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Abstract

Rethinking the Minimum Distance: Channels With Varying Sampling Rate and Iterative

Decoding of LDPC Codes

by

Lara Dolecek

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Venkat Anantharam, Chair

In this dissertation we develop novel coding theoretic approaches for two problems rel-

evant to modern communication systems. In the first part of the thesis we address the issue

of reliable communication under varying sampling rate, while in the second part we focus

on the analytic understanding of the performance of low density parity check (LDPC) codes

in the low bit error rate (BER) region. The underlying theme in both of these somewhat

non-standard yet relevant problems is that the notion of a fundamental performance metric,

typically taken to be the minimum distance of an additive error correcting code, needs to

be rethought when the standard assumptions on the communication no longer hold.

In particular, in the first part of the thesis we investigate the problem of overcoming

synchronization errors from a coding theoretic perspective when the timing recovery is
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inadequate. This is in contrast to the traditional coding theory which typically takes the

assumption of perfect synchronization for granted and is thus practically exclusively con-

cerned with problems of additive error correction.

We study first order Reed-Muller codes as a representative example of a class of highly

structured additive error correcting codes with good minimum distance properties, and in-

vestigate their behavior in the presence of both additive errors and a synchronization error.

We propose a method to systematically thin Reed-Muller codes, such that the resulting

thinned code is immune to additive errors as well as a synchronization error. This sys-

tematic analysis is based on first establishing several novel run-length properties of these

codes.

In addition, we propose and study number theoretic constructions of sets of strings im-

mune to multiple repetitions. These constructions are also shown to have good cardinalities.

We then use these number theoretic constructions to develop a prefixing-based method to

improve the immunity of an arbitrary code (a collection of binary strings) to repetition er-

rors. This judiciously chosen prefix is shown to have length that scales logarithmically with

the length of string in this collection, and thus has asymptotically negligible redundancy

while providing improved immunity to repetition errors. We also provide a decoding al-

gorithm that is a variant of the message passing decoding algorithm, but which can handle

repetitions as well as additive errors without requiring additional complexity.

In the second part of the dissertation, we study the performance of iteratively decoded

LDPC codes when the frequency of a decoding error is very low. These codes are com-
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monly decoded using highly efficient iterative decoding algorithms, which provide an ex-

ponential reduction in complexity over the optimal (but highly impractical) maximum like-

lihood decoding. These practical iterative decoding algorithms are suboptimal on graphs

that are not trees, of which LDPC codes provide a prime example. Nonetheless, LDPC

codes, when equipped with these iterative decoding algorithms, are known to perform ex-

tremely well in the moderate bit error rate (BER) region.

It is also known that LDPC codes, when decoded iteratively, exhibit a so-called error

floor behavior, manifested in the need for a significant increase in the signal power for only

a marginal improvement in BER. Due to the limited analytical tools available to address

(and predict) the low BER performance of LDPC codes, their deployment in applications

requiring low BER guarantees has not quite met the original promise of these powerful

codes.

In order to gain a better understanding of the low BER performance of LDPC codes,

we introduce the notion of a combinatorial object that we call an absorbing set. This object

is viewed as a stable point of the bit-flipping algorithm, an algorithm that can be viewed as

an asymptotic 1-bit approximation to many message passing decoding algorithms. Since

absorbing sets are fixed points of the message passing algorithms, the decoder can get stuck

in an absorbing set that is not a codeword. In particular, if there are absorbing sets smaller

that the minimum distance of the code, the decoder is likely to converge to these objects. As

a result, under iterative decoding, the low BER performance will be dominated by the num-

ber and the size of dominant absorbing sets, rather that the number of minimum distance
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codewords and the minimum distance itself, which is considered to be the performance

metric under the maximum likelihood decoding and the key property of a code.

As a case study, we analyze the minimal absorbing sets of high-rate array-based LDPC

codes. We provide a comprehensive analytic description of the minimal absorbing sets for

this family of codes. In this study, we demonstrate the existence of absorbing sets whose

weight is strictly smaller than the minimum distance of the code. These minimal absorbing

sets, rather than minimum distance codewords, are also experimentally shown to dominate

the low BER performance.

Professor Venkat Anantharam
Dissertation Committee Chair
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Chapter 1

Dissertation Overview

Data communication, whether over space (e.g. Ethernet, satellite broadcasting) or over

time (e.s. storage applications) is inherently noisy. The goal of the channel coding theory

is to provide systematic ways of introducing a controlled amount of redundancy into the

transmitted data in a form of a channel code to successfully overcome the noise in the

channel [60]. Channel coding theory is traditionally concerned with constructing good

codes capable of correcting additive errors, since the noise in the channel is almost always

taken to be additive.

A good performance metric is that of the minimum distance of a code, which is the

minimum separation of the codewords in the given code, since it determines how large the

additive noise in the channel can be while communication still remains reliable. Thus, a

good code traditionally has large minimum distance.

In addition, good channel codes should also be equipped with simple and realizable
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encoding and decoding algorithms to make them useful in practice. In particular, good

decoding algorithms should mimic the performance of the optimal maximum likelihood

decoding, but do so with much lower complexity than the exponential complexity of the

highly impractical maximum likelihood decoding algorithm.

In this dissertation we develop novel coding theoretic approaches for two somewhat

non-standard yet relevant problems for modern communication systems. In the first part

of the thesis we address the issue of reliable communication under varying sampling rate,

while in the second part we focus on understanding the performance of low density parity

check (LDPC) codes in the low bit error rate (BER) region under iterative decoding. The

underlying theme of this work is that the notion of the minimum distance of a code needs

to be rethought when the standard assumptions on the communication no longer hold.

In particular, when one can no longer assume perfect signal synchronization and use

the code and its decoding algorithm solely to overcome additive errors, the notion of the

relevant code metric needs to be redefined. A simple example is that of a code consisting

of only two codewords of equal length n, the codeword c1 being a string of alternating 0’s

and 1’s and the codeword c2 being a string of alternating 1’s and 0’s. These two strings

have maximum possible additive (Hamming) distance, since they differ in every position.

However, when this code is used over a channel that introduces a repetition error, their

post-repetition distance drops to only 2, since, for example, a repetition in the first bit of

c1, and in the last bit of c2, produces strings that differ in only two positions, thus making

the original code not nearly as effective for communicating over a channel that introduces
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additive as well as a repetition error.

More generally, current trends in many emerging applications require timing recovery

to be performed under increasingly stringent constraints. In digital data storage applica-

tions the continuously increasing user demand requires higher storage capacity and higher

data rates while keeping the disk size the same. While this can be accomplished using

advanced coding and signal processing techniques [58], this leads to the timing recovery

block consuming an increasing large fraction of on-chip resources. Low power wireless

applications also demand that accurate synchronization be performed under limited power

and constrained chip area [2].

Sampling errors caused by poor timing recovery, such as repetitions or deletions of sym-

bols, severely impact the decoder’s performance and can undermine the benefits of other

system components, since other components are traditionally not designed to deal with

synchronization errors. As an alternative to developing more complex and more expen-

sive timing recovery schemes, we adopt a coding theoretic point of view in addressing this

problem. Chapter 2 elaborates on the relevant background and introduces the set-theoretic

viewpoint in modelling synchronization errors. We then investigate how to modify additive

error correcting codes, such as Reed-Muller codes, to ensure that they would, in addition to

excellent additive error correction properties, be equipped with good synchronization error

correction capabilities.

We focus on the first order Reed-Muller codes as a representative of a class of highly

structured additive error correcting codes with large minimum distance. For the Reed-
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Muller codes, we first establish and prove several novel properties of the run-length struc-

ture of this code. Chapter 3 contains several structural properties of these codes, which

are then used in Chapter 4 in a systematic analysis of the performance of these codes in

channels which in addition to additive errors also permit a repetition or a deletion of a

symbol. The runlength properties of Reed-Muller codes proved in this thesis may be also

of independent interest. Chapter 4 explains how to systematically thin the original Reed-

Muller code to substantially improve the performance of these codes when the inadequate

synchronization causes a repetition or a deletion of a coded bit, while only losing one infor-

mation symbol. We also derive appropriate post-deletion and post-repetition distance and

propose a modified bounded distance decoding algorithm suitable for decoding thinned

Reed-Muller codes transmitted over the channels that introduce additive noise and a syn-

chronization error. This algorithm is a variant of the Hadamard transform-based bounded

distance decoding algorithm traditionally used to decode Reed-Muller codes. It also fea-

tures the same complexity as this traditional algorithm, while also being able to correct for

a synchronization error.

Motivated by the problem of communicating in the presence of repetition errors, in

Chapter 5 we focus on explicit number-theoretic constructions of a set of strings immune

to multiple repetitions. In particular, we propose an explicit number-theoretic construction

of a set of strings immune to a single repetition, and then subsequently, a construction of

a set of strings immune to multiple repetitions. The former construction is asymptotically

optimal, whereas the latter is within a constant of the upper bound on the cardinality of
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such a set, and improves on the previously best known construction due to Levenshtein

[34].

Using the number-theoretic construction of Chapter 5, we then in Chapter 6 propose

a general method for transforming a code, as an arbitrary collection of binary strings of

equal length, by prepending each string in this collection with a prefix, carefully chosen to

improve the immunity to synchronization errors. The prefix itself is chosen based on the

number-theoretic methods of Chapter 5 and is shown to have length that is only logarithmic

in the length of the strings in the original collection. The proposed method therefore pro-

vides a general way to reach guaranteed immunity to repetition errors with asymptotically

negligible redundancy. We also provide a decoding algorithm, as a variant of a message

passing algorithm, capable of decoding additive as well as repetition errors. The proposed

algorithm does so without the increase in complexity over the traditional message passing

decoding algorithm designed to handle additive errors only. This result concludes the first

part of the dissertation.

In the second part of the dissertation we turn to a different problem where we study

the performance of low density parity check (LDPC) codes in the low BER regime under

iterative decoding. LDPC codes are a class of additive error correcting codes that operate

close to the Shannon limit, which is the absolute limit on the rate that can be achieved over

a noisy channel. LDPC codes were invented by Gallager [26] in the 1960’s, but then were

largely forgotten until early 1990’s. Their rediscovery [39], [32] sparked research interest

in LDPC codes, as well as their wide consideration for many modern applications.
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LDPC codes have a convenient graphical representation which makes them particu-

larly suitable for low complexity, iterative decoding. Finite length LDPC codes and their

iterative decoding algorithms have found tremendous success when used in the moderate

BER region, of say 10−6 and above, and vast empirical evidence supports this finding [37].

However, the suboptimal nature of these highly efficient decoding algorithms on non-tree

graphs (as arise from the graphical representation of most LDPC codes) has also been trou-

blesome when LDPC codes are considered for applications that need to operate at very low

bit error rates.

Many LDPC codes that have excellent performance in the moderate BER region ex-

hibit a change in the slope of the BER vs. signal to noise ratio (SNR) curve in the very

low BER region, a region which is of interest for many practical applications, implying

that a significant increase in the signal power is needed for only a marginal improvement

in the bit error rate. This “error-floor” phenomenon is particularly worrisome for low BER

applications since this region is out of reach of pure software simulations and there is a lack

of appropriate analytic tools needed to address, predict and improve the low BER perfor-

mance of LDPC codes. As a consequence, the deployment of LDPC codes in applications

requiring low BER guarantees has not quite met the original promise of these powerful

codes. Nonetheless, with their unprecedented coding gains, LDPC codes remain strong

contenders for many applications, witnessed by their recent adoption into the digital broad-

casting DVB-S2 standard [65] for satellite communication as well as 10Gb/s standard for

Ethernet [66]. Chapter 8 contains relevant background on LDPC codes and surveys existing



7

work related to the “error floor” problem.

Motivated by earlier experimental observations that certain structures intrinsic to the

parity check matrix of a given code are the dominant causes of the errors in the very low

BER region [48],[63], we introduce the notion of a combinatorial structure in the graphical

representation of an LDPC code, which we call an absorbing set. Chapter 8 also contains

a formal definition of absorbing and fully absorbing sets. Absorbing sets (fully absorb-

ing sets) are combinatorial objects that exist in the Tanner graph associated with the parity

check matrix of a given code and have the property that bits in the absorbing set (and bits

outside the absorbing set) have strictly more satisfied than unsatisfied checks. In particular,

fully absorbing sets are stable under the bit-flipping algorithm, which is the simplest form

of the message passing based decoding of LDPC codes. If there are absorbing sets smaller

that the minimum distance of the code, the decoder is likely to converge to these objects. As

a result, under iterative decoding, the low BER performance will be dominated by the num-

ber and the size of dominant absorbing sets, rather that the number of minimum distance

codewords and the minimum distance itself, which is considered to be the performance

metric under the maximum likelihood decoding and the key property of a code.

To demonstrate the importance of studying absorbing sets, we then provide a detailed

analysis of the minimal absorbing sets and minimal fully absorbing sets of the high rate

array-based LDPC codes in Chapter 9. Minimal (fully) absorbing sets are the sets of the

smallest size and are shown experimentally to dominate low BER performance for sev-

eral LDPC codes. Array-based LDPC codes, as an instance of regular LDPC codes, were
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chosen for this analysis due to their high performance in the moderate BER regime, and

the structure of the parity check matrix that is amenable for many high-throughput appli-

cations. In particular, we analytically describe minimal absorbing sets and minimal fully

absorbing sets for γ = 2, 3, 4 where γ refers to the column weight of the array-based LDPC

code. We also compute the number of (fully) absorbing sets and show how it scales with

the codeword length. For γ = 2, the smallest (fully) absorbing sets are actually minimum

distance codewords whereas for γ = 3, 4 and large enough parity check matrix, the smallest

(fully) absorbing sets have the Hamming weight that is strictly smaller than the minimum

distance of the code. In the latter case, the minimal absorbing sets, rather than the minimum

distance codewords, dominate the low BER performance. This claim is also supported by

the experiments carried out on an emulation platform that demonstrate complete agreement

with the theoretical prediction.

Lastly, Part III summarizes main contributions and proposes potential future extensions

of the work presented here.
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Part I

Communication Over Channels With

Varying Sampling Rate
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Chapter 2

Introduction

In a typical communication system a binary input message x is encoded at the transmit-

ter, using a substitution-error correcting code C, into a coded sequence c = C(x), which

we will assume is also a binary sequence. The modulated version of this sequence may

be modeled as being corrupted by additive noise, so the received waveform after matched

filtering can be written as

r(t) =
∑

i

cih(t− iT ) + n(t), (2.1)

where ci is the ithbit of c, h(t) is convolution of the modulating pulse and the matched

filter, and n(t) represents the noise introduced by the channel.

The receiver samples r(t) at time instances {kTs + τk}, and the sequence of samples

is fed into the decoder which decides on the most likely input message. Accurate synchro-

nization of the sampling instants, i.e that Ts be equal to T and that each τk be ideal, is

critical for the full utilization of the coding gain of the substitution-error correcting code.
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As the operating requirements under which timing recovery must be performed become

more stringent, because of higher data rates and/or longer delays in the decision feed-

back loop that adjusts the sampling instants, such synchronization is becoming harder to

achieve. Several authors have studied the problem of accurate timing recovery. Proposed

solutions include building a more sophisticated timing recovery block [38], multiple hy-

pothesis analysis of the sampling instances [31], and for the intersymbol interference (ISI)

channels in particular, a soft-output detector for both ISI and timing errors [62], and an

iterative timing recovery approach that incorporates timing recovery in turbo equalization

[4].

As an alternative to more complex and more expensive timing recovery schemes, we

propose to shift the emphasis away from the timing recovery block and instead modify the

decoding procedure and the code itself to compensate for inadequate synchronization. By

analyzing the robustness of a substitution-error correction code to synchronization errors,

one could use a subcode of the original code that would have good minimum distance

under both substitution as well as sampling errors. The trade-off would be between the

incurred rate loss associated with the code modification versus the increased complexity

and latency associated with the existing approaches mentioned above. The challenge of

the proposed approach lies in determining the synchronization error correction capabilities

of individual codes of interest, and in determining as large as possible a subcode with the

desired properties. The proposed approach can be considered for any system, and it is

especially relevant for practical pilotless communication systems.
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Figure 2.1: An example of oversampling.

To illustrate the issues that arise when adequate timing recovery is missing, assume (for

purposes of argument) that h(t) is a rectangular pulse of duration T and unit amplitude and

that we are operating in the infinite signal-to-noise (SNR) regime where the effect of n(t)

is negligible. Then r(t) simply becomes

r(t) =
∑

i

ci1(iT ≤ t < (i + 1)T ) . (2.2)

If samples were taken in the middle of each pulse the sampled version of r(t) would be

precisely c. Now suppose that inadequate timing recovery causes the sampling to occur at

time instants kTs + τk.

As an example, consider a sequence c = (0,1,0,1,1,. . .) that results in the waveform r(t)

shown in Figure 2. The sampling points kTs + τk are marked in the figure by �. In this

example, Ts < T causes oversampling, and the sampled version of r(t) contains a repeated

bit (here the fourth bit is sampled twice). Analogously, when Ts > T , undersampling can

cause the separation between two consecutive samples to be so large that some bit is not

sampled at all. Therefore without adequate timing recovery the sampled version of r(t)

results in a sequence obtained by repeating or deleting some bits in c.
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In this work we adopt a set-theoretic model for the synchronization errors in which a

codeword gives rise to a set of possible received sampled sequences which depends on how

many bits are allowed to be repeated or deleted. A codeword c can in general give rise

to a whole set of received sampled versions of r(t). The possible set of such sequences

depends on how good the timing recovery scheme is. When two distinct codewords c1 and

c2 can result in the same sampled sequence, it is no longer possible to uniquely determine

the coded sequence or its pre-image x from the received sequence, even in the noise-free

environment. We then say that the substitution-error correcting code C has an identification

problem. We also say that the pair of codewords c1 and c2 has an identification problem.

More generally, two distinct codewords c1 and c2 could result in sampled sequences

with poor Hamming distance. This would result in poor performance over a channel that

permits substitution errors. In this case we say that the substitution-error correcting code

C has poor identification. We also say that the pair of codewords c1 and c2 has poor

identification.

It should be mentioned that several authors have studied codes immune to insertions

and deletions of bits. For example, the so-called Varshamov-Tenengolts code proposed in

[57] and popularized by Levenshtein in [35] has been further studied by Ferreira et al., [21],

Levenshtein [36], Sloane [51], and Tenengolts [55]. Related constructions were proposed

in [6], [7], [12], [29] and [56]. Even though these constructions result in codes that are im-

mune to a given number of insertions and deletions of bits, they have a limited guarantee for

other desirable properties of standard substitution-error correcting codes (such as linearity
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and a good minimum Hamming distance). Several other authors have proposed concate-

nated codes that correct synchronization errors, such as in [8], [11], and [13]. In contrast

to these works, our approach is to start with known substitution-error correcting codes and

propose ways to modify them with only a small loss in the rate in order to continue to pro-

vide good performance under synchronization errors, which are themselves modeled as a

certain number of repetitions or deletions of bits. A related problem of a code construction

for frame synchronization was studied in [53] and [5].

The next two Chapters focus on the analysis of the first order Reed-Muller codes under

the synchronization and substitution errors. We first prove several new structural prop-

erties of these codes in Chapter 3, which are then subsequently used in Chapter 4 where

we discuss how to systematically thin these codes to improve their performance under syn-

chronization and substitution errors, and how to efficiently decode thinned codes when both

types of errors are present. Chapter 5 discusses explicit number-theoretic constructions of

sets of strings capable of overcoming repetition errors. The focus of this chapter is on de-

riving cardinality results of these constructions using combinatorial and number-theoretic

methods. Lastly, Chapter 6 discusses how to improve repetition error correcting capability

of a collection of binary strings by judiciously appending a prefix to a string belonging to

this collection using the number-theoretic construction from Chapter 5.
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Chapter 3

Structural Properties of Reed-Muller

Codes

In this Chapter we establish several new structural properties of the first order Reed-

Muller codes. These properties, while also of independent interest, will be used in the

subsequent chapter that discusses the performance of Reed-Muller codes under synchro-

nization and substitution errors. Having provided a definition of the first order Reed-Muller

codes in Section 3.1, we prove several runlength properties of these codes in Section 3.2. In

particular, we establish several properties regarding the runlength distribution (Subsection

3.2.1), runs of runs of codewords (Subsection 3.2.2), as well as the relationship between

the message vector and the runs of its codeword (Subsection 3.2.3). Section 3.3 concludes

this Chapter.
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3.1 First Order Reed-Muller Codes

The first order Reed-Muller codes RM(1,m) are linear (2m,m + 1) substitution-error

correcting codes [41]. They have good minimum distance, equal to 2m−1, simple encoding,

and a relatively low complexity maximum likelihood decoding algorithm (O(n log n) for

n = 2m). On the negative side, they have low rate.

From now on, let C(m) denote the RM(1,m) code. The code C(m) may be described

by an (m + 1)× 2m generator matrix Gm given by

Gm =

⎡
⎢⎢⎣ 1

Mm

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 . . . 1 1 1 1

1 1 1 1 1 . . . 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1 1 1 0 . . . 0 0 0 0

1 1 0 0 1 . . . 1 1 0 0

1 0 1 0 1 . . . 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

were 1 denotes the binary string of length 2m with all entries equal to 1, and the m by

2m submatrix Mm consists of lexicographically decreasing binary columns of length m.

Observe that the ith row of Gm, for 1 < i ≤ m+1, consists of 2i−1 alternating runs of ones

and zeros, and that each run is of length 2m−i+1.

For future reference, we recall that every codeword in C(m+1) is either the concatena-
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tion of a codeword in C(m) with itself or the concatenation of a codeword in C(m) with its

bitwise complement [41, Thm. 2, pg. 374]. The concatenation of two binary strings a and

b will be written as [a|b]. If c is a codeword in C(m) it is straightforward to check that its

bitwise complement, denoted c, is also a codeword in C(m). Further, its reversal, i.e. the

binary string got by reading c from its end to its beginning, denoted
c←, is also a codeword

in C(m). Since the operations of bitwise complementation and reversal commute, we may

unambiguously denote the complement of the reversal of c as
c←.

We now establish several runlength properties of Reed-Muller codes.

3.2 Runlength Properties of the RM(1,m) Codes

3.2.1 Run-length distribution

Lemma 1 The codewords in C(m) can be partitioned into 2m−1 + 1 distinct non-empty

groups Gm
j , for 0 ≤ j ≤ 2m−1. Here Gm

j is comprised of those codewords in C(m)

that have j runs of ones. Gm
0 is comprised of exactly one codeword, namely the all-zero

codeword. This codeword will be denoted cm
0 (00). There are 4 distinct codewords in each

group Gm
j , for 1 ≤ j < 2m−1. These codewords may be uniquely identified by their first and

last bit. They may thus be unambiguously denoted as cm
j (11), cm

j (10), cm
j (01), and cm

j (00)

respectively. There are 3 distinct codewords in the group Gm
2m−1 . These codewords may

also be uniquely identified by their first and last bit and may be unambiguously denoted as

cm
2m−1(11), cm

2m−1(10), and cm
2m−1(01) respectively.



18

Proof: The proof is by induction on m. For m = 1 and m = 2 the statement can be verified

by inspection. Suppose the assertion holds for all 1 ≤ m ≤ m0.

Let us first consider the group Gm0
j for 1 ≤ j < 2m0−1. By assumption, it con-

tains 4 codewords, unambiguously denoted as cm0
j (11), cm0

j (01), cm0
j (10), and cm0

j (00)

respectively. Out of the eight possible concatenations of each such codeword with either

itself or its complement, 3 result in codewords in Gm0+1
2j−1 (these are [cm0

j (11)|cm0
j (11)],

[cm0
j (11)|cm0

j (11)], and [cm0
j (01)|cm0

j (01)]), 4 result in codewords in Gm0+1
2j (these are

[cm0
j (01)|cm0

j (01)], [cm0
j (10)| cm0

j (10)], [cm0
j (10)|cm0

j (10)], and [cm0
j (00)|cm0

j (00)]), and 1

results in the codeword [cm0
j (00)|cm0

j (00)] in Gm0+1
2j+1 . By varying j from 1 to 2m0−1 − 1,

inclusive, we thus describe 3 codewords in Gm0+1
1 , 4 codewords in each Gm0+1

j′ for 2 ≤

j′ ≤ 2m0 − 2 and 1 codeword in Gm0+1
2m0−1 such that no two codewords that belong to the

same group Gm0+1
j′ agree in both the first and the last bit.

Now consider the group Gm0

2m0−1 . By assumption it has three codewords unambiguously

denoted as cm0

2m0−1(11), cm0

2m0−1(01), and cm0

2m0−1(10) respectively. There are six possibilities

arising from concatenations of such a codeword with itself or its complement. Of these, 3

result in codewords in Gm0+1
2m0−1 (these are [cm0

2m0−1(01)|cm0

2m0−1(01)] [cm0

2m0−1(11)|cm0

2m0−1(11)],

and [cm0

2m0−1(11)|cm0

2m0−1(11)]) and the remaining 3 result in the codewords of Gm0+1
2m0 . Note

that none of the latter three concatenations has both outer bits equal to ’0’. Note that we

have now described a total of 4 codewords in the group Gm0+1
2m0−1, no two agree in both first

and last bit, and we have also described 3 codewords in the the group Gm0+1
2m0 of the desired

form.
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The concatenation of the all-zero codeword in C(m0) with the all-ones codeword yields

the fourth codeword in Gm0+1
1 , and its concatenation with itself yields the only codeword

in Gm0+1
0 .

We have therefore described 1 + 4× (2m0 − 1) + 3 = 2m0+2 codewords in C(m0 + 1),

which is precisely the cardinality of this code, and we showed that the proposed statement

holds for it. �

By exploiting the result in Lemma 1, it is easy to verify the following, which may also

of course be seen more directly.

Lemma 2 For each 1 ≤ k ≤ 2m, in C(m) there are exactly 2 codewords which have a

total of k runs, and they are bitwise complements of each other.

Proof: The complementary codewords cm
j−1(00) and cm

j (11) each have 2j− 1 runs. Letting

j run from 1 through 2m−1 gives 2m−1 such complementary pairs of codewords. The com-

plementary codewords cm
j (10) and cm

j (01) each have 2j runs. Letting j run from 1 to 2m−1

gives another 2m−1 such complementary pairs of codewords. This completes the proof. �

Lemma 3 Consider a codeword c in C(m). Either c has all its runs of the same length,

which is a power of 2, or the runs in c are of two different lengths, and these two lengths

are consecutive powers of 2. In addition, if there are runs of two different lengths in c, the

outer runs (i.e. the leftmost run and the rightmost run) in c are of the smaller length.

Proof: The proof is by induction on m. It is straightforward to check the truth of the

statement for m = 1 and m = 2. Suppose now that the given statement is true for all
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1 ≤ m ≤ m0. For a codeword c in C(m0) let [c|c] and [c|c] denote the codewords in

C(m0 + 1) that are the concatenation of c with itself, and the concatenation of c with its

complement, respectively.

Suppose first that c has all its runs of the same length, equal to 2s for some s ≥ 0. If c

has the same starting and ending bits then in the concatenation [c|c] all runs have the same

length 2s, so the statement of the lemma holds. In the concatenation [c|c] all runs except

the run at the point of concatenation (if there are any such runs) have length 2s and the run

at the point of concatenation has length 2s+1. The proposed statement continues to be true

both in the case in which there are some runs other than the one at point of concatenation

and in the case when there are no such runs. If c starts and ends with different bits, we may

repeat the previous argument mutatis mutandis.

Now suppose that c has runs of different lengths, which are two consecutive powers of

2, say 2s and 2s+1. By assumption, the outer runs are of length 2s each, and there is at least

one run of length 2s+1. As before, if c starts and ends in the same bit, the concatenation

[c|c] will have all its runs of lengths either 2s or 2s+1. Further, the outer runs in [c|c] have

the same length as the ones in c, i.e. they are of length 2s each, so the statement of the

lemma is valid. In the concatenation [c|c], the last run in the left copy of c and the first run

in the right copy of c are merged together, and all other runs are unchanged in length. By

assumption, the outer runs in c have length 2s each, so their merger results in a run in [c|c]

of length 2× 2s = 2s+1. Thus all runs in [c|c] have length either 2s or 2s+1. Since the outer

runs in [c|c] are of the same length as the outer runs in c, they have length 2s, as required.
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Figure 3.1: Construction of codewords in C(m0 + 1) from codewords in C(m0).

For c starting and ending in different bits, we repeat this argument mutatis mutandis.

Since each codeword in C(m0 + 1) can be written as a concatenation of a codeword in

C(m0) either with itself or with its complement, the proof of the Lemma is complete. �

Lemma 4 With the exception of the all-ones codeword, all codewords belonging to the

group Gm
j for 2p−1 < j ≤ 2p for some p, 0 ≤ p ≤ m − 1 have all runs of ones either of

length 2m−p−1 or of length 2m−p. Moreover, (j − 2p−1) × 2 runs out of these j runs have

length 2m−p−1, and the remaining 2p − j runs have length 2m−p.

Proof: To prove the statement we use induction on m. For small values of m, the proposed

statement can be verified directly. Suppose now that the assertion holds for some m = m0.

By Lemma 9, the group Gm0

j′ for 2p−1 < j′ ≤ 2p for some p, 0 ≤ p ≤ m0 − 1 contains

codewords cm0

j′ (10), cm0

j′ (01), and cm0

j′ (11). If j′ �= 2m0−1 it also contains cm0

j′ (00). There

is a single codeword in Gm0
0 (the all-zeros codeword). Let us now analyze all the possible

concatenations of the codewords belonging to the group Gm0
j , 0 ≤ j ≤ 2m0−1 i.e. of each
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codeword with itself and with its complement. By Lemma 9 there are at most 4 codewords

in Gm0
j so we have to consider at most 8 different concatenations. In doing so, the similar

cases will be presented together.

• The concatenation of cm0
j (11), if it exists, with itself produces a codeword in Gm0+1

2j−1

(see Arrow 1 in Figure 3.1).

If j = 1, cm0
j (11) is the all-ones codeword in C(m0), and the concatenation with

itself produces the all-ones codeword in C(m0 + 1). If j > 1, the outer runs in

cm0
j (11) must be of size 2m0−p−1. (To see this not that if j is a complete power of

2, i.e. j = 2p then all runs of ones, including the outer runs, are of size 2m0−p−1 by

assumption, and if j is not a complete power of 2, i.e. 2p−1 < j < 2p then the outer

runs must have size 2m0−p−1 by Lemma 3). In the process of concatenation, two

outer, smaller runs merge into one larger run and all other runs of ones are unaltered.

Therefore, in the resulting codeword in Gm0+1
2j−1 , where j > 1, and 2p < 2j − 1 <

2p+1, there are 2 × (j − 2p−1) × 2 − 2 = ((2j − 1) − 2p) × 2 runs of ones of size

2m0−p−1 = 2(m0+1)−(p+1)−1, and 2× (2p − j) + 1 = 2p+1 − (2j − 1) runs of ones of

size 2m0−p = 2(m0+1)−(p+1) .

• The concatenation of cm0
j (11), if it exists, with its complement produces a codeword

in Gm0+1
2j−1 (see Arrow 2 in Figure 3.1).

The complement of cm0
j (11) is cm0

j−1(00). By assumption, cm0
j (11) has (j − 2p−1)× 2

runs of ones of size 2m0−p−1, and 2p − j runs of ones of size 2m0−p, for j > 1. If
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j = 1, then p = 0, and the complement is the all-zero codeword, so the result of the

concatenation has a single run of ones, of size 2m0 = 2(m0+1)−1.

Suppose now that j > 1. Then there is a corresponding p such that 2p−1 < j ≤ 2p

and 0 < p ≤ m0 − 1. Note that 2p−1 ≤ j − 1 < 2p.

Case 1: j − 1 = 2p−1

Under this condition, the codeword cm0
j−1(00) has all j − 1 runs of ones of size

2m0−(p−1)−1 each. The concatenation of cm0
j (11) and cm0

j−1(00) then has (j − 2p−1)×

2 = 2 runs of ones of size 2m0−p−1, and 2p − j + j − 1 = 2p − 1 runs of ones of size

2m0−p. Using the fact that 2 = ((2j− 1)− 2p)× 2, 2p− 1 = 2p+1− (2j− 1) and that

2p < 2j − 1 < 2p+1, we conclude that the resulting codeword satisfies the proposed

assertion.

Case 2: j − 1 > 2p−1

The codeword cm0
j−1(00) has ((j − 1) − 2p−1) × 2 runs of ones of size 2m0−p−1 and

2p − (j − 1) runs of ones of size 2m0−p. The result of the concatenation has (j −

2p−1)× 2 + ((j− 1)− 2p−1)× 2 = ((2j− 1)− 2p)× 2 runs of ones of size 2m0−p−1,

and 2p − j + 2p − (j − 1) = 2p+1 − (2j − 1) runs of ones of size 2m0−p. Since

2p < 2j − 1 < 2p+1, the proposed assertion holds for this choice of j − 1 as well.

• The concatenation of cm0
j (01), if it exists, with its complement produces a codeword

in Gm0+1
2j−1 (see Arrow 3 in Figure 3.1).

First note that the complement of cm0
j (01) is cm0

j (10), and since they both belong to
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the same group Gm0
j , by assumption they both have (j − 2p−1) × 2 runs of ones of

size 2m0−p−1, and 2p − j runs of ones of size 2m0−p.

As established in Lemma 3, the outer runs are of the smaller size (here 2m0−p−1), so

in the process of concatenating cm0
j (01) and cm0

j (10), the rightmost run of ones in

cm0
j (01) merges with the leftmost run of ones in cm0

j (10), resulting in a run of ones

of size 2m0−p. All other runs of ones are unaltered. We will treat the cases j = 1 and

j > 1 separately.

If j = 1, both cm0
j (01) and cm0

j (10) have one run of ones of size 2m0−1, so their

concatenation results in a codeword in Gm0+1
1 whose sole run of ones is of size 2m0 ,

which is consistent with the proposed assertion.

For j > 1, the concatenation of cm0
j (01) with its complement has (2j−2p)×2−2 =

((2j − 1) − 2p) × 2 runs of ones of size 2(m0+1)−(p+1)−1, and 2 × (2p − j) + 1 =

2p+1 − (2j − 1) runs of ones of size 2(m0+1)−(p+1). Since j > 1, 2p < 2j − 1 < 2p+1

holds, and we can conclude that the codeword in Gm0+1
2j−1 obtained by concatenating

cm0
j (01) with its complement satisfies the proposed assertion.

• The concatenation of cm0
j (10), if it exists, with its complement produces a codeword

in Gm0+1
2j (see Arrow 5 in Figure 3.1).

Note that both cm0
j (01) and its complement cm0

j (10) have (j− 2p−1)× 2 runs of ones

of size 2m0−p−1, and 2p − j runs of ones of size 2m0−p. Consequently, the result

of the concatenation has (j − 2p−1) × 2 × 2 = (2j − 2p) × 2 runs of ones of size
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2(m0+1)−(p+1)−1, and (2p − j) × 2 = 2p+1 − 2j runs of ones of size 2m0−p. Since

2p < 2j ≤ 2p+1, we can conclude that the proposed assertion holds for a codeword

in Gm0+1
2j obtained by concatenating cm0

j (10) with its complement.

• The concatenation of cm0
j (10), if it exists, with itself produces a codeword in Gm0+1

2j

(see Arrow 6 in Figure 3.1).

Now, for 2p < 2j ≤ 2p+1) the resulting codeword has 2×(j−2p−1)×2 = (2j−2p)×2

runs of ones of size 2m0−p−1 = 2(m0+1)−(p+1)−1, and 2× (2p − j) = 2p+1 − 2j runs

of ones of size 2m0−p = 2(m0+1)−(p+1). No runs of ones are altered, they are merely

duplicated. This same argument applies to the concatenation of cm0
j (01) with itself

(Arrow 4 in Figure 3.1), and to the concatenation of cm0
j (00) with itself (Arrow 7 in

Figure 3.1).

• The concatenation of cm0
j (00), if it exists, with its complement produces a codeword

in Gm0+1
2j+1 (see Arrow 8 in Figure 3.1). If j = 0, cm0

j (00) is the all-zeros codeword.

The concatenation with its complement (the all-ones codeword) produces a codeword

in Gm0+1
1 that has a single run of ones of size 2(m0+1)−1.

By assumption, for j > 0, the codeword cm0
j (00) has (j − 2p−1)× 2 runs of ones of

size 2m0−p−1, and 2p − j runs of ones of size 2m0−p. The complement of cm0
j (00) is

cm0
j+1(11). We will analyze the cases when 2p−1 < j < 2p and j = 2p separately.

Case 1: 2p−1 < j < 2p.

Here we have that 2p−1 < j + 1 ≤ 2p, and 2p < 2j + 1 < 2p+1. By assumption,
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cm0
j+1(11) has ((j+1)−2p−1)×2 runs of ones of size 2m0−p−1 and 2p−(j+1) runs of

ones of size 2m0−p. Consequently, the concatenation has (j− 2p−1)× 2 + ((j + 1)−

2p−1)× 2=((2j + 1)− 2p)× 2 runs of ones of size 2m0−p−1 = 2(m0+1)−(p+1)−1, and

2p− j + 2p− (j + 1) = 2p+1− (2j + 1) runs of ones of size 2m0−p = 2(m0+1)−(p+1).

The assertion therefore holds for the codeword in Gm0+1
2j+1 , obtained by concatenating

cm0
j (00) with its complement, when 2p−1 < j < 2p.

Case 2: j = 2p.

Now we have that 2p < j + 1 ≤ 2p+1 and 2p+1 < 2j + 1 < 2p+2. In this case,

cm0
j (00) has all j = 2p runs of ones of size 2m0−p−1. Its complement cm0

j+1(11) has

((j + 1) − 2p) × 2 runs of ones of size 2m0−(p+1)−1 = 2m0−p−2, and 2p+1 − (j + 1)

runs of ones of size 2m0−(p+1) = 2m0−p−1. The result of the concatenation has 2p +

2p+1 − (j + 1) = 2p+1 − 1 runs of ones of size 2m0−p−1, and ((j + 1)− 2p)× 2 runs

of ones of size 2m0−p−2. Since j = 2p, we can replace 2p+1− 1 with 2p+2− (2j + 1)

and ((j + 1) − 2p) × 2 with ((2j + 1) − 2p+1) × 2. Thus, for j = 2p, the result of

the concatenation of cm0
j (00) with its complement is a codeword in Gm0+1

2j+1 that has

2p+2− (2j + 1) runs of ones of size 2(m0+1)−(p+2), and ((2j + 1)− 2p+1)× 2 runs of

ones of size 2(m0+1)−(p+2)−1, where 2p+1 < 2j + 1 < 2p+2.

Combining the results stated so far in the proof, we conclude that Lemma 4 holds for

C(m0 + 1). �

For the subsequent analysis we also need to record some properties of the runs of runs

in the codewords of RM(1, m).
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3.2.2 Properties of the run of runs of the RM(1, m) codewords

Definition 1 For a codeword c ∈ C(m) let d = d(c) be the string whose entries are the

lengths of consecutive runs in c, read from left to right. Let Dm = {d|d = d(c), c ∈

C(m)}, so that Dm represents the collection of all possible sequences of run lengths asso-

ciated with the codewords of C(m). �

As an example, consider a codeword c=‘10010110’, where c ∈ C(3). Then, the asso-

ciated d = d(c) is d=‘121121’.

We now state several results about such sequences of run lengths, which we will prove

together.

Lemma 5 [mirror-symmetry] ∀c ∈ C(m), the string d = d(c) possesses the mirror-

symmetry property, i.e. the entry in position p in d, denoted by d(p), is the same as the

entry in position l− p + 1, denoted by d(l− p + 1), where l represents the length of string

d.

Lemma 6 If all entries in d = d(c) are either 1 or 2, with at least one entry being 1 and

one being 2, then the following holds:

1. The leftmost entry equal to 2 must be in position 2p, for some p ≥ 1.

2. Each run of 2’s in d is of length 2q − 1, for some q ≥ 1.

3. Each inner run of 1’s (where the inner run denotes a run with neighboring runs on

each side) in d is of length 2r − 2, for some r ≥ 1.
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Proof: We prove these statements by induction. We first directly verify them for small

values of m. The codewords in C(1) are ‘00’,‘11’,‘01’, and ‘10’, so D1 = {‘2’,‘11’}. The

truth of the statements can be directly verified in this case. The codewords in C(2) are

‘0000’, ‘1111’, ‘1100’, ‘0011’, ‘0110’, ‘1001’, ‘1010’, and ‘0101’, so

D2 = {‘4’,‘22’,‘121’,‘1111’}, and again the proposed statements can be verified. Simi-

larly, the set associated with C(3) is

D3 = { ‘8’,‘44’,‘242’,‘2222’,‘12221’,

‘121121’,‘1112111’,‘11111111’} ,

and the statements hold. In particular, Lemmas 6.1 and 6.2 are applicable for the strings

‘12221’, ‘121121’, and ‘1112111’, and Lemma 6.3 is applicable for the string ‘121121’.

Suppose now that the proposed Lemmas hold for all elements of Dm for 1 ≤ m ≤ m0.

For a codeword c in C(m0) let c′ = [c|c] and c′′ = [c|c], and let d = d(c), d′ = d(c′), and

d′′ = d(c′′).

First consider the case when the outermost bits in c are complements of each other.

Then, in constructing c′ from c, no runs are altered and the statements in Lemmas 24 and

6 which by assumption hold for d, continue to hold for d′ = [d|d]. In particular, if d has

length l0, d′ has length 2l0. The entry d′(p), for 1 ≤ p ≤ l0 is the same as d′(l0 − p + 1),

by assumption, which is the same as d′(l0 − p + 1 + l0) = d′(2l0 − p + 1). Thus, the

mirror-symmetry property is preserved. The leftmost entry equal to 2 in d′, if there is one,

is in the same position as the leftmost entry equal to 2 in d and Lemma 6.1 holds trivially.

If d′ has only entries equal to 1 or 2, and has at least one entry of each kind, the outermost
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runs in c′ and therefore in c must be 1-bit runs by Lemma 3. As an easy consequence,

Lemma 6.2 continues to hold for c′. By assumption, the leftmost 2 in c is in position 2p for

some p, so that the leftmost run of 1’s in d is of length 2p−1. The rightmost run of 1’s in d

is also 2p − 1 by the mirror symmetry assumption. At the point of concatenation of c with

itself, two sequences of 1-bit runs each of length 2p − 1 are concatenated, and as a result,

an inner run of 1’s in d′ of length 2(2p − 1) = 2p+1 − 2 is created. All other runs in d′ are

of the same length as the runs in d, and Lemma 6.3 follows.

We now focus on c′′ and its d′′. All runs in d′′ remain the same as in d′ = [d|d], except

that the two innermost entries (which are the same by the mirror-symmetry property of d)

are replaced by a single entry of their sum. For d of length l0, d′′ has length 2l0 − 1. The

entry d′′(p) for 1 < p ≤ l0 − 1 is the same as d′′(l0 − p + 1), which is also the same as

d′′(l0− p + 1 + l0− 1) = d′′((2l0− 1)− p + 1). For p = 1, the entry in the first position in

d′′ is the same as both the first and the last entry in d, which is itself equal to the last entry

in d′′. Therefore, the mirror-symmetry property (Lemma 24) continues to hold for d′′.

If d has at least one entry equal to 2, its leftmost 2 is in the same position as the leftmost

2 in d′′, and Lemma 6.1 remains to hold . If d has all entries equal to 1, then the length of

d is 2m0 and d′′ has a single 2 in the middle position, which is then a power of 2, and both

Lemma 6.1 and 6.2 hold.

By Lemma 3, if c has both 1-bit and 2-bit runs, the outermost runs must be 1-bit runs.

If the outermost 1-bit runs in c are neighbored by another 1-bit runs, the innermost run

of 2’s in d′′ is then of length 1. If the outermost 1-bit runs in c′ are neighbored by a
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sequence of consecutive 2-bit runs, which each by assumption and the symmetry property

of c must contain 2q0 − 1 consecutive 2-bit runs, then the innermost run of 2’s (at the point

of concatenation in c′′) in d′′ is of length 2(2q0 − 1) + 1 = 2q0+1 − 1. Since all other runs

in c′′ remain unaltered we can conclude that Lemma 6.2 holds as well. Finally, Lemma 6.3

continues to hold trivially since all inner runs of 1’s in d′′ already existed as inner runs of

1’s in two copies of d.

If the outermost bits in c are the same, we can mimic the above proof by simply ex-

changing c′ and c′′. As discussed before, since each codeword in C(m0 + 1) is either a

concatenation of a codeword in C(m0) with itself or with its complement, we can conclude

that Lemmas 24 and 6 continue to hold for C(m0 + 1). �

Another useful observation is given in the following:

Lemma 7 If da = d(ca) and db = d(cb), for ca, cb ∈ C(m) (da, db ∈ Dm) and m > 2,

are such that they have 2k + 1 and 2k entries respectively, and all their entries are 1 or 2,

then in the first leftmost position in which they differ, call it p, the entry is 1 in da and is 2

in db, and p < k.

Proof: Let s be the largest power of 2 that divides 2k. By assumption s ≥ 1. By Lemma

2, there exists a codeword in C(m − s), call it c∗b, that has r1 = 2k/2s runs and has the

same leftmost bit as cb. In particular, if 2k is itself a power of 2, c∗b has a single run of

length 2m/2k. By the existence of ca in C(m) with 2k + 1 runs, 2k is strictly less than 2m,

and thus m− s ≥ 1. Consider a codeword in C(m− s) that has r1 + 1 runs, and the same

leftmost bit as ca, and call it c∗a. Since r1 is odd, r1 + 1 ≤ 2m−s and c∗a exists by Lemma 2.
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Let ce be a codeword in C(m− s− 1) that has (r1 + 1)/2 runs and the same leftmost

bit as ca (since m− s ≥ 1, the code C(m− s− 1) and its codeword ce exist). If ce starts

and ends in the same bit, which corresponds to odd (r1 + 1)/2, we consider the codewords

c′e = [ce|ce] and c′′e = [ce|ce] in C(m − s), and associate d′
e = d(c′e) and d′′

e = d(c′′e) to

them. Note that |d′
e| = |d′′

e|+ 1, where |d′
e| indicates the length of string d′

e. Moreover, the

middle entry (in position (r1 +1)/2) in d′′
e is the sum of two innermost entries in d′

e (which

span positions (r1 + 1)/2 and (r1 + 1)/2 + 1, and are equal to each other by Lemma 24),

and all other entries in these two strings are the same.

If ce starts and ends in complementary bits, which happens for even (r1 +1)/2, instead

let c′e = [ce|ce] and c′′e = [ce|ce], and associate d′
e = d(c′e) and d′′

e = d(c′′e) with them.

Observe that |d′
e| = |d′′

e|+1 as well as that d′′
e is the same as d′

e except for the two innermost

entries in d′
e, which are replaced by their sum to yield the middle entry of d′′

e. By the

uniqueness of a codeword in C(m − s) having |d′
e| runs and starting with a particular bit

(that being the leftmost bit of ca), established in Lemma 2, we conclude that c∗a = c′e, and

similarly c∗b = c′′e.

Therefore, the first leftmost position in which d∗
b = d(c∗b) (same as d′′

e) and d∗
a = d(c∗a)

(same as d′
e) differ is their (r1 + 1)/2th position, such that the entry in that position in d∗

b

is twice its counterpart in d∗
a. By assumption on the entries of da and db being at most 2,

it further follows that the entry is 1 in d∗
a and 2 in d∗

b.

By constructing a sequence of codewords {cb,i}, for 1 ≤ i ≤ s + 1, starting from cb,1

= c∗b, and where cb,i ∈ C(m − s − 1 + i) is the result of concatenation of cb,i−1 either
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with itself or with its complement (former if the outermost bits in cb,i−1 are different and

latter if they are the same), we arrive at cb. In particular, the associated db,i = d(cb,i) have

length 2i−1r1, and for the last term in the sequence db,s+1 is of length 2sr1 = 2k, which is

precisely the length of d(cb).

Similarly, we construct a sequence of codewords {ca,i}, for 1 ≤ i ≤ s + 1, starting

from ca,1 = c∗a. Now ca,i ∈ C(m− s− 1 + i) is the result of concatenation of ca,i−1 with

itself if the outermost bits in ca,i−1 are the same, otherwise it is the result of concatenation

of ca,i−1 with its complement. The associated da,i = d(ca,i) have length 2i−1r1 + 1, so

that the last term in the sequence has 2sr1 + 1 = 2k + 1 runs, which is precisely the length

of da = d(ca). Thus, in starting from c∗a, by a series of concatenations in which the runs

at the point of concatenation are always merged, we arrive at ca. Since the first leftmost

entry in which d∗
b and d∗

a differ are in their (r1 +1)/2th leftmost positions, the first position

in which db and da differ are still in their (r1 + 1)/2th leftmost positions. Since s is at

least 1, (r1 + 1)/2 ≤ (k + 1)/2 < k, for k > 1. If k = 1, da is ‘2m−12m−1’, and db is

‘2m−22m−12m−2’. For m > 2, 2m−2 > 1, which exceeds the requirement on the entries of

db being at most 2. �

It is sometimes useful to determine the number of runs of a particular codeword based

on its input message and vice versa. In the final subsection of this chapter we provide an

explicit relationship between these two quantities.
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3.2.3 Relationship between the input message and the run-lengths of

its codeword

Let am = (a0, am, am−1, ..., a2, a1) be a binary string of length m + 1 and let c be a

codeword in C(m) such that c = amGm. The bit a0 multiplies the all-ones row of Gm

and therefore does not affect the number of runs of the resulting codeword, i.e. am =

(a0, am, am−1, ..., a2, a1) and am
′ = (a0, am, am−1, ..., a2, a1) result in complement code-

words (with the same number of runs). In the following we replace a0 by x to indicate that

the value of a0 does not matter.

We denote by Rm(a0, a1, ..., am−1, am) the total number of runs in c. The following

result provides a closed-form expression for Rm(a0, a1, ..., am−1, am) in terms of am.

Lemma 8 The number of runs in the codeword c given by c = amGm where am =

(a0, am, am−1, ..., a2, a1) is Rm(a0, a1, ..., am−1, am) = 2m−1a1 + 2m−2 + 1/2−
∑m

k=2 2m−k−1(−1)
�k

i=1 ai .

Proof: In proving this result we adopt the following viewpoint. Consider the set of m

combs along the sequence of 2m bits, which itself corresponds to a codeword in C(m).

Here the ith comb, 1 ≤ i ≤ m, corresponds to ai in the input message, and has teeth

exactly where the row of Gm that multiplies ai has a change of runs. In particular, the

last, mth, comb has a single tooth that is positioned right between the left and the right

half of this 2m sequence. The penultimate comb has three teeth, immediately following

the 2m−2th, 2m−1th and 3 × 2m−2th bit in the sequence, and so on. The ith comb, for
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1 ≤ i ≤ m, has 2m−i+1 − 1 teeth, each positioned immediately after the k × 2i−1th bit,

for 1 ≤ k ≤ 2m−i+1 − 1. To determine the total number of runs in the resulting codeword

we look at the total parity of teeth of those combs whose ai’s are 1, in all possible teeth

locations. In particular, odd parity indicates a change of run while the even parity indicates

no change of run. The total number of runs is then 1 plus the number of places where the

parity of the teeth of the selected combs is odd. This can be written as

Rm(a0, a1, ..., am−1, am) = 1 + 2m−1 × 1(a1 is odd ) + 2m−2 × 1(a1 + a2 is odd )+

2m−i × 1(a1 + · · ·+ ai is odd ) + · · ·+ 2m−m × 1(a1 + · · ·+ am is odd ) .

(3.1)

Rewrite (3.1) as

Rm(a0, a1, ..., am−1, am) = 1 + 2m−1 × 1(a1 is odd )+

2m−3 + 2m−3 × 1(a1 + a2 is odd )− 2m−3 +×1(a1 + a2 is even )+

...

2m−i−1 + 2m−i−1 × 1(a1 + · · ·+ ai is odd )− 2m−i−1 +×1(a1 + · · ·+ ai is even )+

...

1
2

+ 1
2
× 1(a1 + . . . am is odd )− 1

2
× 1(a1 + . . . am is even ) .

(3.2)

Collecting the free terms and reexpressing the indicators in terms of powers of (−1) in

(3.2), it follows that

Rm(a0, a1, ..., am−1, am) = 1 + 2m−1a1 + (1
2

+ 1 + 2 + · · ·+ 2m−3)−∑m
k=2 2m−k−1(−1)

�k
i=1 ai

= 2m−1a1 + 1
2

+ 2m−2 −∑m
k=2 2m−k−1(−1)

�k
i=1 ai ,

(3.3)
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which completes the proof. �

It is also useful to know how to quickly determine the input message based on the

number of runs in the codeword it generates. Let N1,m be the integer denoting the number of

runs of a codeword in C(m), and let am(N1,m) = (a0, am, ..., a2, a1) be the input message

whose codeword has N1,m runs.

First observe from (3.1) that for a1 = 1, Rm(x, 1, ..., am−1, am) is in the interval [2m−1+

1, 2m] and for a1 = 0, Rm(x, 0, ..., am−1, am) is in the interval [1, 2m−1]. Thus, for the given

m, if N1,m ≥ 2m−1 + 1, a1 must be 1, otherwise it must be zero. By substituting a1 = 0

and a1 = 1 in (3.1) it follows immediately that

Rm(x, 1, ..., am−1, am) + Rm(x, 0, ..., am−1, am) = 2m + 1 .

To evaluate the remaining a2 through am, we determine the contribution of a2 through am

to N1,m. This contribution N2,m is N1,m for a1 = 0 and is 2m+1−N1,m for a1 = 1. Having

determined a1, observe that Rm(x, 0, a2, ..., am−1, am) = Rm−1(x, a2, ..., am−1, am), since

the ith row of Gm for 1 ≤ i ≤ m is constructed from the ith row of Gm−1 by repeating

each entry twice. Thus, a codeword constructed from the linear combination of a subset of

these particular rows of Gm has the same number of runs as the codeword in C(m − 1)

constructed from the counterpart rows of Gm−1.

We now view a2 as the value that multiplies the last row of Gm−1, just like a1 did for

Gm. By using the same line of arguments as for a1, conclude that if N2,m ≥ 2(m−1)−1 + 1,

a2 is 1, otherwise it is 0. The contribution N3,m of a3 through am is N2,m if a2 = 0 and is

2m−1 + 1−N2,m for a2 = 1. Compare N3,m to 2(m−2)−1 + 1, and if below, set a3 = 0, else
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a3 = 1. Repeat evaluating Ni,m and ai until am is determined.

Recall that input messages (1, am, ..., a2, a1) and (0, am, ..., a2, a1) result in complement

codewords which thus have the same number of runs.

The steps for determining the input message am(N1,m) = (x, am, ...a2, a1) for the given

integer N1,m can be outlined as follows:

1. Set i = 1.

2. Set ai = 1(Ni,m ≥ 2m−i + 1).

3. Set Ni+1,m = (2m−i+1 + 1−Ni,m)1(ai = 1) + Ni,m1(ai = 0).

4. If i = m return strings (1, am, ..., a2, a1) and (0, am, ..., a2, a1), else go back to Step

2 with i→ i + 1.

3.3 Summary and Concluding Remarks

Motivated by the model presented in the previous chapter, in this chapter we developed

several structural properties of the RM(1,m) codes. These structural properties concern-

ing runlength distribution, properties of these runs and the connection between the input

message and the runs of its codeword may be of interest in their own right. In the next

chapter we will exploit the properties established here in discussing the performance of the

RM(1,m) codes under substitution and synchronization errors.
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Chapter 4

Reed-Muller(1,m) Codes Under

Synchronization and Substitution Errors

In this chapter we study the performance of a Reed-Muller RM(1,m) code, as an in-

stance of a substitution-error correcting code, over channels in which, in addition to sub-

stitution errors, a sampling error can cause synchronization errors. In particular, we study

the cases where the synchronization error results in the deletion of a single bit and where

it results in the repetition of a single bit. In Section 4.1 we revisit the previously discussed

model of synchronization errors. Section 4.2 discusses the identification problem for the

RM(1,m) code under repetition and deletion errors, and provides a method to modify this

code to eliminate the identification problem. The pruned code also has good identification

under synchronization errors. The proofs heavily rely on the structural properties proved

earlier in Chapter 3. In Section 4.3 we study the modified RM code under synchronization
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and substitution errors. In particular, we establish the post-repetition and the post-deletion

distance of this code (Subsection 4.3.1) and provide bounded distance decoding algorithms

suitable for the channels of present interest (Subsection 4.3.2). Section 4.4 provides a sum-

mary and concluding remarks.

4.1 Transmission Model Revisited

We recall the discussion of synchronization errors from Chapter 2. We adopt the follow-

ing model in the infinite SNR limit. Suppose C is a (n, k) linear block code. A codeword

c ∈ C is modulated using pulse-amplitude modulation (PAM), and the received waveform

r(t) is sampled noise-free. Let r be the sampled version of r(t) of length l bits. We assume

that the location of the first and the last bit of r in the received string of data is known, so

that the codewords can be analyzed in isolation. Then, from l we would know the differ-

ence between the number of repetitions and the number of deletions that occurred over the

channel. For instance, if the channel model permits one repetition, then if l = n we know

that the the sampled version of r(t) equals c, while if l = n+1 the sampled version of r(t)

is c but with one bit repeated. Similarly, if the channel model permits one deletion, then if

l = n we know that the sampled version of r(t) equals c, while if l = n − 1 the sampled

version of r(t) is c with one bit deleted. These are the two channel models that we con-

sider in this Chapter. Note that in these examples the location of the repeated (respectively

deleted) bit is not known.
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In general, in the infinite SNR limit a channel with synchronization errors could be

modelled as introducing a certain number of repetitions and deletions in the transmitted

codeword. Assuming, as above, that the location of the first and the last bit in the received

string of data is known codewords could be analyzed in isolation, and we would learn

the difference, l − n, between the number of repetitions and the number of deletions that

occurred over the channel. However, we would not know the location of the repetitions

and/or the deletions. This more general kind of model is not analyzed here.

This chapter is concerned with use of RM(1,m) codes over channels permitting sub-

stitution and synchronization errors under the two kinds of synchronization error models

discussed in the first paragraph: the single repetition model and the single deletion model.

4.2 Identification Problem

In this section we analyze the identification problem for codewords of the RM(1,m)

codes over channels permitting a single deletion. Before doing so, we first deal with the

much simpler case of channels permitting only (an arbitrary number of) repetition errors.

4.2.1 The case of repetition errors

We have the following simple result:

Theorem 1 In C(m), no two codewords can result in the same string when they experience

repetitions.
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Proof: For the case of one, or any number of repetitions, two codewords in C(m) resulting

in the same string must have the same number of runs, and the same sequence of runs. By

Lemma 2 there are exactly two codewords with the same number of runs. However these

two codewords are also complements of each other and therefore cannot have the same

sequence of runs. We can conclude that C(m) is immune to repetition errors. �

It should be noted, nevertheless, that even single repetitions can result in pairs of

codewords of the RM(1,m) code having poor identification. For instance, the codeword

c2m−1(01) and its complement c2m−1(10) have a post-repetition Hamming distance of 2.

4.2.2 The case of a single deletion

The analysis of the identification problem for RM(1,m) codes over channels permitting

a single deletion is considerably more interesting, see Theorem 2. Before proceeding to the

main theorem, we first make a couple of simple remarks.

Remark 1 [Complementarity] Consider two distinct codewords ca and cb in C(m). If ca

and cb can give rise to the same string after experiencing one deletion each, the same is

true for their bitwise complements ca and cb.

Remark 2 [Reversibility] Consider two distinct codewords ca and cb in C(m), If ca and

cb can give rise to the same string after experiencing one deletion each the same is true for

their reversals
ca← and

cb←.
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Here is a description of the pairs of codewords in RM(1,m) which suffer from the

identification problem over channels with a single deletion, for small values of m:

Remark 3 For m = 0, 1, 2 we can show by inspection the following.

m = 0 : The only codewords are ‘0’ and ‘1’ and they can both result in an empty string.

m = 1 : The codewords are ‘00’, ‘11’, ‘01’, and ‘10’. The codewords ‘00’, ‘01’, and

‘10’ can all result in ‘0’, and the codewords ‘11’,‘10’, and ‘01’ can all result in ‘1’.

m = 2 : The codewords are ‘0000’, ‘1100’, ‘0011’, ‘0110’, ‘1111’, ‘1010’, ‘0101’, and

‘1001’. The codeword ‘0011’ and any one of ‘0110’, ‘0101’, and ‘1001’ can result in the

same string. Similarly, the codeword ‘1100’ and any one of ‘1001’, ‘1010’, and ‘0110’ can

result in the same string. The same is true for ‘0110’, and any one of ‘1010’ and ‘0101’ as

well as for ‘1001’ and any one of ‘0101’ and ‘1010’. Also, ‘1010’ and ‘0101’ can result in

the same string. �

We may now complete the analysis of the identification problem for RM(1,m) codes

over channels permitting a single deletion:

Theorem 2 Let j = 2m−1 and k = 2m−2. For m ≥ 3, there is a total of 11 pairs of distinct

codewords in C(m) that result in the same string when each experiences a deletion. These

are:

1. cm
j (10) and cm

j (01)

}
Group 1
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2. cm
j (10) and cm

j (11)

3. cm
j (10) and cm

j−1(00)

4. cm
j (01) and cm

j (11)

5. cm
j (01) and cm

j−1(00)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Group 2

6. cm
k (01) and cm

k (00)

7. cm
k (01) and cm

k+1(11)

8. cm
k (10) and cm

k (00)

9. cm
k (10) and cm

k+1(11)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Group 3

10. cm
j (01) and cm

j−1(01)

11. cm
j (10) and cm

j−1(10)

⎫⎪⎪⎬
⎪⎪⎭Group 4

Proof: Observe that we have already established this result for m = 2 in the previous

remark. In the rest of the proof we will assume that m ≥ 3.

Note that it is sufficient to assume that the deletion occurs at the end of a run, since the

string resulting from a deletion of a bit in some codeword is the same irrespective of where

the deleted bit was located within the run it belonged to.

Suppose ca and cb are distinct codewords in C(m) which result in the same string

when each experiences one deletion. Let da = d(ca) and db = d(cb) be as defined

in Definition 1. We first observe that during a deletion, the total number of runs in the

codeword stays the same, decreases by one, or by two. Suppose a codeword ca experiences

a deletion in a run of length at least 2. Then the length of da remains unchanged. If
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ca experiences a deletion in a run of length 1, the neighboring runs (if any) will merge

and the total number of runs will decrease. In particular, if this deleted run of length 1

is an outermost run, the length of da decreases by 1. If this deleted run of length 1 is

located somewhere else in ca, the length of da decreases by 2. It is therefore sufficient

to consider the cases when the lengths of da and db differ by 0, 1, and 2. Without loss

of generality assume that |da| ≥ |db|. We treat the cases |da|=|db|, |da|=|db|+1, and

|da|=|db|+2 separately.

Case 1: |da|=|db|

By Lemma 2, it must be that ca and cb are complements of each other, and consequently

da = db. Either both ca and cb experience deletions in runs of length at least 2 each, or

both experience deletions in different outermost runs of length 1 each or in inner runs of

length 1 each.

Since ca and cb differ in their leftmost bits, a deletion must occur in the leftmost bits

in either ca or cb. Without loss of generality we can assume that the leftmost bit in ca

is deleted. If this bit belonged to a run of length at least 2, cb itself would start with a

run of length at least 2, but then it would be impossible to obtain the same string from ca

and cb when each experiences exactly one deletion. Therefore, the leftmost run in ca is a

run of length 1, and by Lemma 3, all runs in ca (and cb) must be of length 1 or 2. Since

da decreases by 1, the same must be true for db, so that cb experiences a deletion in its

outermost bit, which then must be its rightmost bit. Then ca(p) = cb(p−1) for 1 < p ≤ 2m

(here and in the remainder ca(p) denotes the bit in the pth leftmost position of ca), and
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by using the fact that ca and cb are complements of each other, it follows that ca and cb

consist of alternating bits. Thus ca is either cm
j (10) or cm

j (01) for j = 2m−1, and cb is its

complement. This codeword pair is listed under 1 and is labeled Group 1.

Case 2: |da|=|db|+1

Suppose a deletion occurs in position pa in ca, and in position pb in cb (we assume that

the deletion occurs at the end of a run), where we index the bits in the codewords with 1

through 2m, from left to right. It must be that either: a) ca experiences a deletion in an

outermost run of length 1, while cb experiences a deletion in a run of length at least 2, or

b) ca experiences a deletion in an inner run of length 1 and cb experiences a deletion in an

outermost run of length 1.

Subcase 2-1: |da| is even

We view ca as the result of concatenation applied to the same codeword c′ ∈ C(m−1),

whereby ca = [c′|c′] if c′ has opposite outermost bits, and ca = [c′|c′] if the outermost bits

in c′ are the same.

In either case a) or b) there exists at least one entry in da equal to 1. Then, by Lemma 3,

the outermost runs in ca and c′ are all of length 1. By mirror-symmetry (Lemma 24) we

can express da and db as da = [A11AR] and db = [A2AR], where A = [A1A2...Al] is a

substring of da, AR is its reverse, and A1 = 1.

For the situation described in a), by the reversibility property, we may as well assume

that the leftmost bit in ca is deleted. Then the entry in position p in db must correspond to

the entry in position p + 1 in da, in the sense that da(p + 1) = db(p) ∀p except for exactly
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one, call it p∗, for which da(p
∗ + 1) = db(p∗) + 1. In particular if this entry in db is bigger

than 2, by Lemma 3, it would have to be at least 4, further implying the existence of a run

in ca of length at least 3, which is impossible by Lemma 3 and the fact that there is at least

one run of length 1 in ca.

Therefore db(p∗) = 2 and da(p
∗ + 1) = 1. Since db(l + 1) = 2 and da(l + 2) = 1 by

construction, it follows that p∗ = l + 1. Furthermore, A2 = A1, A3 = A2, ...Al = Al−1,

so that da consists of all 1’s and db has all 1’s except for its innermost entry which is

2. Consequently ca is either cm
j (10) or cm

j (01), and cb is either cm
j (11) or cm

j−1(00)for

j = 2m−1. One can check that all four pairs of candidate codewords suffer from the

identification problem. This is the set of pairs listed under Group 2. This group of codeword

pairs is closed under complementation and reversal.

Now, for the situation described in b), by the reversibility property, we may as well

assume that the rightmost bit in cb is deleted.

The first leftmost entries where da and db differ are their (l+1)st entries so the deletion

in ca must be in its (l +2)nd run, which then disappears altogether. Moreover, both (l +1)st

and (l + 3)rd runs in ca must be of length 1 each because the (l + 1)st run of cb is of length

2. Therefore AR(1) = Al = 1.

The entry in position l + 2 in db (which is AR(1)) must be the same as the entry in

position l + 4 in da, which is AR(2) = Al−1. The entry in position l + 3 in db, which is

itself AR(2), is the same as the entry in da in position l + 5, which is AR(3).



46

By continuing forward until the end of AR, we conclude that AR consists of all 1’s,

thereby making da be all 1’s as well, and db be all 1’s except for 2 in the middle. These

two da and db have already been encountered in the situation described in a), and yield the

codeword pairs listed under Group 2.

Subcase 2-2: |da| is odd

In either case a) or b) da has at least one entry equal to 1, so all its entries are either 1

or 2 by Lemma 3. If db had an entry larger than 3, by Lemma 3 case b) would not be even

possible. For case a) it would require an existence of a run in ca of length at least 3, which

is also impossible by the same Lemma. Since all entries in da and db are then precisely 1

or 2, we can use their mirror symmetry and apply Lemma 7 to conclude that da and db

have the following formats:

da = [A1B1AR] and db = [A2C2AR],

where |B| = |C|+ 1 and A and C are possibly empty.

Let |A| = p− 1. Further, note that |C| is even.

For the situation described in a) we may as well assume, by the reversibility property,

that the rightmost bit in ca is deleted, and that it belonged to a 1-bit run. Then the deletion

in cb must be in its pth leftmost run (of length 2).

Since AR(p− 1) = 1 in da, by mirror symmetry, A(1) = 1 (or by Lemma 3). Since the

rightmost entry in db is the same as the second rightmost entry in da, it further follows that

AR(p− 2) = 1, which in turn implies that A(2) = 1, and so on until the end of A, thereby

requiring that A consists of all 1’s. Similarly, the entry in db in position |db| − (p − 1),
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which is 2 by assumption, is the same as the entry in da in position |da| − p, which is

itself the last entry in B. Thus B ends in 2 and by mirror symmetry it also starts with

2. This in turn implies that C starts and ends with 2, which then implies that the next

to the last entry in B is also 2. By continuing on until all entries in B and C have been

encountered we can conclude that B and C consist only of 2’s. Then da = ‘1.12.21.1’ and

db=‘1.12.21.1’ (if A nonempty) or db=‘2.2’ (if A empty), where ‘1.1’ (‘2.2’) indicates a

non-empty run of 1’s (2’s). For |db| even, the run of 2’s in db would have to have even

length (since the neighboring ‘1.1’ runs are of the same length by the mirror-symmetry

property) which is impossible by Lemma 6.2. Thus db =‘2.2’, A is empty, and then

da=‘12.21’. Consequently, cb itself is either cm
k (01) or cm

k (10) for k = 2m−2, and ca is

either cm
k (00) or cm

k+1(11). It can be checked that all four codeword pairs suffer from the

identification problem. These are the pairs listed in Group 3. This group of codeword pairs

is also closed under complementation and reversal.

For b) we may as well assume, by the reversibility property, that the rightmost bit in cb

is deleted, so that db ends in a 1. Note that this implies that AR (and A) cannot be empty,

and therefore p > 1. Then the first leftmost entry in which da and db differ is compensated

for by the deletion in a 1-bit run in ca. Since all runs in cb are of length at most 2, the

deleted run in ca must be bordered by two 1-bit runs. Therefore, the (p+1)st run (of length

1) in ca is deleted, and both (p)th and (p + 2)nd run in ca are also of length 1. Furthermore,

the entry in position t for p + 1 ≤ t ≤ |db| − 1 in db is the same as the entry in position

t + 2 in da.
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In particular, the entry in db in position |db|−p+1, which is 2, is the same as the entry

in position |da| − p + 2 in da, which is AR(1). By mirror symmetry entries in positions

p− 1 in both da and db are equal to 2. Then the entry in db in position |db| − p + 2 is also

2, as is the entry in da in position |da| − p + 3. By continuing onwards until t = |db| − 1,

and by using the mirror symmetry, we conclude that A (and AR) consists of all 2’s, which is

in contradiction with the earlier requirement that the deletion in cb occurs in its outermost

run of length 1.

Case 3: |da|=|db|+2

We now consider the remaining case where the deletion in ca occurs in an inner run of

length 1 and in cb in a run of length at least 2. This deletion in a 1-bit run of ca causes

its neighboring runs to merge. By Lemma 3, these runs are of length 1 or 2 each. If they

were both of length 2 each, there would exist an inner run of 1’s in da of length 1, which

is impossible by Lemma 6.3. If one neighboring run was of length 1 and the other of

length 2, the merging would require an existence of a 3-bit run in the post-deletion cb. By

Lemma 3, the deletion in cb would then have to be in a 4-bit run, and by the same Lemma,

the outermost runs in cb would be of length at least 2. These would have to correspond to

the outermost runs in ca, which are themselves of length 1 each. Therefore, the deletion in

ca must occur in an inner 1-bit run neighbored by two 1-bit runs, and all entries in both da

and db can be only 1 or 2.

Consider cc ∈ C(m) which has |db| + 1 runs. For |da| even, we can think of ca as

being the result of concatenating a codeword cd ∈ C(m − 1) with itself if |da|/2 is even,
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and with its complement if |da|/2 is odd, such that cd and ca have the same leftmost bits

(the existence of such codeword in C(m − 1) follows from Lemma 2). Furthermore, in

the former case we can view cc as the result of concatenating cd with its complement, and

in the latter case as the result of concatenating cd with itself. Then da = [dd|dd], and

dc = [dd(1, l−1)|(dd(l)+dd(1))|dd(2, l)], where dd = d(cd) and l = |dd|. The leftmost

entry in which da and dc differ is their (|dc| + 1)/2th leftmost entry. By mirror symmetry

of dd, this entry in dc is twice its counterpart in da. Since all entries in da are 1 or 2, and

its outermost entries are 1, it follows that all entries in dc are also at most 2. Then the first

leftmost entry in which dc and db differ is say in position p, for p < |db|/2 and dc(p) = 1

and db(p) = 2, by Lemma 7. Since |db| < |dc|+ 1, the first leftmost entries in which da

and db differ is in the pth position, where p < |db|/2.

A similar argument holds for |da| odd when the first leftmost entry in which da and dc

differ is then in some position p, for p < |dc|/2, and the first leftmost entry in which dc

and db differ is in their (|db| + 1)/2th entry. Then the first leftmost entry in which da and

db differ is still in position p.

As a result and by mirror symmetry, we can then express da and db as da = [A1B1AR]

and db = [A2C2AR], where |B| = |C|+ 2, |A| = p− 1, and A and C are possibly empty.

By the reversibility property, we can assume that the leftmost error is a deletion in ca,

which then must be in the (p+1)st run in ca (of length 1), neighbored by 1-bit runs on each

side, such that the substring ‘111’ starts at position p in da and the substring ‘2’ in db is at

position p.
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From t = p + 1 onwards, the entry in position t in db must be the same as the entry in

position t + 2 in da, except for one pair of entries. In this exception, the entry is 2 in db

and 1 in da. By mirror symmetry, the entry in db in position |db| − p+ 1 is 2 and the entry

in da in position |da| − p + 1 = |db| − p + 1 + 2 is 1.

We now re-express da as [A111D1AR] and db as [A2D2AR], such that B = 11D. In

particular, D is non-empty as otherwise db would have a run of 2’s of even length which

by Lemma 6.2 would imply that db consists of all 2’s. As a consequence, da would have

an inner run of 1’s of length 4, which is impossible by Lemma 6.3.

We suppose that |D| = l, l > 0. By mirror symmetry of da, D(l) = D(l − 1) = 1, and

then by mirror symmetry of db, D(1) = D(2) = 1 as well. By mirror symmetry of da,

D(l − 2) = D(l − 3) = 1. By continuing on with matching up the appropriate entries in

da and db, and by utilizing mirror symmetry we conclude that D consists of all 1’s. Then,

da = [A1.1AR] and db = [A21.12AR], and by Lemma 6.3 |db| is even, as is then |da|.

Consider d′
b = db(1, |db|/2), and d′

a = da(1, |da|/2). Since |da| and |db| are even,

there exist codewords c′a, c
′
b ∈ C(m − 1) for which d′

a = d(c′a) and d′
b = d(c′b). Then

d′
a = [A1.1] and d′

b = [A21.1]. If 2 following A in d′
b is not in its innermost position, then

it would have a mirror image in A in d′
b (it cannot have a mirror image in the run of 1’s)

but such 2 in A in d′
a would not have 2 as its mirror image. Thus |A| = |d′

b|/2 − 1 and

A has all 1’s. Then da itself has all 1’s, and db is ‘1.121.121.1’, so that ca is cm
j (10) or

cm
j (01), and cb is cm

j−1(10) or cm
j−1(01), for j = 2m−1. By the current assumption on the

deletion locations, it follows that ca and cb must have the same leftmost bit. The resulting



51

two pairs of codewords are listed in Group 4. By reversibility and complementarity these

are the only such pairs. �

Remark 4 It is well known that a code capable of correcting a deletion is also capable

of correcting an insertion [35]. Moreover, the codeword pairs that cause the identification

problem under a single insertion are the same as the codeword pairs that cause the identi-

fication problem under a single deletion, and thus Theorem 2 also gives the identification

error causing codeword pairs under a single insertion. �

Having identified all pairs of codewords in RM(1,m) that have an identification problem,

our next goal is to construct a linear subcode that has good identification under single

deletion errors. It turns out this is possible to do with the loss of only one information bit,

and furthermore, this subcode also has good identification for single repetition errors.

4.2.3 Pruned RM Code

Let us first recall that the ith row of Gm, for 1 < i ≤ m + 1 consists of 2i−1 alternating

runs of ones and zeros, and that each run is of length 2m−i+1 (see Section 3.1). Observe that

the ith row is then precisely cm
2i−2(10). In particular, the last two rows of Gm are cm

2m−2(10)

for i = m and cm
2m−1(10) for i = m + 1.

We write c ∈ C(m) as xGm, where x is a (m + 1)-dimensional message vector so that

cm
2m−1(10) = [0, 0, . . . , 0, 1]Gm and cm

2m−1(01) = [1, 0, . . . , 0, 1]Gm. Similarly, cm
2m−2(10) is

[0, 0, . . . , 0, 1, 0]Gm and cm
2m−2(01) is [1, 0, . . . , 0, 1, 0]Gm.
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Observe that cm
2m−1(10) appears in pairs 1). through 3). and the pair 11). in Theorem 2.

Its complement, the codeword cm
2m−1(01) appears in pair 1)., 4)., 5). and 10). For both

these codewords, there is a non-zero component in the last, i.e. (m + 1)st position in the

corresponding message vectors. Note that cm
2m−2(10) appears in pairs 8). and 9). and that

its complement cm
2m−2(01) appears in pairs 6). and 7). Furthermore, the sum of the last two

entries in the message vectors corresponding to these two codewords is 1.

We may now try to find as large as possible a linear subcode of C(m), in which no two

codewords cause the identification problem under one deletion. The generator matrix Ĝ of

this subcode can have at most m rows. Consider a matrix consisting of the top m− 1 rows

of Gm, followed by a binary sum of the last two rows of Gm. Now, Ĝ has m rows and no

linear combinations of its rows give rise to codewords causing the identification problem.

Therefore, if instead of using C(m) of rate m+1
2m we use its linear subcode Ĉ(m) of rate

m
2m , generated by the top m−1 rows of Gm and the binary sum of the last two rows of Gm,

we are able to eliminate the identification problem under a single deletion while preserving

the linearity of the code and suffering a very small loss in the overall rate.

Remark 5 Since a code is immune to a single insertion if and only if it is immune to a

single deletion [35] it immediately follows that in the subcode Ĉ(m) no two codewords

cause the identification problem under a single insertion. �

In the next section, we will see that the subcode we have constructed is not just immune to

single deletions; it also has good identification under the single deletion model and under

the single repetition model.
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In principle, one can utilize the run-length structure of the RM(1,m) code to determine

large subcodes immune to any number of deletions, or even to combinations of repetitions

and deletions. Such analysis quickly becomes very complicated. A detailed analysis of the

identification problem for the RM(1,m) codes under the infinite SNR channel model which

permits both one repetition and one deletion is contained in [16].

4.3 Decoding the modified RM(1,m) code over a channel

with synchronization and substitution errors

In the previous section we described how to extract a linear subcode of the RM(1,m)

code that is immune to a single deletion. We now consider the behavior of such a subcode

over channels in which, in addition to substitution errors, synchronization errors can occur

as well. We consider two kinds of channel models for synchronization errors: channels

where the deletion of a single bit can occur, and channels where the repetition of a single

bit can occur. As in subsection 4.1 we assume in each case that the receiver learns from the

sampled output whether a deletion (respectively, a repetition) has occurred or not.

In this section, we first determine the minimum distance between the sets of strings ob-

tained by applying a deletion of a single bit to codewords of the modified RM(1,m) code.

We then compute the minimum distance between the sets of strings obtained by applying

the repetition of a single bit to codewords of the modified RM(1,m) code. Finally, in each

case, we propose a bounded distance decoding algorithm for up to half the corresponding
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minimum distance over a channel where, in addition to substitution errors, the synchro-

nization error can occur as well. The complexity of the decoding algorithm is of the same

order as that of the usual fast Hadamard transform based decoding for RM(1,m) codes.

4.3.1 Minimum distance

In this subsection we first determine the minimum Hamming distance between the ele-

ments of sets associated with distinct codewords of the modified code that result from the

deletion of a single bit. Let Ĉ(m) denote the code whose generator matrix consists of the

top m− 1 rows of Gm and the binary sum of the last two rows of Gm. The code Ĉ(m) is

immune to one deletion by construction.

We first make the following observation:

Remark 6 For m ≥ 2 a codeword c of C(m) belongs to Ĉ(m) if and only if all its quadru-

plets starting at position i for i mod 4 ≡ 1 are all ‘1111’ or ‘0000’ or all are ‘0110’ or

‘1001’.

In the remainder we will call quadruplets of c starting at position i for i mod 4 ≡ 1 con-

stituent quadruplets.

For c ∈ Ĉ(m), let Sd(c) denote the set of strings obtained by applying the deletion of

a single bit to c.

Lemma 9 For ca, cb distinct codewords in Ĉ(m), let D(ca, cb) be the smallest Hamming

distance between sa and sb where sa ranges over all elements in the set Sd(ca) and sb
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ranges over all elements in the set Sd(cb). Let Dm
min = minca,cb∈Ĉ(m),ca �=cb

D(ca, cb).

Then for m > 2, Dm
min = 2m−3. Further, for m ≥ 3, D(ca, cb) = 2m−3 only for ca =

cm
j (01) or cm

j (10) for j = 3 × 2m−3, and cb either ca + cm
1 (10), or ca + cm

1 (01), or vice

versa, and in addition for m ≥ 4, cb is also ca + cm
1 (00), or vice versa.

Proof: Suppose that ca experiences a deletion in position p1 and cb experiences a deletion

in position p2. Without loss of generality we can assume that p1 < p2. Let p′1 = �(p1 −

1)/4�4 + 1 and let p′2 = �(p2 − 1)/4�4 + 4, so that p′1 denotes the first position of the

constituent quadruplet p1 belongs to, and p′2 denotes the last position of the constituent

quadruplet p2 belongs to. We also let l1 be the Hamming distance between the strings

ca(1, p
′
1 − 1) and cb(1, p′1 − 1), l2 be the Hamming distance between the strings ca(p

′
1, p

′
2)

and cb(p′1, p
′
2), and l3 be the Hamming distance between the strings ca(p

′
2 + 1, 2m) and

cb(p′2+1, 2m), where the notation ci(p, q) indicates the substring of the codeword ci starting

at position p and ending at position q. In addition, let nc = (p′2 − p′1 + 1)/4 be the total

number of quadruplets spanned by positions p′1 and p′2. By the standard properties of a

Reed-Muller(1,m) code, l1 + l2 + l3 is either 2m−1 or 2m. Let c̃a = [ca(1, p1 − 1)|ca(p1 +

1, 2m)], and c̃b = [cb(1, p2 − 1)|cb(p2 + 1, 2m)]. Then the Hamming distance dH(c̃a, c̃b)

between c̃a and c̃b is

dH(c̃a, c̃b) = dH (c̃a(1, p
′
1 − 1), c̃b(1, p′1 − 1))

+ dH (c̃a(p
′
1, p

′
2 − 1), c̃b(p′1, p

′
2 − 1))

+ dH (c̃a(p
′
2, 2

m − 1), c̃b(p′2, 2
m − 1)) .
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Observe that the first term in the sum is simply l1 and that the last term is l3. We let l̃2

denote the middle term, dH (c̃a(p
′
1, p

′
2 − 1), c̃b(p′1, p

′
2 − 1)), and we establish the relation-

ship between l̃2 and l2 for all choices of ca and cb, from which the bound on the overall

distance will follow.

1) Let us first consider the case when the constituent quadruplets in ca are ‘0110’ and

‘1001’ and in cb are ‘0000’ and ‘1111’, or vice versa. In this case, the Hamming distance

between ca and cb is 2m−1, and the constituent quadruplet pairs starting at the same posi-

tions in ca and cb each contribute 2 to the overall Hamming distance. Therefore, l2 = 2nc.

If p′2 − p′1 = 3, then the deletions occur in the same quadruplet, l2 is 2 to begin with,

and the Hamming distance between c̃a(p
′
1, p

′
2 − 1) and c̃b(p′1, p

′
2 − 1) is at least 1, which

can be verified by checking all cases. Hence the Hamming distance between c̃a and c̃b is

at least 2m−1 − 1, which is strictly greater than 2m−3.

Now suppose that p′2−p′1 > 3. Then nc > 1. After the deletions, the Hamming distance

between c̃a(p
′
1 + 4i, p′1 + 3 + 4i) and c̃b(p′1 + 4i, p′1 + 3 + 4i), for 1 ≤ i ≤ nc − 2 is at

least 1, as is the distance between the substrings c̃a(p
′
2 − 3, p′2 − 1) and c̃b(p′2 − 3, p′2 − 1),

and between the substrings c̃a(p
′
1, p

′
1 + 3) and c̃b(p′1, p

′
1 + 3) (which again can be verified

by checking all cases). Then, l̃2 ≥ (nc − 2)× 1 + 1× 1 + 1× 1 = l2/2.

Since the Hamming distance between c̃a(p
′
1, p

′
2 − 1) and c̃b(p′1, p

′
2 − 1) is at least l2/2,

the Hamming distance between c̃a and c̃b is then at least l1 + l2/2 + l3, which is lower

bounded by 2m−2, and thus strictly greater than 2m−3.

2) Suppose now that the constituent quadruplets are ‘0000’ and ‘1111’ in both ca and



57

cb. The Hamming distance between ca and cb is either 2m−1 or 2m, and the constituent

quadruplet pairs starting at the same positions in ca and cb each contribute either 0 or 4 to

the overall Hamming distance. In the segment spanning positions p′1 and p′2 in ca and cb,

l2/4 of the constituent quadruplet pairs each contribute 4 to the overall Hamming distance

between ca and cb.

If p′2 − p′1 = 3, the deletions occur in the same quadruplet, and l2 is either 0 or 4.

Then dH (c̃a(p
′
1, p

′
1 + 2), c̃b(p′1, p

′
1 + 2)) is either 0 (if l2 = 0) or 3 (if l2 = 4). The overall

distance between c̃a and c̃b is thus at least 2m−1 − 1, which is bigger than 2m−3 for all

m ≥ 3.

If p′2 − p′1 > 3 we consider constituent quadruplets contained within positions p′1 + 4

and p′2 − 4 in ca and cb that start at the same positions and we denote the set of their

starting positions by Tot (the set Tot is non empty as long as p′1 and p′2 belong to non-

adjacent quadruplets). Let Com be the subset of Tot whose elements index complementary

quadruplets in ca and cb. Then the Hamming distance between the quadruplets ca(i+1, i+

4) and cb(i, i + 3), and consequently between c̃a(i, i + 3) and c̃b(i, i + 3) for i ∈ Com is

at least 3. In addition, if p′2 belongs to the constituent quadruplets of ca and cb that are

complements of each other, the distance between c̃a(p
′
2− 3, p′2− 1) and c̃b(p′2− 3, p′2− 1)

is at least 3. Similarly, if p′1 belongs to the constituent quadruplets of ca and cb that are

complements of each other, the distance between c̃a(p
′
1, p

′
1 + 3) and c̃b(p′1, p

′
1 + 3) is also

at least 3. Therefore, the Hamming distance between c̃a(p
′
1, p

′
2 − 1) and c̃b(p′1, p

′
2 − 1)

is at least 3 × l2/4, thereby making the overall distance between c̃a and c̃b be at least
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l1 + 3l2/4 + l3, which is again strictly greater than 2m−3.

3) Finally, consider ca and cb with constituent quadruplets ‘0110’ and ‘1001’. Again,

the Hamming distance between ca and cb is either 2m−1 or 2m, and the constituent quadru-

plet pairs starting at the same positions in ca and cb each contribute either 0 or 4 to it.

For the case when p′2−p′1 = 3, l2 is either 0 or 4, so that the Hamming distance between

c̃a(p
′
1, p

′
2 − 1) and c̃b(p′1, p

′
2 − 1) is either at least 0 for l2 = 0 or at least 1 for l2 = 4. In the

former case, the Hamming distance between c̃a and c̃b is at least 2m−1, and in latter case

it is least 2m−1 − 3. In particular, for m ≥ 4, 2m−1 − 3 is strictly bigger than 2m−3. For

m = 3, 2m−1 − 3 = 2m−3. Then ca and cb would have to be complements of each other

in the quadruplets experiencing deletions, and would have to be the same in their other

quadruplet. For ca + cb being either ‘00001111’ or ‘11110000’, ca is then either c3
3(10)

or c3
3(01) and cb is either ca + c3

1(10) or ca + c3
1(01) or vice versa. Observe that these are

precisely the codeword pairs listed at the beginning of the proof for j = 3 and m = 3.

If p′2 − p′1 > 3 we again consider constituent quadruplets contained within positions

p′1 + 4 and p′2 − 4 in ca and cb that start at the same positions and we denote the set of

their starting positions by Tot (the set Tot is non empty as long as p′1 and p′2 belong to non-

adjacent quadruplets). Let Com be the subset of Tot whose elements index complement

quadruplets in ca and cb, and let Sam = Tot− Com.

Then the Hamming distance between ca(i + 1, i + 4) and cb(i, i + 3) for i ∈ Com

is either 1 or 2, and we denote their total number by s1
1 and s1

2, respectively such that

s1
1 + s1

2 = |Com|. The Hamming distance between ca(i + 1, i + 4) and cb(i, i + 3) for i ∈
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Sam is either 2 or 3, and we similarly denote their total number by s0
2 and s0

3, respectively,

where s0
2 + s0

3 = |Sam|. In addition, if p′2 belongs to the constituent quadruplets of ca

and cb that are complements of each other, the distance between c̃a(p
′
2 − 3, p′2 − 1) and

c̃b(p′2− 3, p′2− 1) is either 1, 2, or 3, which we denote by t12, and is either 0, 1, or 2 if those

two quadruplets in ca and cb are the same, in which case we denote it by t02. Let J2 = 1

if these two quadruplets are complements and let J2 = 0 otherwise. Finally, the distance

between c̃a(p
′
1, p

′
1 +3) and c̃b(p′1, p

′
1 +3) is 0, 1, 2, or 3 if the corresponding quadruplets in

ca and cb are the same, when is denoted by t01, and is 1, 2, 3, or 4 if these quadruplets are

complements, when is denoted by t11. Let J1 = 1 for complement quadruplets and J1 = 0

for the same.

The overall Hamming distance between c̃a and c̃b is then

l1 + J1t
1
1 + (1− J1)t

0
1 + s1

1 + 2s1
2 + 2s0

2 + 3s0
3 + J2t

1
2 + (1− J2)t

0
2 + l3.

Observe that s1
1 + s1

2 + J1 + J2 = l2/4.

Since t11 ≥ 1 and t12 ≥ 1 we have

dH(c̃a, c̃b) ≥ l1 + J1 + s1
1 + s1

2 + J2 + l3

= l1 +
l2
4

+ l3

≥ 1

4
dH(ca, cb) ≥ 2m−3 .

Equality holds in this sequence of inequalities if and only if dH(ca, cb) = 2m−1 (i.e. ca and

cb are not complements of each other), l1 = 0, l3 = 0, s0
2 = 0, s0

3 = 0, s1
2 = 0, and one of

the following four cases holds:
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(a) (J1, J2) = (1, 1) and (t11, t
1
2) = (1, 1),

(b) (J1, J2) = (0, 1) and (t01, t
1
2) = (0, 1),

(c) (J1, J2) = (1, 0) and (t11, t
0
2) = (1, 0),

(d) (J1, J2) = (0, 0) and (t01, t
0
2) = (0, 0).

Since l1 = 0 and l3 = 0, all constituent quadruplets in ca(1, p
′
1−1) and cb(1, p′1−1) as

well as in ca(p
′
2 + 1, 2m) and cb(p′2 + 1, 2m) are pairwise the same. Since s0

2 = s0
3 = 0, the

constituent quadruplets spanning positions p′1 + 4 through p′2 − 4 in ca and cb are pairwise

complements of each other. Moreover, since s1
2 = 0 they are actually alternating ‘1001’ and

‘0110’ in ca and are alternating ‘0110’ or ‘1001’ in cb, or vice versa. The quadruplets in

ca and cb to which p′1 (p′2) belongs are the same if J1 = 0 (J2 = 0), and otherwise they are

complements. Therefore, for all four cases, ca +cb is of the type ‘0.01.10.0’, with possibly

one run of zeros empty (but not both as then ca and cb would be complements), and is such

that it belongs to Ĉ(m). Specifically, ca + cb is either cm
1 (10), cm

1 (01), or cm
1 (00), and by

p′2−p′1 > 3, m is at least 3. Since cm
1 (00) /∈ Ĉ(m) for m = 3, no new pairs can result from

this analysis in this case, so we may assume from now on that m ≥ 4.

Let pl and pr be the positions of the leftmost and the rightmost 1 in ca + cb. Then p′1 is

either pl or pl − 4, depending on the value of J1 and on the format of ca + cb, and likewise

p′2 is either pr or pr +4, depending on the value of J2 and ca +cb. In particular, for ca +cb

equal to cm
1 (10), J1 must be 1 and p′1 = pl, and for ca + cb equal to cm

1 (01), J2 must be 1

and p′2 = pr.

For m > 5, since there are at least 1/2(2m−2) − 2 contiguous alternating ‘0110’ and
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‘1001’ (or vice versa) spanning positions p′1 +4 and p′2−4 in ca, and since (pl, pr) is either

(1, 2m−1) or (2m−1 + 1, 2m) or (2m−2 + 1, 3 × 2m−2), by the concatenation principle it

follows that all quadruplets spanning positions pl and pr in ca are alternating ‘0110’ and

‘1001’, or vice versa. It then follows that under the set of constraints (l1 = 0, l3 = 0, s0
2 =

0, s0
3 = 0, s1

2 = 0), ca can only be cm
j (01) or cm

j (10) for j = 3 × 2m−3, and cb is then

ca + cm
1 (10), ca + cm

1 (01), or ca + cm
1 (00), or vice versa. It remains to determine whether

these candidate codeword pairs satisfy one of the (a) through (d) cases.

From the structure of the candidate codeword pairs, it follows for example that all six

codeword pairs achieve Dm
min for (J1, J2, t

1
1, t

1
2) = (1, 1, 1, 1), with deletions in positions

(p1, p2) = (2m−1 + 1, 2m) for ca + cb = cm
1 (01), in positions (p1, p2) = (1, 2m−1) for

ca + cb = cm
1 (10), and in positions (p1, p2) = (2m−2 + 1, 3× 2m−2) for ca + cb = cm

1 (00),

such that both individual values of ca and cb per pair are possible.

For m = 4 and m = 5 the pairs of codewords {ca, cb} achieving the proposed Dm
min

can be identified directly, and they have the same format as codewords achieving Dm
min for

m > 5. This concludes the proof of the lemma. �

We next determine the minimum Hamming distance between the elements of sets as-

sociated with distinct codewords of the modified code that result from the repetition of a

single bit.

For c ∈ Ĉ(m), let Sr(c) denote the set of strings obtained by applying the repetition

of a single bit to c. Recall that Sd(c) denotes the set of strings obtained by applying the

deletion of a single bit to c.
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Lemma 10 For ca, cb distinct codewords in Ĉ(m), let R(ca, cb) be the smallest Hamming

distance between ta and tb where ta ranges over all elements in the set Sr(ca) and tb

ranges over all elements in the set Sr(cb). Let Rm
min = minca,cb∈Ĉ(m),ca �=cb

R(ca, cb).

Then for m > 2, Rm
min = 2m−3 + 1. Further, for m ≥ 3, R(ca, cb) = 2m−3 + 1 only for

ca = cm
j (01) or cm

j (10) for j = 3 × 2m−3, and cb either ca + cm
1 (10), or ca + cm

1 (01), or

vice versa, and in addition for m ≥ 4, cb is also ca + cm
1 (00), or vice versa.

Proof: We first observe that 0 ≤ R(ca, cb)−D(ca, cb) ≤ 2, where D(ca, cb) is as defined

in Lemma 9. To see this, consider sa obtained by deleting a bit in ca in position pa, and sb

obtained by deleting a bit in cb in position pb. For pa < pb, dH(sa, sb) is

dH(sa, sb) = dH(ca(1, pa − 1), cb(1, pa − 1))

+ dH(ca(pa + 1, pb), cb(pa, pb − 1))

+ dH(ca(pb + 1, n), cb(pb + 1, n)).

For ta ∈ Sr(ca) and tb ∈ Sr(cb) such that the bit in position pb (pa) is the bit that gets

repeated in ta (tb), write dH(ta, tb) as

dH(ta, tb) = dH(ca(1, pa − 1), cb(1, pa − 1)) + d1

+ dH(ca(pa + 1, pb), cb(pa, pb − 1)) + d2

+ dH(ca(pb + 1, n), cb(pb + 1, n)),

where d1 = ca(pa) + cb(pa) and d2 = ca(pb) + cb(pb). Therefore, 0 ≤ dH(ta, tb) −

dH(sa, sb) = d1 + d2 ≤ 2. A similar argument gives the same inequality for pa > pb.

Taking the minimum over all (pa, pb), the claim of this paragraph follows.
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By Lemma 9, Dm
min = 2m−3, so that Rm

min is at most 2m−3+2. We use the nomenclature

introduced in Lemma 9 to determine the codewords ca, cb for which D(ca, cb) yields the

proposed bound on R(ca, cb), i.e. the codewords for which D(ca, cb) is at most 2m−3 + 1.

1) Let us first consider the case when the constituent quadruplets in ca are ‘0110’ and

‘1001’ and in cb are ‘0000’ and ‘1111’, or vice versa. From the proof of Lemma 9 it

follows that D(ca, cb) is at least 2m−2, as is then R(ca, cb). The proposed lower bound can

only be met for m = 3. By checking all cases, for m = 3, it follows that R(ca, cb) is at

least 4, thus exceeding the proposed lower bound.

2) Suppose now that the constituent quadruplets are ‘0000’ and ‘1111’ in both ca and

cb. From the proof of Lemma 9 it follows that D(ca, cb) is at least 3 × 2m−3, and thus

R(ca, cb) is strictly greater than the proposed lower bound.

3) Finally, consider ca and cb with constituent quadruplets ‘0110’ and ‘1001’.

We assume that p′1, p′2, c̃a, c̃b, l1, l2, l3 as well as t01, t11, t02, t12, s1
1, s1

2, s0
2, and s0

3 are as

defined in the proof of Lemma 9.

In the notation of Lemma 9, if p′2−p′1 = 3, D(ca, cb) is at least 2m−1−3, thus exceeding

2m−3 + 1 for m ≥ 4. For m = 3, there are four codewords in Ĉ(m) having ‘0110’ and

‘1001’ as constituent quadruplets. It follows by direct checking that R(ca, cb) = 2m−3 +

1 = 2 only for ca =‘01101001’ or ‘10010110’ and cb = ca + c3
1(01) or cb = ca + c3

1(10),

or vice versa. In the remainder we will assume m ≥ 4.

For p′2 − p′1 > 3, in the notation of Lemma 9, the overall Hamming distance between
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c̃a and c̃b is

dH(c̃a, c̃b) = l1 + J1t
1
1 + (1− J1)t

0
1 + s1

1 + 2s1
2+

2s0
2 + 3s0

3 + J2t
1
2 + (1− J2)t

0
2 + l3,

(4.1)

where s1
1 + s1

2 + J1 + J2 = l2/4.

As established in Lemma 9, for dH(c̃a, c̃b) to equal 2m−3 for m ≥ 4 it is necessary

that ca is cm
j (01) or cm

j (10) for j = 3 × 2m−3, and cb is either ca + cm
1 (10), ca + cm

1 (01),

or ca + cm
1 (00), or vice versa. By direct checking it follows that R(ca, cb) is precisely

2m−3 +1 for all six codeword pairs (since the deletions in ca and cb yielding Dm
min are such

that one of them belongs to a run of size 2 and the other belongs to a run of size 1).

It remains to determine ca, cb for which dH(c̃a, c̃b) equals 2m−3 +1, and such that both

deletions occur in runs of size bigger than 1. Using the expression in (9.77) it follows that

dH(ca, cb) = 2m−1, l1 = 0, l3 = 0, s0
2 = 0, s0

3 = 0, (use (
) as a shorthand for set of

conditions (
)) and one of the following holds:

(a) (J1, J2) = (0, 1) and (t01, t
1
2, s

1
2) = (0, 2, 0),

(b) (J1, J2) = (0, 1) and (t01, t
1
2, s

1
2) = (1, 1, 0),

(c) (J1, J2) = (1, 0) and (t11, t
0
2, s

1
2) = (2, 0, 0),

(d) (J1, J2) = (1, 0) and (t11, t
0
2, s

1
2) = (1, 1, 0),

(e) (J1, J2) = (0, 0) and (t01, t
0
2, s

1
2) = (1, 0, 0),

(f) (J1, J2) = (0, 0) and (t01, t
0
2, s

1
2) = (0, 1, 0),

(g) (J1, J2) = (1, 1) and (t11, t
1
2, s

1
2) = (2, 1, 0),

(h) (J1, J2) = (1, 1) and (t11, t
1
2, s

1
2) = (1, 2, 0),
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(i) (J1, J2) = (0, 1) and (t01, t
1
2, s

1
2) = (0, 1, 1),

(j) (J1, J2) = (1, 0) and (t11, t
0
2, s

1
2) = (1, 0, 1),

(k) (J1, J2) = (0, 0) and (t01, t
0
2, s

1
2) = (0, 0, 1),

(l) (J1, J2) = (1, 1) and (t11, t
1
2, s

1
2) = (1, 1, 1),

Since l1 = 0 and l3 = 0, all constituent quadruplets in ca(1, p
′
1−1) and cb(1, p′1−1) as

well as in ca(p
′
2 + 1, 2m) and cb(p′2 + 1, 2m) are pairwise the same. Since s0

2 = s0
3 = 0, the

constituent quadruplets spanning positions p′1 + 4 through p′2 − 4 in ca and cb are pairwise

complements of each other. Therefore, for all cases, ca +cb is of the type ‘0.01.10.0’, with

possibly one run of zeros empty (but not both as then ca and cb would be complements),

and is such that it belongs to Ĉ(m).

First observe that for cases (a) through (h), the common constraint s1
2 = 0, along with

the constraint set (
) is the same as the set of constraints on the same parameters es-

tablished in the proof of Lemma 9. As given in the proof of Lemma 9 under the set of

constraints (l1 = 0, l3 = 0, s0
2 = 0, s0

3 = 0, s1
2 = 0), ca can only be cm

j (01) or cm
j (10) for

j = 3× 2m−3, and cb can only then be ca + cm
1 (10), ca + cm

1 (01), or ca + cm
1 (00), or vice

versa. Observe that these codeword pairs are already established in the earlier case when

dH(c̃a, c̃b) = 2m−3 was analyzed (though it can also be verified that these candidate code-

word pairs satisfy at least one of the (a) through (h) cases, and with deletions in appropriate

runs of size 2 result in strings with Hamming distance 2m−3 + 1).

The remaining cases (i) through (l) all share the same constraint that s1
2 = 1, which

implies that all constituent quadruplets spanning positions p′1 + 8 through p′2 − 4 in ca and



66

cb are the complements of their left neighboring quadruplets, except for one constituent

quadruplet which is the same as its left neighboring quadruplet.

Let pl and pr be the positions of the leftmost and the rightmost 1 in ca + cb, so that

(pl, pr) is either (1, 2m−1) or (2m−1 + 1, 2m) or (2m−2 + 1, 3 × 2m−2). Depending on the

values of J1 and J2 and the structure of ca + cb, p′1 is either pl − 4 or pl and p′2 is either

pr + 4 or pr, so that all constituent quadruplets spanning positions pl + 8 through pr − 4 in

ca and cb are the complements of their left neighboring quadruplets with the exception of

one constituent quadruplet which is the same as its left neighboring quadruplet.

For m > 5, by the concatenation principle it follows that this singular constituent

quadruplet must be the one starting at the position 2m−1 + 1 so that ca + cb is cm
1 (00).

Moreover, the constituent quadruplets spanning positions pl = 2m−2 + 1 and 2m−1 are then

alternating ‘0110’ and ‘1001’ (or vice versa), followed by alternating ‘1001’ and ‘0110’

(or vice versa) that span positions 2m−1 + 1 and pr = 3× 2m−2. As a result, it follows that

ca is cm
j (11) or cm

j−1(00) for j = 3× 2m−3 − 1, and cb is either ca + cm
1 (10), ca + cm

1 (01),

or ca + cm
1 (00), or vice versa. However, in all cases, when dH(c̃a, c̃b) = 2m−3 + 1, not

both deletion errors can be in runs of size bigger than 1 (which can be verified by direct

checking of all possible constraint sets as given by (i) through (l)), and therefore R(ca, cb)

is strictly greater than 2m−3 + 1.

For m = 4, 5 it can be checked directly that the only codeword pairs achieving dH(c̃a, c̃b) =

2m−3 +1 under the current constraints are the same as for m > 5. Again, not both deletions

can occur in runs of size 2, and thus R(ca, cb) is again strictly greater than 2m−3 + 1. �
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4.3.2 Decoding algorithm

In this subsection, we first propose a bounded distance decoding scheme for Ĉ(m)

which corrects one deletion and up to 2m−4−1 substitution errors. We outline the algorithm

and discuss its correctness and complexity.

A common technique for decoding a codeword in a Reed-Muller (1,m) code that has

experienced a certain number of substitution errors involves computing a fast Hadamard

transform of the received string, [41, §4, Ch.14]. Specifically, the received string s (of

length n) is multiplied by a Hadamard matrix Hn to form sHn. The computation is done

efficiently by starting with the binary string s of length n = 2m and carrying out m stages,

each of which involves n = 2m additions of integers, to return the integer valued string

sHn of length n. Subsequently one needs to find the coordinate in this integer string of

maximum absolute value. The complexity of the overall algorithm is therefore normally

quoted as O(n log n).

In our situation, let c ∈ Ĉ(m) for m ≥ 5 be the transmitted codeword. Let s be the

received string obtained from c by one deletion and at most 2m−4 − 1 substitution errors.

Thus, the received string s is of length n − 1. The objective is to recover c from s. In

principle one could construct strings of length n by inserting either 0 or 1 at each position

in s and compare each resulting string with candidate codewords from Ĉ(m), which would

be equivalent to performing 2n standard decoding operations. The complexity of such an

algorithm would be O(n2 log n). However, it is possible to do much better.

For any codeword c̃ ∈ Ĉ(m), write c̃ =
[
c̃L|c̃R

]
, where c̃L and c̃R are each of length
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2m−1. In particular, the transmitted codeword c is written as c =
[
cL|cR

]
. From the

received string s we create sL = [s(1) . . . s(2m−1)] and sR = [s(2m−1) . . . s(2m − 1)].

Each of these strings is of length 2m−1.

If the location of the deletion is in the second half of the codeword, then sL is obtained

from cL by at most 2m−4 − 1 substitution errors. Further, for every c̃ ∈ Ĉ(m) other than c

and c + cm
1 (01) we have

dH(sL, c̃L) ≥ dH(cL, c̃L)− dH(sL, cL)

≥ 2m−2 − (2m−4 − 1)

> 2m−4 .

If one uses the fast Hadamard transform to compute
[
sL|0]Hn, the coordinate with maxi-

mum absolute value will then correspond to either the pair comprised of c and its bitwise

complement or the pair comprised of c+cm
1 (01) and its bitwise complement. Further, there

will be at most two competing locations for the maximum absolute value.

Similarly, if the location of the deletion is in the first half of the codeword, then sR is

obtained from cR by at most 2m−4 − 1 substitution errors, so by using the fast Hadamard

transform to compute
[
0|sR

]
Hn, the coordinate with maximum absolute value will corre-

spond to either the pair comprised of c and its bitwise complement or the pair comprised

of c + cm
1 (10) and its bitwise complement. Again, there will be at most two competing

locations for the maximum absolute value.

Thus, in O(n log n) operations we will be presented with at most 8 candidates for the



69

transmitted codeword. We may now go the naive step of considering all the 2n strings of

length n got by inserting either 0 or 1 at each position in s and compare each resulting

string with each of these 8 candidate codewords. In O(n) operations we will arrive at the

true codeword.

There are some obvious inefficiencies in the algorithm just described. For instance, it is

not really necessary to compare the received string with the columns of Hn that correspond

to strings in C(m) that are not in Ĉ(m). An analysis of this inefficiency could save a

constant factor. The second stage could also undoubtedly be improved, but this is less

interesting because the overall complexity is dominated by the first stage. Since using the

first stage as described has the significant practical advantage that the existing hardware

which is used to decode when there is no deletion can also be used when there is a deletion,

we have preferred to describe the overall algorithm as above.

Finally, along similar lines, we propose a bounded distance decoding scheme for Ĉ(m)

for m ≥ 4 which corrects one repetition and up to 2m−4 substitution errors and discuss its

correctness and complexity. Let s be the received string obtained from c by one repetition

and at most 2m−4 substitution errors. Thus, the received string s is of length n + 1. As

before, for any codeword c̃ ∈ Ĉ(m), write c̃ =
[
c̃L|c̃R

]
, where c̃L and c̃R are each of

length 2m−1. The transmitted codeword c is written as c =
[
cL|cR

]
. From the received

string s we create sL = [s(1) . . . s(2m−1)] and sR = [s(2m−1) . . . s(2m − 1)]. Each of these

strings is of length 2m−1.

If the location of the repetition is in the second half of the codeword, then sL is got
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from cL by at most 2m−4 substitution errors. Further, for every c̃ ∈ Ĉ(m) other than c and

c + cm
1 (01) we have

dH(sL, c̃L) ≥ dH(cL, c̃L)− dH(sL, cL)

≥ 2m−2 − 2m−4

> 2m−4 .

If one uses the fast Hadamard transform to compute
[
sL|0]Hn the coordinate with maxi-

mum absolute value will then correspond to either the pair comprised of c and its bitwise

complement or the pair comprised of c+cm
1 (01) and its bitwise complement. Further, there

will be at most two competing locations for the maximum absolute value.

Similarly, if the location of the repetition is in the first half of the codeword, then sR is

got from cR by at most 2m−4 substitution errors, so by using the fast Hadamard transform to

compute
[
0|sR

]
Hn, the coordinate with maximum absolute value will correspond to either

the pair comprised of c and its bitwise complement or the pair comprised of c + cm
1 (10)

and its bitwise complement. Again, at most two locations will compete for the maximum

absolute value.

Thus in O(n log n) operations, there will be at most 8 candidates for the transmitted

codeword. We may now again follow the naive way and consider all the 2n strings of

length n obtained by inserting either 0 or 1 at each position in s and compare each resulting

string with each of these 8 candidate codewords. Using this approach, in O(n) operations

the true codeword will follow.
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4.4 Summary and Concluding Remarks

In this chapter we studied the performance of a Reed-Muller RM(1,m) code, as an

instance of a substitution-error correcting code, over channels in which, in addition to sub-

stitution errors, a sampling error can cause synchronization errors. Specifically, we studied

the cases where the synchronization error results in the deletion of a single bit and where

it results in the repetition of a single bit. The model we worked with is aimed at handling

the kinds of errors that can occur in a variety of applications, such as magnetic recording

and wireless transmission, in the absence of adequate timing recovery. Our approach to

handling synchronization errors is to start with a good substitution-error correcting code,

to analyze which codeword pairs cause the identification problem, and then find a linear

subcode of as high a rate as possible that would both provide protection against substitu-

tion errors and be robust to the synchronization errors. The rate loss incurred from using

the subcode and the increase in the complexity of the decoding algorithm should of course

be reasonably small for such an approach to work.

Using the structural properties previously proved in Chapter 3, we provided an analy-

sis that is combinatorially much tighter than might be needed for our immediate concerns.

These combinatorial results may also be of independent interest. Specifically, we enumer-

ated all pairs of codewords of the RM(1,m) codes that suffer from an identification problem

over a channel allowing for the deletion of a single bit. We introduced a pruned linear sub-

code of the RM(1,m) code, with the loss of one information bit, which does not suffer from

the identification problem under the deletion of a single bit. Given a pair of codewords in
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the pruned code the appropriate notion of distance between them over a channel permit-

ting synchronization errors is the minimum Hamming distance between any pair of strings

which are derived respectively from each codeword after the application of such synchro-

nization error. We gave a combinatorially tight analysis of the the minimum distance of the

pruned code for this notion of distance for both the case of the deletion of a single bit and

the case of the repetition of a single bit. Specifically, we explicitly identified all pairs of

codewords of the pruned code for which the post-synchronization error Hamming distance

equals the corresponding post-synchronization minimum distance of the pruned code.

Finally, we provided a bounded distance decoding algorithm, suitable for the use of the

pruned code over a channel where in addition to possibly one deletion error (respectively

one repetition error), substitution errors can occur as well. The complexity of this algorithm

is of the same order as that of the usual fast Hadamard transform based decoding for the

RM(1,m) code. What is more, the proposed algorithm can in fact be essentially run on the

same hardware platform as in the case without synchronization errors.
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Chapter 5

Repetition Error Correcting Binary Sets

Inspired by the scenario discussed in Chapter 2, in this Chapter we study the problem

of finding maximally sized subsets of binary strings (codes) that are immune to a given

number r of repetitions, in the sense that no two strings in the code can give rise to the

same string after r repetitions.

In Section 5.1 we mention related work on the related problem of insertion/deletion

correcting codes. In Section 5.2 we introduce an auxiliary transformation that converts

our problem into that of creating subsets of binary strings immune to the insertions of 0’s.

In Section 5.3 we focus on subsets of binary strings immune to single repetitions. We

present explicit constructions of such subsets and use number theoretic techniques to give

explicit formulas for their cardinalities. Our constructions here are asymptotically optimal.

In Section 5.4 we discuss subsets of binary strings immune to multiple repetitions. Our

constructions here are asymptotically within a constant factor of the best known upper
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bounds and asymptotically better, by a constant factor than the best previously known such

constructions, due to Levenshtein [34].

5.1 Related Work

A closely related problem of studying codes capable of overcoming a certain number

of insertions and deletions was first studied by Levenshtein [35] where it was shown that

the so-called Varshamov-Tenengolts codes [57] originally proposed for the correction of

asymmetric errors are capable of overcoming one deletion or one insertion. They were

also shown to be asymptotically optimal. They have been further studied in [21] and [6].

In [51] further results on their cardinalities were obtained. Extensions to constructions for

overcoming multiple insertions and deletions remains a difficult problem. Literature on this

problem includes [25], [54].

Another interesting related problem is that of interactive communication when two

users own a copy of a data stream, one corrupted and the other one uncorrupted. The

owner of the uncorrupted version wants to communicate as few bits as possible to the other

user so that the other user can restore the original data. A method to communicate the min-

imal number of bits when the data stream is corrupted by modifying the sizes of the runs of

equal symbols is proposed in [44]. The difference from our model is the assumption that

these communicated bits are transmitted without themselves being subjected to repetition

errors, whereas in our model, any of the transmitted bits may be repeated.
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5.2 Auxiliary Transformation

To construct a binary, s repetition correcting code C of length n we first construct an

auxiliary code C̃ of length m = n− 1 which is s ‘0’-insertion correcting code. These two

codes are related through the following transformation.

Suppose c ∈ C. We let c̃ = c× Tn mod 2, where Tn is n× n− 1 matrix, satisfying

Tn(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

1, if i = j, j + 1

0, else.

(5.1)

Now, the repetition in c in position p corresponds to the insertion of ‘0’ in position p−1

in c̃, and weight(c̃) = number of runs in c -1. We let C̃ be the collection of strings of length

n − 1 obtained by applying Tn to all strings C. Note that c and its complement both map

into the same string in C̃.

It is thus sufficient to construct a code of length n − 1 capable of overcoming s ‘0’-

insertions and apply inverse Tn transformation to obtain s repetitions correcting code of

length n.

5.3 Single Repetition Error Correcting Set

Following the analysis of Sloane [51] and Levenshtein [35] of the related so-called

Varshamov-Tenengolts codes [57] known to be capable of overcoming one deletion or one

insertion, let Am
w be the set of all binary strings of length m and w ones, for 0 ≤ w ≤ m.

Partition Am
w based on the value of the first moment of each string. More specifically, let
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Sm,t
w,k be the subset of Am

w such that

Sm,t
w,k = {(s1, s2, ..., sm)|

m∑
i=1

i× si ≡ k mod t}. (5.2)

In the subsequent analysis we say that an element of Sm,t
w,k has the first moment congru-

ent to k mod t.

Lemma 11 Each subset Sm,w+1
w,k is a single ‘0’-insertion correcting code.

Proof : Suppose the string s′ is received. We want to uniquely determine the codeword

s = (s1, s2, ..., sm) ∈ Sm,w+1
w,k such that s′ is the result of inserting at most one zero in s.

If the length of s′ is m, conclude that no insertion occurred, and that s = s′.

If the length of s′ is m + 1, a zero has been inserted. For s′ = (s
′
1, s

′
2, ..., s

′
m, s

′
m+1),

compute
∑m+1

i=1 i× s
′
i mod (w + 1). Due to the insertion,

∑m+1
i=1 i× s

′
i =

∑m
i=1 i× si + R1

where R1 denotes the number of 1’s to the right of the insertion. Note that R1 is always

between 0 and w.

Let k′ be equal to
∑m+1

i=1 i × s
′
1 mod (w + 1). If k′ = k the insertion occurred after

the rightmost one, so we declare s to be the m leftmost bits in s′. If k′ > k, R1 is k′ − k

and we declare s to be the string obtained by deleting the zero immediately preceding the

rightmost k′ − k ones. Finally, if k′ < k, R1 is w + 1 − k + k′ and we declare s to be the

string obtained by deleting the zero immediately preceding the rightmost w + 1 − k + k′

ones. �

Before discussing the cardinality results it is worth point out that the construction pre-

sented here was used in [15] to thin the array-based LDPC code for improved performance
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under additive and a repetition error.

5.3.1 Cardinality Results

Since |Am
w | =

⎛
⎜⎜⎝ m

w

⎞
⎟⎟⎠ there exists k such that

|Sm,w+1
w,k | ≥ 1

w + 1

⎛
⎜⎜⎝ m

w

⎞
⎟⎟⎠ .

Since two codewords of different weights cannot result in the same string when at most

one zero is inserted we may let C̃ be the union of largest sets Sm,w+1
w,k∗

w
over different weights

w, i.e.

C̃ =
m⋃

w=1

Sm,w+1
w,k∗

w
,

where Sm,w+1
w,k∗

w
is the set of largest cardinality among all sets Sm,w+1

w,k for 0 ≤ k ≤ w. Thus,

the cardinality of C̃ is at least

m∑
w=0

⎛
⎜⎜⎝ m

w

⎞
⎟⎟⎠ 1

w + 1
=

1

m + 1

(
2m+1 − 1

)
.

The upper bound U1(m) on any set of strings each of length m capable of overcoming

one insertion of a zero is derived in [34] to be

U1(m) =
2m+1

m
. (5.3)

Hence the proposed construction is asymptotically optimal in the sense that the ratio of

its cardinality to the largest possible cardinality approaches 1 as n→∞.
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By applying inverse Tn transformation for n = m + 1 to C̃ and noting that both pre-

images under Tn can simultaneously belong to a repetition correcting set, we obtain a code

of length n and of size at least 1
n

(2n+1 − 2), capable of correcting one repetition.

The cardinalities of the sets Sm,w+1
w,k may be computed explicitly as we now show.

Recall that the Möbius function μ(x) of a positive integer x = pa1
1 pa2

2 . . . pak
k for distinct

primes p1, p2, . . . , pk is defined as [3],

μ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 for x = 1

(−1)k if a1 = · · · = ak = 1

0 otherwise .

(5.4)

and that the Euler function φ(x) denotes the number of integers y, 1 ≤ y ≤ x− 1 that are

relatively prime with x. By convention φ(1) = 1.

Lemma 12 Let g = gcd(m + 1, w + 1). The cardinality of Sm,w+1
w,k is

|Sm,w+1
w,k | =

1

m + 1

∑
d|g

⎛
⎜⎜⎝

m+1
d

w+1
d

⎞
⎟⎟⎠ (−1)(w+1)(1+ 1

d
)φ(d)

μ
(

d
gcd(d,k)

)
φ
(

d
gcd(d,k)

) (5.5)

where gcd(d, k) is the greatest common divisor of d and k, interpreted as d if k = 0.

Proof : Motivated by the analysis of Sloane [51] of the Varshamov-Tenengolts codes, let us

introduce the function fb,n(U, V ) in which the coefficient of U sV k, call it gb
k,s(n) represents

the number of strings of length n, weight s and the first moment equal to k mod b (i.e.
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gb
k,s(n) = |Sn,b

s,k |,

fb,n(U, V ) =
b−1∑
k=0

n∑
s=0

gb
k,s(n)U sV k. (5.6)

Observe that fb,n(U, V ) can be written as a generating function

fb,n(U, V ) =
n∏

t=1

(1 + UV t) mod (V b − 1) . (5.7)

Let a = ei 2π
b so that for V = aj

fb,n(U, ei 2πj
b ) =

b−1∑
k=0

n∑
s=0

gb
k,s(n)U sei 2πjk

b . (5.8)

By inverting this expression we can write

∑n
s=0 gb

k,s(n)U s

= 1
b

∑b−1
j=0 fb,n(U, ei 2πj

b )e−i 2πjk
b

= 1
b

∑b−1
j=0

∏n
t=1(1 + Uei 2πjt

b )e−i 2πjk
b .

(5.9)

Our next goal is to evaluate the coefficient U b on the right hand side in (9.77). To do so

we first evaluate the following expression

b∏
t=1

(1 + Uei 2πjt
b ) . (5.10)
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Let dj = b/gcd(b, j) and sj = j/gcd(b, j), and write

∏b
t=1(1 + Uei 2πjt

b )

=

(∏dj

t=1(1 + Ue
i
2πsjt

dj )

)gcd(b,j)

=

(
1 + U

∑dj

t1=1 e
i
2πsjt1

dj +

U2
∑dj

t1=1

∑dj

t2=t1+1 e
i
2πsj(t1+t2)

dj +

+ · · ·+ Udje
i
2πsj(1+2+···+dj)

dj

)gcd(b,j)

.

(5.11)

Since gcd(dj, sj) = 1, the set

V = {ei
2πsj1

dj , e
i
2πsj2

dj . . . e
i
2πsjdj

dj }

represents all distinct solutions of the equation

xdj − 1 = 0 . (5.12)

For a polynomial equation P (x) of degree d, the coefficient multiplying xk is a scaled

symmetric function of d − k roots. Hence, symmetric functions involving at most dj − 1

elements of V evaluate to zero. The symmetric function involving all elements of V , which

is their product, evaluates to (−1)dj+1.

Therefore,
b∏

t=1

(1 + Uei 2πjt
b ) =

(
1 + (−1)1+djUdj

)gcd(b,j)
. (5.13)
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Returning to the inner product in (9.77), let us first suppose that b|n. Then

∏n
t=1

(
1 + Uei 2πjt

b

)
=

(∏b
t=1

(
1 + Uei 2πjt

b

))n/b

=
(
1 + (−1)1+djUdj

)gcd(b,j)n/b

=
∑ n

dj

l=0

⎛
⎜⎜⎝

n
dj

l

⎞
⎟⎟⎠ (−1)l(1+dj)U ldj .

(5.14)

Thus (9.77) becomes

n∑
s=0

gb
k,s(n)U s

=
1

b

b−1∑
j=0

n
dj∑

l=0

⎛
⎜⎜⎝

n
dj

l

⎞
⎟⎟⎠ (−1)l(1+dj)Udj le−i 2πjk

b .

We now regroup the terms whose j’s yield the same dj’s

n∑
s=0

gb
k,s(n)U s =

1

b

∑
d|b

n
d∑

l=0

⎛
⎜⎜⎝

n
d

l

⎞
⎟⎟⎠ (−1)l(1+d)Udl

×
∑

j:gcd(j,b)=b/d,0≤j≤b−1

e−i 2πjk
b .

The rightmost sum can also be written as

∑
j:gcd(j,b)=b/d,0≤j≤b−1

e−i 2πjk
b =

∑
s:0≤s≤d−1,gcd(s,d)=1

e−i 2πsk
d . (5.15)

This last expression is known as the Ramanujan sum [3] and simplifies to

∑
s:0≤s≤d−1,gcd(s,d)=1

e−i 2πsk
d = φ(d)

μ
(

d
gcd(d,k)

)
φ
(

d
gcd(d,k)

) . (5.16)
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Now the coefficient of U b in (9.77) is

1

b

∑
d|b

⎛
⎜⎜⎝

n
d

b
d

⎞
⎟⎟⎠ (−1)

b
d
(1+d)φ(d)

μ
(

d
gcd(d,k)

)
φ
(

d
gcd(d,k)

) (5.17)

which is precisely the number of strings of length n, weight b, and the first moment con-

gruent to k mod b, i.e. |Sn,b
b,k |.

Consider the set of strings described by Sm,w+1
w,k for m = n − 1 and w = b − 1, i.e.

Sm,w+1
w,k = Sn−1,b

b−1,k . If we append ’1’ to each such string we would obtain a fraction of b/n of

all strings that belong to the set Sn,b
b,k . To see why this is true, first note that the cardinality

of the set Sn−1,b
b−1,k and of the subset T n

b,k of Sn,b
b,k which contains all strings ending in ’1’ is

the same (since when a ’1’ is appended to each element of the set Sn−1,b
b−1,k , the resulting

set contains strings of length n, weight b and first moment congruent to (k + n) mod b,

which is also congruent to k mod b since by assumption b|n). It is thus sufficient to show

that |T n
b,k| = b

n
|Sn,b

b,k |. Let Ak = |Sn,b
b,k |. Write Ak =

∑
u,u|b Ak(n, b, n

u
), where Ak(n, b, v)

denotes the number of strings of length n, weight b, first moment congruent to k mod b,

and with period v. Consider a string accounted for in Ak(n, b, n
u
). Its single cyclic shift has

the first moment congruent to (k + b) mod b and is thus also accounted for in Ak(n, b, n
u
).

Since n
u

is the period, and since b
u

is the weight per period, fraction b/u
n/u

of Ak(n, b, n
u
)

represents distinct strings that end in ’1’, have length n, weight b, first moment congruent

to k mod b, and period n
u

. Thus, |T n
b,k| =

∑
u,u|b

b/u
n/u

Ak(n, b, n
u
) = b

n
Ak, as required.

Therefore, the cardinality of Sm,w+1
w,k is b/n times the expression in (9.78),
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|Sm,w+1
w,k | =

1

m + 1

∑
d|w+1

⎛
⎜⎜⎝

m+1
d

w+1
d

⎞
⎟⎟⎠ (−1)

w+1
d

(1+d)φ(d)
μ
(

d
gcd(d,k)

)
φ
(

d
gcd(d,k)

) . (5.18)

Notice that the last expression is the same as the one proposed in Lemma 12 with

gcd(m + 1, w + 1) = w + 1.

Now suppose that b is not a factor of n. We work with fg,n(U, V ) as in (5.7) where

g = gcd(n, b) and get

n∑
s=0

gg
k,s(n)U s =

1

g

∑
d|g

n
d∑

l=0

⎛
⎜⎜⎝

n
d

l

⎞
⎟⎟⎠ (−1)l(1+d)Udl

×
∑

j:gcd(j,g)=g/d,0≤j≤g−1

e−i 2πjk
g .

Thus the coefficient of U b here is

1

g

∑
d|g

⎛
⎜⎜⎝

n
d

b
d

⎞
⎟⎟⎠ (−1)

b
d
(1+d)φ(d)

μ
(

d
gcd(d,k)

)
φ
(

d
gcd(d,k)

) . (5.19)

This is the number of strings of length n, weight b, and the first moment congruent

to k mod g, namely it is the cardinality of the set Sn,g
b,k . Let Bk = |Sn,g

b,k |. Write Bk =

∑
u,u|g Bk(n, b, n

u
) where Bk(n, b, v) denotes the number of strings of length n, weight b,

first moment congruent to k mod g and with period v. By cyclically shifting a string of

length n, weight b, first moment congruent to k mod g and with period n/u for n/u steps,

and observing that each cyclic shift also has the first moment congruent to k mod g, it

follows that a fraction b/u
n/u

of Bk(n, b, n
u
) represents the number of strings that end in ’1’,
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have length n, weight b, first moment congruent to k mod g, and period n
u

. Thus a fraction

b/n of Bk denotes the number of strings that end in ’1’, are of length n, weight b, and have

the first moment congruent to k mod g. Since each string of length n − 1, weight b − 1,

and the first moment congruent to k mod g produces a unique string that ends in ’1’, is of

length n, weight b, and has the first moment congruent to k mod g by appending ’1’, it

follows that b
n
Bk is also the number of strings of length n − 1, weight b − 1, and the first

moment congruent to k mod g. Thus the number of strings given by Sn−1,g
b−1,k is also b

n
Bk.

Consider again cyclic shifts of a string of length n, weight b, the first moment congruent

to k mod g and with period n/u. A fraction b/u of these shifts produce strings with a ’1’

in the last position. Let us consider one such string s0. Its first n − 1 bits correspond

to a string of length n − 1, weight b − 1, and the first moment congruent to k mod g.

This n− 1-bit string has the first moment congruent to k0 mod b for some k0. Cyclically

shift s0 for t1 places until the first time ’1’ again appears in the nth position, and call the

resulting string s1 (Since b > g and u|g, b/u > 1, and thus s1 �= s0). The first n− 1 bits of

s1 correspond to a string of length n − 1, weight b − 1, and the first moment congruent to

k1 ≡ k0+t1(b−1)+t1−n mod g ≡ k0+t1b−n mod b≡ k0−gy mod b, where y = n
g
.

Cyclically shift s1 for for t2 places until the first time ’1’ again appears in the nth position,

and call the resulting string s2. The first n − 1 bits of s2 correspond to a string of length

n− 1, weight b− 1, and the first moment congruent to k2 ≡ k0 − gy + t2(b− 1) + t2 − n

mod g ≡ k0 − gy + t2b − n mod b ≡ k0 − 2gy mod b. Each subsequent cyclic shift

with ’1’ in the last place gives a string si whose first n − 1 bits have the first moment



85

congruent to ki ≡ k0 − igy mod b. The last such string, sb/u−1, before the string s0

is encountered again has the left n − 1 bit substring whose first moment is congruent to

kb/u−1 ≡ k0−( b
u
−1)gy mod b. Note that the sequence {k0, k1, k2, . . . , kb/u−1} is periodic

with period z (here gcd(y, g) = 1 by construction), where z = b
g
. Since z| b

u
, each of k0, k1

through k b
g
−1 appear equal number of times in this sequence. Consequently, the number of

strings in the set Sn−1,b
b−1,ki

is g
b

of the size of the set Sn−1,g
b−1,k for every ki ≡ ig + k mod b.

Therefore |Sm,w+1
w,k | is

|Sm,w+1
w,k | = b

n
g
b
|Sn,g

b,k |

= 1
m+1

∑
d|g

⎛
⎜⎜⎝

m+1
d

w+1
d

⎞
⎟⎟⎠ (−1)(w+1+ 1

d
(1+w))φ(d)

μ( d
gcd(d,k))

φ( d
gcd(d,k))

(5.20)

which completes the proof of the lemma. �

5.3.2 Connection with necklaces

It is interesting to briefly visit the relationship between optimal single insertion of a

zero correcting codes and combinatorial objects known as necklaces [24].

A necklace consisting of n beads can be viewed as an equivalence class of strings of

length n under cyclic shift (rotation).

Let us consider two-colored necklaces of length n with b black beads and n − b white

beads. It is known that the total number of distinct necklaces is [24]

T (n) =
1

n

∑
d|gcd(n,b)

⎛
⎜⎜⎝

n
d

b
d

⎞
⎟⎟⎠φ(d) . (5.21)
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In general necklaces may exhibit periodicity. However, consider, for example for the

case gcd(n, b) = 1. Then there are

1

n

⎛
⎜⎜⎝ n

b

⎞
⎟⎟⎠

distinct necklaces, all of which are aperiodic. Now assume that b + 1|n and note that this

implies gcd(n + 1, b + 1) = 1. Suppose we label each necklace beads in the increasing

order 1 through n and we rotate each necklace by one position at the time relative to this

labeling. At each step we sum mod b + 1 the positions of b black beads. For each necklace

each of residues k, 0 ≤ k ≤ b is encountered n/(b + 1) times. The total number of times

each residue k is encountered is thus

1

b + 1

⎛
⎜⎜⎝ n

b

⎞
⎟⎟⎠ =

1

n + 1

⎛
⎜⎜⎝ n + 1

b + 1

⎞
⎟⎟⎠ ,

which as expected equals the number of binary strings of weight b, length n, and the first

moment congruent to k mod b + 1 (same for all k).

5.4 Multiple Repetition Error Correcting Set

We now present an explicit construction of a multiple repetition error correcting set and

discuss its cardinality.

Let a = (a1, a2, ..., ar) for r ≥ 1, and consider the set Ŝ(m,w, a, p) for w ≥ 1 defined



87

as

Ŝ(m,w, a, p) = { s = (s1, s2, ...sm) ∈ {0, 1}m :

v0 = 0, vw+1 = m + 1, and vi is the position of the ith 1 in s for 1 ≤ i ≤ w,

bi = vi − vi−1 − 1, for 1 ≤ i ≤ w + 1,

∑m
i=1 si = w,

∑w+1
i=1 ibi ≡ a1 mod p,

∑w+1
i=1 i2bi ≡ a2 mod p,

...

∑w+1
i=1 irbi ≡ ar mod p }.

(5.22)

The set Ŝ(m, 0,0, p) contains just the all-zeros string. Let a0 = 0 and let

Ŝ (m, (a1, p1), (a2, p2), ..., (am, pm)) be defined as

Ŝ (m, (a1, p1), (a2, p2), ..., (am, pm)) =
m⋃

l=0

Ŝ(m, l, al, pl), (5.23)

where b1, . . . , bw+1 denote the sizes of the bins of 0’s between successive 1’s.

Lemma 13 If each pl is prime and pl > max(r, l), the set Ŝ (m, (a1, p1), (a2, p2), ..., (am, pm)),

provided it is non empty, is r-insertions of zeros correcting.

Proof : It suffices to show that each non-empty set Ŝ(m, l, al, pl) is r-insertions of zeros

correcting. This is obvious for l = 0. For l > 0 suppose a string x ∈ Ŝ(m, l, al, pl) is

transmitted. After experiencing r insertions of zeros, it is received as a string x′. We now

show that x is always uniquely determined from x′.
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Let i1 ≤ i2 ≤ ... ≤ ir be the (unknown) indices of the bins of zeros that have experi-

enced insertions. For each j, 1 ≤ j ≤ r, compute a′
j ≡

∑w+1
i=1 ijb′i mod pl, where b′i is the

size of the ith bin of zeros of x′,

a′
j ≡

∑w+1
i=1 ijb′i mod pl

≡ aj + (ij1 + ij2 + ... + ijr) mod pl,

(5.24)

where aj is the j th entry in the residue vector al (to lighten the notation the subscript l in aj

is omitted).

By collecting the resulting expressions over all j, and setting a
′′
j ≡ a′

j − aj mod pl, we

arrive at

Er =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
′′
1 ≡ i1 + i2 + ... + ir mod pl

a
′′
2 ≡ i21 + i22 + ... + i2r mod pl

. . . . . . . . .

a
′′
r ≡ ir1 + ir2 + ... + irr mod pl.

(5.25)

The terms on the right hand side of the congruency constraints are known as power sums

in r variables. Let Sk denote the kth power sum mod pl of {i1, i2, ..., ir},

Sk ≡ ik1 + ik2 + ... + ikr mod pl, (5.26)

and let Λk denote the kth elementary symmetric function of {i1, i2, ..., ir} modpl,

Λk ≡
∑

v1<v2<...<vk

iv1iv2 · · · ivk
mod pl. (5.27)

Using Newton’s identities over GF (pl) which relate power sums to symmetric func-

tions of the same variable set, and are of the type

Sk − Λ1Sk−1 + Λ2Sk−2 − ... + (−1)k−1Λk−1S1 + (−1)kkΛk = 0, (5.28)
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for k ≤ r, we can obtain an equivalent system of r equations:

Ẽr =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1 ≡
∑r

j=1 ij mod pl

d2 ≡
∑

j<k ijik mod pl

. . . . . . . . .

dt ≡
∏r

j=1 ij mod pl,

(5.29)

where each residue dk is computed recursively from {d1, ..., dk−1} and {a′′
1 , a

′′
2 , ...a

′′
k}.

Specifically, since the largest coefficient in (5.28) is r, and r < pl by construction, the last

term in (5.28) never vanishes due to the multiplication by the coefficient k.

Consider now the following equation:

r∏
j=1

(x− ij) ≡ 0 mod pl, (5.30)

and expand it into the standard form

xr + cr−1x
r−1 + ... + c1x + c0 ≡ 0 mod pl. (5.31)

By collecting the same terms in (5.30) and (5.31), it follows that dk ≡ (−1)kcr−k mod pl.

Furthermore, by the Lagrange’s Theorem, the equation (5.31) has at most r solutions. Since

ir ≤ pl all incongruent solutions are distinguishable, and thus the solution set of (5.31) is

precisely the set {i1, i2, ..., ir}.

Therefore, since the system Er of r equations uniquely determines the set {i1, i2, ..., ir},

the locations of the inserted zeros (up to the position within the bin they were inserted in)

are uniquely determined, and thus x is always uniquely recovered from x′. �
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Hence, Ŝ (m, (a1, p1), (a2, p2), ..., (am, pm)) is r-insertions of zeros correcting for pl is

prime and pl > max(r, l).

In particular, for r = 1, the constructions in (5.2) and (5.22) are related as follows.

Lemma 14 For p prime and p > w, the set Sm,p
w,a defined in (5.2) equals the set Ŝ(m,w, â, p)

defined in (5.22), where â = fm,w−a mod p for fm,w = (w+2)(2m−w+1)/2− (m+1).

Proof : Consider a string s = (s1, s2, ..., sm) ∈ Sm,p
w,a , and let pi be the position of the ith 1

in s, so that
∑m

i=1 isi =
∑w

i=1 pi. Observe that pk =
∑k

i=1 bi + k where bi is the size of the

ith bin of zeros in s. Write

∑w
i=1 pi + (m + 1) = (b1 + 1) + (b1 + b2 + 2) + ...+

(b1 + b2 + ... + bw + w) + (b1 + b2 + ... + bw+1 + w + 1) =

∑w+1
i=1 (w + 2− i)bi + (w + 1)(w + 2)/2 =

(w + 2)(m− w) + (w + 1)(w + 2)/2−∑w+1
i=1 ibi =

(w + 2)(2m− w + 1)/2−∑w+1
i=1 ibi.

(5.32)

Thus, for a ≡∑m
i=1 isi mod p, the quantity â ≡∑w+1

i=1 ibi mod p is fm,w − a mod p. �

Observe that the indices i = 1, . . . , (w + 1) in (5.22) play the role of the “weightings”

of the appropriate bins of zeros in the construction above, and that they do not necessarily

have to be in the increasing order for the construction and the validity of the proof to hold.

We can therefore replace each of i in (5.22) with the weighting fi with the property that

each fi is a residue mod P and that fi �= fj for i �= j. Let ˆ̂
S(m,w, a, f , p) for w ≥ 1 be



91

defined as

ˆ̂
S(m,w, a, f , p) = { s = (s1, s2, ...sm) ∈ {0, 1}m :

v0 = 0, vw+1 = m + 1, and vi is the position of the ith 1 in s for 1 ≤ i ≤ w,

bi = vi − vi−1 − 1 for 1 ≤ i ≤ w + 1,

∑m
i=1 si = w,

fi mod P �= fj mod P for i �= j,

∑w+1
i=1 fibi ≡ a1 mod p,

∑w+1
i=1 (fi)

2bi ≡ a2 mod p,

...

∑w+1
i=1 (fi)

rbi ≡ at mod p }.
(5.33)

The set ˆ̂
S(m, 0,0,0, p) contains just the all-zeros string. Let a0 = 0 and let

ˆ̂
S (m, (a1, f1, p1), (a2, f2, p2), ..., (am, fm, pm)) be defined as

ˆ̂
S (m, (a1, f1, p1), (a2, f2, p2), ..., (am, fm, pm)) =

m⋃
l=0

ˆ̂
S(m, l, al, fl, pl). (5.34)

We note that ˆ̂
S(m,w, a, f , p) = Ŝ(m,w, a, p) when f = (1, 2, . . . , (w + 1)).

Lemma 15 If each pl is prime and pl > max(r, l), the set

ˆ̂
S (m, (a1, f1, p1), (a2, f2, p2), ..., (am, fm, pm)) is r-insertions of zeros correcting.

Proof : The proof follows that of Lemma 13 with appropriate substitutions of fi for i.

�

The object ˆ̂
S(m,w, a, f , p) will be of further interest to us in Section 6.2 when we

discuss a prefixing method for improved immunity to repetition errors.
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We now present some cardinality results for the construction of present interest. For

simplicity we focus on the set Ŝ(m,w, a, p) as the results hold verbatim for ˆ̂
S(m,w, a, f , p)

with appropriate weighting assignments.

5.4.1 Cardinality Results

Let Ŝ∗ (m, (a1, p1), (a2, p2), ..., (am, pm)) be defined as

Ŝ∗ (m, (a1, p1), (a2, p2), ..., (am, pm)) =
m⋃

l=0

Ŝ(m, l, al
∗, pl). (5.35)

where Ŝ(m, l, al
∗, pl) is the largest among all sets Ŝ(m, l, al, pl) for al ∈ {0, 1, . . . , pl}r.

The cardinality of Ŝ(m, l, al
∗, pl) is at least⎛

⎜⎜⎝ m

l

⎞
⎟⎟⎠ 1

pr
l

.

Since for all n there exists a prime between n and 2n it follows that one can choose the

pl, 1 ≤ l ≤ m, so that cardinality of Ŝ(m, l, al
∗, pl) for l ≥ r is at least⎛

⎜⎜⎝ m

l

⎞
⎟⎟⎠ 1

(2l)r
.

Thus p1, . . . , pm can be chosen so that the cardinality of Ŝ∗ (m, (a1, p1), (a2, p2), ..., (am, pm))

is at least

1 +
r−1∑
w=1

⎛
⎜⎜⎝ m

w

⎞
⎟⎟⎠ 1

(2r)r +
m∑

w=r

⎛
⎜⎜⎝ m

w

⎞
⎟⎟⎠ 1

(2w)r
, (5.36)
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which is lower bounded by

1 +
1

(2r)r

r−1∑
w=1

⎛
⎜⎜⎝ m

w

⎞
⎟⎟⎠+

1

(2r)(m + 1)(m + 2) . . . (m + r)

⎛
⎜⎜⎝2m+r −

2r−1∑
k=0

⎛
⎜⎜⎝ m + r

k

⎞
⎟⎟⎠
⎞
⎟⎟⎠ . (5.37)

The prime counting function π(n) which counts the number of primes up to n, satisfies for

n ≥ 67 the inequalities [50]

n

ln(n)− 1/2
< π(n) <

n

ln(n)− 3/2
. (5.38)

From (5.38) it follows that

(1 + ε)n

ln((1 + ε)n)− 1/2
< π((1 + ε)n) <

(1 + ε)n

ln((1 + ε)n)− 3/2
. (5.39)

For a prime number to exist between n and (1 + ε)n , it is sufficient to have

π((1 + ε)n) > π(n) . (5.40)

Using (5.38) and (5.39) it is sufficient to have

π((1 + ε)n) >
(1 + ε)n

ln((1 + ε)n)− 1/2
≥ n

ln(n)− 3/2
> π(n) . (5.41)

Comparing the innermost terms in (5.41) it follows that it is sufficient for ε to satisfy

ε ln(n) ≥ ln(1 + ε) +
3ε

2
+ 1 (5.42)

for (5.40) to hold.
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For n ≥ 67 and ε = 3
ln(n)

, the left hand side of (5.42) evaluates to 3 while the right hand

side of (5.42) is upper bounded by (0.539 + 1.071 + 1) < 3.

Since π(n) is a non-decreasing function of n, it follows that for n ≥ 67, there exists

a prime between n and (1 + ε)n for ε ≥ 3
ln(n)

. Thus the lower bound on the asymptotic

cardinality of the best choice over p1, . . . , pm of Ŝ∗ (m, (a1, p1), (a2, p2), ..., (am, pm)) can

be improved to

1

(1 + ε)r(m + 1)(m + 2) . . . (m + r)

(
2m+r

)− P (m), (5.43)

where ε = 3
ln m

and P (m) is a polynomial in m. In the limit m → ∞, (5.43) is approxi-

mately

2m+r

(m + 1)r
. (5.44)

A construction proposed by Levenshtein [34] has the lower asymptotic bound on the

cardinality given by

1

(log2 2r)r

2m

mr
. (5.45)

Note that both (5.36) and the improved bound (5.43) improve on (5.45) by at least a

constant factor.

The upper bound Ur(m) on any set of strings each of length m capable of overcoming

r insertions of zero is

Ur(m) = c(r)
2m

mr
,
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as obtained in [34], where

c(r) =

⎧⎪⎪⎨
⎪⎪⎩

2rr! odd r

8r/2((r/2)!)2 even r

which makes the proposed construction be within a factor of this bound. By applying

the inverse Tn transformation for n = m + 1 to Ŝ∗ (m, (a1, p1), (a2, p2), ..., (am, pm)) and

noting that both strings under the inverse Tn transformation can simultaneously belong to

the repetition error correcting set, we obtain a code of length n capable of overcoming r

repetitions and of asymptotic size at least

2n+r

nr
. (5.46)

5.5 Summary and Concluding Remarks

In this chapter we discussed the problem of constructing repetition error correcting

codes (subsets of binary strings). We presented some explicit number-theoretic construc-

tions and provided some results on the cardinalities of these constructions. Specific contri-

butions included a generalization of a generating function calculation of Sloane [51] and a

construction of multiple repetition error correcting codes that is asymptotically a constant

factor better than the previously best known construction due to Levenshtein [34].



96

Chapter 6

Prefixing-Based Method for Multiple

Repetition Error Correction

In this chapter we propose a general prefixing method which injectively transforms a

given collection C of binary strings of length n into another collection of binary strings DC

of equal length, such that the collection DC is guaranteed to be immune to the prescribed

number of repetition errors. The proposed method is inspired by the number-theoretic con-

struction developed in the previous chapter. It takes an element c of C and produces a string

tc = [pcc], tc ∈ DC , that is, the prefix pc is prepended to c to produce tc. In the proposed

method, the set DC has the property that the length of the prefix pc is O(log(n)). Thus,

if the set C is used for transmission, the proposed method provides increased immunity to

repetition errors with asymptotically vanishing loss in the rate. We also provide a message

passing decoding algorithm suitable for channels with both repetitions and additive errors
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whose complexity is the same as of the traditional message passing decoding algorithm

designed to correct additive errors only.

We start with some auxiliary results.

6.1 Auxiliary results

Consider a prime number P with the property that lcm(2, 3, ..r)|(P − 1) for a given

positive integer r. Since each i, 1 ≤ i ≤ r, satisfies i|(P − 1), it follows that in the residue

set mod P , there are P−1
i

elements that are ith power residues, each having i distinct

roots (an ith power residue x satisfies yi ≡ x mod P for some y), [3]. For convenience,

let G = �log2(P )�.

For each i, 1 ≤ i ≤ r, we will construct a specific subset Vi of the ith power residues

mod P such that all other residues can be expressed as a sum of a subset of elements of

Vi, and such that each Vi has size that is logarithmic in P . The set of the ith roots of the

elements of the set Vi will be denoted Fi. Thus, Fi will also have size logarithmic in P .

The elements of M =
⋃r

i=1 Fi∪{0} (the sets Fi will be made disjoint) will be reserved for

the weightings fi of the bins of zeros of the prefix string ps in the transformed domain (see

the construction (5.33)). Note that M also has size that is logarithmic in P , and since each

bin in the prefix will have at most one zero, the length of the prefix is also logarithmic in

P . The sets Vi will serve to satisfy the ith congruency constraint of the type given in (5.33)

for the string ts in the transformed domain, as further explained below.
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In the remainder of this section we will first show how to construct sets Vi, and then

we will provide the proof that it is possible to construct sets Vi with all distinct elements

as well as sets Fi (from sets Vi) that have distinct elements and are non intersecting, for

the prime P large enough. We will also provide a proof that for a given integer n, for n

large enough, there exists a prime P for which we can construct non intersecting sets Fi

containing distinct elements, where the prime P lies in an interval that linearly depends on

n.

Combined with the encoding method described in the next section we will therefore

have constructed a prefix whose length is logarithmic in n such that the overall string

(which is a concatenation of the prefix and original string) in the transformed domain sat-

isfies equations of congruential type given in (5.33), for which we have already proved in

the previous chapter are sufficient for the immunity to r repetition errors.

We now provide some auxiliary results. Let [x]P indicate the residue mod P congruent

to x .

Lemma 16 For an integer P , each residue v mod P can be expressed as a sum of a subset

of elements of the set Tz,P = {[z]P , [2z]P , [22z]P , ..., [2Gz]P} where G = �log2 P �, z is an

arbitrary non zero residue mod P .

Proof: Observe that T1,P = {1, 2, 22, ..., 2G}. We first show that each residue v mod P can

be expressed as a sum of a subset of elements of the set T1,P . Note that each residue i,

0 ≤ i ≤ 2G − 1 (mod P ) can be expressed as a sum of a subset, call this subset Qi, of the

set {1, 2, 22, ..., 2G−1}. Here Q0 is the empty set. Adding 2G to the sum of each Qi, for 0 ≤
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i ≤ 2G−1, modulo P generates the remaining residues {2G, 2G +1, ..., P −1}. As a result

every residue mod P can be expressed as a sum of a subset of T1,P = {1, 2, 22, ..., 2G}.

Suppose there exists an element v which cannot be expressed as a sum of a subset of

elements of Tz,P , for z > 1, that is v �= ∑G
i=0 εiz2i mod P , for all choices of {ε0, ..., εG},

εi ∈ {0, 1}. Let z−1 be the inverse element of z under multiplication mod P . Then the

residue v′ = vz−1 �= ∑G
i=0 εi2

i mod P , for all choices of {ε0, ..., εG}, εi ∈ {0, 1}, which

contradicts the result from the previous paragraph. �

For a prime number P for which i|P −1, and i < P −1, let Qi(P ) be the set of distinct

ith power residues mod P , let Ni(P ) be the set of distinct ith power non residues mod P .

We also state the following convenient result.

Lemma 17 For a prime P such that i|(P − 1), each residue n mod P can be expressed

as a sum of two distinct elements of Qi(P ) in at least P/(2i2)−√P/2− 3 ways.

Proof: The result follows from Theorem II in [27] which states that over GF (P ) the equa-

tion

xi + yi = a (6.1)

where x, y, a ∈ GF (P ) and nonzero and 0 < i < P − 1 has at least

(P − 1)2

P
− P−1/2

(
1 + (i− 1)P 1/2

)2
(6.2)

solutions. Rearrange the terms in (6.2) to conclude that (6.1) has at least

P − (i− 1)2
√

P − 2(i− 1)− 2 +
1

P
− 1√

P
(6.3)
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solutions. Noting that i distinct values of x result in the same xi, accounting for the sym-

metry of x and y, and omitting the case xi = yi we obtain a lower bound on the num-

ber of ways a residue can be expressed as a sum of two distinct ith power residues to be

P/(2i2)−√P/2− 3. �

Equations of the type in (6.1) were also studied by Weil [59].

We now continue with the introduction of some convenient notation. For xi,1 an ith

power residue define the set Ai,1(xi,1) to be

Ai,1(xi,1) = {[2ikxi,1]P |0 ≤ k ≤ �G
i
�} . (6.4)

Let xi,2 and xi,3 be distinct ith power residues such that xi,2 + xi,3 ≡ 2xi,1 mod P . These

two power residues generate sets Ai,2(xi,2) and Ai,3(xi,3) where

Ai,2(xi,2) = {[2ikxi,2]P |0 ≤ k ≤ �G− 1

i
�} and (6.5)

Ai,3(xi,3) = {[2ikxi,3]P |0 ≤ k ≤ �G− 1

i
�} . (6.6)

Likewise, for each 2lxi,1 for 1 ≤ l ≤ i − 1 let xi,2l and xi,2l+1 be distinct ith power

residues such that xi,2l + xi,2l+1 ≡ 2lxi,1 mod P . These residues generate sets Ai,2l(xi,2l)

and Ai,2l+1(xi,2l+1) where

Ai,2l(xi,2l) = {[2ikxi,2l]P |0 ≤ k ≤ �G− l

i
�} and (6.7)

Ai,2l+1(xi,2l+1) = {[2ikxi,2l+1]P |0 ≤ k ≤ �G− l

i
�}. (6.8)

By introducing sets Ai,j(xi,j) we have effectively decomposed all residues of the type

[2ik+lxi,1]P , 0 ≤ ik + l ≤ G, 1 ≤ l ≤ i − 1, for which i is not a divisor of l into a
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sum of two ith power residues, namely [2ikxi,2l]P and [2ikxi,2l+1]P . For each set Ai,j(xi,j),

1 ≤ j ≤ 2i− 1, we let Bi,j(xi,j) be the set of all ith power roots of elements of Ai,j(xi,j),

Bi,j(xi,j) = {[2ky
(t)
i,j ]P |(y(t)

i,j )
i ≡ xi,j mod P, 1 ≤ t ≤ i, 0 ≤ k ≤ �G− �

j
2
�

i
�} . (6.9)

First note that all elements in Ai,j(xi,j) are ith power residues by construction. Moreover,

they are all distinct since 2ij1 �= 2ij2 mod P for 1 ≤ j1, j2 ≤ �G−� j
2
�

i
� for j1 �= j2 implies

xi,j2
ij1 �= xi,j2

ij2 mod P . Thus, |Aij(xi,j)| = �G−� j
2
�

i
� + 1 and since the ith power roots

of distinct ith power residues are themselves distinct, |Bij(xi,j)| = i
(
�G−� j

2
�

i
�+ 1

)
.

Lemma 18 Suppose P is a prime number such that i|(P − 1). Let xi,1 be an ith power

residue. Suppose xi,j for 2 ≤ j ≤ 2i − 1 are ith power residues such that 2kxi,1 ≡

xi,2k + xi,2k+1 mod P for 1 ≤ k ≤ (i− 1). Let Ai,j(xi,j) = {[2ilxi,j]P |0 ≤ l ≤ �G−� j
2
�

i
�}

for 1 ≤ j ≤ 2i− 1 and G = �log2 P �. If the sets Ai,j(xi,j) are disjoint for 1 ≤ j ≤ 2i− 1,

each residue n mod P can be expressed as a sum of a subset of elements of the set Lz,P =

⋃2i−1
j=1 Ai,j(xi,j) where z denotes xi,1.

Proof: Follows immediately from Lemma 16 by observing that, with z denoting xi,1, we

have in fact decomposed elements [2kz]P in the set Tz,P for k not a multiple of i into a sum

of two component elements such that all component elements are distinct from one another

and distinct from [2kz]P for i|k. �

The following lemma proves that it is possible to construct subsets Aij(xi,j), and subsets

Bij(xi,j) from them, of the set of residues mod P for P prime that satisfies lcm(2, 3, ...r)|(P−

1) for a given positive integer r, provided that P is large enough, such that for fixed
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i the subsets Aij(xi,j) are disjoint, and such that all subsets Bij(xi,j) for 1 ≤ i ≤ r,

1 ≤ j ≤ 2i − 1 are also disjoint. Let Wi(n) denote the number of ways any residue n

mod P can be expressed as a sum of two distinct non zero ith power residues mod P . A

universal lower bound on Wi(n) that holds for all residues n was given in Lemma 17, and

we will refer to it as Wi.

Lemma 19 For a given integer r, suppose a prime number P satisfies lcm(2, 3, ...r)|(P −

1). Let G = �log2 P �. If P−1 > (G+r)(G+r−1)(r−1)2 and Wi > 2i(G+i)(G+i−1),

for each i in the range 2 ≤ i ≤ r, there exist subsets Aij(xi,j) of the type given in (6.7)

and (6.8) and Bij(xi,j) of the type given in (6.9) such that for fixed i subsets Aij(xi,j) for

1 ≤ j ≤ 2i − 1 are disjoint, and for 1 ≤ i ≤ r, 1 ≤ j ≤ 2i − 1 all subsets Bij(xi,j) are

disjoint.

Proof: We inductively build the sets Aij(xi,j) and Bij(xi,j) for 1 ≤ i ≤ r and 1 ≤ j ≤

2i−1, starting with the level i = 1. We then increment i by one to reach the next collection

of sets Aij(xi,j) and Bij(xi,j) while making sure the sets Bij(xi,j) at the current level are

disjoint from one another and with all previously constructed sets at lower levels.

Consider i = 1. Let x1,1 be an arbitrary residue mod P , and let

A1,1(x1,1) = {[2kx1,1]P |0 ≤ k ≤ G}.

Let z1 = x1,1 and y
(1)
1,1 = x1,1. Here B1,1(z1) is simply A1,1(x1,1) for i = 1. All elements in

B1,1(z1) are distinct and |B1,1(z1)| = (G + 1). If r = 1, we are done, as we did not even

appeal to the condition on the lower bound on P − 1 (it is simply P − 1 > 0).
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If r ≥ 2, let us consider i = 2. Consider quadratic residues x2,1, x2,2 and x2,3. Let

their respective distinct quadratic roots be y
(1)
2,1 , y

(2)
2,1 (so that (y

(1)
2,1)

2 ≡ (y
(2)
2,1)

2 ≡ x2,1

mod P ), y(1)
2,2 , y(2)

2,2 (so that (y
(1)
2,2)

2 ≡ (y
(2)
2,2)

2 ≡ x2,2 mod P ) and y
(1)
2,3 , y(2)

2,3 (so that (y
(1)
2,3)

2 ≡

(y
(2)
2,3)

2 ≡ x2,3 mod P ). These quadratic residues give rise to sets

A2,1(x2,1) = {[22kx2,1]P |0 ≤ k ≤ �G
2
�}, (6.10)

A2,2(x2,2) = {[22kx2,2]P |0 ≤ k ≤ �G− 1

2
�} and, (6.11)

A2,3(x2,3) = {[22kx2,3]P |0 ≤ k ≤ �G− 1

2
�} . (6.12)

Quadratic roots of elements of sets A2,1(x2,1), A2,2(x2,2) and A2,3(x2,3) give rise to sets

B2,1(x2,1), B2,2(x2,2) and B2,3(x2,3),

B2,1(x2,1) = {[2ky
(t)
2,1]P |1 ≤ t ≤ 2, 0 ≤ k ≤ �G

2
�}, (6.13)

B2,2(x2,2) = {[2ky
(t)
2,2]P |1 ≤ t ≤ 2, 0 ≤ k ≤ �G− 1

2
�}, and (6.14)

B2,3(x2,3) = {[2ky
(t)
2,3]P |1 ≤ t ≤ 2, 0 ≤ k ≤ �G− 1

2
�} . (6.15)

Having fixed the set B1,1(x1,1) based on the earlier selection of the residue x1,1, we want

to show that it is possible to find quadratic residues x2,1, x2,2 and x2,3 such that x2,2+x2,3 ≡

2x2,1 mod P and such that the resulting sets B1,1(x1), B2,1(x2,1), B2,2(x2,2) and B2,3(x2,3)

are all disjoint.

In particular we require that x2,1 is a quadratic residue mod P (there are (P − 1)/2

quadratic residues) with the property that the set B2,1(x2,1) is disjoint from B1,1(x1,1). That

is we require

y
(1)
2,12

k �= y
(1)
1,12

l mod P
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and

y
(2)
2,12

k �= y
(1)
1,12

l mod P

for 0 ≤ k ≤ �G
2
� and 0 ≤ l ≤ G. By squaring the expressions, these two conditions can be

combined into

x2,12
2k �= (y

(1)
1,1)

222l mod P (6.16)

for 0 ≤ k ≤ �G
2
� and 0 ≤ l ≤ G. For the already chosen y

(1)
1,1(= x1,1) at most (G +

1)(�G
2
�+ 1) candidate quadratic residues out of total (P − 1)/2 quadratic residues violate

(6.16). Observe that the function (G+i)(G+i−1)(i−1)2 is strictly increasing for positive

i, 2 ≤ i ≤ r, and thus the condition P −1 > (G+r)(G+r−1)(r−1)2 in the statement of

the Lemma implies P −1 > (G+2)(G+1). Since P−1
2

> (G+1)(G+2)
2

≥ (G+1)(�G
2
�+1),

such x2,1 exists.

Fix x2,1 such that (6.16) holds. Having chosen such x2,1, we now look for x2,2 and

x2,3 as distinct quadratic residues that satisfy x2,2 + x2,3 ≡ 2x2,1 mod P . We require that

B2,2(x2,2) be disjoint from both B1,1(x1,1) and B2,1(x2,1) (by construction, if B2,2(x2,2) and

B2,1(x2,1) are disjoint so are A2,2(x2,2) and A2,1(x2,1)) so that

y
(1)
2,22

k3 �= y
(1)
1,12

k1 mod P,

y
(2)
2,22

k3 �= y
(1)
1,12

k1 mod P,

y
(1)
2,22

k3 �= y
(1)
2,12

k2 mod P,

y
(2)
2,22

k3 �= y
(1)
2,12

k2 mod P,

y
(1)
2,22

k3 �= y
(2)
2,12

k2 mod P,

y
(2)
2,22

k3 �= y
(2)
2,12

k2 mod P,

(6.17)
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where 0 ≤ k1 ≤ G, 0 ≤ k2 ≤ �G
2
� and 0 ≤ k3 ≤ �G−1

2
�.

Alternatively, by squaring both sides in each expression in (6.17),

x2,22
2k3 �= (y

(1)
1,1)

222k1 mod P,

x2,22
2k3 �= x2,12

2k2 mod P,

(6.18)

where 0 ≤ k1 ≤ G, 0 ≤ k2 ≤ �G
2
� and 0 ≤ k3 ≤ �G−1

2
�.

Likewise, we require that B2,3(x2,3) be disjoint from B1,1(x1,1), B2,1(x2,1) and B2,2(x2,2)

(again, if B2,3(x2,3) is disjoint from B2,2(x2,2) and B2,1(x2,1), then A2,3(x2,3) is disjoint

from A2,2(x2,2) and A2,1(x2,1)) so that

x2,32
2k4 �= (y

(1)
1,1)

222k1 mod P,

x2,32
2k4 �= x2,12

2k2 mod P,

x2,32
2k4 �= x2,22

2k3 mod P,

(6.19)

where 0 ≤ k1 ≤ G, 0 ≤ k2 ≤ �G
2
�, 0 ≤ k3 ≤ �G−1

2
� and 0 ≤ k4 ≤ �G−1

2
�. For the already

chosen values of x2,1 and y1,1 at most N2 = 2
[(�G

2
�+ 1

) (�G−1
2
�+ 1

)
+ (G + 1)

(�G−1
2
�+ 1

)]
+

(�G−1
2
�+ 1

)2
choices for x2,2 and x2,3 violate (6.18) and (6.19).

We thus require that W2 be strictly larger than N2. Dropping floor operations it is

sufficient that W2 > (G+1)(G+2)
2

+ 5(G+1)2

4
. Further simplification yields that

W2 >
7(G + 1)(G + 2)

4
(6.20)

is sufficient to ensure that there exist x2,2, x2,3 that make the respective sets disjoint. Note

that this last condition follows from the requirement in the statement of the Lemma for

i = 2, namely that W2 > 4(G + 1)(G + 2). If r = 2 we are done, else we consider i = 3.

Before considering general level i let us present the i = 3 case.
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For i = 3 we seek distinct cubic residues x3,1, x3,2, x3,3, x3,4 and x3,5 with the property

that x3,2 + x3,3 ≡ 2x3,1 mod P and x3,4 + x3,5 ≡ 22x3,1 mod P , and such that the

respective sets B3,j(x3,j) for 1 ≤ j ≤ 5 generated from the cubic roots of these residues are

disjoint and are disjoint from previously constructed sets B1,1(x1,1), B2,1(x2,1), B2,2(x2,2)

and B2,3(x2,3).

We start with x3,1 a cubic residue mod P (there are (P−1)/3 cubic residues) with the

property that the set B3,1(x3,1) is disjoint from each of B1,1(x1,1), B2,1(x2,1), B2,2(x2,2) and

B2,3(x2,3). That is, after raising the elements of these sets to the third power, we require

x3,12
3k4 �= (y

(1)
1,1)

323k1 mod P,

x3,12
3k4 �= (y

(1)
2,1)

323k2 mod P,

x3,12
3k4 �= (y

(2)
2,1)

323k2 mod P,

x3,12
3k4 �= (y

(1)
2,2)

323k3 mod P,

x3,12
3k4 �= (y

(2)
2,2)

323k3 mod P,

x3,12
3k4 �= (y

(1)
2,3)

323k3 mod P,

x3,12
3k4 �= (y

(2)
2,3)

323k3 mod P,

(6.21)

where 0 ≤ k1 ≤ G, 0 ≤ k2 ≤ �G
2
�, 0 ≤ k3 ≤ �G−1

2
� and 0 ≤ k4 ≤ �G

3
�.

For the already chosen values of x1,1 through x2,3, which in turn determine y
(1)
1,1 through

y
(2)
2,3 , the condition in (6.21) prevents N3 =

(�G
3
�+ 1

) [
(G + 1) + 2

(�G
2
�+ 1

)
+ 4

(�G−1
2
�+ 1

)]
choices for x3,1. Since there are P−1

3
cubic residues, after simplifying and upper bound-

ing the expression for N3, it follows that it is sufficient that P−1
3

be strictly larger than

4(G+2)(G+3)
3

. Note that this condition is implied by the requirement that P − 1 > (r −



107

1)2(G + r)(G + r − 1) (again, since the function (i − 1)2(G + i)(G + i − 1) is strictly

increasing for positive i).

Fix x3,1 such that (6.21) holds. Having chosen such x3,1, we now look for distinct x3,2,

x3,3, x3,4, x3,5 cubic residues that satisfy x3,2+x3,3 ≡ 2x3,1 mod P and x3,4+x3,5 ≡ 22x3,1

mod P that make all sets Bi,j(xi,j), 1 ≤ i ≤ 3, 1 ≤ j ≤ 2i− 1 disjoint.

In order that residue x3,2 generates set B3,2(x3,2) with the property that B3,2(x3,2) is

disjoint from each of B1,1(x1,1), B2,1(x2,1), B2,2(x2,2), B2,3(x2,3) and B3,1(x3,1), we require

that their respective elements raised to the third power be distinct,

x3,22
3k5 �= (y

(1)
1,1)

323k1 mod P,

x3,22
3k5 �= (y

(1)
2,1)

323k2 mod P,

x3,22
3k5 �= (y

(2)
2,1)

323k2 mod P,

x3,22
3k5 �= (y

(1)
2,2)

323k3 mod P,

x3,22
3k5 �= (y

(2)
2,2)

323k3 mod P,

x3,22
3k5 �= (y

(1)
2,3)

323k3 mod P,

x3,22
3k5 �= (y

(2)
2,3)

323k3 mod P,

x3,22
3k5 �= x3,12

3k4 mod P,

(6.22)

where 0 ≤ k1 ≤ G, 0 ≤ k2 ≤ �G
2
�, 0 ≤ k3 ≤ �G−1

2
�, 0 ≤ k4 ≤ �G

3
� and 0 ≤ k5 ≤ �G−1

3
�.

Likewise, we require that B3,3(x3,3) be disjoint from all of B1,1(x1,1), B2,1(x2,1), B2,2(x2,2),
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B2,3(x2,3), B3,1(x3,1) and B3,2(x3,2), so that

x3,32
3k6 �= (y

(1)
1,1)

323k1 mod P,

x3,32
3k6 �= (y

(1)
2,1)

323k2 mod P,

x3,32
3k6 �= (y

(2)
2,1)

323k2 mod P,

x3,32
3k6 �= (y

(1)
2,2)

323k3 mod P,

x3,32
3k6 �= (y

(2)
2,2)

323k3 mod P,

x3,32
3k6 �= (y

(1)
2,3)

323k3 mod P,

x3,32
3k6 �= (y

(2)
2,3)

323k3 mod P,

x3,32
3k6 �= x3,12

3k4 mod P,

x3,32
3k6 �= x3,22

3k5 mod P,

(6.23)

where 0 ≤ k1 ≤ G, 0 ≤ k2 ≤ �G
2
�, 0 ≤ k3 ≤ �G−1

2
�, 0 ≤ k4 ≤ �G

3
�, 0 ≤ k5 ≤ �G−1

3
� and

0 ≤ k6 ≤ �G−1
3
�.

From (6.22) and (6.23) it follows that at most

N ′
3 = 2

(�G−1
3
�+ 1

) [
(G + 1) + 2

(�G
2
�+ 1

)
+ 4

(�G−1
2
�+ 1

)
+

(�G
3
�+ 1

)]
+

(�G−1
3
�+ 1

)2
.

(6.24)

candidate pairs (x3,2, x3,3) do not make the respective Bi,j(xi,j) sets disjoint. Since

N ′
3 ≤ 2

(
G+2

3

) [
(G + 1) + 2

(
G+2

2

)
+ 4

(
G+1

2

)
+

(
G+3

3

)]
+

(
G+2

3

)2

< 2
(

G+2
3

) · 13
(

G+3
3

)
+

(
G+2

3

)2

< 3(G + 2)(G + 3),

(6.25)

it follows that it is sufficient that

W3 > 3(G + 2)(G + 3) , (6.26)
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where W3 is the number of ways a residue mod P can be expressed as a sum of two

different cubic residues. Similarly, the cubic residues x3,4 and x3,5 for which the respective

disjoint Bi,j(xi,j) sets exist, provided that

W3 > 2
(�G−2

3
�+ 1

) [
(G + 1) + 2

(�G
2
�+ 1

)
+ 4

(�G−1
2
�+ 1

)
+

(�G
3
�+ 1

)
+

2
(�G−1

3
�+ 1

)]
+

(�G−2
3
�+ 1

)2
.

(6.27)

Some simplification of (6.27) yields

W3 >
31

9
(G + 2)(G + 3) , (6.28)

which subsumes the lower bound on W3 given in (6.26). Note that (6.28) is implied by

the condition in the statement of the Lemma, namely W3 > 6(G + 2)(G + 3).

We now inductively show the existence of the appropriate ith power residues and their

sets, assuming that we have successfully identified power residues at lower levels for which

all the sets Bk,j(xk,j) for 1 ≤ k < i, 1 ≤ j ≤ 2k − 1 are disjoint.

Consider xi,1 an ith power residue mod P (there are (P − 1)/i such residues) with

the property that the set Bi,1(xi,1) is disjoint from all of Bk,j(xk,j) for 1 ≤ k < i, 1 ≤ j ≤

2k − 1.

These constraints on disjointness (an example of which is given in (6.16) for i = 2 and

in (6.21) for i = 3) prevent no more than (G+i
i

)(G+k
k

) choices for xi,1 for each y
(t)
k,j where

1 ≤ k ≤ i − 1, 1 ≤ j ≤ 2k − 1, and 1 ≤ t ≤ k (since |Bi,1(xi,1)| = �G
i
� + 1 ≤ G+i

i
, and
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|Bk,j(xk,j)| = �G−� j
2
�

k
�+ 1 ≤ G+k

k
). Summing over all choices it follows that at most

(
G+i

i

)∑i−1
k=1(2k − 1)k

(
G+k

k

)
≤ (G + i)

(
G+i−1

i

)∑i−1
k=1(2k − 1)

= (G + i)
(

G+i−1
i

)
(i− 1)2

(6.29)

ith power residues cannot be chosen for xi,1. Since there are P−1
i

ith power residues, we

thus require

P − 1 > (G + i)(G + i− 1)(i− 1)2 (6.30)

for each level i. Note that since the expression on the right hand side of the inequality (6.30)

is an increasing function of positive i, each subsequent level poses a lower bound on P that

subsumes all previous ones. It is thus sufficient to have P−1 > (G+r)(G+r−1)(r−1)2,

as given in the statement of the Lemma.

Consider xi,2 and xi,3 as distinct ith power residues mod P that satisfy xi,2 + xi,3 ≡

2xi,1 mod P for a previously chosen xi,1. We require that xi,2 and xi,3 give rise to sets

Bi,2(xi,2) and Bi,3(xi,3) that are disjoint and that are disjoint from each of Bk,j(xk,j) for

1 ≤ k < i, 1 ≤ j ≤ 2k − 1 and with Bi,1(xi,1). By construction, if the sets Bi,1(xi,1),

Bi,2(xi,2), and Bi,3(xi,3) are disjoint, then so are sets Ai,1(xi,1), Ai,2(xi,2), and Ai,3(xi,3).

Constraints based on the previously encountered y
(t)
j,k for 1 ≤ k < i, 1 ≤ j ≤ 2k − 1, 1 ≤

t ≤ k prevent at most (G+i−1
i

)(G+j
j

) choices for each of xi,2 and xi,3, for each y
(t)
j,k (since

|Bi,2(xi,2)| = |Bi,3(xi,3)| = �G−1
i
� + 1 ≤ G+i−1

i
, and |Bk,j(xk,j)| = �G−� j

2
�

k
� + 1 ≤ G+k

k
).

Combined with the restriction based on the disjointness with Bi,1(xi,1) and the requirement
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that Bi,2(xi,2) and Bi,3(xi,3) be nonintersecting, it follows that

Wi > 2
(

G+i−1
i

) [∑i−1
k=1(2k − 1)k(G+k

k
) +

(
G+i

i

)]
+

(
G+i−1

i

)2 (6.31)

is sufficient for the pair (xi,2, xi,3) to exist.

Likewise, for xi,2l and xi,2l+1 to be distinct ith power residues mod P that satisfy

xi,2l +xi,2l+1 ≡ 2lxi,1 mod P , that give rise to disjoint sets Bi,2l(xi,2l) and Bi,2l+1(xi,2l+1)

and that are also disjoint from all previously constructed set Bk,j(xk,j), we require

Wi > 2(G+i−1
i

)
[∑i−1

k=1(2k − 1)k(G+k
k

) + (2l − 1)
(

G+i
i

)]
+

(
G+i−1

i

)2 (6.32)

for the pair (xi,2l, xi,2l+1) to exist. Since at each level i we construct i − 1 pairs xi,2l and

xi,2l+1, and since the right hand side of (6.33) is an increasing function of l, it is sufficient

to upper bound the expression in (6.33) for l = i− 1,

Wi > 2(G+i−1
i

)
[∑i−1

k=1(2k − 1)k(G+k
k

) + (2i− 3)
(

G+i
i

)]
+

(
G+i−1

i

)2

⇐ Wi > 2(G+i−1
i

)
[
(i− 1)2(G + i) + 2i−3

i
(G + i)

]
+

(
G+i−1

i

)2

⇐ Wi > (G + i)(G + i− 1)
(

2
i
(i− 1)2 + 2

i
2i−3

i
+ 1

i2

)
.

(6.33)

Some simplification yields

Wi > (G + i)(G + i− 1)2i3−4i2+6i−5
i2

(6.34)

as a sufficient condition for the disjoint sets Bi,j(xi,j) to exist that are also disjoint from all

sets Bk,l(xk,l) for k < i.

Further simplifying the last inequality, it is sufficient that

Wi > 2i(G + i)(G + i− 1) (6.35)
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to make these sets disjoint. We have thus demonstrated that with the appropriate lower

bounds on P and Wi’s, it is possible to construct disjoint sets Bi,j(xi,j). �

Note that all residues mod P can be expressed as a sum of a subset of elements of

Vi : =
⋃2i−1

j=1 Ai,j(xi,j) by Lemma 18 for each i, 1 ≤ i ≤ r. Also note that |Vi| scales as

log2(P ), since |Ai,j(xi,j)| = �G−� j
2
�

i
� + 1. For Fi : =

⋃2i−1
j=1 Bij(xi,j), |Fi| also scales as

log2(P ), since |Bi,j(xi,j)| = i
(
�G−� j

2
�

i
�+ 1

)
.

We now discuss how large prime P needs to be so that the conditions of Lemma 19

hold. Namely we require

P − 1 > (r − 1)2(G + r)(G + r − 1) (6.36)

and

Wi > 2i(G + i)(G + i− 1) for 2 ≤ i ≤ r . (6.37)

Using Lemma 17 it follows that it is sufficient that

P > 4r3(G + r)(G + r − 1) + r2
√

P + 6r2 , for r ≥ 2 (6.38)

for (6.37) to hold. Moreover, if (6.38) holds , it implies (6.36).(For r = 1, the requirement

is P > 1). The expression (6.38) certainly holds as P →∞, and for the finite values of P
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we (loosely) have that

P > 200 for r = 1,

P > 4× 103 for r = 2,

P > 2× 104 for r = 3,

P > 6× 104 for r = 4,

P > 2× 105 for r = 5.

For a given large enough integer n, we now show that there exists a prime number P

that satisfies (6.38) (which holds for P large enough) and for which lcm(2, 3, ..., r)|(P −1)

such that P lies in an interval that is linear in n. Since the elements of M : =
⋃r

i=1 Fi∪{0}

are to be reserved for the indices of bins of zeros of the prefix in the transformed domain

we also require that P − n > |M |, since the total number of bins of zeros to be used

is at most n (from the original string) + |M | (from the prefix), and each bin receives a

distinct index. Since Fi = ∪2i−1
j=1 Bi,j(xi,j) and |Bi,j(xi,j)| =i

(
�G−� j

2
�

i
�+ 1

)
, whereby

i
(

G−i
i

) ≤ |Bi,j(xi,j)| ≤ i
(

G+i
i

)
, it follows that

|M | ≤
r∑

i=1

(2i− 1)(G + i) + 1 ≤ (G + r)
r∑

i=1

(2i− 1) = r2(G + r) + 1 (6.39)

and

|M | ≥
r∑

i=1

(2i− 1)(G− i) + 1 ≥ (G− r)
r∑

i=1

(2i− 1) = r2(G− r) + 1 (6.40)

Equation (6.39) yields a sufficient requirement on how large P needs to be

P > n + r2(log2(P ) + r) + 1 . (6.41)
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For given integers n and r (n is typically large and r is small), we essentially need to

show that there exists a prime P for which k : = lcm(2, 3, ..., r)|(P−1) and P ∈ (c1n, c2n)

(here c1 and c2 are positive numbers that do not depend on n) and such that P satisfies (6.38)

and (6.41).

For the asymptotic regime as n → ∞ we recall the prime number theorem for arith-

metic progressions [52] which states that

π(n, k, 1) ∼ 1

φ(k)

n

log(n)
, (6.42)

where π(n, k, 1) denotes the number of primes ≤ n that are congruent to 1 mod k, and

φ(k) is the Euler function and represents the number of integers ≤ k that are relatively

prime with k. As n→∞, we may let c1 : = 2 and c2 : = 4, so that

π(4n, k, 1)

π(2n, k, 1)
∼ 2 , (6.43)

and thus there exists a prime P , k|(P − 1) in an interval that is linear in n. Clearly, as

n→∞, such P also satisfies (6.38) and (6.41).

For finite (but possibly very large) values of n and certain small r we appeal to results

by Ramare and Rumely [47]. The number-theoretic function θ(x; k, l) is usually defined as

θ(x; k, l) =
∑

p prime ,p≡l mod k,p≤x

ln p .

To show that there exists a prime P in the interval (c1n, c2n) for which k = lcm(2, 3, ..., r)|(P−

1) it is sufficient to have

θ(c2n; k, 1) > θ(c1n; k, 1) , (6.44)
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where k = lcm(2, 3, ..., r).

Theorem 2 in [47] states that |θ(x; k, 1)− x
φ(k)
| ≤ 2.072

√
x for all x ≤ 1010 for k given

in Table I of [47]. For larger x, Theorem 1 in [47], provides the bounds of the type

(1− ε)
x

φ(k)
≤ θ(x; k, 1) ≤ (1 + ε)

x

φ(k)
, (6.45)

for k given in Table I of [47], and ε also given in Table I of [47] for various x. Here φ(k) is

the Euler function and denotes the number of integers ≤ k that are relatively prime with k.

For c2n < 1010, using

θ(c1n; k, 1) <
c1n

φ(k)
+ 2.072

√
c1n

and

θ(c2n; k, 1) >
c2n

φ(k)
− 2.072

√
c2n,

it is thus sufficient to have

2.072φ(k) <
√

n(
√

c2 −√c1) , (6.46)

for θ(c2n; k, 1) > θ(c1n; k, 1) to hold.

For c1n > 1010 using

θ(c1n; k, 1) < (1 + ε)
c1n

φ(k)

and

θ(c2n; k, 1) > (1− ε)
c2n

φ(k)
,

after some simplification, it is sufficient to have

(1 + ε)c1 < (1− ε)c2 , (6.47)
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for θ(c2n; k, 1) > θ(c1n; k, 1) to hold.

Expressing P ∈ (c1n, c2n) in terms of c1n and c2n, it is sufficient that

(c1 − 1)n > r2(log2 n + log2 c2 + r) + 1 (6.48)

for (6.41) to hold. Likewise, for r ≥ 2, it is sufficient that

c1n > 4r3(log2 n + log2 c2 + r)(log2 n + log2 c2 + r − 1) + r2(6 +
√

c2n) (6.49)

for (6.38) to hold.

Parameters c1 and c2 can be chosen as a function of r to make (6.46) (or (6.47)), (6.48)

and (6.49) hold. We consider now some suitable choices for c1 and c2 for small values of

r and some finite n.

• r = 1: The condition (6.48) reduces to (c1 − 1)n > log2(n) + log2(c2) + 2. For

c2n < 1010, the condition (6.46) reduces to
√

n(
√

c2 − √c1) > 2.072. We may let

c2 = 4 and c1 = 2 for 12 < n < 1010/4 to ensure that there exists a prime in the

interval (2n, 4n) which satisfies (6.48).

The condition (6.47) applies to c1n > 1010 so we may let c1 = 4 for n > 1010/4.

Since all ε entries for k = 1 in Table I of [47] are� 1/9, we may let c2 = 5 to make

the condition (6.48) hold .

Since |M | ≤ (�log2 P � + 2) ≤ (log2 n + log2 c2 + 2) (from (6.39)), and |M | ≥

�log2 P � ≥ (log2 n + log2 c1− 2) + 1 (from (6.40)) it follows that (log2 n) ≤ |M | ≤

(log2 n + 4) for 12 < n < 1010/4 and (log2 n + 1) ≤ |M | ≤ (log2 n + 5) for

n > 1010/4.
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• r = 2: The conditions (6.48) and (6.49) reduce to (c1−1)n > 4(log2(n)+log2(c2)+

2) + 1 and c1n > 32(log2 n + log2 c2 + 2)(log2 n + log2 c + 1) + 4(6 +
√

c2n).

For c2n < 1010, the condition (6.46) is again
√

n(
√

c2 −√c1) > 2.072. We may let

c1 = 210 and c2 = 211 to satisfy the required conditions (6.46), (6.48) and (6.49)

for 10 ≤ n ≤ 1010/211 = 1/2× 510.

For n ≥ 1/2×510, we may let c1 = 211 and c2 = 212 to satisfy the required conditions

(6.47) (since all ε entries in Table I of [47] are� 1/3), (6.48) and (6.49).

Thus we have 4(log2 n + 7) + 1 ≤ |M | ≤ 4(log2 n + 14) + 1, for n ≥ 10.

• r = 3: The conditions (6.48) and (6.49) reduce to (c1−1)n > 9(log2(n)+log2(c2)+

3) + 1 and c1n > 4 · 27(log2 n + log2 c2 + 3)(log2 n + log2 c + 2) + 9(6 +
√

c2n).

For c2n < 1010, the condition (6.46) is now
√

n(
√

c2 −√c1) > 2.072× 2. We may

let c1 = 212 and c2 = 213 to satisfy the required conditions (6.46), (6.48) and (6.49)

for 10 ≤ n ≤ 1010/213 = 1/8× 510.

For n ≥ 1/8× 510 it suffices to let c1 = 213 and c2 = 214 to ensure (6.46), (6.48) and

(6.49) are satisfied.

Thus we have 9(log2 +8) + 1 ≤ |M | ≤ 9(log2 n + 17) + 1, for n ≥ 10.

• r = 4: The conditions (6.48) and (6.49) reduce to (c1−1)n > 16(log2(n)+log2(c2)+

4) + 1 and c1n > 4 · 64(log2 n + log2 c2 + 4)(log2 n + log2 c + 3) + 16(6 +
√

c2n).

For c2n < 1010, the condition (6.46) is
√

n(
√

c2 − √c1) > 2.072 × 4. We may let
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c1 = 213 and c2 = 214 to satisfy the required conditions (6.46), (6.48) and (6.49)

for 16 ≤ n ≤ 1010/214 = 1/16× 510.

For n ≥ 1/16 × 510 it suffices to let c1 = 214 and c2 = 215 to ensure (6.46), (6.48)

and (6.49) are satisfied.

Thus we have 16(log2 +8) + 1 ≤ |M | ≤ 16(log2 n + 19) + 1, for n ≥ 16.

• r = 5: The conditions (6.48) and (6.49) reduce to (c1−1)n > 25(log2(n)+log2(c2)+

5) + 1 and c1n > 4 · 125(log2 n + log2 c2 + 5)(log2 n + log2 c + 4) + 25(6 +
√

c2n).

For c2n < 1010, the condition (6.46) is
√

n(
√

c2 −√c1) > 2.072× 16. We may let

c1 = 214 and c2 = 215 to satisfy the required conditions (6.46), (6.48) and (6.49)

for 19 ≤ n ≤ 1010/214 = 1/32× 510.

For n ≥ 1/32 × 510 it suffices to let c1 = 215 and c2 = 216 to ensure (6.46), (6.48)

and (6.49) are satisfied.

Thus we have 25(log2 +8) + 1 ≤ |M | ≤ 25(log2 n + 21) + 1, for n ≥ 19.

6.2 Prefixing Algorithm

Let r denote the target synchronization error correction capability. The goal of this

section it to provide an explicit prefixing scheme which, based on the string s of length n,

produces a fixed length prefix ps of length m, where ps is a function of s, such that the

string ts = [ps s] after the transformation Tm+n given in (5.1), call it t̃s, satisfies first r
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congruency constraints previously described in (5.33), which were shown to be sufficient

to provide immunity to r repetition errors. Using judiciously chosen prefix, we will show

that this will be possible for m = |ps| = O(log n).

We select as ps that preimage with the property that in the concatenation [pss] the last

of ps is the complement of the first bit of s. This property ensures that no bin of zeros in

the transformed domain spans the boundary separating the substrings corresponding to the

transformed prefix and the transformed original string.

For a given repetition error correction capability r and the original string length n let

P be a prime number with the property that lcm(2, 3, ..., r)|(P − 1) and such that P lies

in an interval that scales linearly with n, namely that P ∈ (c1n, c2n) for 1 < c1 < c2,

where c1, c2 possibly depend on r but not on n and are chosen such that (6.46) (or (6.47),

depending on how large n is), (6.48) and (6.49) hold. The existence of such P was

discussed in the previous Section. Let RP be the set of all residues mod P . Recall that

M = ∪r
i=1Fi∪{0} denotes the set of indices of bins of zeros reserved for the prefix, where

Fi = ∪2i−1
j=1 Bi,j(xi,j) where Bi,j(xi,j) are given in (6.9), and are constructed such that all

sets Bi,j(xi,j) for 1 ≤ i ≤ r, 1 ≤ j ≤ 2i− 1 are nonintersecting. The existence of disjoint

sets Bi,j(xi,j) for such P was proved in Lemma 19. Let L = |M |. Let N denote the total
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number of bins of zeros of s̃, where s̃ = sTn. By construction, N ≤ n. Let

a′
1 ≡

∑L+N
i=L+1 bifi mod P,

a′
2 ≡

∑L+N
i=L+1 bif

2
i mod P

...

a′
r ≡

∑L+N
i=L+1 bif

r
i mod P

(6.50)

where bi is the size of the ith bin of zeros in t̃s, and fi in (6.50) are chosen in the

increasing order from the set RP \M . Since N ≤ n, and since by the condition (6.48),

n ≤ P − L, the set RP \M is large enough to accommodate such fi’s.

We may think of a′
1 through a′

r as the contribution of the original string s (in the

transformed domain) to the overall congruency value, since the ith bin of zeros for L+1 ≤

i ≤ L + N is precisely the jth bin of zeros in s̃ for j = i − L, since no run spans both ps

and s by the choice of ps.

Since not all strings in the original code may have the same number of bins of ze-

ros in the transformed domain, we may view the unused elements of the set RP \M as

corresponding to ”virtual” bins of size zero. Since these bins are not altered during the

transmission that causes r or less repetitions, the locations of repetitions can be uniquely

determined as shown in the proof of Lemmas 13 and 15.
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We now show that it is always possible to achieve

a1 ≡
∑L+N

i=1 bifi mod P,

a2 ≡
∑L+N

i=1 bif
2
i mod P,

...

ar ≡
∑L+N

i=1 bif
r
i mod P,

(6.51)

for arbitrary but fixed values a1 through ar irrespective of the values a′
1 through a′

r,

where bi is either 0 or 1 for 1 ≤ i ≤ L− 1, and where fL = 0.

Before describing the encoding method that achieves (6.51) we state the following con-

venient result.

Lemma 20 Suppose P is a prime number such that i|(P−1). Suppose the equation xi ≡ a

mod P has a solution, 1 ≤ a ≤ P − 1. Then the equation xi ≡ a mod P has i distinct

solutions [3] and we may call them x1 through xi. The sum
∑i

k=1 xj
k ≡ 0 mod P for

1 ≤ j ≤ i− 1.

Proof: Let us consider the equation xi ≡ a mod P . Using Vieta’s formulas and Newton’s

identities over GF (P ) it follows that
∑i

k=1 xj
k ≡ 0 mod P for 1 ≤ j ≤ i− 1. �

The encoding procedure is recursive and proceeds as follows.

Let l be the lth level of recursion for l = 1 to l = r. The lth level ensures that the lth

congruency constraint in (6.51) is satisfied without altering previous l − 1 levels. At each

level l, starting with l = 1 and while l ≤ r:

1. Select a subset Tl of Fl = ∪2l−1
j=1 Bl,j(xl,j) such that

∑
k∈Tl

kl ≡ al − a′
l −

∑l−1
i=1 di,l

mod P , and such that if an element y, yl ≡ z mod P of Bl,j(xl,j) is selected, then so
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are all other l−1 lth roots of z (which are also elements of Bl,j(xl,j) by construction).

For l = 1,
∑

k∈T1
k ≡ a1 − a′

1 mod P .

2. Let dl,j ≡
∑

k∈Tl
kj mod P for l + 1 ≤ j ≤ r.

3. For each i, 1 ≤ i ≤ |Fl|, for which fi ∈ Tl we set bi = 1, and for each i, for which

fi /∈ Tl we set bi = 0.

4. Proceed to level l + 1.

After the level r is completed, let bL =
∑r

i=1(|Fi| − |Ti|). The purpose of this bin with

weighting zero is to ensure that the overall string ts has the same length irrespective of the

structure of the starting string s.

The existence of Tl, Tl ⊆ Fl in Step 1) follows from Lemmas in Section 6.1. In par-

ticular, recall that each residue mod P can be expressed as a sum of a subset Ll of

∪2l−1
j=1 Al,j(xl,j), by Lemma 18. We then let Tl consist of all lth power roots of elements

in Ll. By construction, Tl is the union of appropriate subsets of sets Bl,j(xl,j), whose lth

powers are precisely the elements of Ll, and these subsets are disjoint by construction.

Recall that the sets Bl,j(xl,j) are constructed such that if an lth power root of a residue y

belongs to Bl,j(xl,j) then all l power roots of y also belong to Bl,j(xl,j). Then, by Lemma 20

the contribution to each congruency sum for levels 1 through l − 1 of the elements of Fl is

zero. Hence, once the target congruency value is reached for a particular level, it will not

be altered by establishing congruencies at subsequent levels. As a result, since each string

t̃s satisfies congruency constraints given in (5.33), the resulting set of strings is immune to
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r repetitions while incurring asymptotically negligible redundancy.

6.3 Decoding Algorithm

Suppose we wish to communicate over a channel that introduces additive and up to s

repetition errors per coded sequence. We further assume that these repetitions can occur

anywhere in the sequence but also that at most one repetition per original bit is allowed.

We develop an iterative decoding algorithm suitable for such a channel and for a channel

code C that itself has a nice graphical representation relating bits and checks. For example

the code C could be an LDPC code prepended with a repetition error correcting prefix in

way that was described in the previous section.

Let nt be the length of a transmitted string from the set C. We wish to develop a variant

of a message passing decoding algorithm of reasonable complexity. To facilitate message

exchange, we introduce the following auxiliary variables:

• Gj for 1 ≤ j ≤ s, Gj ∈ {1, ..., nt}. Variable Gj indicates the bit location of the jth

repetition.

• Ri,j for 1 ≤ i ≤ nt and 1 ≤ j ≤ s, Ri,j ∈ {−1, 0, 1}. Variable Ri,j indicates the

relative location of the ith bit with respect to the jth repetition, so that Ri,j = −1 (0,

resp. 1) if the j the repetition is after (at, resp. before) the i th bit.

• Ti for 1 ≤ i ≤ nt, Ti ∈ {−s,−s + 1, ..., s− 1, s}. Variable Ti indicates the relative

position of the ith bit with respect to all repetitions so that Ti = −s if all repetitions
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local domain local function ϕ(·)
{Gj} 1
{Gj, Ri,j} 1(Gj > i)1(Ri,j = −1)+

1(Gj = i)1(Ri,j = 0) + 1(Gj < i)1(Ri,j = 1)
{Ti, Ri,1, Ri,2, · · · , Ri,j} 1(Ti = −s)1(Ri,1 = −1)1(Ri,2 = −1) · · · 1(Ri,s = −1)+

1(Ti = −s + 1)1(Ri,1 = 0)1(Ri,2 = −1) · · · 1(Ri,s = −1)+
...

1(Ti = s)1(Ri,1 = 1)1(Ri,2 = 1) · · · 1(Ri,s = 1)
{Ti, xi} 1(Ti = −s)P (yi|xi) + 1(Ti = −s + 1)P (yi|xi)P (yi+1|xi)+

1(Ti = −s + 2)P (yi+1|xi) + · · ·+ 1(Ti = s)P (yi+s|xi)
{Ti, Ti+1} 1(Ti+1 ≥ Ti)1(parity(Ti) = parity(s))+

1(Ti+1 > Ti)1(parity(Ti) �= parity(s))
{ck, (xj, j ∈ Nk)} 1(ck = ⊕j∈Nk

xj)

Table 6.1: Local domains and functions.

occurred strictly after the ith bit, Ti = −s+1 if the first leftmost repetition occurred at

the ith bit, and all remaining s−1 repetitions occurred strictly afterwards, Ti = −s+2

if the first leftmost repetition occurred strictly before the ith bit, and all remaining

s− 1 repetitions occurred strictly afterwards, and so on until Ti = s if all repetitions

occurred strictly before the ith bit.

We now group the variables as shown in Table 6.1 for 1 ≤ i ≤ nt, 1 ≤ j ≤ s

and 1 ≤ k ≤ Mc, where Mc is the total number of checks of the code C. Note that

ynt+s
1 = (y1, y2, . . . , ynt+s) is viewed as evidence.

The junction graph corresponding to these local domains is shown in Figure 6.1,and

has the bidirectional edges between:

• {Gj} and {Gj, Ri,j} for each 1 ≤ i ≤ nt, and each 1 ≤ j ≤ s.

• {Gj, Ri,j} and {Ti, Ri,1, Ri,2, . . . , Ri,s} for each 1 ≤ i ≤ nt, and each 1 ≤ j ≤ s.
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• {Ti, Ri,1, Ri,2, . . . , Ri,s} and {Ti, xi} for each 1 ≤ i ≤ nt.

• {Ti, xi} and {Ti−1, Ti} for each 2 ≤ i ≤ nt.

• {Ti, xi} and {Ti+1, Ti} for each 1 ≤ i ≤ nt− 1.

The variables Ti and Ri,j are introduced to ensure the consistency among the variables

Gj , namely, that Gj1 < Gj2 for j1 < j2, without having to directly compare Gj’s. The local

function at {Ti, Ti+1} ensures the consistency between Ti and Ti+1, namely that Ti+1 cannot

be smaller than Ti, and in particular, must be strictly bigger than Ti if Ti itself corresponds

to a repetition. Variables Rij essentially provide local consistency between Gj’s and Ti’s.

The benefit of introducing these variables and their local comparisons is in achieving the

computational complexity of O(nt), as we further discuss below.

We use a message passing algorithm along the lines of [1] to try to evaluate the posterior

probability P (xi|ynt+s
1 ) as an (approximate) product of all incoming messages multiplied

by the local potential at {Ti, xi} and marginalized over Ti (see Figure 6.1).

The decoding algorithm starts with all messages being initialized to 1. Suppose αi,j(Ri,j)

is the message sent from {Ti, Ri,1, Ri,2, . . . , Ri,s} to {Gj, Ri,j} at some stage.

The message βi,j(Gj) from {Gj, Ri,j} to {Gj} is then

βi,j(Gj) =
∑

Ri,j
αi,j(Ri,j)ϕ(Gj, Ri,j),

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

αi,j(−1) if Gj > i,

αi,j(0) if Gj = i,

αi,j(1) if Gj < i .
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T1 R11 R12...R1s

T1-1 Ri-11 Ri-12...Ri-1s

Ti Ri1 Ri2...Ris

Ti+1 Ri+11 Ri+12...Ri+1s
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T1,x1

Ti-1xi-1

Ti,xi

Ti+1xi+1

Tt,xt

Ti-1,Ti

Ti,Ti+1

T1,T2

c1(xm,m in N1)

ck(xm,m in Nk)

cM(xm,m in NM)

G1, R i1

Gj, R ij

Gs, R is

G1,R 11

Gj, R i-1j

Gs,R nts

Gj,R i+1j

G1

Gj

Gs

…...

…...

…...
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…...
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Ti+1Ti+2

ai(Ti)

bi(Ti)

di(Ti)

fi(Ti)

ei-1(Ti-1)

ci+1(Ti+1)

Alphai,j(Rij)

Deltai,j(Rij)

Betai,j(Gj)

Gammai,j(Gj)

…...

…...

…...
etaki

tauki

Figure 6.1: Junction graph.
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The message γi,j(Gj) sent from {Gj} to {Gj, Ri,j} is

γi,j(Gj) =
nt∏

k=1,k �=i

βk,j(Gj) =
1

βi,j(Gj)

nt∏
k=1

βk,j(Gj) . (6.52)

The message from {Gj, Ri,j} to {Ti, Ri,1, Ri,2, . . . , Ri,s} is

δi,j(Ri,j) =
∑
Gj

γi,j(Gj)ϕ(Gj, Ri,j). (6.53)

The message ai(Ti) from {Ti, xi} to {Ti, Ri,1, Ri,2, . . . , Ri,s} is expressed in terms of

ci(Ti), fi(Ti) and μk(xi)

ai(Ti) =
∑
xi

ci(Ti)fi(Ti)
∏

k∈N(i)

μk(xi)ϕ(Ti, xi) (6.54)

where the message μk(xi) is the message received from the kth check node in which bit xi

participates, and N(i) is the set of checks in which the node i participates. The messages

ci(Ti) and fi(Ti) are

ci(Ti) =
∑
Ti−1

ei−1(Ti−1)ϕ(Ti−1, Ti), and (6.55)

fi(Ti) =
∑
Ti+1

di+1(Ti+1)ϕ(Ti, Ti+1) (6.56)

for

ei(Ti) =
∑
xi

ci(Ti)bi(Ti)
∏

k∈N(i)

μk(xi)ϕ(Ti, xi), and (6.57)

di(Ti) =
∑
xi

bi(Ti)fi(Ti)
∏

k∈N(i)

μk(xi)ϕ(Ti, xi) . (6.58)

The message bi(Ti) from {Ti, Ri1, Ri2, . . . , Ris} to {Ti, xi} is

bi(Ti) =
∑
Ri,1

∑
Ri,2

· · ·
∑
Ri,s

δi,1(Ri,1)δi,2(Ri,2) · · · δi,s(Ri,s)ϕ(T1, Ri,1, Ri,2, . . . , Ri,s) (6.59)
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and the message αi,j(Rij) from {Ti, Ri1, Ri2, . . . , Ris} to {Gj, Rij} is

αi,j(Ri,j) =
∑

Ti

∑
Ri,1
· · ·∑Ri,j−1

∑
Ri,j+1

· · ·∑Ri,s
ai(Ti)δi,1(Ri,1) · · · δi,j−1(Ri,j−1)

δi,j+1(Ri,j+1) · · · δi,s(Ri,s)ϕ(Ti, Ri,1, Ri,2, . . . , Ri,s) .

(6.60)

Recall that we want to compute the (approximate) posterior probability of xi given the

evidence ynt+s
1 ,

P (xi|ynt+s
1 ) ≈

∑
Ti

ci(Ti)fi(Ti)bi(Ti)
∏

k∈N(i)

μk(xi)ϕ(Ti, xi) . (6.61)

The complexity of computing all of αi,j(Ri,j), βi,j(Gj), γi,j(Gj), and δi,j(Ri,j) can

be reduced by circumventing βi,j(Gj)’s and γi,j(Gj)’s, and directly computing messages

δi,j(Ri,j) from αi,j(Ri,j) as

δi,j(−1) =
∑
Gj>i

γi,j(Gj) =
∑
Gj>i

Vj(Gj)

βi,j(Gj)
=

1

αi(−1)

∑
Gj>i

Vj(Gj) . (6.62)

Likewise

δi,j(0) =
1

αi(0)
Vi(Gi) , (6.63)

and

δi,j(1) =
1

αi(1)

∑
Gj<i

Vj(Gj) , (6.64)

where

Vj(Gj) =
nt∏

k=1

βk,j(Gj) =
i−1∏
k=1

αk,j(−1) · αi,j(0) ·
nt∏

k=i+1

αk,j(1) . (6.65)

For fixed j (1 ≤ j ≤ s), given αk,j(Rk,j) for 1 ≤ k ≤ nt we can compute Vj(Gj) in

O(nt) steps. Having computed Vj(Gj)’s, we can then also compute δi,j(Ri,j) messages in
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O(nt) steps. Once we have all δi,j(Ri,j) messages, each bi(Ti) message can be computed

in O(3s) steps.

Given the messages ei(Ti)’s, for 1 ≤ i < nt, each message ci(Ti) is computed in O(s)

steps. Likewise, given the messages di(Ti)’s, for 1 < i ≤ nt, each message fi(Ti) is

computed in O(s) steps.

The messages τk,i(xi) and μk,i(xi) are analogous to messages computed in a traditional

message passing algorithm on a bipartite graph, so their complexity is also O(nt).

Given the messages ci(Ti), bi(Ti), and the product
∏

k∈N(i) μk,i(xi) (itself computed

in O(nt) steps) each ei(Ti), for 1 ≤ i < nt is computed in a constant number of steps.

Similarly, given the messages fi(Ti), bi(Ti), and the product
∏

k∈N(i) μk,i(xi), each message

di(Ti) is computed in a constant number of steps. The same holds for messages ai(Ti)

which, based on ci(Ti), fi(Ti), and the product
∏

k∈N(i) μk,i(xi) are also computed in the

constant number of steps. Therefore, all messages ai(Ti) through fi(Ti) are computed in

O(nt) steps.

Based on ai(Ti) and δi,k(Ri,k) for 1 ≤ k ≤ s and k �= j, each αi,j(Ri,j) can be computed

in O(s3s−1) steps. The total complexity of computing all αi,j(Ri,j) messages is also O(nt)

for the fixed parameter s.
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6.4 Summary and Concluding Remarks

In this chapter we proposed a technique for prefixing a collection of binary strings of

equal length to provide immunity to repetition errors. The presented prefixing scheme

relies on introducing a carefully chosen prefix for each original binary string such that the

resulting strings (each consisting od the prefix and one of the original strings) are immune to

repetition errors. This prefix is constructed based on the number theoretic methods from the

previous chapter. The prefix length is only logarithmic in the size of the original collection.

We also presented a message passing decoding algorithm suitable for channels causing

both repetition and additive errors. The proposed algorithm has the same complexity as the

traditional message passing decoding algorithm capable of decoding under only additive

errors.



131

Part II

Iterative Decoding of LDPC Codes
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Chapter 7

Introduction

In this part of the thesis we are concerned with the analytic understanding of the LPDC

code performance under iterative decoding, with the particular focus on the performance

of finite-length LDPC codes in the low BER region.

Low density parity check (LDPC) codes are a class of error control codes defined on

sparse graphs [26]. Their graphical representation makes them particularly amenable for

low-complexity iterative decoding algorithms. LDPC codes were invented by Gallager [26]

in the 1960’s, but then were largely forgotten until early 1990’s. Their rediscovery [39],

[32] ignited intensive research in LDPC codes, as well as their wide consideration for many

modern applications.

While vast empirical evidence points to the successful use of LDPC codes, most of

the known theoretical results regarding the performance of LDPC codes are asymptotic in

nature. A theoretical tool known as density evolution [49] operates on an infinitely long
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LDPC code ensemble and it demonstrates an exponential concentration of the messages ex-

changed in the decoding process around their mean. The underlying assumption in density

evolution is that a large enough neighborhood of each node is locally tree-like, which can be

assumed as the block length tends to infinity. However, for finite-length LDPC codes (with

block lengths on the order of hundreds or thousands) such assumption no longer holds, and

in fact for structured finite-length LDPC codes there inevitably exist numerous relatively

short cycles in the associated Tanner graph. Furthermore, in this finite blocklength regime,

many LDPC codes exhibit a so-called “error floor”, corresponding to a significant flatten-

ing in the curve that relates signal to noise ratio (SNR) to the bit error rate (BER) level,

typically occurring in the low BER region. Since moderate blocklengths and low BER’s

are of primary interest in many communications and data storage applications, prior lack

of understanding of the LDPC code performance has significantly hindered the wide-scale

deployment of these very promising codes.

In this dissertation we aim to address this issue through the introduction and the sub-

sequent study of a convenient combinatorial object, which we have termed an absorbing

set.

The following chapter provides the background on the low BER performance of LDPC

codes, where we discus the error floor, introduce the notion of an absorbing set and sum-

marize some related work. Later, we will provide an in-depth study of absorbing sets for

an important family of high-performance finite-length LDPC codes.
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Chapter 8

Background on Iterative Decoding

In this chapter we focus on the LDPC code performance in the low BER region, and

discuss the so-called “error-floor” phenomenon. We introduce the combinatorial object

termed absorbing set, and relate it to some existing concepts form the literature. Having

defined an absorbing set, in the next chapter we focus on the detailed theoretical analysis

of absorbing sets for a family of high-rate array-based LDPC codes.

8.1 LDPC Codes, Message Passing Algorithms and Error

Floors

Empirically, LDPC codes perform very well when decoded iteratively using message

passing algorithms, despite the fact that such decoding algorithms are suboptimal on graphs

with cycles (and graphs defining LDPC codes inevitably contain cycles). An added attrac-
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tive feature of message passing algorithms is their low complexity.

However, it is also known [40], [48], that LDPC codes often exhibit an error floor

phenomenon, whereby the bit error rate (BER) vs. signal to noise ratio (SNR) curve shows

a significant decrease in the slope in the very low BER region. An example of the error-floor

behavior is shown in Figure 8.1 (reproduced from [63]) for the Reed-Solomon based LDPC

code, where different error curves correspond to specified number of iterations. The error

floor implies that a significant increase in the signal power is needed for only a marginal

improvement in the bit error rate. It is attributed to the suboptimal nature of the message

passing algorithms on graphs with cycles.

For many applications, including data storage, gigabit ethernet, and satellite communi-

cations, it is imperative to reach this low BER region without requiring a major increase

in SNR. This region, however, is out of the reach of pure software simulations, and conse-

quently the limitations of a given LDPC code under message-passing decoding in the very

low BER region are largely unknown.

In order to explain and analyze the dominant causes of decoding failures we introduce

the notion of an absorbing set in the next section. The absorbing sets are related to (but

not entirely equivalent to) previously introduced structures, including stopping sets [14],

trapping sets [48], near codewords [40] and pseudo-codewords [20]. Fully absorbing sets

are viewed as fixed points of a bit-flipping algorithm (which itself is a simplest form of

message passing and can be viewed as a 1-bit approximation to the finite-precision message

passing decoding algorithms that are used in practice). Our claim is that if there are fully
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Figure 8.1: An example of error floor.

absorbing sets smaller that the minimum distance of the code, the decoder is likely to

converge to these objects. As a result, under iterative decoding, the low BER performance

will be dominated by the number and the size of dominant fully absorbing sets. This is in

contrast to the conventional point of view which considers the number of minimum distance

codewords and the minimum distance itself to be the key performance metric of a code.

8.2 Absorbing sets of LDPC codes

Several LDPC codes, while having excellent performance for moderate bit error rate

(BER) levels of 10−6 and above, have been demonstrated using hardware based emulation

[63] and software clusters [67] to suffer from the so-called “error floor”, see Figure 8.1.

This error-floor behavior can be attributed to the suboptimal nature of the message
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passing algorithms traditionally used in decoding of LDPC codes. Experimental results in

the low FER region obtained using a hardware emulator [63] revealed that certain structures

consisting of short cycles organized in particularly detrimental configurations in the Tanner

graph associated with the parity check matrix of an LDPC code cause the decoder to fail

by converging to a non-codeword state.

These combinatorial objects that describe the convergence to the non-codeword state

are called absorbing sets. For many LDPC codes, designed to have sufficiently large min-

imum distance, the associated Tanner graphs contain absorbing sets which have strictly

fewer bits than the weight of codewords at the minimum distance. As a result, the perfor-

mance of the decoding algorithm in the low FER region is predominantly dictated by the

number and the structure of minimal absorbing sets, rather than the number of the minimum

distance codewords (which would be the key parameters in describing the performance of

the code under ML decoding). Before explaining the links between absorbing sets and

some related concepts, including near-codewords and trapping sets, in Subsection 8.2.2,

we first provide the formal definition of these objects.

8.2.1 Formal definition

Let G = (V, F,E) be a bipartite graph with the vertex set V ∪ F , where V and F are

disjoint, and with the edge set E, such that there exists an edge e(i, j) ∈ E iff i ∈ V and

j ∈ F . One can associate a bipartite graph GH = (V, F,E) with a parity check matrix H ,

such that the set V corresponds to the columns of H , the set F corresponds to the rows of
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H , and E = {e(i, j)|H(j, i) = 1}. Such a graph GH is commonly referred to as the Tanner

graph of the parity check matrix H of a code, [22]. Elements of V are called “bit nodes”

and elements of F are called “check nodes”. For the subset D of V we let ND denote the

set of check nodes neighboring the elements of D.

For a subset D of V , let E(D) (resp. O(D)) be the set of neighboring vertices of D in

F in the graph G with even (resp. odd) degree with respect to D. Given an integer pair

(a, b), an (a, b) absorbing set is a subset D of V of size a, with O(D) of size b and with

the property that each element of D has strictly fewer neighbors inO(D) than in F\O(D).

We say that an (a, b) absorbing set D is an (a, b) fully absorbing set, if in addition, all bit

nodes in V \D have strictly more neighbors in F\O(D) than in O(D).

An example of an (a, b) absorbing set with a = 4, b = 4 is given in Fig. 8.2, where full

circles constitute the set D, full squares constitute the set O(D), empty squares constitute

the set E(D), E(D,O(D)) is given by solid lines, and E(D, E(D) is given by dashed

lines. Observe that each element in D has more even-degree than odd-degree neighbors.

All check nodes not in the picture are denoted by empty squares. For this set to be a fully

absorbing set, every bit node not in the figure should also have strictly more empty squares

than full squares as neighbors.

Note that D ⊆ V is a fully absorbing set iff for all v, wt(HxDΔv) > wt(HxD) = b,

where DΔv denotes the symmetric difference between D and {v}, wt(y) is the Hamming

weight of a binary string y, and xD is a binary string with support D.

We have introduced the notion of absorbing sets to qualitatively describe the convergent
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Figure 8.2: An example of a (4,4) absorbing set

non-codeword state of the message passing algorithms, when the transmission channel is

additive white gaussian noise (AWGN). In the asymptotic limit given by the bit flipping

algorithm, the configuration described as a fully absorbing set is stable, since each bit node

receives strictly more messages from the neighboring checks that reinforce its value than

messages that suggest the opposite bit value.

8.2.2 Related Work and Existing Concepts

The observation that the low BER/FER performance of finite length LDPC codes under

iterative decoding is guided by non-codewords is not new. One of the first such attempts to

explain these findings was described in [40] where it was recognized that non-codewords,

rather than minimum distance codewords, can attribute to the error floor. There, the notion

of a near-codeword was introduced. An (a, b) near-codeword refers to a binary string s of

weight a whose syndrome sHT has weight b. A fully absorbing set can be viewed as a near

codeword as defined in [40], though the reverse is not true, since a near codeword does not

necessarily describe a stable configuration.

The trapping sets were introduced in [48] as a part of the study of error floors of LDPC
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codes, which pioneered a simulation-emulation approach. Trapping sets as defined in [48]

carry an operational, decoder dependent definition. In addition, they are defined as a union

of all bits that are not eventually correct, and thus permit a situation in which the decoder

oscillates among a finite number of states.

Stopping sets introduced and studied in detail in [14] refer to the subgraph of the Tanner

graph with the property that no check node relative to this subgraph has degree 1. These

sets describe stable combinatorial configurations in the context of a binary erasure channel

(BEC), since the decoder halts once it encounters a stopping set in which all bit nodes were

erased. The stopping sets have been shown to be a very useful tool in understanding the

performance of LDPC codes on erasure channels, both for finite-length codes [28] as well

as the asymptotic behavior of LDPC code ensambles, [45]. Nevertheless, such analysis

cannot be directly applied to an AWGN channel since the nature of errors is different.

Additional related notions previously introduced in the literature include pseudo-codewords

[20] and elementary trapping sets [33]. Note that the pseudo-codewords are defined in the

context of the linear programming based decoding and their connection with the conver-

gent non-codeword states of the iterative decoding algorithms though interesting is not

yet fully established. Pseudo-codewords were also studied in [30] where it was observed

that under so-called graph cover decoding, pseudo-codewords in the covers of the bipartite

graph, along with the actual codewords, compete to be the best estimate produced by the

decoder. Loop calculus method discussed in [9] provides a way to improve linear program-

ming based decoding once the so-called critical loop is identified. While for short codes, as
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the (155,64) LDPC code discussed in [9], one loop may be sufficient to describe a critical

state, it would be interesting to investigate how this concept extends to larger codes. While

[9] uses a search algorithm to find “bad” configurations for the (155,64) LDPC code, one

could, based on the structure of the parity check matrix of this code, analytically describe

dominant absorbing sets, and then use these as a starting point for further analysis. It would

be interesting to further pursue this connection.

Elementary trapping sets are defined as subgraphs in the Tanner graph in which each

check satisfied with respect to this subgraph has degree 2 and each check unsatisfied with

respect to this subgraph has degree 1, [33]. In a loose sense, one may view absorbing sets

as consisting of a union of elementary trapping sets in some cases.
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Chapter 9

Absorbing Sets of Array-based LDPC

Codes

In this chapter we provide a detailed analysis of the minimal absorbing sets and minimal

fully absorbing sets of the high rate array-based LDPC codes. In particular we will show

that for γ = 2 the minimal (fully) absorbing sets are in fact minimum distance codewords,

whereas, for γ = 3 and γ = 4, minimal (fully) absorbing sets are in fact strictly smaller

that the minimum distance of the code.

9.1 Array-based LDPC codes

Array based LDPC codes [19] are regular LDPC codes parameterized by a pair of

integers (p, γ), such that γ ≤ p, and p is an odd prime, with a parity check matrix Hp,γ
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given by

Hp,γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I I I . . . I

I σ σ2 . . . σp−1

I σ2 σ4 . . . σ2(p−1)

...
...

... . . .
...

I σγ−1 σ(γ−1)2 . . . σ(γ−1)(p−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.1)

where σ denotes a p× p permutation matrix of the form

σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 1

1 0 . . . 0 0

0 1 . . . 0 0

...
... . . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9.2)

We use Cp,γ to denote the binary linear code with parity check matrix of the form (9.1).

The rate of this code is R = 1− γp−γ+1
p2 , [42].

As first demonstrated by Fan [19], array-based LDPC codes have very good perfor-

mance. They have been proposed for a number of applications, including digital subscriber

lines [18] and magnetic recording [58].

In our earlier experimental work [63] we have observed that certain structures in the

Tanner graph of the parity check matrix of the code are the limiting factor in the iterative

decoding of several structured LDPC codes, including array-based codes. Motivated by the

empirical findings, we introduced this object, which we call an absorbing set. The formal

definition of absorbing sets is given in Section 8.2.1. Here we study them in detail for
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array-based LDPC codes Cp,γ for γ = 2, 3, 4, for the standard parity check matrix Hp,γ .

9.2 Theoretical Results

Our goal is to describe minimal absorbing sets and minimal fully absorbing sets (a, b)

of the Tanner graph of the parity check matrix Hp,γ , for γ = 2, 3, 4, where the minimality

refers to the smallest possible a, and where b is the smallest possible for the given a.

We use the following notation throughout this chapter. Recall that Hp,γ is a γp × p2

matrix of 0’s and 1’s. It is convenient to view Hp,γ as a two-dimensional array of component

p×p submatrices with the rows i in the range 0 ≤ i ≤ γ−1 (also referred to as row groups)

and the columns j in the range 0 ≤ j ≤ p − 1 (also referred to as column groups). Each

column of Hp,γ is uniquely described by a pair (j, k) where j denotes the column index

of the submatrix this column belongs to, and k, 0 ≤ k ≤ p − 1 denotes the index of this

column within the submatrix.

Let Gp,γ be the Tanner graph associated with Hp,γ , so bit nodes and check nodes in

Gp,γ represent columns and rows in Hp,γ , respectively. In Gp,γ bit nodes have degree γ and

check nodes have degree p. There is a total of p2 bit nodes and γp check nodes. Each bit

node in Gp,γ receives the unique label (j, k) that describes the corresponding column of

Hp,γ . Each check node in Gp,γ receives a label i if the corresponding row of Hp,γ belongs

to the row group i. Multiple bit nodes can have the same j or k label, but not both. Multiple

check nodes can have the same i label.
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Figure 9.1: Illustration of the notation (a) Row and column groups in Hp,γ(b) (j, k) column
label. Shaded area corresponds to the submatrix σij .
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We note that the structure of the parity check matrix imposes the following conditions

on the neighboring bit nodes and check nodes:

Bit Consistency: For a bit node, all its incident check nodes, labelled is1 through isγ

must have distinct labels, i.e. these check nodes are in distinct row groups.

Check Consistency: All bit nodes, say (j1, k1) through (jp, kp), participating in the same

check node must have distinct j� values, i.e. they are all in distinct column groups.

Both conditions follow from the fact that the parity check matrix Hp,γ of Cp,γ consists

of a 2-dimensional array of permutation matrices of equal size. �

We begin with elementary lemmas that play a central role throughout this chapter.

Lemma 21 (Pattern Consistency): The (r, k) entry of σi is 1 iff r − k ≡ i mod p.

Corollary 1 (Pattern Consistency): Let σij1 and σij2 be in the same row group of Hp,γ . If

the entry (r, k1) of σij1 is non-zero, then so is the entry (r, k2) of σij2 where k1 + ij1 ≡

k2 + ij2 ≡ r mod p.

We will refer to the constraints of the type described in both Lemma 21 and Corollary 1

as pattern consistency constraints.

Lemma 22 (Cycle consistency:) Consider a cycle in Gp,γ of length 2t, involving t bit

nodes, with labels (j1, k1) through (jt, kt) and t check nodes, with labels i1 through it, such

that bit nodes (j1, k1) and (j2, k2) participate in the check labelled i1, (j2, k2) and (j3, k3)

participate in the check labelled i2, and so on, until check labelled it in which (jt, kt) and
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(j1, k1) participate. Then

i1(j2−j1)+ i2(j3−j2)+ · · ·+ it−2(jt−1−jt−2)+ it−1(jt−jt−1)+ it(j1−jt) ≡ 0 mod p.

(9.3)

Proof: The pattern consistency constraints of Corollary 1 give:

k1 + i1j1 ≡ k2 + i1j2 mod p,

k2 + i2j2 ≡ k3 + i2j3 mod p,

...

kt−1 + it−1jt−1 ≡ kt + it−1jt mod p,

kt + itjt ≡ k1 + itj1 mod p.

(9.4)

Expand k1 − k2 into (k1 − kt)− (kt−1 − kt)− (kt−2 − kt−1)− · · · − (k2 − k3). Hence,

i1(j2−j1) ≡ it(jt−j1)−it−1(jt−jt−1)−it−2(jt−1−jt−2)−· · ·−i2(j3−j2) mod p. (9.5)

By rearranging the terms, (9.3) follows. �

Constraints of the type (9.3) will subsequently be referred to as cycle consistency con-

straints.

Our main results can be summarized as follows: Let Gp,γ be the Tanner graph associated

with the parity check matrix Hp,γ of the array-based LDPC code Cp,γ .

Theorem 3 Minimality

(a) For the Gp,2 family, all minimal absorbing sets are minimal fully absorbing sets and

are of size (4, 0).
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(b) For the Gp,3 family, the minimal absorbing sets are of size (3, 3), and the minimal

fully absorbing sets are of size (4, 2).

(c) For the Gp,4 family, and for p > 19, all minimal absorbing sets are fully minimal

absorbing sets, and are of size (6, 4). �

Theorem 4 Scaling

(a) Suppose γ = 2 and p > 3. The number of minimal (fully) absorbing sets in Gp,γ

grows with block length n (Recall that the blocklength n = p2, given by the number of

columns in Hp,γ) as Θ(n2).

(b) For γ = 3 and for all blocklengths n > 32 the number of minimal absorbing sets as

well as the number of minimal fully absorbing sets in Hp,γ is Θ(n3/2).

(c) For γ = 4 and for all blocklengths n > 192 the number of minimal absorbing sets

as well as the number of minimal fully absorbing sets in Hp,γ is Θ(n3/2). �

Here we say that the number Q of particular absorbing sets grows as Θ(nl) if cnl ≤

Q ≤ c′nl, for some constants c and c′.

The following three subsections provide proofs of these claims, where we separately

treat each of the values of γ. While our results provide a precise count of the minimal (fully)

absorbing sets, the main message is regarding the cardinality scaling is that of Theorem 4.

Note that Theorem 3(a) implies that for γ = 2 the smallest (fully) absorbing sets are in

fact the minimum distance codewords. This is in contrast to the results in Theorem 3(b) for

γ = 3 and 3(c) for γ = 4 for which we show the existence of (fully) absorbing sets strictly

smaller than the minimum distance of the code. In particular, for γ = 3, the minimum
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distance is 6 [61], [42], and for γ = 4 and p > 7 the minimum distance is between 8 and

10, [61],[42]. The minimal absorbing sets and minimal fully absorbing sets are for both

γ = 3 and γ = 4 and p large enough strictly smaller than the minimum distance of the

code.

9.2.1 Absorbing sets of Hp,2

The code Cγ,2 has uniform bit degree 2, and is thus a cycle code. Even though such

codes are known to be poor [46], we include the analysis for the sake of completeness. We

start by proving the statement in Theorem 3(a).

Let Gp,2 = (V, F,E) denote the Tanner graph of Hp,2. Let D be an (a, b) absorbing

set in Gp,2. Each bit node in D has degree 2 in Gp,2 and is required to have strictly more

neighbors in E(D) than inO(D). This implies thatO(D) is empty. The absorbing set is of

type (a, 0). It is thus a fully absorbing set, and is in fact a codeword.

Since the matrix Hp,2 has the top row consisting of identity matrices, the codewords

of Cp,2 are of even weight. Moreover, since the bottom row of Hp,2 consists of distinct

component submatrices, no two columns of Hp,2 sum to zero. Therefore a > 2 and even

and there are no cycles of length 4 in this code.

We now consider a = 4. Let (j1, k1), (j2, k2), (j3, k3) and (j4, k4) be the bit nodes

participating in a candidate (4, 0) absorbing set. These nodes must necessarily be arranged

as in Figure 9.2.

The following result proves Theorem 3(a).
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1 1 2 2 3 3 4 4

1 2 3 4

Figure 9.2: (Labelled) candidate (4,0) absorbing set

Lemma 23 There is a total of p2(p− 1)2 (4, 0) (fully) absorbing sets in the code described

by Hp,2.

Proof: The bit consistency conditions are automatically satisfied by the numbering of the

row groups in Figure 9.2. The check consistency constraints give:

j1 �= j4

j1 �= j2

j2 �= j3

j3 �= j4 .

(9.6)

The pattern consistency constraints of Corollary 1 give:

k1 = k2

k3 = k4

k2 + j2 ≡ k3 + j3 mod p

k4 + j4 ≡ k1 + j1 mod p.

(9.7)

There are p ways of choosing k2, which also determines k1. Since j2 �= j3, we must

have k3 �= k2, so we have (p− 1) ways of choosing k3, which also determines k4. We then
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have p ways of choosing j2, which also determines j3. Since j1 �= j2, we have (p−1) ways

of choosing j1, which also determines j4. To verify that every one of these choices satisfies

all the equations it only remains to verify that j3 �= j4. This holds because

j3 − j4 ≡ (k2 − k3 + j2)− (k1 − k4 + j1) ≡ j2 − j1 �= 0 mod p . (9.8)

Now, for any choice of row group labels for the checks, and column labels for the bits

that satisfy the bit and check consistency constraints and the pattern consistency constraints

of Corollary 1 there is a unique way to choose the row index in the individual row groups

so that the pattern consistency constraint of Lemma 21 are satisfied. This completes the

proof of Lemma 23. �

Theorem 4(a) is now a consequence of

Corollary 2 The number of (4, 0) (fully) absorbing sets for the code described by Hp,2 is

Θ(n2), where n is the codeword length.

Proof: Follows immediately from Lemma 23 and n = p2. �

Note that (4, 0) absorbing sets are actually codewords, so the cycle code is dominated

by low weight codewords. We now consider γ > 2, which leads to more interesting results.

In particular, our results establish the existence of minimal absorbing sets and minimal fully

absorbing sets, for which the number of bit nodes a is strictly smaller than the minimum

distance dmin of the code.
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Figure 9.3: Candidate (2,b) absorbing sets

Figure 9.4: Candidate (3,1) absorbing sets

9.2.2 Absorbing sets of Hp,3

We now turn to the proof of Theorem 3(b), concerning the sizes and numbers of mini-

mal absorbing sets in Hp,3.

Let Gp,3 = (V, F,E) denote the Tanner graph of Hp,3. Let D be an (a, b) absorbing

set in Gp,3. Each bit node in D has degree 3 in Gp,3 and is required to have strictly more

neighbors in E(D) than in O(D).

Suppose a = 2. In Gp,3 an even number of edges from D terminates in E(D). Thus

either b = 0 or b = 2. These correspond to the situations in Figure 9.3. In either case there

would be a cycle of length 4 in Gp,3, which is false [19]. Thus a ≥ 3.

Suppose a = 3. In Gp,3 an even number of edges from D terminates in E(D). Thus

either b = 1 or b = 3. Suppose b = 1. This must correspond to the left form in Figure

9.4, or the right form in Figure 9.4, which again involves a cycle of length 4 in Gp,3, a
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1 1 2 2 3 3

4 5 6 3 1 2

Figure 9.5: (Labelled) candidate (3,3) absorbing set

contradiction, [19].

The remaining case with a = 3 is b = 3. In this case, each bit node in D would then

connect to exactly one check node in O(D) implying the unlabelled form of Figure 9.5.

Note that there is a cycle of length 6. Suppose that these 3 bit nodes are indexed as (j1, k1),

(j2, k2) and (j3, k3), respectively, where j1, j2 and j3 are distinct (by the check consistency)

and 0 ≤ j1, j2, j3 ≤ p−1. Without loss of generality assume that (j1, k1) and (j2, k2) share

a check in the row group i1, (j2, k2) and (j3, k3) share a check in the row group i2, and that

(j1, k1) and (j3, k3) share a check in the row group i3, where i1, i2, i3 ∈ {0, 1, 2} and are

distinct by the bit consistency condition. We may assume without loss of generality that

i1 = 0, i2 = 1 and i3 = 2. Note that the bit consistency constraints force the values of i4, i5

and i6 to be as given in Figure 9.5.

In the remainder of the discussion we will first prove the existence of a (3, 3) absorbing

set. We will then show that these (3, 3) absorbing sets are not fully absorbing sets. This

result will in turn imply the existence of (4, 2) fully absorbing sets, which are thus minimal

fully absorbing sets for γ = 3.

The bit consistency constraints are automatically satisfied by our labelling of the row
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Figure 9.6: Candidate (3,3) absorbing set (solid circles), with an adjacent bit node (empty
circle).

groups in Figure 9.5. The check consistency constraints reduce to the distinctness of j1, j2

and j3. The pattern consistency constraints of Corollary 1 give:

k1 + 2j1 ≡ k3 + 2j3 mod p, (9.9)

k1 ≡ k2 mod p, (9.10)

k2 + j2 ≡ k3 + j3 mod p. (9.11)

The existence of a solution and hence of a (3,3) absorbing set is given in the proof of

Lemma 24 below, which counts the number of such sets.

Even though a (3, 3) fully absorbing set seems plausible, care must be taken with re-

spect to a bit node outside a candidate fully absorbing set when this bit node also partici-

pates in the unsatisfied checks. As we now show, a (3, 3) fully absorbing set cannot exist,

though the existence of a (3, 3) absorbing set implies a (4, 2) fully absorbing set.

Suppose first that a (3, 3) fully absorbing set exists. Since γ = 3, it is then neces-

sary that no bit node outside of the absorbing set participates in more than one unsatisfied

check adjacent to a (3, 3) absorbing set. Since (j1, k1) and (j3, k3) share a check, j1 �= j3.

Consider the bit node labelled (j1, k4) that connects to i6, as in Figure 9.6. Since i6 = 0, it
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follows from Corollary 1 that k3 = k4. Equations (9.9)-(9.11) imply that k3+2j1 ≡ k2+2j2

mod p so that (j1, k3) bit node also connects to the check labelled i5, as shown in Figure 9.6.

This eliminates the possibility of a (3,3) fully absorbing set.

A (4,0) absorbing set cannot exist since the minimum distance of the code is 6 [61].

The next candidate size for the smallest fully absorbing set is (4,2). Each of the unsatisfied

checks in any such configuration would necessarily connect to only one of the bit nodes,

else we would have a cycle of length 4, a contradiction [19]. Given this, no satisfied

check node can connect to all four bit nodes, else we would have a cycle of length 4, a

contradiction [19]. Since there are 10 edges from the bit nodes that go to satisfied checks

we now see that there must be 5 satisfied checks in any candidate (4,2) fully absorbing set.

The two bit nodes that each have all their three edges going to satisfied check nodes must

then share exactly one satisfied check (they have to share at least one, and cannot share

more than one [19]). We have therefore concluded that any candidate (4,2) fully absorbing

set must look like (an unlabelled version) of Figure 9.6. The existence of such (4,2) fully

absorbing sets is proved in Lemma 24, which also counts the number of such sets. �

Lemma 24 The total number of (3, 3) absorbing sets and (4, 2) fully absorbing sets in the

Tanner graph described by Hp,3 is p2(p− 1), and 3p2(p− 1)/2, respectively.

Proof: Referring to Figure 9.5, the bit consistency and the check consistency constraints

are satisfied for the given labels of row groups and since j1, j2 and j3 are distinct. Then j1

and k1 can be chosen in p ways, and then j3 can be chosen in p− 1 ways. This fixes k3 by

equation (9.9), k2 by equation (9.10) and then j2 by equation (9.11). There is then a unique
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way to choose the row indices in the individual row groups so that the pattern consistency

conditions of Lemma 21 are satisfied. Thus the total number of (3,3) absorbing sets is

p2(p− 1).

Turning to counting (4,2) fully absorbing set, every such set must look like an un-

labelled version of Figure 9.6, and so contains exactly two distinct (3,3) absorbing sets

(corresponding respectively to removing one of the bit nodes that connects to an unsatis-

fied check). From Figure 9.5 one can see that every (3,3) absorbing set is contained in three

distinct (4,2) fully absorbing sets (for each pair of unsatisfied checks in Figure 9.5 one can

find a bit node that these checks connect to, which when appended to the (3,3) absorbing set

gives a (4,2) fully absorbing set). The total number of (4,2) fully absorbing sets is therefore

3p2(p− 1)/2. �

9.2.3 Absorbing sets of Hp,4

In order to establish that (6, 4) (fully) absorbing sets are minimal for Hp,4, we will first

show that (a, b) absorbing sets for a < 6 do not exist.

Let D denote an (a, b) absorbing set in Gp,4 = (V, F,E), the Tanner graph of Hp,4. If

a = 2 (respectively 3) then at least 6 (respectively 9) edges from D in Gp,4 terminate in

E(D), which implies the existence of a cycle of length 4 in Gp,4, which is false [19]. Thus,

a ≥ 4.

Suppose a = 4. Note that b must be even. We cannot have b = 0, since this would imply

the existence of a codeword of weight 4, which is false, [61]. If b = 2 one can conclude
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Figure 9.7: Depiction of the candidate (4,4) set

that there must be a cycle of length 4 in the code (whether the number of edges going into

unsatisfied checks is 2 or 4), and this is false, [19]. Thus we must have b = 4 and, since

each bit node must have at least three edges going to satisfied checks, the impossibility of

a cycle of length 4 [19] implies that the absorbing set can be described as in Figure 9.7. In

this figure each vertex represents a distinct bit node of the candidate (4,4) absorbing set and

each edge represents a satisfied check node that connects to the bit nodes in the absorbing

set, that correspond to its end points in the figure. The following lemma establishes that

such sets do not exist if the prime p is large enough.

Lemma 25 For p > 7, the Tanner graph family Gp,4 does not contain any (4, 4) absorbing

sets.

Proof: Without loss of generality we may let i1 = x, i5 = y and i4 = z, where x, y, z ∈

{0, 1, 2, 3} and distinct by the bit consistency conditions. Then, by propagating the bit

consistency conditions at each remaining vertex, and exploiting the symmetry, it suffices

to consider (i1, i2, i3, i4, i5, i6) either (x, y, x, y, z, z) or (x, y, x, y, z, w) where x, y, z, w ∈

{0, 1, 2, 3} and are distinct.
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For the case (i1, i2, i3, i4, i5, i6) = (x, y, x, y, z, z), we establish the following cycle con-

sistency conditions based on the cycles within the graph in Figure 9.7:

x(j2 − j1) + y(j3 − j2) + z(j1 − j3) ≡ 0 mod p,

x(j2 − j1) + z(j4 − j2) + y(j1 − j4) ≡ 0 mod p, and

x(j4 − j3) + y(j1 − j4) + z(j3 − j1) ≡ 0 mod p.

(9.12)

By adding and subtracting the conditions in (9.12), it follows that

(y − z)(j3 + j4 − j1 − j2) ≡ 0 mod p,

(x− z)(j2 + j3 − j1 − j4) ≡ 0 mod p, and

(x− y)(j2 + j4 − j1 − j3) ≡ 0 mod p.

(9.13)

Since x, y, z are distinct, (9.13) implies that j’s would have to be all the same, which

contradicts the check consistency constraint.

For the case (i1, i2, i3, i4, i5, i6) = (x, y, x, y, z, w), again based on the cycle structure in

Figure 9.7, we get the cycle consistency conditions

x(j2 − j1) + y(j3 − j2) + z(j1 − j3) ≡ 0 mod p,

x(j2 − j1) + w(j4 − j2) + y(j1 − j4) ≡ 0 mod p, and

x(j4 − j3) + y(j1 − j4) + z(j3 − j1) ≡ 0 mod p.

(9.14)

We let u1 : = j2 − j1, u2 : = j3 − j1, and u3 : = j4 − j1. By the check consistency

condition, all of u1, u2, and u3 are non-zero. Substituting u1, u2 and u3 in (9.14) and then

expressing u2 and u3 in terms of u1, one arrives at the condition

(z − x)(w − y) + (z − y)(w − x) ≡ 0 mod p. (9.15)
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It can be easily verified that this condition can not hold for any choice of x, y, z, w,

where x, y, z, w ∈ {0, 1, 2, 3} and are distinct for p > 7. There are 4! = 24 ways of

assigning numerical values to (x, y, z, w). The expression in (9.15) is at most 7 in absolute

value for such x, y, z, and w. Substituting each numerical assignment (x, y, z, w) yields

possible choices of prime p for which the expression in (9.15) becomes zero mod p. The

condition (9.15) holds for p ∈ {2, 5, 7}. Therefore, for p > 7, Gp,γ does not contain (4, 4)

absorbing sets. �

We next show that (5, b) absorbing sets do not exist for the parameter p large enough.

In particular we will establish a congruential constraint involving the labels of the edges

emanating from the bits in the absorbing set that cannot hold for p large enough.

Lemma 26 For p > 19, the Tanner graph family Gp,4 does not contain any (5, b) absorbing

sets.

Proof: Since each bit node in the absorbing set has at most one neighboring unsatisfied

check node, it follows that b ≤ 5. Observe that the number of bit nodes with 3 satisfied and

1 unsatisfied check nodes is even, and thus b is even. First b > 0 by the minimum distance,

dmin ≥ 8 of the code, [61]. If b = 2, since we have at most five edges going to unsatisfied

checks there are two cases: (a) either three of them go to one unsatisfied check and one to

another, or (b) one edge goes to each unsatisfied check. In case (a), because the girth of

the Tanner graph is bigger than 4, [19], none of the three bit nodes that share an unsatisfied

check can share a satisfied check. Further, no two bit nodes can share a satisfied check for

the same reason. By counting, this eliminates case (a). In case (b), if we drop one of the
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Figure 9.8: Depiction of the candidate (5,4) set

bit nodes that has an unsatisfied check we would have a (4,4) absorbing set which we have

argued in Lemma 25 does not exist for p > 7.

Thus for p > 7 we are left with considering the case b = 4 since at most five edges go

into unsatisfied checks. This means the candidate absorbing set contains 1 bit node with

all checks satisfied and 4 bit nodes each with 3 satisfied and 1 unsatisfied check. The only

way that such an absorbing set could exist is if one has the configuration shown in Figure

9.8, where the vertices represent bit nodes and edges represent their satisfied check nodes.

Since i1, i2, i3 and i4 are all distinct elements of the set {0, 1, 2, 3}, by the bit consis-

tency condition, and by the symmetry of the candidate configuration in Figure 9.8, we may

assume that i1 = 0. We let x : = i2, y : = i3 and z : = i4, where x, y, z ∈ {1, 2, 3}

and distinct. By propagating possible values of the labels for remaining edges, while

maintaining bit consistency conditions, it follows that (i1, i2, i3, i4, i5, i6, i7, i8) is either

(0, x, y, z, y, z, 0, x) or (0, x, y, z, z, x, y, 0).

For (i1, i2, i3, i4, i5, i6, i7, i8) = (0, x, y, z, y, z, 0, x), and for each edge and its endpoints
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in Figure 9.8, we write the pattern consistency constraints of Corollary 1, in terms of x, y

and z,

k1 ≡ k2 mod p, (9.16a)

k3 ≡ k5 mod p, (9.16b)

k1 + xj1 ≡ k3 + xj3 mod p, (9.16c)

k1 + yj1 ≡ k4 + yj4 mod p, (9.16d)

k1 + zj1 ≡ k5 + zj5 mod p, (9.16e)

k2 + yj2 ≡ k3 + yj3 mod p, (9.16f)

k2 + zj2 ≡ k4 + zj4 mod p, and (9.16g)

k4 + xj4 ≡ k5 + xj5 mod p. (9.16h)

This last system simplifies to

k1 + xj1 ≡ k3 + xj3 mod p, (from (9.16c))

k1 + yj1 ≡ k4 + yj4 mod p, (from (9.16d))

k1 + zj1 ≡ k3 + zj5 mod p, (from (9.16b) and (9.16e))

k1 + yj2 ≡ k3 + yj3 mod p, (from (9.16a) and (9.16f))

k1 + zj2 ≡ k4 + zj4 mod p, and (from (9.16a) and (9.16g))

k4 + xj4 ≡ k3 + xj5 mod p. (from (9.16b) and (9.16h))

(9.17)
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Thus

k1 − k3 ≡ x(j3 − j1) ≡ z(j5 − j1) ≡ y(j3 − j2) mod p (9.18a)

k1 − k4 ≡ y(j4 − j1) ≡ z(j4 − j2) mod p (9.18b)

k3 − k4 ≡ x(j4 − j5) mod p. (9.18c)

We let u1 : = j3− j1, u2 : = j4− j1, u3 : = j4− j1, and u4 : = j3− j2. Note that by the

check consistency condition, all of u1, u2, u3, and u4 are non-zero.

We then obtain

xu1 ≡ zu3 mod p (from (9.18a)),

xu1 ≡ yu4 mod p (from (9.18a)),

yu2 ≡ z(u2 − u1 + u4) mod p (from (9.18b)),

x(u2 − u3) ≡ yu2 − xu1 mod p from k3 − k4 = (k1 − k4)− (k1 − k3) and

substituting from (9.18c),(9.18b),(9.18a)),resp.

(9.19)

This last system can be rewritten as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x 0 0 −y

x 0 −z 0

−z z − y 0 z

−x y − x x 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

mod p . (9.20)

Therefore, the determinant of the matrix multiplying the (non-zero) vector [u1u2u3u4]
T

in (9.20) is itself zero, which simplifies to

xy(z − x)(z − y)− z2(x− y)2 ≡ 0 mod p, (9.21)
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Since x, y, z ∈ {1, 2, 3} and distinct we consider all 3! = 6 assignment for (x, y, z), and

for each we evaluate the left had side expression in (9.21). Note that for distinct x, y, z ∈

{1, 2, 3} , this expression is at most 19 in absolute value, and therefore the constraint in

(9.21) does not have a solution for p > 19 for distinct x, y, z ∈ {1, 2, 3}. (Solutions exist

for p = 5, 11 and 19, which can be verified by direct numerical substitution).

For (i1, i2, i3, i4, i5, i6, i7, i8) = (0, x, y, z, z, z, y, 0) we likewise establish the constraints

as in (9.16) and (9.17). We again let u1 : = j3 − j1, u2 : = j4 − j1, u3 : = j4 − j1, and

u4 : = j3 − j2, and obtain⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 y −z 0

x y − x 0 −x

x 0 0 −z

y − x y −y 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

mod p . (9.22)

Since the entries in [u1u2u3u4]
T are all non-zero, it follows that the determinant of the

matrix in (9.22) is zero. Simplifying the expression for the determinant yields again the

condition in (9.21). Therefore for p > 19, (5,4) absorbing sets do not exist. �

We can now proceed with the analysis of (6, b) absorbing sets. Since the number of bit

nodes with 3 satisfied and 1 unsatisfied check node is even, b is even. First, b = 0 is not

possible since dmin ≥ 8 [61]. The following lemma considers b = 2.

Lemma 27 For p > 19, the Tanner graph family Gp,4 does not contain any (6, 2) absorb-

ing sets.

Proof: We first claim that there is no check node of degree at least 3 with respect to the bit
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Figure 9.9: Depiction of the candidate (6,2) sets.
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nodes in the absorbing set. Let us first suppose that there exists one such check node and

that it has an even degree with respect to the bit nodes in the absorbing set. Since we are

considering an absorbing set with 6 bit nodes, such a check node would have degree either

4 or 6 with respect to the bit nodes in the absorbing set. If this satisfied check is of degree 6,

there would exist 2 bit nodes in the absorbing set which would share an additional satisfied

check. This situation would imply the existence of a cycle of length 4, which is impossible

by the girth condition [19].

Suppose now that this satisfied check has degree 4. Each bit node that participates

in this check has at least 2 more neighboring satisfied checks, which it then necessarily

must share with the remaining two bit nodes in the absorbing set that themselves do not

participate in this degree-4 check. If there exists a bit node that participates in this degree-

4 check and has all checks satisfied, it then shares its remaining neighboring check with

one of the bit nodes with which it already shares a check. This situation violates the girth

constraint [19]. If all bit nodes in the absorbing set that participate in this degree-4 check

have 3 satisfied and 1 unsatisfied check, three of them would have to participate in the same

unsatisfied check to make the total number of unsatisfied checks be 2. This again violates

the girth condition [19].

Therefore, all satisfied checks with respect to the bit nodes in the absorbing set have

degree 2. Suppose there exists a check node that is unsatisfied with respect to the bits in the

absorbing set and that has degree bigger than 1. If such a check node has degree 5, there

would necessarily exist 2 bit nodes in the absorbing set that share this degree-5 check and
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another satisfied check, which is impossible by the girth condition.

Suppose that there exists 2 degree-3 checks incident to the bit nodes in the absorbing

set. First, these degree-3 checks do not have any neighboring bit nodes in common since

we require that each bit node has at most 1 unsatisfied check. We can then group the bit

nodes in the absorbing set into two disjoint groups, each of size 3, such that the bits in the

same group share the same degree-3 check. Consider a bit node in, say, the first group. It

shares its remaining 3 (satisfied) checks with one of each bit nodes in the second group.

The same is true with the other two bit nodes in the first group, namely they too share their

remaining 3 (satisfied) checks with the bit nodes in the second group. Therefore, there exist

two bit nodes in the first group and two bit nodes in the second group such that any two

share a distinct check. This configuration is not possible by Lemma 25 for p > 7.

Suppose now there exists one unsatisfied check of degree 3 with respect to the bit nodes

in the absorbing set. The remaining unsatisfied check then has degree 1 with respect to the

bit nodes in the absorbing set, and the neighboring bit nodes in the absorbing set of these

two unsatisfied checks are different. There are two bit nodes in the absorbing set that have

all checks satisfied. Partition the bit nodes in the absorbing set into three groups: the first

group contains the three bit nodes that share a degree-3 unsatisfied check, the second group

contains the one bit node that has one unsatisfied check, and the third group contains the

two bit nodes that have all four checks satisfied. Each of the three bit nodes in the first

group has one unsatisfied and three satisfied checks and thus it shares a satisfied check

with each of the bit nodes in the second and third group since it cannot share a satisfied
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check with another bit node in the first group by the girth condition. The bit node in the

second group also has one unsatisfied and three satisfied checks, and the latter are shared

then with bit nodes in the first group. The two bit nodes in the third group have all four

checks satisfied, the three of which they each share with each of the bit nodes in the first

group. Since all three satisfied checks of the bit node in the second group are used up with

the checks it shares with the bit nodes in the first group, the two bit nodes in the third group

share a satisfied check with each other. Therefore, there exist two bit nodes in the first

group and two bit nodes in the third group such that any two share a distinct check. This

configuration is not possible by Lemma 25 for p > 7.

We conclude that no check incident to the bit nodes in the absorbing set has degree

larger than 2, namely that all neighboring satisfied (resp. unsatisfied) checks have degree

2 (resp. 1). By requiring that each vertex corresponding to a bit node in the absorbing set

has either 3 or 4 outgoing edges, and that there are no parallel edges, it follows that there

are 2 possible configurations, as shown in Figure 9.9, that relate bit nodes in the absorbing

set (vertices) and their shared satisfied checks (edges).

Observe that the bottom configuration in Figure 9.9 contains a (4, 4) absorbing set

which consists of (j3, k3), (j4, k4), (j5, k5), and (j6, k6). By Lemma 25 such configura-

tion is not possible for p > 7. The rest of the proof focuses on the topmost configuration.

By ensuring the bit consistency, it follows that the topmost configuration in Figure 9.9

has 2 distinct edge labellings. In particular, by the bit consistency at (j3, k3) we may let

x : = i1, y : = i7, z : = i11 and w : = i10, where x, y, z, w ∈ {0, 1, 2, 3} and distinct. By
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propagating the labels while making sure that the bit consistency constraints are satisfied

we obtain

• x = i1 = i5 = i8, y = i7 = i9, z = i2 = i6 = i11, w = i3 = i4 = i10 (call this set of

constraints �) or

• x = i1 = i4 = i9, y = i3 = i6 = i7, z = i8 = i11, w = i2 = i5 = i10 (call this

set of constraints ��) where throughout x, y, z, w are distinct and belong to the set

{0, 1, 2, 3}.

Case (�)

Using the pattern consistency constraint (see Corollary 1) for each edge in Figure 9.9
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for the current labelling we obtain

k1 + xj1 ≡ k3 + xj3 mod p, (9.23a)

k1 + zj1 ≡ k4 + zj4 mod p, (9.23b)

k1 + wj1 ≡ k5 + wj5 mod p, (9.23c)

k2 + wj2 ≡ k4 + wj4 mod p, (9.23d)

k2 + xj2 ≡ k5 + xj5 mod p, (9.23e)

k2 + zj2 ≡ k6 + zj6 mod p, (9.23f)

k3 + yj3 ≡ k4 + yj4 mod p, (9.23g)

k4 + xj4 ≡ k6 + xj6 mod p, (9.23h)

k5 + yj5 ≡ k6 + yj6 mod p, (9.23i)

k3 + wj3 ≡ k6 + wj6 mod p, and (9.23j)

k3 + zj3 ≡ k5 + zj5 mod p, (9.23k)

We now separately consider x = 0, y = 0, z = 0, and w = 0.
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1. For x = 0, the set of constraints (9.23a)-(9.23k) reduces to

k1 − k3 ≡ 0 mod p (from (9.23a))

k2 − k5 ≡ 0 mod p (from (9.23e))

k4 − k6 ≡ 0 mod p (from (9.23h))

k1 − k4 ≡ z(j4 − j1) ≡ y(j4 − j3) ≡ w(j6 − j3) mod p

(from (9.23b)), (9.23a) and (9.23g), and (9.23a) and (9.23j) respectively.)

k2 − k4 ≡ w(j4 − j2) ≡ z(j6 − j2) ≡ y(j6 − j5) mod p

(from (9.23d)) (9.23h) and (9.23f), and (9.23e), (9.23h) and (9.23i) respectively.)

k1 − k2 ≡ w(j5 − j1) ≡ z(j5 − j3) mod p .

(from (9.23c) (9.23d) and (9.23k) respectively.)

(9.24)

Since j1 �= j4, j2 �= j4 and j1 �= j5 by the check consistency conditions, we have that

k1 �= k4, k2 �= k4 and k1 �= k2.

Since {y, z, w} = {1, 2, 3} and p > 19 is prime, we may let

k1 − k4 ≡ ywzt mod p,

k2 − k4 ≡ ywzu mod p, and

k1 − k2 ≡ wzs mod p

(9.25)

for some integers t, s and u which are themselves nonzero. From k1 − k2 = (k1 − k4) −

(k2 − k4), it follows that

wzs ≡ yzwt− ywzu mod p . (9.26)
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Write j5 − j3 = −(j6 − j5) + (j6 − j3) to obtain

ws ≡ −wzu + yzt mod p . (9.27)

Likewise, from j5 − j1 = −(j6 − j5) + (j6 − j2)− (j4 − j2) + (j4 − j1), it follows that

zs ≡ −wzu + ywu− yzu + ywt mod p . (9.28)

From (9.26)- (9.28), by equating the expressions for ws and zs, it follows that

wu(y − z) ≡ yt(w − z) mod p

wu(y − z) ≡ yt(z − w) mod p .

(9.29)

The last set of constraints implies w ≡ z mod p which is a contradiction. 2. For y = 0

the set of constraints (9.23a)-(9.23k) reduces to

k3 − k4 ≡ 0 mod p

k5 − k6 ≡ 0 mod p

k1 − k3 ≡ x(j3 − j1) ≡ z(j4 − j1) mod p

k2 − k5 ≡ x(j5 − j2) ≡ z(j6 − j2) mod p

k3 − k5 ≡ x(j6 − j4) ≡ w(j6 − j3) ≡ z(j5 − j3) mod p

k1 − k5 ≡ w(j5 − j1) mod p .

(9.30)

Note that j1 �= j3, j2 �= j5, j4 �= j6 and j1 �= j5 by the check consistency conditions. Since

{x, z, w} = {1, 2, 3}, we may let

k1 − k3 ≡ xzs mod p,

k1 − k5 ≡ wv mod p,

k2 − k5 ≡ xzu mod p, and

k3 − k5 ≡ xwzt mod p

(9.31)
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for some integers s, u, v and t, which are themselves nonzero. The identities k1 − k3 =

(k1−k5)−(k3−k5), j5−j1 = (j5−j3)+(j3−j1) and j4−j1 = −(j6−j4)+(j6−j3)+(j3−j1)

respectively, yield the following constraints,

xzs ≡ wv − xwzt mod p

v ≡ xwt + zs mod p

xs ≡ −wzt + xzt + zs mod p .

(9.32)

Eliminating v from the top two constraints implies zs(x−w) ≡ xwt(w−z) mod p, which

combined with the bottom constraint yields

z2(x− w)2 ≡ xw(w − z)(x− z) mod p . (9.33)

Since {x, y, w} = {1, 2, 3}, this cannot hold for p > 19.

3. For z = 0 we obtain

k1 − k4 ≡ 0 mod p

k2 − k6 ≡ 0 mod p

k3 − k5 ≡ 0 mod p

k1 − k3 ≡ x(j3 − j1) ≡ w(j5 − j1) ≡ y(j3 − j4) mod p

k2 − k3 ≡ x(j5 − j2) ≡ y(j5 − j6) ≡ w(j3 − j6) mod p

k1 − k2 ≡ w(j2 − j4) ≡ x(j6 − j4) mod p .

(9.34)

As before, some algebra yields x ≡ w mod p, a contradiction.
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4. For w = 0 we obtain

k1 − k5 ≡ 0 mod p

k2 − k4 ≡ 0 mod p

k3 − k6 ≡ 0 mod p

k1 − k3 ≡ x(j3 − j1) ≡ y(j6 − j5) ≡ z(j3 − j5) mod p

k2 − k3 ≡ z(j6 − j2) ≡ y(j3 − j4) ≡ x(j6 − j4) mod p

k1 − k2 ≡ z(j4 − j1) ≡ x(j2 − j5) mod p .

(9.35)

After some algebra, we obtain the following condition

xz(z − y)(x− y) ≡ −y2(x− z)2 mod p, (9.36)

which, because {x, y, z} = {1, 2, 3} has no solution for p > 19.

Case (��)

We separately consider x = 0, y = 0, z = 0, and w = 0, and proceed along the lines of

the previous case.

For x = 0, resp. y = 0, it follows after some algebra that y ≡ w mod p, resp. x ≡ w

mod p, a contradiction in each case.

For z = 0, resp. w = 0, it follows similarly that xw(w − y)(x − y) ≡ y2(x − w)2

mod p, resp. xy(y−z)(x−z) ≡ −z2(x−y)2 mod p, neiter of which can hold for p > 19.

This completes the proof of the Lemma. �

Having eliminated smaller candidate absorbing sets, we now prove the following result.

Lemma 28 For all p > 5, the Tanner graph family Gp,4 has (6, 4) (fully) absorbing sets.



174

Proof: We will first show that all satisfied checks neighboring bit nodes in one such ab-

sorbing set must have degree 2. Note that there cannot be a degree-6 check with respect to

the bits in the absorbing set as then some of these bits would have to share another satisfied

check which is not possible by the girth condition. Suppose that there exists a check node

of degree 4 with respect to a (6, 4) absorbing set. Let t1, t2, t3, t4 be the bit nodes in the

absorbing set participating in degree-4 check node, and let t5 and t6 be the remaining two

bit nodes in the absorbing set. By the girth condition there can be at most one degree-4

check incident to the bit nodes in the absorbing set. If at least one of t1, t2, t3, t4 had all

check nodes satisfied, it would be necessary that such a bit node shares another distinct

check node with some other bit node participating in the degree-4 check node, which is

impossible by the girth constraint [19]. Thus, all of t1, t2, t3, t4 are each connected to 3 sat-

isfied and 1 unsatisfied check node. Then t5 and t6 are each connected to 4 satisfied check

nodes each of degree 2 with respect to the bit nodes in the absorbing set. Since t1 through

t4 have 3 satisfied neighboring checks (one of which is a degree-4 check by assumption),

they each share a check with t5 and with t6. Therefore, t5 and t6 do not share a check.

Let ij for 1 ≤ j ≤ 4 be the labels of the four check nodes connecting tj and t5. By the

bit consistency condition at t5, they are all different. By the bit consistency condition at

each of tj for 1 ≤ j ≤ 4, the label of their shared degree-4 check node must be different

from all ij for 1 ≤ j ≤ 4, which is impossible as there are only 4 distinct labels available.

Therefore, all satisfied check nodes neighboring bit nodes in the absorbing set have degree

2.
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We first analyze the case where there exists an unsatisfied check of degree 3 with respect

to the bit nodes in the absorbing set (an unsatisfied check of degree larger than 3 is not

possible by the girth condition). Consider a candidate (6,4) absorbing set in which three bit

nodes, call them t1, t2, t3 connect to the same unsatisfied check, and the remaining three bit

nodes, call them t4, t5, t6, each have a distinct unsatisfied check. Since there are no cycles

of length 4, each of the t1, t2, t3 shares a distinct satisfied check with each of t4, t5, t6. We

will show that in fact for large enough prime p such a configuration is not possible.

Let the check incident to t1, t2, and t3 have label x, where x ∈ {0, 1, 2, 3}. Using the

bit consistency condition, we let y be the label of the satisfied check incident to t1 and t4,

z be the label of the satisfied check incident to t1 and t5, and w be the label of the satisfied

check incident to t1 and t6, where y, z, w ∈ {0, 1, 2, 3} are distinct and are different from

x.

By propagating remaining edge labels while ensuring that the bit consistency is satis-

fied, we obtain that the labels of the checks connecting t2 with t4, t5 and t6, respectively,

are z, w and y and the labels of the checks connecting t3 with t4, t5 and t6, respectively, are

w, y and z.

Let (jl, kl) for 1 ≤ l ≤ 6 be the labels of the bit nodes tl.

Using the pattern consistency (see Corollary 1) we write one equation for each pair of
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the bit nodes in the absorbing set that share a satisfied check as follows:

k1 + yj1 ≡ k4 + yj4 mod p,

k1 + zj1 ≡ k5 + zj5 mod p,

k1 + wj1 ≡ k6 + wj6 mod p,

k2 + zj2 ≡ k4 + zj4 mod p,

k2 + wj2 ≡ k5 + wj5 mod p,

k2 + yj2 ≡ k6 + yj6 mod p,

k3 + wj3 ≡ k4 + wj4 mod p,

k3 + yj3 ≡ k5 + yj5 mod p,

k3 + zj3 ≡ k6 + zj6 mod p .

(9.37)

In addition we may also write

k1 + xj1 ≡ k2 + xj2 ≡ k3 + xj3 mod p, (9.38)

since the bit nodes (j1, k1), (j2, k2) and (j3, k3), all participate in the same (unsatisfied)

check with label x.

Since x, y, z, w ∈ {0, 1, 2, 3} and are distinct we now consider different numerical

assignments of these labels. In particular, it is sufficient to consider x = 0 and y = 0, since

by the symmetry of the configuration both z = 0 and w = 0 reduce to the y = 0 case.

1. Case x = 0

Equation (9.38) reduces to

k1 = k2 = k3, (9.39)



177

which combined with (9.37) gives

k1 − k4 ≡ y(j4 − j1) ≡ z(j4 − j2) ≡ w(j4 − j3) mod p

k1 − k5 ≡ z(j5 − j1) ≡ w(j5 − j2) ≡ y(j5 − j3) mod p

k1 − k6 ≡ w(j6 − j1) ≡ y(j6 − j2) ≡ z(j6 − j3) mod p

(9.40)

Since y, z, w do not have any non trivial factors, we may let yzwt ≡ k1 − k4 mod p,

yzwv ≡ k1 − k5 mod p and yzws ≡ k1 − k6 mod p for some integers t, v and s.

Using the identity

j5 − j4 = (j5 − j1)− (j4 − j1) = (j5 − j2)− (j4 − j2) = (j5 − j3)− (j4 − j3) (9.41)

we obtain (using (j5 − j1) ≡ ywv mod p, (j4 − j1) ≡ zwt mod p, and so on),

ywv − zwt ≡ yzv − ywt ≡ zwv − yzt mod p . (9.42)

The last expression implies

y2(w − z)2 ≡ wz(z − y)(y − w) mod p . (9.43)

Likewise, using the identity

j6 − j5 = (j6 − j1)− (j5 − j1) = (j6 − j2)− (j5 − j2) = (j6 − j3)− (j5 − j3) (9.44)

we obtain

yzs− ywv ≡ zws− yzv ≡ yws− zwv mod p , (9.45)

and from it

z2(y − w)2 ≡ yw(z − y)(w − z) mod p . (9.46)
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Using the identity

j6 − j4 = (j6 − j1)− (j4 − j1) = (j6 − j2)− (j4 − j2) = (j6 − j3)− (j4 − j3) (9.47)

we obtain

yzs− zwt ≡ zws− ywt ≡ yws− yzt mod p , (9.48)

and from it

w2(z − y)2 ≡ zy(w − z)(y − w) mod p . (9.49)

Since {y, z, w} = {1, 2, 3}, the equations (9.43), (9.46) and (9.49) hold only for prime

p = 13.

2. Case y = 0

In this case equation (9.38) implies

k1 = k4

k3 = k5

k2 = k6 .

(9.50)

The relations (9.50) combined with (9.37) further yield

k1 − k3 ≡ z(j5 − j1) ≡ w(j3 − j4) ≡ x(j3 − j1) mod p

k1 − k2 ≡ w(j6 − j1) ≡ z(j2 − j4) ≡ x(j2 − j1) mod p

k2 − k3 ≡ w(j5 − j2) ≡ z(j3 − j6) ≡ x(j3 − j2) mod p .

(9.51)

We let xzwt ≡ k1 − k3 mod p, xzwv ≡ k1 − k2 mod p, and xzws ≡ k2 − k3 mod p,

for some integers t, v and s. From k1 − k3 = k1 − k2 + k2 − k3, we have

t ≡ v + s mod p. (9.52)
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From j6 − j1 = −(j3 − j6) + (j3 − j1) we get

zxv ≡ −wxs + zwt mod p. (9.53)

Likewise, from j5 − j1 = (j5 − j2) + (j2 − j1) we get

xwt ≡ xzs + zwv mod p, (9.54)

and from j3 − j4 = (j3 − j2) + (j2 − j4) we get

xzt ≡ zws + xwv mod p . (9.55)

From (9.52) and (9.53) by equating the expressions for zwt we obtain

zv(x− w) ≡ ws(z − x) mod p. (9.56)

Likewise, from (9.52) and (9.54) by equating the expressions for xwt we obtain

wv(z − x) ≡ xs(w − z) mod p, (9.57)

and from (9.52) and (9.55) by equating the expressions for xzt we obtain

xv(z − w) ≡ zs(w − x) mod p, (9.58)

From (9.56), (9.85) and (9.58), it follows that

w2(z − x)2 ≡ xz(w − z)(x− w) mod p,

−z2(x− w)2 ≡ xw(z − x)(z − w) mod p,

−x2(w − z)2 ≡ wz(w − x)(z − x) mod p ,

(9.59)
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which are the same as conditions (9.43), (9.46) and (9.49) previously derived for the x = 0

case. Therefore, for prime p, p > 13 the candidate configuration does not exist.

We now continue with the analysis of the candidate configurations in which each satis-

fied check has degree 2 with respect to the bit nodes in the absorbing set, and each unsatis-

fied check has degree 1 with respect to the bits in the absorbing set.

1 1 2 2

4 4 5 5

1
3

4

5 6

7

9

8 10

2

6 6

3 3

Figure 9.10: Depiction of the first candidate (6,4) set

By separately considering the cases when the two bit nodes that have all neighboring

checks satisfied have a satisfied check in common, and the cases when they do not, one can

show that there are 3 possible non isomorphic configurations, as shown in Figure 9.10, 9.11,
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6
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6 63 3

Figure 9.11: Depiction of the second candidate (6,4) set
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Figure 9.12: Depiction of the third candidate (6,4) set

and 9.12. By ensuring the bit consistency, it further follows that for each configuration there

are 8 distinct edge labellings (as we show below).

Let us consider the topmost configuration first. The other two configurations are ana-

lyzed subsequently.

I. Candidate (6,4) configuration, given in Figure 9.10.

We first determine all possible edge labellings. For convenience, we assign (i1, i2, i3, i4)

: = (x, y, z, w), where x, y, z, w ∈ {0, 1, 2, 3} and distinct by the bit consistency condition

at (j1, k1). Then, by imposing the bit consistency conditions at remaining vertices, the

possible assignments for the remaining edge labels are as follows

(i5, i6, i7, i8, i9, i10) ∈ {(y, z, x, z, x, y), (z, x, y, y, z, x),

(y, z, x, z, w, y), (y, z, x, w, x, y), (y, z, x, z, x, w),

(z, x, y, y, z, w)(z, x, y, y, w, x), (z, x, y, w, z, x)}.

(9.60)

We first observe that the assignments (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10) = (x, y, z, w, y, z, x, z, x, y)

and (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10) =(x, y, z, w, z, x, y, y, z, x) are in fact symmetric (ex-

change y and z) and is thus sufficient to analyze only one of them. Likewise, by appealing
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to symmetry and after appropriate renamings, the remaining six assignments also represent

the same labelled configuration. In particular, third and sixth assignments in (9.60) are

symmetric, as are fourth and seventh, and as are fifth and eighth assignments. Fourth as-

signment follows from the third by exchanging the labels x and y, and the fifth assignment

follows from the third by exchanging the labels x and z. It is thus sufficient to consider only

(i1, i2, i3, i4, i5, i6, i7, i8, i9, i10)= (x, y, z, w, y, z, x, z, x, y) or (x, y, z, w, y, z, x, z, w, y).

Consider (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10) = (x, y, z, w, y, z, x, z, x, y).

By applying the pattern consistency for each edge and its end points in Figure 9.10 we

obtain

k1 + xj1 ≡ k3 + xj3 mod p,

k1 + yj1 ≡ k4 + yj4 mod p,

k1 + zj1 ≡ k5 + zj5 mod p,

k1 + wj1 ≡ k2 + wj2 mod p,

k2 + yj2 ≡ k3 + yj3 mod p,

k2 + zj2 ≡ k4 + zj4 mod p,

k2 + xj2 ≡ k5 + xj5 mod p,

k3 + zj3 ≡ k6 + zj6 mod p,

k4 + xj4 ≡ k6 + xj6 mod p, and

k5 + yj5 ≡ k6 + yj6 mod p.

(9.61)

Using the cycle consistency conditions for each of five cycles that span the cycle space
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of the graph in Figure 9.10 we also write

w(j2 − j1) + y(j3 − j2) + x(j1 − j3) ≡ 0 mod p

w(j2 − j1) + z(j4 − j2) + y(j1 − j4) ≡ 0 mod p

w(j2 − j1) + x(j5 − j2) + z(j1 − j5) ≡ 0 mod p

y(j4 − j1) + x(j6 − j4) + z(j3 − j6) + x(j1 − j3) ≡ 0 mod p

x(j5 − j2) + y(j6 − j5) + x(j4 − j6) + z(j2 − j4) ≡ 0 mod p.

(9.62)

We will use the relationships in (9.62) to express j3 through j6 in terms of j1 and

(j2−j1), and then in turn use (9.61) to express k2 through k6 in terms of k1, j1 and (j2−j1).

By symmetry of the configuration (see Figure 9.10), for the current labelling it is suf-

ficient to consider x = 0 and w = 0. Specifically, letting y = 0 or z = 0 reduces to the

x = 0 case.

We let a : = j2 − j1, b : = j3 − j1, c : = j4 − j1, d : = j5 − j1, and e : = j6 − j1. Note

that in particular by the check consistency constraint, a �= 0.

1. Case x = 0.

The system in (9.62) reduces to

a(w − y) + by ≡ 0 mod p

a(z − w) + c(y − z) ≡ 0 mod p

aw − dz ≡ 0 mod p

bz + yc− ze ≡ 0 mod p

az − cz − dy + ey ≡ 0 mod p .

(9.63)

Using (9.63) we express b, c , d and e in terms of a. In particular, the last constraint
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in (9.63) is redundant as it follows from the previous four, as we now show.

Express b, c and d of a using top three equations in (9.63) so that

b ≡ ay−w
y

mod p

c ≡ aw−z
y−z

mod p

d ≡ aw
z

mod p .

(9.64)

Substitute for b, c, d in terms of a in the fourth equation of the system (9.63) to obtain

e ≡ a(
y − w

y
− w − z

y − z

y

z
) mod p . (9.65)

Likewise, substitute for b, c, d in terms of a in the fifth equation of the system (9.63) to

obtain

a

(
z − z

w − z

y − z
− wy

z

)
+ ey ≡ 0 mod p . (9.66)

From (9.65) it follows that

(y − z)yze ≡ a
(
z(y − w)(y − z) + y2(w − z)

)
mod p, (9.67)

and from (9.66) it follows that

a
(
z2(y − z)− z2(w − z)− wy(y − z)

)
+ (y − z)yze ≡ 0 mod p . (9.68)

Rewrite (9.68) as

(y − z)yze ≡ a
(−z2(y − z) + z2(w − z) + wy(y − z)

)
mod p . (9.69)

We expand the terms that multiply a in both (9.67) and (9.69). They both reduce to−wyz−

yz2 + wz2 + y2w, which makes the last equation in the system (9.63) redundant.
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Therefore, for q : = j1 and t : = j2 − j1, all of the remaining values of j3, j4, j5, j6

follow for each of the 3! = 6 choices of (y, z, w).

Using (9.61) we further obtain

k3 ≡ k1 mod p

k4 ≡ k1 − y(j4 − j1) mod p

k5 ≡ k1 − z(j5 − j1) mod p

k2 ≡ k5 mod p

k6 ≡ k4 mod p.

(9.70)

Therefore, we can express k2 through k6 in terms of s : = k1, q and t. The results for

all choices of (y, z, w) are summarized in Table 9.1.

y, z, w j1 j2 j3 j4 j5 j6 k1 k2 k3 k4 k5 k6

3, 2, 1 q q + t q + 2t
3

q − t q + t
2

q − 5t
6

s s− t s s + 3t s− t s + 3t
3, 1, 2 q q + t q + t

3
q + t

2
q + 2t q + 11t

6
s s− 2t s s− 3t

2
s− 2t s− 3t

2

2, 3, 1 q q + t q + t
2

q + 2t q + t
3

q + 11t
6

s s− t s s− 4t s− t s− 4t
2, 1, 3 q q + t q − t

2
q + 2t q + 3t q + 7t

2
s s− 3t s s− 4t s− 3t s− 8t

1, 2, 3 q q + t q − 2t q − t q + 3t
2

q − 5t
2

s s− 3t s s + t s− 3t s + t
1, 3, 2 q q + t q − t q + t

2
q + 2t

3
q − 5t

6
s s− 2t s s− t

2
s− 2t s− t

2

Table 9.1: Several solution sets for the (6,4) configuration.

Furthermore, under the current configuration, the bit nodes in one such (6, 4) absorbing

set that have 3 satisfied and 1 unsatisfied check, all have unsatisfied checks in the row group

labelled w. By the bit consistency condition, no bit node can connect to more than one such

check. Therefore, this configuration is in fact a (6, 4) fully absorbing set.
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The (absolute) indices of columns that correspond to the bit nodes in the absorbing set

are ki + pji for 1 ≤ i ≤ 6 and the indices of rows that correspond to the unsatisfied check

nodes in the absorbing set are (ki + jiw) mod p + wp, for 3 ≤ i ≤ 6. In particular, the

solution set in row 1 holds for all p > 5 and t a multiple of 6.

We complete the analysis of this label assignment by considering w = 0.

2. Case w = 0

In this case the system in (9.62) reduces to:

ay + b(x− y) ≡ 0 mod p

az + c(y − z) ≡ 0 mod p

ax + d(z − x) ≡ 0 mod p

b(z − x) + c(y − x) + e(x− z) ≡ 0 mod p

a(z − x) + c(x− z) + d(x− y) + e(y − x) ≡ 0 mod p .

(9.71)

Note that the last relation follows from the previous four. We again express b, c d and

e in terms of a, so that by setting j1 : = q and a : = t, all of j2 through j6 follow as a

function of q and t. Then, by letting k1 : = s, the remaining k2 through k6 follow from q, t

and s from (9.61). The solution set for various numerical assignments of (x, y, z) is given

in Table 9.2.

As in the x = 0 case, the unsatisfied checks all belong in the row group labelled w.

By the bit consistency condition, no bit node can connect to more than one such check.

Therefore, this configuration is also in fact a (6, 4) fully absorbing set.

The (absolute) indices of columns that correspond to the bit nodes in the absorbing set
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x, y, z j1 j2 j3 j4 j5 j6 k1 k2 k3 k4 k5 k6

3, 2, 1 q q + t q − 2t q − t q + 3t
2

q − 5t
2

s s s + 6t s + 2t s− 3t
2

s + 13t
2

3, 1, 2 q q + t q − t
2

q + 2t q + 3t q + 7t
2

s s s + 3t
2

s− 2t s− 6t s− 13t
2

2, 3, 1 q q + t q + 3t q − t
2

q + 2t q + 7t
2

s s s− 6t s + 3t
2

s− 2t s− 13t
2

2, 1, 3 q q + t q − t q + 3t
2

q − 2t q − 5t
2

s s s + 2t s− 3t
2

s + 6t s + 13t
2

1, 2, 3 q q + t q + 2t q + 3t q − t
2

q + 7t
2

s s s− 2t s− 6t s + 3t
2

s− 13t
2

1, 3, 2 q q + t q + 3t
2

q − 2t q − t q − 5t
2

s s s− 3t
2

s + 6t s + 2t s + 13t
2

Table 9.2: Several solution sets for the (6,4) configuration.

are ki + pji for 1 ≤ i ≤ 6 and the indices of rows that correspond to the unsatisfied check

nodes in the absorbing set are (ki + jiw) mod p + wp, for 3 ≤ i ≤ 6. In particular, the

solution set in row 1 of the table in Figure 9.2 holds for all p > 5 and t even.

The remaining labelled configuration of Figure 9.10 to be considered is

(i1, i2, i3, i4, i5, i6, i7, i8, i9, i10) = (x, y, z, w, y, z, x, z, w, y).

We let a : = j2 − j1, b : = j3 − j1, c : = j4 − j1, d : = j5 − j1, and e : = j6 − j1. Note

that in particular by the check consistency constraint, a �= 0.

Based on the cycles consistency condition for the five cycles in Figure 9.10 we establish

a(w − y) + b(y − x) ≡ 0 mod p

a(w − z) + c(z − y) ≡ 0 mod p

a(w − x) + d(x− z) ≡ 0 mod p

c(y − w) + b(z − x) + e(w − z) ≡ 0 mod p

d(x− y) + a(z − x) + c(w − z) + e(y − w) ≡ 0 mod p .

(9.72)
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By expressing b, c and d in terms of a, from this system we obtain

a

(
(y − w)(w − z)

y − z
+

(z − x)(w − y)

x− y

)
+ e(w − z) ≡ 0 mod p (9.73)

a

(
(x− y)(w − x)

z − x
+ (z − x) +

(w − z)2

y − z

)
+ e(y − w) ≡ 0 mod p, (9.74)

where {x, y, z, w} = {0, 1, 2, 3} and are distinct. For all 4! = 24 distinct ways of assigning

numerical values to x, y, z and w, the system (9.73)–(9.74) produces the unique solution

a = 0, e = 0, provided that p > 3. Since a �= 0 by the check consistency condition, we

conclude that this configuration is not possible.

We now consider the second candidate (6,4) configuration.

II. Candidate (6,4) configuration, given in Figure 9.11.

We first determine all possible edge labellings. For convenience, let (i1, i2, i3, i4) : =

(x, y, z, w), where x, y, z, w ∈ {0, 1, 2, 3} and are distinct by the bit consistency condition

at (j1, k1). Then, by imposing the bit consistency conditions at remaining vertices, the

assignments for the remaining edge labels are given by the following set

(i5, i6, i7, i8, i9, i10) ∈ {(y, x, w, z, z, x), (w, x, y, z, z, x),

(y, x, w, z, z, y), (y, w, x, z, z, y), (y, x, w, z, w, x),

(z, x, w, y, w, x), (y, z, w, x, w, y), (y, x, w, z, w, y)} .

(9.75)

Out of these 8 possible labelled configurations by appealing to symmetry and label

renaming it is sufficient to consider only 2 of these as we now show. Note that the eighth

labelling is the same as the first labelling after we exchange (j3, k3) and (j4, k4), (j5, k5)

and (j6, k6), and labels y with x and w with z. Likewise, the second labelling is the same as
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the seventh labelling after we exchange (j3, k3) and (j4, k4), (j5, k5) and (j6, k6), and labels

y with x and w with z. Sixth labelling is the same as the fourth labelling after we exchange

labels z with x, y with w, and nodes (j1, k1) with (j2, k2), (j3, k3) with (j4, k4), and (j5, k5)

with (j6, k6), and take the mirror image of the resulting configuration. Fifth labelling is the

same as the third after we exchange labels z with x and y with w and take the mirror image

of the whole configuration. Fourth (respectively first) labelling is the same as the second

(respectively third) after we exchange (j3, k3) and (j4, k4) and labels x and y.

It is thus sufficient to consider only two different labellings, namely

(i1, i2, i3, i4, i5, i6, i7, i8, i9, i10)= (x, y, z, w, y, x, w, z, z, y) (third labelling) and

(i1, i2, i3, i4, i5, i6, i7, i8, i9, i10) = (x, y, z, w, y, z, w, x, w, y) (seventh labelling).

For the first remaining case, by symmetry, it is sufficient to consider x = 0 and z = 0

as w = 0 and y = 0 reduce to the x = 0 and z = 0 case respectively. Likewise, for the

second case it is sufficient to consider x = 0 and y = 0, as z = 0 and w = 0 each reduce to

the x = 0 and y = 0 cases, respectively.

Consider (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10)= (x, y, z, w, y, x, w, z, z, y).

1. Case z = 0

From Figure 9.11 and under the current edge label assignment using the pattern consis-
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tency constraints of Corollary 1 we write

k1 ≡ k5 mod p

k2 ≡ k6 mod p

k3 ≡ k4 mod p

k1 + xj1 ≡ k3 + xj3 mod p

k1 + yj1 ≡ k4 + yj4 mod p

k1 + wj1 ≡ k6 + wj6 mod p

k2 + yj2 ≡ k3 + yj3 mod p

k2 + xj2 ≡ k4 + xj4 mod p

k2 + wj2 ≡ k5 + wj5 mod p

k5 + yj5 ≡ k6 + yj6 mod p .

(9.76)

Let a : = j2 − j1, b : = j3 − j1, c : = j4 − j1, d : = j5 − j1 and e : = j6 − j1. Using the

cycle constraint for four cycles spanning the cycle space of the configuration in Figure 9.11

and under the current edge labelling we have

xb + y(−c) ≡ 0 mod p,

y(b− a) + x(a− c) ≡ 0 mod p,

y(e− d) + w(−e) ≡ 0 mod p,

w(d− a) + y(e− d) ≡ 0 mod p.

(9.77)
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From the system (9.76) we write

k1 − k2 ≡ k1 − k6 ≡ w(j6 − j1) ≡ we mod p,

k1 − k3 ≡ k1 − k4 ≡ y(j4 − j1) ≡ yc mod p,

k2 − k3 ≡ y(j3 − j2) ≡ y(b− a) mod p.

(9.78)

Using the identity (k1 − k2) = (k1 − k3)− (k2 − k3), and (9.78) we obtain

we ≡ y(c− b + a) mod p. (9.79)

There are six possible assignments for (x, y, w), as permutations of the set (1, 2, 3). In

the remainder we will show that in fact only (x, y, w) = (1, 3, 2) gives rise to absorbing

sets. In all other cases, using (9.77) and (9.79), we will reach a contradiction.

From (9.77) we have

xb ≡ yc mod p

yd ≡ (y − w)e mod p.

(9.80)

We also have

xa− (y + x)c ≡ 0 mod p

(2y − w)e ≡ ya mod p,

(9.81)

where the top expression in (9.81) follows from substituting top expression in (9.80)

into the second expression of (9.77) and the bottom expression in (9.81) follows from

substituting bottom expression in (9.80) into the fourth expression of (9.77).

For (y, w, x) = (1, 2, 3), the bottom expression in (9.81) gives

a ≡ 0 mod p,
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which then implies

c ≡ 0 mod p,

by the top expression in (9.81). Since c = j4 − j1, and (j1, k1) and (j4, k4) share a check, c

must be non-zero, implying a contradiction.

For (y, w, x) ∈ {(1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2)} we express b, c, d, e in terms of a

using (9.80) and (9.81).

For (y, w, x) = (1, 3, 2) we obtain:

b ≡ a/3 mod p, c ≡ 2a/3 mod p, d ≡ 2a mod p, e ≡ −a mod p.

For (y, w, x) = (2, 1, 3) we obtain:

b ≡ 2a/5 mod p, c ≡ 3a/5 mod p, d ≡ a/3 mod p, e ≡ 2a/3 mod p.

For (y, w, x) = (2, 3, 1) we obtain:

b ≡ 2a/3 mod p, c ≡ a/3 mod p, d ≡ −a mod p, e ≡ 2a mod p.

For (y, w, x) = (3, 1, 2) we obtain:

b ≡ 3a/5 mod p, c ≡ 2a/5 mod p, d ≡ 2a/5 mod p, e ≡ 3a/5 mod p.

In all four cases, when b, c and e are substituted in (9.79) it follows that a ≡ 0 mod p

(we get −3a ≡ 4a/3 mod p, 2a/3 ≡ 12a/5 mod p, 6a ≡ 4a/3 mod p, and 3a/5 ≡

12a/5 mod p, respectively). Since b is a multiple of a in all four cases, if a ≡ 0 mod p,

then b ≡ 0 mod p as well. Since b = j3− j1 and nodes (j1, k1) and (j3, k3) share a check,

b must be non-zero, thus implying a contradiction.
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For (y, w, x) = (3, 2, 1) we obtain:

b ≡ 3a/4 mod p, c ≡ a/4 mod p, d ≡ a/4 mod p, e ≡ 3a/4 mod p.

When b, c and e are substituted in (9.79), we obtain the identity 3a/2 ≡ 3a/2 mod p.

Since c ≡ d mod p, we have that j4 = j5 and since b ≡ e mod p, we have that j3 = j6.

Note that neither of these two conditions on js violates the check consistency constraint

since the respective bit nodes do not share a check in Figure 12. Let q = j1 and t = j4− j1.

Then j4 = q + t and j5 = q + t. Since b = 3c, and b = j3− j1 and c = j4− j1, we have that

j3 = q + 3t. Since j3 = j6, j6 = q + 3t as well. Likewise, since a = 4c, and a = j2 − j1

and c = j4 − j1, we have that j2 = q + 4t. We have thus expressed all of j1 through j6 in

terms of q and t. Now the system (9.76) reduces to

k1 ≡ k5 mod p,

k2 ≡ k6 mod p,

k3 ≡ k4 mod p,

k1 − k3 ≡ 3t mod p,

k1 − k2 ≡ 6t mod p,

k2 − k3 ≡ −3t mod p.

(9.82)

Thus, with s = k1 and using (9.82) we can express all of k1 through k6 in terms of s

and t. This solution set for j1 through j6 and k1 through k6 is listed in Table 9.3.

Note that the result in Table 9.3 establishes the existence of a (6,4) absorbing set. Even

though j3 = j6 and j4 = j5 the check consistency constraints are not violated as (j3, k3)
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x, y, w j1 j2 j3 j4 j5 j6 k1 k2 k3 k4 k5 k6

1, 3, 2 q q + 4t q + 3t q + t q + t q + 3t s s− 6t s− 3t s− 3t s s− 6t

Table 9.3: A solution set for an (6,4) absorbing set.

and (j6, k6) do not share an edge, and neither do (j4, k4) and (j5, k5), see Figure 9.11.

We now discuss whether this set is also a (6,4) fully absorbing set. Suppose there ex-

ists a bit node (j7, k7) outside this absorbing set that is incident to some of the unsatisfied

checks. By the bit consistency constraint, both (j3, k3) and (j4, k4) each have a neighbor-

ing unsatisfied check whose label is w. These two checks must be distinct by the girth

condition. Likewise, both (j5, k5) and (j6, k6) each have a neighboring unsatisfied check

whose label is x, and these are also distinct by the girth condition. By the bit consistency

condition, the bit node (j7, k7) can then share at most 2 of these checks with the bit nodes

(j3, k3) through (j7, k7).

Suppose that the bit node (j7, k7) shares the check with each of (j3, k3) and (j5, k5).

From the cycles relating bit nodes (j7, k7), (j3, k3), (j5, k5), (j1, k1), and (j2, k2), we obtain

x(j7 − j5) + w(j3 − j7) + x(j1 − j3) ≡ 0 mod p

w(j5 − j2) + x(j7 − j5) + w(j3 − j7) + y(j2 − j3) ≡ 0 mod p .

For (x, y, z, w) = (1, 3, 0, 2) of present interest, we obtain that j7 ≡ q + 2t mod p

using the result in Table 9.3.
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Since we further have

k3 + 2j3 ≡ k7 + 2j7 mod p

k5 + j5 ≡ k7 + j7 mod p,

it follows that k7 ≡ s − t mod p. Therefore by the existence of this bit node (j7, k7), the

current (6,4) absorbing set is not a (6,4) fully absorbing set.

We now consider (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10)= (x, y, z, w, y, x, w, z, z, y) with x =

0.

1. Case x = 0

As before, using the pattern consistency constraints we establish:

k1 ≡ k3 mod p

k2 ≡ k4 mod p

k1 + yj1 ≡ k4 + yj4 mod p

k1 + zj1 ≡ k5 + zj5 mod p

k1 + wj1 ≡ k6 + wj6 mod p

k2 + yj2 ≡ k3 + yj3 mod p

k2 + wj2 ≡ k5 + wj5 mod p

k2 + zj2 ≡ k6 + zj6 mod p

k3 + zj3 ≡ k4 + zj4 mod p

k5 + yj5 ≡ k6 + yj6 mod p, .

(9.83)

Let a : = j2 − j1, b : = j3 − j1, c : = j4 − j1, d : = j5 − j1, and e : = j6 − j1.

Using the cycle constraints for four cycles spanning the cycle space of the configuration in
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Figure 9.11 we may also write

z(c− b) + y(−c) ≡ 0 mod p,

y(b− a) + z(c− b) ≡ 0 mod p,

zd + y(e− d) + w(−e) ≡ 0 mod p,

w(d− a) + y(e− d) + z(a− e) ≡ 0 mod p .

(9.84)

There are 6 possible assignments for (y, z, w) as permutations of the set {1, 2, 3}. We

will show that in fact the only possible assignment is (y, z, w) = (2, 1, 3) (a contradiction

will be reached in all other cases).

Consider first the assignment (y, z, w) = (1, 2, 3). Using (9.84) we express a, b, c and

d in terms of e so that

a ≡ 3e mod p,

b ≡ e mod p,

c ≡ 2e mod p,

d ≡ 2e mod p .

(9.85)

Note that since c ≡ d mod p and b ≡ e mod p the above implies that j4 = j5

and j3 = j6. Even though now some vertices have the same j components, the check

consistency condition is not violated as (j4, k4) and (j5, k5) do not share an edge, and

neither do (j3, k3) and (j6, k6) (see Figure 9.11).

From (9.83) and by substituting for a, c and d in terms of e using (9.85) we note that

k1 − k2 ≡ 1(2e) mod p,

k1 − k5 ≡ 2(2e) mod p,

k2 − k5 ≡ 3(2e− 3e) mod p .

(9.86)
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The system (9.86) implies that e ≡ 0 mod p for p > 5. Since e = j6 − j1 and (j1, k1)

and (j6, k6) do share an edge, the condition e ≡ 0 mod p violates the check consistency

constraint. We thus conclude that the current numerical assignment for (y, z, w) is not

possible.

By expressing a, b, c and d in terms of e as in (9.85) and then using (9.83) to express

the differences k1 − k2, k1 − k5, and k2 − k5 as in (9.86) we conclude that e ≡ 0 mod p

when (y, z, w) = (1, 3, 2) and p > 5 as well as (y, z, w) = (3, 1, 2) and p > 7 or (3, 2, 1) and

p > 13.

Consider now the assignment (y, z, w) = (2, 3, 1). Using (9.84) it follows after substi-

tuting for d in terms of e in the last expression that

a ≡ 0 mod p . (9.87)

By substituting for b in terms of c in the second expression in (9.84) it also follows that

3a ≡ 4c mod p . (9.88)

Therefore c ≡ 0 mod p, which violates the check consistency constraint for the edge

connecting bit nodes (j1, k1) and (j4, k4). The condition a ≡ 0 mod p by itself does not

yield a contradiction as the nodes (j1, k1) and (j2, k2) do not have any edges in common.

Finally, we consider the assignment (y, z, w) = (2, 1, 3). First, by substituting for d in

terms of e in the last expression that

a ≡ 0 mod p . (9.89)
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Therefore j1 = j2. By substituting for b in terms of c in the second expression in (9.84) we

have that

1a ≡ (2− 2)c mod p , (9.90)

which does not tell us anything about the actual value of c. We express b, c and d in terms

of e, again using (9.84), and obtain

b ≡ −e mod p,

c ≡ e mod p,

d ≡ −e mod p .

(9.91)

Since b ≡ d mod p, j3 = j5, and since c ≡ e mod p, j4 = j6. Neither of these conditions

on j’s violates the check consistency constraints as the respective bit nodes do not share

edges (see Figure 9.11). Thus, with q : = j1 and t : = e we can express all of j1 through j6

in terms of q and t. Having verified that all constraints given by (9.83) are in fact consistent

for s : = k1 we obtain the solution set given in Table 9.4, in terms of q, t and s.

y, z, w j1 j2 j3 j4 j5 j6 k1 k2 k3 k4 k5 k6

2, 1, 3 q q q − t q + t q − t q + t s s− 2t s s− 2t s + t s− 3t

Table 9.4: A solution set for the (6,4) configuration.

From Figure 9.11 and under current labelling, note that the bit nodes (j3, k3) and (j4, k4)

both have an unsatisfied check whose label is w, and that likewise the bit nodes (j5, k5) and

(j6, k6) both have an unsatisfied check whose label is x. Therefore there could be a bit node
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that potentially connects to 2 satisfied and 2 unsatisfied check nodes. Consider a bit node

(j7, k7) that shares a check with each of (j3, k3) and (j5, k5). By the parity check constraint

k7 + wj7 ≡ k3 + wj3 mod p,

k7 + xj7 ≡ k5 + xj5 mod p .

for (x, y, z, w) = (0, 2, 1, 3), it follows that k7 = k5 ≡ s + t mod p and j7 ≡ q −

4t/3 mod p. Thus, the existence of this (j7, k7) bit node for t a multiple of 3, makes the

candidate configuration be a (6,4) absorbing set but not a (6,4) fully absorbing set.

Consider now the second remaining labelling, namely (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10)

= (x, y, z, w, y, z, w, x, w, y). We will show that it in fact not possible for p large enough.

Applying the cycle consistency condition to the four cycles in Figure 9.11 for a : =

j2 − j1, b : = j3 − j1, c : = j4 − j1, d : = j5 − j1, and e : = j6 − j1 we obtain

b(x− w) + c(w − y) ≡ 0 mod p

e(w − y) + d(y − z) ≡ 0 mod p

a(x− w) + d(w − y) + e(y − x) ≡ 0 mod p

a(z − y) + b(y − w) + c(w − z) ≡ 0 mod p .

(9.92)

We can express all of b, c, d, e as certain multiples of a, depending on the actual numer-

ical values of y, z and w.
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From this figure we also obtain using the pattern consistency conditions the following:

k1 + xj1 ≡ k3 + xj3 mod p

k1 + yj1 ≡ k4 + yj4 mod p

k1 + zj1 ≡ k5 + zj5 mod p

k1 + wj1 ≡ k6 + wj6 mod p

k2 + yj2 ≡ k3 + yj3 mod p

k2 + zj2 ≡ k4 + zj4 mod p

k2 + wj2 ≡ k5 + wj5 mod p

k2 + xj2 ≡ k6 + xj6 mod p

k3 + wj3 ≡ k4 + wj4 mod p

k5 + yj5 ≡ k5 + yj6 mod p .

(9.93)

1. Case x = 0

With x = 0, (9.93) yields k1 ≡ k3 mod p and k2 ≡ k6 mod p so that

k1 − k2 ≡ we ≡ y(a− b) mod p . (9.94)

From (9.92) we then have

a(z − y)(y − w) + b[(−w)(w − z) + (y − w)2] ≡ 0 mod p,

aw(y − z) + e[(w − y)2 + y(z − y)] ≡ 0 mod p .

(9.95)

From (9.94), and (9.95) it follows that a ≡ 0 mod p for all 3! = 6 numerical assign-

ments of y, z and w, for p /∈ {2, 3, 5, 7, 37} and consequently b ≡ 0 mod p. Since (j1, k1)

and (j3, k3) share an edge in Figure 9.11, the b ≡ 0 mod p condition violates the check

consistency constraint for all but a small finite number of values of p.
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2. Case y = 0

We now have k1 ≡ k4 mod p, k2 ≡ k3 mod p and k5 ≡ k6 mod p and

xb ≡ zd− w(d− a) mod p , (9.96)

which follows from k1−k2 = (k1−k5)− (k2−k5) and k2−k3. From (9.92) we also have

a(−wz) + b[w2 + (w − z)(x− w)] ≡ 0 mod p,

a(x− w)w + d(w2 − xz) ≡ 0 mod p .

(9.97)

Combining (9.93) and (9.97) it again follows that a ≡ 0 mod p for all 3! = 6 nu-

merical assignments of x, z and w for p /∈ {2, 3, 5, 7, 37}. This in turn implies that b ≡ 0

mod p, which violates the check consistency condition.

Lastly, we consider the third and final unlabelled candidate (6,4) absorbing set, for

which we show that in fact does not yield (6,4) absorbing sets for the prime p large enough.

III. Candidate (6,4) configuration, given in Figure 9.12.

We first determine all possible edge labellings. As before we let (i1, i2, i3, i4) : =

(x, y, z, w), where x, y, z, w ∈ {0, 1, 2, 3} and distinct by the bit consistency condition

at (j1, k1). Then, by propagating bit consistency conditions for remaining vertices, the

assignments for the remaining edge labels are given by the following set

(i5, i6, i7, i8, i9, i10) ∈ {(x, y, z, z, x, y), (x, y, z, z, x, w),

(x, y, z, z, w, y), (x, y, z, w, x, y), (x, y, z, w, w, y),

(z, x, y, w, w, z), (z, y, x, w, w, y), (z, y, x, w, w, z)} .

By exploiting the symmetry, one can show that after renaming the labelling
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(i1, i2, i3, i4, i5, i6, i7, i8, i9, i10)= (x, y, z, w, x, y, z, z, w, y) and (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10)=

(x, y, z, w, x, y, z, w, x, y) reduce to the same case (by exchanging z and x).

We are thus left with analyzing the remaining seven cases.

As before, we let a : = j2−j1, b : = j3−j1, c : = j4−j1, d : = j5−j1, and e : = j6−j1.

Note that in particular by the check consistency constraint, a �= 0.

Consider the labelling (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10) = (x, y, z, w, x, y, z, z, x, y). We

apply the cycle consistency conditions to five cycles spanning the cycle space of the graph

in Figure 9.12:

xb + z(c− b)− yc ≡ 0 mod p

yc + x(a− c)− wa ≡ 0 mod p

−wa + zd + y(a− d) ≡ 0 mod p

y(d− a) + x(e− d) + z(a− e) ≡ 0 mod p

xb + y(e− b) + x(d− e)− zd ≡ 0 mod p .

(9.98)

By expressing b, c and d in terms of a, and substituting in the bottom two constraints (9.98)

we obtain

a

(
z − y +

(y − w)(y − x)

y − z

)
+ e(x− z) ≡ 0 mod p (9.99)

a

(
(y − z)(x− w)

x− z
+

(y − w)(x− z)

y − z

)
+ e(y − x) ≡ 0 mod p, (9.100)

where {x, y, z, w} = {0, 1, 2, 3} and are distinct. For all 4! = 24 distinct ways of assigning

numerical values to x, y, z and w, the system (9.99) – (9.100) produces the unique solution

a = 0, e = 0, provided that p > 3. Since a �= 0 by the check consistency condition, we

conclude that this configuration is not possible.
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One can likewise establish the constraints of the (9.98) type for the remaining six cases,

from which the two equations (as in (9.99),(9.100)) relating a and e will follow. In all five

cases, the unique solution for p large enough is (a, e) = (0, 0). In particular, p > 13 is

sufficient for all cases considered.

Having exhaustively considered all possible configurations of (6, 4) absorbing sets, the

proof of the lemma is complete. �

Using these results the proof of Theorem 3(c) now follows. We complete our analysis

of γ = 4 by proving the claim in Theorem 4: The number of (6, 4) (fully) absorbing sets

scales as Θ(n3/2), where n is the codeword length.

Proof: Recall that for the configuration in Figure 9.10 we identified two sets of labellings

given in tables in Figures 9.1 and 9.2 that determine (6,4) fully absorbing sets. For each

such assignment there are three parameters that determine all of j’s and k’s, and each

parameter is chosen independently in at most p ways (to ensure the all j’s and k’s have

integer values), yielding an upper bound which grows as Θ(p3). A lower bound on the

cardinality of the (6, 4) fully absorbing sets is given by the solution set in Table 9.1, which

also grows as Θ(p3). Note that the number of solutions of absorbing sets in Table 9.3 and

Table 9.4 grows as Θ(p3) as well. Since n = p2, the result follows. �

We have thus proven Theorem 4 for γ = 4.
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9.3 Experimental Results

The experiments were carried out using an LDPC code emulator described in detail in

[63]. The decoder was implemented using a 4.5 (4 bits for integer and 5 bits for the frac-

tional part) uniform quantization. The all-zero codeword was transmitted and the decoder

was set to run for at most 200 iterations, halting earlier if decoding to a codeword. The

frame error rate and the bit error rate for the C47,4 code are shown in Figure 9.13, along

with the uncoded BER curve. In the low BER region of 10−10 and below, all errors were

found to be due to fully absorbing sets, and none was a codeword. A total of 25 errors were

recorded at SNR = 6.4 dB, of which 18 errors were of smallest weight and all due to (6, 4)

fully absorbing sets.
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Figure 9.13: Experimental Results for C47,4
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9.4 Conclusion and Future Work

In this chapter we presented a detailed analysis of the dominant configurations in the

error-floor regime of high rate array-based LDPC codes. We provided an explicit descrip-

tion of the minimal (fully) absorbing sets and showed the non-existence of certain candidate

configurations. We also enumerated minimal (fully) absorbing sets and showed how their

number scales with the codeword length. Experiments on an emulation platform were per-

formed and were found to be in agreement with the theoretical description of the dominant

errors.
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Part III

Conclusion and Future Extensions
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This dissertation dealt with two interesting problems in modern coding theory that arise

when conventional assumptions on communication no longer hold. First, we addressed

the issue of inadequate synchronization from a coding theoretic-perspective. We derived

several novel structural properties of Reed-Muller codes which were subsequently used for

an in-depth study of these codes in channels which in addition to substitution errors permit

a bit repetition or a bit deletion. We presented explicit number-theoretic constructions for

communication in the presence of repetition errors. Our constructions are asymptotically

optimal for the case of one repetition, and are within a constant factor of the upper bound

on the cardinality for the case of multiple repetitions. They improve on the previously best

known results.

We also discussed a general prefixing method for improving the repetition error correct-

ing capability of a given (additive) error correcting code. The proposed method leverages

number-theoretic constructions and constructs a carefully chosen prefix whose length is

only logarithmic in the codeword length, while providing a guarantee on the immunity to

repetition errors. A possible future extension would be to implement the proposed methods

as a component of a real communication system. Another interesting extension would be

to combine the proposed prefixing method with a suitable decoding algorithm, of the kind

presented here.

In the second part, we discussed the LDPC code performance in the low BER regime

under iterative decoding. We introduced the concept of (fully) absorbing sets. Fully ab-

sorbing sets are combinatorial objects in the Tanner graph of the code, that are stable under
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the bit flipping algorithm. As a concrete case study, we systematically described minimal

(fully) absorbing sets of high rate array-based LDPC codes. These were shown to entirely

dominate the low BER performance over the AWGN channel under practical iterative de-

coding algorithms. This observation is in contrast to the minimum distance codewords

which play the central role in describing the performance of a code under the optimal

yet computationally expensive maximum likelihood decoding algorithm. Insights from the

study of absorbing sets have already been used for improved decoder implementations [64],

and for the error-floor prediction based on fast stochastic simulation, [17].

As a future direction, it would be interesting to establish an explicit link between ab-

sorbing sets, which play an important role in describing the performance of message pass-

ing algorithms over AWGN channels, and pseudo-codewords [20], which are useful in un-

derstanding linear programming-based decoding. It would also be useful to generalize the

analysis presented here to other LDPC code families, and to derive asymptotic properties

of code ensembles from the point of view of absorbing sets.
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