avoid building the application from the ground up

every time the sensor network changes. Further, SNSP will help harness the

potential benefits provided by distributed systems. The advantages of

distributed systems include:

• Reliability/fault tolerance

• Improved resource utilization

• Scalability

Chapter 1 Introduction

3

SNSP will transform the sensor network into a truly smart environment. It

describes a platform based on a set of clean abstractions for users, content, and

devices. The platform’s goals are to minimize device configuration and to adapt

to different users in the environment. SNSP will be part of the sensor network

infrastructure that remains in a building or location even if the people and

applications change.

As an operating system, SNSP manages the system resources, specifically, it

performs resources allocation e.g. memory and computation, allows multiple

programs to co-exist, controls input and output devices and manages files or

content. Further, SNSP will execute on a physically distributed platform and thus

implicitly supports communication, concurrency, and synchronization,

providing location transparency. SNSP provides basic, low-level functions for

controlling parallel program execution, i.e., functions for loading a parallel

program, for starting, halting and resuming. In addition, the notion of users is

included in SNSP. As in traditional operating systems, a user’s rights determine

which programs, resources, and content they may read, write, and execute.

A service-oriented model is chosen for SNSP to separate the function of network

services (i.e., what the services do) from their implementation, creating a

reusable layer that can be implemented on any hardware platform. There are two

kinds of services in SNSP: (1) Operating-system services, and (2) User-defined

services. These services play a crucial role in abstracting the specific hardware

Chapter 1 Introduction

4

platform from the application, presenting any information required by an

application through a unified service API.

From the application programmer’s perspective, SNSP presents a familiar

sequential programming model. The programming model is supported by pre-

defined services that can be invoked to run in a parallel and distributed fashion.

To facilitate programming, SNSP supports a parallel programming language,

sensC, and environment abstractions. SensC is syntactically ANSI C with the

addition of a few specific features, which are outlined in Chapter 4. At a high-

level, this language supports parallelism up to the granularity of a process. Every

application has at least one main process that executes on a single processor,

when an application invokes a service, a second “process” is spawned which

may be executed simultaneously anywhere in the network (constrained by

timing, resources etc.). When application programmers write services, the

service/application model provides the way for programmers to explicitly

partition the program into parallelizable pieces. SNSP dynamically and

automatically finds a place to execute these application pieces.2

This dynamic programming model is a departure from the static one normally

used in sensor networks [3]. However, in examining the application space, it is

clear that there is use for dynamic migration of programs. Mobile applications

were first used in pursuer-evader games [4] where the processing follows the

2 SNSP does not support implicit application partitioning.

Chapter 1 Introduction

5

evader through the network, i.e. nodes closest to the evader do the sensing and

processing. In this case it is the same application and the same sensing

capabilities that are activated in different regions of the network, so it could be

programmed in advance. However, both applications and sensor network nodes

are becoming more dynamic. Take for example healthcare applications. Change

occurs when a new disease is detected, a different sensor is added, a different

diagnostic test is devised, or when the patient changes location. All of these

changes must be seamlessly incorporated into the system. The distributed

operating solution is designed to manage these changes without explicit user

interference.

SNSP, as an operating system with a built-in set of services, presents a departure

from the usual design principles applied in networking. Typically, the network is

designed to be ‘dumb’ and intelligence is placed only at the edges. The protocols

used to communicate across the network are designed end-to-end [6], in other

words, there is end-to-end reliability and end-to-end addressing etc. This

traditional design has worked very well with powerful and stationary end-

devices. However, with a more heterogeneous and mobile network, there is a

push toward breaking end-to-end semantics and embedding more intelligence in

the network to relieve the pressure of processing from the devices. Due to the

constraints on the sensor nodes, and possible mobility of nodes, SNSP represents

a similar break in end-to-end semantics.

Chapter 1 Introduction

6

Before describing SNSP in more detail, it is necessary to examine the goals of

SNSP and state the underlying assumptions.

1.1 SNSP Goals

First, SNSP abstracts the internals of distributed sensor networks from

applications and encourage sensor network deployment. There are three specific

goals that SNSP aims to achieve:

• Enable applications to execute on different network configurations (agnostic

of hardware) which will allow heterogeneous sensor network platforms to

interoperate

• Shield applications (enable recovery) from node/hardware failures

• Optimize application execution by intelligently mapping the application onto

the network (may involve run-time migration), which saves energy by

reducing communication, increasing reliability and/or performance

SNSP is a general platform/middleware that must execute on all sensor network

platforms, and therefore may have access to only a few parameters from any

given platform. The following assumptions were made:

1.2 Assumptions

• The network contains heterogeneous nodes, which are globally asynchronous

and run a kernel of SNSP middleware.

Chapter 1 Introduction

7

• SNSP is above the network layer, it cannot change the routing, link, or

physical layer protocols.

• SNSP is below the application layer and does not know any application

semantics.

• From the application’s perspective, SNSP exposes geographic addressing, but

for each hardware platform this is translated into the local

addressing/routing scheme.

• SNSP knows/may observe the maximum and average point-to-point

throughput (Mb/s) between two neighboring nodes in the network.

• There is a standard hardware abstraction for each sensor node which is:

o MIPS number for CPU

o Dynamic memory in KB

o Storage for data in MB

o Hardware (sensors/actuators)

Because SNSP does not control the underlying communication medium, there is

inherent non-determinism and SNSP cannot guarantee communication latency.

Moreover, guaranteeing correctness and consistency in an asynchronous system

adds a considerable overhead that is not warranted for every sensor network

deployment. Therefore, this is not part of the basic SNSP platform. SNSP adopts

the BASE semantics: Basically Available, Soft State, and Eventual Consistency,

Chapter 1 Introduction

8

which were first introduced in [7] to describe distributed web-caches. BASE

semantics are adequate for applications that can tolerate delays on the order of a

second.

1.3 Research Contributions

The main contribution of this research is the design of SNSP. SNSP is a full-

fledged operating system with memory management, location transparency, and

resource allocation. SNSP enables the creation of applications that can be

mapped onto the network at runtime and allows the programmer to build up a

library of reusable sensor network services.

Further, the research focuses on two aspects of SNSP, file allocation and tasks

allocation. These were chosen because they have a significant impact on sensor

network performance and they have not been adequately addressed in existing

work.

The contributions of the thesis are:

• Identified and designed the basic set of services for a distributed operating

system

• Devised a programming model and user-interface that allows users to create

reusable libraries of code

• Developed a novel file allocation algorithm

• Evaluated the performance of three file allocation algorithms via simulation

Chapter 1 Introduction

9

• Developed two novel task allocation algorithms

• Evaluated the performance of three task allocation algorithms via simulation

• Proof of concept implementation of SNSP on top of a TinyOS sensor testbed

with select performance measurements

The rest of the thesis is organized as follows: Chapter 2 describes related work in

sensor network operating systems and middleware. Chapter 3 outlines the

architecture of SNSP, namely the abstractions and services that it provides

programmers. The user interface and programming model is described in

Chapter 4, followed by a problem formulation and detailed analysis of file

allocation algorithms in Chapter 5. Chapter 6 presents a similar analysis of the

task allocation problem. Chapter 7 describes SNSP implementation on a 30-node

testbed, running TinyOS as the underlying operating system.

Chapter 2 Related Work

10

2 Related Work

The related work on sensor network platforms can be divided into three

categories: 1) The single-node operating system, which focused mainly on small

footprint and code size. 2) Sensor network middleware, which attempts to

abstract commonly used functionality and standardize it. 3) Fully-fledged

distributed operating systems for sensor networks. The distributed operating

systems take the goals of middleware platforms a step further by not only

providing a set of common functionality, but also controlling and optimizing the

execution of applications on the network. They provide real-time coordination

and control of the sensor network. Research in the three categories is outlined

below.

2.1 Single-Node Operating Systems

The most popular single-node operating system is TinyOS [8]. TinyOS consists of

a set of software modules in the NesC language [9]. Components are not divided

Chapter 2 Related Work

11

into user and kernel modes and there is no memory protection. TinyOS does not

support preemption. The code is statically linked at compile time. Version two of

TinyOS introduces some lower-level improvements to abstract the platform from

the hardware. TinyOS is very widely used in sensor network test-beds and in

published research results. Thus, it is an ideal platform to develop software on

that other groups will use or compare results with. TinyOS was selected as the

basis for the implementation platform as described in Chapter 7.

BTNodes [10] were developed by ETH Zurich. These nodes have their own

hardware platform and operating system, called BTNut. BTNut is a

multithreaded preemptive operating system written in C. It also has a TCP/IP

stack built in. BTNut is the closest to other commercial RTOS systems, but it has

not had the same traction in the academic setting as TinyOS.

MANTIS [11] is an open source, multi-threaded operating system written in C

for wireless sensor networking platforms. It has automatic preemptive time

slicing for fast prototyping and an energy-efficient scheduler for duty-cycle

sleeping of sensor node. Another interesting sensor network operating system is

SOS [12], which supports dynamic application modules. Application modules

can be loaded or unloaded at run time. Modules send messages and

communicate with the kernel via a system jump table, but can also register

function entry points for other modules to call. SOS is a more extensible platform

Chapter 2 Related Work

12

than TinyOS, but it is not as widely adopted, and it supports fewer hardware

platforms.

2.2 Sensor Network Middleware

Research on sensor network middleware aims to abstract common functionality

and present it in reusable form. There are four main approaches to designing

middleware for sensor networks: 1) Database, 2) Publish-subscribe 3) Services, 4)

Mobile agents/clustering. The database involves abstracting the sensor network

as a database and then allowing a user to write SQL-like queries to extract sensor

data from the network. TinyDB [13], Cougar [14], and SINA [15] are the most

well known of these approaches. The research focus here is on efficient query

processing and routing. [16] writes wrappers for the underlying sensor network

(single-node operating system) and then use an XML framework for syntactic

description and then SQL for data manipulation.

The second approach, publish-subscribe, disconnects the data production from

its consumption. A set of data producers publishes their data in the network.

Interested parties can then subscribe to the data. [17] presents a set of operators

that interested parties can use to describe patterns of data that they are interested

in. Typically somewhat complex time stamping is needed to get any useful data.

Mires Middleware [18] is another publish-subscribe mechanism. Initially sensor

nodes publish the types of data that they can provide. Client applications then

Chapter 2 Related Work

13

select the data that they care about and subscribe to it. Only after receiving a

subscription will sensor nodes publish their data. There is not much data

available on how expensive the subscription language is, or what overhead it

adds to the network. DSWare [19] is not a traditional publish subscribe

mechanism, but it does cache data in the network and it provides a language for

other nodes to subscribe to events.

The Milan platform [20] is an example of a service-based approach. Applications

wishing to execute represent their requirements to Milan through specialized

graphs that incorporate state-based changes in application needs. The graphs

contain variables and QoS for each variable. Milan knows the level of QoS that

data from each sensor or set of sensors can provide for each variable. For a given

application, Milan can send and receive data from these variables. There is not

much data on how the matching between applications and resources is done. [21]

defines a set of roles in the sensor network that have rules associated with them.

An application must choose one of these roles to play and the network knows

how to load balance the application based on the role it is playing. Sensorware

[22] defines a set of base services that the network must provide to an

application. However, it does not define the mechanisms by which the network

must deliver these services. These services are as follows:

• Communications Protocol Stacks

• Power Management

Chapter 2 Related Work

14

• User Interaction

• Network Synchronization

• Query Processing

• Configuration (e.g. health status and maintenance)

• Fault Tolerance

• Security/Authentication

The last type of middleware is agent-based. In Agilla [23], each application is a

mobile agent that decides independently when and where to migrate. Agilla is

based on the mate platform [24]. Nodes have Linda-like [25] tuple spaces and an

acquaintance list that allows them to find a place to migrate. The shortcoming of

this approach is that there is no attempt to achieve network optimality or

analysis of what happens when there is inter-agent interaction.

2.3 Sensor Network Operating Systems

The first two operating systems presented both rely on applications that are

comprised of identical code fragments, in other words, applications that can be

decomposed into smaller, identical sub-problems. In [26] the main abstraction is

that of Microcells. Microcells begin their life-cycle as inactive software

components and are activated by stimuli in the environment, as well as by events

in the computing system. The programmer must specify how a microcell reacts

to stimuli. Once a microcell is activated, stimuli can cause it to perform self-

Chapter 2 Related Work

15

replication, migration, or grouping. For example, growth may be controlled to

reach the required computing capacity or geographic coverage for different

functions performed in the vicinity of an event. The distributed operating system

determines where and when microcells execute. The system implements its own

microcells, which implement fundamental activities in the infrastructure, such as

information storage. [27] outlines Bertha, an operating system that can

accommodate 11 process fragments at a time. Bertha manages processor startup,

memory, access to hardware peripherals, communication with neighboring

Pushpins, and provides a mechanism for installing, executing, and passing

neighbors code and data to execute. The main drawback of these two approaches

is that they only fit applications which can be broken down into small

homogenous pieces.

Kaizen [28] focuses on a resource usage description and sandboxing strategy.

CPU, memory, radio, and sensor/actuator usage contracts are outlined, in

addition to methods to stop processes from consuming more resources than

specified in their contracts. However, they do not address the optimal placement

for processes or other services that may aid process execution.

The Eyes project [29] aims to achieve small code size and to solve the limited

available energy problem by defining clear stop and start portions in the code

after which the processor can be put to sleep. Nodes are able to make resources

requests via remote procedure calls to their directly connected neighbors when

Chapter 2 Related Work

16

they do not have enough energy or processing power to fulfill a certain task.

EYES also defines a distributed services layer which provides a lookup service

and an information service. The lookup service supports mobility, instantiation

and reconfiguration. The information service collects network data. The

drawback of eyes is that nodes can only make local resource requests and they

do not support a full mapping of applications onto the network.

[30] defines a service manager that is responsible for receiving and

accomplishing service requests. There are two primitive request types: query

and order, and two complex types: conditional and repetitive. The service

manager uses the distributed service directory (DSD) to find a pairing for the

request. Their DSD uses S-CAN [31], a distributed hashtable developed for

content-addressable networks. The service manager and DSD is similar to the

mapper and repository service presented in this research, but the services

presented here can deal with a richer set of applications.

The last two distributed systems are the most similar to SNSP in their goals and

generality. The [32] design separates the core OS kernel, OS services, and

distributed applications. The core kernel and the OS services control the behavior

of a single node, while applications implement the distributed system behavior

of the sensor network. Applications consist of processing elements connected via

arcs. As SNSP does via equivalence classes, they allow for runtime

reconfiguration of the model, including changing interconnections and

Chapter 2 Related Work

17

replacement of processing elements (PEs). Communicating PEs can be located on

the same, or different physical nodes. There is not much data on how Omni

achieves placement of applications, a core aspect of the system that this research

focuses on.

Last, Magnet OS [33] provides a single system image of a unified Java virtual

machine to applications. It partitions applications components statically along

object interfaces. Magnet OS then finds an initial placement for these components

on the network. MagnetOS uses the Java RMI interface for remote object

invocation during run-time. During execution, two services adjust task

placement to optimize communication cost. NetPull migrates components one

hop at a time in the direction of greatest communication. NetCenter migrates

components to the host that a given object communicates with the most. Magnet

OS conceptually has the same goals and achieves them in a similar way as SNSP.

However, it has the overhead of a full Java implementation in addition to not

being able to reuse or share Java classes among applications at runtime. Note,

classes are shared at compile time. SNSP’s application construction is specifically

designed so that applications can use existing components on the network.

Chapter 3 Distributed OS Architecture

18

3 Distributed OS Architecture

SNSP is a distributed operating system. SNSP code executes directly on the

nodes in the sensor network. Each node runs its own native operating system

and SNSP code runs as middle-ware on each node. SNSP is designed to run on a

heterogeneous sensor network; a network comprised of nodes with different

capabilities e.g. battery-powered nodes, constantly powered nodes and perhaps

different bandwidth availability. It can also operate on a homogenous network,

and a totally asymmetric network, where the base-station does all processing and

the other nodes simply collect data.

 As an operating system, SNSP manages system resources, performing resource

allocation e.g. memory and computation, allowing multiple programs to co-exist,

controlling input and output devices and managing files/content. Due to the

nature of sensor networks, SNSP will execute on a physically distributed,

heterogeneous platform and thus implicitly supports communication,

Chapter 3 Distributed OS Architecture

19

concurrency, and synchronization, providing location transparency. As in

traditional operating systems, a user’s rights determine which programs,

resources, and content they may read, write, and execute.

There are several ways to design the architecture of a distributed operating

system. The most common approach is the micro-kernel approach. In this

approach, each component that comprises the distributed computing system

runs the same kernel of code that takes care of basic services. A more flexible

approach was desired for sensor networks as the entire computing system is not

designed at one time, and parts may be incrementally added. Therefore, SNSP is

actually middleware that runs on top of a basic operating system for each node.

When SNSP layer is ported to a new operating system, it must be able to

interface directly with that operating system and also be able to translate the

routing and addressing.

SNSP is not only a distributed operating system for sensor networks, it also

provides a uniform abstraction for applications running on it. This abstraction

encompasses a common terminology to refer to applications, resources and

people in the environment. An abstraction set was included in SNSP because

sensor networks are intimately tied to the environment, and being able to

compactly present aspects of the environment is essential to the success of

reusable and general sensor network software.

Chapter 3 Distributed OS Architecture

20

A service-oriented model was chosen for SNSP to separate the content of network

services from their implementation. These services form a reusable layer that can

be implemented and shared across any hardware platform. The core layer of

SNSP is comprised of services that handle concurrency, file allocation, security

and resources. These services are a standard part of SNSP and are described in

detail below. However, SNSP is also extensible via user-defined services. User

defined service are meant to encapsulate higher-layer functionality so that they

can be re-used across different sensor networks. A specific API is provided that

allows users to write these modular components (or applications). The API is

outlined in this section and further elaborated on in Chapter 4. Figure 1 shows a

graphical representation of SNSP architecture.

 Figure 1: SNSP architecture layers.

As an example scenario, healthcare monitoring will be used throughout this

chapter. For healthcare monitoring the sensor network is installed in a hospital.

Patients stay in the hospital for an average of three days. During the course of

their stay, different sensor nodes are attached to their bodies. These nodes

monitor different vital statistics, e.g. blood oxygenation, blood pressure, heart

Application

User-Services

Native OS (Sensor Network Nodes)

SNSP Core
(OS-level Services)

Chapter 3 Distributed OS Architecture

21

rate, blood sugar level, breathing speed, stress levels etc. There is also a

stationary sensor network in the hospital. These nodes may monitor the

environmental conditions in the room (temperature, humidity), or be attached to

larger machines, or to a system that alerts doctors and nurses when a patient

needs them. As patients enter and leave the hospital, the applications executing

change in accordance with the diseases being monitored. For example, the sensor

network may be monitoring a patient for seizures. This application could

combine heart-rate monitoring with stress level monitoring and it may also

involve administering of certain anti-seizure drugs. Further, the application may

require fine sampling of data from the sensors and thus it may be better to

execute the control function locally, rather than route a large amount of data to a

central base-station in the hospital. In addition, the data that the sensor network

collects about the person must be interpreted and stored correctly.

SNSP abstractions are presented below, followed by a description of OS and

user-level services.

3.1 Abstractions

There are three main abstractions in SNSP environment: Personae, Content, and

Resources. These abstractions were first presented in [34]. First, a persona

represents a single person, groups of people, or organizations (e.g. nurses

organization). In addition, a persona with sufficient privilege may set rules of

Chapter 3 Distributed OS Architecture

22

operation for the environment (e.g. only nurses may have access to the medicine

cabinet). A persona may be present or absent in a certain environment, but can

still affect its operation even if they are not present. The run-time system uses

personae rules to interpret, act on, and resolves conflicts between multiple users.

A persona consists of the following components:

• Permissions are user's access rights to devices, content, services, and

applications. For example, permissions may limit a user's ability to control

devices in the home such as lights. Further, permissions specify a persona’s

category or priority (e.g. ability to override another persona). Persona

categories are described in more detail in the equivalence section

• Properties contain information that describe user(s), e.g. age or gender.

Properties may help the system to detect and distinguish users from each

other. The persona also has an authenticate function.

• Preferences contain information regarding user actions or default system

configuration. Preferences may also be used to enforce certain user behavior.

For example, in health monitoring it is important to determine whether a

person has taken the correct medicine each day and to encourage them if they

have not done so.

In order to make personae more concrete, an example persona, describing a

homeowner is shown below:

Chapter 3 Distributed OS Architecture

23

Class: Persona
Name: Homeowner
Permissions: r,w,x for content, programs, devices
Properties:

Sex: Female,
Age: 60

Preferences: -
isPresent(location);

Table 1: Persona Example.

Second, the concept of content abstracts information that services and application

can manipulate. Content may represent a range of data: media streams, sensor

readings (light, temperature, motion, identification), security information, energy

monitoring results, health data etc. Separating content from the sensors that

generate it, and actuators that consume it, allows the system to cache and

replicate content to provide fault tolerance. In SNSP, all content has unique

identifiers, a size field and properties. In the health monitoring example, content

is very important. The content must be stored to provide doctors with accurate

medical data to look for potential problems as well as a record of patient care

especially of medicines taken. It is important that this content is not lost in the

sensor network. Content must also be kept private.

Last, resources uniformly abstract physical resources in the environment.

Resources are typically categorized by functionality (e.g. sensor –“current

temperature” content source, routing node – connection from A to B, transcoder –

conversion Celsius to Fahrenheit). Resources do not have an invocation/execution

Chapter 3 Distributed OS Architecture

24

API. For each resource there is a corresponding service that indicates how to

utilize it. There are two main types of resources: The first is a specific physical

resource, for example a sensor or actuator. The second is computation and

connectivity resources. The physical resources have an input and an output

domain. The input/output domains may be physical (lumens, heat to measure

temperature) or they may be numerical, ie reading from an on/off switch. A

resource also has a description of how much connectivity, computation power

and memory it can provide. An example of a heater is shown below followed by

an example computation resource that has the heater attached to it:

Class: Resource
Name: Heater
Location: LivingRoom
Properties:
 Manufacturer: GE
 Power: 1000W
Input Domain: numerical (10 bit)
Output Domain: physical (heat)

Class: Resource
Name: Computation
Location: LivingRoom
Reliability: 99.9%
CPU: 1 MIPS
CPU Used: 0
Dutycycle: 10%;1 second
RAM: 10KB
Memory: 100MB
Current used: 10MB
Connectivity: 10kbit/s
Hardware: Heater

Table 2: Two resource examples.

Chapter 3 Distributed OS Architecture

25

3.2 OS-level Services

OS services are the lowest level services that keep track of the system at the

device and connectivity level. OS services play several roles in the system, they:

• Resolve resource allocation conflicts between applications or persona.

• Support discovery of resources, persona, and content in the system

• Track of the utilization and availability of resources, persona, and content.

• Replicate code and content in the sensor network to maximize availability

and minimize data access costs

• Map applications onto the nodes at runtime

• Detect application failure and take corrective action

• Manage security and trust for the system resources, persona, and content

These functions have been divided into seven services shown in the figure below.

Figure 2: SNSP OS-Level Services.

OS-Level Services

Application
Migration

Content
management

&
replication

Resource
discovery&
repository

Task
Allocation
(Mapper)

Fault
detection &

recovery

Security
engine

Resource
utilization
monitor

Chapter 3 Distributed OS Architecture

26

3.2.1 Content Management & Replication

The content management and replication service distributes content throughout

the sensor network. The underlying challenge providing this service is to

optimize content placement for availability and minimize communication (both

access and update) costs. This problem is known as the file allocation problem

(FAP) and has been extensively studied for traditional distributed databases. The

FAP may be based on static allocation or dynamic allocation; the access patterns

may be deterministic, probabilistic or unknown. All versions of the FAP are NP

complete [35]. This thesis evaluates two well-known file allocation algorithms in

addition to developing its own. A formal problem statement as well as

simulation results are presented in Chapter 5.

3.2.2 Task Allocation

This problem is closely related to the file allocation problem; in fact, the file

allocation problem can be turned into a task allocation problem. The tasks

comprising the application are the files. The application specifies an access

pattern between the files. The tasks have additional constraints: namely,

computation, dynamic memory, hardware, and location and bandwidth

constraints. The optimal task allocation has been shown to be NP complete [36].

However, there is a large body of research on heuristic task allocation

algorithms. This thesis presents and compares three heuristic task allocation

Chapter 3 Distributed OS Architecture

27

algorithms in the sensor network setting. The formal problem statement, with

detailed constraints, is outlined in Chapter 6.

3.2.3 Resource Discovery & Repository Service

In SNSP we have chosen to do reactive resource discovery. The system does not

proactively send out discovery messages, instead, nodes send out a register

message when they join the distributed system. The register message contains

information about the resources present on the node, as well as a content and/or

service code that may be present on the node. This information is wrapped up as

repository content then stored in the network. The distributed content

management and replication service decides where to store this repository

content. Further, the repository contents have soft-state. Thus, nodes must

periodically re-announce their presence, otherwise it is assumed that they have

died or left the network.

Querying the repository service accesses the repository contents. The repository

service provides the following types of information:

• Available content, personae, and resources

• Available services in the network and their API’s

3.2.4 Resource Utilization Monitor

The resource utilization service gives information about resources that are used

by applications and services currently executed in the network, in addition to the

Chapter 3 Distributed OS Architecture

28

unallocated resources remaining in the sensor network. The mapper and content

management service use the resource utilization service to determine what is

available for allocation. The resource utilization service receives the resource

record from nodes that send their periodic registration updates (as part of

resource discovery). This provides the service with information about currently

available resources.

The resource utilization service also works with the mapping service to keep

track of resources that have been allocated to processes, but that have not yet

been “consumed”. To facilitate this, SNSP has a coupon system. A coupon is

placed on each resource that the mapper decides to allocate to a process. Once

the process has been initialized, it “consumes” the coupon and the nodes’

resource state gets updated. The resource utilization service also keeps track of

coupons issued to resources to assure that a resource is not over-provisioned.

Resource utilization records are distributed and managed in the same way that

content is.

3.2.5 Application Migration

To enable applications to migrate from one node to another node, the

application’s state must be captured. This is known as checkpointing an

application. When the mapper wants to relocate an application, it will request

that the application checkpoints itself. Note, both applications and services may

Chapter 3 Distributed OS Architecture

29

migrate from node-to-node, thus the application/service will be referred to as a

remote process.

Checkpointing involves the creating of a checkpoint object. The checkpoint object

stores the remote process’s current execution position, any local content that may

have been generated as part of the process state, the services that the process are

currently using (including specific queries to these services that the process has

made and not yet received responses to), and services/applications that have

sent queries to the process (there are referred to as waiting services). This state is

captured in the RemoteProcess object. The interfaces for the RemoteProcess and

checkpoint objects are given in Table 3.

Class: RemoteProcess
ID: XXX
Location: XXX
start(void* args);
stop(void* args);
suspend();
resume(location);
servicesUsed(name, loc, queries);
waitingServices (name, loc, queries);
stateContent(content);
processDescription(ast); //abstract syntax tree rep of proc code
processStackPointer(void *);

Class: Checkpoint
ProcessID:
commit(); //update complete
initialize(processID);
recover(); //returns last committed checkpoint
recoverLast(); //returns last data
update(void* args); //updates part of a remote process e.g. stack
ptr

Table 3: RemoveProcess and Checkpoint objects for application migration.

Chapter 3 Distributed OS Architecture

30

3.2.6 Fault Detection and Recovery

The advantage of distributed systems is that it allows applications to be more

tolerant of partial failures (there is redundant hardware for applications to

recover from failure or faults). Due to homogeneity of different platforms and

various energy constraints in sensor networks, it is not practical to require a

universal fault tolerance/recovery standard for sensor networks. However,

SNSP supports three loosely defined levels of fault tolerance: recoverable

processes, fault detecting processes and none. Recoverable processes have the

maximal support from the underlying network to both detect and recover from

faults. Fault detecting processes will simply be restarted when a fault is detected,

but are not guaranteed to preserve state. Last, there are processes for which the

system guarantees no tolerance at all.

The first step of fault tolerance is fault detection. Due to energy constraints, SNSP

does not, by default, actively monitor for faults in the network. Instead, it relies

on a combination of information from the application and the resource

discovery/utilization services. First, SNSP provides applications with a

mechanism to signify a fault in one of its sub-processes (i.e. a service that it has

invoked) Given the application composition (the task graph described in Chapter

4), a component that is using a service can naturally detect if a fault has occurred

(e.g. data is not arriving according to specification or an incorrect service was

Chapter 3 Distributed OS Architecture

31

invoked). This mechanism can also be used to validate semantics of requests in

the system.

The second method of fault detection is relying on information from the resource

discovery and utilization services. Through these services, SNSP keeps track of

resource states in the network. A variety of faults, i.e. nodes dying, nodes not

executing a process, etc., can be detected by combining information from these

two built-in services.

Once a fault has been detected, the system must recover from the fault. From the

fault detection information, SNSP will know what process failed. If that process

is still executing, it will immediately be terminated. If the program is a

recoverable process, SNSP must resume the process instead of simply re-starting

it. Recoverable processes must create checkpoint objects (described in the

application migration service). The processes determine how often to update

their checkpoint objects. The checkpoint objects are stored and replicated by the

content management service to ensure that an accessible copy exists in the

network. Once SNSP has located the process’s checkpoint, the process is

remapped onto the network.

The re-mapped process starts executing again from its last checkpoint. However,

the other tasks in the application may receive old or duplicate information from

the re-mapped process, which may lead to race conditions. In order to avoid this,

SNSP notifies all tasks belonging to an application when the process is re-

Chapter 3 Distributed OS Architecture

32

mapped and provides them with the checkpoint sequence number. Further, it is

recommended that communicating tasks include sequence numbers in the

packets they exchange.

For processes that are fault detecting, no checkpoint object exists, so the process

is simply remapped and restarted by the mapper service.

3.2.7 Security Engine

As in [34], the security in SNSP is based on persona and their access permissions.

Personae control access to content and are able to set permissions dictating what

can instantiate processes on the sensor network. A full-blown implementation of

this security is left as future work for SNSP. There has been other work done on

authentication, encryption and privacy in sensor networks, [37], [38], and [39]

serve as excellent staring points for a secure system.

3.3 User defined services

The service description can be used to determine how a service should be

replaced on failure and to check compatibility if a user wants to use or extend a

service. The service description includes a high-level description of what the

service does, and other properties that are useful in defining the service. The

service API consists of several components; a brief description of these

components is given below, followed by more detailed subsections.

Chapter 3 Distributed OS Architecture

33

Services have three stages of operation: initialization, execution, and termination.

Each of these phases consists of a usage API and a high-level functional

representation. When services are invoked, their initialization code is executed.

During the execution stage applications and/or other services may query the

executing service for content, or actuation of a resource. Queries and actuations

are equivalent and handled through the same API. In addition to the three

stages, services have structural, usage, and performance properties. Structural

properties pertain to the service composition. Usage and performance properties

are collected and stored in the repository service whenever the service is

executing. These properties are expounded on and illustrated below.

3.3.1 Initialization

Initialization is an important part of setting up an application or preparing the

system to record data. Initialization may contain several functions, e.g. turning

resources on, calibrating sensors etc. Every function has an identifier and an API

for calling the function. In addition to the functional API, there is also a

description of what each function does (computationally), called the behavioral

task. In the health monitoring example initialization might involve calibrating a

particular sensor e.g. oxygenation or heart monitoring sensor to work with a

particular patient.

Chapter 3 Distributed OS Architecture

34

3.3.2 Execution

The execution stage also consists of two main components: the service invocation

API, and the service behavioral task description (computation description of each

function in the API). The service invocation API refers to a set of queries that you

can make to the service once it is running. It consists of a set of functions with

typed arguments and return values. The basic functions through which a service

module interacts with its environment is depicted in Figure 5 and an example

service is given in Table 4 and Appendix I.

3.3.3 Termination

Similar to initialization, termination may consist of several functions, which are

represented as an API and a behavioral task component. In the health-

monitoring example, termination may happen when the patient is discharged

from the hospital. It could involve recording all patient data in a permanent

database and then erasing it from the sensor nodes.

3.3.4 Composition

These properties specify how a service is “put together”. They are listed below:

• Resources This component specifies the type of sensor/actuator that is

required and also other resources (ADC, bus etc.) that will be used during

service execution. Further, computation and connectivity are also resources.

Resources may be specified as a particular entity, or as an equivalence class.

Chapter 3 Distributed OS Architecture

35

Equivalence classes are explained in Section 4.2. In health monitoring, a

resource may be the sensor required to monitor a particular patient’s

condition. A temperature sensor may be needed to monitor the patient’s

temperature. Temperature sensor is the equivalence group, and specific

incarnations of it may be an oral temperature sensor or an inner-ear sensor

etc.

• Service Structure A service can be either simple or compound. Simple services

are self-contained and do not invoke any other services during execution. In

contrast, compound services do invoke other services. If a service if

compound, the service structure must also contain a list of the sub-services

that are invoked during execution. These sub-services may be specified

according to their equivalence class. A compound service’s access restrictions

must be a superset of all the access restrictions of its sub-services. For

example, a seizure monitoring service may use inputs from the heart-rate

sensor, the skin-moisture sensor, whereas a simple patient-temperature

monitoring service may only use a temperature sensor. Note: these two

services may themselves be part of a larger patient wellness application that

is launched on patient arrival.

• Service Scope defines the scope, location and time, that a service can operate

in. This is not the instantiation scope that is passed to the service as an

invocation parameter. Rather, it is the scope that it is possible for the service to

Chapter 3 Distributed OS Architecture

36

operate at all. The service may be limited in location because certain services

are provided by individual pieces of hardware. This hardware may be

restricted in space and also in the time of usage. Also for certain services, it

makes no sense to measure during certain times, e.g. nocturnal activity

during the day or photovoltaic cell power generation in the night.

• Service Content Services generate results when they are executed. These

results are classified as “content”. Content may be stored in the network and

used for later reference or consumed immediately. Caching may be used so

the service does not have to execute each time it is invoked, rather, it may

return already stored content. Further, a personae who instantiates a service

may also impose privacy restrictions on the content (e.g. can it be shared with

other personae or other services). For example, content may be a history of

the patient’s heart rate over 1 second intervals.

• Security & Access All services in the sensor network are controlled (and

instantiated) by a persona or a group of personae. Access to service

information (read/write) is determined by these personae. This component

grants or restricts the access of certain personae to the service description. As

an example, medical information may be accessed by the patient’s direct

family only, and not by other visitors. Further, the restriction is specified on a

component-by-component level, it may differ across individual parts of the

service description. Another important security constraint is instantiation

Chapter 3 Distributed OS Architecture

37

rights (execute). Personae can be denied access to instantiate a service in the

network. Read/write and execute privileges are specified independently of

each other. For compound services (calls other services to complete its result),

the service’s security must be at least as strict as its sub-classes. The security

and access components are limited only to the service description. We assume

that data encryption and other authentication is done by the service during

runtime.

3.3.5 Performance Metrics

These are the performance metrics that the underlying network must have for

the service to complete successfully. The performance of a service can be broken

down into the following components. Each of these can be specified as a max or

min value:

• Delay

• Synchronization (order on events & to reference)

• Accuracy

• Reliability (exactly one delivery, at most one delivery, best effort … etc)

• Throughput (network bandwidth)

If an application requests a performance level that a service cannot meet, or the

service itself requests a performance level that the underlying network cannot

meet, SNSP will simply send the application an error message.

Chapter 3 Distributed OS Architecture

38

3.3.6 Usage Measures

This section keeps statistics of the number of times a service is accessed. Also,

statistics are kept just for each incarnation of the service definition, i.e. if two

service definitions differ in any component, they must have different usage

measures. The usage measures are of the following:

• Access Count indicates how many times this service definition is read,

written, or executed. This is for unique accesses by different

services/personae.

• Alive Count of how many alive/executing copies there are in the network.

The repository makes a distinction between simply accessing the service

definition, and accessing it to execute/instantiate it.

• Validity Time period specifying how long the current copy is valid for, e.g. 1

hour, 2 days. This time period specifies the refresh rate, entities (that are

executing, or using the service definition) must check with the repository to

see if the service has been updated. This requirement allows programmers to

keep the code in the sensor network up to date and allow updates to

propagate through the network in a timely manner. Note: when nothing

changes, the “check-back” is only a control message exchange (check version

#), so its overhead is relatively small.

Chapter 3 Distributed OS Architecture

39

A summary of the different parts that comprise a user-defined service is given

below:

Figure 3: Components of a user-defined service.

Composition
Resources
Structure
Scope
Content
Security

Control flow
Invocation
Execution
Termination

Performance &
Usage
Access
Aliveness
Validity

Chapter 4 Programming Language and User Interface

40

4 Programming Language and User
Interface

This chapter presents a programming model for SNSP. The programming

language for SNSP is ANSI C, which it is very standard and well known.

However, ANSI C is augmented with other descriptors (stored in separate files),

which specify constraints and auxiliary services used by applications. The

chapter concludes by presenting an Eclipse [40] integrated development

environment (IDE) that can be used to write applications for SNSP. A sample

application is presented in Appendix I and SNSP Eclipse IDE is presented in

Appendix II.

Programming model

In SNSP’s programming model, an application is a task that has inputs, outputs

and a computational part. Any of these portions may be provided by other

tasks/services. Given this structure, the application can conceptually be seen as a

Chapter 4 Programming Language and User Interface

41

hierarchical combination of tasks. The diagram below shows an example light-

control application structure in which the application uses the person locating

service (which gives the locations of people in the building), the sunlight

metering service (which determines if sunlight is providing sufficient

luminance), and the lightSwitch service (which actuates a given set of lights). In

turn, the person locating service uses a combination of RFID reading services and

services exposing data from motion sensors. The arrows between tasks in the

figure signify communication between the different processes. Services can be

considered a library of applications that conform to SNSP’s service API

presented in Chapter 3.

Figure 4: Light control service application structure.

4.1 Programming language: sensC

The programming language sensC is ANSI C [41] with a few extensions. C was

chosen because of its widespread use in the embedded world. The language

Light cntl

People ID
service

Sunlight
service

Light
switch
service

RFID
service

Motion
service

Chapter 4 Programming Language and User Interface

42

consists of two types of files: the first type is standard C (.c and .h files with a few

reserved keywords and functions) the second type is service specification files,

which end with a .serv extension.

First, the .c and .h files define the functionality of the sensC program. A sensC

program is divided into three sections: the initialization, execution and termination

sections. The sections may also contain standard C functions. By default, these

functions are public and may be called directly by other sensC modules in the

sensor network. sensC supports timers and non-preemptive event queues for

scheduling computation.

Further, sensC modules interact with SNSP via a set of functions. Figure 5

illustrates the function calls between SNSP core, an application represented as a

sensC module, and a third-party service that the application is using. The four

functions are listed below:

Figure 5: SNSP and sensC module.

....interaction.

Chapter 4 Programming Language and User Interface

43

• requestService() This function is called by a sensC module when it wants

to use a service deployed on the sensor network. The first three parameters of

the function are: (1) the requested service, which may be a user-defined

service, or an essential service such as localization or the repository service,

(2) scope, location and time to execute the service, and (3) the argument to the

service. The argument to the service is a section, followed by the desired

function within that section, for example execution:invoke(). Optional

parameters are authentication, encryption, and request performance

constraints, e.g. delay, reliability, accuracy etc.

• invokeService() This function is called by SNSP to notify a service that it

has been requested. A sensC module that behaves like a service needs to

implement this invokeService function. The parameters are the same as those

of the requestService() function.

• serviceRespond() This function is called by a sensC service module when it

responds, has results to return, to another module that requested the service.

The required parameters are the request ID, the return scope, the return

service, and a result value field. Note that the value field is a C struct, with a

header that indicates the total payload length. The payload contains result

entries, which contain the type and length of the result, as well as the actual

result value. Optional parameters are authentication and encryption.

Chapter 4 Programming Language and User Interface

44

• serviceResult() This function is called by SNSP to return the result of a

request to the original sensC module. The parameters are the same as

serviceRespond().

• register() This function is periodically called by every sensC service

module. It registers the service as belonging to the network and gives a

complete service description (i.e. its interface as a list of functions with the

formats of their arguments and results). See section 3.3 for more information

on the service description.

When a user wants to write an application, they are presented with a blank

template file containing the four service calls. The template file is further

explained in section 4.3 as a part of SNSP IDE. Table 4 shows an example of a

thermostat application. Some code has been left out to simplify the application.

In the example code the application initializes some default values on startup.

SNSP (not shown in the user-code) will also query the repository service (CRS) to

find out where the heater, temperature sensing and user-desired temperature

sensing services are located. This information is stored in the availService array

(the exact format of this is specified in Section 4.4.). Then, in the execution

section, the application keeps requesting the temperature and a user temperature

until it has received them, after which a control function is executed to turn the

heater on or off.

Chapter 4 Programming Language and User Interface

45

boolean hasTemp
scope tempScope
int temperature;
boolean hasUserTemp;
scope userTempScope
int userTemperature;
scope heatScope;
servDat availServices[SERVICES_USED];

Invocation:
 invoke(){
 hasUserTemp = hasTemp = false;
 }

Execution:
 executeControl (){
 if(!hasTemp && availServices[temp].exist){
 tempID = requestService(TEMP, tempScope);
 return;
 }
 if(!hasUserTemp && availServices[userTemp].exist){
 userTempID = requestService(USERTEMP, userTempScope);
 return;
 }
 if (availServices[heater].exist) {
 if(temperature < userTemperature)
 requestService(HEATER, heatScope, ON);
 else
 requestService(HEATER, heatScope, OFF);
 }
 }
 }
 terminate(){}
serviceResult(id, value){
 switch(id){
 case tempID:
 temperature = value->payload;
 break;
 case userTempID:
 userTemperature = value->payload;
 break;
 }
}

Table 4: Example code for a temperature control application.

Chapter 4 Programming Language and User Interface

46

4.2 .serv Requirement Specification

The .serv file consists of two segments. The first segment details information

about the sensC module’s runtime requirements. This will be used by SNSP to

dynamically deploy the module on the sensor network. These requirements are:

• Data in-flow rate (shaped by leaky bucket)

• Data out-flow rate (shaped by a leaky bucket)

• Memory requirements such as dynamic memory and intermediate storage on

a node

• Resource requirements (i.e hardware that must be co-located on the node)

• Fault tolerance requirements (see section 3.2.6 on fault detection and

recovery)

The second segment contained in a .serv file specifies information about the

other services or modules that the sensC module will invoke during execution. In

order to make the sensC module more applicable to general sensor networks,

services are specified via equivalence classes. Equivalence classes specify a set of

properties that a service must have to be considered an equivalent candidate. In

order to evaluate different equivalent services, the properties may be specified

with an evaluation function that assigns a grade to the service depending on its

exact value of its property. For example, there may be two temperature services

in the network; one may have an accuracy of ±1°C and the other ±5°C. These

Chapter 4 Programming Language and User Interface

47

services are equivalent, but the first is more valuable to a module that has high

accuracy requirements. Equivalence classes allow a service to be substituted for

another when the original one is not present in a sensor network.

For large equivalent sets, a decision tree structure can be used to efficiently

represent an equivalence class. The decision tree not only encodes all the

properties required of the service, but also an order in which to evaluate them.

Given a good choice of variable ordering, [42] has shown that decision trees are

both a compact way to store evaluation functions and an efficient mechanism to

check whether a service matches the criteria. In the current SNSP

implementation equivalence classes are specified as priority lists.

Table 5 shows an example .serv file. The top half of the file specifies the

constraints such as data in-flow-and-outflow rates. The second half of the file

lists equivalent services. The line “Service:x” denotes the start of a new

equivalent group. For service 2 there are two equivalent services: Cricket [43]

and Motetrack [44] localization. Cricket is an acoustic localization service

whereas Motetrack uses RF and is not as accurate. The accuracy of both

localization services is known (represented in the functional API). The algorithm

prefers Cricket to Motetrack if it is available in the network. Also, if QueryPeriod

is set to 0, then it is the responsibility of the application to query the service

during execution. If it is non-zero, SNSP will periodically query the service for

results.

Chapter 4 Programming Language and User Interface

48

ModuleName:example

DataIn:10,5 /* units are kb/s */
DataOut:8,2
Memory: 2 /* units are kbytes */
Processing: 10
ResourceReq:ServiceName /* Can also be left blank */
FaultTolerance:detection /* recoverable, detection, nothing */

Service:0
Name:TEMPERATURE
Scope:KITCHEN
QueryPeriod:5 /* query once every 5 seconds */
Name:TEMPERATURE
Scope:LIVINGROOM
QueryPeriod:8

Service:1
Name:HUMIDITY
Scope:SP_SCOPE_ALL
QueryPeriod:10

Service:2
Name:CRICKET_LOCALIZATION
Scope: SP_SCOPE_ALL
QueryPeriod:0
Name:MOTETRACK_LOCALIZATION
Scope: SP_SCOPE_ALL
QueryPeriod:0

Table 5: Example of a .serv specification file.

4.3 Programming UI

SNSP is not just a distributed operating system for sensor networks. It is also a

platform that allows users to write applications for sensor networks. This is

known as an integrated development environment (IDE), which is a PC-side tool

that allows users to create and compile SNSP applications. IDEs normally consist

of a source code editor, and a compiler/interpreter.

Chapter 4 Programming Language and User Interface

49

Eclipse was chosen as the IDE for SNSP. [40] Eclipse started as an open-source

Java tool to build Java IDE’s, but now consists of an open source community

whose projects are focused on building an open development platform

comprised of extensible frameworks, tools and runtimes for building, deploying

and managing software across the lifecycle.

The Eclipse platform is extensible via plug-ins. Plug-ins are “pluggable

components,” which conform to Eclipse's plug-in contract. These plugins work

seamlessly with the core part of Eclipse during runtime. They may do something

simple like adding a single button that displays a message to a user, or soething

complex like adding support for compiling another language. There is a Tinyos

plugin [45] that allows users to write and compile TinyOS code within the

Eclipse IDE. SNSP Eclipse plugin is fully described in Appendix II.

4.3.1 Creating an SNSP Application

The first step in creating an SNSP application is defining all the services that will

be used during the application’s execution. The services as well as the scope are

defined in the .serv file. See Section 4.2 for an example. Next, these specifications

must be reflected in the C files. First, the services and locations used are defined

in numerical format in the .h file. An example .h file is given in Table 6 below.

Chapter 4 Programming Language and User Interface

50

/*
 * Place the names of locations and services here
 * Note, the spelling & capitalization must be the same as that
 * used in the .serv file
 */
enum {

/* eg location:
 * KITCHEN = 1,
 * LIVINGROOM = 2,
 * DININGROOM = 3,
 */

/* eg Service names
 * TEMPERATURE = 9,
 * HVAC = 14,
 * COMFORT = 15,
 * DESIRED_TEMP = 16,
 * HVAC_CONTROL = 19,
 */

/* eg persona
 * OWNER = 22,
 */

 BRIDGE = 17,
 OFF = 2,
 ON = 1,
 SENSOR = 10,
 ACTUATOR = 20,
 CONTROL_TRIES = 3, //#times try to respond before timeout
 REPLY_TRIES = 3,
 ACTIVATE = 2,
 DEACTIVATE = 3,
};

typedef struct serviceUsage {
 uint8_t name;
 scope_t scope;
 int platform;
 uint16_t ticksToQuery;
 int invocationID;
 int exists;
}

Table 6: .h file specifying the relevant services, scopes, and persona.

Chapter 4 Programming Language and User Interface

51

Table 6 also shows the serviceUsage structure, which is of particular interest.

SNSP will create a serviceUsage array the size of all the services used. During

execution, SNSP will periodically query the repository service to determine

which of the equivalent services exist in the network. It will populate the

serviceUsage array with information about the top equivalent service that it finds

in the repository. If an application wants to query this service, it can find the

service name and scope in the service usage array at the index specified in the

.serv file.

When the application programmer starts a new SNSP project, the main

functionality of the application gets placed in the C file that is created. The blank

C file contains a number of functions that need to be filled in. Table 7 shows the

blank C file. Most of the functions have comments describing the calling context

and arguments. These functions are essentially those described in Section 4.1 by

the sensC module interaction. An example of a completed C file and the resulting

compiled tinyOS code is given in Appendix I. The example shows a thermostat

application.

#include "table.h"

/*
 * Place all the variables to store results from services used
 * eg uint16_t sensorSample1
 * uint16_t sensorSample2
 */

/*

Chapter 4 Programming Language and User Interface

52

 * during execution these will be filled in and updated
 * with the name & scope of the equivalent service that
 * exists in the network - see bottom of file for
 * a definition of the struct
 */
serviceUsage services[NUM_SERVICES_USED];

/*
 * fill in, it will be called on initialization
 */
void invoke()
{
}

/*
 * fill this in - it will be called every second
 * Use it to process results, query more services, actuate etc.
 */
void executeControl()
{
}

/*
 * Fill this in if you want other components to use this service
 * it will be called on the service in response to a
 * requestService call and it should call serviceRespond
 * to pass the result back to the callee
 * @param fn function that will be called
 * @param args - arguments to the function
 * @param arg_len length of the arguments (not null terminated)
 * @param id -identifies the request, should be passed back to
 * serviceRespond
 *
 *@return int return 0 if the service successfully invoked,
 * 1 otherwise
 */
int invokeService(uint8_t fn, char *args, uint16_t arg_len,
uint8_t id)
{
}

/*
 * Fill in to process the result of a service query/invoke
 * service
 * @param fn - function name that was called
 * @param payload - results
 * @param payload_len - length of results (they are not null
 * terminated)
 * @param id - request id that was returned in requestService

Chapter 4 Programming Language and User Interface

53

 */
void serviceResult(uint8_t fn, char *payload, uint16_t
payload_len, uint8_t id)
{
}

/* called when the mapper is wrapping up the service
 * clean up any last minute state
 */
void terminate ()
{
}

/*------------------STUBS-----------------------*
 * Leave at the bottom of the file - will be filled in by SNSP */

/*
 * This is a stub will send a service query
 * @param servNum is the equivalence class specified in
 * the .serv file
 * @param servName is the class that was found in the network
 * (that is equivalent from - serviceUseage
 * services[NUM_SERVICES_USED];)
 * @param fn is the function name that will be called
 * @param args is a void pointer to arguments to the service
 * @param argLen is the length of args (not null terminated)
 *
 * @return int returns the id that will be used in
 * serviceResult to pass result back
 */
int requestService(uint8_t servNum, uint8_t servName, uint8_t fn,
char *args, uint16_t argLen)
{
}

/*
 * This is a stub
 * @param fn - function that was called
 * @param results - pointer to results
 * @param
 *
 * @return 0 if successful 1 if not
 */
int serviceRespond(uint8_t fn, char *results, uint16_t resLen,
uint8_t id)
{
}

Chapter 4 Programming Language and User Interface

54

Table 7: Blank template C file that the programmer needs to fill in.

4.4 Coding Efficiency Gain

 The programming language and UI were developed to make writing sensor

network applications easier for programmers. One way to measure the gain in

efficiency is to compare the number of code lines saved. In the example given in

Appendix I, the C code is 146 lines long. The resulting TinyOS code is 711 lines

for the HVAC_CONTROLM.nc module (which contains the application code)

plus an additional 2109 lines for the supporting SNSP TinysOS code. That is a

savings of 1932%. As the program gets more complex, the application’s C part

will get longer and the supporting SNSP code will be amortized over many

modules. However, there is still a significant savings of 2674 lines of code.

Chapter 5 File Allocation

55

5 File Allocation

The underlying challenge in providing this service is to optimize content

placement for availability and to minimize communication (both access and

update costs). This problem is known as the file allocation problem (FAP) and

has been extensively studied for traditional distributed databases. The FAP may

be based on static allocation, which means that the files are allocated once ahead

of time, or dynamic allocation. Further, the file access patterns may be

deterministic, probabilistic or unknown. All versions of the FAP are NP

complete.

This research focuses on dynamic file allocation with unknown file access

patterns. Further, the work places more importance on reducing the

communication cost to access a file, and aims to increase file availability. The

chapter starts by outlining the formal file allocation problem. Next related work

and the process of locating files are addressed, followed by the presentation of

Chapter 5 File Allocation

56

three heuristic algorithms: A deterministic central replication algorithm, a

distributed probabilistic replication algorithm, and a learning-based algorithm.

These algorithms are compared via simulation to a control case with no

replication.

5.1 Problem Formulation

A version of the static FAP, similar to that in [35] is formulated below.

Given:

• n nodes

• m files

• lj is the length of the jth file for 0 < j ≤ m

• bi is the available memory of the ith node for 0 < i ≤ n

• cj is the storage cost per unit at the jth node

• CAi is the capacity of the ith link

And traffic vectors where the incoming traffic arrives with a poisson distribution:

• uij is the query traffic originating from node i for file j

• vij is the update traffic originating at node i for file j

• u’ij is the return traffic to node i from queries for file j

• v’ij is the return traffic to node i from updates of file j

Chapter 5 File Allocation

57

Chu [35] formulated the file allocation problem as a zero-one integer-

programming problem. The variable Xij is the indicator function that the jth file is

stored on the ith node.

!
"

!
#

$

=
otherwise 0

nodeth on the stored is fileth if 1 ij
Xij

(1)

Storage cost is given by:

!

Z
store

= cTXl

Where c = (c1, c2, …, cn)T and l = (l1, l2,…, lm)T

(2)

If file j is stored at qj different nodes in the network, where

!
=

=
n

i

ijj Xq
1

(3)

The total traffic generated in the network is now:

()() ()()[]!!
= =

"++"+=
n

i

m

j

ijjijijijijijcomm XqvvXuuZ
1 1

'1'

(4)

The objective of the file allocation problem is to minimize the storage cost (eqn 2)

and the total communication cost (eqn 4) of transporting data through the

network.

For SNSP, storage capacity and availability constraints can be formulated as

follows:

Chapter 5 File Allocation

58

!

Ccap = XijLj " bi for 1 " i " n
j

(5)

Analytical expressions for availability are hard to obtain, so an approximation,

given in [46] is used. This approximation is explained below.

First, we define rik to be the probability that two nodes i, and k successfully

communicate. In order to derive the analytical expression, we assume rjk is

independent rmn for all m not equal to j and all n not equal to k. This can be

calculated for each pair of nodes if the routing and node availability is known.

This probability includes the probability that node k is available. (In the

simulation the availability to access a file at location k from location j is not

explicitly calculated; only the availability of the node k is taken into account).The

availability aij of file j accessed by node i is

!

aij = 1" 1" rikXkj()
k=1

n

#
$

%
&

'

(
)

(6)

Let Wij be the total traffic demand at node i for file j. Wij = uij + u’ij + vij + v’ij. The

weights indicate the relative popularity of files. The traffic-weighted availability

for each file is given by:

!
!=

=

=
n

i
n

i

ij

ijijj
avail

W

aW
C

1

1

 (7)

Chapter 5 File Allocation

59

The optimization problem given a target t, availability constraint a and variable

λ, is: an allocation F(X) that minimizes

F(X)= Zstore + λZcomm (eqn 2, 4)

subject to

Ccap (eqn 5)

C javail > a for 0 < j ≤ m (eqn 7)

5.2 Related Work

Content replication algorithms (also known as file allocation problems) were

studied extensively with the rise of networked computer systems in the late 60’s

and 70’s. The optimal solution is NP complete. Techniques for file allocation

include branch and bound, randomization, predictive Markov techniques,

genetic algorithms and other heuristics. [47] gives a good overview of these

difference techniques. Further, the solution techniques employed depend on the

assumptions that are made and the different constraints that are considered.

As shown in Table 8, in one variant of the content replication problem the input

pattern is not known in advance but the algorithm must react to file requests as

they arrive. This class of problem is known as online problems. Typically,

competitive algorithms are used to solve/analyze online problems. Competitive

algorithms have the property that their performance on any sequence of requests

is within a constant factor of the performance ‘of any other algorithm (including

the optimal) on the same sequence. See [48] for more details. This work will

Chapter 5 File Allocation

60

compare algorithms that do not know the access pattern in advance to each

other.

Input Pre-determined

Probabilistic

Unkown

Solution type Static (files are allocated once) – optimal or heuristic

Dynamic (files migrate during process) – optimal or heuristic

Structure Single File (assume files are independent)

Multiple Files (for high-throughput case, files may content
with each other w.r.t. queueing delay)

Files as program data

Metrics Minimize execution cost

Minimize communication cost

Maximize availability

Maximize throughput

Minimize access delay

Minimize file transfer times

Table 8: FAP Classification

In the sensor network setting there has not been task allocation work per se, but

there has been work on the related problem of data storage and retrieval.

Solutions include modeling the sensor network as a database [13], adapting hash

tables from content addressable networks with geographically distributed hash

tables [49]. This is used to find and store data and sensor network fusion, where

a sensor needs to figure out where to send its data when queried [50]. This work

has focused on making data retrieval more reliable and cheaper, but it has been

Chapter 5 File Allocation

61

mostly focused on collecting data through a central point, and has not allowed

for data replication in the network.

5.3 Locating Files

Existing content replication algorithms do not address locating the content. In the

worst case, nodes need to flood the network to locate information. In order to

avoid flooding, an indexing system is used. Indices are placed at warehouse

nodes, which have higher availability and storage space than their peers.

Warehouse nodes are selected via a clustering algorithm in a d-hop

neighborhood. This work uses the clustering scheme presented in [51], which

selects as cluster heads nodes within D hops having the highest id. This work

uses a combination of the node’s availability and storage as criteria for cluster

head selection. The cost of maintaining the content indices is added as overhead

cost. Note, the cost of accessing a warehouse is on average be D/2, the average

distance a node is from its cluster head. Thus it is beneficial to reduce D to lower

the cost. However, as D is decreased, the total number of cluster heads increases,

which increases the cost to write a new location to all warehouses.

Chapter 5 File Allocation

62

5.4 Algorithms to Evaluate

5.4.1 Deterministic, Central Replication Algorithm

This algorithm was adapted from [52]. The algorithm is O(logn) competitive. For

each data item, the algorithm maintains a list of L read requests and also a tree

structure T of pointers to all replicated data. d is the size of the data. The

algorithm executes as follows:

• On read request r, the algorithm finds sphere S with radius k that contains d

reads

• If no copy of a file exists within a sphere of radius λk of the r, the file is

replicated to the node with the highest availability in the sphere, and it is

added to T

• Read requests from nodes in S are deleted from L

• After d writes, all copies in T are deleted and the one on the node with the

highest availability is kept

5.4.2 Distributed Algorithm

This algorithm was adapted from [53] to improve the availability of the data. It is

O(log2n/log2d) competitive (where d is the size of the data and n is the number of

nodes). A tree Tp is kept for replicas of item p:

• On a read request from r, insert the node with the highest availability in r’s

one-hop neighborhood in Tp with probability 1/d

Chapter 5 File Allocation

63

• On a write request from w, with probability 1/(sqrt(3)*d), delete all nodes in

Tp, except for the one with the highest availability and add w to T

5.4.3 Adaptive Observation-Based Algorithm

This algorithm uses an observation period during which nodes observe the

number of read/write requests. Replication decisions are made after this period.

Initial step:

• Observe 100 accesses of a data item p, keep record of their location and

whether it was a read/write.

Reallocation:

• After r reads

• Create k = floor(r/20) replicas of the data item

• Use k-means to divide the data requesters into k clusters and store one data

item on the node within each cluster with highest availability.

Now that there are replicas in the network, writes can either come directly from a

node (meaning that the replica was the closest copy to be written) or they can

happen when data is written through for consistency.

Refinement steps (on each node that has a copy of p):

• Observe 100 accesses of the data item.

• Accesses are either reads r, direct writes wd, or update writes wu.

Chapter 5 File Allocation

64

• If wu > r + wd remove the replica from the node

• If r > wd create k = floor(r/20) replicas and use k-means to distribute the

replicas onto a node with the highest availability in each cluster.

5.5 Simulation Setup

I used the discrete event simulator Omnet++ [54] with the Mobility Framework

(MF) [55] extension. MF was developed at TU-Berlin and provides a good model

of the WSN physical and MAC layers. The simulation consists of 1000 nodes

randomly placed in a 2000m x 2000m square. The nodes have a radio range of

approximately 150m. The network’s heterogeneity is also varied, with a

heterogeneous network consisting of nodes with 3 amounts of storage: 10k, 50k, and

200k. Nodes with a large amount of storage are available 99.9% of the time,

nodes with a medium amount of storage have a 95% availability and the smallest

nodes have a 80% availability. In the homogenous network, nodes have 2 different

amounts of storage, 50k and 100k, and they are available at rates 97% and 94%

respectively. Availability refers to the percentage of the time a node will be

awake and respond to incoming packets. All nodes are unavailable for an

exponentially distributed time with the same mean, so a higher availability

means lower chance of becoming unavailable. The relative times are calculated

so that nodes are probabilistically awake for the percentage specified by their

availability.

Chapter 5 File Allocation

65

When a node is available, it wakes up every 0.25 seconds, and decides with

probability 0.1 to read or write a randomly selected piece of data. Each

simulation consisted on average of 39,000 queries. All data items are the same

size (100), but they have different read to write ratios of 1:1, 3:1, 15:1 and 100:1.

Cluster head election occurred at the start of the simulation and the cluster heads

did not change during the simulation.

For the lower layers, a standard fading channel was used with an Aloha MAC

[56] (both of these are provided by the mobility framework). At the network

layer, geographic routing and addressing is used.

The following assumptions are made:

• Nodes know the id’s of data items they want to access

• ID’s are much smaller in length than the data item

• Data items are indivisible and the original copy cannot be deleted or migrated

to another node

• There are no concurrent read/writes (relatively few events in WSN)

• Nodes have a finite amount of storage

• Node failures/deaths are modeled as an independent binomial process,

independent of other nodes.

• Nodes also fail temporarily (which corresponds to temporary downtime e.g.

sleeping to conserve power).

Chapter 5 File Allocation

66

• Nodes know their own availability, i.e. the proportion of time that they are in

functioning condition.

5.6 Results

The first experiments examined the tradeoff between number of cluster heads,

their availability, and the number of hops, D. Results in Table 9 show a summary

of the number of cluster heads vs number of hops, D. The results were similar

across both topologies. All cluster heads were the highest availability nodes,

even with D of 2. Further, there is clearly a tradeoff between the number of hops,

D, a cluster head is away from a node and the number of cluster heads to keep

synchronized when a data item’s location changes. Due to the relatively small

change in number of clusters from 3 to 8 hops, D was chosen to be 3 for the

remainder of the simulations.

D # Cluster
Heads

Availability

2 10 99.9
3 6 99.9
4 5 99.9
8 3 99.9

Table 9: Number of cluster heads vs number of hops, D.

Figure 6 shows the total cost (the number of hops data was transported) per data

access for each of the schemes. The solid portion of the bar represents the direct

cost of the operation. For example, for a write operation that represents the cost

to transport the data from the writing node to the closest replica in the network.

Chapter 5 File Allocation

67

The top portion of the bar is overhead to keep replicas consistent. Considering

the data access cost, the adaptive algorithm performs the best, followed by the

distributed algorithm, the deterministic algorithm and last the control algorithm.

However, considering total cost, the distributed algorithm outperforms the

adaptive algorithm. This is because the distributed algorithm saves on

replication cost by replicating to the nodes (or nodes very close to them) that

make the queries. While the adaptive algorithm has a better placement of

replicas (because its access cost is lower), it incurs additional cost because it

locates replicas independent of queries. The overhead of the deterministic

algorithm makes it more costly than the control algorithm.

Figure 6: Comparison of data access cost and replication overhead.

Figure 7 shows the cost breakdown for the distributed and adaptive schemes by

topology and data read/write ratio. Topology 1 is the heterogeneous topology

and topology 2 is the homogeneous topology. There is not much difference

Chapter 5 File Allocation

68

between the two topologies. On average, across all read/write ratio entries for

the same scheme, the two topologies differ by, 0.3 hops or roughly 4%.

The read/write ratio has a bigger impact on cost. In both schemes the same

pattern is visible; the overhead is much larger for data with lower read/write

ratios. This overhead shrinks to almost nothing for data with a read/write ratio

of 100 in the distributed algorithm. Intuitively, this is because the placement of

the data does not incur an overhead, and even though there are many replicas,

writes are so infrequent that they add little to the total cost. Thus, these schemes

provide more benefit for data that is read much more frequently than it is

written.

Figure 7: Comparison of data access cost vs topology and data read/write ratio.

Chapter 5 File Allocation

69

The previous graphs showed only the cost of moving data around the network.

Figure 8 shows the control message overhead. The distributed algorithm has the

lowest control message overhead followed by the deterministic and the adaptive

algorithms. The data read/write ratio does not have a large impact on overhead

cost, because the overhead is dominated by the cost of finding an item; there is

not much difference between finding a location to read from or one to write to.

Moreover, this overhead is not as significant as the data cost shown in Figures 6

and 7. If data ids are a 10th the size of the data payload, then these numbers

should be divided by 10 to scale them to those in Figure 6. On average, the

distributed algorithm would cost 0.27 hops more, the deterministic algorithm

would cost 0.34 more and the adaptive algorithm would cost 0.4 hops more. The

control overhead becomes even more significant if the ratio between the data

payload size and the data id size becomes larger.

Figure 8: Comparison of control message overhead.

Chapter 5 File Allocation

70

In addition to the cost of the replication scheme, data availability is also an

important concern in SNSP. Figure 9 shows the percentage availability of data for

all schemes and topologies (the 1, 2 on the x axis indicates topology). Topology

does have an impact on availability; the homogeneous topology has a higher

availability than the heterogeneous topology. The distributed replication

improved reliability the most with a 33% improvement for topology 1 and a 51%

improvement for topology 2.

Figure 9: Percentage of unavailable data for different schemes and topologies.

5.7 Discussion

This chapter presented a formal problem definition of content replication and

management. The problem was then investigated in the context of sensor

networks. Specifically, as part of SNSP, a distributed operating system, which

dynamically maps data and programs onto the sensor network. Out of the three

algorithms that were empirically compared, the distributed replication scheme

Chapter 5 File Allocation

71

performed the best with the lowest total cost and the highest availability. The

adaptive algorithm developed for SNSP performed the best when considering

only data access cost, indicating that it had better placement than the other

algorithms. However, it also had higher control message overhead.

The simulations showed that all replications schemes provided more benefit for

data with more frequent reads than writes. Finally, the simulations showed that

although the replications schemes improved data availability, the sensor network

topology has an impact on data availability. The homogenous network had

roughly 2% more availability than the heterogeneous network. From a practical

perspective, the distributed algorithm performed the best, it is very simple to

implement and has low overhead.

Chapter 6 Task Allocation

72

6 Task Allocation

This chapter formulates the task allocation problem for SNSP. The task mapper

takes SNSP task description (including a list of sub-tasks that can be further

partitioned or assigned to individual sensor nodes) as input. In a sensor network

the mapping must happen in a decentralized way. The problem is formally

stated in this chapter, followed by related work. The optimal solution is NP

complete, and therefore the goal of this chapter is to evaluate heuristic file

allocation solutions for SNSP. In order to facilitate this, three algorithms are

outlined in this chapter and then compared via simulation. The algorithms can

also implement incremental mapping of processes. Incremental mapping is when

a task (that is part of a process) is already running in the network, it is shared

between the two processes, instead of mapping two copies of the task on the

network. The results compare both incremental and non-incremental approach.

Chapter 6 Task Allocation

73

The algorithms are distributed. The solution can be structured so that each task

has an independent mapping agent or each resource has a mapping agent. The

task-mapping agent evaluates the best mapping and then takes care of obtaining

the resource for the task and any contention that may result. The resource agent

receives bids to obtain its resource and performs allocations to the highest

bidders. The algorithms chosen are aimed to reduce the communication

overhead between tasks and to increase information availability.

6.1 Problem Formulation

The mapper’s function is to allocate resources to processes so that they can

execute on the sensor network.

6.1.1 Assumptions

• Nodes know the IDs of data items they want to access

• Data id’s may be arbitrary in length, so long as they are prefix-free

• Nodes have a finite amount of storage available for data items

• Node failures/deaths are modeled as an independent binomial process,

whereby each node fails independently of others.

• Nodes know their own availability, i.e. the proportion of time that they are in

functioning condition.

Chapter 6 Task Allocation

74

In the mapping problem, we assume that we are given the following

information:

Given n nodes and m processes

for 0 < j ≤ m and 0 < i ≤ n

• hj is the RAM requirement of the jth process

• gi is the computation requirement of the jth process

• oi is the hardware requirement (e.g. sensors) of the jth process

• tj is the location requirement (e.g. kitchen, house) for the jth process

• ei is the available RAM of the ith node

• qi is the available CPU of the ith node

• ci is the cost to execute a process at the ith node

• ui is the hardware on the ith node

• pi is the location of the ith node

• sik is the bandwidth between nodes i and k for 0<k≤ n

• CAkj is the communication cost between tasks k and j if they are executed on

different processors for 0 < k ≤ m

The problem can be formulated as a zero-one integer programming problem

where:

Chapter 6 Task Allocation

75

!

Xij =
1 if jth process is executed on node i

0 otherwise,

"

$

%
$

(8)

and one copy of the process is executing

!

Xij =1.

i=1

n

"
(9)

Note, multiple copies of a process could be executing on the network if different

applications are using the same service and it is not convenient to share the

output of the service. However, each application has its own allocation matrix X,

and if two applications share the output of the same service, the mapper keeps

note of that separately.

The goal of the mapper is to find an allocation that minimizes the execution cost

(9) and the total communication cost (10). The execution cost is:

!

Zexe = cTX •1

Where c = (c1, c2, …, cn)T

(10)

The communication cost is:

!

Z
comm

= CAij

k=1

n

"
(i, j)#e

1

m

" Xik(1$ Xjk)

where e1 is the set of edges in the task graph.

(11)

The constraints of the mapping problem will be unique to each application.

While the delay, reliability, processing, bandwidth, and memory constraints are

Chapter 6 Task Allocation

76

given by a less or greater than operator. The hardware and location constraints

may have more complex matching functions. For example, a location may be

contained within another, or hardware may be a superset of what is required etc.

The mapping problem can then be formulated as follows:

Given operators α and β, that take as input location or hardware data and

constraints and return 1 if the data or hardware constraints respectively are met,

an availability vector a, and parameter λ find an allocation X that minimizes:

F(X)= Zexe + λZcomm

subject to

(12)

!

1" 1"Y
kj

rpiXpj(1" Xik)
p,i#N

$
%

&
' '

(

)
* *

k=1

m

+
,

-
.
.

/

0
1
1
2 aj

for 0 < j 3 m

!

where Ykj =
1 if processes j and k communicate

0 otherwise

"

$

!

and r
pi
 is the probability that nodes p,i communicate

successfully.

(13)

(14)

!

sjk " CAipXji(1# Xkp)

p= i

m

$

i=1

m

$ for 0 < j % m and 0 < k % j

Chapter 6 Task Allocation

77

!

Xijei
i=1

n

" # hj for 0 < j $ m
(15)

!

Xijqi
i=1

n

" # gj for 0 < j $ m
(16)

!

1=" Xijpi
i=1

n

,tj

$

%

&
&
&

'

(

)
)
)
 for 0 < j * m

(17)

!

 1 = " X
ij
u
i

i=1

n

,o
j

$

%

&
&

'

(

)
) for 0 < j * m

(18)

Equation 13 represents the availability constraint. Equation 14 represents the

bandwidth constraint between all processes allocated on nodes j,k. Equations 15

and 16 represent memory and cpu requirements respectively, while 17 and 18

represent the subtasks’ location and hardware requirements.

As mentioned above, the optimal mapping problem is NP complete. Future work

will investigate different heuristics for mapping. Further, this is a static

formulation of the problem whereas in a real system the number and type of

applications and services executing on the network is dynamic. Other future

work includes evaluating mapping cost and performance trade-offs for partial

vs. complete remapping when either the underlying sensor network or the

applications change. In addition, because duty-cycling to save power is such an

important part of sensor network operation, the computation constraint will

contain a duty-cycle field as well.

Chapter 6 Task Allocation

78

This research focuses on assigning tasks to processors. It does not deal with

scheduling multiple tasks on a single processor once they have been assigned.

There are however, many different optimal algorithms for doing this. For

example, generalized processor sharing (GPS) [57] with earliest deadline first.

GPS is well suited here, because in the task description it already specifies a rate

of processing required for each task.

6.2 Related work

Mapping has been extensively studied. First in the context of mapping multiple

processes onto a single processor and then later in the context of mapping

processes onto distributed networked systems. There are many different metrics

for which task allocation can be optimized, e.g. execution time, task

communication, system reliability or load balancing. This thesis considers task

communication and system reliability as metrics to evaluate the task allocation

algorithms.

The typical formulation is as follows: Given a set of partially ordered

communicating tasks T and a set of interconnected processors P, each with pi

processing resources, define a mapping of processes to processors that minimizes

cost. The typical cost model is minimizing execution time on the processors

(processes take different amounts of time to run on the processors depending on

their load and cpu power). Alternatively, the communication cost may be

Chapter 6 Task Allocation

79

minimized (number of messages related to where the communicating tasks are

allocated), or reliability may be maximized (by replicating processes or allocating

them to more reliable processors). For a graph formulation, the set of tasks are

given as a task graph T = (V1, E1) where the edges represent the amount of

communication required between tasks. The set of processors are given as a

processor graph P = (V2, E2) where the edges represent the bandwidth of the

links between processors. A valid allocation then finds a weak homomorphism

from T to P, that is, T is weakly homomorphic to P if there exists a mapping such

that if an edge (a, b) → E1, then edge (M(a),M(b)) → E2.

Optimal task allocation is NP-complete for any of these metrics. Thus, heuristic

algorithms have been extensively studied since the early 70’s [58]. These

algorithms have largely been designed to operate in traditional networked

environments, with high bandwidth connections and reliable nodes. Typical

solutions utilize heuristics such as dynamic programming, genetic search

algorithms, graph embedding techniques, and micro-economic approaches. [59]

gives a detailed overview of various mapping solutions.

This research draws from the graph search method to construct a greedy

mapping solution as well as taking the TASK algorithm presented in [60]. For the

last algorithm, a micro-economic resource mapping approach is combined with a

genetic search algorithm. Existing micro-economic algorithms outline bidding

functions and strategies for which the market will reach a fair equilibrium.

Chapter 6 Task Allocation

80

However, they do not specifying how much value the bidder should actually

place on one resource compared to another. The genetic search algorithm solves

the problem of determining values for resources by searching through the

solution space and coming up with fitness values for a set of different allocations.

A side result of the genetic algorithm is it searches through many different

allocations, thus if the bidder cannot obtain the best choice resource because

there is contention, it has other options. The three chosen algorithms are

presented next.

6.3 Allocation Algorithms

6.3.1 Greedy Spanning Tree

This algorithm finds a feasible mapping by greedy allocation. Tasks are allocated

independently, and there is no contention mechanism. That is, if task A is taking

up a resource that task B values more, the resource is not reallocated to task B.

Every task that is allocated has a single agent that allocates the entire task. The

algorithm takes a task graph as input, and allocates submodules of the task

similar to how a spanning tree is built in Prim’s algorithm [60]. Prim’s algorithm

works as follows: Given a graph G = (V, E), take the edge with the minimum cost

and put that edge in the spanning tree, place the two nodes that it connects in V’.

Repeat the minimum cost edge selection until all vertices in V are in V’. The

Chapter 6 Task Allocation

81

greedy algorithm chooses edges in the same way, however, it does not remove

vertices from the task graph, as all edges in T must be mapped to P.

The greedy task allocation algorithm will choose the first two tasks t1, t2, in the

task graph T with the highest inter-communication rate. It will then allocate these

tasks as close to each other as possible in the processor graph P to minimize

communication cost. The mapping must be feasible, that is, all other constraints

must be met. The link between t1 and t2 is then removed from the task graph T.

Next, the algorithm will choose two tasks linked with the highest remaining

communication cost, and allocate these. If one, or both, of the modules are

already allocated to processors, the algorithm simply allocates the remaining task

or finds the minimum communication path in P. As a slight modification, when

the algorithm is allocating two tasks t1 and t2, the communication cost between t1,

t2 and other previously allocated nodes will be taken into account.

The allocation at each step is now reduced to allocating at most 2 tasks.

However, if all possibilities are enumerated, this could still lead to 0(n2e2), where

n is the number of vertices in P, and e2 is the number of edges in P. This is

because there are at worst n(n-1) locations for the two tasks, and once a task is

assigned to a location the best communication path between the two nodes must

be established. This allocation of two tasks may also take place at worst m-1

times. The allocation will instead follow a set of heuristics even for two nodes.

First, the algorithm will evaluate the cost if the two nodes are allocated on the

Chapter 6 Task Allocation

82

same processor. The two tasks will be allocated as follows: scan all processors in

P to determine if the two tasks can be co-located. If the tasks communicate with

other tasks that are already allocated, choose the processor that minimizes the

communication cost to these nodes. If the two tasks cannot be allocated on the

same processor, do a gradient-based local search. In the gradient-based local

search, assign the two tasks randomly to two processors. Take turns examining

each task. When a task is examined, randomly choose another processor and

evaluate whether swapping the task to this processor would improve the cost. If

it does, move the task, if it does not, leave the task where it is, and look at the

second task. If the allocation has not improved more than δ in the last k iterations

of swapping, the allocation is done.

Given: processor graph P=(v2, e2), a process graph T=(v1, e1) where v1 is a list of
tasks and e1 is a list of edges, each edge connects two tasks.

sortEdgesByCost(e1)

while there are edges in e1

 edge = e1.pop_front()

 task 1 := getFirstTask(edge)

 task 2 = getSecondTask(edge)

 if (MapOnTheSameNode(task1, task2, edge.bandwidth)) {

 continue;

 }

 mapTask(task 1)

 mapTask(task 2)

 iter := 0

Chapter 6 Task Allocation

83

 do

 t := task1 or task 2 in order

 improve = swapProcessors (t)

 if (improve < delta) /* calculate # of iterations without improvement */

 iter++

 if iter > k

 goto end

 end do loop

end – when all edges are scheduled

Table 10: Pseudo code for the greedy algorithm.

6.3.2 TASK Algorithm: Local Search for Graph Assignment

This algorithm is taken from [61]. The algorithm constructs a list of the highest

cost nodes and then evaluates if moving them to new positions will improve the

task allocation cost. [61] defines several terms:

• Entry node where data is created (enters the task graph)

• Exit node where data is consumed (exits the task graph)

• Weight of a node w(ni) is the cost to execute task ni

• tlevel(ni) the largest sum of communication and computation costs at the top

level of a node ni (from an entry node to ni) excluding its own weight w(ni)

• blevel(ni) the largest sum of communication and computation costs at the

bottom level of node ni, (from ni to an exit node)

• CP The critical path is the longest path in the task graph, that is, the path with

the highest communication & processing requirements

Chapter 6 Task Allocation

84

•

!

L(ni) = tlevel(ni) + blevel(ni)

LCP =max{L(ni)}

If the graph has been scheduled

• pe(ni) is the processor that task ni is scheduled on

• p(ni) is the predecessor node that has been scheduled immediately before

node ni on pe(ni). If no other node has been scheduled on processor pe(ni) then

p(ni) is set to 0

• s(ni) is the successor node that has been scheduled immediately after ni on

pe(ni)

The TASK algorithm starts from an initial, feasible schedule. It guarantees for

each step thereafter that the allocation either improves or stays at least as good.

The initial allocation marks every edge in the task graph T unvisited. In addition,

if two tasks are scheduled on the same processor, a pseudo edge of weight 0 is

inserted between the two tasks, this creates a modified graph T’. There is also a

variable called nextk for each processor k, and it points to the next task scheduled

on processor k that has not yet been visited by the local search algorithm. Initially

nextk points to the first node scheduled on k. A node is ready to be visited by the

search algorithm if all its parents in T’ have been inspected.

The Task algorithm is described in pseudo code given below.

Chapter 6 Task Allocation

85

Given: an initial schedule of nodes in the task graph T=(v1, e1) onto processors in
the processor graph P=(v2, e2)
Find LCP and each node ni ∈ LCP

while there are nodes to be scheduled:

 ni := a node in LCP that is ready
 find Lt(ni) where
 Lt(ni) = min{k ∈ v2}Lk(ni) = tlevel(ni)+blevel(ni)
 (node i is feasibly scheduled on processor k)
 if (t == pe(ni))
 do nothing
 else
 move node ni from processor pe(ni) to t
 modify pseudo edges in T’
 propate tlevel of ni to its children
 end
 mark node ni as scheduled
end – when all nodes are scheduled

Table 11: Pseudo-code for the TASK algorithm.

The complexity of the algorithm is 0(e + mn), where e is the number of edges in T,

m is the number of nodes, and n is the number of processors.

The initial allocation will be a greedy allocation that starts by allocating all entry

nodes first. Then non-entry nodes whose’ parents have been allocated, are

allocated. Each allocated is made so as to minimize the communication cost

previously allocated nodes. When a single node is allocated the best allocation

can be found by exhaustive search. The communication cost to already allocated

nodes is found via the iterative deepening depth-first search algorithm [62].

Chapter 6 Task Allocation

86

The basic TASK algorithm does not deal with multiple processes or contention.

This paper proposes a modification to TASK, where the individual processes are

combined to form a larger graph for TASK to map. When a process is allocated,

first execute TASK on the individual process. Consider this as an initial

allocation of all sub-tasks on the sensor network and mark all edges and nodes

unvisited. Then perform TASK on the super-set of processes. Note, insert pseudo

edges between sub-tasks allocated on the same processors, even if the two sub-

tasks do not belong to the same process.

6.3.3 Genetic Search Algorithm Combined with a Bidding Market
Protocol

The third algorithm applies a genetic algorithm solution presented in [63]. The

genetic algorithm finds the best heuristic mapping for a single process. The

results of the genetic algorithm are combined with a market protocol algorithm.

The market protocol manages contention between processes by allowing

multiple processes to bid for a resource in a decentralized fashion.

Each process has an agent that executes the genetic search algorithm on its

behalf. The genetic portion of the algorithm is not decentralized. This is not a

large drawback for the scheme, because the genetic algorithm is only centralized

for an individual process, and it is still decentralized with respect to other

processes that are being mapped simultaneously. The task allocation (bidding) is

decentralized. The genetic search algorithm probabilistically searches and

Chapter 6 Task Allocation

87

evaluates a set of solutions. Thus, it not only provides the best heuristic solution,

but also searches through others that may be nearly as good. When a process

cannot obtain a resource from its best choice by bidding, the process will try its

next best alternative, which is given by the genetic algorithm.

The genetic algorithm works as follows: Choose a population size Np and a

number of generations Ng. Then build the first chromosome according to task

priority. A chromosome, in this context, is just an ordered list of sub-tasks. The

task priority is given by the sum of communication costs in and out of the task.

The first chromosome is then randomly perturbed until a population size of Np is

reached. This is the first generation. To create the next generation, apply the

mapping heuristic to generate a solution for each chromosome in the population.

Save the mapping solution and cost. Calculate the cost and fitness of each

chromosome, and apply crossover and mutation to the fittest chromosomes to

form a new population. This occurs for Ng generations. When the algorithm

terminates, the k best solutions can be obtained by taking the mapped solution

for the k fittest chromosomes.

The mapping heuristic in [63] considers only computation cost. Thus, the

mapping heuristic used in this paper is adapted to consider communication cost.

The mapping heuristic, given a chromosome x, is as follows: Allocate nodes in

the priority order of the chromosome x. Each node is allocated to minimize the

communication cost to those already allocated. As described for the Greedy

Chapter 6 Task Allocation

88

algorithm, the best allocation can be found by exhaustive search, where each

processor is tried, and the communication cost (cheapest path to already allocate

nodes) is found via the iterative deepening depth-first search algorithm.

The fitness of each x chromosome is given:

!

f (x) =
(MaxCost " cos t(x))

t

(MaxCost " cos t(j))
t

j=1

Np

#

where MaxCost is the communication and computation cost of the worst

chromosome’s mapping, and cost(x) is the cost of chromosome x’s mapping. t is

a fitness scaling parameter that balances convergence and diversity. In this case t

is set to 3.

After each step, chromosomes for the next generation are created via crossover

and mutation. In [63] a one-point crossover is applied when the priority values

immediately to the right of a randomly selected cross-site are swapped between

two mating chromosomes. Mutation occurs when the priority of the site is

randomly perturbed. Chromosomes are selected for crossover or mutation

probabilistically according to their fitness value. The probability of a

chromosome being selected is

!

f (x)

f (j)
j=1

Np

"
. This means that chromosomes with

higher fitness values contribute more to the next generation. Crossover and

mutation are done Nc and Nm times such that Nc + Nm = Np. In this case Nc = 2⋅Nm

Chapter 6 Task Allocation

89

which means that 2/3 of replications are crossovers and 1/3 are mutations. After

nodes have selected their k best solutions, they bid on those solutions. The

solution they bid on contains a bundle of resources. Thus, combinatorial auctions

must be held to obtain the bundles of goods. A combinatorial auction allows

bidders to submit a single bid for a bundle of items. Winner selection in

combinatorial auctions is also NP-hard. The solutions to combinatorial problems

are typically centralized and require bidders to submit bids for all combinations

of items [64]. However, [65] proposes an iterative solution to the combinatorial

auction, where the auctioneer will iteratively raise the price of a contended good.

Iterative auctions are more vulnerable to bidder manipulation and collusion.

However, for the purposes of this work, agents will not price anticipate or delay

their bidding.

At each iteration r, the price λrp of a contended good p is adjusted so that:

!

"p
r + 1

= max{0, "p
r

+ s dip
i=1

M

$1}

Where dip = 1 if process i bids on resource p and s is a step-size parameter. The

agents who bid on behalf of a process determine their bids by taking the

normalized difference in cost between the k best solutions. If an agent is bidding

on solution i out of k, the bid value is

!

cos t(j +1) " cos t(j)

cos t(j)
j= i

k"1

+1. During the

iterative bidding process, agents may raise their bidding price by s at each step

Chapter 6 Task Allocation

90

(up to a maximum of d⋅s) if the contended resource appears in d of a process’s k

best solutions.

6.4 Simulation Setup

The Omnet++ [54] network simulator was used for this work. For the lower

layers, a standard fading channel was used with an Aloha MAC (both of these

are provided by the mobility framework). At the network layer, geographic

routing and addressing was used.

The simulation consists of 400 nodes randomly placed in a 1000m x 800m

rectangle. The nodes have a radio range of approximately 150m. The network is

heterogeneous, featuring nodes with 3 amounts of availability: 99.9%, 95% and

80% availability. Processing power, dynamic memory and bandwidth are

randomly assigned to nodes. In this model, bandwidth is assigned to individual

nodes, and can be used either to send or receive. When two nodes are

communicating at rate k the remaining bandwidth decreases by k. This is just a

high-level model and not meant to represent underlying medium access routines

(TMDA, CDMA etc.). The nodes are also assigned to one of ten locations based

on their coordinates within the square.

When a node is available, it wakes up every unit of time and decides with

probability 0.01 to instantiate a new process with a random lifetime. The time

step, process lifetime and probability were adjusted so that on average there

Chapter 6 Task Allocation

91

were 20 tasks mapped on the network at a time. The simulations generated a

total of 300 tasks to be mapped on the network.

Tasks are also randomly generated. First the number of tasks is randomly

selected from a uniform distribution of 4 to 14 tasks. Next, each task is randomly

assigned memory, processing and availability constraints. Each task is assigned

an availability that is uniformly selected between 50-90%. These tasks may not be

assigned on nodes with availability less than their requirements. Then, the task’s

connectivity is decided. On creation, a task communicates with any other

previously existing task with probability 0.1. If tasks do communicate, the

required bandwidth is randomly selected from a uniform distribution. Once this

random assignment is complete, the tasks are divided into two groups:

connected, and disconnected; and edges or random bandwidth are inserted until

the disconnected group is empty.

For the second algorithm, there is a periodic adjustment of all tasks every 30 time

units. For the third algorithm, genetic search and bidding, agents receive bids

asynchronously; an agent will wait at least 2 time units before allocating

resources to a bidder. Once a resource has been allocated, it cannot be reallocated

for another 10 time units. However, if an agent receives a higher bid for the

resource after 10 time units, it is free to reallocate it to the next highest bidder.

The algorithms were also modified to map processes incrementally. The mapper

first scans the network to see if any sub-task in the process is already running on

Chapter 6 Task Allocation

92

the network (as part of another process). If a task is found, it is marked as

allocated. These allocated tasks are “fixed points” in the allocation algorithms.

Their only constraint is to then allocate the other tasks that communicate with

the fixed tasks.

In order to evaluate the performance of the algorithms, they were compared to

the optimal algorithm. The optimal algorithm was implemented as an exhaustive

search and took prohibitively long to simulate. Thus, in order to compare

performance, the optimal algorithm was simulated on a smaller network of 80

nodes with only 4 locations. For the optimal comparison, only three processes

were created and mapped, one with 4 tasks, 9 tasks and 14 tasks respectively.

Last, a regular topology is used as a control. In a regular topology it is possible to

easily calculate the optimal allocation; all 800 nodes are placed on a grid, there

are still 10 rectangular locations or regions, and the nodes all have the same

computation, communication, and memory capabilities. The regular topology

illustrates the differences between the algorithms and how close they come to the

optimal. The two task descriptions, shown in Figure 10, are used. Figure 10

shows the location constraints of the tasks as well as the communication rate

between subtasks (labeled on the edges). Tasks A, B, and C are restricted to

location 1 while tasks D and E are restricted to location 2. The two tasks in Figure

10 differ only in the communication cost of two links. This was chosen to

illustrate its impact on the mapping algorithms. Moreover, location 1 and 2 are

Chapter 6 Task Allocation

93

adjacent to each other and the node capabilities are sized so that three tasks can

fit onto a single node. The optimal solution is then to allocate tasks A, B, and C

onto a single node that is within 1 hop from nodes in location 2, and to allocate

tasks D and E on a node in location 2 that is one hop away from the node on

which Tasks A, B, and C are allocated.

Figure 10: Two task descriptions.

The key to mapping these tasks efficiently is mapping tasks C and D on the

border between location 1 and 2. The three algorithms map tasks differently.

Take the greedy algorithm, for configuration 1, it will map tasks D and E first

Chapter 6 Task Allocation

94

because they have the largest communication link connecting them. These tasks

can be mapped on any node in location 2 and are not guaranteed to be mapped

near location 1. Therefore when task C is mapped it may incur additional cost to

transport data to wherever E and D are. However, in configuration 2, the link

between C and D is the largest and therefore tasks C and D are mapped first. The

algorithm will place them one hop apart and the remaining tasks will be placed

on the same nodes. For the second configuration the greedy algorithm will get

the same result as the optimal algorithm.

The TASK and genetic search algorithms map each task independently. For the

TASK algorithm there is only one initial mapping. In configuration 1 task D is

mapped first; and in configuration 2 task C is mapped first. The performance of

the algorithm relies on the chance that a node close to the border of regions 1 and

2 is chosen in for the initial task mapping. For the initial task that is mapped, all

nodes in a region appear equal because there are no communication constraints.

This is is also similar for the genetic algorithm, but it switches task mapping

order and tries more combinations. Thus, it has a larger chance of picking a node

close to the border for tasks C and D.

6.5 Results

The first results show the cost of mapping processes shown in Figure 10 onto the

regular network. The genetic and bidding algorithm achieved the optimal

Chapter 6 Task Allocation

95

solution for configuration 1, and the greedy algorithm achieved the optimal

solution for configuration 2.

 Optimal Greedy Task Genetic + Bid

Configuration 1 3 12 9 3

Configuration 2 6 6 11 8

Table 12: Results of mapping two processes onto the regular grid network.

The next set of results examines the performance of the allocation algorithms,

comparing the resulting cost of the mapped processes. Figure 11 shows the

solution cost for each algorithm, including the optimal for the smaller simulation.

In this case, genetic and bidding algorithm’s cost is about 30% lower than the

greedy and TASK algorithms for the tasks that are mapped. The genetic search

and bidding algorithm performs within 5% of the optimal algorithm. On the

other hand, the greedy and the TASK algorithm have similar performance for the

smaller tasks’ mapping. However, the TASK algorithm performs slightly better

on the larger task’s mapping. Figure 12 shows the average mapped cost across all

tasks for the different algorithms. The cost has been normalized so that the

greedy cost is equal to one. The results in Figure 12 show a much smaller

performance increase of the genetic and bidding algorithm over the

greedy/TASK algorithms. Results show that the genetic algorithm produced

only 6% better mapped cost than the greedy algorithm. The difference between

the TASK and greedy algorithms are about the same; the task algorithm

outperformed the greedy algorithm by a small margin.

Chapter 6 Task Allocation

96

Figure 11: Mapped costs for 3 processes vs. different algorithms including optimal

exhaustive search.

One explanation for the difference in performance of the genetic and bidding

algorithm is when only three tasks were mapped, the tasks always obtained their

first choice. However, in the larger experiment, on average 20 tasks were

mapped onto the network simultaneously. Therefore, in the bidding stage,

processes could not always obtain the resources that comprised their first

choices, and had to settle for a less optimal mapping. Figure 13 shows the

percentage of times that nodes obtained their nth choices. 71% of times nodes

were able to obtain their first choice. However, in 9% of cases nodes could only

obtain their fourth choices.

Chapter 6 Task Allocation

97

Figure 12: Average mapped cost for tasks vs algorithm type.

Further, Figure 12 shows the average mapped cost for the incremental version of

the algorithms compared to the non-incremental cost. Contrary to intuition, the

incremental mapped cost is lower than when each task is allocated

independently of what is already on the network. The reason is that the mapping

is resource constrained and sharing resources frees up more resources for

subsequent mappings. These subsequent mappings are then more optimal.

Chapter 6 Task Allocation

98

Figure 13: Tasks' choice obtained in they genetic search + Bidding algorithm.

Figure 14 also shows the mapped cost for different algorithms, however, the

results are also categorized by process size, the number of tasks that a process

contains. Results are normalized to the cost of the greedy algorithm for 4 tasks.

For all algorithms, the cost increases monotonically with the number of tasks. For

the greedy algorithm, the cost of mapping increases 4 times as the number of

tasks go from 4 to 9 and then doubles when the number of tasks increase from 9

to 14. Again the genetic and bidding algorithm outperforms the other two

algorithms. However, the difference is less for small tasks because there are

fewer degrees of freedom, so the additional searching and mapping yields fewer

results

Chapter 6 Task Allocation

99

Figure 14: Average mapped cost for application sizes vs algorithm type.

The TASK algorithm actually performs worse than the greedy algorithm for the

extreme processes – those with a small or large number of tasks, but performs

better for the average processes. This is most likely because it maps the node

with the highest bandwidth by itself first. That node has high-bandwidth links to

other nodes and if that node is mapped to a processor that cannot accommodate

the other nodes the high bandwidth works against it. The greedy algorithm

prevents this problem by mapping high bandwidth links (i.e. two tasks at a time)

first, while the genetic search searches through multiple mapping orders to avoid

this problem.

The performance difference can also be seen by looking at the number of tasks

that are mapped on the same processor. Figure 15 shows a histogram of tasks

mapped together for processes containing 9 tasks. The histograms show on

average how many times processors contained a single task, 2 tasks and 3+ tasks.

Chapter 6 Task Allocation

100

Note, on average, 4 tasks were mapped to a processor less than 0.01 times per

mapping, and 5 tasks were never mapped to a single processor.

Figure 15: 3 Histograms of the number of times tasks were mapped n to a processor.

From Figure 15 it can be seen that it is more common to have tasks mapped

alone, out of 9 tasks, an average of 5 are mapped alone across all algorithms.

However, the genetic algorithm and bidding performs better than the other two

because it has the lowest single task per processor and the highest 3+ tasks per

processor. On the other hand, the greedy algorithm has a higher rate of

grouping tasks together than the TASK algorithm. The greedy algorithm tries to

map tasks together more aggressively, however, the performance of the two

algorithms was close, so it stands to reason that the greedy algorithm could not

find a good mapping for the tasks it could not group together.

Chapter 6 Task Allocation

101

The next set of results show the complexity of the mapping algorithms. The

complexity has been normalized so that the complexity of the non-incremental

greedy algorithm is one. The complexity was calculated by summing the number

of processors that the algorithm considered when placing each task. Figure 16

shows the mapping complexity for each algorithm. As expected, the incremental

algorithms have lower computation complexity than their corresponding non-

incremental versions. This is because some tasks are fixed and the problem

effectively becomes smaller. The TASK algorithm incurred additional

computation cost during its adjustment phase every 30 time units.

Figure 16: Mapping complexity vs algorithm type.

The greedy algorithm is the least complex, the TASK algorithm is about four

times more complex and the genetic algorithm is 12 times more complex because

it evaluates 9 mappings for each process (3 generations and a population size of

Chapter 6 Task Allocation

102

3). These ratios are the same for both the incremental and non-incremental

algorithms respectively. The mapping complexity does not cost the sensor

network energy in terms of communication cost, however, the 12 times overhead

for the genetic algorithm only yields a 6% improvement in mapped cost.

Figure 17 shows the initial mapping complexity for the three algorithms for

different task sizes. The re-computation cost is not included per process because

it is done for all tasks together. The computation complexity grows super-

linearly; the complexity difference to map a process with 14 tasks is about 10

times more than to map one with 4 tasks.

Figure 17: Mapping complexity for different task sizes vs algorithm type.

Unlike the greedy algorithm, the TASK and genetic search algorithms incurred

other overhead during the course of the simulation. The TASK algorithm did

Chapter 6 Task Allocation

103

adjustments every 30 time units. The genetic and bidding algorithm incurred

additional costs due to the fact that processes’ agents had to bid on resources and

had to re-bid if they did not obtain their first choice. Agents could also lose a

resource that had been allocated to them, in which case they would have to re-

bid for other resources. Table 13 shows the number of processes that were moved

from their original allocation during execution, the cost of moving the process,

and the cost of any additional bids to obtain the new resources.

Algorithm Proc moved Cost to move Cost of add bids
Task 30 20 0
Gen+Bid 10 10 102

Table 13: Additional communication costs incurred during simulation.

The cost to move the process was normalized to the cost that it would take on

average to map a process. For the TASK algorithm, 30 processes were moved at a

cost of normally allocating 20 processes. The cost to move a process is lower,

because during the adjustment only a few tasks of a process are moved. For the

genetic and bidding algorithm, the cost to move the process is equal to the cost of

mapping a process from scratch. In terms of the total overhead added by moving

tasks, bidding adds a 10% overhead (considering that mapping 200 processes

would normally incur 200 in normalized cost) and TASK adds a 20% overhead.

The genetic and bidding algorithm adds additional overhead even if no tasks are

moved, because processes do not always obtain their first choice. The process

needs to resubmit bids for its second through fourth choices. The last column in

Chapter 6 Task Allocation

104

Table 13 shows the overhead for all additional bidding. This overhead is

significant at 51% of the cost to map a task. Last, in the bidding and genetic

algorithm, the process is not mapped immediately. On average it took 2.6 units

of time for a process to be mapped.

6.6 Discussion

This chapter presented a formal problem definition for the file allocation

problem. Three algorithms were presented and empirically compared. The

algorithms mapped each task independently, or followed an incremental

approach where sub-tasks were shared across processes. The incremental

approach yielded a lower mapped cost for all algorithms because it freed up

more resources in the network. The incremental approach also had lower

computation complexity. Out of the three algorithms the genetic search and

bidding algorithm performs the best. However, it only yielded a 6% performance

increase while adding a 61% communication overhead and a 12x computation

complexity increase. In addition, the bidding algorithm also introduces a delay

before the process is mapped onto the network. Due to the excessive overhead of

the bidding algorithm, it may not be appropriate in the sensor network context

where low complexity is very important.

The TASK algorithm performed only marginally better than the greedy

algorithm (one percent) while still adding 20% communication overhead and 4x

Chapter 6 Task Allocation

105

complexity. Thus, for sensor networks the greedy algorithm was the best in

terms of a performance vs. overhead tradeoff.

Chapter 7 SNSP TinyOS Implementation

106

7 SNSP TinyOS Implementation

This section outlines the implementation that was done on two mote platforms.

The final goal of the implementation was to build a proof-of concept SNSP

platform and take measurements to evaluate the performance of the content

replication service and task allocation service. The remainder of this chapter is

organized as follows: Sections 7.1 gives an introduction to the demo and the

process of building it. Sections 7.2 through 7.4 give a more detailed overview of

the network hardware, applications, persona and the gui. Section 7.6 presents

measurements that were taken from the testbed and Section 7.7 concludes with a

discussion.

7.1 Creating the Implementation Scenario

There are two important aspects of SNSP that the implementation must

demonstrate: First the multi-platform aspect of SNSP showing applications that

Chapter 7 SNSP TinyOS Implementation

107

are agnostic to the hardware platform and can communicate cross-platform. The

second is the dynamic mapping and content replication outlined in chapters 5

and 6. As such the implementation occurred in two phases. The first phase, a

complete application with the requisite sensors and actuators, was implemented.

It consisted of both Mica2 [66] and Telosb nodes [67]. Initially, all content was

stored on the laptop that formed the bridge between the Telosb and Mica2

networks. The implementation had no dynamic mapping. The initial applications

on the testbed were fire alarm control and HVAC control (thermostat) with

demand response [68]. Demand response (DR) is fully explained in Section 7.3.1.

These applications also incorporated persona. Figure 20 shows a picture of the

initial hardware used, while Figure 22 shows the application GUI, which

demonstrates the active applications and the persona on the testbed. Details

about the hardware and the GUI are discussed in Sections 7.2 and 7.5.

Phase 1 was then augmented with the content management and replication

algorithm, described in Section 5.3.2, and the greedy dynamic mapping scheme,

described in Section 6.3.1. In order to make the mapped applications more

interesting, several virtual sensors and actuators were added to the testbed. The

node pretends it has a sensor or actuator attached to it and registers this

information with the content repository service so it can be used by other

applications. This allowed the testbed to support a wider variety of applications

for mapping.

Chapter 7 SNSP TinyOS Implementation

108

7.2 Testbed Setup

7.2.1 Hardware

The testbed consisted of 40 nodes, 31 Telosb nodes and 9 Mica2 nodes. The Mica2

nodes are older generation nodes made by Crossbow. Figure 18 shows an image

of the Mica2 mote. The Mica2 mote is typically powered by 2 AA batteries, and

can tolerate a voltage range of 2.7-3.3V. There is also an external power

connector. It has a 51 Hirose connector that connects to an expansion board (also

made by crossbow). This expansion board allows one to connect sensors and

actuators to the analog to digital (ADC) converter channels of the mote. The

Mica2 has a 10-bit ADC that has 8 channels with 0-3V input.

Figure 18: Annotated Mica2 mote (taken from [66])

The Mica2 uses the Chipcon CC1000 (see [69] for data sheets), FSK modulated

radio and can come in three models according to their RF frequency band: the

MPR400 (915 MHz), MPR410 (433 MHz), and MPR420 (315 MHz). The 915MHz

Chapter 7 SNSP TinyOS Implementation

109

model was used in the testbed. The microcontroller is an Atmega128L micro-

controller. In order to program the Mica2, an additional board is required. For

the testbed, the MIB510 Serial Interface Board [70] was used, which allows

programming over the parallel port, as well as communication with the mote

over the serial port during operation. The Mica2 has 128k bytes of program

memory, 512Kb of external flash storage for data, and 4Kb of RAM.

Telosb, the second platform that is used in the testbed is made by Moteiv [67].

Figure 19 shows a detailed view both the back and front sides of a Telosb node.

The Telosb nodes use a 250kbps 2.4GHz IEEE 802.15.4 Chipcon Wireless

Transceiver (see [69] for features and usage). The node may be powered by two

AA batteries in the operating range of 2.1 to 3.6V DC. The Telosb node has a USB

port for programming or communication. Tmote Sky uses a USB controller from

FTDI to communicate with the host computer. In order to communicate with the

mote, the FTDI drivers [71] must be installed on the host. FTDI provides drivers

for Windows, Linux, BSD, Macintosh, and Windows CE. The Telosb node also

receives power from the USB port.

The microcontroller is a Texas Instruments MSP430 F1611 microcontroller

featuring 10kB of RAM, 48kB of flash, and 128B of information storage. The node

has 1024kB of external flash to store data, 8 external ADC ports and 8 internal

ADC ports. The ADC internal ports may be used to read the internal thermistor

or monitor the battery voltage. Tmote Sky has two expansion connectors, a 10-

Chapter 7 SNSP TinyOS Implementation

110

pin IDC header and a 6-pin IDC header, for connecting peripherals. The

connectors provide digital input and output signals as well as and analog inputs.

Figure 19: TelosB mote (taken from [67])

Figure 20 shows the components used in the first implementation of the testbed.

The laptops are used as display, the TelosB and Mica2 nodes are either visible by

themselves, or in enclosures connected to peripherals. The smart thermostat

Chapter 7 SNSP TinyOS Implementation

111

(black box with two knobs in Figure 20) contains two Mica2 nodes that are

connected to the rotating potentiometers via GPIO pins. The fan is turned on and

off by another Mica2 node connected to a digital switch in the blue box.

Figure 21 shows the expanded testbed of 30 Telosb motes on which the

application mapping was tested. This time the nodes are all wired together with

USB that provides power to them. All communication is wireless. It should also

be noted that the nodes are all within one communication hop from each other.

Figure 20: Testbed with HVAC control and DR that bridges Mica2 and TelosB nodes.

Chapter 7 SNSP TinyOS Implementation

112

Figure 21: 31-Node testbed, powered via USB & batteries.

7.2.2 Location and Connectivity

While the nodes are all close to each other in the lab, the testbed is situated in a

virtual house with 8 rooms. The layout of the house is reflected in the GUI,

which is shown in Figure 22. The connectivity was artificially restricted so that

only adjacent rooms could communicate with each other. This resulted in a

maximum of four hops across the house. All addressing is done via location,

based on the semantic locations that are outlined by the application.

7.2.3 Sensors and actuators

Several real and virtual sensors were used in the testbed. First, the Telosb’s built-

in temperature sensor is used to measure temperature. Sensirion AG

Chapter 7 SNSP TinyOS Implementation

113

manufactures the sensor, more information can be found in the SHT1x datasheet

available at [72]. Second, the comfort and desired temperature sensors, which

comprise the smart thermostat, are rotating potentiometers that are attached to

an ADC pin on the Mica2 nodes. Virtual sensors include: indoor motion sensor

(achievable via light beams), door/window position sensors (achievable via

magnetic contacts), a smoke detector, and a price signal detector.

For the actuators, the HVAC can be switched on and off by a Mica2 mote. An

electro mechanical switch connected to a GPIO pin controls the current to the

fan. The switch takes 12V input and, in order to allow the 3V GPIO pin to switch

it on and off, a transitor switch is placed in front of it. The second actuator is a

board with three large LED’s, used to indicate the price electricity. These are

simply connected to the node’s GPIO pins. The third actuator is a fire alarm,

which consists of a buzzer connected to a node’s GPIO pins.

7.2.4 Content Replication & Capacity

As mentioned above, the probabilistic replication scheme was implemented. This

scheme will replicate the content with probability 1/p on any read. On a write,

all replicas are deleted with probability 1/√3p. In the implementation, the

content replication service has a single cluster head that keeps track of where the

data is replicated. This cluster head is located in the dining room of the house

and is reachable by all nodes. Every node can store up to 10 content items locally.

The content in the network is made up of the service descriptions that are

Chapter 7 SNSP TinyOS Implementation

114

accessed when tasks are mapped onto the network. There is a total of 60 content

items (determined by the services in the network).

7.2.5 Task Allocation

In the implementation, nodes in the network decide when to map applications.

When a node decides to map an application onto the network, it must first query

the content management service to find out where the other services are in the

network. When the node receives the information it runs the greedy algorithm to

decide where to place the tasks in the network.

7.3 Applications

There are 6 main applications that nodes can instantiate. A main application in

this case means that nothing else is using it as a service. The main applications

are: HVAC control (standard), HVAC control with DR, Home security, tracking

children, localization, and fire system control. The interaction of HVAC control

with DR is explained in Section 7.2.1, and Motetrack (a practical implementation

of localization [44]) is explained in Section 7.2.2. There are 4 other complex

services that these applications use. A complex service is one that uses other

services. The four complex services are: Perimeter security (uses door/window

sensors in different locations in the house), Internal security (uses some

door/window sensors and internal motion detector), DR display (controls

Chapter 7 SNSP TinyOS Implementation

115

aggregate of individual DR displays), and temperature aggregation (provides

average temperature from a number of rooms).

7.3.1 Demand Response and HVAC Control

In electricity grids, demand response (DR) refers to mechanisms to manage the

demand from customers in response to supply conditions. The goal of DR is to

smooth out the energy usage curve so that resources are not underutilized

during low times, and so that the peak usage does not spike so high that smaller,

less efficient plants need to be brought online to fill excess demand. Today,

typically only commercial and industrial users participate in DR, and user critical

peak shedding is usually achieved by calling customers a day ahead of time, this

is known as the day-ahead market. [73] explains the types of programs offered to

large customers.

However, the real potential of demand response is to bring it to all customers,

including residential customers. A 2006 Carnegie Mellon study [74] looked at the

importance of demand response for consumers for the Pennsylvania-New Jersey-

Maryland Regional Transmission authority. Results showed that even small

shifts in peak demand would have a large effect on costs for additional peak

capacity: a 1% shift in peak demand would result in savings of 3.9%, billions of

dollars at the system level. An approximately 10% reduction in peak demand

would result in systems savings up to $28 billion (this is just for Pennsylvania,

New Jersey and Maryland).

Chapter 7 SNSP TinyOS Implementation

116

Sensor network technology is promising to instrument the home so that real-time

pricing may be offered to residential customers. The particular flavor of demand-

response implemented on the testbed is one where the residence receives a price

signal every 15 minutes. The user indicates a comfort level of how much they are

willing to pay to be comfortable. Based on the comfort level, the sensor network

will adjust the heating and cooling in the house, in addition to turning on/off

other appliances. In the testbed, the sensor network controls a fan, and will also

turn on red, yellow, or green lights on appliances to indicate the price of

electricity to users. The threshold at which red, which means expensive, is

displayed depends on the comfort-level chosen by the user.

7.3.2 Motetrack Localization

Motetrack [44] is an RF localization algorithm developed by Harvard. There are

two types of nodes in Motetrack, beacons and the target node. The target node

must first be trained with the beacons before localization occurs. During the

training phase, the target beacon is moved around the area where localization is

to occur. At certain locations, it is given the coordinates and then collects a

signature of all the beacons’ rf transmissions at the given coordinates. The target

node in effect builds up a database of signatures at the different locations. After

the training phase the node is ready to enter the localization phase. During this

phase it tries to match the rf signature that it is currently receiving with ones in

its database. The estimated position is a mixture of the locations.

Chapter 7 SNSP TinyOS Implementation

117

The beacon nodes hop on a number of selected channels N and transmit a beacon

every 100ms. The target node also hops on these channels with a frequency of N ⋅

100ms, where N is the number of channels. This ensures that the target node

receives a message from every beacon on the target frequency. However, it also

ensures that the nodes cannot participate in a normal network for other

communication.

In order to adapt motetrack to work with SNSP, the nodes have to return to the

default channel to participate in the network. The beacon nodes are modified to

stay on the default channel until they need to transmit a beacon. Beacon nodes

then go to the specified channel, transmit the beacon and return to the default

channel. They also provide a radio interface to SNSP. SNSP can use the radio

interface to determine if the radio is busy (off the default channel) or not.

The target node needs to hop to all the frequencies that the beacons are being

transmitted on for a larger amount of time to receive all beacons. Because the

radio’s frequency switching is rather slow (>10ms), the target node instead does

50% duty cycling. This means that it stays on the default channel for N⋅100ms,

and then hops to the first channel and receives beacons on it for N⋅100ms. It

continues alternating between the default channel and the next beacon frequency

so that it cycles through all N beacon frequency channels. The target node also

exposes the radio interface to SNSP.

Chapter 7 SNSP TinyOS Implementation

118

The modified motetrack along with SNSP was deployed at Telecom Italia’s lab in

Berkeley. Measurements indicated an accuracy of ±2m in the office. With further

smoothing of measurements (when in a room the estimates will be in that room

90% of the time and 10% will be just outside) the accuracy could be improved.

However, motetrack’s performance was good enough to identify most of the

time whether the target was in one of the 7 offices, the conference room, the

kitchen, or the cubicle area.

7.4 Persona

The implementation included persona: there is a homeowner and a fire

department. In the implementation, a persona may have permissions and

properties. The third persona aspect, preferences, is not included in the

implementation. When a persona is present in a space, it registers with the

content management and repository service. Currently the persona sets its

permissions in the network. That is, it notifies both the content repository service

and the corresponding service in the network of any access restrictions. When

the content management and repository service is queried, it will return only the

results that a persona may access, i.e. results of services that have not been

restricted by another persona. Similarly, a service will only respond to a query

from a persona that has authorization to query. All services start out without any

authorization restrictions.

Chapter 7 SNSP TinyOS Implementation

119

7.5 Testbed User Interface

The User Interface is meant to visually demonstrate the activity in the network.

The UI consists of a GUI that shows all the services registered with the content

repository as well as the services that are active in the network. Figure 22 shows

a screenshot of the GUI. The top area displays the names and locations of

network services. The bottom portion shows the layout of the house. Services

pop up at their locations when they activate. Services are displayed as boxes and

personae are displayed as triangles. The boxes are color coordinated to show

permissions. In Figure 22 the box in bedroom 1 is red, indicating that it may be

accessed by only the fire department. In the first demonstration, all services

appear in the lower portion of the GUI (on the house map) and complex services

show a list of other services that they are using. In order to demonstrate dynamic

mapping, the GUI was modified so that only the complex services appear when

they are activated and disappear again as they are unmapped.

Chapter 7 SNSP TinyOS Implementation

120

Figure 22: GUI showing the house, repository services, and applications that are

mapped on the network.

7.6 Experiment

7.6.1 Setup

The testbed for the content management and task allocation experiment consists

of 31 TelosB nodes. Each node has an additional TinyOS module that wakes up

at 10 second intervals and then decides with probability 0.01 to instantiate one of

the applications. The module is provided with a list of 10 applications which it

Chapter 7 SNSP TinyOS Implementation

121

can instantiate and it chooses one randomly. The applications are composed of a

list of other services that communicate with each other. The module then queries

to repository to find out where the requisite/equivalent services are. As its local

middleware copy receives responses from the content management service it

decides with probability 0.1 to cache a local copy. The node may store up to 10

items locally. The module then sends activation messages to the services that it

has decided to use in the network.

The module also decides what the lifetime of the application is. The average

application lifetime is 40 seconds. These time constants were chosen so that the

experiment would map a reasonable number of applications in a short time.

Once an application has exceeded its lifetime, the original module that mapped

the application deactivates it, and each sub-service comprising the application.

Further, the experiments were conducted with two network configurations. In

the first configuration, the node capacity was assigned so that on average 2 tasks

(a maximum of three tasks on nodes with larger capacity) could be mapped onto

the same node. For the second configuration, an average of 3 tasks, and a

maximum of four, could be mapped onto the same node. Note that the sub-tasks

in the application all had the same CPU requirement.

As mentioned above, there is 60 total content items in the network. The

experiment ran for 85 minutes and in that time 517 applications were

successfully mapped onto the test network. Results regarding the performance of

Chapter 7 SNSP TinyOS Implementation

122

the content management and task allocations algorithms are collected every 8

minutes.

7.6.2 Results

The first set of results show the performance of the file allocation algorithm.

Table 14 shows the number of replicas in the network over time. The number of

replicas increases linearly as nodes access data remotely. At the end of the

experiment there are 186 replicas, which means that the network is roughly 2/3

full. As the number of replicas increase, nodes should find more information in

their local caches.

Time (min) Replicas
8 32

16 54
24 72
32 97
40 119
48 135
56 149
64 169
72 178
80 186

Table 14: Number of replicas as a function of time

The lower line in Figure 23 shows the proportion (between 0-1) of queries for

which results were found in the node’s local cache. This proportion increases

from 0.07 at the start to 0.44 at the end of the experiment. The cost of retrieving

content depends on how many results are found locally. The higher graph in

Figure 23 shows the average cost, in number of hops, to retrieve each content

Chapter 7 SNSP TinyOS Implementation

123

item (note, when content is found locally it has a cost of 0). The cost to find

results decreases from 1.7 hops to just under 0.9 hops.

Figure 23: Cost per content access and the proportion of content found replicated on

the actual node.

The time to map a process also depends on how many results are found locally.

This is because a remote result is found by first querying the cluster head, and

then the storage location in the content repository. Both of these steps are time

consuming. Figure 24 shows the average amount of time it takes to map a

process in milliseconds. This time includes finding and activating the relevant

services. There is a decrease in the amount of time required to map a process as

the number of replicas increases. The decrease in mapping time is steeper at the

Chapter 7 SNSP TinyOS Implementation

124

start, and then levels off. This is because there is a fixed amount of time to invoke

applications that remains unchanged by content management and replication.

Figure 24: Time to map a process in milliseconds.

The next set of results was collected somewhat accidentally. During the course of

one run, a microwave was turned on and off as students heated their lunches.

The microwave causes RF interference with the 2.4 GHz ZigBee radios. Figure 25

shows the effects of the interference on the time to map an application. The

microwave was turned about 50 minutes into the simulation. The time to map

increases drastically from 300ms to 700-900ms. This is because packets are lost

due to interference and nodes must retransmit the packets.

Chapter 7 SNSP TinyOS Implementation

125

Figure 25: Time to map with rf interference.

The task allocation cost is only compared across the two elements, higher and

lower CPU parameters, of the simulation. The task allocation performance

cannot be compared to the simulations conducted in Chapter 6. This is because

there are too many parameters in the test network that does not match those of

the simulations in Chapter 6, e.g. locations, number of nodes per location,

application structure with location constraints etc.

In the case of lower CPU availability per node, the mapping cost was 9% higher.

Figure 26 shows two histograms of how many times four, three, two and one

task respectively were mapped onto a single node. We see that for the lower CPU

case, many more tasks were mapped individually (average of 3). The number of

times 2 and 3 tasks were mapped together is about the same. However, where

Chapter 7 SNSP TinyOS Implementation

126

the higher CPU configuration wins, on average 0.23 times 4 sub-services were

mapped together, resulting in lower cost.

Figure 26: Histograms of the number of times tasks were mapped n to a node for the

two network configurations.

7.7 Discussion

This section presented a proof-of-concept implementation. Results showed that

the content management and replication algorithm helped reduce cost incurred

to access content and the time of task allocation. Further, real-world results

demonstrated that RF interference, in the form of a microwave, increases the

mapping time substantially.

Chapter 8 Conclusion

127

8 Conclusion

8.1 Summary

This dissertation presented SNSP, a distributed service-based operating system

for sensor networks. SNSP is a full-fledged operating system with memory

management, location transparency, and resource allocation. SNSP enables a

user to create modular code through services. Services separate the content of the

service from its implementation, and provide a clean set of functional

abstractions that can be re-used. Further, SNSP dynamically maps applications

onto the network at runtime to minimize communication cost between modules

in the application and to fulfill application constraints such as availability,

location and sensor/actuator requirements.

SNSP’s architecture is comprised of two types of services: OS-level services and

user-level services. OS-level services are 1) content management and replication,

Chapter 8 Conclusion

128

2) task allocation, 3) resource discovery & repository, 4) resource utilization

monitoring, 5) application migration, 6) fault detection and recovery, 7) security.

They form the core of SNSP. User-level services are modular applications written

by users that conform to the interface specified in Chapter 4. These services are

application-layer functionality that can be reused across sensor networks.

This dissertation also presented and compared two sets of algorithms to achieve

content management & replication and task allocation respectively. These

algorithms were evaluated through simulation. A proof-of-concept

implementation was also done on a sensor network testbed.

To summarize, the contributions of the thesis are:

• Identified and designed the core set of services for a distributed operating

system

• Devised a programming model that allows users to create applications that

are very flexible and can be run across different platforms.

• Created an integrated development environment (IDE) using Eclipse that

allows programmers create and compile their SNSP sensC and .serv code into

tinyOS code.

• Developed a novel file allocation algorithm that outperformed the two

algorithms selected for comparison in terms of cost to access data. However,

the algorithm’s replication cost (overhead) was higher, resulting in an overall

higher cost.

Chapter 8 Conclusion

129

• Developed two file allocation algorithms: 1) a greedy file allocation algorithm

based on Prim’s minimum spanning algorithm, 2) a hybrid genetic search and

combinatorial auction algorithm. These two algorithms were compared to the

optimal allocation (exhaustive search) as well as a third existing algorithm.

The hybrid algorithm outperformed the other two algorithms and came close

to the optimal allocation. However, its cost was more than 10 times that of the

greedy algorithm for only a 6% benefit.

• Proof of concept implementation of SNSP on a sensor network testbed. File

allocation time and data access cost measurements from the testbed

demonstrated the effectiveness in file replication to reduce both time and cost

of allocating tasks.

8.2 Future Perspectives

This dissertation has provided the basic SNSP framework and thoroughly

investigated two of its basic services. Although the other services were outlined,

a thorough treatment of them would provide a variety of continuing research

directions. For example, the implementation of security in SNSP is not specified

in this dissertation. A great deal of research can still be done on two aspects of

the security 1) its distributed nature and 2) low-power and low-complexity

requirements. A low-overhead mechanism for fault detection and recovery may

provide another research direction.

Chapter 8 Conclusion

130

Further, the implementation was done on TinyOS, which does not support

dynamically loadable code modules. Therefore, code was not

transported/interpreted in the network, but simply activated. For a full SNSP

implementation, further research is needed into devising a very compact code

representation to reduce the overhead when a task is mapped.

Bibliography

131

Bibliography

[1] IEEE 1451 http://ieee1451.nist.gov/

[2] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, I. Stoica “A
Unifying Link Abstraction for Wireless Sensor Networks” in Proc. of the Third
ACM Conference on Embedded Networked Sensor Systems (SenSys), Nov 2-4,
2005.

[3] J. van Greunen and Jan Rabaey, “Content Management and Replication in
the SNSP: a Distributed Service-based OS for Sensor Networks”, CCNC 2008,
Las Vegas USA.

[4] A. Boulis, C.-C. Han, and M. B. Srivastava, “Design and Implementation of a
Framework for Efficient and Programmable Sensor Networks”, ACM
MobiSys, San Francisco, 2003

[5] W. Weber, J. Rabaey, E. Aarts, “Ambient Intelligence”, Springer Verlag,2005

[6] M. Demirbas and A. Arora and M. Gouda “A pursuer-evader game for
sensor networks” Sixth Symposium on SelfStabilizing Systems (SSS'03), pp. 1-
16, 2003.

[7] S. D. Gribble, G. S. Manku, D. S. Roselli, E. A. Brewer, T. J. Gibson and E. L.
Miller, “Self-Similarity in File Systems", in Measurement and Modeling of
Computer Systems, pp. 141-150, 1998

[8] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D.
Gay, J. Hill, M. Welsh, E. Brewer, D. Culler “TinyOS: An Operating System

Bibliography

132

for Wireless Sensor Networks” Ambient Intelligence edited by W Weber, J
Rabaey, and E Aarts 2005.

[9] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. “The
nesC Language: A Holistic Approach to Networked Embedded Systems”, in
Proc. of Programming Language Design and Implementation (PLDI), June 2003

[10] Beutel nodes

[11] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C.
Gruenwald, A. Torgerson, R. Han, "MANTIS OS: An Embedded
Multithreaded Operating System for Wireless Micro Sensor Platforms,"
ACM/Kluwer Mobile Networks & Applications (MONET), Special Issue on
Wireless Sensor Networks, vol. 10, no. 4, pp. 563-579, August 2005.

[12] C. Han, R. K. Rengaswamy, R. Shea, E. Kohler and M. Srivastava, “SOS: A
dynamic operating system for sensor networks,” in Proc. of the Third
International Conference on Mobile Systems, Applications, And Services (Mobisys),
2005.

[13] S. Madden, M. J. Franklin, J. M. Hellerstein and W. Hong. “TinyDB: An
Acqusitional Query Processing System for Sensor Networks,” ACM TODS,
2005

[14] Y. Yao and J. Gehrke, “The Cougar Approach to In-Network Query
Processing in Sensor Networks”, SIGMOD, Vol. 31 , Issue 3 , pp. 8-19 2002

[15] Srisathapornphat, C. Jaikaeo, and C. C. Shen, “Sensor Information
Networking Architecture”, in Proc International Workshops on Parallel
Processing, pp.23-30, 2000.

[16] Karl Aberer, M. Hauswirth, A. Salehi, “The Global Sensor Networks
middleware for efficient and flexible deployment and interconnection of
sensor networks,” Technical report, Ecole Polytechnique Federale de
Lausanne (EPFL) 2006

[17] E. Yoneki and J. Bacon, “Pronto: MobileGateway with Publish-Subscribe
Paradigm over Wireless Network,” ACM/IFIP/USENIX International
Middleware Conference, June 2003.

[18] E. Souto. G. Guimaraes, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz and J.
Kelner, “A messaging-oriented middleware for sensor networks,” Personal
and Ubiquitous Computing, Vol. 10 Issue 1, pp. 37-44, 2006

Bibliography

133

[19] S. Li, S. H. Son, and J. A. Stankovic, “Event Detection Services Using Data
Service Middleware in Distributed Sensor Networks,” In IPSN 2003, Palo
Alto, USA, April 2003

[20] W. Heinzelman, A. Murphy, H. Carvalho and M. Perillo,"Middleware to
Support Sensor Network Applications," IEEE Network Magazine Special Issue.
Jan. 2004

[21] M. Kochhal, L. Schwiebert, S. Gupta and Changli Jiao, "QoS-Aware Core
Migration for Efficient Multicast in Mobile Ad hoc Networks", Wayne State
University, WSU-CSC-NEWS/04-TR02, July 2004.

[22] S. Reddy, T. Schmid, N. Yau, G. Chen, D. Estrin, M. Hansen, M. B.
Srivastava, "ESP Framework: A Middleware Architecture For Heterogeneous
Sensing Systems," UCLA, TR-UCLA-NESL-200612-06, December 2006.

[23] C.-L. Fok, G.-C. Roman, C. Lu. "Mobile Agent Middleware for Sensor
Networks: An Application Case Study" In Proc of the 4th International
Conference on Information Processing in Sensor Networks (IPSN'05), pp. 382-387,
April 25-27, 2005.

[24] P. Levis and D. Culler, "Mate: A tiny virtual machine for sensor networks",
International Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, USA, 2002

[25] P. Hanáček, "Parallel Simulation Using the Linda Language", 5th Moravo-
Silesian International Symposium on Modelling and Simulation of Systems,
pp. 263--267, 1993.

[26] T. He, S. Krishnamurthy, L. Luo, T. Yan, R. Stoleru, G. Zhou, Q. Cao, P.
Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui and B. Krogh, “VigilNet: An
Integrated Sensor Network System for Energy-Efficient Surveillance,” ACM
Transactions on Sensor Networks, 2006.

[27] M. Broxton, J. Lifton, J. Paradiso, "Localizing a sensor network via
collaborative processing of global stimuli", in Proc of the Second European
Workshop on Wireless Sensor Networks, pp 321-332, 2005.

[28] J. Horey, J.-C. Tournier, A. B. Maccabe "Kaizen: improving sensor network
operating systems" , in Proc of the 4th International Conference on Embedded
Networked Sensor Systems, pp. 413-414, 2006

Bibliography

134

[29] S. Dulman and P. Havinga, "Operating System Fundamentals for the EYES
Distributed Sensor Network" Progress 2002, Utrecht, the Netherlands,
October 2002

[30] B. Hurler, H. Hof, and M. Zitterbart, "A General Architecture for Wireless
Sensor Networks: First Steps" in Proc of the 24th International Conference on
Distributed Computing Systems Workshops - W7: EC (ICDCSW'04) – Vol. 7, pp.
442-444, 2004.

[31] X. Sun, "SCAN: a small-world structured p2p overlay for multi-dimensional
queries", in Proc. of the 16th International Conference on World Wide Web, pp.
1191-1192, 2007

[32] Asad Awan, Ahmed Sameh, Ananth Grama, “The Omni Macroprogramming
Environment for Sensor Networks”, In The International Conference on
Computational Science, Reading, UK, May 2006.

[33] H. Liu, T. Roeder, K. Walsh, R. Barr, E. G. Sirer, "Design and Implementation
of a Single System Image Operating System for Ad-hoc Networks". In Proc. of
The International Conference on Mobile Systems, Applications, and Services
(Mobisys), Seattle, Washington, June, 2005

[34] C. R. Baker, Y. Markovsky, J. Van Gruenen, A. Wolisz, J. Rabaey, and J.
Wawrzynek, "ZUMA: A Platform for Smart-Home Environments", In Proc of
IET Intelligent Environments, Athens, Greece, July 2006

[35] W.W. Chu. “Optimal File Allocation in a Multiple Computer System”, IEEE
Transactions of Computers, 18(10), October 1969.

[36] Y. C. Chow, and W. Kohler, "Models for dynamic load balancing in a
heterogeneous multiple processor system" IEEE Trans. Cornput. C-28, 5, pp.
334-361, May 1979

[37] Z. Benenson and N. Gedicke and O. Raivio, "Realizing robust user
authentication in sensor networks" In Real-World Wireless Sensor Networks
(REALWSN), Stockholm, June 2005

[38] L. B. Oliveira, D. Aranha, E. Morais, F. Daguano, J. Lo'pez, and R. Dahab,
"TinyTate: Identity-Based Encryption for Sensor Networks" in Cryptology
ePrint Archive, Report 2007/020, 2007

[39] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and D. Tygar, "SPINS: Security
Protocols for Sensor Networks", in Wireless Networks Journal (WINE), pp. 521-
-534, September 2002

Bibliography

135

[40] Available for download: http://www.eclipse.org/

[41] Standard: JTC1/SC22/WG14 http://www.open-std.org/jtc1/sc22/wg14/

[42] S. B. Akers. “Binary Decision Diagrams,” IEEE Transactions on Computers, C-
27(6):509–516, June 1978

[43] N. B. Priyantha, A. Chakraborty, H. Balakrishnan, “The Cricket Location-
Support system”, in Proc. 6th ACM MOBICOM, Boston, MA, August 2000.

[44] K. Lorincz and M. Welsh, "MoteTrack: A Robust, Decentralized Approach to
RF-Based Location Tracking," In Proc. of the International Workshop on
Location and Context-Awareness (LoCA 2005) at Pervasive 2005, May 2005.

[45] Available for download: http://www.dcg.ethz.ch/~rschuler/

[46] R. Tewari and N. R. Adam, "Distributed File Allocation with Consistency
Constraints", International Conference on Distributed Computing Systems, pp.
408-415, 1992.

[47] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, "Dynamic Storage
Allocation: A Survey and Critical Review", in Proc. Int. Workshop on Memory
Management, Kinross Scotland (UK), 1995

[48] S. Albers, "Competitive online algorithms", BRICS Lecture Series LS-96-2,
BRICS, Department of Computer Science, University of Aarhus, September
1996

[49] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker,
"GHT: A Geographic Hash Table for Data-Centric Storage in SensorNets", In
Proc. of the 1st ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA), Atlanta, Georgia, September 2002.

[50] F. Zhao and L. Guibas. Wireless Sensor Networks: An Information
Processing Approach. Elsevier/Morgan-Kaufmann, 2004

[51] A. Amis, R. Prakash, T. Vuong, D. Huynh, “Max-Min D-Cluster Formation in
Wireless Ad Hoc Networks”, Infocom, p 32-41, 2000.

[52] B. Awerbuch, Y. Bartal, and A. Fiat. “Competitive Distributed File
Allocation”, In Proc of the 25th Ann. AMC Symp. On Theory of Computing, pp
164-173, 1993

Bibliography

136

[53] Y. Bartal, A. Fiat, Y. Rabani. “Competitive Algorithms for Distributed Data
Management.” 24th ACM STOC, 1992

[54] A. Varga, “The OMNeT++ discrete event simulation system,” in European
Simulation Multiconference, 2001.

[55] W. Drytkiewicz, S. Sroka, V. Handziski, A. Köpke, H. Karl, “A Mobility
Framework for OMNeT++”, 3rd Intl OMNeT++ Workshop, at Budapest
University of Technology and Economics, Hungary, 2003

[56] R. T. B. Ma, V. Misra, and D. Rubenstein, "Modeling and Analysis of
Generalized Slotted-Aloha MAC Protocols in Cooperative, Competitive and
Adversarial Environments", in Proc. of the 26th IEEE International
Conference on Distributed Computing Systems, pp. 62, 2006

[57] A. K. Parekh , R. G. Gallager, "A generalized processor sharing approach to
flow control in integrated services networks: the single-node case",
IEEE/ACM Transactions on Networking (TON), v.1 n.3, p.344-357, June 1993

[58] R. K. Arora and S. P. Rana, "On module assignment in two-processor
distributed systems". Information Processing Letters 9, 3, pp. 113-117, 1979

[59] C. C. Price, Task allocation in distributed systems: A survey of practical
strategies, in Proc. of the ACM Conference, pp. 176-181, 1982

[60] R. C. Prim, “Shortest connection networks and some generalizations”, In Bell
System Technical Journal, v 36, pp. 1389–1401, 1957

[61] Wu, M., Shu, W., and Gu, J. “Local Search for DAG Scheduling and Task
Assignment.” In Proceedings of the international Conference on Parallel
Processing, Washington, DC, 1997.

[62] Richard E. Korf. “Depth-first iterative-deepening: An optimal admissible tree
search.” In Artificial Intelligence, v27(1) pp 97-109, 1985.

[63] I. Ahmad and M. K.Dhodhi, “Task assignment using a problem-space
genetic algorithm.” In Concurrency: Pract. Exper. Vol 7,5 pp 411-428, 1995.

[64] T. Smith, T. Sandholm, and R. G. Simmons, “Constructing and Clearing
Combinatorial Auctions Using Preference Elicitation”, in Proc. Nat. Conf on
Artificial Intelligence (AAAI) Workshop on Preferences in AI and CP, 2002

Bibliography

137

[65] D. C. Parkes and L. H. Ungar. “Iterative combinatorial auctions: Theory and
practice”. In Seventeenth National Conference on Artificial Intelligence, pages 74-
81, 2000.

[66] http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2
_Datasheet.pdf

[67] http://www.moteiv.com/products/docs/tmote-sky-datasheet.pdf

[68] International Energy Agency, “The Power to Choose Demand Response in
Liberalised Electricity Markets”, OECD Publishing, Dec 2003.

[69] http://www.chipcon.com

[70] http://www.xbow.com/Support/Support_pdf_files/MPR-
MIB_Series_Users_Manual.pdf

[71] http://www.ftdichip.com/

[72] http://www.sensirion.com

[73] Hopper, N. and C. Goldman, "Not All Large Customers Are Made Alike:
Disaggregating Response to Default-Service Day-Ahead Market Pricing", In
Proc. of the 2006 ACEEE Summer Study on Energy Efficiency in Buildings. LBNL-
59629. August 2006

[74] K. Spees and L. Lave "Impacts of Responsive Load in PJM: Load Shifting and
Real Time Pricing", Carnegie Mellon, CEIC-07-02, 2006

Appendix I

138

Appendix I

HVAC_CONTROL Application

HVAC_CONTROL.serv

ModuleName:HVAC_CONTROL
DataIn:10 /* units are kb/s */
DataOut:2
Memory: 2 /* units are kbytes */
Processing:
ResourceReq: /* Can also be left blank */
FaultTolerance:detection /* values are recoverable, detection, nothing */

Service:0
Name:TEMPERATURE
Scope:KITCHEN
QueryPeriod:5 /* query once every 5 seconds */
Name:TEMPERATURE
Scope:LIVINGROOM
QueryPeriod:8

Service:1
Name:COMFORT
Scope:SP_SCOPE_ALL
QueryPeriod:10

Service:2
Name:DESIRED_TEMP
Scope:SP_SCOPE_ALL
QueryPeriod:10

Service:3
Name:PRICE
Scope:SP_SCOPE_ALL

Appendix I

139

QueryPeriod:10

Service:4 /* this one will be queried by the app */
Name:HVAC
Scope:SP_SCOPE_ALL
QueryPeriod:0

HVAC_CONTROL.h

/*
 * Place the names of locations and services here
 * Note, the spelling & capitalization must be the same as that used in the
 * .serv file
 */
enum {

 KITCHEN = 1,
 LIVINGROOM = 2,
 DININGROOM = 3,
 BEDROOM1 = 4,
 BEDROOM2 = 5,
 BEDROOM3 = 6,
 MASTERBEDROOM = 7,
 BATHROOM = 8,

 TEMPERATURE = 9,
 PRICE = 13,
 HVAC = 14,
 COMFORT = 15,
 DESIRED_TEMP = 16,
 DISPLAY = 18,
 HVAC_CONTROL = 19,
 TEMP_MARGIN = 2,
 OFFSET_INCREMENT = 60,

/* eg persona
 * OWNER = 22,
 */

 /* some predefined values */
 TIMEOUT = 2,
 BRIDGE = 17,
 OFF = 2,
 ON = 1,
 SENSOR = 10,
 ACTUATOR = 20,
 CONTROL_TRIES = 3, //how many times you try to respond before timeout
 REPLY_TRIES = 3,
 ACTIVATE = 2,
 DEACTIVATE = 3,
 GUI = 20,

};

typedef struct serviceUsage {
 nx_uint8_t name;
 sp_scope_t scope;

Appendix I

140

 uint8_t invID;
 uint16_t ticksSinceRecv;
 uint8_t network;
 uint8_t type;
 uint8_t ack;
 uint8_t isThere;
 uint16_t timeout;
} serviceUsage;

int invokeService(uint8_t fn, char *args, uint16_t arg_len, uint8_t id);
void serviceResult(uint8_t fn, char *payload, uint16_t payload_len, uint8_t
id);
void terminate ();
void invoke();
int requestService(uint8_t servNum, uint8_t servName, uint8_t fn, char *args,
uint16_t argLen);
int serviceRespond(uint8_t fn, char *results, uint16_t resLen, uint8_t id);

HVAC_CONTROL.c

#include "table.h"

/*
 * Place all the variables to store results from services used
 * eg uint16_t sensorSample1
 * uint16_t sensorSample2
 */

uint8_t m_active;
uint16_t m_price;
uint16_t m_desired_comfort;
uint16_t m_desired_temp;
uint16_t m_temp;
uint16_t m_switch_state;

/*
 * during execution these will be filled in and updated with the name & scope
of the
 * equivalent service that exist in the network - see bottom of file for
 * a definition of the struct
 */
serviceUsage services[NUM_SERVICES_USED];

/*
 * fill in, it will be called on initialization
 */
void invoke()
{
 //defaults
 m_active = 0;
 m_price = 10;
 m_desired_comfort = 2;
 m_desired_temp = 70;
 m_temp = 75;
 m_switch_state = OFF;
}

Appendix I

141

/*
 * fill this in - it will be called every second
 * Use it to process results, query more services, actuate etc.
 */
void executeControl()
{
 uint16_t temp_setpoint;
 uint8_t servName, fn, servNum;
 uint16_t argLen;
 char *args[10];
 argLen = 0;

 if (!m_active) {
 return;
 }

 temp_setpoint = ((m_desired_temp * 100) + ((5-m_desired_comfort) * m_price
* OFFSET_INCREMENT)) / 100;
 servName = services[4].name;
 fn = services[4].name;

 if ((m_temp >= (temp_setpoint + TEMP_MARGIN))){
 args[0] = ON;
 } else if ((m_temp < (temp_setpoint - TEMP_MARGIN))){
 args[0] = OFF;
 }

 argLen = 1;
 servNum = 4;
 requestService(servNum, servName, fn, args, argLen);
}

/*
 * Fill this in if you want other components to use this service
 * it will be called on the service in response to a requestService call
 * and it should call serviceRespond to pass the result back to the callee
 * @param fn function that will be called
 * @param args - arguments to the function
 * @param arg_len length of the arguments (not null terminated)
 * @param id -identifies the request, should be passed back to serviceRespond
 *
 *@return int return 0 if the service successfully invoked, 1 otherwise
 */
int invokeService(uint8_t fn, char *args, uint16_t arg_len, uint8_t id)
{
 if (fn == ACTIVATE) {
 m_active = 1;
 } else if (fn == DEACTIVATE) {
 m_active = 0;
 }
 return 0;
}

/*
 * Fill in to process the result of a service query/invoke service
 * @param fn - function name that was called
 * @param payload - results
 * @param payload_len - length of results (they are not null terminated)
 * @param id - request id that was returned in requestService

Appendix I

142

 */
void serviceResult(uint8_t fn, char *payload, uint16_t payload_len, uint8_t id)
{
 /* since we specify query periods, the crs will automatically query these
for us */
 if (id == services[0].invID) {
 m_temp = payload[0];
 } else if (id == services[1].invID) {
 m_desired_comfort = payload[0];
 } else if (id == services[2].invID) {
 m_desired_temp = payload[0];
 } else if (id == services[3].invID) {
 m_price = payload[0];
 }
}

/* called when the mapper is wrapping up the service
 * clean up any last minute state
 */
void terminate ()
{
 return;
}

/*------------------STUBS-----------------------*
 * Leave at the bottom of the file - will be filled in by SNSP */

/*
 * This is a stub will send a service query
 * @param servNum is the equivalence class specified in the .serv file
 * @param servName is the class that was found in the network
 * (that is equivalent from - serviceUseage
services[NUM_SERVICES_USED];)
 * @param scope is the scope the service is in
 * @param args is a void pointer to arguments to the service
 * @param argLen is the length of args (not null terminated)
 *
 * @return int returns the id that will be used in serviceResult to pass result
back
 */
int requestService(uint8_t servNum, uint8_t servName, uint8_t fn, char *args,
uint16_t argLen)
{
}

/*
 * This is a stub
 * @param results - pointer to results
 * @param
 *
 * @return 0 if successful 1 if not
 */
int serviceRespond(uint8_t fn, char *results, uint16_t resLen, uint8_t id)
{
}

Appendix I

143

Resulting TinyOS Code

Module

generic module HVAC_CONTROLM(uint8_t m_serviceName, uint16_t
NUM_SERVICES_USED, uint16_t NUM_SERVICES_HANDLED,uint16_t NUM_SERVICES_EQUIV) {
 provides {
 interface App;
 interface StdControl;
 } uses {

 interface SPInvocationAccess;
 interface SNSP;
 interface Leds;
 interface Timer;
 }
}

implementation {

uint16_t control_tries;
//specific variables
int16_t timerval = 500;

sp_scope_t m_scope; //stores the location of this node
uint8_t m_network; //stores network type of this node ie TELOS/MICA etc
uint8_t m_funName;
uint8_t m_scopeInvID;
uint8_t m_servInfoInvID;
uint8_t m_timeSinceUpdate;
uint8_t m_activated;
uint8_t m_activatedScope;

bool m_replyLock;
bool m_sendLock;

sp_container_handle_t m_register;
sp_container_handle_t m_handle;

//service call variables
nx_uint8_t m_name;
sp_scope_t m_destScope;
uint8_t m_arg1;
uint8_t m_arg2;
uint8_t *m_arg3;
uint16_t m_argLen;
nx_uint8_t m_resName;
nx_uint8_t m_resDestScope;
nx_uint16_t m_res1;

serviceUsage equivServices[NUM_SERVICES_USED][NUM_SERVICES_EQUIV];
pendingQuery servicePendingQueries[NUM_SERVICES_HANDLED];

Appendix I

144

void task queryScope();
void task registerService();
void task sendServiceInfo();
void task queryCRS();
void task executeControl();
void task sendQueries();
uint8_t serviceCall();

int invokeService(uint8_t fn, char *args, uint16_t arg_len, uint8_t id);
void serviceResult(uint8_t fn, char *payload, uint16_t payload_len, uint8_t
id);
void terminate ();
void invoke();
int requestService(uint8_t servNum, uint8_t servName, uint8_t fn, char *args,
uint16_t argLen);
int serviceRespond(uint8_t fn, char *results, uint16_t resLen, uint8_t id);

int8_t m_active;
uint16_t m_price;
uint16_t m_desired_comfort;
uint16_t m_desired_temp;
uint16_t m_temp;
uint16_t m_switch_state;

serviceUsage services[NUM_SERVICES_USED];

void invoke()
{
 //defaults
 m_active = 0;
 m_price = 10;
 m_desired_comfort = 2;
 m_desired_temp = 70;
 m_temp = 75;
 m_switch_state = OFF;
}

void task executeControl()
{
 uint16_t temp_setpoint;
 uint8_t servName, fn, servNum;
 uint16_t argLen;
 char *args[10];
 argLen = 0;

 if (!m_active) {
 return;
 }

 temp_setpoint = ((m_desired_temp * 100) + ((5-m_desired_comfort) * m_price
* OFFSET_INCREMENT)) / 100;
 servName = services[4].name;
 fn = services[4].name;

 if ((m_temp >= (temp_setpoint + TEMP_MARGIN))){
 args[0] = ON;
 } else if ((m_temp < (temp_setpoint - TEMP_MARGIN))){
 args[0] = OFF;

Appendix I

145

 }

 argLen = 1;
 servNum = 4;
 requestService(servNum, servName, fn, args, argLen);
}

int invokeService(uint8_t fn, char *args, uint16_t arg_len, uint8_t id)
{
 if (fn == ACTIVATE) {
 m_active = 1;
 } else if (fn == DEACTIVATE) {
 m_active = 0;
 }
 return 0;
}

void serviceResult(uint8_t fn, char *payload, uint16_t payload_len, uint8_t id)
{
 if (id == services[0].invID) {
 m_temp = payload[0];
 } else if (id == services[1].invID) {
 m_desired_comfort = payload[0];
 } else if (id == services[2].invID) {
 m_desired_temp = payload[0];
 } else if (id == services[3].invID) {
 m_price = payload[0];
 }
}

void terminate ()
{
 return;
}

 /* -----------------------------Init & Locks---------------------------*/

 command result_t StdControl.init()
 {
 uint16_t i = 0;
 uint16_t j = 0;
 m_scope = SP_EMPTY;
 m_sendLock = 0;
 m_replyLock = 0;
 m_activated = 0;
 m_activatedScope = 0;

 for(i=0;i < NUM_SERVICES_USED; i++){
 services[i].isThere = 0;
 services[i].name = 0;
 for(j=0;j < NUM_SERVICES_EQUIV; j++){
 equivServices[i][j].isThere = 0;
 equivServices[i][j].name = 0;
 }
 }

Appendix I

146

 for(i=0;i < NUM_SERVICES_HANDLED; i++){
 servicePendingQueries[i].name = 0;
 }

 equivServices[0][0].name=TEMPERATURE;
 equivServices[0][0].scope=KITCHEN;
 equivServices[0][0].timeout=5;
 equivServices[0][1].name=TEMPERATURE;
 equivServices[0][1].scope=LIVINGROOM;
 equivServices[0][1].timeout=8;
 equivServices[1][0].name=COMFORT;
 equivServices[1][0].scope=SP_SCOPE_ALL;
 equivServices[1][0].timeout=10;
 equivServices[2][0].name=DESIRED_TEMP;
 equivServices[2][0].scope=SP_SCOPE_ALL;
 equivServices[2][0].timeout=10;
 equivServices[3][0].name=PRICE;
 equivServices[3][0].scope=SP_SCOPE_ALL;
 equivServices[3][0].timeout=10;
 equivServices[4][0].name=HVAC;
 equivServices[4][0].scope=SP_SCOPE_ALL;
 equivServices[4][0].timeout=0;

 m_activated = 0;
 m_timeSinceUpdate = TIMEOUT;
 return SUCCESS;
 }

 command result_t StdControl.start()
 {
 call Timer.start(TIMER_REPEAT, timerval);
 return SUCCESS;
 }

command result_t StdControl.stop()
 {
 call Timer.stop();
 return SUCCESS;
 }

 bool replyLock()

 {
 if (m_replyLock)
 return FALSE;
 else {
 m_replyLock = TRUE;
 return TRUE;
 }
 }

 bool releaseReplyLock()
 {
 bool oldLock = m_replyLock;
 m_replyLock = FALSE;
 return oldLock;
 }

 bool sendLock()

Appendix I

147

 {
 if (m_sendLock)
 return FALSE;
 else {
 m_sendLock = TRUE;
 return TRUE;
 }
 }

 bool releaseSendLock()
 {
 bool oldLock = m_sendLock;
 m_sendLock = FALSE;
 return oldLock;
 }

 /*---------------------Register, Query & serv Info update ----------------*/
int requestService(uint8_t servNum, uint8_t servName, uint8_t funName, char
*args, uint16_t argLen)
 {
 uint8_t invID;
 if(sendLock()){
 m_funName = funName;
 if(services[servName].network != m_network){
 m_name = BRIDGE;
 m_destScope = SP_SCOPE_ALL;
 m_arg1 = services[servNum].name;
 m_arg2 = services[servNum].scope;
 m_arg3 = args;

 } else {
 m_name = services[servNum].name;
 m_destScope = services[servNum].scope;
 m_arg3 = args;
 m_arg1 = m_arg2 = 0;
 }

 m_argLen = argLen;
 invID = serviceCall();
 /* look up which service this corresponds to and replace invID */
 services[servNum].invID = invID;
 return invID;
 } else {
 return 0;
 }

 }

uint8_t serviceCall(){
 sp_container_handle_t handle;
 uint8_t invID;
 call SPInvocationAccess.newContainer(&handle, MSG_TYPE_INVOCATION,
 m_name, m_serviceName, m_scope);
 call SPInvocationAccess.setDestScope(handle, m_destScope);
 call SPInvocationAccess.setPersonaScope(handle, m_activatedScope);
 call SPInvocationAccess.setPersona(handle, m_activated);
 call SPInvocationAccess.newFunction(&m_funName, handle);

Appendix I

148

 if(m_arg1 != 0){
 call SPInvocationAccess.newArgument(&m_name, SP_UINT8, 1,
 (uint8_t*)&m_arg1, handle);
 }
 if(m_arg2 != 0){
 call SPInvocationAccess.newArgument(&m_name, SP_UINT8, 1,
 (uint8_t*)&m_arg2, handle);
 }
 if(m_arg3 != 0){
 call SPInvocationAccess.newArgument(&m_name, SP_CHAR_ARRAY,
m_argLen,
 m_arg3, handle);
 }

 call SPInvocationAccess.getInvocationID(handle, &invID);
 call SNSP.issueRequest(handle);
 releaseSendLock();
 return invID;
 }

void task queryScope()
 {
 nx_uint8_t name;
 sp_scope_t temp;
 temp = SP_SCOPE_ALL;
 call SPInvocationAccess.newContainer(&m_register, MSG_TYPE_REGISTRATION,
CRS, m_serviceName, m_scope);
 call SPInvocationAccess.setDestScope(m_register, temp);
 name = SP_SCOPE_ALL;
 call SPInvocationAccess.newFunction(&name, m_register);
 call SPInvocationAccess.getInvocationID(m_register, &m_scopeInvID);
 call SNSP.issueRequest(m_register);
 }

void task registerService()
 {
 sp_scope_t temp;
 temp = SP_SCOPE_ALL;
 //register (register handle does not get destroyed)
 call SPInvocationAccess.newContainer(&m_register, MSG_TYPE_REGISTRATION,
CRS, m_serviceName, m_scope);
 call SPInvocationAccess.setDestScope(m_register, temp);
 call SNSP.spRegister(m_register);

 }

 void task sendServiceInfo(){
 nx_uint8_t name;

 uint16_t I;
 sp_container_handle_t handle;
 nx_uint8_t bridge;
 sp_scope_t temp;
 bridge = BRIDGE;
 temp = SP_SCOPE_ALL;
 i = 0;
 call SPInvocationAccess.newContainer(&handle, MSG_TYPE_INFO,
 GUI, m_serviceName, m_scope);

Appendix I

149

 call SPInvocationAccess.setDestScope(handle, temp);
 name = SP_SCOPE_ALL;
 call SPInvocationAccess.newServiceInfo(&name,&m_activated, handle);
 call SPInvocationAccess.newServiceInfo(&i,&i, handle);

 if(m_activated){
 for(i=0;i < NUM_SERVICES_USED; i++){
 if(services[i].network == m_network){
 call SPInvocationAccess.newServiceInfo(&(services[i].scope),
 &(services[i].name),handle);
 }
 }

 call SPInvocationAccess.newServiceInfo(&temp, &bridge, handle);
 for(i=0;i < NUM_SERVICES_USED; i++){
 if(services[i].network != m_network && services[i].network != 0){
 call SPInvocationAccess.newServiceInfo(&(services[i].scope),
 &(services[i].name), handle);
 }
 }
 }
 call SNSP.issueRequest(handle);
 }

 /*-------------------------- Timer Actions ------------------------*/
event result_t Timer.fired(){
 //initialize
 if(m_scope == SP_EMPTY){
 post queryScope();
 } else {

 //periodically keep CRS registration & service info alive
 if(m_timeSinceUpdate >= TIMEOUT) m_timeSinceUpdate = 0;
 if(m_timeSinceUpdate == 0) post registerService();
 if(m_timeSinceUpdate == 1) post queryCRS();
 if(m_timeSinceUpdate == 2) post sendServiceInfo();
 m_timeSinceUpdate++;
 if(m_activated){
 if(m_timeSinceUpdate > 2 && m_timeSinceUpdate & 1) {
 post sendQueries();
 post executeControl();
 }
 }
 }
 return SUCCESS;
 }

void task queryCRS(){
 sp_scope_t temp;
 sp_container_handle_t handle;

 nx_uint8_t name;
 temp = SP_SCOPE_ALL;
 call SPInvocationAccess.newContainer(&handle, MSG_TYPE_INVOCATION, CRS,
m_serviceName, m_scope);
 call SPInvocationAccess.setDestScope(handle, temp);

Appendix I

150

 name = ALL;
 call SPInvocationAccess.newFunction(&name, handle);
 call SPInvocationAccess.getInvocationID(handle, &m_servInfoInvID);
 call SNSP.issueRequest(handle);
 return;
 }

 void task sendQueries(){
 uint16_t i = 0;
 for(;i< NUM_SERVICES_USED; i++) {
 if(services[i].type == SENSOR
 && (services[i].timeout != 0 && services[i].ticksSinceRecv >
services[i].timeout)
 && services[i].network != 0){ //we have heard from them

 //assume that bridge exists
 if(sendLock()){
 if(services[i].network != m_network){
 m_name = BRIDGE;
 m_destScope = SP_SCOPE_ALL;
 m_arg1 = services[i].name;
 m_arg2 = services[i].scope;
 m_arg3 = 0;

 } else {
 m_name = services[i].name;
 m_destScope = services[i].scope;
 m_arg1 = m_arg2;
 m_arg3 = 0;
 }
 serviceCall();
 }
 }
 if(services[i].network != 0) {
 services[i].ticksSinceRecv++;
 }
 }
 }

/*--------------------- (SENSE/ACTUATE) and result ------------------------*/
command sp_result_t App.invocateRequest(uint16_t requestID,
sp_container_handle_t handle){

 nx_uint8_t name;
 nx_uint8_t type;
 nx_uint16_t len;
 uint8_t invID;
 sp_scope_t scope;
 nx_uint8_t funName;
 nx_uint8_t arg[128];
 uint16_t i = 0;
 if(call SPInvocationAccess.getInvocationID(handle, &invID) != SP_SUCCESS
||
 call SPInvocationAccess.getOriginatingService(handle, &name) !=
SP_SUCCESS ||
 call SPInvocationAccess.getScope(handle, &scope) != SP_SUCCESS ||

 call SPInvocationAccess.getMsgType(handle, &type) != SP_SUCCESS){

Appendix I

151

 return SP_FAIL;

 }

 for(i = 0; i < NUM_SERVICES_USED; i++){
 //found an empty slot
 if(servicePendingQueries[i].name == 0){
 break;
 }
 }

 if(i == NUM_SERVICES_HANDLED) return SP_FAIL;
 if(funName == ACTIVATE){
 m_activated = name;
 m_activatedScope = scope;
 invoke();
 }

 if(funName == DEACTIVATE){
 terminate();
 }

 servicePendingQueries[i].invID = invID;
 servicePendingQueries[i].ticksSinceReply = 2; //will reply next
 servicePendingQueries[i].name = name;
 servicePendingQueries[i].scope = scope;
 servicePendingQueries[i].funName = funName;
 servicePendingQueries[i].replyFrequency = 2;

 if (call SPInvocationAccess.getArgument(&name, handle, 0,
 &type, arg, &len)!= SP_SUCCESS){
 servicePendingQueries[i].name = 0;
 return SP_FAIL;
 }

 call SPInvocationAccess.freeContainer(handle);
 return invokeService(funName, (char *)arg, len, invID);
 }

int serviceRespond(uint8_t fn, char *results, uint16_t resLen, uint8_t id)
{
 uint16_t i;
 sp_container_handle_t handle = 0;
 if (!replyLock()) {
 return 1;
 }

 for(i = 0;i < NUM_SERVICES_HANDLED; i++){
 if(servicePendingQueries[i].invID == id &&
servicePendingQueries[i].name != 0){

 if(call SPInvocationAccess.newContainer(&handle, MSG_TYPE_REPLY |
MSG_TYPE_INVOCATION,
 servicePendingQueries[i].name, m_serviceName, m_scope) !=
SP_SUCCESS ||
 call SPInvocationAccess.setDestScope(handle,
servicePendingQueries[i].scope)
 != SP_SUCCESS ||

Appendix I

152

 call SPInvocationAccess.setInvocationID(handle,
servicePendingQueries[i].invID)
 != SP_SUCCESS ||
 call
SPInvocationAccess.newFunction(&(servicePendingQueries[i].funName), handle)
 != SP_SUCCESS ||
 call
SPInvocationAccess.newResult(&(servicePendingQueries[i].funName),
SP_CHAR_ARRAY,
 resLen, results, handle) != SP_SUCCESS || signal
App.requestResponse(0, handle) != SP_SUCCESS){
 if(handle != 0) call
SPInvocationAccess.freeContainer(handle);
 return 1;
 }
 //reply just once in the control function
 releaseReplyLock();
 servicePendingQueries[i].name = 0;
 return 0;
 }
 }
}

event sp_result_t SNSP.requestResult(uint16_t requestID, sp_container_handle_t
handle)

 {
 uint8_t invID;
 nx_uint8_t name;
 uint8_t val;
 uint8_t longVal[128];
 uint8_t type;
 uint8_t len;
 uint16_t i = 0;
 uint16_t num = 0;
 uint8_t numByte = 0;
 uint16_t k, j, tempj, tempk;
 tempj = tempk = 0;
 call SPInvocationAccess.getInvocationID(handle, &invID);
 if(call SPInvocationAccess.getOriginatingService(handle, &name) !=
SP_SUCCESS)
 return SP_FAIL;
 if(invID == m_scopeInvID && name == CRS){
 name = SP_SCOPE;
 if(call SPInvocationAccess.getResult(&name, handle, 0, &type,
 (uint8_t*)&val, &len) != SP_SUCCESS)
 {
 dbg(DBG_TEMP, "PROB in getting query result\n");
 }

 m_scope = val;
 name = NETWORK;
 if(call SPInvocationAccess.getResult(&name, handle, 0, &type,
 (uint8_t*)&val, &len) != SP_SUCCESS)
 {
 dbg(DBG_TEMP, "Prob in getting query results \n");

 }

Appendix I

153

 m_network = val;

 m_scopeInvID = 0xff;
 } else if(name == CRS && invID == m_servInfoInvID){
 name = ALL;
 if(call SPInvocationAccess.getNumberResults(&name, &numByte,
handle)

 != SP_SUCCESS){
 dbg(DBG_TEMP, "PROB in getting query result\n");
 }
 num = numByte & 0x00ff;

 for(i = 0; i< NUM_SERVICES_USED; i++){
 services[i].network = 0;
 }
 services[4].network = 1;
 i = 0;
 while(i < num){
 if(call SPInvocationAccess.getResult(&name, handle, i, &type,
 &val, &len) != SP_SUCCESS)
 {
 goto end;
 }
 for(k=0;k < NUM_SERVICES_USED; k++){
 for(j=0;j < NUM_SERVICES_EQUIV; j++){
 if (equivServices[k][j].name == val) {
 tempk = k;
 tempj = j;
 break;

 }
 }
 }

 if(call SPInvocationAccess.getResult(&name, handle, i+1, &type,
 &val, &len) != SP_SUCCESS)
 {
 goto end;
 }

 equivServices[tempk][tempj].network = val;
 equivServices[tempk][tempj].isThere = 1;

 /* copy the first choice over */
 for(j=0;j < NUM_SERVICES_EQUIV; j++){

 if (equivServices[tempk][j].isThere) {
 services[tempk].name = equivServices[tempk][j].name;
 services[tempk].scope = equivServices[tempk][j].scope;
 services[tempk].invID = equivServices[tempk][j].invID;
 services[tempk].ticksSinceRecv =
equivServices[tempk][j].ticksSinceRecv;
 services[tempk].network =
equivServices[tempk][j].network;
 services[tempk].type = equivServices[tempk][j].type;
 services[tempk].ack = equivServices[tempk][j].ack;
 services[tempk].isThere =
equivServices[tempk][j].isThere;

Appendix I

154

 services[tempk].timeout =
equivServices[tempk][j].timeout;
 break;
 }
 }
 }
 i +=2;
 } else {

 if(name == BRIDGE){
 call SPInvocationAccess.getFunctionName(&name, 0, handle);
 }
 if(call SPInvocationAccess.getResult(&name, handle, 0, &type,
 longVal, &len) != SP_SUCCESS)
 {
 goto end;
 }

 serviceResult(name, longVal, len, invID);
 }
end:
 call SPInvocationAccess.freeContainer(handle);
 return SP_SUCCESS;
 }

 command sp_result_t App.status(){ return SP_SUCCESS;}

 command sp_result_t App.registrationInfo(sp_container_handle_t handle){
 return SP_SUCCESS;
 }

}

Configuration

includes SNSP;
includes App;

configuration HVAC_CONTROL {
}

implementation {
components Main, LedsC, TimerC, new SNSPC(SP_SCOPE_ALL, TELOS) as mySNSP, new
HVAC_CONTROLM(HVAC_CONTROL, 5, 4, 2), SPInvocationAccessM, RandomLFSR, ADCC;

 Main.StdControl -> SPInvocationAccessM;
 Main.StdControl -> mySNSP;
 Main.StdControl -> TimerC;
 Main.StdControl -> HVAC_CONTROLM;

 mySNSP.App[0] -> HVAC_CONTROLM;

 HVAC_CONTROLM.SNSP -> mySNSP.SNSP[0];

Appendix I

155

 HVAC_CONTROLM.Timer -> TimerC.Timer[unique("Timer")];
 HVAC_CONTROLM.SPInvocationAccess -> SPInvocationAccessM.SPInvocationAccess;

HVAC_CONTROLM.Leds -> LedsC;

SPInvocationAccessM.Random -> RandomLFSR;
}

Appendix II

156

Appendix II

Eclipse Plugin

SNSP Eclipse plugin allows one to create a new project of type SNSP. The new

project must have a name, which will be the application or service name. When a

new SNSP project is created, four files are attached to the project. The first file is

a README that explains how to write an SNSP application. The second file is a

.c file containing stubs that must be completed. The third file is a .h file that

contains a mapping of semantic names to numbers (names for locations and

services). The fourth file is the .serv file. These files are explained in detail in

Section 4.3.1 below and the .serv file is explained in section 4.2 above. The

application writer can edit these files and fill in the functionality of the

application. Once they are done, there are two compile options, one compiles

their regular c code to check for syntax errors. The other compiles the c code they

have written into TinyOS code and places it in a tinyos/ sub-directory. This code

can then be further cross-compiled for a mote platform and loaded onto a mote

using the TinyOS Eclipse plugin.

Appendix II

157

SNSP eclipse module comes in a tar file format. The tar file is downloaded with

an unpack script. The user must run the unpack script at the command line. The

unpack script takes one argument, which is the name of the service that the user

wishes to create. The unpack script creates another tar file with the service name

in the same directory. This file must be imported into the eclipse workspace.

Figure 27: Importing an SNSP project into Eclipse.

Figure 27 demonstrates what eclipse looks like when it first opens, and when the

file->new item has been selected from the menu. The user must then select to

import “Existing Projects into Workspace” and a file browser will appear from

Appendix II

158

which they can choose the tar file created by the unpack script. Figure 28 shows

how to switch between compilation targets. In order to switch, the user must

right-click on the project in the right task bar, and the window in Figure 28 will

appear. There is then two choices: compile, or the given project name. Compile

will compile the c code in the .c and .h files. The project name option will build

the TinyOS code.

Figure 28: Choosing a target to compile.

Figure 29 shows the result of a C compilation that had an error. The bottom

window has details about what the error was. The eclipse editor can also be seen

Appendix II

159

in Figure 29 as well as the project browsing toolbar on the right that lists all open

files within the project.

Figure 29: An open SNSP project, with an open file and a C compilation error.

Figure 30 shows the result of compiling the project into TinyOS code with

eclipse. In the right-hand toolbar the TinyOS files are visible in the tinyOS folder.

The bottom toolbar also displays a message of either success or an error message

if the build failed.

Appendix II

160

Figure 30: Compiling SNSP code with Eclipse.

